Science.gov

Sample records for salmon resource columbia

  1. Valuing the salmon resource: Columbia River stocks under climate change and fishery enhancement

    SciTech Connect

    Anderson, D.M.; Scott, M.J.

    1993-04-01

    This paper represents an update to ongoing multidisciplinary research in the area of climate change and associated regional impacts to fisheries and economies. This work particularly deals with the total value of Columbia River salmon and the idea that fish have capital value, articulated here as spawning value. Earlier work dealt solely with the Yakima River spring chinook fishery`s response to climate change and fishery enhancement programs and the associated direct economic effects (Anderson et al. 1992). We have expanded our modeling attempts to examine similar impacts in the Grande Ronde River subbasin of the Columbia River basin, and added the summer steelhead stock to the analysis. Relatively recent developments and improvements in climate change modeling and fishery modeling enabled us to attempt such an endeavor.

  2. COLUMBIA BASIN SALMON POPULATIONS AND RIVER ENVIRONMENT DATA

    EPA Science Inventory

    Data Access in Real Time (DART) provides an interactive data resource designed for research and management purposes relating to the Columbia Basin salmon populations and river environment. Currently, daily data plus historic information dating back to 1962 is accessible online. D...

  3. StreamNet; Northwest Aquatic Resource Information Network - Status of Salmon and Steelhead in the Columbia River Basin, 1995 Final Report.

    SciTech Connect

    Anderson, Duane A.; Beamesderfer, Raymond C.; Woodard, Bob

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project`s objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies.

  4. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  5. Lower Columbia River Salmon Business Plan for Terminal Fisheries : Final Report.

    SciTech Connect

    Salmon For All

    1996-07-01

    Salmon fishing in the Northwest requires a public-private partnership. The public through its decision-makers, agencies, and laws states it will do all that is necessary to protect and preserve the valuable salmon resource. Yet, the public side of the partnership is broken. The Columbia River salmon fishing industry, with over 140 years of documented history, is at a crossroads. This report explores a variety of issues, concerns, and ideas related to terminal fishery development. In some cases recommendations are made. In addition, options are explored with an understanding that those designated as decision-makers must make decisions following considerable discussion and reflection.

  6. 76 FR 8345 - Endangered and Threatened Species; Recovery Plan Module for Columbia River Estuary Salmon and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ...NMFS announces the adoption of the Columbia River Estuary Endangered Species Act (ESA) Recovery Plan Module for Salmon and Steelhead (Estuary Module). The Estuary Module addresses the estuary recovery needs of all ESA-listed salmon and steelhead in the Columbia River Basin. All Columbia Basin salmon and steelhead ESA recovery plans will incorporate the Estuary Module by...

  7. Physicochemical characteristics of the hyporheic zone affect redd site selection of chum salmon and fall chinook salmon in the Columbia River

    SciTech Connect

    Geist, David R. ); Hanrahan, Timothy P. ); Arntzen, Evan V. ); McMichael, Geoffrey A. ); Murray, Christopher J. ); Chien, Yi-Ju )

    2002-11-01

    Chum salmon Oncorhynchus keta and fall chinook salmon O. tshawytscha spawned at different locations in the vicinity of Ives Island, Washington, a side channel to the Columbia River downstream of Bonneville Dam. We hypothesized that measurements of water depth, substrate size, and water velocity alone would not explain the separation in spawning areas and began a 2-year investigation of physicochemical characteristics of the hyporheic zone. We found that chum salmon spawned in upwelling water that was significantly warmer than the surrounding river water. In contrast, fall chinook salmon constructed redds at downwelling sites where there was no difference in temperature between the river and its bed. Understanding the specific features that are important for chum salmon and fall chinook salmon redd site selection at Ives Island will be useful to resource managers attempting to maximize available spawning habitat for these species within the constraints imposed by other water resource needs.

  8. How Activity Systems Evolve: Making / Saving Salmon in British Columbia

    ERIC Educational Resources Information Center

    Lee, Yew-Jin; Roth, Wolff-Michael

    2008-01-01

    The purpose of this article is to describe the history of a state-sponsored salmon enhancement project in British Columbia and to explicate the development of the former using cultural historical activity theory. We make thematic the notion of inner contradictions, which express themselves outwardly as a function of both quantitative and…

  9. Mid-Columbia Coho Salmon Reintroduction Feasibility Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; Washington Department of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation

    1999-01-01

    Before the Bonneville Power Administration (BPA) decides whether to fund a program to reintroduce coho salmon to mid-Columbia River basin tributaries, research is needed to determine the ecological risks and biological feasibility of such an effort. Since the early 1900s, the native stock of coho has been decimated in the tributaries of the middle reach of the Columbia River. The four Columbia River Treaty Tribes identified coho reintroduction in the mid-Columbia as a priority in the Tribal Restoration Plan. It is a comprehensive plan put forward by the Tribes to restore the Columbia River fisheries. In 1996, the Northwest Power Planning Council (NPPC) recommended the tribal mid-Columbia reintroduction project for funding by BPA. It was identified as one of fifteen high-priority supplementation projects for the Columbia River basin, and was incorporated into the NPPC`s Fish and Wildlife Program. The release of coho from lower Columbia hatcheries into mid-Columbia tributaries is also recognized in the Columbia River Fish Management Plan.

  10. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, Appendix, 1989 Final Report.

    SciTech Connect

    Vreeland, Robert R.

    1989-10-01

    This document contains 43 appendices for the Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries'' report. This study was initiated to determine the distribution, contribution, and value of artificially propagated fall Chinook Salmon from the Columbia River.

  11. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect

    Hillson, Todd D.

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to

  12. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    NASA Astrophysics Data System (ADS)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  13. Potential effects of dams on migratory fish in the Mekong River: lessons from salmon in the Fraser and Columbia Rivers.

    PubMed

    Ferguson, John W; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region. PMID:20924582

  14. 9000 years of salmon fishing on the Columbia River, North America

    USGS Publications Warehouse

    Butler, V.L.; O'Connor, J. E.

    2004-01-01

    A large assemblage of salmon bones excavated 50 yr ago from an ???10,000-yr-old archaeological site near The Dalles, Oregon, USA, has been the primary evidence that early native people along the Columbia River subsisted on salmon. Recent debate about the human role in creating the deposit prompted excavation of additional deposits and analysis of archaeologic, geologic, and hydrologic conditions at the site. Results indicate an anthropogenic source for most of the salmonid remains, which have associated radiocarbon dates indicating that the site was occupied as long ago as 9300 cal yr B.P. The abundance of salmon bone indicates that salmon was a major food item and suggests that migratory salmonids had well-established spawning populations in some parts of the Columbia Basin by 9300-8200 yr ago. ?? 2004 University of Washington. All rights reserved.

  15. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research.

    SciTech Connect

    Bottom, Daniel L.; Simenstad, Charles A.; Campbell, Lance

    2009-05-15

    In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal

  16. Analysis of Chinook Salmon in the Columbia River from an Ecosystem Perspective. Final Report.

    SciTech Connect

    Lichatowich, James A.; Mobrand, Lars E.

    1995-01-01

    Ecosystem Diagnosis and Treatment (EDT) methodology was applied to the analysis of chinook salmon in the mid-Columbia subbasins which flow through the steppe and steppe-shrub vegetation zones. The EDT examines historical changes in life history diversity related to changes in habitat. The emphasis on life history, habitat and historical context is consistent with and ecosystem perspective. This study is based on the working hypothesis that the decline in chinook salmon was at least in part due to a loss of biodiversity defined as the intrapopulation life history diversity. The mid Columbia subbasins included in the study are the Deschutes, John Day, Umatilla, Tucannon and Yakima.

  17. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    SciTech Connect

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to

  18. Physicochemical Characteristics of the Hyporheic Zone Affect Redd Site Selection of Chum and Fall Chinook Salmon, Columbia River.

    SciTech Connect

    Geist, David R.

    2001-10-01

    Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat.

  19. Impacts of the Columbia River Hydroelectric System on Mainstem Habitats of Fall Chinook Salmon

    SciTech Connect

    Dauble, Dennis D.; Hanrahan, Timothy P.; Geist, David R.; Parsley, Michael J.

    2003-08-01

    Salmonid habitats in mainstem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13 and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the mainstem Columbia River and 163 km of the mainstem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment, more bars and islands, and had lower water surface slopes than areas not extensively used. Because flows in the mainstem are now highly regulated, the pre-development alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes, specifically sustained peak flows for scouring, is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries and tailrace spawning areas, and hatcheries) be considered.

  20. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  1. Genetic Variation in DNA of Coho Salmon from the Lower Columbia River : Final Report 1993.

    SciTech Connect

    Fobes, Stephen; Knudsen, Kathy; Allendorf, Fred

    1993-04-01

    The goal of this project was to develop techniques to provide the information needed to determine if Lower Columbia River coho salmon represent a 'species' under the Endangered Species Act. Our report features two new nuclear DNA approaches to the improved detection of genetic variation: (1) Studies of DNA-level genetic variation for two nuclear growth hormone genes; (2) Use of arbitrary DNA primers (randomly amplified polymorphic DNA, or 'RAPD' primers) to detect variation at large numbers of nuclear genes. We used the polymerase chain reaction (PCR) to amplify variable sections (introns) of two growth hormone genes (GH-I and G/f-Z) in several salmonid species. Coho salmon had three DNA length variants for G/-I intron C. Restriction analysis and sequencing provided valuable information about the mode of evolution of these DNA sequences. We tested segregation of the variants in captive broods of coho salmon, and demonstrated that they are alleles at a single Mendelian locus. Population studies using the GH-1 alleles showed highly significant frequency differences between Lower Columbia River and Oregon Coast coho salmon, and marginal differences among stocks within these regions. These new markers are adequately defined and tested to use in coho salmon population studies of any size. The nature of the variation at GH-1 (Variable Number Tandem Repeats, or 'VNTRs') suggests that more genetic variants will be found in coho salmon from other areas. GH-2 intron C also showed length variation in coho salmon, and this variation was found to be sex-linked. Because PCR methods require minute amounts of tissue, this discovery provides a technique to determine the gender of immature coho salmon without killing them. Chinook salmon had restriction patterns and sequence divergences similar to coho salmon. Thus, we expect that sex linkage of GH-2 alleles predates the evolutionary divergence of Pacific salmon species, and that gender testing with this system will work on the

  2. Columbia Basin College Assessment Resource Guide.

    ERIC Educational Resources Information Center

    Columbia Basin Coll., Pasco, WA.

    This resource guide was published as part of the college-wide assessment and evaluation activities at Columbia Basin College (Washington) in 1997. The purpose in producing the document was to meet the need for some guidelines and written information about how to develop an assessment plan, the different ways to assess that plan, and how to use the…

  3. Genetic Structure of Chum Salmon (Oncorhynchus Keta) Populations in the Lower Columbia River: Are Chum Salmon in Cascade Tributaries Remnant Populations?

    SciTech Connect

    Small, Maureen P.; Pichahchy, A.E.; Von Bargen, J.F.; Young, S.F.

    2004-09-01

    Prior to the 1950's, the lower Columbia River drainage supported a run of over a million chum salmon composed of at least 16 populations. By the late 1950's, over-fishing and habitat destruction had decreased the run to as little as a few hundred fish. With the exception of Grays River in the coastal region of the Columbia River and an aggregation of chum salmon spawning in creeks and the mainstem near Bonneville Dam in the Columbia Gorge region, most populations were considered extinct. However, over the years, WDFW biologists detected chum salmon spawning in tributaries originating in the Cascade Range: the Cowlitz, Lewis, and Washougal rivers. Further, chum salmon in the Cowlitz River appeared to have summer and fall run-timings. To assess whether Cascade spawners were strays from Grays River and Gorge regions or remnants of former populations, chum salmon from the Coastal, Cascade and Gorge regions were characterized genetically at 17 microsatellite loci. With the exception of Washougal River chum salmon, which grouped strongly with the Gorge genetic group, significant heterogeneity in genotype distributions were detected between regions and genotype distributions overlapped among collections within regions. In a neighbor-joining consensus tree, regional groups occupied branches with over 77% bootstrap support. In assignment tests, over 63% of individuals were correctly assigned back to region of origin although an average of 29% assigned to river of origin. Genetic distinction of Cascade region chum salmon was similar to distinction of Coastal and Gorge chum salmon and the Cascade region chum salmon had twice the number of private regional alleles. Further, the Cowlitz River supports the only summer chum salmon run in the Columbia River drainage. We propose that chum salmon in the Cascade region are remnants of original populations. We attribute the strong divergence between regional groups to diverse ecological conditions in each region, which promoted

  4. Effects of Marine Mammals on Columbia River Salmon Listed under the Endangered Species Act : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 3 of 11.

    SciTech Connect

    Park, Donn L.

    1993-06-01

    Most research on the Columbia and Snake Rivers in recent years has been directed to downstream migrant salmon (Oncorhynchus spp.) losses at dams. Comparatively little attentions has been given to adult losses. Recently an estimated 378,4000 adult salmon and steelhead (O. mykiss) were unaccounted-for from Bonneville Dam to terminal areas upstream. It is now apparent that some of this loss was due to delayed mortality from wounded by marine mammals. This report reviews the recent literature to define predatory effects of marine mammals on Columbia River salmon.

  5. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.

    SciTech Connect

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

  6. 2003 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2003 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2004-09-01

    From January to July of 2003, 42 entrapments and 25 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 6,122 salmonids, consisting of three different species, were collected at these sites (Table 1). The fish sampled during this time were chinook salmon (69%), chum salmon (7%), and coho salmon (24%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three salmon species.

  7. 2004 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2004 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2005-08-01

    From January to July of 2004, 33 entrapments and 56 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 7,834 salmonids, made up of three species, were collected (Table 1). The fish sampled during this time were chinook salmon (85%), chum salmon (8%), and coho salmon (7%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three species of salmon.

  8. 2002 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2002 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2003-10-01

    From January to July of 2002, 79 entrapments and 22 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 2,272 salmonids, consisting of three different species, were collected at these sites (Table 1). The fish sampled during this time were chinook salmon (49%), chum salmon (29%), and coho salmon (22%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three salmon species.

  9. Relationships Between Landscape Habitat Variables and Chinook Salmon Production in the Columbia River Basin, 1999 Annual Report.

    SciTech Connect

    Thompson, William L.; Lee, Danny C.

    1999-09-01

    This publication concerns the investigation of potential relationships between various landscape habitat variables and estimates of fish production from 25 index stocks of spring/summer chinook salmon with the Columbia River Basin.

  10. Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations; FY 2002 Annual Report.

    SciTech Connect

    Uusitalo, Nancy M.

    2003-01-30

    Adult and juvenile chum salmon were monitored from October 2001 through September 2002 to evaluate factors limiting production. In 2001, 6 and 69 adult chum salmon were captured in the Hardy Creek and Hamilton Springs weirs, respectively. In 2001, 285 and 328 chum salmon carcasses were recovered during spawning ground surveys in Hardy Creek and Hamilton Springs, respectively. Twenty-eight fish captured in the mainstem Columbia River, Hamilton Springs, and Hardy Creek were implanted with radio tags and tracked via an array of fixed aerial, underwater antennas and a mobile tracking unit. Using the Area-Under-the-Curve program population estimates of adult chum salmon were 835 in Hardy Creek and 617 in Hamilton Springs. Juvenile chum salmon migration was monitored from March-June 2002. Total catches for Hardy Creek and Hamilton Springs were 103,315 and 140,220, respectively. Estimates of juvenile chum salmon emigration were 450,195 ({+-}21,793) in Hardy Creek and 561,462 ({+-}21,423) in Hamilton Springs.

  11. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    SciTech Connect

    Not Available

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  12. Stock Assessment of Columbia River Anadromous Salmonids : Final Report, Volume I, Chinook, Coho, Chum and Sockeye Salmon Summaries.

    SciTech Connect

    Howell, Philip J.

    1986-07-01

    The purpose was to identify and characterize the wild and hatchery stocks of salmon and steelhead in the Columbia River Basin on the basis of currently available information. This report provides a comprehensive compilation of data on the status and life histories of Columbia Basin salmonid stocks.

  13. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  14. British Columbia's fish health regulatory framework's contribution to sustainability goals related to salmon aquaculture.

    PubMed

    Stephen, Craig; Dicicco, Emiliano; Munk, Brandon

    2008-12-01

    Salmon farming is a significant contribution to the global seafood market to which the goal of sustainability is often applied. Diseases related to farms are perhaps the most contentious issues associated with sustainable salmon farming. We reviewed literature and policies in British Columbia, Canada, as well as interviewed key informants to examine how fish health regulations do or could support sustainability goals. We found four main obstacles to the development and application of a sustainability-based health management system. First, salmon farming faced the same challenges as other industries when trying to establish an operational definition of sustainability that captures all stakeholders' interests. Second, there was no program responsible for integrating the various regulations, responsible departments, and monitoring efforts to develop a comprehensive view of sustainability. Third, there was inadequate research base and social consensus on the criteria that should be used to track health outcomes for sustainability purposes. Fourth, the regulatory and management paradigm for salmon farming has been focused on diseases and pathogens as opposed to embracing a more inclusive health promotion model that includes biotic, abiotic, and social determinants of health. A transparent and inclusive participatory process that effectively links expert views with community and industry concerns should serve as the foundation for the next generation of health management regulations for salmon farming. PMID:19296177

  15. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    SciTech Connect

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  16. Descriptive epidemiology of marine anemia in seapen-reared salmon in southern British Columbia.

    PubMed Central

    Stephen, C; Ribble, C S; Kent, M L

    1996-01-01

    Marine anemia, also known as plasmacytoid leukemia, is a recently described disease of farmed Pacific salmon in British Columbia. Most of what is known about the disease has been generated through laboratory studies or field investigations of severely affected farms. The goals of this study were to determine the range of the spatial and temporal distribution of naturally occurring marine anemia, identify potential risk factors, and provide an initial description of the impact of the disease on commercial salmon farms in British Columbia. Data were obtained from mail surveys, farm visits, and reviews of clinical and laboratory records. An attempt was made to evaluate negative, as well as mildly, moderately, and severely affected sites. The results showed marine anemia to be widely distributed throughout the major salmon farming regions in British Columbia. The disease was most commonly diagnosed in August and September, when water temperatures were at their seasonal peaks. A wide variety of lineage's and fish sources were associated with the disease. The average mortality rate attributed to marine anemia was 6% (range 2.5% to 11%). The peak occurrence of the disease was associated with a peak in the occurrence of other infectious and inflammatory diseases. The broad demographic distribution of marine anemia, coupled with its endemic nature, indicated that the disease is unlikely to be due to the recent introduction of a new pathogen and that causal factors are widespread in southern British Columbia. It is concluded that the significance of diagnosing marine anemia is not that it is predictive of an impending epidemic of mortality, but that it is an indicator of the general pattern of disease on a farm. PMID:8809395

  17. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    SciTech Connect

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  18. Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations : FY2001 Annual Report.

    SciTech Connect

    Hoffman, Thomas A.

    2001-12-01

    Juvenile and adult chum salmon were monitored in fiscal year 2001 to continue evaluating factors limiting production. Total adult salmon caught (in weirs or by carcass surveys) in Hardy Creek and Hamilton Springs in 2000 was 25 and 130 fish, respectively. Fifty-two fish captured in the main stem Columbia River, Hamilton Springs, Hardy Creek, or Bonneville Dam were implanted with radio tags and tracked with an array of fixed aerials and underwater antennae. Males tended to move greater distances than females. Population estimates in Hardy Creek and Hamilton Springs were 37{+-}2 and 157{+-}5, respectively. Chum smolt emigration began in Hamilton Springs 25 February 2001 and 2 March 2001 in Hardy Creek. Total catches in Hardy Creek and Hamilton Springs were 2,955 and 14,967, respectively. Population abundance estimates were 11,586{+-}1,836 in Hardy Creek and 84,520{+-}9,283 in Hamilton Springs.

  19. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early

  20. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect

    Dauble, D.D.; Watson, D.G.

    1990-03-01

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  1. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    SciTech Connect

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  2. Evaluation of Salmon Spawning below the Four Lowermost Columbia River Dams, 2004-2005 Annual Report.

    SciTech Connect

    Geist, David; Currie, Andrea

    2006-02-01

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon in the lower mainstem Columbia River. Their work supports a larger Bonneville Power Administration (BPA) project aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and fall Chinook salmon populations--both listed as threatened under the Endangered Species Act. Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by biologists from the WDFW in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. Limited spawning ground surveys were conducted in the area around Ives and Pierce islands during 1994 through 1997. Based on these surveys, fall Chinook salmon were believed to be spawning successfully in this area. In addition, chum salmon have been documented spawning downstream of Bonneville Dam. In FY 1999, BPA Project No. 1999-003 was initiated by the WDFW, ODFW, and the USFWS to characterize the variables associated with physical habitat used by mainstem fall Chinook and chum salmon populations and to better understand the effects of hydropower project operations on spawning and incubation. Pacific Northwest National

  3. Bypass system modification at Bonneville Dam on the Columbia River improved the survival of juvenile salmon

    USGS Publications Warehouse

    Ferguson, J.W.; Sandford, B.P.; Reagan, R.E.; Gilbreath, L.G.; Meyer, E.B.; Ledgerwood, R.D.; Adams, N.S.

    2007-01-01

    From 1987 to 1992, we evaluated a fish bypass system at Bonneville Dam Powerhouse 2 on the Columbia River. The survival of subyearling Chinook salmon Oncorhynchus tshawytscha released into the system ranged from 0.774 to 0.911 and was significantly lower than the survival of test fish released into turbines and the area immediately below the powerhouse where bypass system flow reentered the river. Yearling and subyearling Chinook salmon and yearling coho salmon O. kisutch released into the bypass system were injured or descaled. Also, levels of blood plasma cortisol and lactate were significantly higher in yearling and subyearling Chinook salmon that passed through the bypass system than in fish released directly into a net located over the bypass exit. This original system was then extensively modified using updated design criteria, and the site where juvenile fish reentered the river was relocated 2.8 km further downstream to reduce predation on bypassed fish by northern pikeminnow Ptychocheilus oregonensis. Based on studies conducted from 1999 to 2001, the new bypass system resulted in high fish survival, virtually no injuries to fish, fish passage times that were generally similar to water travel times, and mild stress responses from which fish recovered quickly. The mean estimated survival of subyearling Chinook salmon passing through the new bypass system was 0.946 in 2001, which was an usually low-flow year. Survival, physical condition, passage timing, and blood physiological indicators of stress were all useful metrics for assessing the performance of both bypass systems and are discussed. The engineering and hydraulic criteria used to design the new bypass system that resulted in improved fish passage conditions are described.

  4. An Inventory of Catch and Escapement Data for Columbia River Salmon and Steelhead, 1987 Final Report.

    SciTech Connect

    Martin, Douglas J.; Stull, Elizabeth Ann

    1987-03-01

    The work described in this report was part of a larger project conducted by Argonne National Laboratory (ANL) for the Bonneville Power Administration (BPA) to determine appropriate methods for assessing the cumulative effects of hydroelectric development in the Columbia River Basin. One portion of that project was to develop an inventory of catch and escapement data for Columbia River salmon and steelhead and to determine if enough relevant data are available for spawner-recruit analysis. This inventory was to include not the actual data but, rather, only the source, nature, and the extent of data needed to conduct a spawner-recruit analysis. Spawner-recruit analysis is one of several methodologies with possible utility for assessing the cumulative effects of hydroelectric development in the Columbia River Basin. The information presented in this report is not a complete inventory of catch and escapement data for Columbia River salmonids. Some information was omitted, either because of delays in responses by agencies to information requests, or because certain data sources, not widely known to exist, could not be located. 77 refs., 73 tabs.

  5. Biodiversity and the Recovery of Threatened and Endangered Salmon Species in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report of 8 of 11.

    SciTech Connect

    Steward, C. R.

    1993-06-01

    The stated purpose of the Endangered Species Act is to provide a means whereby the ecosystem upon which endangered species and threatened species depend may be conserved. Conservation of the Columbia River ecosystem and the diversity of gene pools, life histories, species, and communities that comprise it, should become a major objective of species recovery and fish and wildlife management programs in the Columbia River Basin. Biodiversity is important to both species and ecosystem health, and is a prerequisite to long-term sustainability of biological resources. In this paper, I provide an overview of various approaches to defining, measuring, monitoring, and protecting biodiversity. A holistic approach is stressed that simultaneously considers diverse species and resource management needs. Emphasis is on threatened and endangered species of salmon and their associated habitat.

  6. Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River, 2002 Technical Report.

    SciTech Connect

    Rawding, Dan; Hillson, Todd D.

    2003-11-15

    Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The five assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch

  7. Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River

    SciTech Connect

    Arntzen, Evan V.; Hand, Kristine D.; Geist, David R.; Murray, Katherine J.; Panther, Jenny; Cullinan, Valerie I.; Dawley, Earl M.; Elston, Ralph A.

    2008-01-30

    This report describes research conducted by Pacific Northwest National Laboratory in FY 2007 for the U.S. Army Corps of Engineers, Portland District, to characterize the effects of total dissolved gas (TDG) on the incubating fry of chum salmon (Onchorhynchus keta) in the lower Columbia River. The tasks conducted and results obtained in pursuit of three objectives are summarized: * to conduct a field monitoring program at the Ives Island and Multnomah Falls study sites, collecting empirical data on TDG to obtain a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year) * to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam * to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the study methdology and results are provided in Appendixes A through D.

  8. Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2004-01-01

    We tested the efficacy of a dual-frequency identification sonar (DIDSON) for imaging and enumeration of fall Chinook salmon Oncorhynchus tshawytscha redds in a spawning area below Bonneville Dam on the Columbia River. The DIDSON uses sound to form near-video-quality images and has the advantages of imaging in zero-visibility water and possessing a greater detection range and field of view than underwater video cameras. We suspected that the large size and distinct morphology of a fall Chinook salmon redd would facilitate acoustic imaging if the DIDSON was towed near the river bottom so as to cast an acoustic shadow from the tailspill over the redd pocket. We tested this idea by observing 22 different redds with an underwater video camera, spatially referencing their locations, and then navigating to them while imaging them with the DIDSON. All 22 redds were successfully imaged with the DIDSON. We subsequently conducted redd searches along transects to compare the number of redds imaged by the DIDSON with the number observed using an underwater video camera. We counted 117 redds with the DIDSON and 81 redds with the underwater video camera. Only one of the redds observed with the underwater video camera was not also documented by the DIDSON. In spite of the DIDSON's high cost, it may serve as a useful tool for enumerating fall Chinook salmon redds in conditions that are not conducive to underwater videography.

  9. Evaluation of Juvenile Salmon Behavior at Bonneville Dam, Columbia River, Using a Multibeam Technique

    SciTech Connect

    Johnson, Robert L. ); Moursund, Russell A. )

    1999-11-01

    In recent years, with increased effort to bypass and guide fragile stocks of juvenile salmon in the Columbia Basin past hydroelectric projects, it has been increasingly important to obtain fine-scale fish behavior data in a non-intrusive manner. The Dual-Head Multibeam Sonar is an emerging technology for fisheries applications that addresses that requirement. It has two principal advantages over traditional hydroacoustic techniques: (1) it allows for simultaneous large-volume coverage of a region of interest, and (2) it affords 3-D tracking capability. The use of Dual-Head Multibeam Sonar in this study resulted in unprecedented insight into fine-scale smolt behavior upstream of a prototype surface collector at Bonneville Dam first powerhouse in 1998. Our results indicated that outmigrant juvenile salmon had an increased likelihood of milling or holding. This discovery will lead to better design criteria for future bypass and collector systems. Future fisheries multibeam sonar systems will likely be fully integrated systems with built-in real time tracking capability. These systems may be used to track targets relative to physical guidance structures or other behavior modifying stimuli such as light, turbulent flow, electrical/magnetic fields, or low-frequency sound and vibration. The combination of fine-scale fish behavior data and environmental parameters will yield better design criteria for the safe passage of listed or endangered species of Pacific salmon.

  10. Survey of pathogens in hatchery Chinook salmon with different out-migration histories through the Snake and Columbia rivers.

    PubMed

    Van Gaest, A L; Dietrich, J P; Thompson, D E; Boylen, D A; Strickland, S A; Collier, T K; Loge, F J; Arkoosh, M R

    2011-06-01

    The operation of the Federal Columbia River Power System (FCRPS) has negatively affected threatened and endangered salmonid populations in the Pacific Northwest. Barging Snake River spring Chinook salmon Oncorhynchus tshawytscha through the FCRPS is one effort to mitigate the effect of the hydrosystem on juvenile salmon out-migration. However, little is known about the occurrence and transmission of infectious agents in barged juvenile salmon relative to juvenile salmon that remain in-river to navigate to the ocean. We conducted a survey of hatchery-reared spring Chinook salmon at various points along their out-migration path as they left their natal hatcheries and either migrated in-river or were barged through the FCRPS. Salmon kidneys were screened by polymerase chain reaction for nine pathogens and one family of water molds. Eight pathogens were detected; the most prevalent were Renibacterium salmoninarum and infectious hematopoietic necrosis virus. Species in the family Saprolegniaceae were also commonly detected. Pathogen prevalence was significantly greater in fish that were barged through the FCRPS than in fish left to out-migrate in-river. These results suggest that the transmission of infectious agents to susceptible juvenile salmon occurs during the barging process. Therefore, management activities that reduce pathogen exposure during barging may increase the survival of juvenile Chinook salmon after they are released. PMID:21834329

  11. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean.

    PubMed

    Rechisky, Erin L; Welch, David W; Porter, Aswea D; Jacobs-Scott, Melinda C; Winchell, Paul M

    2013-04-23

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River's largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  12. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon.

  13. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    SciTech Connect

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities

  14. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2001 Annual Report.

    SciTech Connect

    Nugent, John; Nugent, Michael; Brock, Wendy

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach of the Columbia River. The evaluation, in the fifth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2001 field season.

  15. Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.

    SciTech Connect

    Brannon, E.L.; National Science Foundation

    2002-08-01

    The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on

  16. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    SciTech Connect

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

  17. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    PubMed

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to

  18. Comparison of subyearling fall chinook salmon's use of riprap revetments and unaltered habitats in Lake Wallula of the Columbia river

    USGS Publications Warehouse

    Garland, R.D.; Tiffan, K.F.; Rondorf, D.W.; Clark, L.O.

    2002-01-01

    Subyearling fall chinook salmon's Oncorhynchus tshawytscha use of unaltered and riprap habitats in Lake Wallula of the Columbia River was determined with point abundance data collected by electrofishing in May 1994 and 1995. We documented the presence or absence of subyearlings at 277 sample sites and collected physical habitat information at each site. Based on logistic regression, we found that the probability of fish presence was greater in unaltered shoreline habitats than in riprap habitats. Substrate size was the most important factor in determining fish presence, with dominant substrates larger than 256 mm having the lowest probability of fish presence. Water velocity, also included in our model due to its biological importance, was not a significant factor affecting presence or absence (P = 0.1102). The correct prediction rate of fish presence or absence in our sample sites using cross validation was 67%. Our model showed that substrate was the most important factor determining subyearling habitat use, but the model did not include other habitat variables known to be important to subyearlings in more diverse systems. We suggest that resource managers consider alternative methods of bank stabilization that are compatible with the habitat requirements of the fish that use them.

  19. Hyporheic discharge of river water into fall chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, David R. )

    1999-12-01

    Fall chinook salmon (Oncorhynchus tshawytscha) spawned predominantly in areas of the Hanford Reach of the Columbia River where hyporheic water discharged into the river channel. This upwelling water had a dissolved solids content (i.e., specific conductance) indicative of river water and was presumed to have entered highly permeable riverbed substrate at locations upstream of the spawning areas. Hyporheic discharge zones composed of undiluted ground water or areas with little or no upwelling were not used by spawning salmon. Rates of upwelling into spawning areas averaged 1,200 L?m-2?day-1 (95% C.I.= 784 to 1,665 L?m-2?day-1) as compared to approximately 500 L?m-2?day-1 (95% C.I.= 303 to 1,159 L?m-2?day-1) in non-spawning areas. Dissolved oxygen content of the hyporheic discharge near salmon spawning areas was about 9 mg?L-1 (+ 0.4 mg?L-1) whereas in non-spawning areas dissolved oxygen values were 7 mg?L-1 (+ 0.9 mg?L-1) or lower. In both cases dissolved oxygen of the river water was higher (11.3+ 0.3 mg?L-1). Physical and chemical gradients between the hyporheic zone and the river may provide cues for adult salmon to locate suitable spawning areas. This information will help fisheries managers to describe the suitability of salmon spawning habitat in large rivers.

  20. Quantifying the behavioral response of spawning chum salmon to elevated discharges from Bonneville Dam, Columbia River, USA

    USGS Publications Warehouse

    Tiffan, K.F.; Haskell, C.A.; Kock, T.J.

    2010-01-01

    Chum salmon Oncorhynchus keta that spawn in main-stem habitats below Bonneville Dam on the Columbia River, USA, are periodically subjected to elevated discharges that may alter spawning behaviour. We investigated behavioural responses of spawning chum salmon to increased water velocities associated with experimental increases in tailwater elevation using acoustic telemetry and a dual-frequency identification sonar. Chum salmon primarily remained near their redds at base tailwater elevations (3.5 m above mean sea level), but displayed different movement and behavioural responses as elevations were increased to either 4.1 or 4.7m for 8-h periods. When velocities remained suitable (<0.8m s-1) during elevated-tailwater tests, female chum salmon remained near their redds but exhibited reduced digging activity as water velocities increased. However, when velocities exceeded 0.8m s-1, the females that remained on their redds exhibited increased swimming activity and digging virtually ceased. Female and male chum salmon that left their redds when velocities became unsuitable moved mean distances ranging from 32 to 58 m to occupy suitable velocities, but returned to their redds after tailwaters returned to base levels. Spawning events (i.e. egg deposition) were observed for five of nine pairs of chum salmon following tests indicating any disruptions to normal behaviour caused by elevated tailwaters were likely temporary. We believe a chum salmon's decision to either remain on, or leave, its redd during periods of unsuitably high water velocities reflects time invested in the redd and the associated energetic costs it is willing to incur. ?? 2009 John Wiley & Sons, Ltd.

  1. Acoustic Telemetry Studies of Juvenile Chinook Salmon Survival at the Lower Columbia Projects in 2006

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, Richard L.; Skalski, John R.; McComas, Roy L.

    2008-02-01

    The Portland District of the U.S. Army Corps of Engineers contracted with the Pacific Northwest National Laboratory (PNNL) to conduct three studies using acoustic telemetry to estimate detection probabilities and survival of juvenile Chinook salmon at three hydropower projects on the lower Columbia River. The primary goals were to estimate detection and survival probabilities based on sampling with JSATS equipment, assess the feasibility of using JSATS for survival studies, and estimate sample sizes needed to obtain a desired level of precision in future studies. The 2006 JSATS arrays usually performed as well or better than radio telemetry arrays in the JDA and TDA tailwaters, and underperformed radio arrays in the BON tailwater, particularly in spring. Most of the probabilities of detection on at least one of all arrays in a tailwater exceeded 80% for each method, which was sufficient to provide confidence in survival estimates. The probability of detection on one of three arrays includes survival and detection probabilities because fish may die or pass all three arrays undetected but alive.

  2. Disease Susceptibility of Hatchery Snake River Spring-Summer Chinook Salmon with Different Juvenile Migration Histories in the Columbia River.

    PubMed

    Arkoosh, Mary R; Kagley, Anna N; Anulacion, Bernadita F; Boylen, Deborah A; Sandford, Benjamin P; Loge, Frank J; Johnson, Lyndal L; Collier, Tracy K

    2006-12-01

    Various methods have been developed to mitigate the effects of dams on juvenile Pacific salmon Oncorhynchus spp. migrating to the Pacific Ocean through the Columbia River basin. In this study, we examined the health of hatchery Snake River spring and summer Chinook salmon relative to two mitigating strategies: dam bypass and transportation (e.g., barging). The health of out-migrants was assessed in terms of the difference in the incidence of mortality among fish, categorically grouped into no-bypass, bypass, and transportation life histories, in response to challenge with the marine pathogen Listonella anguillarum during seawater holding. These three life histories were defined as follows: (1) fish that were not detected at any of the juvenile bypass systems above Bonneville Dam were classified as having a no-bypass life history; (2) fish that were detected at one or more juvenile bypass systems above Bonneville Dam were classified as having a bypass life history; and (3) fish that were barged were classified as having the transportation life history. Barged fish were found to be less susceptible to L. anguillarum than in-river fish-whether bypassed or not-which suggests that transportation may help mitigate the adverse health effects of the hydropower system of the Columbia River basin on Snake River spring-summer Chinook salmon. The findings of this study are not necessarily transferable to other out-migrant stocks in the Columbia River basin, given that only one evolutionarily significant unit, that is, Snake River spring-summer Chinook salmon, was used in this study. PMID:26599158

  3. Mineral resource appraisal of the Salmon National Forest, Idaho

    USGS Publications Warehouse

    Johnson, Rick; Close, Terry; McHugh, Ed

    1998-01-01

    The Salmon National Forest administers 1,776,994 net acres of mountainous terrain located in east-central Idaho. Most of the Forest is in Lemhi County; only a small portion falls within Idaho and Valley Counties. Approximately 426,114 acres of the Frank Church-River of No Return Wilderness extends into the western part of the Forest and mineral entry is severely restricted. Because of its location within the Salmon River drainage, the Forest also is subject to numerous issues surrounding restoration of anadromous fish runs. Mineral production from the Salmon National Forest began during 1866 when placer gold was discovered in Leesburg Basin. Hardrock mining quickly spread throughout the Forest and many deposits containing a wide range of commodities were discovered and developed. Although early records are sketchy, production is estimated to include 940,000 ounces gold, 654,000 ounces silver, 61.9 million pounds copper, 8.9 million pounds lead, 13.9 million pounds cobalt, 208,000 pounds zinc, and 37,000 tons fluorite mill feed. Mineral resources are large, diverse, and occur in many deposit types including exhalative, stockwork, disseminated, vein, replacement, sedimentary, skarn, breccia pipe, porphyry, and placer. The largest cobalt resource in the United States occurs in the Blackbird Mining District. Other resources include gold, silver, copper, lead, molybdenum, phosphate, manganese, iron, fluorite, uranium, thorium, rare earth oxides, and barite.

  4. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA

    USGS Publications Warehouse

    Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.

    2013-01-01

    Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.

  5. Estimated Fall Chinook Salmon Survival to Emergence in Dewatered Redds in a Shallow Side Channel of the Columbia River

    SciTech Connect

    McMichael, Geoffrey A.; Rakowski, Cynthia L.; James, B B.; Lukas, Joe

    2005-08-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) often spawn in the tailraces of large hydroelectric dams on the Columbia River. Redds built in shallow habitats downstream of these dams may be periodically dewatered due to hydropower operations prior to the emergence of fry. To determine whether fall Chinook salmon redds were successful in a shallow area subjected to periodic dewatering downstream of Wanapum Dam on the Columbia River, we installed 7 redd caps and monitored fry emergence. Large numbers of live fry were captured from the redds between March 9 and May 18, 2003. Estimated survival from egg to fry for these redds, which were all subjected to some degree of dewatering during the incubation and post-hatch intragravel rearing period, ranged from 16.1 to 63.2 percent and averaged 27.8 percent (assuming 4,500 eggs/redd). The peak emergence date ranged from April 1 to 29, with the average peak about April 14, 2003. Mean fork length of fall Chinook salmon emerging from individual redds ranged from 38.3 to 41.2 mm, and lengths of fish emerging from individual redds increased throughout the emergence period.

  6. 76 FR 17818 - Umatilla National Forest, Columbia County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Forest Service Umatilla National Forest, Columbia County Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Umatilla National Forest, Columbia County Resource...) Discussion and selection proposed projects for 2012 and if there are participants, (3) Public...

  7. The effects of changing demographics on the distribution of marine anemia in farmed salmon in British Columbia.

    PubMed Central

    Stephen, R C; Ribble, C S

    1995-01-01

    The changing geographic distribution of marine anemia (plasmacytoid leukemia) was compared with the evolving demographics of the chinook farming industry in British Columbia to explore the hypothesis that the disease had spread throughout the province between 1987 and 1992. Through retrospective and prospective methods, it was shown that the apparent spread of the disease was likely an artifact, resulting from changes in the distribution of fish farms throughout the province and corresponding changes in the intensity of regional disease surveillance. When viewed over a 5-year period, there were no statistically significant differences in the prevalence of the disease amongst fish sampled from each of the major salmon farming regions of British Columbia. By increasing the intensity of surveillance for the disease in apparently negative regions or chinook farms, one could routinely find cases of the disease. The results suggest that marine anemia is an endemic problem for farmed chinook salmon in British Columbia and is not a spreading epidemic. Images Figure 1. Figure 2. PMID:7497425

  8. Incidence of Renibacterium salmoninarum infections in juvenile hatchery spring chinook salmon in the Columbia and Snake Rivers

    USGS Publications Warehouse

    Maule, A.G.; Rondorf, D.W.; Beeman, J.W.; Haner, P.V.

    1996-01-01

    From 1988 through 1992, we assessed the prevalence (frequency of occurrence) and severity (degree of infection) of Renibacterium salmoninarum (RS) among fish in marked groups of Columbia River basin and Snake River basin hatchery spring chinook salmon Oncorhynchus tshawytscha before release and during their seaward migration. During the study, prevalence of RS infection decreased (from >90% to <65%) in six of the eight hatchery groups. We attributed this decrease to changes in hatchery practices that reduced vertical and horizontal transmission. Fish from Snake River hatcheries had a higher prevalence of infection when sampled at dams (mean >90%) than in the hatchery (mean <70%), but there were no differences in similar comparisons of Columbia River fish. Although prevalence and severity of RS infection were not correlated in the groups studied, it appears that fish from the Snake River were more severely infected than those from the Columbia River. Some groups of Snake River fish had higher severity of infection at dams than in the hatchery, but infection in fish from Columbia River hatcheries did not change. These differences between Snake River and Columbia River fish might have resulted from differences in river conditions and the distances from hatcheries to dams.

  9. Smolt Monitoring Program, Volume I, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1986 Annual Report.

    SciTech Connect

    Fish Passage Center

    1987-02-01

    This report presents the results of post-seasonal analyses including timing and relative magnitude of the outmigration, travel time for marked hatchery releases, and survival in mid-Columbia and lower Snake River index reaches. Travel time of marked yearling and sub-yearling chinook salmon (Oncorhynchus tsawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri) is measured between specific sampling points in the system. Marked groups usually represent major hatchery production stocks. Survival estimates are computed for specific spring chinook and steelhead marked groups. Arrival time and duration of outmigration of the chinook, sockeye, coho (Oncorhynchus kisutch) and steelhead runs are reported at key sampling points. Hatchery and brand release information for 1986 is also listed.

  10. 75 FR 24936 - Columbia Gas Transmission, LLC, and D&B Resources; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC, and D&B Resources; Notice of Application April 28, 2010. Take notice that on April 22, 2010, Columbia Gas Transmission, LLC (Columbia Gas) 5151... directed to Fredric J. George, Senior Counsel Columbia Gas Transmission, LLC, P.O. Box 1273,...

  11. Feeding bionomics of juvenile chinook salmon relative to thermal discharges in the central Columbia River

    SciTech Connect

    Becker, C.D.

    1994-10-01

    Juvenile chinook salmon (Oncorhynchus tshawytscha) in the Hanford environs of the central Columbia River, Washington consumed almost entirely adult and larval stages of aquatic insects. The food organisms were dominated by midges (Diptera: Tendipedidae); by numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) were of secondary importance. Small fry fed almost exclusively on the small tendipedids. Over 95% of all food organisms originated within the river ecosystem. The distinctive features of food and feeding activity were fourfold: first, relatively few insect groups were utilized; second, the fish depended on drifting, floating, or swimming organisms; third, they visually selected living prey moving in or on the water; and fourth, they were habitat opportunists to a high degree. The 1969 data, were studied to reveal possible thermal effects of heated discharges from plutonium production reactors at Hanford on food and growth parameters. All data were characterized by considerable variation between and within stations. No discernable effects between coldwater and warmwater stations were revealed by analyses of: (1) groups of food organisms utilized, (2) food and feeding activity, (3) numbers of insects consumed, (4) seasonal increases in fish length, (5) fish length-weight relationships, (6) fish coefficients of condition, and (7) stomach biomass. The lack of detectable thermal effects was apparently due to the fact that the main effluent plumes discharge in midstream and the effluents are well mixed before reaching inshore feeding areas. The transient nature of fish groups at each station, influenced by changes in regulated river flows, and the availability of food organisms in the river drift were ecological factors affecting critical thermal evaluation in situ.

  12. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2001-2002 Annual Report.

    SciTech Connect

    Hillson, Todd D.

    2002-10-01

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 spawners present day (Johnson et al. 1997). Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline in this species in the Columbia River. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of chum salmon (Johnson et al. 1997). This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. The recovery strategy for Lower Columbia River chum as outlined in the Hatchery Genetic Management Plan (HGMP) for the Grays River project has four main tasks. First, determine if remnant populations of Lower Columbia River chum salmon exist in Lower Columbia River tributaries. Second, if such populations exist, develop stock-specific recovery plans that would involve habitat restoration including the creation of spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of Lower Columbia River chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce the extinction risk to Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction of Lower Columbia River chum salmon into the Chinook River basin. The

  13. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  14. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    SciTech Connect

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  15. Evaluation of the Contribution of Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1986 Annual Report.

    SciTech Connect

    Vreeland, Robert R.

    1986-12-01

    FY 1986 was the eighth year of a study to determine the distribution, contribution, and value of artificially propagated fall chinook on the Columbia River. Tagging of hatchery fall chinook was completed in FY81. Sampling of sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and Columbia River hatcheries and adjacent streams occurred in 1986 as planned. Catches and returns of one brood year tagged for this study (1981) could have occurred in 1986. Returns of fall chinook to Columbia River facilities as of December 1, 1986 are 108,154. This return is already the fourth largest of the past seven years. Several facilities (Cowlitz, Grays River, and Washougal) are having the greatest returns since inception of the study. However, Spring Creek and Lewis River hatcheries are having the smallest return. Estimated Catches of coded wire tagged salmonids are available through 1984 for all fisheries except Alaska in 1981 and Washington in 1984. Catch proportions by fishery for the 1978 brood are .01, .39, .34, .07, 0, and .19 for the Alaska, Canada, Washington, Oregon, California, and Columbia River fisheries respectively. Catch proportions for the 1979 brood are similar to those for the 1978 brood (.03, .33, .37, .05, .01, and . 21) for the same fisheries respectively. The proportion of recoveries for the four age groups of 1978-brood fish caught are .07, .69, .23, .01 for the two-through five-year-old chinook respectively.

  16. Flesh residue concentrations of organochlorine pesticides in farmed and wild salmon from British Columbia, Canada.

    PubMed

    Kelly, Barry C; Ikonomou, Michael G; Higgs, David A; Oakes, Janice; Dubetz, Cory

    2011-11-01

    The present study reports measured levels of organochlorine pesticides (OCPs) in commercial salmon feed (n = 8) and farmed Atlantic, coho, and chinook salmon (n = 110), as well as wild coho, chinook, chum, sockeye, and pink salmon (n = 91). Flesh residue concentrations (ng/g wet weight) of dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), chlordanes, chlorobenzenes (CBz) and cyclodiene pesticides (e.g., dieldrin, mirex) were 2 to 11 times higher (p < 0.05) in farmed salmon compared with wild salmon. Concentrations were positively correlated with flesh lipid levels. Farmed Atlantic salmon (12-15% lipid) typically exhibited the greatest OCP burdens compared with other salmon species. However, when expressed on a lipid weight basis, concentrations of OCPs (ng/g lipid weight) in wild salmon, in many cases, exceeded those levels in farmed salmon. Observed interspecies and site-specific variations of OCP concentrations in farmed and wild salmon may be attributed to divergent life history, prey/feed characteristics and composition, bioenergetics, or ambient environmental concentrations. Calculated biomagnification factors (BMF = C(F)/C(D), lipid wt) of OCPs in farmed salmon typically ranged between two and five. Biomagnification of chemicals such as DDTs, chlordanes, and mirex was anticipated, because those compounds tend to exhibit high dietary uptake and slow depuration rates in fish because of relatively high octanol-water partition coefficients (K(OW)s > 10⁵). Surprisingly, less hydrophobic pesticides such as hexachlorocyclohexanes and endosulfans (K(OW) s < 10⁵) consistently exhibited a high degree of biomagnification in farmed salmon species (BMFs > 5). This is contrary to previous laboratory and field observations demonstrating fish BMFs less than 1 for low K(OW) chemicals, because of efficient respiratory elimination of those compounds via gills. The results suggest that ambient seawater concentrations and

  17. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2002-2003 Annual Report.

    SciTech Connect

    Hillson, Todd D.

    2003-10-15

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 present day spawners. Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline of Columbia River chum salmon. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Currently, only two main populations are recognized as genetically distinct in the Columbia River, although spawning has been documented in most lower Columbia River tributaries. The first is located in the Grays River (RKm 34) (Grays population), a tributary of the Columbia, and the second is a group of spawners that utilize the Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks (Lower Gorge population). A possible third population of mainstem spawners, found in the fall of 1999, were located spawning above the I-205 bridge (approximately RKm 182), this aggregation is referred to as the Woods Landing/Rivershore population or the I-205 group. The recovery strategy for Lower Columbia River (LCR) chum as outlined in Hatchery Genetic Management Plans (HGMP) has three main tasks. First, determine if remnant populations of LCR chum salmon exist in LCR tributaries. Second, if such populations exist, develop stock-specific recovery plans involving habitat restoration including the creation of

  18. Use of electromyogram telemetry to assess swimming activity of adult spring Chinook salmon migrating past a Columbia River dam

    USGS Publications Warehouse

    Brown, R.S.; Geist, D.R.; Mesa, M.G.

    2006-01-01

    Electromyogram (EMG) radiotelemetry was used to estimate the swim speeds of spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam, and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, swim speed was significantly higher when tagged salmon were moving through tailraces than when they were moving through other parts of the dam. Specifically, swim speeds for fish in tailraces (106.4 cm/s) were 23% higher than those of fish in fishways (84.9 cm/s) and 32% higher than those of fish in forebays (80.2 cm/s). Swim speeds were higher in fishways during the day than during the night, but there were no diel differences in swim speeds in tailraces and forebays. During dam passage, Chinook salmon spent the most time in tailraces, followed by fishways and forebays. ?? Copyright by the American Fisheries Society 2006.

  19. Transportation of chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, smolts in the Columbia River and effects on adult returns

    SciTech Connect

    Ebel, W.J.

    1980-04-01

    Chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, were captured at Little Goose Dam in the Snake River during their seaward migration and transported 400 km downstream to the lower Columbia River below Bonneville Dam. Their survival was increased from 1.1 to 15 times as compared with control fish which passed by seven mainstem low-level dams and reservoirs. Variations in survival were mainly dependent on species and environmental conditions in the river during the period fish were transported. The homing ability of the adult fish was not significantly diminished; less than 0.2% of strays occurred among adult returns from groups transported. Transportation did not affect ocean age or size of returning adult steelhead, but ocean age of returning adult chinook salmon may have been affected. Steelhead returned to Little Goose Dam at a substantially higher rate (1.4 to 2.7%) than chinook salmon (0.1 to 0.8%) from groups transported. The timing of adult returns of both species to Little Goose Dam was not related to the time of capture and downstream release of smolts.

  20. Variables influencing the presence of subyearling fall Chinook salmon in shoreline habitats of the Hanford Reach, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Clark, L.O.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    Little information currently exists on habitat use by subyearling fall Chinook salmon Oncorhynchus tshawytscha rearing in large, main-stem habitats. We collected habitat use information on subyearlings in the Hanford Reach of the Columbia River during May 1994 and April-May 1995 using point abundance electrofishing. We analyzed measures of physical habitat using logistic regression to predict fish presence and absence in shoreline habitats. The difference between water temperature at the point of sampling and in the main river channel was the most important variable for predicting the presence and absence of subyearlings. Mean water velocities of 45 cm/s or less and habitats with low lateral bank slopes were also associated with a greater likelihood of subyearling presence. Intermediate-sized gravel and cobble substrates were significant predictors of fish presence, but small (<32-mm) and boulder-sized (>256-mm) substrates were not. Our rearing model was accurate at predicting fish presence and absence using jackknifing (80% correct) and classification of observations from an independent data set (76% correct). The habitat requirements of fall Chinook salmon in the Hanford Reach are similar to those reported for juvenile Chinook salmon in smaller systems but are met in functionally different ways in a large river.

  1. Evaluation of Fall Chinook and Chum Salmon Spawning Habitat near Ives and Pierce Islands in the Columbia River, Progress Report 1999-2001.

    SciTech Connect

    Garland, Rodney; Tiffan, Kenneth; Rondorf, Dennis

    2003-09-01

    The area around Ives Island below Bonneville Dam on the Columbia River supports spawning populations of chum and fall chinook salmon. Because this area is sensitive to water level fluctuations caused by changes in discharge from Bonneville Dam and from tidal cycles, we initiated a study to quantify flow-dependent changes in available spawning habitat for chum and fall chinook salmon. We conducted surveys to characterize the substrates available in the Ives Island study area. Detailed bathymetry was also obtained to serve as a foundation for two-dimension hydrodynamic modeling, which was used to estimate water velocities, depths, and wetted area over a range of simulated flows. Habitat surveys were conducted and logistic regression was used to identify physical habitat variables that were important in determining the presence of chum and fall chinook salmon redds. The physical habitat data were analyzed using the logistic regression models to create probability coverages for the presence of redds in a Geographic Information System. There was generally good agreement between chum and fall chinook salmon redd locations and areas where we predicted suitable spawning habitat. We found that at Columbia River discharges less than 120 kcfs, an important chum salmon spawning area below the mouth of Hamilton Creek could only be supported by discharge from Hamilton Creek. Chum salmon did not appear to spawn in proportion to habitat availability, however our predictive model did not include all variables known to be important to chum salmon redd-site selection. Fall chinook salmon spawning habitat was less sensitive to flow and the main channel of the Columbia River along Pierce Island was predicted to contain sufficient habitat at all modeled flows.

  2. Recovery and management options for spring/summer chinook salmon in the Columbia River basin.

    PubMed

    Kareiva, P; Marvier, M; McClure, M

    2000-11-01

    Construction of four dams on the lower Snake River (in northwestern United States) between 1961 and 1975 altered salmon spawning habitat, elevated smolt and adult migration mortality, and contributed to severe declines of Snake River salmon populations. By applying a matrix model to long-term population data, we found that (i) dam passage improvements have dramatically mitigated direct mortality associated with dams; (ii) even if main stem survival were elevated to 100%, Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) would probably continue to decline toward extinction; and (iii) modest reductions in first-year mortality or estuarine mortality would reverse current population declines. PMID:11062128

  3. Identification of a genetic marker that discriminates ocean-type and stream-type chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Rasmussen, C.; Ostberg, C.O.; Clifton, D.R.; Holloway, J.L.; Rodriguez, R.J.

    2003-01-01

    A marker based on randomly amplified polymorphic DNA (RAPD), OT-38, was discovered that nonlethally discriminates between stream-type and ocean-type populations of chinook salmon Oncorhynchus tshawytscha in the Columbia River basin, including the threatened fall-run (ocean-type) and spring-run (stream-type) Snake River populations. This marker was developed by amplifying chinook salmon genomic DNA with a single RAPD primer, sequencing the termini of the polymorphic products, and designing primer pairs for allele-specific amplification. It was used to assay 18-80 individuals from several wild and hatchery populations differing in year-class, freshwater life history, and location along the Columbia River OT-38 unambiguously distinguished ocean-type from stream-type populations in 93.1% of the chinook salmon sampled.

  4. Two-Dimensional Modeling of Time-Varying Hydrodynamics and Juvenile Chinook Salmon Habitat in the Hanford Reach of the Columbia River

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.; McMichael, Geoffrey A.

    2007-10-10

    The Hanford Reach is the only remaining unimpounded reach of the Columbia River in the United States above Bonneville Dam. Discharge in the Hanford Reach is regulated by several dams and is often subject to rapid changes. Sharp flow reductions have led to the stranding or entrapment, and subsequent mortality, of juvenile chinook salmon (Oncorynchus tshawytscha) and other important fish species within the Hanford Reach. A multi-block two-dimensional depth-averaged hydrodynamic model was used to simulate time-varying river velocity and stage in a 37~km portion of the Hanford Reach. Simulation results were used to estimate time-varying juvenile chinook salmon habitat area, and the part of that habitat affected by discharge fluctuations. Affected habitat area estimates were made for the chinook salmon rearing period of four years. These estimates were used, along with other important factors, to establish a statistical relationship between discharge fluctuation and juvenile chinook salmon mortality.

  5. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2002-2003 Annual Report.

    SciTech Connect

    Mueller, Robert

    2003-09-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (>1 m) downstream of Bonneville Dam in the fall of 2002. This report documents the number and extent of chinook salmon spawning near Ives and Pierce Islands of the Columbia River, and is the fourth in a series of reports prepared since 1999. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds located in the deeper sections near below Hamilton Creek. There was a significant increase in the number of fall chinook salmon redds found in the locations surveyed during the 2002 surveys when compared to previous surveys by Pacific Northwest National Laboratory. A total of 192 redds were found in two general locations adjacent to Pierce Island (river km 228.5) encompassing an area of approximately 9.31 ha. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 15, 2002. An estimated 1,768 fall chinook salmon redds at water depths exceeding {approx}1.m ({approx} 125 kcfs) were documented in 2002. This estimate is the expanded number based on the number of redds found within the pre-defined survey area. Fall chinook salmon redds were found at water depths from 0.9 to 8.5 m and were constructed in gravel to large cobble ranging in size from 4.83 to 13.4 cm in diameter. No chum salmon redds were found in areas surveyed during 2002, although several carcasses were found at the mouth of Woodward Creek and in the deeper sections below Hamilton Creek.

  6. Preliminary studies on the isolation of bacteria from sea lice, Lepeophtheirus salmonis, infecting farmed salmon in British Columbia, Canada.

    PubMed

    Barker, Duane E; Braden, Laura M; Coombs, Maria P; Boyce, Brad

    2009-10-01

    Using standard OIE bacteriological screening protocols, we sampled the external carapace and internal stomach contents of motile stages (preadult and adult) of Lepeophtheirus salmonis collected from farmed Atlantic salmon from May 2007 to April 2008 in British Columbia, Canada. Three potentially pathogenic bacteria (Tenacibaculum maritimum, Pseudomonas fluorescens, and Vibrio spp.) were isolated from external (58-100%) and internal (12.5-100%) samples of sea lice. The prevalence of bacteria was higher from lice collected during the months with higher water temperatures and among adult lice. These preliminary results have led to a comprehensive, multi-year study where we plan to examine the possible role of sea lice as a vector for disease. PMID:19565269

  7. Stock-specific migration timing of adult spring-summer Chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Keefer, M.L.; Peery, C.A.; Jepson, M.A.; Tolotti, K.R.; Bjornn, T.C.; Stuehrenberg, L.C.

    2004-01-01

    An understanding of the migration timing patterns of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss is important for managing complex mixed-stock fisheries and preserving genetic and life history diversity. We examined adult return timing for 3,317 radio-tagged fish from 38 stocks of Columbia River basin spring-summer Chinook salmon O. tshawytscha over 5 years. Stock composition varied widely within and between years depending on the strength of influential populations. Most individual stocks migrated at similar times each year relative to overall runs, supporting the hypotheses that run timing is predictable, is at least partially due to genetic adaptation, and can be used to differentiate between some conspecific populations. Arrival timing of both aggregated radio-tagged stocks and annual runs was strongly correlated with river discharge; stocks arrived earlier at Bonneville Dam and at upstream dams in years with low discharge. Migration timing analyses identified many between-stock and between-year differences in anadromous salmonid return behavior and should and managers interested in protection and recovery of evolutionary significant populations.

  8. Use of Electromyogram Telemetry to Assess Swimmng Activity of Adult Spring Chinook Salmon Migrating Past a Columbia River Dam

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Mesa, Matthew G.

    2006-02-28

    Electromyogram (EMG) radiotelemetry was used to examine the amount of energy expended by spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, the rate of aerobic energy used by spring Chinook salmon was significantly higher when they were moving through tailraces (1.27 kcal•kg-1•h-1) than when they were moving through other parts of the dam. Specifically, the rate of aerobic energy use for fish in tailraces was 14% higher than that used by fish in fishways (1.11 kcal•kg-1•h-1) and 27% higher than the rate used by fish in forebays (1.00 kcal•kg-1•h-1). Most (80%) of the aerobic energy used by fish to pass this dam was expended in the tailrace (25.5 kcal/kg), while only 18% (5.6 kcal/kg) and 2% (0.6 kcal/kg) were used in the fishways and forebays.

  9. A model of the effects of flow fluctuations on fall Chinook salmon spawning habitat availability in the Columbia River

    SciTech Connect

    Geist, David R.; Murray, Christopher J.; Hanrahan, Timothy P.; Xie, YuLong

    2008-12-01

    Previously we reported that about 30% to 60% of the area predicted to be used by fall Chinook salmon (Oncorhynchus tshawytscha) for spawning in the Hanford Reach of the Columbia River did not contain redds. One explanation for the overprediction of habitat was that our model did not incorporate streamflow fluctuation. Daily fluctuation in flow caused by load-following operations (power generation to meet short-term electrical demand) at Priest Rapids Dam, situated at the upper end of the Hanford Reach, changes the hydraulic characteristics to which fish respond in selecting redd sites. The purpose of the study described here was to examine the effect of flow changes on spawning habitat modeling and, in particular, to look at the connection between spawning and the variability and persistence of habitat variables caused by rapid changes in flow resulting from load-following operations at Priest Rapids Dam. We found that spawning habitat use by fall Chinook salmon was consistent with previous fall Chinook salmon studies in the Reach. Dynamic variables that were based on hourly time series were used to account for the variability in habitat as a result of flow fluctuations. The analysis showed that the proportion of velocities that fell within the range of 1.0 to 2.5 m/s differed significantly between locations that were predicted to be spawning by the logistic regression model where spawning actually occurred and locations that were predicted to be spawning where spawning did not occur. However, the resulting sequential logistic regression model that incorporated the dynamic variables did not provide significant improvement in the percentage of errors for areas predicted to be spawning; the model’s overprediction errors still ranged from 63% to 78%. We suggest that while flow fluctuation may affect spawning habitat and individual fish behavior, the high correlation between time-averaged velocities and the proportion of hourly velocities that fell within the most

  10. Migration depths of juvenile Chinook salmon and steelhead relative to total dissolved gas supersaturation in a Columbia River reservoir

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2006-01-01

    The in situ depths of juvenile salmonids Oncorhynchus spp. were studied to determine whether hydrostatic compensation was sufficient to protect them from gas bubble disease (GBD) during exposure to total dissolved gas (TDG) supersaturation from a regional program of spill at dams meant to improve salmonid passage survival. Yearling Chinook salmon O. tshawytscha and juvenile steelhead O. mykiss implanted with pressure-sensing radio transmitters were monitored from boats while they were migrating between the tailrace of Ice Harbor Dam on the Snake River and the forebay of McNary Dam on the Columbia River during 1997-1999. The TDG generally decreased with distance from the tailrace of the dam and was within levels known to cause GBD signs and mortality in laboratory bioassays. Results of repeated-measures analysis of variance indicated that the mean depths of juvenile steelhead were similar throughout the study area, ranging from 2.0 m in the Snake River to 2.3 m near the McNary Dam forebay. The mean depths of yearling Chinook salmon generally increased with distance from Ice Harbor Dam, ranging from 1.5 m in the Snake River to 3.2 m near the forebay. Juvenile steelhead were deeper at night than during the day, and yearling Chinook salmon were deeper during the day than at night. The TDG level was a significant covariate in models of the migration depth and rates of each species, but no effect of fish size was detected. Hydrostatic compensation, along with short exposure times in the area of greatest TDG, reduced the effects of TDG exposure below those generally shown to elicit GBD signs or mortality. Based on these factors, our results indicate that the TDG limits of the regional spill program were safe for these juvenile salmonids.

  11. Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.

    SciTech Connect

    Baptista, António M.

    2009-08-02

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary

  12. Climate regimes and water temperature changes in the Columbia River: bioenergetic implications for predators of juvenile salmon

    USGS Publications Warehouse

    Petersen, J.H.; Kitchell, J.F.

    2001-01-01

    We examined how climatic regime shifts may have affected predation rates on juvenile Pacific salmonids (Oncorhynchus spp.) by northern squawfish (Ptychocheilus oregonensis, also called northern pikeminnow), smallmouth bass (Micropterus dolomieu), and walleye (Stizostedion vitreum) in the Columbia River. During 1933-1996, oceanic, coastal, and freshwater indices of climate were highly correlated, and an index for the Columbia River Basin suggested that climate shifts may have occurred about 1946, 1958, 1969, and 1977. Summer water temperature varied as much as 2??C between climate periods. We used a bioenergetics model for northern squawfish, the most important piscivore, to predict that predation on salmonids would have been 26-31% higher during two periods with relatively warm spring-summer water temperatures (1933-1946, 1978-1996) than during an extremely cold period (1947-1958). Predicted predation rates of northern squawfish were 68-96% higher in the warmest year compared with the coldest year. Predation rates of smallmouth bass and walleye on juvenile salmonids varied among climate periods similar to rates predicted for northern squawfish. Climatic effects need to be understood in both freshwater and nearshore marine habitats, since growth rates of salmon populations are especially sensitive to mortality during early life stages.

  13. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    SciTech Connect

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.; Townsend, Richard L.

    2014-07-11

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ≥0.96 and ≥0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ≤ 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conducted during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.

  14. First Nations, Consultation, and the Rule of Law: Salmon Farming and Colonialism in British Columbia

    ERIC Educational Resources Information Center

    Schreiber, Dorothee

    2006-01-01

    Many coastal First Nations communities, particularly in British Columbia, see consultation as a positive way of getting around the firmly entrenched position of both provincial and federal governments on fish farming. Even those Native groups such as the Musgamagw Tsawataineuk Tribal Council (MTTC) and the Homalco First Nation, who are adamantly…

  15. Residence times and diel passage distributions of radio-tagged juvenile spring chinook salmon and steelhead in a gatewell and fish collection channel of a Columbia River Dam

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2001-01-01

    The amount of time radio-tagged juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead O. mykiss spent within a gatewell and the juvenile collection channel at McNary Dam, Columbia River, USA, was measured to determine the diel passage behavior and residence times within these portions of the juvenile bypass system. The median gatewell residence times were 8.9 h for juvenile chinook salmon and 3.2 h for steelhead. Juvenile spring chinook salmon spent 83% of their time in the 18-m-deep gatewell at depths of 9 m or less, and juvenile steelhead spent 96% of their time in the upper 11 m. Fish released during midday and those released in the evening generally exited the gatewell in the evening, indicating that fish entering the gatewell during daylight will have prolonged residence times. Median collection-channel residence times of juvenile chinook salmon were much shorter (2.3 min) than those of steelhead (28.0 min), most likely because of the greater size of the steelhead and the high water velocities within the channel (2.1 m/s). This and other studies indicate most juvenile salmonids enter gatewells of several Columbia and Snake river dams in the evening and pass into the collection channels quickly. However, this is not consistent with the natural in-river migration patterns of these species and represents a delay in dam passage.

  16. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford reach of the Columbia River, Washington, USA.

    PubMed

    Farag, A M; Harper, D D; Cleveland, L; Brumbaugh, W G; Little, E E

    2006-05-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 microg Cr l(-1). The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 microg Cr l(-1). Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 microg Cr l(-1). Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 microg Cr l(-1). Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 mug Cr l(-1) is most likely protective of Chinook salmon fertilization. PMID:16453067

  17. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, Washington, USA

    USGS Publications Warehouse

    Farag, A.M.; Harper, D.D.; Cleveland, L.; Brumbaugh, W.G.; Little, E.E.

    2006-01-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 ??g Cr l-1. The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 ??g Cr l-1. Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 ??g Cr l-1. Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 ??g Cr l-1. Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 ??g Cr l-1 is most likely protective of Chinook salmon fertilization. ?? 2006 Springer Science+Business Media, Inc.

  18. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2003-2004 Annual Report.

    SciTech Connect

    Mueller, Robert

    2004-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys in fall 2003 to identify spawning areas for fall Chinook salmon (Oncorhynchus tshawytscha) in deep water (>1 m) downstream of Bonneville Dam. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce islands of the Columbia River, and is the fifth in a series of reports prepared since 1999. The primary objective of this study was to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections near below Hamilton Creek. Results from the 2003 study show a continuing trend upward in the number of fall Chinook salmon redds found within the survey zones. The number of fall Chinook redds found in the Ives Pierce Island complex (river km 228.5) has increased by a factor of five since the surveys began in 1999. The total number of redds found during 2003 was 336, which compares to 192 in 2002, 43 in 2001, 76 in 2000, and 64 in 1999. The redds encompassed an area of 13.7 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 24, 2003. An expanded redd count based on percentage of video coverage in the primary and secondary search zones was 3,218 fall Chinook salmon redds in water exceeding 1 m deep and flowing at about 125 kcfs. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging from 7.6 to 15.2 cm in diameter. Two chum salmon redds were found in a small location downstream from Hamilton Creek in water depths of approximately 1 m. No salmon redds were found in other areas searched, including near

  19. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) near Ives and Pierce Island of the Columbia River, 2004-2005 Annual Report.

    SciTech Connect

    Mueller, Robert

    2005-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (greater than 1 m) downstream of Bonneville Dam in fall 2004. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce Islands of the Columbia River and is the sixth in a series of reports prepared since 1999. The main objectives of this study were to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The primary search area was adjacent to the upper portion of Pierce Island, and the secondary search zone was downstream of this area near the lower portion of Pierce Island. A secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections downstream of Hamilton Creek (slough zone search area). Fall Chinook salmon redd numbers were down slightly from the record number found during 2003. The number of fall Chinook redds found in the Ives-Pierce Island complex (river km 228.5) during 2004 was 293, which does not include the number of shallow water redds found by visual observation by boat by the Oregon Department of Fish and Wildlife. The redds encompassed an area of 14.6 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 16, 2004. An expanded redd count based on percentage video coverage in the primary and secondary search zones was 3,198 fall Chinook salmon redds at water depths exceeding approximately 1.0 m (approximately 125 kcfs) with an estimated spawning population of 10,800. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging in size from 7

  20. An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report

    SciTech Connect

    Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.; Borde, Amy B.; Woodley, Christa M.; Weitkamp, Laurie A.; Buenau, Kate E.; Kropp, Roy K.

    2013-12-01

    The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River and estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field

  1. The interaction of ground water and surface water within fall chinook salmon spawning areas in the Hanford Reach of the Columbia River

    SciTech Connect

    Geist, David R. )

    2000-01-01

    Fall chinook salmon (Oncorhynchus tshawytscha) spawned predominantly in areas of the Hanford Reach of the Columbia River where hyporheic water discharged into the river channel. This upwelling water had a dissolved solids content (i.e., specific conductance) indicative of river water and was presumed to have entered highly permeable riverbed substrate at locations upstream of the spawning areas. Hyporheic discharge zones composed of undiluted ground water or areas with little or no upwelling were not used by spawning salmon. Rates of upwelling into spawning areas averaged 1,200 L / m{sup 2} / day (95% C.I.= 784 to 1,665 L / m{sup 2} / day) as compared to approximately 500 L / m{sup 2} / day (95% C.I.= 303 to 1,159 L / m{sup 2} / day) in non-spawning areas. Dissolved oxygen content of the hyporheic discharge near salmon spawning areas was about 9 mg/L (+/-0.4 mg/L) whereas in non-spawning areas dissolved oxygen values were 7 mg/L (+/- 0.9 mg/L) or lower. In both cases dissolved oxygen of the river water was higher (11.3+/- 0.3 mg/L). Physical and chemical gradients between the hyporheic zone and the river may provide cues for adult salmon to locate suitable spawning areas. This information will help fisheries managers to describe the suitability of salmon spawning habitat in large rivers.

  2. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus Tshawytscha) : Spawning Near Ives and Pierce Island of the Columbia River, 2001 Annual Report.

    SciTech Connect

    Mueller, Robert P.

    2002-10-01

    Pacific Northwest National Laboratory initiated studies to identify potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat and assess the extent of spawning in deep water (>1 m) downstream of Bonneville Dam in the fall of 1999. This report provides results from 2001, the third year of our effort. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the area. The secondary objective was to map any chum salmon redds located in the deeper sections near Hamilton Slough. River flows during the spawning surveys in 2001 were lower than in 1999 and 2000. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 9, 2001. The location of the spawning area was similar to that of 1999 and 2000. One difference was the majority of redds were found in deeper water (>1.5 m) and closer to the shoreline adjacent to Pierce Island. Because of the low river flows during the fall of 2001, only a handful of redds were found using the boat-deployed video system within Hamilton Slough. No chum salmon (O. keta) redds were found in areas surveyed during 2000. (Note: surveys were limited to deeper sections of Hamilton Slough and near the main river channel.) An estimated 717 fall chinook salmon redds at water depths exceeding 1.5 m ({approx} 125 kcfs) were documented in 2001. These estimates are expanded from the number of redds found within a predefined survey area. Fall chinook salmon redds were found at water depths from 1.5-4.6 m and were located in a general area of {approx} 4.9 ha. Fall chinook salmon redds were constructed in gravels ranging from 3.2-13.4 cm in diameter and water velocities of 0.29-0.70 m/s.

  3. Renibacterium salmoninarum in spring-summer chinook salmon smolts at dams on the Columbia and Snake Rivers

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Matthews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibacterium salmoninarum infection in smolts of hatchery and wild spring-summer chinook salmon Oncorhynchus tshawytscha sampled during most of the out-migration at Little Goose (1988) and Lower Granite dams (1988-1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988-1990). We sampled 860-2,178 fish per dam each year. Homogenates of kidney-spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1-11% of fish sampled at a given dam during any 1 year exhibited lesions characteristic of bacterial kidney disease, 86-100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4-17% of the fish tested positive by the FAT. During most years, a majority (68-87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  4. Modelling Infectious Hematopoietic Necrosis Virus Dispersion from Marine Salmon Farms in the Discovery Islands, British Columbia, Canada.

    PubMed

    Foreman, Michael G G; Guo, Ming; Garver, Kyle A; Stucchi, Dario; Chandler, Peter; Wan, Di; Morrison, John; Tuele, Darren

    2015-01-01

    Finite volume ocean circulation and particle tracking models are used to simulate water-borne transmission of infectious hematopoietic necrosis virus (IHNV) among Atlantic salmon (Salmo salar) farms in the Discovery Islands region of British Columbia, Canada. Historical simulations for April and July 2010 are carried out to demonstrate the seasonal impact of river discharge, wind, ultra-violet (UV) radiation, and heat flux conditions on near-surface currents, viral dispersion and survival. Numerical particles released from infected farm fish in accordance with IHNV shedding rates estimated through laboratory experiments are dispersed by model oceanic flows. Viral particles are inactivated by ambient UV radiation levels and by the natural microbial community at rates derived through laboratory studies. Viral concentration maps showing temporal and spatial changes are produced and combined with lab-determined minimum infectious dosages to estimate the infective connectivity among farms. Results demonstrate that neighbouring naïve farms can become exposed to IHNV via water-borne transport from an IHNV diseased farm, with a higher risk in April than July, and that many events in the sequence of farm outbreaks in 2001-2002 are consistent with higher risks in our farm connectivity matrix. Applications to other diseases, transfers between farmed and wild fish, and the effect of vaccinations are also discussed. PMID:26114643

  5. Modelling Infectious Hematopoietic Necrosis Virus Dispersion from Marine Salmon Farms in the Discovery Islands, British Columbia, Canada

    PubMed Central

    Foreman, Michael G. G.; Guo, Ming; Garver, Kyle A.; Stucchi, Dario; Chandler, Peter; Wan, Di; Morrison, John; Tuele, Darren

    2015-01-01

    Finite volume ocean circulation and particle tracking models are used to simulate water-borne transmission of infectious hematopoietic necrosis virus (IHNV) among Atlantic salmon (Salmo salar) farms in the Discovery Islands region of British Columbia, Canada. Historical simulations for April and July 2010 are carried out to demonstrate the seasonal impact of river discharge, wind, ultra-violet (UV) radiation, and heat flux conditions on near-surface currents, viral dispersion and survival. Numerical particles released from infected farm fish in accordance with IHNV shedding rates estimated through laboratory experiments are dispersed by model oceanic flows. Viral particles are inactivated by ambient UV radiation levels and by the natural microbial community at rates derived through laboratory studies. Viral concentration maps showing temporal and spatial changes are produced and combined with lab-determined minimum infectious dosages to estimate the infective connectivity among farms. Results demonstrate that neighbouring naïve farms can become exposed to IHNV via water-borne transport from an IHNV diseased farm, with a higher risk in April than July, and that many events in the sequence of farm outbreaks in 2001-2002 are consistent with higher risks in our farm connectivity matrix. Applications to other diseases, transfers between farmed and wild fish, and the effect of vaccinations are also discussed. PMID:26114643

  6. Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam, Columbia River : Annual Report 2005-2006.

    SciTech Connect

    Tiffan, Kenneth F.; Haskell, Craig A.; Kock, Tobias J.

    2008-12-01

    In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific

  7. An estimate of chinook salmon (Oncorhynchus tshawytscha) spawning habitat and redd capacity upstream of a migration barrier in the upper Columbia River

    SciTech Connect

    Hanrahan, Timothy P.; Dauble, Dennis D.; Geist, David R.

    2004-02-01

    Chief Joseph Dam on the Columbia River is the upstream terminus for anadromous fish, due to its lack of fish passage facilities. Management agencies are currently evaluating the feasibility of reintroducing anadromous fish upriver of Chief Joseph Dam. We evaluated the physical characteristics of potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat in the upper section of Chief Joseph Reservoir. The objective of this study was to estimate the quantity and location of potential spawning habitat, and secondly to determine the redd capacity of the area based on spawning habitat characteristics. We used a geomorphic approach to first identify specific segments with the highest potential for spawning. The suitability of these segments for spawning was then estimated through the use of empirical physical data and modeled hydraulic data. We estimated 5% (48.7 ha) of the study area contains potentially suitable fall chinook salmon spawning habitat. Potential spawning habitat is primarily limited by water too deep and secondly by water velocities too low, the combination of which results in 20% (9.6 ha) of the potential spawning habitat being characterized as high quality. Estimates of redd capacity within potential spawning habitat range from 207? 1599 redds, based on proportional use of potential habitat and varying amounts of channelbed used by spawning salmon. The results of our study provide fisheries managers significant insight into one component of the complex issue of reintroducing anadromous fish to the Columbia River upstream of Chief Joseph Dam.

  8. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1984-1985 Annual Report.

    SciTech Connect

    Schreck, Carl B.; Sharpe, Cameron; Li, Hiram W.

    1985-09-21

    Fish were collected from 60 stocks of chinook salmon and 62 stocks of steelhead trout. Electrophoretic analyses were completed on 43 stocks of chinook salmon and 41 stocks of steelhead trout and meristic counts were completed on 43 stocks of chinook and 41 stocks of steelhead. Statistical comparisons between year classes of our electrophoretic data indicate that most enzyme systems are stable over time but some may be dynamic and should be used with caution in our analyses. We also compared neighboring stocks of both spring chinook and steelhead trout. These comparisons were between stocks of the same race from adjacent stream systems and/or hatcheries. Differences in isozyme gene frequencies can be used to estimate genetic segregation between pairs of stocks. Analysis of the chinook data suggests that, as expected, the number of statistically significant differences in isozyme gene frequencies increases as the geographic distance between stocks increases. The results from comparisons between adjacent steelhead stocks were inconclusive and must await final analysis with more data. Cluster analyses using either isozyme gene frequencies or meristic characters both tended to group the chinook and steelhead stocks by geographic areas and by race and both methods resulted in generally similar grouping patterns. However, cluster analyses using isozyme gene frequencies produced more clusters than the analyses using meristic characters probably because of the greater number of electrophoretic characters compared to the number of meristic characters. Heterozygosity values for each stock were computed using the isozyme gene frequencies. The highest heterozygosity values for chinook were observed in summer chinook and the hatchery stocks while the lowest values were observed in the spring chinook and wild stocks. The results of comparisons of heterozygosity values among areas were inconclusive. The steelhead heterozygosity values were higher in the winter stocks than in the

  9. Influence of river level on temperature and hydraulic gradients in chum and fall Chinook salmon spawning areas downstream of Bonneville Dam, Columbia River

    SciTech Connect

    Geist, David R.; Arntzen, Evan V.; Murray, Christopher J.; McGrath, Kathy; Bott, Yi-Ju; Hanrahan, Timothy P.

    2008-02-01

    Chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon segregate spatially during spawning in the Ives Island side channel of the lower Columbia River downstream from Bonneville Dam. Previous research during one spawning season (2000) suggested that these species selected spawning habitats based on differences in hyporheic temperature and vertical hydraulic gradient (VHG) with the river. In this study, we confirmed the spatial segregation of spawning based on hyporheic characteristics over four years (2001–2004) and examined the effects of load-following operations (power generation to meet short-term electrical demand) at Bonneville Dam on hyporheic function and characteristics. We found that during the study period, hyporheic temperature and VHG in chum salmon spawning areas were highly variable during periods of load-following operation when river levels fluctuated. In contrast, hyporheic water temperature and VHG within chum spawning areas fluctuated less when river levels were not changing due to load-following operation. Variable temperature and VHG could affect chum and fall Chinook salmon spawning segregation and incubation success by altering the cues each species uses to select redd sites. Alterations in site selection would result in a breakdown in the spatial segregation of spawning between chum and fall Chinook salmon, which would expose earlier spawning fall Chinook eggs to a greater risk of dislodgement from later spawning chum salmon. Additional research will be required to fully assess the effects of load-following operations on the hyporheic environment and spawning and incubation success of chum and fall Chinook salmon downstream from Bonneville Dam.

  10. Physiological characterization of juvenile Chinook salmon utilizing different habitats during migration through the Columbia River Estuary.

    PubMed

    Hanson, Kyle C; Ostrand, Kenneth G; Glenn, Richard A

    2012-11-01

    Although off-channel habitats in the estuaries of large rivers impart many benefits to fish that rear within them, it is less clear how these habitats benefit migrating anadromous species that utilize these habitats for short periods of time. We evaluated the physiological correlates (nutritional condition, growth, and smoltification) of habitat utilization (main-channel vs. off-channel) by juvenile Chinook salmon Oncorhynchus tshawytscha during emigration. Fish from the off-channel had higher condition factor scores and relative weights than fish from the main-channel throughout the study period. Plasma triglyceride and protein concentrations were significantly different between habitat types and across the sampling period, suggesting that fish utilizing the off-channel habitats were compensating for energy losses associated with emigration as compared to main-channel fish. Growth potential (RNA to DNA ratio) did not vary by habitat or sampling period, presumably due to short residency time. There were no differences in osmoregulatory capacity (gill Na(+), K(+)-ATPase activity) based on habitat type. Our results indicate that short-term off-channel habitat use may mitigate for energy declines incurred during migration, but likely does not impart significant gains in energy stores or growth. PMID:22842392

  11. A Two-Stage Information-Theoretic Approach to Modeling Landscape-Level Attributes and Maximum Recruitment of Chinook Salmon in the Columbia River Basin.

    SciTech Connect

    Thompson, William L.; Lee, Danny C.

    2000-11-01

    Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long-term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information-theoretic methods in a two-stage modeling process to investigate relationships between landscape-level habitat attributes and maximum recruitment of 25 index stocks of chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin. Our first-stage model selection results indicated that the Ricker-type, stock recruitment model with a constant Ricker a (i.e., recruits-per-spawner at low numbers of fish) across stocks was the only plausible one given these data, which contrasted with previous unpublished findings. Our second-stage results revealed that maximum recruitment of chinook salmon had a strongly negative relationship with percentage of surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and private moderate-high impact managed forest. That is, our model predicted that average maximum recruitment of chinook salmon would decrease by at least 247 fish for every increase of 33% in surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and privately managed forest. Conversely, mean annual air temperature had a positive relationship with salmon maximum recruitment, with an average increase of at least 179 fish for every increase in 2 C mean annual air temperature.

  12. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect

    Sather, NK; Johnson, GE; Storch, AJ

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River

  13. The non-fisheries biological resources of the Hanford reach of the Columbia River

    SciTech Connect

    Rickard, W.H.; Hanson, W.C.; Fitzner, R.E.

    1982-01-01

    The Hanford Reach is the only undammed segment of the Columbia River in the United States upstream from Bonneville Dam. The non-agricultural and non-recreational land-use policies imposed by the Department of Energy have permitted the Hanford Site to function as a refugium for wildlife for 35 years. The protection offered by the Hanford Site has been especially important for the Bald Eagle (Haliaeetus leurocephalus), mule deer (Odocileus hemionus), coyote (Canis latrans), and resident Great Basin Canada Goose (Branta canadensis moffitti). Island habitats are especially important for nesting geese and for mule deer fawning. Coyotes are important predators upon nesting geese and mule deer fawns. Salmon carcasses are an important winter food for Bald Eagles. Riparian plant communities along the Columbia River have been changing in response to changing water level fluctuations largely regulated by power generation schedules at upstream hydroelectric dams. There are no studies presently established to record the response of Columbia River shoreline plant communities to these kinds of fluctuating water levels. The existing information is summarized on birds and mammals closely allied with the Hanford Reach of the Columbia River. High trophic level wild animals are discussed as indicators of chemical contamination of food chains.

  14. Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, Part II, Smolt Monitoring Program, 1984 Annual Report.

    SciTech Connect

    McConnaha, Willis E.

    1985-07-01

    The report describes the travel time of marked yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri) between points within the system, and reports the arrival timing and duration of the migrations for these species as well as coho salmon (O. kisutch). A final listing of 1984 hatchery releases is also included. 8 refs., 26 figs., 20 tabs.

  15. 2005 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2004-2005 Annual Report.

    SciTech Connect

    Wilson, Jeremy; Duston, Reed A.

    2006-01-01

    During mid-1990s, Pacific States Marine Fisheries Commission (PSMFC) and Washington Department of Fish and Wildlife (WDFW) identified several populations of salmon spawning approximately three miles downstream of Bonneville Dam on the Columbia River. These populations are exposed to rapidly changing flow regimes associated with Bonneville Dam's operation. This study investigated the relationship between changing water levels and stranding or entrapment of juvenile salmon in the Ives Island area. Walking surveys of the Ives Island and Pierce Island shorelines were conducted every one to three days throughout the juvenile emigration period. The nearby shorelines of the Washington and Oregon mainland were also surveyed. Between January and June of 2005, surveyors examined 21 substantial entrapments and 20 stranding sites. A total of 14,337 salmonids, made up of three species, were found either entrapped or stranded. Nearly 92% of the salmonids were chinook salmon (Oncorhynchus tshawytscha), 4.5% were federally listed chum salmon (Oncorhynchus keta), and 3.8% were coho salmon (Oncorhynchus kisutch). When compared to the 2004 study year, 2005 showed an 83% increase in the overall number of observed entrapped or stranded juvenile salmon. Much of this increase can be attributed to one entrapment found along the north shore of Pierce Island (identified as E501). E501 has historically been known to contain relatively large numbers of entrapped salmon. Even so, the number of entrapped salmon observed during 2005 was a 732% increase (5926) over any prior study years. Over 83% of all chum, 63.1% of all chinook, and 63.2% of all coho sampled during 2005 were retrieved from entrapments that were likely to have formed when Bonneville Dam tailwater levels dropped to elevations between 11.5 and 12.9 feet. Peak numbers of chum and chinook were sampled in mid-April when tailwater levels ranged between 11.6ft and 15.6ft. Peak numbers of coho were sampled during the last week of

  16. Library Resources in the Mid-Hudson Valley: Columbia, Dutchess, Greene, Orange, Putnam, Rockland, Sullivan, Ulster.

    ERIC Educational Resources Information Center

    Reichmann, Felix; And Others

    The purpose of this study was to "survey the library resources in the eight Mid-Hudson Counties of Columbia, Dutchess, Greene, Orange, Putnam, Rockland, Sullivan, and Ulster in order to develop a plan of service in which assets would be shared, resources developed, and services extended." Survey data were collected by six questionnaires; visits…

  17. Factors Affecting the Survival of Upstream Migrant Adult Salmonids in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 9 of 11.

    SciTech Connect

    Dauble, Dennis D.; Mueller, Robert P.

    1993-06-01

    The Bonneville Power Administration (BPA) is developing conservation planning documentation to support the National Marine Fisheries Service`s (NMFS) recovery plan for Columbia Basin salmonid stocks that are currently listed under the Endangered Species Act (ESA). Information from the conservation planning documentation will be used as a partial scientific basis for identifying alternative conservation strategies and to make recommendations toward conserving, rebuilding, and ultimately removing these salmon stocks from the list of endangered species. This report describes the adult upstream survival study, a synthesis of biological analyses related to conditions affecting the survival of adult upstream migrant salmonids in the Columbia River system. The objective of the adult upstream survival study was to analyze existing data related to increasing the survival of adult migrant salmonids returning to the Snake River system. The fate and accountability of each stock during its upstream migration period and the uncertainties associated with measurements of escapement and survival were evaluated. Operational measures that affected the survival of adult salmon were evaluated including existing conditions, augmented flows from upstream storage release, and drawdown of mainstem reservoirs. The potential impacts and benefits of these measures to each ESA stock were, also described based on considerations of species behavior and run timing.

  18. Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia rivers

    USGS Publications Warehouse

    Hockersmith, E.E.; Muir, W.D.; Smith, S.G.; Sandford, B.P.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2003-01-01

    A study was conducted to compare the travel times, detection probabilities, and survival of migrant hatchery-reared yearling chinook salmon Oncorhynchus tshawytscha tagged with either gastrically or surgically implanted sham radio tags (with an imbedded passive integrated transponder [PIT] tag) with those of their cohorts tagged only with PIT tags in the Snake and Columbia rivers. Juvenile chinook salmon with gastrically implanted radio tags migrated significantly faster than either surgically radio-tagged or PIT-tagged fish, while migration rates were similar among surgically radio-tagged and PIT-tagged fish. The probabilities of PIT tag detection at downstream dams varied by less than 5% and were not significantly different among the three groups. Survival was similar among treatments for median travel times of less than approximately 6 d (migration distance of 106 km). However, for both gastrically and surgically radio-tagged fish, survival was significantly less than for PIT-tagged fish, for which median travel times exceeded approximately 10 d (migration distance of 225 km). The results of this study support the use of radio tags to estimate the survival of juvenile chinook salmon having a median fork length of approximately 150 mm (range, 127-285 mm) and a median travel time of migration of less than approximately 6 d.

  19. Survival of Seaward-Migrating PIT and Acoustic-Tagged Juvenile Chinook Salmon in the Snake and Columbia Rivers: An Evaluation of Length-Specific Tagging Effects

    SciTech Connect

    Brown, Richard S.; Oldenburg, Eric W.; Seaburg, Adam; Cook, Katrina V.; Skalski, John R.; Eppard, M. B.; Deters, Katherine A.

    2013-06-12

    Studies examining the survival of juvenile salmon as they emigrate to the ocean provide important information regarding the management of regulated river systems. Acoustic telemetry is a widely used tool for evaluating the behavior and survival of juvenile salmonids in the Columbia River basin. Thus, it is important to understand how the surgical tagging process and the presence of a transmitter affect survival so any biases can be accounted for or eliminated. This study evaluated the effects of fish length and tag type on the survival of yearling and subyearling Chinook salmon during their seaward migrations through the Snake and Columbia rivers during 2006, 2007, and 2008. Fish were collected at Lower Granite Dam on the Snake River (river kilometer 695) and implanted with either only a passive integrated transponder (PIT) tag (PIT fish) or both a PIT tag and an acoustic transmitter (AT fish). Survival was estimated from release at Lower Granite Dam to multiple downstream locations (dams) using the Cormack–Jolly–Seber single release model, and analysis of variance was used to test for differences among length-classes and between tag types. No length-specific tag effect was detected between PIT and AT fish (i.e., length affected the survival of PIT fish in a manner similar to which it affected the survival of AT fish). Survival among the smallest length class (i.e., 80–89 mm) of both PIT and AT subyearling Chinook salmon was markedly low (i.e., 4%). Fish length was positively correlated with the survival of both PIT and AT fish. Significant differences in survival were detected between tag types; the survival of PIT fish was generally greater than that of AT fish. However, confounding variables warrant caution in making strong inferences regarding this factor. Further, results suggest that tag effects may be due to the process of surgically implanting the transmitter rather than the presence of the transmitter.

  20. Rearing in natural and recovering tidal wetlands enhances growth and life-history diversity of Columbia Estuary tributary coho salmon Oncorhynchus kisutch population.

    PubMed

    Craig, B E; Simenstad, C A; Bottom, D L

    2014-07-01

    This study provides evidence of the importance of tributary tidal wetlands to local coho salmon Oncorhynchus kisutch populations and life-history diversity. Subyearling and, to a lesser extent, yearling O. kisutch life histories utilized various estuary habitats within the Grays River, a tidal freshwater tributary of the Columbia River estuary, including restoring emergent wetlands and natural forested wetlands. Migration timing data, size distributions, estuary residence and scale patterns suggest a predominance of subyearling migrant life histories, including several that involve extended periods of estuary rearing. Estuarine-rearing subyearling O. kisutch exhibited the greatest overall growth rates; the highest growth rates were seen in fish that utilized restoring emergent wetlands. These results contrast with studies conducted in the main-stem Columbia River estuary, which captured few O. kisutch, of which nearly all were hatchery-origin yearling smolts. Restoration and preservation of peripheral and tributary wetland habitats, such as those in the Grays River, could play an important role in the recovery of natural O. kisutch populations in the Columbia River and elsewhere. PMID:24890886

  1. SalmonDB: a bioinformatics resource for Salmo salar and Oncorhynchus mykiss

    PubMed Central

    Di Génova, Alex; Aravena, Andrés; Zapata, Luis; González, Mauricio; Maass, Alejandro; Iturra, Patricia

    2011-01-01

    SalmonDB is a new multiorganism database containing EST sequences from Salmo salar, Oncorhynchus mykiss and the whole genome sequence of Danio rerio, Gasterosteus aculeatus, Tetraodon nigroviridis, Oryzias latipes and Takifugu rubripes, built with core components from GMOD project, GOPArc system and the BioMart project. The information provided by this resource includes Gene Ontology terms, metabolic pathways, SNP prediction, CDS prediction, orthologs prediction, several precalculated BLAST searches and domains. It also provides a BLAST server for matching user-provided sequences to any of the databases and an advanced query tool (BioMart) that allows easy browsing of EST databases with user-defined criteria. These tools make SalmonDB database a valuable resource for researchers searching for transcripts and genomic information regarding S. salar and other salmonid species. The database is expected to grow in the near feature, particularly with the S. salar genome sequencing project. Database URL: http://genomicasalmones.dim.uchile.cl/ PMID:22120661

  2. A Study of Stranding of Juvenile Salmon by Ship Wakes Along the Lower Columbia River Using a Before-and-After Design: Before-Phase Results

    SciTech Connect

    Pearson, Walter H.; Skalski, J R.; Sobocinski, Kathryn L.; Miller, Martin C.; Johnson, Gary E.; Williams, Greg D.; Southard, John A.; Buchanan, Rebecca A.

    2006-02-01

    Ship wakes produced by deep-draft vessels transiting the lower Columbia River have been observed to cause stranding of juvenile salmon. Proposed deepening of the Columbia River navigation channel has raised concerns about the potential impact of the deepening project on juvenile salmon stranding. The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory design and conduct a study to assess stranding impacts that may be associated with channel deepening. The basic study design was a multivariate analysis of covariance of field observations and measurements under a statistical design for a before and after impact comparison. We have summarized field activities and statistical analyses for the ?before? component of the study here. Stranding occurred at all three sampling sites and during all three sampling seasons (Summer 2004, Winter 2005, and Spring 2005), for a total of 46 stranding events during 126 observed vessel passages. The highest occurrence of stranding occurred at Barlow Point, WA, where 53% of the observed events resulted in stranding. Other sites included Sauvie Island, OR (37%) and County Line Park, WA (15%). To develop an appropriate impact assessment model that accounted for relevant covariates, regression analyses were conducted to determine the relationships between stranding probability and other factors. Nineteen independent variables were considered as potential factors affecting the incidence of juvenile salmon stranding, including tidal stage, tidal height, river flow, current velocity, ship type, ship direction, ship condition (loaded/unloaded), ship speed, ship size, and a proxy variable for ship kinetic energy. In addition to the ambient and ship characteristics listed above, site, season, and fish density were also considered. Although no single factor appears as the primary factor for stranding, statistical analyses of the covariates resulted in the following equations: (1) Stranding

  3. The Columbia River System Inside Story

    SciTech Connect

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  4. Gene expression profiling and environmental contaminant assessment of migrating Pacific salmon in the Fraser River watershed of British Columbia.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Dubetz, Cory; Macpherson, Nancy; Sampson, Tracy; Kelly, Barry C; Helbing, Caren C

    2010-05-01

    The health and physiological condition of anadromous salmon is of concern as their upriver migration requires navigation of human-impacted waterways and metabolism of stored energy reserves containing anthropogenic contaminants. Such factors may affect reproductive success of fish stocks. This study investigates chemical contaminant burdens and select gene expression profiles in Pacific Sockeye (Oncorhynchus nerka) and Chinook (Oncorhynchus tshawytscha) salmon which traverse the Fraser River watershed during their spawning migration. Chemical analyses of muscle tissue and eggs of salmon collected from the lower Fraser River (pre-migration) and from upstream spawning grounds (post-migration) during the 2007 migration revealed the presence of numerous chemical contaminants, including PCBs, dioxins/furans, pesticides, and heavy metals. However, muscle tissue residue concentrations were well below human health consumption guidelines and 2,3,7,8 TCDD toxic equivalents (SigmaTEQs) in salmon eggs, calculated using WHO toxic equivalency factors (WHO-TEFs) for fish health, did not exceed the 0.3pgg(-1) wet weight toxicological threshold level previously associated with 30% egg mortality in salmon populations. Quantitative real-time PCR probes were generated and used to assess differences in abundance of key mRNA transcripts encoding nine gene products associated with reproduction, stress, metal toxicity, and exposure to environmental contaminants. Gene expression profiles were characterized in liver and muscle tissue of pre- and post-migration Sockeye and Chinook salmon. The results of stock-matched animals indicate that dynamic changes in mRNA levels occur for a number of genes in both species during migration and suggest that Sockeye salmon exhibit a greater level of biological stress compared to the Chinook salmon population. Using a male-specific genotypic marker, we found that out of the 154 animals examined, one Sockeye was genotypically male but phenotypically female

  5. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river.

    PubMed

    Furey, N B; Hinch, S G; Lotto, A G; Beauchamp, D A

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0-12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems. PMID:25494841

  6. Alternative models of climatic effects on sockeye salmon (Oncorhynchus nerka) productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia

    USGS Publications Warehouse

    Adkison, M.; Peterman, R.; Lapointe, M.; Gillis, D.; Korman, J.

    1996-01-01

    We compare alternative models of sockeye salmon (Oncorhynchus nerka) productivity (returns per spawner) using more than 30 years of catch and escapement data for Bristol Bay, Alaska, and the Fraser River, British Columbia. The models examined include several alternative forms of models that incorporate climatic influences as well as models not based on climate. For most stocks, a stationary stock-recruitment relationship explains very little of the interannual variation in productivity. In Bristol Bay, productivity co-varies among stocks and appears to be strongly related to fluctuations in climate. The best model for Bristol Bay sockeye involved a change in the 1970s in the parameters of the Ricker stock-recruitment curve; the stocks generally became more productive. In contrast, none of the models of Fraser River stocks that we examined explained much of the variability in their productivity.

  7. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  8. Diel resource partitioning among juvenile Atlantic Salmon, Brown Trout, and Rainbow Trout during summer

    USGS Publications Warehouse

    Johnson, James H.; McKenna Jr, James E.

    2015-01-01

    Interspecific partitioning of food and habitat resources has been widely studied in stream salmonids. Most studies have examined resource partitioning between two native species or between a native species and one that has been introduced. In this study we examine the diel feeding ecology and habitat use of three species of juvenile salmonids (i.e., Atlantic Salmon Salmo salar, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss) in a tributary of Skaneateles Lake, New York. Subyearling Brown Trout and Rainbow Trout fed more heavily from the drift than the benthos, whereas subyearling Atlantic Salmon fed more from the benthos than either species of trout. Feeding activity of Atlantic Salmon and Rainbow Trout was similar, with both species increasing feeding at dusk, whereas Brown Trout had no discernable feeding peak or trough. Habitat availability was important in determining site-specific habitat use by juvenile salmonids. Habitat selection was greater during the day than at night. The intrastream, diel, intraspecific, and interspecific variation we observed in salmonid habitat use in Grout Brook illustrates the difficulty of acquiring habitat use information for widespread management applications.

  9. Diel resource partitioning among juvenile Atlantic Salmon, Brown Trout, and Rainbow Trout during summer

    USGS Publications Warehouse

    Johnson, James H.; McKenna Jr, James E.

    2015-01-01

    Interspecific partitioning of food and habitat resources has been widely studied in stream salmonids. Most studies have examined resource partitioning between two native species or between a native species and one that has been introduced. In this study we examine the diel feeding ecology and habitat use of three species of juvenile salmonids (i.e., Atlantic Salmon Salmo salar, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss) in a tributary of Skaneateles Lake, New York. Subyearling Brown Trout and Rainbow Trout fed more heavily from the drift than the benthos, whereas subyearling Atlantic Salmon fed more from the benthos than either species of trout. Feeding activity of Atlantic Salmon and Rainbow Trout was similar, with both species increasing feeding at dusk, whereas Brown Trout had no discernable feeding peak or trough. Habitat availability was important in determining site-specific habitat use by juvenile salmonids. Habitat selection was greater during the day than at night. The intrastream, diel, intraspecific, and interspecific variation we observed in salmonid habitat use in Grout Brook illustrates the difficulty of acquiring habitat use information for widespread management applications.

  10. Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin.

    PubMed

    Hess, J E; Matala, A P; Narum, S R

    2011-03-01

    Genetic stock identification (GSI) is an important tool in fisheries management. Microsatellites (μSATs) have been the dominant genetic marker for GSI; however, increasing availability and numerous advantages of single-nucleotide polymorphism (SNP) markers make them an appealing alternative. We tested performance of 13 μSAT vs. 92 SNP loci in a fine-scale application of GSI, using a new baseline for Chinook salmon consisting of 49 collections (n = 4014) distributed across the Columbia River Basin. In GSI, baseline genotypes for both marker sets were used independently to analyse a real fishery mixture (n = 2731) representing the total run of Chinook salmon passing Bonneville Dam in the Columbia River. Marker sets were evaluated using three criteria: (i) ability to differentiate reporting groups, (ii) proportion of correct assignment in mixture simulation tests and baseline leave-one-out analyses and (iii) individual assignment and confidence intervals around estimated stock proportions of a real fishery mixture. The μSATs outperformed the SNPs in resolving fine-scale relationships, but all 105 markers combined provided greatest power for GSI. SNPs were ranked by relative information content based on both an iterative procedure that optimized correct assignment to the baseline and ranking by minor allele frequency. For both methods, we identified a subset of the top 50 ranked loci, which were similar in assignment accuracy, and both reached maximum available power of the total 92 SNP loci (correct assignment = 73%). Our estimates indicate that between 100 and 200 highly informative SNP loci are required to meet management standards (correct assignment > 90%) for resolving stocks in finer-scale GSI applications. PMID:21429170

  11. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach in the Columbia River, 1998 Interim Report.

    SciTech Connect

    Nugent, John; Newsome, Todd; Nugent, Michael

    2001-07-27

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  12. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 1999 Annual Report.

    SciTech Connect

    Nugent, John

    2002-01-24

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  13. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.

    SciTech Connect

    Nugent, John; Nugent, Michael; Brock, Wendy

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  14. Development of an Effective Transport Media for Juvenile Spring Chinook Salmon to Mitigate Stress and Improve Smolt Survival During Columbia River Fish Hauling Operations, 1985 Final Report.

    SciTech Connect

    Wedemeyer, Gary A.

    1985-02-01

    Selected transport media consisting of mineral salt additions (Na/sup +/, Cl/sup -/, Ca/sup + +/, PO/sub 4//sup -3/, HCO/sub 3//sup -/, and Mg/sup + +/), mineral salts plus tranquilizing concentrations of tricaine methane sulfonate (MS-222), or MS-222 alone were tested for their ability to mitigate stress and increase smolt survival during single and mixed species hauling of Columbia River spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri). Successful stress mitigation was afforded by several formulations as indicated by protection against life-threatening osmoregulatory and other physiological dysfunctions, and against immediate and delayed hauling mortality. Effects on the seawater survival and growth of smolts hauled in transport media were used as the overall criterion of success. Of the fourteen chemical formulations tested, 10 ppM MS-222 emerged as top-rated in terms of ability to mitigate physiological stress during single and mixed species transport of juvenile spring chinook salmon at hauling densities of 0.5 or 1.0 lb/gallon. Immediate and delayed mortalities from hauling stress were also reduced, but benefits to early marine growth and survival were limited to about the first month in seawater. The two physical factors tested (reduced light intensity and water temperature) were generally less effective than mineral salt additions in mitigating hauling stress, but the degree of protection afforded by reduced light intensity was nevertheless judged to be physiologically beneficial. 36 refs., 1 fig., 19 tabs.

  15. PACIFIC SALMON: LESSONS LEARNED FOR RECOVERING ATLANTIC SALMON

    EPA Science Inventory

    n evaluation of the history of efforts to reverse the long-term decline of Pacific Salmon provides instructive policy lessons for recovering Atlantic Salmon. From California to southern British Columbia, wild runs of Pacific salmon have universally declined and many have disappe...

  16. Residence Times of Juvenile Salmon and Steelhead in Off-Channel Tidal Freshwater Habitats, Columbia River, USA

    SciTech Connect

    Johnson, Gary E.; Ploskey, Gene R.; Sather, Nichole K.; Teel, D. J.

    2015-05-01

    We estimated seasonal residence times of acoustic-tagged juvenile salmonids in off-channel, tidal freshwater habitats of the Columbia River near the Sandy River delta (rkm 198; 2007, 2008, 2010, and 2011) and Cottonwood Island (rkm 112; 2012).

  17. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    SciTech Connect

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

  18. Stress and reproductive hormones reflect inter-specific social and nutritional conditions mediated by resource availability in a bear–salmon system

    PubMed Central

    Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Wynne-Edwards, Katherine E.; Smits, Judit E. G.

    2014-01-01

    Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool

  19. Stress and reproductive hormones reflect inter-specific social and nutritional conditions mediated by resource availability in a bear-salmon system.

    PubMed

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2014-01-01

    Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool

  20. Student Web Use, Columbia Earthscape, and Their Implications for Online Earth Science Resources

    NASA Astrophysics Data System (ADS)

    Haber, J.; Luby, M.; Wittenberg, K.

    2002-12-01

    For three years, Columbia Earthscape, www.earthscape.org, has served as a test bed for the development and evaluation of Web-based geoscience education. Last fall (EOS Trans. AGU, 82(47), Fall Meet. Suppl., Abstract ED11A-11, 2001), we described how librarian, scientist, instructor, and student feedback led to sweeping changes in interface and acquisitions. Further assessment has looked at the value of a central online resource for Earth-system science education in light of patterns of study. Columbia Earthscape aimed to create an authoritative resource that reflects the interconnectedness of the Internet, of the disciplines of Earth-systems science, and of research, education, and public policy. Evaluation thus has three parts. The editors and editorial advisory board have evaluated projects for the site for accuracy and relevance to the project?s original context of Earth issues and topical mini-courses. Second, our research sought patterns of student use and library acquisition of Internet sources. Last, we asked if and how students benefit from Columbia Earthscape. We found, first, that while libraries are understandably reluctant to add online resources to strained budgets, almost all students work online; they vary almost solely in personal Web use. Second, Web use does not discourage use of print. Third, researchers often search Columbia Earthscape, but students, especially in schools, prefer browsing by topic of interest. Fourth, if they did not have this resource, most would surf, but many feel lost on the Web, and few say they can judge the quality of materials they used. Fifth, students found Columbia Earthscape helpful, relevant, and current, but most often for its research and policy materials. Many commented on issue-related collections original to Columbia Earthscape. While indeed we intended our Classroom Models and Sample Syllabi primarily as aids to instructor course design, we conclude, first, that students stick anyway to assigned materials and

  1. Smolt Monitoring Program, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1986 Annual Report.

    SciTech Connect

    Fish Passage Center

    1987-02-01

    Smolt Monitoring Program Annual Report, 1986, Volume I, describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the data from Fish Passage Center freeze brands used in the analysis of travel time for Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, and John Day dams. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data. Data for marked fish not presented in this report will be provided upon request. Daily catch statistics (by species), flow, and sample parameters for the smolt monitoring sites, Clearwater, Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, John Day, and Bonneville also will be provided upon request.

  2. Trends in antimicrobial use in Marine Harvest Canada farmed salmon production in British Columbia (2003–2011)

    PubMed Central

    Morrison, Diane B.; Saksida, Sonja

    2013-01-01

    Marine Havest Canada has significantly reduced its antimicrobial usage in salmon farming over the last 8 years. Change has come about largely through improvements in production, health management, and livestock selection. However, antimicrobial treatments are still required for stomatitis and bacterial kidney disease. Lack of efficacious vaccines and the limited number of licensed antimicrobials available to the industry continue to be of concern. PMID:24293677

  3. Mycobacterial infections in adult salmon and steelhead trout returning to the Columbia River Basin and other areas in 1957

    USGS Publications Warehouse

    1959-01-01

    The degree of incidence of acid -fast bacillus infections in adult salmonid fishes was determined. The disease was shown to be widely distributed in the area examined. It is believed the primary source of infection is derived from the hatchery practice of feeding infected salmon products to juvenile fish. One group of marked adults that had been hatchery reared for 370 days showed a 62 percent incidence of infection. A statistical analysis indicated that length of fish is independent of infection

  4. Interacting effects of translocation, artificial propagation, and environmental conditions on the marine survival of Chinook salmon from the Columbia River, Washington, U.S.A.

    PubMed

    Holsman, Kirstin K; Scheuerell, Mark D; Buhle, Eric; Emmett, Robert

    2012-10-01

    Captive rearing and translocation are often used concurrently for species conservation, yet the effects of these practices can interact and lead to unintended outcomes that may undermine species' recovery efforts. Controls in translocation or artificial-propagation programs are uncommon; thus, there have been few studies on the interacting effects of these actions and environmental conditions on survival. The Columbia River basin, which drains 668,000 km(2) of the western United States and Canada, has an extensive network of hydroelectric and other dams, which impede and slow migration of anadromous Pacific salmon (Oncorhynchus spp.) and can increase mortality rates. To mitigate for hydrosystem-induced mortality during juvenile downriver migration, tens of millions of hatchery fish are released each year and a subset of wild- and hatchery-origin juveniles are translocated downstream beyond the hydropower system. We considered how the results of these practices interact with marine environmental conditions to affect the marine survival of Chinook salmon (O. tshawytscha). We analyzed data from more than 1 million individually tagged fish from 1998 through 2006 to evaluate the probability of an individual fish returning as an adult relative to its rearing (hatchery vs. wild) and translocation histories (translocated vs. in-river migrating fish that traveled downriver through the hydropower system) and a suite of environmental variables. Except during select periods of very low river flow, marine survival of wild translocated fish was approximately two-thirds less than survival of wild in-river migrating fish. For hatchery fish, however, survival was roughly two times higher for translocated fish than for in-river migrants. Competition and predator aggregation negatively affected marine survival, and the magnitude of survival depended on rearing and translocation histories and biological and physical conditions encountered during their first few weeks of residence in

  5. Stress and Reproductive Hormones in Grizzly Bears Reflect Nutritional Benefits and Social Consequences of a Salmon Foraging Niche

    PubMed Central

    Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Wynne-Edwards, Katherine E.; Smits, Judit E. G.

    2013-01-01

    Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology. PMID:24312230

  6. Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche.

    PubMed

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2013-01-01

    Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology. PMID:24312230

  7. Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.

    SciTech Connect

    Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S.; Honanie, Isadore

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

  8. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2003-2004 Annual Report.

    SciTech Connect

    Hillson, Todd D.

    2004-09-01

    Currently, two methods of reintroduction are being simultaneously evaluated at Duncan Creek. Recolonization is occurring by introducing adult chum salmon from the Lower Gorge (LG) population into Duncan Creek and allowing them to naturally reproduce. The supplementation strategy required adults to be collected and artificially spawned, incubated, reared, and released at the mouth of Duncan Creek. All eggs from the artificial crossings at Washougal Hatchery were incubated and the fry reared to release size at the hatchery. The Duncan Creek chum salmon project was very successful in 2003-04, providing knowledge and experience that will improve program execution in future years. The gear used to collect adult brood stock was changed from tangle nets to beach seines. This increased efficiency and the speed at which adults could be processed in the field, and most likely reduced stress on the adults handled. Certain weaknesses exposed in past seasons still exist and new ones were exposed (e.g. inadequate incubation and rearing space at Washougal Hatchery for any large salvage operation and having to move the rearing troughs outside the raceway in 2004). Egg-to-fry survival rates of 64% and 58% showed that the channels are functioning at the upper end of what can be expected from them. Possibly the most important event this season was the ability to strontium mark and release all naturally-produced fry from the spawning channels. Channel and floodplain modifications reduced the likelihood that floods will damage the channels and negatively impact survival rates.

  9. PNW WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  10. WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY - MAY 2006

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  11. Prevalence and levels of Renibacterium salmoninarum in spring-summer Chinook salmon (Oncorhynchus tshawytscha) smolts at dams on the Columbia and Snake Rivers.

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Mathews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibaeterium salmoninarum infection in smolts of hatchery and wild spring-summer Chinook salmon Oncorhynchus tshawytscha sampled during most of the outmigration at Little Goose (1988) and Lower Granite dams (1988–1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988–1990). We sampled 860–2,178 fish per dam each year. Homogenates of kidney–spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1–11% of fish sampled at a given dam during any l year exhibited lesions characteristic of bacterial kidney disease, 86–100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4–17% of the fish tested positive by the FAT. During most years, a majority (68–87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  12. Physiological, energetic and behavioural correlates of successful fishway passage of adult sockeye salmon Oncorhynchus nerka in the Seton River, British Columbia.

    PubMed

    Pon, L B; Hinch, S G; Cooke, S J; Patterson, D A; Farrell, A P

    2009-04-01

    Electromyogram (EMG) radio telemetry was used in conjunction with physiological biopsy to relate prior physiological condition and subsequent swimming energetics and behaviours to passage success of 13 wild adult sockeye salmon Oncorhynchus nerka at a vertical-slot fishway on the Seton River, British Columbia. At the time of capture, plasma lactate, glucose and cortisol levels indicated that fish were not exhibiting unusually high levels of physiological stress. Very few differences existed between successful and unsuccessful fish in body size, initial plasma physiology and energy state and mean swim speed and energy use during passage. Generally, fish did not employ burst swimming during successful or failed attempts at passage, indicating that failure was probably not related to metabolic acidosis. Plasma Na(+) concentration was significantly lower in unsuccessful fish (P < 0.05), which is suggestive of a depressed ionic state or a possible stress component, although values in all fish were within an expected range for migrant adult O. nerka. Nevertheless, six of 13 fish failed to reascend the fishway and remained in the tailrace of the dam for more than a day on average before moving downstream and away from the dam. During this time, fish were observed actively seeking a means of passage, suggesting that there may have been other, undetermined causes of passage failure. PMID:20735634

  13. Predicted changes in subyearling fall Chinook salmon rearing and migratory habitat under two drawdown scenarios for John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    We evaluated the potential effects of two different drawdown scenarios on rearing and migration habitat of subyearling fall Chinook salmon Oncorhynchus tshawytscha in John Day Reservoir on the Columbia River. We compared habitats at normal operating pool elevation with habitats at drawdown to spillway crest elevation and drawdown to the historical natural river elevation for two flows (4,417 and 8,495 m3/s). Using two-dimensional hydrodynamic modeling and a predictive habitat model, we determined the quantity and spatial distribution of rearing habitat and predicted water velocities. We predicted that the most habitat area would occur under normal pool elevation, but 93% of habitat was located in the upper third of the reservoir. Although less habitat area was predicted under drawdown to the spillway crest and the natural river, it was distributed more homogeneously throughout the study area. Habitat connectivity, patch size, and percent of suitable shoreline were greatest under drawdown to the natural river elevation. Mean cross-sectional water velocity and the variation in velocity increased with increasing level of reservoir drawdown. Water velocities under drawdown to the natural river were about twice as high as those under drawdown to spillway crest and five times higher than those under normal pool. The variability in water velocity, which may provide cues to fish migration, was highest under drawdown to the natural river and lowest under normal pool elevation. The extent to which different drawdown scenarios would be effective in John Day Reservoir depends in part on restoring normative riverine processes.

  14. The Columbia River System : the Inside Story.

    SciTech Connect

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  15. Review of a model to assess stranding of juvenile salmon by ship wakes along the Lower Columbia River, Oregon and Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Plumb, John M.; Adams, Noah S.

    2013-01-01

    Long period wake waves from deep draft vessels have been shown to strand small fish, particularly juvenile Chinook salmon Oncorhynchus tschawytcha, in the lower Columbia River (LCR). The U.S. Army Corps of Engineers is responsible for maintaining the shipping channel in the LCR and recently conducted dredging operations to deepen the shipping channel from an authorized depth of 40 feet(ft) to an authorized depth of 43 ft (in areas where rapid shoaling was expected, dredging operations were used to increase the channel depth to 48 ft). A model was developed to estimate stranding probabilities for juvenile salmon under the 40- and 43-ft channel scenarios, to determine if channel deepening was going to affect wake stranding (Assessment of potential stranding of juvenile salmon by ship wakes along the Lower Columbia River under scenarios of ship traffic and channel depth: Report prepared for the Portland District U.S. Army Corps of Engineers, Portland, Oregon). The U.S. Army Corps of Engineers funded the U.S. Geological Survey to review this model. A total of 30 review questions were provided to guide the review process, and these questions are addressed in this report. In general, we determined that the analyses by Pearson (2011) were appropriate given the data available. We did identify two areas where additional information could have been provided: (1) a more thorough description of model diagnostics and model selection would have been useful for the reader to better understand the model framework; and (2) model uncertainty should have been explicitly described and reported in the document. Stranding probability estimates between the 40- and 43-ft channel depths were minimally different under most of the scenarios that were examined by Pearson (2011), and a discussion of the effects of uncertainty given these minimal differences would have been useful. Ultimately, however, a stochastic (or simulation) model would provide the best opportunity to illustrate

  16. Epidemiological investigation of infectious hematopoietic necrosis virus in salt water net-pen reared Atlantic salmon in British Columbia, Canada

    USGS Publications Warehouse

    St-Hilaire, Sophie; Ribble, Carl S.; Stephen, Craig; Anderson, Eric; Kurath, Gael; Kent, Michael L.

    2002-01-01

    The presentation of IHNV on farms, the spatial and temporal patterns of the outbreaks between 1992 and 1996, and the genetic similarity between isolates collected from nine outbreaks spanning a 5-year period, all supported the plausibility of farm-to-farm spread of the virus. Furthermore, the marked decrease in the incidence rate of IHN in farmed Atlantic salmon after the implementation of an area-based management plan aimed at reducing farm-to-farm spread of the virus also supported this hypothesis. Although the source of IHNV for the index case was not determined in this study, secondary spread of the virus between farms via management practices, such as movement of fish, co-habiting naı̈ve fish with survivors of the viral disease, and movement of equipment, likely accounted for some farm outbreaks. This suggested that many cases of IHN may be preventable using good on-farm biosecurity.

  17. Costs of climate change: Economic value of Yakima River salmon

    SciTech Connect

    Anderson, D.M.; Shankle, S.A.; Scott, M.J.; Neitzel, D.A.; Chatters, J.C.

    1992-07-01

    This work resulted from a continuing multidisciplinary analysis of species preservation and global change. The paper explores the economic cost of a potential regional warming as it affects one Pacific Northwest natural resource, the spring chinook salmon (Oncorhynchus tshcawytscha). Climate change and planned habitat improvements impact the production and economic value of soling chinook salmon of the Yakima River tributary of the Columbia River in eastern Washington. The paper presents a derivation of the total economic value of a chinook salmon, which includes the summation of the existence, commercial, recreational, and capital values of the fish. When currently available commercial, recreational, existence, and capital values for chinook salmon were applied to estimated population changes, the estimated change in the economic value per fish associated with reduction of one fish run proved significant.

  18. Gas Supersaturation May Reduce the Survival of Yearling Chinook Salmon in the Lower Columbia River and Ocean Plume

    NASA Technical Reports Server (NTRS)

    Brosnan, Ian; Welch, David; Scott, Melinda Jacobs

    2015-01-01

    Unusually high flows in the Columbia River in 2011 raised total dissolved gas (TDG) levels in the river above the 120 percent legal limit imposed to prevent harmful impacts to aquatic organisms. This provided a unique opportunity to evaluate the effect on smolt survival. In-river (IR) migrating juvenile yearling Chinook released at Bonneville Dam with acoustic tags during periods when TDG exceeded 120 percent received estimated maximum exposures of 134 TDG. Subsequent daily survival rates in the lower river and plume were reduced by 0.06 per day (SE equals 0.01) and 0.15 per day (SE equals 0.05) relative to IR migrant fish released when TDG was less than 120 percent. Transported smolts (T) released 10-13 kilometers below Bonneville Dam had lower maximum exposure levels (126 percent) and experienced no difference in daily survival rates relative to unexposed smolts. River temperature levels and trends in turbidity and disease prevalence between releases of high and low exposure smolts were not consistent with the observed effects on survival rates. We conclude that smolts may suffer from chronic effects of elevated TDG exposure while migrating through the Columbia River and plume. Consideration should be given to measuring these survival losses in an explicit experimental framework that isolates possible confounding factors.

  19. Issues Concerning the Construction of an Equalization Plan for the Allocation of School Resources in the District of Columbia.

    ERIC Educational Resources Information Center

    Baratz, Joan C.; Sinkin, Judy G.

    This report describes the issues to be considered and the decisions required for developing a plan to equalize resource distribution in District of Columbia schools. It compares the specifications for equalization under the court-ordered Wright Decree with those of Title I. It considers concepts of equality, resources to be equalized, definition…

  20. Wild salmon in California, Oregon, Washington, and Idaho: Some recovery strategies that just might work

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify salmon recovery options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project doe...

  1. SALMON 2100: THE FUTURE OF WILD PACIFIC SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  2. Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia River Basin: an assessment based on sequential proximate analysis

    USGS Publications Warehouse

    Mesa, M.G.; Magie, C.D.

    2006-01-01

    The upstream migration of adult anadromous salmonids in the Columbia River Basin (CRB) has been dramatically altered and fish may be experiencing energetically costly delays at dams. To explore this notion, we estimated the energetic costs of migration and reproduction of Yakima River-bound spring Chinook salmon Oncorhynchus tshawytscha using a sequential analysis of their proximate composition (i.e., percent water, fat, protein, and ash). Tissues (muscle, viscera, and gonad) were sampled from fish near the start of their migration (Bonneville Dam), at a mid point (Roza Dam, 510 km upstream from Bonneville Dam) and from fresh carcasses on the spawning grounds (about 100 km above Roza Dam). At Bonneville Dam, the energy reserves of these fish were remarkably high, primarily due to the high percentage of fat in the muscle (18-20%; energy content over 11 kJ g-1). The median travel time for fish from Bonneville to Roza Dam was 27 d and ranged from 18 to 42 d. Fish lost from 6 to 17% of their energy density in muscle, depending on travel time. On average, fish taking a relatively long time for migration between dams used from 5 to 8% more energy from the muscle than faster fish. From the time they passed Bonneville Dam to death, these fish, depending on gender, used 95-99% of their muscle and 73-86% of their viscera lipid stores. Also, both sexes used about 32% of their muscular and very little of their visceral protein stores. However, we were unable to relate energy use and reproductive success to migration history. Our results suggest a possible influence of the CRB hydroelectric system on adult salmonid energetics.

  3. The Use of PIT Tagging to Estimate Juvenile Fall Chinook Salmon Migration Time Through the Priest Rapids Project Area on the Columbia River

    SciTech Connect

    Wahl, R; McMichael, Geoffrey A. )

    2000-12-01

    We are in the process of evaluating how the Priest Rapids Project (PRP, located north of the Hanford reach on the Columbia River) affects populations of wild, fall Chinook salmon that are produced. One part of this project involves using mark-recapture technique to monitor fall juvenile Chinook movement in the area. A passive integrated transponder (PIT) tag technology was used to document migration timing out of the influence of the PRP, and track fish through downstream dams as they make their way to the ocean. On June 6 and 7, 2000, we tagged 1083 fall Chinook sub-yearlings above and below Wanapum Dam, subsequently detecting them as they began to pass through downstream dams. As of 9 August 2000, 122 fish had been detected in one or more of the dams downstream of the PRP. A mean migration time for tagged the fish of 5.5 km/day below the McNary dam and 4.5 km/day above the McNary Dam. The mean migration rate between McNary Dam and John Day Dam was 21.4 km/day. Back calculation, indicated the mean date of departure for juveniles tagged in the pool above Wanapum Dam was July 16, 2000, while juveniles tagged below Wanapum Dam was July 1, 2000. Because fish are still being detected at the dams only preliminary conclusions can be attempted. Since the peak of migration time for these fish seems to have passed, the time when these fish most likely left the PRP area can also be estimated. Data analysis will continue analysis, and hopefully some of the adult returns will be measured as they come through the dams throughout the duration of the project.

  4. SALMON 2100 PROJECT: LIKELY SCENARIOS FOR WILD SALMON

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  5. Canada-USA Salmon Shelf Survival Study, 2007-2008 Annual Report.

    SciTech Connect

    Trudel, Marc; Tucker, Strahan; Morris, John

    2009-03-09

    Historically, salmon stocks from the Columbia River and Snake River formed one of the most valuable fisheries on the west coast of North America. However, salmon and steelhead returns sharply declined during the 1980s and 1990s to reach nearly 1 million fish. Although several factors may be responsible for the decline of Columbia River salmon and steelhead, there is increasing evidence that these drastic declines were primarily attributable to persistently unfavorable ocean conditions. Hence, an understanding of the effects of ocean conditions on salmon production is required to forecast the return of salmon to the Columbia River basin and to assess the efficacy of mitigation measures such as flow regulation on salmon resources in this system. The Canadian Program on High Seas Salmon has been collecting juvenile salmon and oceanographic data off the west coast of British Columbia and Southeast Alaska since 1998 to assess the effects of ocean conditions on the distribution, migration, growth, and survival of Pacific salmon. Here, we present a summary of the work conducted as part of the Canada-USA Salmon Shelf Survival Study during the 2008 fiscal year and compare these results with those obtained from previous years. The working hypothesis of this research is that fast growth enhances the marine survival of salmon, either because fast growing fish quickly reach a size that is sufficient to successfully avoid predators, or because they accumulate enough energy reserves to better survive their first winter at sea, a period generally considered critical in the life cycle of salmon. Sea surface temperature decreased from FY05 to FY08, whereas, the summer biomass of phytoplankton increased steadily off the west coast of Vancouver Island from FY05 to FY08. As in FY07, zooplankton biomass was generally above average off the west coast of Vancouver Island in FY08. Interestingly, phytoplankton and zooplankton biomass were higher in FY08 than was expected from the observed

  6. THE FUTURE OF PACIFIC NORTHWEST SALMON: ANATOMY OF A CRISIS

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon or Atlantic salmon. All seven species of Pacific salmon on both sides of the North Pacific Ocean have declined substantially from historic levels, but large runs still occur in northern British Columbia, Yukon,...

  7. Assessment of the effects of human-caused air pollution on resources within the interior Columbia River basin

    SciTech Connect

    Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, R.

    1999-07-01

    An assessment of existing and potential impacts to vegetation, acquatics and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forest, lichens, cryptogamic crusts, high-elevation lakes and streams, arid land, and class 1 areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.

  8. An assessment the effects of human-caused air pollution on resources within the interior Columbia River basin

    USGS Publications Warehouse

    Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, Ronald; Acheson, A.; Peterson, J.

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forests, lichens, cryptogamic crusts, high-elevation lakes and streams, arid lands, and class I areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.

  9. Salmon 2100: Some recovery strategies that just might work

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not ...

  10. RESTORING WILD SALMON TO THE PACIFIC NORTHWEST: CHASING AN ILLUSION

    EPA Science Inventory

    Throughout the Pacific Northwest (northern California, Oregon, Idaho, Washington, and the Columbia Basin portion of British Columbia), many wild salmon "stocks" (a group of interbreeding individuals that is roughly equivalent to a "population") have declined and some have been ...

  11. FUTURE OF PACIFIC NORTHWEST SALMON: SCIENCE AND POLICY IN ACTION

    EPA Science Inventory

    Throughout the Pacific Northwest (northern California, Oregon, Idaho, Washington, and the Columbia Basin portion of British Columbia), many wild salmon stocks (a group of interbreeding individuals that is roughly equivalent to a "population") have declined and some have disappear...

  12. PACIFIC NORTHWEST SALMON: FORECASTING THEIR STATUS IN 2100

    EPA Science Inventory

    Throughout the Pacific Northwest (northern California, Oregon, Idaho, Washington, and the Columbia Basin portion of British Columbia), many wild salmon stocks (a group of interbreeding individuals that is roughly equivalent to a "population") have declined and some have disappear...

  13. RESTORING WILD SALMON TO THE PACIFIC NORTHWEST: CHASING AN ILLUSION?

    EPA Science Inventory

    Throughout the Pacific Northwest (northern California, Oregon, Idaho, Washington, and the Columbia Basin portion of British Columbia), many wild salmon "stocks" (a group of interbreeding individuals that is roughly equivalent to a "population) have declined and some have been e...

  14. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    SciTech Connect

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lake and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6.0%, down

  15. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    PubMed

    Levi, Taal; Darimont, Chris T; Macduffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method

  16. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; Moradkhani; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  17. A Literature Review, Bibliographic Listing, and Organization of Selected References Relative to Pacific salmon (Oncorhynchus spp.) and Abiotic and Biotic Attributes of the Columbia River Estuary and Adjacent Marine and Riverine Environs for Various Historical Periods : Measure 7.1A of the Northwest Power Planning Council`s 1994 Fish and Wildlife Program : Report 4 of 4, Final Report.

    SciTech Connect

    Costello, Ronald J.

    1996-05-01

    This report contains the results of a literature review on the carrying capacity of Pacific salmon in the Columbia River Basin. The objective of the review was to find the information gaps relative to the determinants of salmon carrying capacity in the Columbia River Basin. The review was one activity designed to answer questions asked in Measure 7.1A of the Councils Fish and Wildlife Program. Based, in part, on the information learned during the literature review and the other work accomplished during this study the Pacific Northwest National Laboratory (PNNL) state concluded that the approach inherent in 7.1A will not increase understanding of ecology, carrying capacity, or limiting factors that influence salmon under current conditions. To increase understanding of ecology, carring capacity, and limiting factors, it is necessary to deal with the complexity of the sustained performance of salmon in the Columbia River Basin. The PNNL team suggests that the regions evaluated carrying capacity from more than one view point. The PNNL team recommends that the region use the contextualistic view for evaluating capacity.

  18. THE CHALLENGE OF RESTORING WILD SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  19. Summary of Temperature Data Collected to Improve Emergence Timing Estimates for Chum and Fall Chinook Salmon in the Lower Columbia River, 1998-2004 Progress Report.

    SciTech Connect

    Arntzen, E.; Geist, D.; Hanrahan, T.

    2005-10-01

    From 1999 through 2004, Pacific Northwest National Laboratory collected temperature data from within chum and fall Chinook salmon spawning gravels and the overlying river at 21 locations in the Ives Island area approximately 5 km downstream from Bonneville Dam. Sample locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. The study objectives were to (1) collect riverbed and river temperature data each year from the onset of spawning (October) to the end of emergence (June) and (2) provide those data in-season to fisheries management agencies to assist with fall Chinook and chum salmon emergence timing estimates. Three systems were used over the life of the study. The first consisted of temperature sensors deployed inside piezometers that were screened to the riverbed or the river within chum and fall Chinook salmon spawning areas. These sensors required direct access by staff to download data and were difficult to recover during high river discharge. The second system consisted of a similar arrangement but with a wire connecting the thermistor to a data logger attached to a buoy at the water surface. This system allowed for data retrieval at high river discharge but proved relatively unreliable. The third system consisted of temperature sensors installed in piezometers such that real-time data could be downloaded remotely via radio telemetry. After being downloaded, data were posted hourly on the Internet. Several times during the emergence season of each year, temperature data were downloaded manually and provided to management agencies. During 2003 and 2004, the real-time data were made available on the Internet to assist with emergence timing estimates. Examination of temperature data reveals several important patterns. Piezometer sites differ in the direction of vertical flow between surface and subsurface water. Bed temperatures in upwelling areas are more stable during salmon

  20. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    SciTech Connect

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    2008-12-01

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous to the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.

  1. THE PACIFIC NORTHWEST IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not ...

  2. WILD SALMON IN WESTERN NORTH AMERICA; THE HISTORICAL AND POLICY CONTEXT

    EPA Science Inventory

    Nearly all of the participants in the Salmon 2100 Project concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, ...

  3. Gateway to the Pacific: The Columbia River. Teacher's Resource Book, Grades 5-7.

    ERIC Educational Resources Information Center

    Osis, Vicki; And Others

    Developed as part of an international curriculum effort, this unit aims to provide information to students about the interdependence of Pacific nations and the importance of the Columbia River and its ports in international trade. Geared for grades 5-7, the materials focus on harbors both as natural ecosystems and as locations of international…

  4. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    SciTech Connect

    Griswold, Jim

    2007-01-01

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

  5. CAN WE SUSTAIN WILD SALMON THROUGH 2100? THE SALMON 2100 PROJECT

    EPA Science Inventory

    abstract for presentation Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appe...

  6. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008

    SciTech Connect

    Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

    2009-05-29

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

  7. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    SciTech Connect

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    2008-12-03

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release groups

  8. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    SciTech Connect

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the

  9. Pollution in the lower Columbia Basin in 1948 with particular reference to the Willamette River

    USGS Publications Warehouse

    Fish, F.F.; Rucker, R.R.

    1950-01-01

    Development of the salmon resources of the lower Columbia River Basin appears as sound insurance against the threat of a serious reduction in the runs to the upper river areas through the multiple-purpose programs of water development now under way by the Corps of Engineers, the Bureau of Reclamation, and private interests. Any comprehensive plan for the full development of the fisheries resources in the lower Columbia Basin must be predicated upon accurate knowledge of the waters therein polluted to a degree affecting fish life. Pollution surveys have been made in the lower Columbia Basin at various times in the past -- the most intensive studies having been made in the Willamette Valley.

  10. Reconstruction of Pacific salmon abundance from riparian tree-ring growth.

    PubMed

    Drake, D C; Naiman, Robert J

    2007-07-01

    We use relationships between modern Pacific salmon (Oncorhynchus spp.) escapement (migrating adults counted at weirs or dams) and riparian tree-ring growth to reconstruct the abundance of stream-spawning salmon over 150-350 years. After examining nine sites, we produced reconstructions for five mid-order rivers and four salmon species over a large geographic range in the Pacific Northwest: chinook (O. tschwatcha) in the Umpqua River, Oregon, USA; sockeye (O. nerka) in Drinkwater Creek, British Columbia, Canada; pink (O. gorbuscha) in Sashin Creek, southeastern Alaska, USA; chum (O. keta) in Disappearance Creek, southeastern Alaska, USA; and pink and chum in the Kadashan River, southeastern Alaska, USA. We first derived stand-level, non-climatic growth chronologies from riparian trees using standard dendroecology methods and differencing. When the chronologies were compared to 18-55 years of adult salmon escapement we detected positive, significant correlations at five of the nine sites. Regression models relating escapement to tree-ring growth at the five sites were applied to the differenced chronologies to reconstruct salmon abundance. Each reconstruction contains unique patterns characteristic of the site and salmon species. Reconstructions were validated by comparison to local histories (e.g., construction of dams and salmon canneries) and regional fisheries data such as salmon landings and aerial surveys and the Pacific Decadal Oscillation climate index. The reconstructions capture lower-frequency cycles better than extremes and are most useful for determination and comparison of relative abundance, cycles, and the effects of interventions. Reconstructions show lower population cycle maxima in both Umpqua River chinook and Sashin Creek pink salmon in recent decades. The Drinkwater Creek reconstruction suggests that sockeye abundance since the mid-1990s has been 15-25% higher than at any time since 1850, while no long-term deviations from natural cycles are

  11. Salmon Patch

    MedlinePlus

    ... the head. Salmon patches are different from port-wine stains (discussed as a separate topic) in that ... difference between a salmon patch and a port-wine stain. In the past, port-wine stains and ...

  12. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest

    PubMed Central

    2002-01-01

    Background Bi-directional flow of nutrients between marine and terrestrial ecosystems can provide essential resources that structure communities in transitional habitats. On the Pacific coast of North America, anadromous salmon (Oncorhynchus spp.) constitute a dominant nutrient subsidy to aquatic habitats and riparian vegetation, although the contribution to terrestrial habitats is not well established. We use a dual isotope approach of δ15N and δ13C to test for the contribution of salmon nutrients to multiple trophic levels of litter-based terrestrial invertebrates below and above waterfalls that act as a barrier to salmon migration on two watersheds in coastal British Columbia. Results Invertebrates varied predictably in δ15N with enrichment of 3–8‰ below the falls compared with above the falls in all trophic groups on both watersheds. We observed increasing δ15N levels in our invertebrate groups with increasing consumption of dietary protein. Invertebrates varied in δ13C but did not always vary predictably with trophic level or habitat. From 19.4 to 71.5% of invertebrate total nitrogen was originally derived from salmon depending on taxa, watershed, and degree of fractionation from the source. Conclusions Enrichment of δ15N in the invertebrate community below the falls in conjunction with the absence of δ13C enrichment suggests that enrichment in δ15N occurs primarily through salmon-derived nitrogen subsidies to litter, soil and vegetation N pools rather than from direct consumption of salmon tissue or salmon tissue consumers. Salmon nutrient subsidies to terrestrial habitats may result in shifts in invertebrate community structure, with subsequent implications for higher vertebrate consumers, particularly the passerines. PMID:11914157

  13. 76 FR 1392 - Endangered and Threatened Species: Designation of Critical Habitat for Threatened Lower Columbia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Puget Sound steelhead (72 FR 26722, May 11, 2007) are each distinct population segments that warrant... Species: Designation of Critical Habitat for Threatened Lower Columbia River Coho Salmon and Puget Sound... lower Columbia River (LCR) coho salmon (Oncorhynchus kisutch) and Puget Sound steelhead (O....

  14. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Cultural Resources.

    SciTech Connect

    Columbia River System Operation Review

    1995-11-01

    This study attempts to identify and analyze the impacts of the System Operating Strategy (SOS) alternatives on cultural resources. The impacts include effects on Native American traditional cultural values, properties and practices. They also include effects on archeological or historic properties meeting the criteria of the National Register of Historic Places. In addition to responding to the requirements of the National Environmental Policy Act (NEPA), this analysis addresses the requirements of the National Historic Preservation Act (NHPA), the Archeological Resources Protection Act (ARPA), the Native American Graves Protection and Repatriation Act (NAGPRA), the Native American Religious Freedom Act (NARFA), and other relevant legislation. To meet their legally mandated cultural resources requirements, the SOR agencies will develop agreements and Implementation Plans with the appropriate State Historic Preservation Officers (SHPOs), Tribes, and the Advisory Council on Historic Preservation (ACHP) detailing the measures necessary to best manage the resource. The planning and implementation activities will be staged over a number of years in consultation with affected Tribes.

  15. Sharing British Columbia's Water Resources. A Teaching Unit for Secondary Schools.

    ERIC Educational Resources Information Center

    Gunn, Angus M.

    Seventeen student worksheets form a secondary school unit which focuses on the challenge of shared usage of water resources. Pressure currently exists for a more balanced approach in which all legitimate interests in a water source are served. The worksheets include readings which focus on enough water for all, the water cycle (including a…

  16. THE SALMON 2100 PROJECT: OPTIONS TO PROTECT, RESTORE, ANE ENHANCE SALMON ALONG THE WEST COAST OF NORTH AMERICA

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  17. Ecology. Can science rescue salmon?

    PubMed

    Mann, C C; Plummer, M L

    2000-08-01

    At a press conference on 27 July, the National Marine Fisheries Service (NMFS) released a long-awaited plan to save the Columbia River's endangered salmon by restoring fish habitat, overhauling hatcheries, limiting harvest, and improving river flow. What the plan did not do, however, was call for immediate breaching of four dams on the Snake River, the Columbia's major tributary--an option that has been the subject of a nationwide environmental crusade. The NMFS will hold that option in abeyance while it sees whether the less drastic measures will do the trick. Responses from both sides were immediate and outraged. PMID:10950712

  18. Mineral resource assessment map of the Big Gum Swamp Roadless Area, Columbia and Baker counties, Florida

    USGS Publications Warehouse

    Cathcart, J.B.; Cameron, C.C.; Patterson, S.H.

    1986-01-01

    The geology of the Big Cum Swamp Roadless Area, which is discussed briefly in this report, is covered in somewhat more detail in a report by Patterson, Cathcart, Cameron, and Schruben (1984). The mineral resource potential is quite similar to that in the Natural Area Roadless Area outlined by Cathcart, Patterson and Crandall (1983). The Natural Area, which is east of the eastern boundary of the Big Gum Swamp (fig. 1), also was designated a Wilderness Study Area by Public Law 98-430, September 28, 1984.

  19. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    PubMed

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  20. Cost-effective management alternatives for Snake river chinook salmon: A biological-economic synthesis

    USGS Publications Warehouse

    Halsing, D.L.; Moore, M.R.

    2008-01-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  1. Clinical and human resource planning for the downsizing of psychiatric hospitals: the British Columbia experience.

    PubMed

    Macfarlane, D; Fortin, P; Fox, J; Gundry, S; Oshry, J; Warren, E

    1997-01-01

    Riverview Hospital, B.C.'s only and Canada's largest remaining provincial psychiatric hospital began a formal planned "downsizing" process in 1992. This initiative was an important element in the Province's strategic plan to shift to a more community-focused mental health system and to bring tertiary psychiatric services "closer to home" by redeveloping Riverview Hospital on three sites. The paper summarizes the literature pertaining to the "downsizing" of psychiatric hospital services in relation both to clinical and human resource planning. It describes the mental health system in B.C. and the service system context in which this exercise is occurring. It is based on the first three years of experience in identifying the major challenges and the strategies developed to meet these challenges. It draws some conclusions about the effectiveness of these strategies and it speculates about the likely future challenges as the "downsizing" process continues. PMID:9021839

  2. The Columbia River--on the Leading Edge

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.

    2005-05-01

    On the leading edge of the North American plate, the Columbia River is the largest of the world's 40 or so rivers with drainage areas greater than 500,000 square kilometers to drain toward a convergent plate boundary. This unique setting results in a unique continental river basin; marked by episodic and cataclysmic geologic disturbance, but also famously fecund with perhaps 10 to 16 million salmon historically spawning in its waters each year. Now transformed by dams, transportation infrastructure, dikes and diversions, the Columbia River presents an expensive conundrum for management of its many values. Inclusion of river ecology and geomorphology in discussions of river management is generally limited to observations of the last 200 years-a time period of little natural disturbance and low sediment transport. However, consideration of longer timescales provides additional perspective of historical ecologic and geomorphic conditions. Only 230 km from its mouth, the Columbia River bisects the volcanic arc of the Cascade Range, forming the Columbia River Gorge. Cenozoic lava flows have blocked the river, forcing diversions and new canyon cutting. Holocene eruptions of Mount Mazama (Crater Lake), Mount Hood, Mount St. Helens, and Mount Rainier have shed immense quantities of sediment into the lower Columbia River, forming a large percentage of the Holocene sediment transported through the lower river. Quaternary landslides, perhaps triggered by great earthquakes, have descended from the 1000-m-high gorge walls, also blocking and diverting the river, one as recently as 550 years ago. These geologic disturbances, mostly outside the realm of historical observation and operating at timescales of 100s to 1000s of years in the gorge and elsewhere, have clearly affected basin geomorphology, riverine ecology, and past and present cultural utilization of river resources. The historic productivity of the river, however, hints at extraordinary resilience (and perhaps

  3. Smolt Migration Characteristics and Mainstem Snake and Columbia River Detection Rates of PIT-Tagged Grande Ronde and Imnaha River Naturally-Produced Spring Chinook Salmon, 1996 Annual Report : Fish Research Project, Oregon.

    SciTech Connect

    Sankovich, Paul; Keefe, MaryLouise; Carmichael, Richard W.

    1997-01-01

    This is the fifth year of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally-produced chinook salmon (Oncorhynchus tshawytscha), from northeast Oregon streams. The goal of this project is to develop an understanding of interpopulation and interannual variation in several early life history characteristics of naturally-produced chinook salmon from the Grande Ronde and Imnaha River subbasins. This project provides information useful in the recovery of listed Snake River spring/summer chinook salmon. Specific populations included in the study are (1) Catherine Creek, (2) upper Grande Ronde River, (3) Lostine River, (4) Imnaha River, (5) Wenaha River, and (6) Minam River. In this document, we present findings from research completed in 1996. Naturally-produced chinook salmon populations in the Grande Ronde and Imnaha River subbasins have declined drastically in recent years due in part to habitat alterations and hydropower development. Declines have continued despite extensive mitigation efforts, including fish passage improvements, artificial production, supplementation, and habitat modification (BPA Division of Fish and Wildlife 1990). Snake River spring/summer chinook salmon (hereafter referred to as chinook salmon), which include naturally-produced chinook salmon in the Grande Ronde and Imnaha River subbasins, have been listed under the Endangered Species Act of 1973 as threatened or endangered since 1992.

  4. Getting past the blame game: Convergence and divergence in perceived threats to salmon resources among anglers and indigenous fishers in Canada's lower Fraser River.

    PubMed

    Nguyen, Vivian M; Young, Nathan; Hinch, Scott G; Cooke, Steven J

    2016-09-01

    This article examines threat perception as a potential dimension of inter-group conflict over salmon fisheries in Canada's Fraser River watershed. Environmental changes and the entry of new user groups are putting pressure on both the resource and regulators, as well as threatening to exacerbate conflicts, notably between First Nation (indigenous) fishers and non-indigenous recreational anglers. While resource conflicts are often superficially conceptualized as cases of competing interests, we build on recent studies suggesting that conflicts are associated with deeper cognitive and perceptual differences among user groups. We report findings from 422 riverbank interviews with First Nation fishers and recreational anglers focusing on perceptions of threat to the fisheries. Responses reveal both substantial agreement and disagreement in threat perceptions between the two groups. These patterns provide a potential roadmap for consensus building, and suggest possible avenues for policy-makers to defuse the "blame game" that often dominates this type of conflict. PMID:26897007

  5. Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program; Preliminary Environmental Assessment

    SciTech Connect

    United States. Bonneville Power Administration.

    1998-02-01

    As part of its responsibilities under the Northwest Power Act (Pacific Northwest Electric Power Planning and Conservation Act of 1980), Bonneville Power Administration (BPA) must mitigate the loss of fish, wildlife, and related spawning grounds and habitat attributable to power production at federal hydroelectric dams on the Columbia River and its tributaries. The federal dams have been identified as a major source of mortality for the listed Snake River salmon stocks. BPA also has responsibilities under the Endangered Species Act (ESA) of 1973 to operate in a way that does not jeopardize the continued existence of listed species and to use its agency resources to conserve listed species.

  6. Modeling population responses of Chinook and coho salmon to suspended sediment using a life history approach.

    PubMed

    Araujo, H Andres; Cooper, Andrew B; MacIsaac, Erland A; Knowler, Duncan; Velez-Espino, Antonio

    2015-08-01

    This study develops a quantitative framework for estimating the effects of extreme suspended-sediment events (SSC>25 mg L(-1)) on virtual populations of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon in a coastal watershed of British Columbia, Canada. We used a life history model coupled with a dose-response model to evaluate the populations' responses to a set of simulated suspended sediments scenarios. Our results indicate that a linear increase in SSC produces non-linear declining trajectories in both Chinook and coho populations, but this decline was more evident for Chinook salmon despite their shorter fresh-water residence. The model presented here can provide insights into SSC impacts on population responses of salmonids and potentially assist resource managers when planning conservation or remediation strategies. PMID:25963631

  7. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  8. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  9. Sustainable Fisheries Management: Pacific Salmon

    USGS Publications Warehouse

    Knudsen, E. Eric; Steward, C.R.; MacDonald, Donald; Williams, J.E.

    2000-01-01

    What has happened to the salmon resource in the Pacific Northwest? Who is responsible and what can be done to reverse the decline in salmon populations? The responsibly falls on everyone involved - fishermen, resource managers and concerned citizens alike - to take the steps necessary to ensure that salmon populations make a full recovery. This collection of papers examines the state of the salmon fisheries in the Pacific Northwest. They cover existing methods and supply model approaches for alternative solutions. The editors stress the importance of input from and cooperation with all parties involved to create a viable solution. Grass roots education and participation is the key to public support - and ultimately the success - of whatever management solutions are developed. A unique and valuable scientific publication, Sustainable Fisheries Management: Pacific Salmon clearly articulates the current state of the Pacific salmon resource, describes the key features of its management, and provides important guidance on how we can make the transition towards sustainable fisheries. The solutions presented in this book provide the basis of a strategy for sustainable fisheries, requiring society and governmental agencies to establish a shared vision, common policies, and a process for collaborative management.

  10. Juvenile salmonid migratory behavior at the mouth of the Columbia River and within the plume

    SciTech Connect

    McMichael, Geoffrey A.; O'Toole, Amanda C.; Harnish, Ryan A.; Trott, Donna M.

    2013-01-01

    A total of 8,159 acoustic-tagged salmonid smolts were detected at the mouth of the Columbia River. Of the fish detected at the mouth, 14% of yearling Chinook salmon, 9% of steelhead, and 22% of subyearling Chinook salmon were detected on a sparse array deployed in the Columbia River plume. Chinook salmon smolts decreased travel rate as they left the river and entered the plume, while steelhead increased travel rate. Chinook salmon also spent more time in the transitional area between the river mouth and plume as compared to steelhead. In early spring, yearling Chinook salmon and steelhead predominately migrated past the plume array towards the edge of the shelf and to the south. Later in the season, yearling Chinook salmon and steelhead smolts tended to migrate out of the river mouth in a northerly direction. Subyearling Chinook salmon migrated predominately past the portion of the plume array to the north of the river mouth.

  11. Time-Delayed Subsidies: Interspecies Population Effects in Salmon

    PubMed Central

    Nelson, Michelle C.; Reynolds, John D.

    2014-01-01

    Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp.) can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species. PMID:24911974

  12. Genetic characterization of naturally spawned Snake River fall-run Chinook salmon

    USGS Publications Warehouse

    Marshall, A.R.; Blankenship, H.L.; Connor, W.P.

    1999-01-01

    We sampled juvenile Snake River chinook salmon Oncorhynchus tshawytscha to genetically characterize the endangered Snake River fall-run population. Juveniles from fall and spring–summer lineages coexisted in our sampling areas but were differentiated by large allozyme allele frequency differences. We sorted juveniles by multilocus genotypes into putative fall and spring lineage subsamples and determined lineage composition using maximum likelihood estimation methods. Paired sMEP-1* and PGK-2* genotypes—encoding malic enzyme (NADP+) and phosphoglycerate kinase, respectively—were very effective for sorting juveniles by lineage, and subsamples estimated to be 100% fall lineage were obtained in four annual samples. We examined genetic relationships of these fall lineage juveniles with adjacent populations from the Columbia River and from Lyons Ferry Hatchery, which was established to perpetuate the Snake River fall-run population. Our samples of naturally produced Snake River fall lineage juveniles were most closely aligned with Lyons Ferry Hatchery samples. Although fall-run strays of Columbia River hatchery origin found on spawning grounds threaten the genetic integrity of the Snake River population, juvenile samples (a) showed distinctive patterns of allelic diversity, (b) were differentiated from Columbia River populations, and (c) substantiate earlier conclusions that this population is an important genetic resource. This first characterization of naturally produced Snake River fall chinook salmon provides a baseline for monitoring and recovery planning.

  13. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    USGS Publications Warehouse

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2016-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  14. Multivariate models of adult Pacific salmon returns.

    PubMed

    Burke, Brian J; Peterson, William T; Beckman, Brian R; Morgan, Cheryl; Daly, Elizabeth A; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  15. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  16. Annotated Expressed Sequence Tags (ESTs) from pre-smolt Atlantic salmon (Salmo salar) in a searchable data resource

    PubMed Central

    Adzhubei, Alexei A; Vlasova, Anna V; Hagen-Larsen, Heidi; Ruden, Torgeir A; Laerdahl, Jon K; Høyheim, Bjørn

    2007-01-01

    Background To identify as many different transcripts/genes in the Atlantic salmon genome as possible, it is crucial to acquire good cDNA libraries from different tissues and developmental stages, their relevant sequences (ESTs or full length sequences) and attempt to predict function. Such libraries allow identification of a large number of different transcripts and can provide valuable information on genes expressed in a particular tissue at a specific developmental stage. This data is important in constructing a microarray chip, identifying SNPs in coding regions, and for future identification of genes in the whole genome sequence. An important factor that determines the usefulness of generated data for biologists is efficient data access. Public searchable databases play a crucial role in providing such service. Description Twenty-three Atlantic salmon cDNA libraries were constructed from 15 tissues, yielding nearly 155,000 clones. From these libraries 58,109 ESTs were generated, of which 57,212 were used for contig assembly. Following deletion of mitochondrial sequences 55,118 EST sequences were submitted to GenBank. In all, 20,019 unique sequences, consisting of 6,424 contigs and 13,595 singlets, were generated. The Norwegian Salmon Genome Project Database has been constructed and annotation performed by the annotation transfer approach. Annotation was successful for 50.3% (10,075) of the sequences and 6,113 sequences (30.5%) were annotated with Gene Ontology terms for molecular function, biological process and cellular component. Conclusion We describe the construction of cDNA libraries from juvenile/pre-smolt Atlantic salmon (Salmo salar), EST sequencing, clustering, and annotation by assigning putative function to the transcripts. These sequences represents 97% of all sequences submitted to GenBank from the pre-smoltification stage. The data has been grouped into datasets according to its source and type of annotation. Various data query options are offered

  17. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    SciTech Connect

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  18. Columbia River Fishes of the Lewis and Clark Expedition

    SciTech Connect

    Dauble, Dennis D.

    2007-06-21

    The Lewis and Clark expedition crossed the Continental Divide in 1805 on the way west to the Pacific Ocean. Based on journal entries, members of the expedition probably encountered two species of resident salmonids and four of the six species of anadromous salmonids and steelhead (Family Salmonidae, genus Oncorhynchus). The salmonid species were called common salmon (now known as Chinook salmon O. tshawytscha), red char (sockeye salmon O.nerka) white salmon trout (coho salmon [also known as silver salmon] O. kisutch), salmon trout (steelhead O. mykiss), and spotted trout (cutthroat trout O. clarkii). There was no evidence of the expedition encountering pink salmon O. gorbuscha, chum salmon O. keta, or species of true char Salvelinus spp. Common fishes procured from Indian tribes living along the lower Columbia River included eulachon Thaleichthys pacificus and white sturgeon Acipenser transmontanus. The identity of three additional resident freshwater species is questionable. Available descriptions suggest that what they called mullet were largescale sucker Catastomus macrocheilus, and that chubb were peamouth Mylocheilus caurinus. The third questionable fish, which they called bottlenose, was probably mountain whitefish Prosopium williamsoni, although there is no evidence that the species was observed in the Columbia River drainage. Missing from the species list were more than 20 other fishes known to Sahaptin-speaking people from the mid-Columbia region. More complete documentation of the icthyofauna of the Pacific Northwest region did not occur until the latter half of the 19th century. However, journals from the Lewis and Clark expedition provide the first documentation of Columbia River fishes.

  19. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A.

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  20. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  1. Salmon Farming and Salmon People: Identity and Environment in the Leggatt Inquiry

    ERIC Educational Resources Information Center

    Schreiber, Dorothee

    2003-01-01

    In October of 2001, the Leggatt Inquiry into salmon farming traveled to four small communities (Port Hardy, Tofino, Alert Bay, and Campbell River) close to the centers of operation for the finfish aquaculture industry in British Columbia. In doing so, it gave local people, particularly First Nations people, an opportunity to speak about salmon…

  2. Smolt Migration Characteristics and Mainstem Snake and Columbia River Detection Rates of PIT-Tagged Grande Ronde and Imnaha River Naturally Produced Spring Chinook Salmon, Annual Reports 1993, 1994, 1995 : Fish Research Project, Oregon.

    SciTech Connect

    Walters, Timothy R.; Carmichael, Richard W.; Keefe, MaryLouise

    1996-04-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995.

  3. SYSTEMIC HEXAMITID (PROTOZOA: DIPLOMONADIDA) INFECTION IN SEAWATER PEN-REARED CHINOOK SALMON ONCORHYNCHUS TSSHAWYTSCHA

    EPA Science Inventory

    A systemic infection with a diplomonad flagellate resembling Hexamita salmonis caused high mortality in chinook salmon, Oncorhynchus tshawytscha, reared at a seawater netpen farm in British Columbia, Canada. ffected fish were anemic and had swollen abdomens containing serosanguin...

  4. WILD SALMON IN WESTERN NORTH AMERICA: FORECASTING THE MOST LIKELY STATUS IN 2100

    EPA Science Inventory

    The future of wild salmon in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as current recovery efforts are, does not appear likely to realize sustain biologically significan...

  5. CAN WE GET THERE FROM HERE: SALMON IN THE 21ST CENTURY (SYNTHESIS CHAPTER)

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  6. NEW EYE DISEASE IN PEN-REARED CHINOOK SALMON CAUSED BY METACESTODES OF GILQUINIA SQUALI (TRYPANORHYNCHA)

    EPA Science Inventory

    Eye infections by metacestodes of Gilcruinia squali (Cestoda: Trypanorhyncha) caused mortality in seawater netpen reared chinook salmon, ncorhynchus tshawytscha, at two locations in British Columbia, Canada. ortality associated with the disease was approximately 105 at one site a...

  7. Salmon's Laws.

    ERIC Educational Resources Information Center

    Shannon, Thomas A.

    1994-01-01

    Presents Paul Salmon's old-fashioned, common-sense guidelines for success in practical school administration. The maxims advise on problem ownership; the value of selective neglect; the importance of empowerment, enthusiasm, and effective communication; and the need for positive reinforcement, cultivation of support, and good relations with media,…

  8. Geologic framework for the national assessment of carbon dioxide storage resources: Columbia Basin of Oregon, Washington, and Idaho, and the Western Oregon-Washington basins: Chapter D in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Blondes, Madalyn S.; Cahan, Steven M.; DeVera, Christina A.; Freeman, P.A.; Lohr, Celeste D.

    2013-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Eocene and Oligocene sedimentary rocks within the Columbia, Puget, Willapa, Astoria, Nehalem, and Willamette Basins of Oregon, Washington, and Idaho, and focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are provided to illustrate geologic factors critical to the assessment. The designated sealing unit in the Columbia Basin is tentatively chosen to be the ubiquitous and thick Miocene Columbia River Basalt Group. As a result of uncertainties regarding the seal integrity of the Columbia River Basalt Group, the SAUs were not quantitatively assessed. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on the cell maps.

  9. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin, Volume VIII; New Model for Estimating Survival Probabilities and Residualization from a Release-Recapture Study of Fall Chinook Salmon Smolts in the Snake River, 1995 Technical Report.

    SciTech Connect

    Lowther, Alan B.; Skalski, John R.

    1997-09-01

    Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake River fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging.

  10. Importance of salmon to wildlife: Implications for integrated management

    USGS Publications Warehouse

    Hilderbrand, G.V.; Farley, Sean D.; Schwartz, Charles C.; Robbins, Charles T.

    2004-01-01

    Salmon (Oncorhynchuss pp.) are an importantr esourcef or terrestriawl ildlife. However, the salmon requirements of wildlife populations and the role wildlife play in nutrient transport across ecosystems are largely ignored in salmon and habitat management. Any activity that reduces the availability of or access to salmon by wildlife may adversely affect wildlife populations and, potentially, ecosystem-level processes. Thus, when the conservation of specific wildlife populations or healthy ecosystems is the management objective, allocation of salmon to wildlife should be considered. We provide an example of how such allocations could be calculated for a hypothetical bear population. Ultimately, salmon allocation for wildlife calls for integrated management of natural resources across agencies, across species, and across ecosystems. We summarize the current state of knowledge relativet o the interactionb etween Pacific salmon and the terrestriael cosystem, with special emphasis on the import of salmon to terrestrialw ildlife and the import of wildlife to terrestriala nd aquatic ecosystems

  11. Evidence for a carrier state of infectious hematopoietic necrosis virus in chinook salmon Oncorhynchus tshawytscha.

    PubMed

    St Hilaire, S; Ribble, C; Traxler, G; Davies, T; Kent, M L

    2001-10-01

    In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus. PMID:11710551

  12. THe Pacific Northwest in 2010: An alternative futures perspective on salmon recovery

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  13. THE WEST COAST IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  14. SALMON RECOVERY: A CASE STUDY OF CONTESTED ISSUES IN ECOLOGICAL SCIENCE AND POLICY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  15. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  16. SURVEY OF COLUMBIA RIVER BASIN STREAMS FOR COLUMBIA PEBBLESNAIL Fluminicola columbiana AND SHORTFACE LANX Fisherola nuttalli

    SciTech Connect

    Neitzel, D. A.; Frest, T. J.

    1993-05-01

    At present, there are only two remaining sizable populations of Columbia pebblesnail Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington; the lower Salmon River and middle Snake River, Idaho; and possibly in Hells Canyon of the Snake River, Idaho, Washington, and Oregon; and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historical range. Large populations of the shortface lanx Fisherola nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach of the Columbia River, Washington; Hells Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde, Washington and Oregon; Imnaha and John Day rivers, Oregon; Bonneville Dam area of the Columbia River, Washington and Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River: Columbia pebblesnail to a population in the Hanford Reach plus six other sites that are separated by large areas of unsuitable habitat from those in the river's major mbutaries shortface lanx to two populations (in the Hanford Reach and near Bonneville Dam) plus nine other sites that are separated by large areas of unsuitable habitat from those in the river's major tributaries.

  17. Location Is Everything: Evaluating the Effects of Terrestrial and Marine Resource Subsidies on an Estuarine Bivalve

    PubMed Central

    Harding, Joel M. S.; Segal, Michelle R.; Reynolds, John D.

    2015-01-01

    Estuaries are amongst the world’s most productive ecosystems, lying at the intersection between terrestrial and marine environments. They receive substantial inputs from adjacent landscapes but the importance of resource subsidies is not well understood. Here, we test hypotheses for the effects of both terrestrial- and salmon-derived resource subsidies on the diet (inferred from stable isotopes of muscle tissue), size and percent nitrogen of the soft-shell clam (Mya arenaria), a sedentary estuarine consumer. We examine how these relationships shift across natural gradients among 14 estuaries that vary in upstream watershed size and salmon density on the central coast of British Columbia, Canada. We also test how assimilation and response to subsidies vary at smaller spatial scales within estuaries. The depletion and enrichment of stable isotope ratios in soft-shell clam muscle tissue correlated with increasing upstream watershed size and salmon density, respectively. The effects of terrestrial- and salmon-derived subsidies were also strongest at locations near stream outlets. When we controlled for age of individual clams, there were larger individuals with higher percent nitrogen content in estuaries below larger watersheds, though this effect was limited to the depositional zones below river mouths. Pink salmon exhibited a stronger effect on isotope ratios of clams than chum salmon, which could reflect increased habitat overlap as spawning pink salmon concentrate in lower stream reaches, closer to intertidal clam beds. However, there were smaller clams in estuaries that had higher upstream pink salmon densities, possibly due to differences in habitat requirements. Our study highlights the importance of upstream resource subsidies to this bivalve species, but that individual responses to subsidies can vary at smaller scales within estuaries. PMID:25993002

  18. Location is everything: evaluating the effects of terrestrial and marine resource subsidies on an estuarine bivalve.

    PubMed

    Harding, Joel M S; Segal, Michelle R; Reynolds, John D

    2015-01-01

    Estuaries are amongst the world's most productive ecosystems, lying at the intersection between terrestrial and marine environments. They receive substantial inputs from adjacent landscapes but the importance of resource subsidies is not well understood. Here, we test hypotheses for the effects of both terrestrial- and salmon-derived resource subsidies on the diet (inferred from stable isotopes of muscle tissue), size and percent nitrogen of the soft-shell clam (Mya arenaria), a sedentary estuarine consumer. We examine how these relationships shift across natural gradients among 14 estuaries that vary in upstream watershed size and salmon density on the central coast of British Columbia, Canada. We also test how assimilation and response to subsidies vary at smaller spatial scales within estuaries. The depletion and enrichment of stable isotope ratios in soft-shell clam muscle tissue correlated with increasing upstream watershed size and salmon density, respectively. The effects of terrestrial- and salmon-derived subsidies were also strongest at locations near stream outlets. When we controlled for age of individual clams, there were larger individuals with higher percent nitrogen content in estuaries below larger watersheds, though this effect was limited to the depositional zones below river mouths. Pink salmon exhibited a stronger effect on isotope ratios of clams than chum salmon, which could reflect increased habitat overlap as spawning pink salmon concentrate in lower stream reaches, closer to intertidal clam beds. However, there were smaller clams in estuaries that had higher upstream pink salmon densities, possibly due to differences in habitat requirements. Our study highlights the importance of upstream resource subsidies to this bivalve species, but that individual responses to subsidies can vary at smaller scales within estuaries. PMID:25993002

  19. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  20. British Columbia

    ERIC Educational Resources Information Center

    Walton, Gerald

    2006-01-01

    The province of British Columbia has a dubious history where support for lesbian, gay, bisexual, and transgendered (LGBT) issues in education is concerned. Most notable is the Surrey School Board's decision in 1997 to ban three picture books for children that depict families with two moms or two dads. The North Vancouver School Board has also…

  1. Fish vs. power: Remaking salmon, science and society on the Fraser River, 1900--1960

    NASA Astrophysics Data System (ADS)

    Evenden, Matthew Dominic

    Overlapping resource demands made the Fraser River a contested site of development politics in twentieth century British Columbia. Since the turn of the century, power interests surveyed the river's flow, sited dams and promoted development schemes. Fisheries interests, on the other hand, sought to maintain the river as salmon spawning habitat. They questioned the necessity of dams, supported fisheries research and rehabilitation and organized anti-development coalitions. Before the mid-1950s a number of dam projects proceeded on Fraser tributaries and major landslides at Hells Gate modeled the dangers of main stem development. Because of the concerted political lobbying of fisheries groups, the skeptical appraisal of fisheries scientists to development proposals and the legal and political authority of the federal Department of Fisheries and the International Pacific Salmon Fisheries Commission, major dam projects were defeated on the Fraser in the late 1950s. Delayed development on the Fraser helped to spur hydroelectric projects on other rivers in the province; the fish-power problem on the Fraser altered the province's spatial economy of power. Once development began on the Columbia and Peace Rivers, the Fraser was protected by implication. The study combines approaches from environmental history, the history of science and political economy to demonstrate the intersections and interactions between nature, knowledge and society. Research was conducted at eleven archives in Canada and the United States in the papers of organizations, corporations, government departments, politicians, scientists and individuals.

  2. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume V : Evaluation of the 1999 Predictions of the Run-Timing of Wild Migrant Yearling and Subyearling Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin using Program RealTime.

    SciTech Connect

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 1999 inseason outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from sixteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, South Fork Salmon River, and Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for a stock of hatchery-reared PIT-tagged summer-run sockeye salmon from Redfish Lake and for the runs-at-large of Snake River wild yearling chinook salmon, and steelhead trout. The 1999 RealTime project began making forecasts for a new stock of PIT-tagged wild fall subyearling chinook salmon, as a substitute for forecasts of the wild run-at-large, discontinued June 6. Forecasts for the run-at-large were discontinued when a large release of unmarked hatchery fish into the Snake River made identification of wild fish impossible. The 1999 Program RealTime performance was comparable to its performance in previous years with respect to the run-at-large of yearling chinook salmon (whole season MAD=3.7%), and the run of hatchery-reared Redfish Lake sockeye salmon (whole season MAD=6.7%). Season-wide performance of program RealTime predictions for wild Snake River yearling chinook salmon ESUs improved in 1999, with mean MADs from the first half of the outmigrations down from 15.1% in 1998 to 4.5% in 1999. RealTime performance was somewhat worse for the run-at-large of steelhead trout in 1999, compared to 1998, particularly during the last half of the outmigration when the MAD increased from 2.7% in 1998 to 6.1% in 1999. A pattern of over-predictions was observed in half of the yearling chinook salmon ESUs and the steelhead run-at-large during the month of May. Lower-than-average outflows were observed at Lower Granite dam during the first half of May, the only

  3. Differential use of salmon by vertebrate consumers: implications for conservation.

    PubMed

    Levi, Taal; Wheat, Rachel E; Allen, Jennifer M; Wilmers, Christopher C

    2015-01-01

    Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability. PMID:26339539

  4. Differential use of salmon by vertebrate consumers: implications for conservation

    PubMed Central

    Wheat, Rachel E.; Allen, Jennifer M.; Wilmers, Christopher C.

    2015-01-01

    Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability. PMID:26339539

  5. Survival of Subyearling Fall Chinook Salmon in the Free-flowing Snake River and Lower Snake River Reservoirs in 2003 and from McNary Dam Tailrace to John Day Dam Tailrace in the Columbia River from 1999 to 2002, 1999-2003 Technical Report.

    SciTech Connect

    Muir, William D.; Axel, Gordon A.; Smith, Steven G.

    2004-12-01

    We report results from an ongoing study of survival and travel time of subyearling fall Chinook salmon in the Snake River during 2003 and in the Columbia River during 1999-2002. Earlier years of the study included serial releases of PIT-tagged hatchery subyearling Chinook salmon upstream from Lower Granite Dam, but these were discontinued in 2003. Instead, we estimated survival from a large number of PIT-tagged fish released upstream from Lower Granite Dam to evaluate transportation from Snake River Dams. During late May and early June 2003, 68,572 hatchery-reared subyearling fall Chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released at Couse Creek and Pittsburg Landing in the free-flowing Snake River. We estimated survival for these fish from release to Lower Granite Dam tailrace. In comparison to wild subyearling fall Chinook salmon PIT tagged and released in the free-flowing Snake River, the hatchery fish we released traveled faster and had higher survival to Lower Granite Dam, likely because of their larger size at release. For fish left in the river to migrate we estimated survival from Lower Granite Dam tailrace to McNary Dam tailrace. Each year, a small proportion of fish released are not detected until the following spring. However, the number of fish released in 2003 that overwintered in the river and were detected as they migrated seaward as yearlings in 2004 was small (<1.0%) and had minimal effect on survival estimates. We evaluated a prototype floating PIT-tag detector deployed upstream from Lower Granite reservoir to collect data for use in partitioning travel time and survival between free-flowing and reservoir habitats. The floating detector performed poorly, detecting only 27 PIT tags in 340 h of operation from a targeted release of 68,572; far too few to partition travel time and survival between habitats. We collected river-run subyearling Chinook salmon (mostly wild fish from the Hanford Reach) at Mc

  6. WITHOUT A CHANGE OF DIRECTION, WE'LL GET WHERE WE'RE GOING: WRITING A FUTURE FOR WILD SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  7. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    SciTech Connect

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  8. RESTORATION OF STREAM PHYSICAL HABITAT AND FOOD RESOURCES: INFLUENCE ON JUVENILE COHO GROWTH AND SALMON DERIVED NUTRIENT INCORPORATION IN COASTAL OREGON STREAMS

    EPA Science Inventory

    ABSTRACT - Stream restoration in Western Oregon and Washington includes physical habitat improvement and salmon carcass additions. However, few studies examine the effects of carcass placement on juvenile fish in western Oregon, and in particular the interaction with physical hab...

  9. Basis of acoustic discrimination of Chinook salmon from other salmons by echolocating Orcinus orca.

    PubMed

    Au, Whitlow W L; Horne, John K; Jones, Christopher

    2010-10-01

    The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales. PMID:20968392

  10. 28. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. Bridge over intake trough, gate in background behind bridge. South 170 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA