Science.gov

Sample records for sample proteomic profiling

  1. Proteomic profiling of serum samples from chikungunya-infected patients provides insights into host response

    PubMed Central

    2013-01-01

    Background Chikungunya is a highly debilitating febrile illness caused by Chikungunya virus, a single-stranded RNA virus, which is transmitted by Aedes aegypti or Aedes albopictus mosquito species. The pathogenesis and host responses in individuals infected with the chikungunya virus are not well understood at the molecular level. We carried out proteomic profiling of serum samples from chikungunya patients in order to identify molecules associated with the host response to infection by this virus. Results Proteomic profiling of serum obtained from the infected individuals resulted in identification of 569 proteins. Of these, 63 proteins were found to be differentially expressed (≥ 2-fold) in patient as compared to control sera. These differentially expressed proteins were involved in various processes such as lipid metabolism, immune response, transport, signal transduction and apoptosis. Conclusions This is the first report providing a global proteomic profile of serum samples from individuals infected with the chikungunya virus. Our data provide an insight into the proteins that are involved as host response factors during an infection. These proteins include clusterin, apolipoproteins and S100A family of proteins. PMID:24124767

  2. Proteomic Profiling of Paraffin-Embedded Samples Identifies Metaplasia-Specific and Early-Stage Gastric Cancer Biomarkers

    PubMed Central

    Sousa, Josane F.; Ham, Amy-Joan L.; Whitwell, Corbin; Nam, Ki Taek; Lee, Hyuk-Joon; Yang, Han-Kwang; Kim, Woo Ho; Zhang, Bing; Li, Ming; LaFleur, Bonnie; Liebler, Daniel C.; Goldenring, James R.

    2013-01-01

    Early diagnosis and curative resection are the predominant factors associated with increased survival in patients with gastric cancer. However, most gastric cancer cases are still diagnosed at later stages. Since most pathologic specimens are archived as FFPE samples, the ability to use them to generate expression profiles can greatly improve cancer biomarker discovery. We sought to uncover new biomarkers for stomach preneoplastic metaplasias and neoplastic lesions by generating proteome profiles using FFPE samples. We combined peptide isoelectric focusing and liquid chromatography–tandem mass spectrometry analysis to generate proteomic profiles from FFPE samples of intestinal-type gastric cancer, metaplasia, and normal mucosa. The expression patterns of selected proteins were analyzed by immunostaining first in single tissue sections from normal stomach, metaplasia, and gastric cancer and later in larger tissue array cohorts. We detected 60 proteins up-regulated and 87 proteins down-regulated during the progression from normal mucosa to metaplasia to gastric cancer. Two of the up-regulated proteins, LTF and DMBT1, were validated as specific markers for spasmolytic polypeptide–expressing metaplasia and intestinal metaplasia, respectively. In cancers, significantly lower levels of DMBT1 or LTF correlated with more advanced disease and worse prognosis. Thus, proteomic profiling using FFPE samples has led to the identification of two novel markers for stomach metaplasias and gastric cancer prognosis. PMID:22944598

  3. Autoantibody Profiling of Glioma Serum Samples to Identify Biomarkers Using Human Proteome Arrays

    PubMed Central

    Syed, Parvez; Gupta, Shabarni; Choudhary, Saket; Pandala, Narendra Goud; Atak, Apurva; Richharia, Annie; KP, Manubhai; Zhu, Heng; Epari, Sridhar; Noronha, Santosh B.; Moiyadi, Aliasgar; Srivastava, Sanjeeva

    2015-01-01

    The heterogeneity and poor prognosis associated with gliomas, makes biomarker identification imperative. Here, we report autoantibody signatures across various grades of glioma serum samples and sub-categories of glioblastoma multiforme using Human Proteome chips containing ~17000 full-length human proteins. The deduced sets of classifier proteins helped to distinguish Grade II, III and IV samples from the healthy subjects with 88, 89 and 94% sensitivity and 87, 100 and 73% specificity, respectively. Proteins namely, SNX1, EYA1, PQBP1 and IGHG1 showed dysregulation across various grades. Sub-classes of GBM, based on its proximity to the sub-ventricular zone, have been reported to have different prognostic outcomes. To this end, we identified dysregulation of NEDD9, a protein involved in cell migration, with probable prognostic potential. Another subcategory of patients where the IDH1 gene is mutated, are known to have better prognosis as compared to patients carrying the wild type gene. On a comparison of these two cohorts, we found STUB1 and YWHAH proteins dysregulated in Grade II glioma patients. In addition to common pathways associated with tumourigenesis, we found enrichment of immunoregulatory and cytoskeletal remodelling pathways, emphasizing the need to explore biochemical alterations arising due to autoimmune responses in glioma. PMID:26370624

  4. MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations.

    PubMed

    Sassi, Mauro; Arena, Simona; Scaloni, Andrea

    2015-07-15

    Adulteration of ovine, caprine, and buffalo milks with more common bovine material occurs for economic reasons and seasonal availability. Frauds are also associated with the use of powdered milk instead of declared, fresh material. In this context, various analytical methods have been adapted to dairy science applications with the aim to evaluate adulteration of milk samples, although time-consuming, suitable only for speciation or thermal treatment analysis, or useful for a specific fraud type. An integrated MALDI-TOF-MS platform for the combined peptidomic and proteomic profiling of milk samples is here presented, which allows rapid detection of illegal adulterations due to the addition of either nondeclared bovine material to water buffalo, goat, and ovine milks or of powdered bovine milk to the fresh counterpart. Peptide and protein markers of each animal milk were identified after direct analysis of a large number of diluted skimmed and/or enriched diluted skimmed filtrate samples. In parallel, markers of thermal treatment were characterized in different types of commercial milks. Principal components scores of ad hoc prepared species- or thermal treatment-associated adulterated milk samples were subjected to partial least-squares regression, permitting a fast accurate estimate of the fraud extents in test samples at either protein and peptide level. With respect to previous reports on MALDI-TOF-MS protein profiling methodologies for milk speciation, this study extends that approach to the analysis of the thermal treatment and introduces an independent, complementary peptide profiling measurement, which integrates protein data with additional information on peptides, validating final results and ultimately broadening the method applicability. PMID:26098723

  5. Global MS-Based Proteomics Drug Profiling.

    PubMed

    Carvalho, Ana Sofia; Matthiesen, Rune

    2016-01-01

    DNA-based technologies such as RNAi, chemical-genetic profiling, or gene expression profiling by DNA microarrays combined with other biochemical methods are established strategies for surveying drug mechanisms. Such approaches can provide mechanistic information on how drugs act and affect cellular pathways. By studying how cancer cells compensate for the drug treatment, novel targets used in a combined treatment can be designed. Furthermore, toxicity effects on cells not targeted can be obtained on a molecular level. For example, drug companies are particularly interested in studying the molecular side effects of drugs in the liver. In addition, experiments with the purpose of elucidating liver toxicity can be studied using samples obtained from animal models exposed to different concentrations of a drug over time. More recently considerable advances in mass spectrometry (MS) technologies and bioinformatics tools allows informative global drug profiling experiments to be performed at a cost comparable to other large-scale technologies such as DNA-based technologies. Moreover, MS-based proteomics provides an additional layer of information on the dynamic regulation of proteins translation and particularly protein degradation. MS-based proteomics approaches combined with other biochemical methods delivers information on regulatory networks, signaling cascades, and metabolic pathways upon drug treatment. Furthermore, MS-based proteomics can provide additional information on single amino acid polymorphisms, protein isoform distribution, posttranslational modifications, and subcellular localization. In this chapter, we will share our experience using MS based proteomics as a pharmacoproteomics strategy to characterize drug mechanisms of action in single drug therapy or in multidrug combination. Finally, the emergence of integrated proteogenomics analysis, such as "The Cancer Genome Atlas" program, opened interesting perspectives to extend this approach to drug target

  6. Proteomics Signature Profiling (PSP): A Novel Contextualization Approach for Cancer Proteomics

    PubMed Central

    2012-01-01

    Traditional proteomics analysis is plagued by the use of arbitrary thresholds resulting in large loss of information. We propose here a novel method in proteomics that utilizes all detected proteins. We demonstrate its efficacy in a proteomics screen of 5 and 7 liver cancer patients in the moderate and late stage, respectively. Utilizing biological complexes as a cluster vector, and augmenting it with submodules obtained from partitioning an integrated and cleaned protein–protein interaction network, we calculate a Proteomics Signature Profile (PSP) for each patient based on the hit rates of their reported proteins, in the absence of fold change thresholds, against the cluster vector. Using this, we demonstrated that moderate- and late-stage patients segregate with high confidence. We also discovered a moderate-stage patient who displayed a proteomics profile similar to other poor-stage patients. We identified significant clusters using a modified version of the SNet approach. Comparing our results against the Proteomics Expansion Pipeline (PEP) on which the same patient data was analyzed, we found good correlation. Building on this finding, we report significantly more clusters (176 clusters here compared to 70 in PEP), demonstrating the sensitivity of this approach. Gene Ontology (GO) terms analysis also reveals that the significant clusters are functionally congruent with the liver cancer phenotype. PSP is a powerful and sensitive method for analyzing proteomics profiles even when sample sizes are small. It does not rely on the ratio scores but, rather, whether a protein is detected or not. Although consistency of individual proteins between patients is low, we found the reported proteins tend to hit clusters in a meaningful and informative manner. By extracting this information in the form of a Proteomics Signature Profile, we confirm that this information is conserved and can be used for (1) clustering of patient samples, (2) identification of significant

  7. Proteomic profile of edible bird's nest proteins.

    PubMed

    Liu, Xiaoqing; Lai, Xintian; Zhang, Shiwei; Huang, Xiuli; Lan, Quanxue; Li, Yun; Li, Bifang; Chen, Wei; Zhang, Qinlei; Hong, Dezhi; Yang, Guowu

    2012-12-26

    Edible bird's nest (EBN) is made of the swiftlets' saliva, which has attracted rather more attention owing to its nutritious and medical properties. Although protein constitutes the main composition and plays an important role in EBN, few studies have focused on the proteomic profile of EBN. The purpose of this study was to produce a proteomic map and clarify common EBN proteins. Liquid-phase isoelectric focusing (LIEF) was combined with two-dimensional electrophoresis (2-DE) for comprehensive analysis of EBN proteins. From 20 to 100 protein spots were detected on 2-DE maps of EBN samples from 15 different sources. The proteins were mainly distributed in four taxa (A, B, C, and D) according to their molecular mass. Taxa A and D both contained common proteins and proteins that may be considered another characteristic of EBN. Taxon A was identified using MALDI-TOF-TOF/MS and found to be homologous to acidic mammalian chitinase-like ( Meleagris gallopavo ), which is in glycosyl hydrolase family 18. PMID:23214475

  8. Proteomics for Protein Expression Profiling in Neuroscience*

    PubMed Central

    Freeman, Willard M.; Hemby, Scott E.

    2013-01-01

    As the technology of proteomics moves from a theoretical approach to a practical reality, neuroscientists will have to determine the most appropriate applications for this technology. Neuroscientists will have to surmount difficulties particular to their research, such as limited sample amounts, heterogeneous cellular compositions in samples, and the fact that many proteins of interest are rare, hydrophobic proteins. This review examines protein isolation and protein fractionation and separation using two-dimensional electrophoresis (2-DE) and mass spectrometry proteomic methods. Methods for quantifying relative protein expression between samples (e.g., 2-DIGE, and ICAT) are also described. The coverage of the proteome, ability to detect membrane proteins, resource requirements, and quantitative reliability of different approaches is also discussed. Although there are many challenges in proteomic neuroscience, this field promises many rewards in the future. PMID:15176464

  9. Proteomic profiling of skeletal muscle plasticity

    PubMed Central

    Ohlendieck, Kay

    2011-01-01

    Summary One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physiological modifications and pathophysiological alterations. This review outlines and discusses the impact of recent proteomic profiling studies of skeletal muscle transitions, including the effects of chronic electro-stimulation, physical exercise, denervation, disuse atrophy, hypoxia, myotonia, motor neuron disease and age-related fibre type shifting. This includes studies on the human skeletal muscle proteome, animal models of muscle plasticity and major neuromuscular pathologies. The biomedical importance of establishing reliable biomarker signatures for the various molecular and cellular transition phases involved in muscle transformation is critically examined. PMID:23738259

  10. Proteomic profiling of skeletal muscle plasticity.

    PubMed

    Ohlendieck, Kay

    2011-10-01

    One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physiological modifications and pathophysiological alterations. This review outlines and discusses the impact of recent proteomic profiling studies of skeletal muscle transitions, including the effects of chronic electro-stimulation, physical exercise, denervation, disuse atrophy, hypoxia, myotonia, motor neuron disease and age-related fibre type shifting. This includes studies on the human skeletal muscle proteome, animal models of muscle plasticity and major neuromuscular pathologies. The biomedical importance of establishing reliable biomarker signatures for the various molecular and cellular transition phases involved in muscle transformation is critically examined. PMID:23738259

  11. Shotgun proteome profile of Populus developing xylem

    SciTech Connect

    Kalluri, Udaya C; Hurst, Gregory {Greg} B; Lankford, Patricia K; Ranjan, Priya; Pelletier, Dale A

    2009-01-01

    Understanding the molecular pathways of plant cell wall biosynthesis and remodeling is central to interpreting biological mechanisms underlying plant growth and adaptation as well as leveraging that knowledge towards development of improved bioenergy feedstocks. Here we report the application of shotgun tandem mass spectrometry profiling to the proteome of Populus developing xylem. Additionally, we mined public databases to obtain information in support of subcellular localization, transcript-level expression, and functional categorization of these proteins. Nearly 6000 different proteins were identified from the xylem proteome, with over 4400 proteins identified from one or more unique peptides. In addition to finding protein-level evidence of candidate wall biosynthesis genes from xylem (wood) tissue such as cellulose synthase, phenylalanine ammonia-lyase, and 4-coumarate:CoA ligase, several other potentially new candidate genes in the pathway were discovered. In order to identify low-abundance DNA-regulatory proteins from the developing xylem, a selective nuclear proteome profiling method was developed. Several putative transcription factor and chromatin remodeling proteins were identified using this method, such as LIM and NAC domain transcription factors and CHB3-SWI/SNF-related proteins. Further application of these proteomics methods will enhance understanding not only of cell wall biosynthesis in system biology modeling, but also other plant developmental and physiological pathways.

  12. Proteomic profiling of lymphocytes in autoimmunity, inflammation and cancer

    PubMed Central

    2014-01-01

    Lymphocytes play important roles in the balance between body defense and noxious agents involved in a number of diseases, e.g. autoimmune diseases, allergic inflammation and cancer. The proteomic analyses have been applied to identify and validate disease-associated and disease-specific biomarkers for therapeutic strategies of diseases. The proteomic profiles of lymphocytes may provide more information to understand their functions and roles in the development of diseases, although proteomic approaches in lymphocytes are still limited. The present review overviewed the proteomics-based studies on lymphocytes to headlight the proteomic profiles of lymphocytes in diseases, such as autoimmune diseases, allergic inflammation and cancer, with a special focus on lung diseases. We will explore the potential significance of diagnostic biomarkers and therapeutic targets from the current status in proteomic studies of lymphocytes and discuss the value of the currently available proteomic methodologies in the lymphocytes research. PMID:24397796

  13. Dataset of target mass spectromic proteome profiling for human chromosome 18.

    PubMed

    Ilgisonis, Ekaterina V; Kopylov, Arthur T; Zgoda, Victor G

    2016-09-01

    Proteome profiling is a type of quantitative analysis that reveals level of protein expression in the sample. Proteome profiling by using selected reaction monitoring is an approach for the Chromosome-centric Human Proteome Project (C-HPP). Here we describe dataset generated in the course of the pilot phase of Russian part of C-HPP, which was focused on human Chr 18 proteins. Proteome profiling was performed using stable isotope-labeled standards (SRM/SIS) for plasma, liver tissue and HepG2 cells. Dataset includes both positive and negative results of protein detection. These data were partly discussed in recent publications, "Chromosome 18 Transcriptome Profiling and Targeted Proteome Mapping in Depleted Plasma, Liver Tissue and HepG2 Cells" [1] and "Chromosome 18 transcriptoproteome of liver tissue and HepG2 Cells and targeted proteome mapping in depleted plasma: Update 2013" [2], supporting the accompanying publication "State of the Chromosome 18-centric HPP in 2016: Transcriptome and Proteome Profiling of Liver Tissue and HepG2 Cells" [3], and are deposited at the ProteomeXchange via the PASSEL repository with the dataset identifier PASSEL: PASS00697 for liver and HepG2 cell line. PMID:27595127

  14. Quantitative proteomic profiling studies of pancreatic cancer stem cells.

    PubMed

    Dai, Lan; Li, Chen; Shedden, Kerby A; Lee, Cheong J; Li, Chenwei; Quoc, HuyVuong; Simeone, Diane M; Lubman, David M

    2010-07-01

    Analyzing subpopulations of tumor cells in tissue is a challenging subject in proteomic studies. Pancreatic cancer stem cells (CSCs) are such a group of cells that only constitute 0.2-0.8% of the total tumor cells but have been found to be the origin of pancreatic cancer carcinogenesis and metastasis. Global proteome profiling of pancreatic CSCs from xenograft tumors in mice is a promising way to unveil the molecular machinery underlying the signaling pathways. However, the extremely low availability of pancreatic tissue CSCs (around 10,000 cells per xenograft tumor or patient sample) has limited the utilization of currently standard proteomic approaches which do not work effectively with such a small amount of material. Herein, we describe the profiling of the proteome of pancreatic CSCs using a capillary scale shotgun technique by coupling offline capillary isoelectric focusing(cIEF) with nano reversed phase liquid chromatography(RPLC) followed by spectral counting peptide quantification. A whole cell lysate from 10,000 cells which corresponds to approximately 1 microg of protein material is equally divided for three repeated cIEF separations where around 300 ng of peptide material is used in each run. In comparison with a nontumorigenic tumor cell sample, among 1159 distinct proteins identified with FDR less than 0.2%, 169 differentially expressed proteins are identified after multiple testing corrections where 24% of the proteins are upregulated in the CSCs group. Ingenuity Pathway analysis of these differential expression signatures further suggests significant involvement of signaling pathways related to apoptosis, cell proliferation, inflammation, and metastasis. PMID:20486718

  15. Breast tumor metastasis: analysis via proteomic profiling

    PubMed Central

    Goodison, Steve; Urquidi, Virginia

    2012-01-01

    The ability to predict the metastatic behavior of a patient’s cancer, as well as to detect and eradicate such recurrences, remain major clinical challenges in oncology. While many potential molecular biomarkers have been identified and tested previously, none have greatly improved the accuracy of specimen evaluation over routine histopathological criteria and, to date, they predict individual outcomes poorly. The ongoing development of high-throughput proteomic profiling technologies is opening new avenues for the investigation of cancer and, through application in tissue-based studies and animal models, will facilitate the identification of molecular signatures that are associated with breast tumor cell phenotype. The appropriate use of these approaches has the potential to provide efficient biomarkers, and to improve our knowledge of tumor biology. This, in turn, will enable the development of targeted therapeutics aimed at ameliorating the lethal dissemination of breast cancer. In this review, we focus on the accumulating proteomic signatures of breast tumor progression, particularly those that correlate with the occurrence of distant metastases, and discuss some of the expected future developments in the field. PMID:18532913

  16. Proteome profiling of keratinocytes transforming to malignancy.

    PubMed

    Paulitschke, Verena; Gerner, Christopher; Hofstätter, Elisabeth; Mohr, Thomas; Mayer, Rupert Laurenz; Pehamberger, Hubert; Kunstfeld, Rainer

    2015-02-01

    To shed light on the multistep process of squamous cell carcinoma development and the underlying pathologic mechanisms, we performed comparative proteome analysis of keratinocytes, keratinocytes stimulated with Il-1beta, and A431 epidermoid carcinoma cells. Fractionation of the cells into supernatant, nucleus, and cytoplasm was followed by protein separation, proteolytic digest, and nano-LC separation, and fragmentation using an ion trap mass spectrometer. Specific bioinformatics tools were used to generate a list of keratinocyte-specific proteins. Ninety percent of these proteins were found to be upregulated in keratinocytes versus the A431 cells. Classification of the identified proteins by biologic function and gene set enrichment analysis revealed that keratinocytes produced more proteins involved in cell differentiation, cell adhesion, cell junction, calcium ion, calmodulin binding, cytoskeleton organization, and cytokinesis, whereas A431 produced more proteins involved in cell cycle checkpoint, cell cycle process, RNA processing and transport, DNA damage and repair, RNA and DNA binding, and chromatin remodeling. The protein signatures of A431 and normal keratinocytes treated with IL-1beta showed marked similarity, confirming that inflammation is an important step in malignant transformation in nonmelanoma skin cancer. Thus, proteome profiling and bioinformatic processing may support the understanding of the underlying mechanisms, with the potential to facilitate development of early biomarkers and patient-tailored therapy. PMID:25395074

  17. Proteomic global profiling for cancer biomarker discovery.

    PubMed

    Faca, Vitor; Wang, Hong; Hanash, Samir

    2009-01-01

    The ultimate goal of cancer molecular diagnostics is the development of simple tests to predict cancer risk, detect cancer early, classify tumors, and monitor response to therapy. Proteomics is well suited for these tasks. However, there are substantial challenges that need to be met to identify the most informative markers using proteomics. Approaches for in-depth quantitative proteomic analysis based on isotopic labeling and protein fractionation are presented in this chapter. PMID:19241042

  18. Proteomic and Phospho-Proteomic Profile of Human Platelets in Basal, Resting State: Insights into Integrin Signaling

    PubMed Central

    Maiguel, Dony; Faridi, Mohd Hafeez; Barth, Constantinos J.; Salem, Saeed M.; Singhal, Mudita; Stoub, Darren; Krastins, Bryan; Ogihara, Mitsunori; Zaki, Mohammed J.; Gupta, Vineet

    2009-01-01

    During atherogenesis and vascular inflammation quiescent platelets are activated to increase the surface expression and ligand affinity of the integrin αIIbβ3 via inside-out signaling. Diverse signals such as thrombin, ADP and epinephrine transduce signals through their respective GPCRs to activate protein kinases that ultimately lead to the phosphorylation of the cytoplasmic tail of the integrin αIIbβ3 and augment its function. The signaling pathways that transmit signals from the GPCR to the cytosolic domain of the integrin are not well defined. In an effort to better understand these pathways, we employed a combination of proteomic profiling and computational analyses of isolated human platelets. We analyzed ten independent human samples and identified a total of 1507 unique proteins in platelets. This is the most comprehensive platelet proteome assembled to date and includes 190 membrane-associated and 262 phosphorylated proteins, which were identified via independent proteomic and phospho-proteomic profiling. We used this proteomic dataset to create a platelet protein-protein interaction (PPI) network and applied novel contextual information about the phosphorylation step to introduce limited directionality in the PPI graph. This newly developed contextual PPI network computationally recapitulated an integrin signaling pathway. Most importantly, our approach not only provided insights into the mechanism of integrin αIIbβ3 activation in resting platelets but also provides an improved model for analysis and discovery of PPI dynamics and signaling pathways in the future. PMID:19859549

  19. A novel profile biomarker diagnosis for mass spectral proteomics.

    PubMed

    Han, Henry

    2014-01-01

    Mass spectrometry based proteomics technologies have allowed for a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, they face acute challenges from a data reproducibility standpoint, in that no two independent studies have been found to produce the same proteomic patterns. Such reproducibility issues cause the identified biomarker patterns to lose repeatability and prevent real clinical usage. In this work, we propose a profile biomarker approach to overcome this problem from a machine-learning viewpoint by developing a novel derivative component analysis (DCA). As an implicit feature selection algorithm, derivative component analysis enables the separation of true signals from red herrings by capturing subtle data behaviors and removing system noises from a proteomic profile. We further demonstrate its advantages in disease diagnosis by viewing input data as a profile biomarker. The results from our profile biomarker diagnosis suggest an effective solution to overcoming proteomics data's reproducibility problem, present an alternative method for biomarker discovery in proteomics, and provide a good candidate for clinical proteomic diagnosis. PMID:24297560

  20. Serum Proteomic Profiles In Subjects with Heavy Alcohol Abuse

    PubMed Central

    Liangpunsakul, Suthat; Lai, Xianyin; Ringham, Heather N.; Crabb, David W.; Witzmann, Frank A.

    2009-01-01

    Objectives The abuse of alcohol is a major public health problem, and the diagnosis and care of patients with alcohol abuse and dependence is hindered by the lack of tests that can detect dangerous levels of drinking or relapse during therapy. Gastroenterologists and other healthcare providers find it very challenging to obtain an accurate alcohol drinking history. We hypothesized that the effects of ethanol on numerous systems may well be reflected in changes in quantity or qualities of constituent or novel plasma proteins or protein fragments. Organ/tissue-specific proteins may be released into the blood stream when cells are injured by alcohol, or when systemic changes are induced by alcohol, and such proteins would be detected using a proteomic approach. The objective of this pilot study was to determine if there are plasma proteome profiles that correlate with heavy alcohol use. Methods Paired serum samples, before and after intensive alcohol treatment, were obtained from subjects who attended an outpatient alcohol treatment program. Serum proteomic profiles using MALDI –OTOF Mass Spectrometry were compared between pre- and post treatment samples. Results Of 16 subjects who enrolled in the study, 8 were females. The mean age of the study subjects was 49 yrs. The baseline laboratory data showed elevated AST (54 ± 37 IU/L), ALT (37 ± 19 IU/L), and MCV (99 ± 5 fl). Self-reported pre-treatment drinking levels for these subjects averaged 17 ± 7drinks/day and 103 ± 37 drinks/week. Mass spectrometry analyses showed a novel 5.9 kDa protein, a fragment of alpha fibrinogen, isoform 1, that might be might be a new novel marker for abusive alcohol drinking. Conclusions We have shown in this pilot study that several potential protein markers have appeared in mass spectral profiles and that they may be useful clinically to determine the status of alcohol drinking by MALDI –OTOF mass spectrometry, especially a fragment of alpha fibrinogen, isoform 1. However, a

  1. Derivative component analysis for mass spectral serum proteomic profiles

    PubMed Central

    2014-01-01

    Background As a promising way to transform medicine, mass spectrometry based proteomics technologies have seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified biomarker patterns to lose repeatability and prevents it from real clinical usage. Methods In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent data characteristics and conduct de-noising. We further demonstrate DCA's advantages in disease diagnosis by viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the reproducibility issue, besides comparing it with state-of-the-art peers. Results Our results show that high-dimensional proteomics data are actually linearly separable under proposed derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an effective resolution to overcoming proteomics data's reproducibility problem and provides new techniques and insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes clinical level diagnostic performances reproducible across different proteomic data, which is more robust and systematic than the existing biomarker discovery based

  2. Proteomic profiles of white sucker (Catostomus commersonii) sampled from within the Thunder Bay Area of Concern reveal up-regulation of proteins associated with tumor formation and exposure to environmental estrogens.

    PubMed

    Simmons, Denina B D; Bols, Niels C; Duncker, Bernard P; McMaster, Mark; Miller, Jason; Sherry, James P

    2012-02-01

    White sucker (Catostomus commersonii) sampled from the Thunder Bay Area of Concern were assessed for health using a shotgun approach to compile proteomic profiles. Plasma proteins were sampled from male and female fish from a reference location, an area in recovery within Thunder Bay Harbour, and a site at the mouth of the Kaministiquia River where water and sediment quality has been degraded by industrial activities. The proteins were characterized using reverse-phase liquid chromatography tandem to a quadrupole-time-of-flight (LC-Q-TOF) mass spectrometer and were identified by searching in peptide databases. In total, 1086 unique proteins were identified. The identified proteins were then examined by means of a bioinformatics pathway analysis to gain insight into the biological functions and disease pathways that were represented and to assess whether there were any significant changes in protein expression due to sampling location. Female white sucker exhibited significant (p = 0.00183) site-specific changes in the number of plasma proteins that were related to tumor formation, reproductive system disease, and neurological disease. Male fish plasma had a significantly different (p < 0.0001) number of proteins related to neurological disease and tumor formation. Plasma concentrations of vitellogenin were significantly elevated in females from the Kaministiquia River compared to the Thunder Bay Harbour and reference sites. The protein expression profiles indicate that white sucker health has benefited from the remediation of the Thunder Bay Harbour site, whereas white sucker from the Kaministiquia River site are impacted by ongoing contaminant discharges. PMID:22260729

  3. Plasma Proteome Profiling to Assess Human Health and Disease.

    PubMed

    Geyer, Philipp E; Kulak, Nils A; Pichler, Garwin; Holdt, Lesca M; Teupser, Daniel; Mann, Matthias

    2016-03-23

    Proteins in the circulatory system mirror an individual's physiology. In daily clinical practice, protein levels are generally determined using single-protein immunoassays. High-throughput, quantitative analysis using mass-spectrometry-based proteomics of blood, plasma, and serum would be advantageous but is challenging because of the high dynamic range of protein abundances. Here, we introduce a rapid and robust "plasma proteome profiling" pipeline. This single-run shotgun proteomic workflow does not require protein depletion and enables quantitative analysis of hundreds of plasma proteomes from 1 μl single finger pricks with 20 min gradients. The apolipoprotein family, inflammatory markers such as C-reactive protein, gender-related proteins, and >40 FDA-approved biomarkers are reproducibly quantified (CV <20% with label-free quantification). Furthermore, we functionally interpret a 1,000-protein, quantitative plasma proteome obtained by simple peptide pre-fractionation. Plasma proteome profiling delivers an informative portrait of a person's health state, and we envision its large-scale use in biomedicine. PMID:27135364

  4. Proteomic Profiling of Rat Thyroarytenoid Muscle

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Marriott, Gerard; Bless, Diane M.

    2006-01-01

    Purpose: Proteomic methodologies offer promise in elucidating the systemwide cellular and molecular processes that characterize normal and diseased thyroarytenoid (TA) muscle. This study examined methodological issues central to the application of 2-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) to the study of…

  5. The Urine Proteome Profile Is Different in Neuromyelitis Optica Compared to Multiple Sclerosis: A Clinical Proteome Study

    PubMed Central

    Kristensen, Lars P.; Burton, Mark; Csepany, Tunde; Simo, Magdolna; Dioszeghy, Peter; Sejbaek, Tobias; Grebing, Manuela; Heegaard, Niels H. H.; Illes, Zsolt

    2015-01-01

    Objectives Inflammatory demyelinating diseases of the CNS comprise a broad spectrum of diseases like neuromyelitis optica (NMO), NMO spectrum disorders (NMO-SD) and multiple sclerosis (MS). Despite clear classification criteria, differentiation can be difficult. We hypothesized that the urine proteome may differentiate NMO from MS. Methods The proteins in urine samples from anti-aquaporin 4 (AQP4) seropositive NMO/NMO-SD patients (n = 32), patients with MS (n = 46) and healthy subjects (HS, n = 31) were examined by quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) after trypsin digestion and iTRAQ labelling. Immunoglobulins (Ig) in the urine were validated by nephelometry in an independent cohort (n = 9–10 pr. groups). Results The analysis identified a total of 1112 different proteins of which 333 were shared by all 109 subjects. Cluster analysis revealed differences in the urine proteome of NMO/NMO-SD compared to HS and MS. Principal component analysis also suggested that the NMO/NMO-SD proteome profile was useful for classification. Multivariate regression analysis revealed a 3-protein profile for the NMO/NMO-SD versus HS discrimination, a 6-protein profile for NMO/NMO-SD versus MS discrimination and an 11-protein profile for MS versus HS discrimination. All protein panels yielded highly significant ROC curves (AUC in all cases >0.85, p≤0.0002). Nephelometry confirmed the presence of increased Ig-light chains in the urine of patients with NMO/NMO-SD. Conclusion The urine proteome profile of patients with NMO/NMO-SD is different from MS and HS. This may reflect differences in the pathogenesis of NMO/NMO-SD versus MS and suggests that urine may be a potential source of biomarkers differentiating NMO/NMO-SD from MS. PMID:26460890

  6. Ultra-Fast Sample Preparation for High-Throughput Proteomics

    SciTech Connect

    Lopez-Ferrer, Daniel; Hixson, Kim K.; Belov, Mikhail E.; Smith, Richard D.

    2011-06-21

    Sample preparation oftentimes can be the Achilles Heel of any analytical process and in the field of proteomics, preparing samples for mass spectrometric analysis is no exception. Current goals, concerning proteomic sample preparation on a large scale, include efforts toward improving reproducibility, reducing the time of processing and ultimately the automation of the entire workflow. This chapter reviews an array of recent approaches applied to bottom-up proteomics sample preparation to reduce the processing time down from hours to minutes. The current state-of-the-art in the field uses different energy inputs like microwave, ultrasound or pressure to perform the four basic steps in sample preparation: protein extraction, denaturation, reduction and alkylation, and digestion. No single energy input for enhancement of proteome sample preparation has become the universal gold standard. Instead, a combination of different energy inputs tend to produce the best results. This chapter further describes the future trends in the field such as the hyphenation of sample preparation with downstream detection and analysis systems. Finally, a detailed protocol describing the combined use of both pressure cycling technology and ultrasonic energy inputs to hasten proteomic sample preparation is presented.

  7. The distinctive gastric fluid proteome in gastric cancer reveals a multi-biomarker diagnostic profile

    PubMed Central

    Kon, Oi Lian; Yip, Tai-Tung; Ho, Meng Fatt; Chan, Weng Hoong; Wong, Wai Keong; Tan, Soo Yong; Ng, Wai Har; Kam, Siok Yuen; Eng, Alvin KH; Ho, Patrick; Viner, Rosa; Ong, Hock Soo; Kumarasinghe, M Priyanthi

    2008-01-01

    Background Overall gastric cancer survival remains poor mainly because there are no reliable methods for identifying highly curable early stage disease. Multi-protein profiling of gastric fluids, obtained from the anatomic site of pathology, could reveal diagnostic proteomic fingerprints. Methods Protein profiles were generated from gastric fluid samples of 19 gastric cancer and 36 benign gastritides patients undergoing elective, clinically-indicated gastroscopy using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on multiple ProteinChip arrays. Proteomic features were compared by significance analysis of microarray algorithm and two-way hierarchical clustering. A second blinded sample set (24 gastric cancers and 29 clinically benign gastritides) was used for validation. Results By significance analysyis of microarray, 60 proteomic features were up-regulated and 46 were down-regulated in gastric cancer samples (p < 0.01). Multimarker clustering showed two distinctive proteomic profiles independent of age and ethnicity. Eighteen of 19 cancer samples clustered together (sensitivity 95%) while 27/36 of non-cancer samples clustered in a second group. Nine non-cancer samples that clustered with cancer samples included 5 pre-malignant lesions (1 adenomatous polyp and 4 intestinal metaplasia). Validation using a second sample set showed the sensitivity and specificity to be 88% and 93%, respectively. Positive predictive value of the combined data was 0.80. Selected peptide sequencing identified pepsinogen C and pepsin A activation peptide as significantly down-regulated and alpha-defensin as significantly up-regulated. Conclusion This simple and reproducible multimarker proteomic assay could supplement clinical gastroscopic evaluation of symptomatic patients to enhance diagnostic accuracy for gastric cancer and pre-malignant lesions. PMID:18950519

  8. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling.

    PubMed

    Chen, Wendong; Wang, Shuai; Adhikari, Subash; Deng, Zuhui; Wang, Lingjue; Chen, Lan; Ke, Mi; Yang, Pengyuan; Tian, Ruijun

    2016-05-01

    Great efforts have been taken for developing high-sensitive mass spectrometry (MS)-based proteomic technologies, among which sample preparation is one of the major focus. Here, a simple and integrated spintip-based proteomics technology (SISPROT) consisting of strong cation exchange beads and C18 disk in one pipet tip was developed. Both proteomics sample preparation steps, including protein preconcentration, reduction, alkylation, and digestion, and reversed phase (RP)-based desalting and high-pH RP-based peptide fractionation can be achieved in a fully integrated manner for the first time. This easy-to-use technology achieved high sensitivity with negligible sample loss. Proteomic analysis of 2000 HEK 293 cells readily identified 1270 proteins within 1.4 h of MS time, while 7826 proteins were identified when 100000 cells were processed and analyzed within only 22 h of MS time. More importantly, the SISPROT can be easily multiplexed on a standard centrifuge with good reproducibility (Pearson correlation coefficient > 0.98) for both single-shot analysis and deep proteome profiling with five-step high-pH RP fractionation. The SISPROT was exemplified by the triplicate analysis of 100000 stem cells from human exfoliated deciduous teeth (SHED). This led to the identification of 9078 proteins containing 3771 annotated membrane proteins, which was the largest proteome data set for dental stem cells reported to date. We expect that the SISPROT will be well suited for deep proteome profiling for fewer than 100000 cells and applied for translational studies where multiplexed technology with good label-free quantification precision is required. PMID:27062885

  9. Proteomics: Challenges, Techniques and Possibilities to Overcome Biological Sample Complexity

    PubMed Central

    Chandramouli, Kondethimmanahalli; Qian, Pei-Yuan

    2009-01-01

    Proteomics is the large-scale study of the structure and function of proteins in complex biological sample. Such an approach has the potential value to understand the complex nature of the organism. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. Advances in protein fractionation and labeling techniques have improved protein identification to include the least abundant proteins. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration paved with various difficulties and pitfalls. The quantity of data that is acquired with new techniques places new challenges on data processing and analysis. This article provides a brief overview of currently available proteomic techniques and their applications, followed by detailed description of advantages and technical challenges. Some solutions to circumvent technical difficulties are proposed. PMID:20948568

  10. Proteomic profiling of Tectona grandis L. leaf.

    PubMed

    Quiala, Elisa; Cañal, María Jesús; Rodríguez, Roberto; Yagüe, Norma; Chávez, Maité; Barbón, Raúl; Valledor, Luis

    2012-04-01

    Tectona grandis L. (teak) is one of the premier hardwood timbers in the world, ranking at present in the top five tropical hardwood species in terms of worldwide plantation area. Characterization of the proteins present in teak leaves will provide a basis for the development of new tools aimed at assisting tree selection, the monitoring of plant propagation, and the certification of clonal and phenotypic identities. In this paper, we describe the extraction, separation, and identification of leaf proteins from T. grandis using a TCA/acetone protocol, 2DE, and MALDI-TOF. After TCA/acetone protein extraction of leaves, 998 well-resolved spots were detected in Coomassie-stained gels within the 10-114 kDa relative molecular mass (Mr) range at a pH ranging from 3 to 11. A total of 120 spots were digested and subjected to MS. Of these, 100 nonredundant protein species were successfully identified. Functional classification of the identified proteins revealed that proteins involved in photosynthesis, protein translation, and energy production were the most abundant. This work is the first high-throughput attempt to study the T. grandis leaf proteome and represents a stepping stone for further differential expression proteomic studies related to growth, development, biomass production, and culture-associated physiological responses. PMID:22522810

  11. Proteome profiling of Leishmania infantum promastigotes.

    PubMed

    Alcolea, Pedro J; Alonso, Ana; Larraga, Vicente

    2011-01-01

    A proteome analysis of the promastigote stage of the trypanosomatid parasite Leishmania infantum (MON-1 zymodeme) is described here for the first time. Total protein extracts were prepared at early logarithmic and stationary phases of replicate axenic cultures and processed by 2D electrophoresis (pH 3-10). A total of 28 differentially regulated proteins were identified by matrix-assisted laser desorption/ionization-tandem time of flight mass spectrometry. This approach has revealed that the electron transfer flavoprotein (ETF) and the eukaryotic elongation factor 1α (eEF1α) subunit have the same differential expression pattern at the protein and mRNA levels, up-regulation in the stationary phase. A low-molecular-weight isoform and an alternatively processed form of the eEF1α subunit have been detected. A 51 kDa subunit of replication factor A is up-regulated in dividing logarithmic promastigotes. None of the proteins described here shows opposite differential regulation values with the corresponding mRNA levels. Taken together with previous approaches to the proteome and the transcriptome, this report contributes to the elucidation of the differential regulation patterns of the ETF, the eEF1α subunit, the 40S ribosomal protein S12, α-tubulin and the T-complex protein 1 subunit γ throughout the life cycle of the parasites from the genus Leishmania. PMID:21569158

  12. Glaucoma related Proteomic Alterations in Human Retina Samples

    PubMed Central

    Funke, Sebastian; Perumal, Natarajan; Beck, Sabine; Gabel-Scheurich, Silke; Schmelter, Carsten; Teister, Julia; Gerbig, Claudia; Gramlich, Oliver W.; Pfeiffer, Norbert; Grus, Franz H.

    2016-01-01

    Glaucoma related proteomic changes have been documented in cell and animal models. However, proteomic studies investigating on human retina samples are still rare. In the present work, retina samples of glaucoma and non-glaucoma control donors have been examined by a state-of-the-art mass spectrometry (MS) workflow to uncover glaucoma related proteomic changes. More than 600 proteins could be identified with high confidence (FDR < 1%) in human retina samples. Distinct proteomic changes have been observed in 10% of proteins encircling mitochondrial and nucleus species. Numerous proteins showed a significant glaucoma related level change (p < 0.05) or distinct tendency of alteration (p < 0.1). Candidates were documented to be involved in cellular development, stress and cell death. Increase of stress related proteins and decrease of new glaucoma related candidates, ADP/ATP translocase 3 (ANT3), PC4 and SRFS1-interacting protein 1 (DFS70) and methyl-CpG-binding protein 2 (MeCp2) could be documented by MS. Moreover, candidates could be validated by Accurate Inclusion Mass Screening (AIMS) and immunostaining and supported for the retinal ganglion cell layer (GCL) by laser capture microdissection (LCM) in porcine and human eye cryosections. The workflow allowed a detailed view into the human retina proteome highlighting new molecular players ANT3, DFS70 and MeCp2 associated to glaucoma. PMID:27425789

  13. Susceptibility to COPD: Differential Proteomic Profiling after Acute Smoking

    PubMed Central

    Franciosi, Lorenza; Postma, Dirkje S.; van den Berge, Maarten; Govorukhina, Natalia; Horvatovich, Peter L.; Fusetti, Fabrizia; Poolman, Bert; Lodewijk, Monique E.; Timens, Wim; Bischoff, Rainer; ten Hacken, Nick H. T.

    2014-01-01

    Cigarette smoking is the main risk factor for COPD (Chronic Obstructive Pulmonary Disease), yet only a subset of smokers develops COPD. Family members of patients with severe early-onset COPD have an increased risk to develop COPD and are therefore defined as “susceptible individuals”. Here we perform unbiased analyses of proteomic profiles to assess how “susceptible individuals” differ from age-matched “non-susceptible individuals” in response to cigarette smoking. Epithelial lining fluid (ELF) was collected at baseline and 24 hours after smoking 3 cigarettes in young individuals susceptible or non-susceptible to develop COPD and older subjects with established COPD. Controls at baseline were older healthy smoking and non-smoking individuals. Five samples per group were pooled and analysed by stable isotope labelling (iTRAQ) in duplicate. Six proteins were selected and validated by ELISA or immunohistochemistry. After smoking, 23 proteins increased or decreased in young susceptible individuals, 7 in young non-susceptible individuals, and 13 in COPD in the first experiment; 23 proteins increased or decreased in young susceptible individuals, 32 in young non-susceptible individuals, and 11 in COPD in the second experiment. SerpinB3 and Uteroglobin decreased after acute smoke exposure in young non-susceptible individuals exclusively, whereas Peroxiredoxin I, S100A9, S100A8, ALDH3A1 (Aldehyde dehydrogenase 3A1) decreased both in young susceptible and non-susceptible individuals, changes being significantly different between groups for Uteroglobin with iTRAQ and for Serpin B3 with iTRAQ and ELISA measures. Peroxiredoxin I, SerpinB3 and ALDH3A1 increased in COPD patients after smoking. We conclude that smoking induces a differential protein response in ELF of susceptible and non-susceptible young individuals, which differs from patients with established COPD. This is the first study applying unbiased proteomic profiling to unravel the underlying mechanisms

  14. Pathway analysis of kidney cancer using proteomics and metabolic profiling

    PubMed Central

    Perroud, Bertrand; Lee, Jinoo; Valkova, Nelly; Dhirapong, Amy; Lin, Pei-Yin; Fiehn, Oliver; Kültz, Dietmar; Weiss, Robert H

    2006-01-01

    Background Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. Results Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls. Conclusion Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids

  15. The impact of blood on liver metabolite profiling - a combined metabolomic and proteomic approach.

    PubMed

    Ly-Verdú, Saray; Schaefer, Alexander; Kahle, Melanie; Groeger, Thomas; Neschen, Susanne; Arteaga-Salas, Jose M; Ueffing, Marius; de Angelis, Martin Hrabe; Zimmermann, Ralf

    2014-02-01

    Metabolomics has entered the well-established omic sciences as it is an indispensable information resource to achieve a global picture of biological systems. The aim of the present study was to estimate the influence of blood removal from mice liver as part of sample preparation for metabolomic and proteomic studies. For this purpose, perfused mice liver tissue (i.e. with blood removed) and unperfused mice liver tissue (i.e. containing blood) were compared by two-dimensional gas chromatography time of flight mass spectrometry (GC × GC-TOFMS) for the metabolomic part, and by liquid chromatography tandem mass spectrometry (LC-MS/MS) for the proteomic part. Our data showed significant differences between the unperfused and perfused liver tissue samples. Furthermore, we also observed an overlap of blood and tissue metabolite profiles in our data, suggesting that the perfusion of liver tissue prior to analysis is beneficial for an accurate metabolic profile of this organ. PMID:23934789

  16. Different sample preparation and detection methods for normal and lung cancer urinary proteome analysis.

    PubMed

    Sinchaikul, Supachok; Tantipaiboonwong, Payungsak; Sriyam, Supawadee; Tzao, Ching; Phutrakul, Suree; Chen, Shui-Tein

    2010-01-01

    The urinary proteome is known to be a valuable field of study related to human physiological functions because many components in urine provide an alternative to blood plasma as a potential source of disease biomarkers useful in clinical diagnosis and therapeutic application. Due to the variability and complexity of urine, sample preparation is very important for decreasing the dynamic range of components and isolating specific urinary proteins prior to analysis. We discuss many useful sample preparation methods in this chapter, including those of lung cancer urine samples. In addition, protein detection methods are also crucial in visualizing protein profiles and for quantification of protein content in urine samples from both normal donor and lung cancer patients. This chapter also provides alternative choices of urine sample preparation and detection methods for selective use in urinary proteome analysis and for identifying urinary protein markers in lung cancer and other diseases. PMID:20407942

  17. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins.

    PubMed

    Reinhard, Friedrich B M; Eberhard, Dirk; Werner, Thilo; Franken, Holger; Childs, Dorothee; Doce, Carola; Savitski, Maria Fälth; Huber, Wolfgang; Bantscheff, Marcus; Savitski, Mikhail M; Drewes, Gerard

    2015-12-01

    We extended thermal proteome profiling to detect transmembrane protein-small molecule interactions in cultured human cells. When we assessed the effects of detergents on ATP-binding profiles, we observed shifts in denaturation temperature for ATP-binding transmembrane proteins. We also observed cellular thermal shifts in pervanadate-induced T cell-receptor signaling, delineating the membrane target CD45 and components of the downstream pathway, and with drugs affecting the transmembrane transporters ATP1A1 and MDR1. PMID:26524241

  18. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation.

    PubMed

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-08-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  19. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation*

    PubMed Central

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  20. Proteomic Profiling Of Two-Dimensional Gel Electrophoresis Protein Expression Data

    NASA Astrophysics Data System (ADS)

    Ahmad, Norhaiza; Zhang, J.; Brown, P. J.; James, D. C.; Birch, J. R.; Racher, A. J.; Smales, C. M.

    2008-01-01

    We have undertaken two-dimensional gel electrophoresis (2-DE) proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of 2-DE proteomic investigations there will always be `process variability' factors in any data set collected in this way. Some of this variation will arise during sample preparation, gel running and staining, while further variation will arise from the gel analysis procedure. Therefore, in order to identify all significant changes in protein expression between biological samples when analysed by 2-DE, the system precision or `error', and how this correlates to protein abundance, must be known. Only then can the system be considered robust and investigators accurately and confidently report all observable statistically significant changes in protein expression. We introduce an expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have highlighted a small number of candidate proteins for further investigation.

  1. Urine sample preparation in 96-well filter plates for quantitative clinical proteomics.

    PubMed

    Yu, Yanbao; Suh, Moo-Jin; Sikorski, Patricia; Kwon, Keehwan; Nelson, Karen E; Pieper, Rembert

    2014-06-01

    Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ~10 μg of total protein were processed by 96FASP and LC-MS resulting in 700-900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics. PMID:24797144

  2. Liquid MALDI MS Analysis of Complex Peptide and Proteome Samples.

    PubMed

    Wiangnon, Kanjana; Cramer, Rainer

    2016-09-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is well-known to be a powerful technique for the analysis of biological samples. By using glycerol-based liquid support matrices (LSMs) instead of conventional MALDI matrices the power of this technique can be extended further. In this study, we exploited LSMs for the identification of complex samples, that is, the Lactobacillus proteome and a bovine serum albumin (BSA) digest. Liquid and solid MALDI samples were manually and robotically prepared by coupling a nanoflow high-performance liquid chromatography (nanoHPLC) system to an automated MALDI sample spotting device. MS and MS/MS data were successfully acquired at the femtomole level using TOF/TOF as well as Q-TOF instrumentation and used for protein identification searching sequence databases. For the BSA digest analysis, liquid MALDI samples resulted in peptide mass fingerprints, which led to a higher confidence in protein identification compared with solid (crystalline) MALDI samples; however, postsource decay (PSD) MS/MS analysis of both the proteome of Lactobacillus plantarum WCFS1 cells and BSA digest showed that further optimization of the formation and detection of peptide fragment ions is still needed for liquid MALDI samples, as the MS/MS ion search score was lower than that for the solid MALDI samples, reflecting the poorer quality of the liquid MALDI-PSD spectra, which can be attributed to the differences in PSD parameters and their optimization that is currently achievable. PMID:27418427

  3. Proteomic profiling change during the early development of silicosis disease

    PubMed Central

    Miao, Rongming; Ding, Bangmei; Zhang, Yingyi; Xia, Qian; Li, Yong

    2016-01-01

    Background Silicosis is one of several severe occupational diseases for which effective diagnostic tools during early development are currently unavailable. In this study we focused on proteomic profiling during the early stages of silicosis to investigate the pathophysiology and identify the proteins involved. Methods Two-dimensional (2D) gel electrophoresis and MALDI-TOF-MS were used to assess the proteomic differences between healthy individuals (HI), dust-exposed workers without silicosis (DEW) and silicosis patients (SP). Proteins abundances that differed by a factor of two-fold or greater were subjected to more detailed analysis, and enzyme linked to immunosorbent assay (ELISA) was employed to correlate with protein expression data. Results Compared with HI, 42 proteins were more abundant and 8 were less abundant in DEW, and these were also differentially accumulated in SP. Closer inspection revealed that serine protease granzyme A, alpha-1-B-glycoprotein (A1BG) and the T4 surface glycoprotein precursor (TSGP) were among the up-regulated proteins in DEW and SP. Significant changes in serine proteases, glycoproteins and proto-oncogenes may be associated with the response to cytotoxicity and infectious pathogens by activation of T cells, positive regulation of extracellular matrix structural constituents and immune response, and fibroblast proliferation. Up-regulation of cytokines included TNFs, interferon beta precursor, interleukin 6, atypical chemokine receptor 2, TNFR13BV, and mutant IL-17F may be involved in the increased and persistent immune response and fibrosis that occurred during silicosis development. Conclusions Granzymes, glycoproteins, cytokines and immune factors were dramatically involved in the immune response, metabolism, signal regulation and fibrosis during the early development of silicosis. Proteomic profiling has expanded our understanding of the pathogenesis of silicosis, and identified a number of targets that may be potential

  4. Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry.

    PubMed

    Listgarten, Jennifer; Emili, Andrew

    2005-04-01

    The combined method of LC-MS/MS is increasingly being used to explore differences in the proteomic composition of complex biological systems. The reliability and utility of such comparative protein expression profiling studies is critically dependent on an accurate and rigorous assessment of quantitative changes in the relative abundance of the myriad of proteins typically present in a biological sample such as blood or tissue. In this review, we provide an overview of key statistical and computational issues relevant to bottom-up shotgun global proteomic analysis, with an emphasis on methods that can be applied to improve the dependability of biological inferences drawn from large proteomic datasets. Focusing on a start-to-finish approach, we address the following topics: 1) low-level data processing steps, such as formation of a data matrix, filtering, and baseline subtraction to minimize noise, 2) mid-level processing steps, such as data normalization, alignment in time, peak detection, peak quantification, peak matching, and error models, to facilitate profile comparisons; and, 3) high-level processing steps such as sample classification and biomarker discovery, and related topics such as significance testing, multiple testing, and choice of feature space. We report on approaches that have recently been developed for these steps, discussing their merits and limitations, and propose areas deserving of further research. PMID:15741312

  5. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  6. Comparative proteomic profiling of Hodgkin lymphoma cell lines.

    PubMed

    Vergara, D; Simeone, P; De Matteis, S; Carloni, S; Lanuti, P; Marchisio, M; Miscia, S; Rizzello, A; Napolitano, R; Agostinelli, C; Maffia, M

    2016-01-01

    Classical Hodgkin lymphoma (cHL) is a malignancy with complex pathogenesis. The hallmark of the disease is the presence of large mononucleated Hodgkin and bi- or multinucleated Reed/Sternberg (H/RS) cells. The origin of HRS cells in cHL is controversial as these cells show the coexpression of markers of several lineages. Using a proteomic approach, we compared the protein expression profile of cHL models of T- and B-cell derivation to find proteins differentially expressed in these cell lines. A total of 67 proteins were found differentially expressed between the two cell lines including metabolic proteins and proteins involved in the regulation of the cytoskeleton and/or cell migration, which were further validated by western blotting. Additionally, the expression of selected B- and T-cell antigens was also assessed by flow cytometry to reveal significant differences in the expression of different surface markers. Bioinformatics analysis was then applied to our dataset to find enriched pathways and networks, and to identify possible key regulators. In the present study, a proteomic approach was used to compare the protein expression profiles of two cHL cell lines. The identified proteins and/or networks, many of which not previously related to cHL, may be important to better define the pathogenesis of the disease, to identify novel diagnostic markers, and to design new therapeutic strategies. PMID:26588820

  7. Quantitative reactivity profiling predicts functional cysteines in proteomes

    PubMed Central

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M.; Richter, Florian; Khare, Sagar; Dillon, Myles B.D.; Bachovchin, Daniel A.; Mowen, Kerri; Baker, David; Cravatt, Benjamin F.

    2010-01-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here, we describe a proteomics method to quantitatively profile the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyperreactivity was a rare feature among cysteines and found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyperreactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and involved in iron-sulfur protein biogenesis. Finally, we demonstrate that quantitative reactivity profiling can also form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  8. Quantitative reactivity profiling predicts functional cysteines in proteomes.

    PubMed

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M; Richter, Florian; Khare, Sagar; Dillon, Myles B D; Bachovchin, Daniel A; Mowen, Kerri; Baker, David; Cravatt, Benjamin F

    2010-12-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  9. Dietary ractopamine influences sarcoplasmic proteome profile of pork Longissimus thoracis.

    PubMed

    Costa-Lima, Bruno R C; Suman, Surendranath P; Li, Shuting; Beach, Carol M; Silva, Teofilo J P; Silveira, Expedito T F; Bohrer, Benjamin M; Boler, Dustin D

    2015-05-01

    Dietary ractopamine improves pork leanness, whereas its effect on sarcoplasmic proteome has not been characterized. Therefore, the influence of ractopamine on sarcoplasmic proteome of post-mortem pork Longissimus thoracis muscle was examined. Longissimus thoracis samples were collected from carcasses (24 h post-mortem) of purebred Berkshire barrows (n=9) managed in mixed-sex pens and fed finishing diets containing ractopamine (RAC; 7.4 mg/kg for 14 days followed by 10.0 mg/kg for 14 days) or without ractopamine for 28 days (CON). Sarcoplasmic proteome was analyzed using two-dimensional electrophoresis and mass spectrometry. Nine protein spots were differentially abundant between RAC and CON groups. Glyceraldehyde-3-phosphate dehydrogenase and phosphoglucomutase-1 were over-abundant in CON, whereas serum albumin, carbonic anhydrase 3, L-lactate dehydrogenase A chain, fructose-bisphosphate aldolase A, and myosin light chain 1/3 were over-abundant in RAC. These results suggest that ractopamine influences the abundance of enzymes involved in glycolytic metabolism, and the differential abundance of glycolytic enzymes could potentially influence the conversion of muscle to meat. PMID:25576742

  10. Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction

    SciTech Connect

    Diamond, Deborah L.; Jacobs, Jon M.; Paeper, Bryan; Proll, Sean; Gritsenko, Marina A.; Carithers, Jr., Robert L.; Larson , Anne M.; Yeh, Matthew M.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2007-09-01

    Liver biopsies from HCV-infected patients offer the unique opportunity to study human liver biology and disease in vivo. However, the low protein yields associated with these small samples present a significant challenge for proteomic analysis. In this study we describe the application of an ultra-sensitive proteomics platform for performing robust quantitative proteomic studies on microgram amounts of HCV-infected human liver tissue from 15 patients at different stages of fibrosis. A high quality liver protein data base containing 5,920 unique protein identifications supported high throughput quantitative studies using 16O:18O stable isotope labeling in combination with the accurate mass and time (AMT) tag approach. A total of 1,641 liver biopsy proteins were quantified and ANOVA identified 210 proteins exhibiting statistically significant differences associated with fibrosis stage. Hierarchical clustering revealed that biopsies representative of later fibrosis stages (e.g. Batts-Ludwig stages 3-4) exhibited a distinct protein expression profile indicating an apparent down-regulation of many proteins when compared to samples from earlier fibrosis stages (e.g. Batts-Ludwig stages 0-2). Functional analysis of these signature proteins suggests that impairment of key mitochondrial processes including fatty acid oxidation and oxidative phosphorylation, and response to oxidative stress and reactive oxygen species occurs during advanced stage 3-4 fibrosis. In conclusion, the results reported here represent a significant advancement in clinical proteomics providing to our knowledge, the first demonstration of global proteomic alterations accompanying liver disease progression in patients chronically infected with HCV. Our findings contribute to a generally emerging theme associating oxidative stress and hepatic mitochondrial dysfunction with HCV pathogenesis.

  11. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract.

    PubMed

    Zhen, Zhen; Luthringer, Bérengère; Yang, Li; Xi, Tingfei; Zheng, Yufeng; Feyerabend, Frank; Willumeit, Regine; Lai, Chen; Ge, Zigang

    2016-12-01

    Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants. PMID:27612743

  12. HPLC-Chip/MS technology in proteomic profiling.

    PubMed

    Vollmer, Martin; van de Goor, Tom

    2009-01-01

    HPLC-chip/MS is a novel nanoflow analytical technology conducted on a microfabricated chip that allows for highly efficient HPLC separation and superior sensitive MS detection of complex proteomic mixtures. This is possible through on-chip preconcentration and separation with fluidic connection made automatically in a leak-tight fashion. Minimum precolumn and postcolumn peak dispersion and uncompromised ease of use result in compounds eluting in bands of only a few nanoliters. The chip is fabricated out of bio-inert polyimide-containing channels and integrated chip structures, such as an electrospray emitter, columns, and frits manufactured by laser ablation technology. Meanwhile, a variety of HPLC-chips differing in design and stationary phase are commercially available, which provide a comprehensive solution for applications in proteomics, glycomics, biomarker, and pharmaceutical discovery. The HPLC-chip can also be easily integrated into a multidimensional separation workflow where different orthogonal separation techniques are combined to solve a highly complex separation problems. In this chapter, we describe in detail the methodological chip usage and functionality and its application in the elucidation of the protein profile of human nucleoli. PMID:19488689

  13. PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration

    PubMed Central

    Crappé, Jeroen; Ndah, Elvis; Koch, Alexander; Steyaert, Sandra; Gawron, Daria; De Keulenaer, Sarah; De Meester, Ellen; De Meyer, Tim; Van Criekinge, Wim; Van Damme, Petra; Menschaert, Gerben

    2015-01-01

    An increasing amount of studies integrate mRNA sequencing data into MS-based proteomics to complement the translation product search space. However, several factors, including extensive regulation of mRNA translation and the need for three- or six-frame-translation, impede the use of mRNA-seq data for the construction of a protein sequence search database. With that in mind, we developed the PROTEOFORMER tool that automatically processes data of the recently developed ribosome profiling method (sequencing of ribosome-protected mRNA fragments), resulting in genome-wide visualization of ribosome occupancy. Our tool also includes a translation initiation site calling algorithm allowing the delineation of the open reading frames (ORFs) of all translation products. A complete protein synthesis-based sequence database can thus be compiled for mass spectrometry-based identification. This approach increases the overall protein identification rates with 3% and 11% (improved and new identifications) for human and mouse, respectively, and enables proteome-wide detection of 5′-extended proteoforms, upstream ORF translation and near-cognate translation start sites. The PROTEOFORMER tool is available as a stand-alone pipeline and has been implemented in the galaxy framework for ease of use. PMID:25510491

  14. Quantitative proteomic profiling identifies protein correlates to EGFR kinase inhibition.

    PubMed

    Kani, Kian; Faca, Vitor M; Hughes, Lindsey D; Zhang, Wenxuan; Fang, Qiaojun; Shahbaba, Babak; Luethy, Roland; Erde, Jonathan; Schmidt, Joanna; Pitteri, Sharon J; Zhang, Qing; Katz, Jonathan E; Gross, Mitchell E; Plevritis, Sylvia K; McIntosh, Martin W; Jain, Anjali; Hanash, Samir; Agus, David B; Mallick, Parag

    2012-05-01

    Clinical oncology is hampered by lack of tools to accurately assess a patient's response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not responding to a therapy could be usefully incorporated into tools for monitoring response. Here, we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study, we use stable isotope labeling of amino acids in culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGF receptor (EGFR)-targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information, and a subset consisting of 400 proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and showed that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response. PMID:22411897

  15. Quantitative Proteomic profiling identifies protein correlates to EGFR kinase inhibition

    PubMed Central

    Kani, Kian; Faca, Vitor M.; Hughes, Lindsey D.; Zhang, Wenxuan; Fang, Qiaojun; Shahbaba, Babak; Luethy, Roland; Erde, Jonathan; Schmidt, Joanna; Pitteri, Sharon J.; Zhang, Qing; Katz, Jonathan E.; Gross, Mitchell E.; Plevritis, Sylvia K.; McIntosh, Martin W.; Jain, Anjali; Hanash, Sam; Agus, David B.; Mallick, Parag

    2014-01-01

    Clinical oncology is hampered by a lack of tools to accurately assess a patient’s response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not-responding to a therapy could be usefully incorporated into tools for monitoring response. Here we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study we use Stable Isotope Labeling of Amino acids in Culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGFR targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information and a subset consisting of [400] proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and demonstrated that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response. PMID:22411897

  16. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone

    PubMed Central

    Prado, Renata S.; Bailão, Alexandre M.; Silva, Lívia C.; de Oliveira, Cecília M. A.; Marques, Monique F.; Silva, Luciano P.; Silveira-Lacerda, Elisângela P.; Lima, Aliny P.; Soares, Célia M.; Pereira, Maristela

    2015-01-01

    The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM), a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MSE. The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied. PMID:26150808

  17. Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles

    SciTech Connect

    Callister, S.J.; Wilkins, M.J.; Nicora, C.D.; Williams, K.H.; Banfield, J.F.; VerBerkmoes, N.C.; Hettich, R.L.; NGuessan, A.L.; Mouser, P.J.; Elifantz, H.; Smith, R.D.; Lovley, D.R.; Lipton, M.S.; Long, P.E.

    2010-07-15

    Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or “pseudo-metagenomes”, for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.

  18. Analysis of Biostimulated Microbial Communities from Two Field Experiments Reveals Temporal and Spatial Differences in Proteome Profiles

    SciTech Connect

    Callister, Stephen J; Wilkins, Mike; Nicora, Carrie D.; Williams, Ken; Banfield, Jillian F.; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; N'Guessan, A. Lucie; Mouser, Paula J; Elifantz, Hila; Smith, Richard D.; Lovley, Derek; Lipton, Mary S; Long, Phil

    2010-01-01

    Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetateamended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or pseudo-metagenomes , for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally,ashift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.

  19. Urinary proteomic profiling in severe obesity and obstructive sleep apnoea with CPAP treatment

    PubMed Central

    Seetho, Ian W; Ramírez-Torres, Adela; Albalat, Amaya; Mullen, William; Mischak, Harald; Parker, Robert J; Craig, Sonya; Duffy, Nick; Hardy, Kevin J; Burniston, Jatin G; Wilding, John PH

    2015-01-01

    Introduction Obstructive sleep apnoea (OSA) is common in obesity and is associated with cardiovascular and metabolic complications. Continuous positive airway pressure (CPAP) in OSA may lead to physiological changes reflected in the urinary proteome. The aim of this study was to characterise the urinary proteome in severely obese adult subjects with OSA who were receiving CPAP compared with severely obese subjects without OSA. Methods Severely obese subjects with and without OSA were recruited. Subjects with OSA were receiving CPAP. Body composition and blood pressure measurements were recorded. Urinary samples were analysed by Capillary Electrophoresis–Mass Spectrometry (CE–MS). Results Twenty-seven subjects with OSA-on-CPAP (age 49±7years, BMI 43±7 kg/m2) and 25 controls without OSA (age 52±9years, BMI 39±4 kg/m2) were studied. Age and BMI were not significantly different between groups. Mean CPAP use for OSA patients was 14.5±1.0 months. Metabolic syndrome was present in 14(52%) of those with OSA compared with 6(24%) of controls (p=0.039). A urinary proteome comprising 15 peptides was identified showing differential expression between the groups (p<0.01). Although correction for multiple testing did not reach significance, sequences were determined for 8 peptides demonstrating origins from collagens, fibrinogen beta chain and T-cadherin that may be associated with underlying cardiovascular disease mechanisms in OSA. Conclusions The urinary proteome is compared in OSA with CPAP and without OSA in severe obesity. The effects of CPAP on OSA may lead to changes in the urinary peptides but further research work is needed to investigate the potential role for urinary proteomics in characterising urinary peptide profiles in OSA. PMID:26483946

  20. A Chemical Proteomics Approach to Profiling the ATP-binding Proteome of Mycobacterium tuberculosis *

    PubMed Central

    Wolfe, Lisa M.; Veeraraghavan, Usha; Idicula-Thomas, Susan; Schürer, Stephan; Wennerberg, Krister; Reynolds, Robert; Besra, Gurdyal S.; Dobos, Karen M.

    2013-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the leading causes of death worldwide despite extensive research, directly observed therapy using multidrug regimens, and the widespread use of a vaccine. The majority of patients harbor the bacterium in a state of metabolic dormancy. New drugs with novel modes of action are needed to target essential metabolic pathways in M. tuberculosis; ATP-competitive enzyme inhibitors are one such class. Previous screening efforts for ATP-competitive enzyme inhibitors identified several classes of lead compounds that demonstrated potent anti-mycobacterial efficacy as well as tolerable levels of toxicity in cell culture. In this report, a probe-based chemoproteomic approach was used to selectively profile the M. tuberculosis ATP-binding proteome in normally growing and hypoxic M. tuberculosis. From these studies, 122 ATP-binding proteins were identified in either metabolic state, and roughly 60% of these are reported to be essential for survival in vitro. These data are available through ProteomeXchange with identifier PXD000141. Protein families vital to the survival of the tubercle bacillus during hypoxia emerged from our studies. Specifically, along with members of the DosR regulon, several proteins involved in energy metabolism (Icl/Rv0468 and Mdh/Rv1240) and lipid biosynthesis (UmaA/Rv0469, DesA1/Rv0824c, and DesA2/Rv1094) were found to be differentially abundant in hypoxic versus normal growing cultures. These pathways represent a subset of proteins that may be relevant therapeutic targets for development of novel ATP-competitive antibiotics. PMID:23462205

  1. Proteomic Mucin Profiling for the Identification of Cystic Precursors of Pancreatic Cancer

    PubMed Central

    2014-01-01

    Background Pancreatic cystic lesions (PCLs) are increasingly frequent radiological incidentalomas, with a considerable proportion representing precursors of pancreatic cancer. Better diagnostic tools are required for patients to benefit from this development. Methods To evaluate whether cyst fluid mucin expression could predict malignant potential and/or transformation in PCLs, a proteomic method was devised and prospectively evaluated in consecutive patients referred to our tertiary center for endoscopic ultrasound-guided aspiration of cystic lesions from May 2007 through November 2008 (discovery cohort) and from December 2008 through October 2012 (validation cohort). Cytology and cyst fluid carcinoembryonic antigen (CEA; premalignancy > 192ng/mL, malignancy > 1000ng/mL) were routinely analyzed, and samples were further processed as follows: one-dimensional gel electrophoresis, excision of high-mass areas, tryptic digestion and nano-liquid chromatography–tandem mass spectrometry, with peptide identification by Mascot software and an in-house mucin database. All diagnostic evaluations were blinded to proteomics results. Histology was required to confirm the presence/absence of malignant transformation. All statistical tests were two-sided. Results Proteomic mucin profiling proved statistically significantly more accurate (97.5%; 95% confidence interval [CI] = 90.3% to 99.6%) than cytology (71.4%; 95% CI = 59.8% to 80.9%; P < .001) and cyst fluid CEA (78.0%; 95% CI = 65.0% to 87.3%; P < .001) in identifying the 37 (out of 79; 46.8%) lesions with malignant potential (ie, premalignant or malignant tumors). The accuracy of proteomics was nearly identical (96.6% vs 98.0%) between the discovery (n = 29) and validation (n = 50) cohorts. Furthermore, mucin profiling predicted malignant transformation, present in 16 out of 29 (discovery cohort: 9, validation cohort: 20) lesions with available histology, with 89.7% accuracy (95% CI = 71.5% to 97.3%) (for the validation

  2. Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme Knockout Strains

    PubMed Central

    Isasa, Marta; Rose, Christopher M.; Elsasser, Suzanne; Navarrete-Perea, José; Paulo, Joao A.; Finley, Daniel J.; Gygi, Steven P.

    2016-01-01

    Characterizing a protein’s function often requires a description of the cellular state in its absence. Multiplexing in mass spectrometry-based proteomics has now achieved the ability to globally measure protein expression levels in yeast from 10 cell states simultaneously. We applied this approach to quantify expression differences in wild type and nine deubiquitylating enzyme (DUB) knockout strains with the goal of creating “information networks” that might provide deeper, mechanistic insights into a protein’s biological role. In total, more than 3700 proteins were quantified with high reproducibility across three biological replicates (30 samples in all). DUB mutants demonstrated different proteomics profiles, consistent with distinct roles for each family member. These included differences in total ubiquitin levels and specific chain linkages. Moreover, specific expression changes suggested novel functions for several DUB family members. For instance, the ubp3Δ mutant showed large expression changes for members of the cytochrome C oxidase complex, consistent with a role for Ubp3 in mitochondrial regulation. Several DUBs also showed broad expression changes for phosphate transporters as well as other components of the inorganic phosphate signaling pathway, suggesting a role for these DUBs in regulating phosphate metabolism. These data highlight the potential of multiplexed proteome-wide analyses for biological investigation and provide a framework for further study of the DUB family. Our methods are readily applicable to the entire collection of yeast deletion mutants and may help facilitate systematic analysis of yeast and other organisms. PMID:26503604

  3. Quantitative proteomic profiling of human articular cartilage degradation in osteoarthritis.

    PubMed

    Lourido, Lucía; Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Fernández-Tajes, Juan; Blanco, Francisco J; Ruiz-Romero, Cristina

    2014-12-01

    Osteoarthritis (OA) is the most common rheumatic pathology and is characterized primarily by articular cartilage degradation. Despite its high prevalence, there is no effective therapy to slow disease progression or regenerate the damaged tissue. Therefore, new diagnostic and monitoring tests for OA are urgently needed, which would also promote the development of alternative therapeutic strategies. In the present study, we have performed an iTRAQ-based quantitative proteomic analysis of secretomes from healthy human articular cartilage explants, comparing their protein profile to those from unwounded (early disease) and wounded (advanced disease) zones of osteoarthritic tissue. This strategy allowed us to identify a panel of 76 proteins that are distinctively released by the diseased tissue. Clustering analysis allowed the classification of proteins according to their different profile of release from cartilage. Among these proteins, the altered release of osteoprotegerin (decreased in OA) and periostin (increased in OA), both involved in bone remodelling processes, was verified in further analyses. Moreover, periostin was also increased in the synovial fluid of OA patients. Altogether, the present work provides a novel insight into the mechanisms of human cartilage degradation and a number of new cartilage-characteristic proteins with possible biomarker value for early diagnosis and prognosis of OA. PMID:25383958

  4. Advances and Challenges in Liquid Chromatography-Mass Spectrometry-Based Proteomics Profiling for Clinical Applications

    SciTech Connect

    Qian, Weijun; Jacobs, Jon M.; Liu, Tao; Camp, David G.; Smith, Richard D.

    2006-08-01

    The advances in proteomic technologies provide tremendous opportunities for applying these technologies in biomarker-related clinical applications; however, the unique characteristics of human biofluids such as high dynamic range in protein abundances and extreme complexity of human proteomes present tremendous challenges for current analytical technologies. In this review, we focus on summarizing the recent advances in LC-MS based proteomic profiling and its applications in clinical proteomics as well as the major challenges for implementing these technologies for more effective biomarker discovery. Over the last few years, tremendous efforts have been directed towards the development of more effective approaches for characterizing the human plasma/serum and other biofluid proteomes. The developments in immunodepletion and various fractionation approaches in combination with much improved LC-MS platforms have enabled the profiling of the plasma proteome with much greater dynamic range of coverage, allowing many proteins at low ng/mL levels being confidently identified. Despite the significant advances and efforts, the dynamic range of measurements or extent of proteome coverage, the confidence of peptide/protein identification, the accuracy of quantitation, the throughput of analysis, and the robustness of the present instrumentation are still among the major challenges for implementation of a proteomic profiling platform suitable for efficient clinical applications.

  5. A Miniaturized Chemical Proteomic Approach for Target Profiling of Clinical Kinase Inhibitors in Tumor Biopsies

    PubMed Central

    Chamrád, Ivo; Rix, Uwe; Stukalov, Alexey; Gridling, Manuela; Parapatics, Katja; Müller, André C.; Altiok, Soner; Colinge, Jacques; Superti-Furga, Giulio; Haura, Eric B.; Bennett, Keiryn L.

    2014-01-01

    While targeted therapy based on the idea of attenuating the activity of a preselected, therapeutically relevant protein has become one of the major trends in modern cancer therapy, no truly specific targeted drug has been developed and most clinical agents have displayed a degree of polypharmacology. Therefore, the specificity of anticancer therapeutics has emerged as a highly important but severely underestimated issue. Chemical proteomics is a powerful technique combining postgenomic drug-affinity chromatography with high-end mass spectrometry analysis and bioinformatic data processing to assemble a target profile of a desired therapeutic molecule. Due to high demands on the starting material, however, chemical proteomic studies have been mostly limited to cancer cell lines. Herein, we report a down-scaling of the technique to enable the analysis of very low abundance samples, as those obtained from needle biopsies. By a systematic investigation of several important parameters in pull-downs with the multikinase inhibitor bosutinib, the standard experimental protocol was optimized to 100 µg protein input. At this level, more than 30 well-known targets were detected per single pull-down replicate with high reproducibility. Moreover, as presented by the comprehensive target profile obtained from miniaturized pull-downs with another clinical drug, dasatinib, the optimized protocol seems to be extendable to other drugs of interest. Sixty distinct human and murine targets were finally identified for bosutinib and dasatinib in chemical proteomic experiments utilizing core needle biopsy samples from xenotransplants derived from patient tumor tissue. Altogether, the developed methodology proves robust and generic and holds many promises for the field of personalized health care. PMID:23901793

  6. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    PubMed Central

    Feist, Peter; Hummon, Amanda B.

    2015-01-01

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed. PMID:25664860

  7. The advantage of laser-capture microdissection over whole tissue analysis in proteomic profiling studies.

    PubMed

    De Marchi, Tommaso; Braakman, Rene B H; Stingl, Christoph; van Duijn, Martijn M; Smid, Marcel; Foekens, John A; Luider, Theo M; Martens, John W M; Umar, Arzu

    2016-05-01

    Laser-capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated. In order to address this, we compared previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which both LCM enriched tumor epithelial cells and WTL samples were analyzed. Label-free quantification (LFQ) analysis through MaxQuant software showed a significantly higher number of identified and quantified proteins in LCM enriched samples (3404) compared to WTLs (2837). Furthermore, WTL samples displayed a higher amount of missing data compared to LCM both at peptide and protein levels (p-value < 0.001). 2D analysis on co-expressed proteins revealed discrepant expression of immune system and lipid metabolisms related proteins between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly abundant proteins. All data have been deposited in the ProteomeXchange with the dataset identifier PXD002381 (http://proteomecentral.proteomexchange.org/dataset/PXD002381). PMID:27030549

  8. Surfactant-Induced Artifacts during Proteomic Sample Preparation.

    PubMed

    Ji, Yuhuan; Liu, Minjing; Bachschmid, Markus M; Costello, Catherine E; Lin, Cheng

    2015-06-01

    Bottom-up proteomics is a powerful tool for characterization of protein post-translational modifications (PTMs), where PTMs are identified at the peptide level by mass spectrometry (MS) following protein digestion. However, enzymatic digestion is associated with additional sample processing steps that may potentially introduce artifactual modifications. Here, during an MS study of the PTMs of the regulator of G-protein signaling 4, we discovered that the use of ProteaseMAX, which is an acid-labile surfactant commonly used to improve protein solubilization and digestion efficiency, can lead to in vitro modifications on cysteine residues. These hydrophobic modifications resemble S-palmitoylation and hydroxyfarnesylation, thus discouraging the use of ProteaseMAX in studies of lipid modifications of proteins. Furthermore, since they target the cysteine thiol group, the presence of these artifacts will inevitably lead to inaccuracies in quantitative analysis of cysteine modifications. PMID:25945600

  9. Proteomic Profiling of a Biomimetic Drug Delivery Platform

    PubMed Central

    Corbo, Claudia; Parodi, Alessandro; Evangelopoulos, Michael; Engler, David A.; Matsunami, Risë K.; Engler, Anthony C.; Molinaro, Roberto; Scaria, Shilpa; Salvatore, Francesco; Tasciotti, Ennio

    2014-01-01

    Current delivery platforms are typically designed for prolonged circulation that favors superior accumulation of the payload in the targeted tissue. The design of efficient surface modifications determines both a longer circulation time and targeting abilities of particles. The optimization of synthesis protocols to efficiently combine targeting molecules and elements that allow for an increased circulation time can be challenging and almost impossible when several functional elements are needed. On the other hand, in the last decade, the development of bioinspired technologies was proposed as a new approach with which to increase particle safety, biocompatibility and targeting, while maintaining the synthesis protocols simple and reproducible. Recently, we developed a new drug delivery system inspired by the biology of immune cells called leukolike vector (LLV) and formed by a nanoporous silicon core and a shell derived from the leucocyte cell membrane. The goal of this study is to investigate the protein content of the LLV. Here we report the proteomic profiling of the LLV and demonstrate that our approach can be used to modify the surface of synthetic particles with more than 150 leukocyte membrane-associated proteins that determine particle safety, circulation time and targeting abilities towards inflamed endothelium. PMID:25382209

  10. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients

    PubMed Central

    Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets’ tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight

  11. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    PubMed

    Cevik, Ozge; Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight into

  12. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  13. Human hair shaft proteomic profiling: individual differences, site specificity and cuticle analysis.

    PubMed

    Laatsch, Chelsea N; Durbin-Johnson, Blythe P; Rocke, David M; Mukwana, Sophie; Newland, Abby B; Flagler, Michael J; Davis, Michael G; Eigenheer, Richard A; Phinney, Brett S; Rice, Robert H

    2014-01-01

    Hair from different individuals can be distinguished by physical properties. Although some data exist on other species, examination of the individual molecular differences within the human hair shaft has not been thoroughly investigated. Shotgun proteomic analysis revealed considerable variation in profile among samples from Caucasian, African-American, Kenyan and Korean subjects. Within these ethnic groups, prominent keratin proteins served to distinguish individual profiles. Differences between ethnic groups, less marked, relied to a large extent on levels of keratin associated proteins. In samples from Caucasian subjects, hair shafts from axillary, beard, pubic and scalp regions exhibited distinguishable profiles, with the last being most different from the others. Finally, the profile of isolated hair cuticle cells was distinguished from that of total hair shaft by levels of more than 20 proteins, the majority of which were prominent keratins. The cuticle also exhibited relatively high levels of epidermal transglutaminase (TGM3), accounting for its observed low degree of protein extraction by denaturants. In addition to providing insight into hair structure, present findings may lead to improvements in differentiating hair from various ethnic origins and offer an approach to extending use of hair in crime scene evidence for distinguishing among individuals. PMID:25165623

  14. Functional Classification of Cellular Proteome Profiles Support the Identification of Drug Resistance Signatures in Melanoma Cells

    PubMed Central

    2013-01-01

    Drug resistance is a major obstacle in melanoma treatment. Recognition of specific resistance patterns, the understanding of the patho-physiology of drug resistance, and identification of remaining options for individual melanoma treatment would greatly improve therapeutic success. We performed mass spectrometry-based proteome profiling of A375 melanoma cells and HeLa cells characterized as sensitive to cisplatin in comparison to cisplatin resistant M24met and TMFI melanoma cells. Cells were fractionated into cytoplasm, nuclei and secretome and the proteome profiles classified according to Gene Ontology. The cisplatin resistant cells displayed increased expression of lysosomal as well as Ca2+ ion binding and cell adherence proteins. These findings were confirmed using Lysotracker Red staining and cell adhesion assays with a panel of extracellular matrix proteins. To discriminate specific survival proteins, we selected constitutively expressed proteins of resistant M24met cells which were found expressed upon challenging the sensitive A375 cells. Using the CPL/MUW proteome database, the selected lysosomal, cell adherence and survival proteins apparently specifying resistant cells were narrowed down to 47 proteins representing a potential resistance signature. These were tested against our proteomics database comprising more than 200 different cell types/cell states for its predictive power. We provide evidence that this signature enables the automated assignment of resistance features as readout from proteome profiles of any human cell type. Proteome profiling and bioinformatic processing may thus support the understanding of drug resistance mechanism, eventually guiding patient tailored therapy. PMID:23713901

  15. Changes of human serum proteome profile during 7-day “dry” immersion

    NASA Astrophysics Data System (ADS)

    Pakharukova, N. A.; Pastushkova, L. Kh.; Larina, I. M.; Grigoriev, A. I.

    2011-05-01

    The aim of this study was to characterize changes of serum proteome profile during 7-day "dry" immersion (DI). The experiment with DI consisted of three series: control group without countermeasures (10 men), with using mechanical stimulation (6 men) and low-frequency myostimulation (5 men) as preventive means. Serum samples were fractionated using ClinProt robot (Bruker Daltonics) on magnetic beads (weak cation exchange magnetic beads—MB WCX) prior to mass-spectral profiling. It was obtained 170 peaks after fractionation of serum samples in each group. On 7th immersion day peak areas of fibrinopeptide A ( m/ z=1206; 1464), angiotensin II ( m/ z=1051), high molecular mass kininogen fragment ( m/ z=2133 Da) and C3-fragment of the complement system ( m/ z=1350 Da) were significantly decreased comparing with pre-experimental values of all experimental series. Peak areas of apolipoprotein C III ( m/ z=9419) and C4a fragment of the complement system ( m/ z=3206 Da) were increased. On 7th day of the recovery peak areas of all changed peaks were not close to pre-experimental values. This fact provided evidence of incomplete recovery of an organism after DI. The depth of the alterations had considerable individual variability. Thereby the detected changes of serum proteome profile in the experiment. They indicated a reorganization of the hormonal, immune systems and lipid metabolism. The use of myostimulation and mechanical stimulation as countermeasures partly compensated adverse effects of 7-day dry immersion on the parameters of coagulation system (fibrinopeptide A) and lipid metabolism (apolipoprotein CIII).

  16. S- to N-Palmitoyl Transfer During Proteomic Sample Preparation

    NASA Astrophysics Data System (ADS)

    Ji, Yuhuan; Bachschmid, Markus M.; Costello, Catherine E.; Lin, Cheng

    2016-04-01

    N-palmitoylation has been reported in a number of proteins and suggested to play an important role in protein localization and functions. However, it remains unclear whether N-palmitoylation is a direct enzyme-catalyzed process, or results from intramolecular S- to N-palmitoyl transfer. Here, using the S-palmitoyl peptide standard, GCpalmLGNAK, as the model system, we observed palmitoyl migration from the cysteine residue to either the peptide N-terminus or the lysine side chain during incubation in both neutral and slightly basic buffers commonly used in proteomic sample preparation. Palmitoyl transfer can take place either intra- or inter-molecularly, with the peptide N-terminus being the preferred migration site, presumably because of its lower basicity. The extent of intramolecular palmitoyl migration was low in the system studied, as it required the formation of an entropically unfavored macrocycle intermediate. Intermolecular palmitoyl transfer, however, remained a tangible problem, and may lead to erroneous reporting of in vivo N-palmitoylation. It was found that addition of the MS-compatible detergent RapiGest could significantly inhibit intermolecular palmitoyl transfer, as well as thioester hydrolysis and DTT-induced thioester cleavage. Finally, palmitoyl transfer from the cysteine residue to the peptide N-terminus can also occur in the gas phase, during collision-induced dissociation, and result in false identification of N-palmitoylation. Therefore, one must be careful with both sample preparation and interpretation of tandem mass spectra in the study of N-palmitoylation.

  17. Proteomics and the Analysis of Proteomic Data: 2013 Overview of Current Protein-Profiling Technologies

    PubMed Central

    Bruce, Can; Stone, Kathryn; Gulcicek, Erol; Williams, Kenneth

    2013-01-01

    Mass spectrometry has become a major tool in the study of proteomes. The analysis of proteolytic peptides and their fragment ions by this technique enables the identification and quantitation of the precursor proteins in a mixture. However, deducing chemical structures and then protein sequences from mass-to-charge ratios is a challenging computational task. Software tools incorporating powerful algorithms and statistical methods improved our ability to process the large quantities of proteomics data. Repositories of spectral data make both data analysis and experimental design more efficient. New approaches in quantitative and statistical proteomics make possible a greater coverage of the proteome, the identification of more post-translational modifications and a greater sensitivity in the quantitation of targeted proteins. PMID:23504934

  18. Proteomic profiling of Beta vulgaris leaves during rhizomania compatible interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania severely impacts sugarbeet (Beta vulgaris) production throughout the world, and is widely prevalent in most sugarbeet growing regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with Beet Necr...

  19. Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems.

    PubMed

    Murray, Evan; Cho, Jae Hun; Goodwin, Daniel; Ku, Taeyun; Swaney, Justin; Kim, Sung-Yon; Choi, Heejin; Park, Young-Gyun; Park, Jeong-Yoon; Hubbert, Austin; McCue, Margaret; Vassallo, Sara; Bakh, Naveed; Frosch, Matthew P; Wedeen, Van J; Seung, H Sebastian; Chung, Kwanghun

    2015-12-01

    Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels. PMID:26638076

  20. Profiling thiol redox proteome using isotope tagging mass spectrometry.

    PubMed

    Parker, Jennifer; Zhu, Ning; Zhu, Mengmeng; Chen, Sixue

    2012-01-01

    Pseudomonas syringae pv. tomato strain DC3000 not only causes bacterial speck disease in Solanum lycopersicum but also on Brassica species, as well as on Arabidopsis thaliana, a genetically tractable host plant(1,2). The accumulation of reactive oxygen species (ROS) in cotyledons inoculated with DC3000 indicates a role of ROS in modulating necrotic cell death during bacterial speck disease of tomato(3). Hydrogen peroxide, a component of ROS, is produced after inoculation of tomato plants with Pseudomonas(3). Hydrogen peroxide can be detected using a histochemical stain 3'-3' diaminobenzidine (DAB)(4). DAB staining reacts with hydrogen peroxide to produce a brown stain on the leaf tissue(4). ROS has a regulatory role of the cellular redox environment, which can change the redox status of certain proteins(5). Cysteine is an important amino acid sensitive to redox changes. Under mild oxidation, reversible oxidation of cysteine sulfhydryl groups serves as redox sensors and signal transducers that regulate a variety of physiological processes(6,7). Tandem mass tag (TMT) reagents enable concurrent identification and multiplexed quantitation of proteins in different samples using tandem mass spectrometry(8,9). The cysteine-reactive TMT (cysTMT) reagents enable selective labeling and relative quantitation of cysteine-containing peptides from up to six biological samples. Each isobaric cysTMT tag has the same nominal parent mass and is composed of a sulfhydryl-reactive group, a MS-neutral spacer arm and an MS/MS reporter(10). After labeling, the samples were subject to protease digestion. The cysteine-labeled peptides were enriched using a resin containing anti-TMT antibody. During MS/MS analysis, a series of reporter ions (i.e., 126-131 Da) emerge in the low mass region, providing information on relative quantitation. The workflow is effective for reducing sample complexity, improving dynamic range and studying cysteine modifications. Here we present redox proteomic

  1. Proteomic profiling reveals a catalogue of new candidate proteins for human skin aging.

    PubMed

    Laimer, Martin; Kocher, Thomas; Chiocchetti, Andreas; Trost, Andrea; Lottspeich, Friedrich; Richter, Klaus; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2010-10-01

    Studies of skin aging are usually performed at the genomic level by investigating differentially regulated genes identified through subtractive hybridization or microarray analyses. In contrast, relatively few studies have investigated changes in protein expression of aged skin using proteomic profiling by two-dimensional (2-D) gel electrophoresis and mass spectrometry, although this approach at the protein level is suggested to reflect more accurately the aging phenotype. We undertook such a proteomic analysis of intrinsic human skin aging by quantifying proteins extracted and fluorescently labeled from sun-protected human foreskin samples pooled from 'young' and 'old' men. In addition, we analyzed these candidate gene products by 1-D and 2-D western blotting to obtain corroborative protein expression data, and by both real-time PCR (RT-PCR) and microarray analyses to confirm expression at the mRNA level. We discovered 30 putative proteins for skin aging, including previously unrecognized, post-translationally regulated candidates such as phosphatidyl-ethanolamine binding protein (PEBP) and carbonic anhydrase 1 (CA1). PMID:20849533

  2. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    PubMed Central

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  3. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    PubMed

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  4. Profile sampling dependence of the MLAYER program

    NASA Astrophysics Data System (ADS)

    Chang, Ting-Hsun

    1991-03-01

    The dependence of the predictions of the MLAYER program on the set of heights at which the refractive index value are sampled from a fixed reference profile are analyzed. A refractivity profile with a four-meter evaporation duct is adopted as a reference. Two variable piecewise linear profiles of four and five segments, respectively, are used to approximate the reference profile for MLAYER computations. The sensitivities of the waveguide mode location, the range attenuation rate, and the height-gain function to the changes of the piece-wise linear profiles are investigated at the frequencies 3, 6, 10, and 15 GHz. The frequency dependence of the dominant mode for one profile is also studied to investigate the fact that the sensitivity to changes in sampling point location is lower at GHz than at other frequencies. A general rule-of-thumb for the change in range attenuation rate due to a slight change in refractivity is suggested.

  5. Shotgun Proteomics of Tomato Fruits: Evaluation, Optimization and Validation of Sample Preparation Methods and Mass Spectrometric Parameters

    PubMed Central

    Kilambi, Himabindu V.; Manda, Kalyani; Sanivarapu, Hemalatha; Maurya, Vineet K.; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2016-01-01

    An optimized protocol was developed for shotgun proteomics of tomato fruit, which is a recalcitrant tissue due to a high percentage of sugars and secondary metabolites. A number of protein extraction and fractionation techniques were examined for optimal protein extraction from tomato fruits followed by peptide separation on nanoLCMS. Of all evaluated extraction agents, buffer saturated phenol was the most efficient. In-gel digestion [SDS-PAGE followed by separation on LCMS (GeLCMS)] of phenol-extracted sample yielded a maximal number of proteins. For in-solution digested samples, fractionation by strong anion exchange chromatography (SAX) also gave similar high proteome coverage. For shotgun proteomic profiling, optimization of mass spectrometry parameters such as automatic gain control targets (5E+05 for MS, 1E+04 for MS/MS); ion injection times (500 ms for MS, 100 ms for MS/MS); resolution of 30,000; signal threshold of 500; top N-value of 20 and fragmentation by collision-induced dissociation yielded the highest number of proteins. Validation of the above protocol in two tomato cultivars demonstrated its reproducibility, consistency, and robustness with a CV of < 10%. The protocol facilitated the detection of five-fold higher number of proteins compared to published reports in tomato fruits. The protocol outlined would be useful for high-throughput proteome analysis from tomato fruits and can be applied to other recalcitrant tissues. PMID:27446192

  6. Shotgun Proteomics of Tomato Fruits: Evaluation, Optimization and Validation of Sample Preparation Methods and Mass Spectrometric Parameters.

    PubMed

    Kilambi, Himabindu V; Manda, Kalyani; Sanivarapu, Hemalatha; Maurya, Vineet K; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2016-01-01

    An optimized protocol was developed for shotgun proteomics of tomato fruit, which is a recalcitrant tissue due to a high percentage of sugars and secondary metabolites. A number of protein extraction and fractionation techniques were examined for optimal protein extraction from tomato fruits followed by peptide separation on nanoLCMS. Of all evaluated extraction agents, buffer saturated phenol was the most efficient. In-gel digestion [SDS-PAGE followed by separation on LCMS (GeLCMS)] of phenol-extracted sample yielded a maximal number of proteins. For in-solution digested samples, fractionation by strong anion exchange chromatography (SAX) also gave similar high proteome coverage. For shotgun proteomic profiling, optimization of mass spectrometry parameters such as automatic gain control targets (5E+05 for MS, 1E+04 for MS/MS); ion injection times (500 ms for MS, 100 ms for MS/MS); resolution of 30,000; signal threshold of 500; top N-value of 20 and fragmentation by collision-induced dissociation yielded the highest number of proteins. Validation of the above protocol in two tomato cultivars demonstrated its reproducibility, consistency, and robustness with a CV of < 10%. The protocol facilitated the detection of five-fold higher number of proteins compared to published reports in tomato fruits. The protocol outlined would be useful for high-throughput proteome analysis from tomato fruits and can be applied to other recalcitrant tissues. PMID:27446192

  7. Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling

    PubMed Central

    Pan, Sheng; Chen, Ru; Crispin, David A.; May, Damon; Stevens, Tyler; McIntosh, Martin; Bronner, Mary P.; Ziogas, Argyrios; Anton-Culver, Hoda; Brentnall, Teresa A.

    2011-01-01

    Pancreatic cancer is a lethal disease that is difficult to diagnose at early stages when curable treatments are effective. Biomarkers that can improve current pancreatic cancer detection would have great value in improving patient management and survival rate. A large scale quantitative proteomics study was performed to search for the plasma protein alterations associated with pancreatic cancer. The enormous complexity of the plasma proteome and the vast dynamic range of protein concentration therein present major challenges for quantitative global profiling of plasma. To address these challenges, multi-dimensional fractionation at both protein and peptide levels was applied to enhance the depth of proteomics analysis. Employing stringent criteria, more than thirteen hundred proteins total were identified in plasma across 8-orders of magnitude in protein concentration. Differential proteins associated with pancreatic cancer were identified, and their relationship with the proteome of pancreatic tissue and pancreatic juice from our previous studies was discussed. A subgroup of differentially expressed proteins was selected for biomarker testing using an independent cohort of plasma and serum samples from well-diagnosed patients with pancreatic cancer, chronic pancreatitis and non-pancreatic disease controls. Using ELISA methodology, the performance of each of these protein candidates was benchmarked against CA19-9, the current gold standard for a pancreatic cancer blood test. A composite marker of TIMP1 and ICAM1 demonstrate significantly better performance than CA19-9 in distinguishing pancreatic cancer from the non-pancreatic disease controls and chronic pancreatitis controls. In addition, protein AZGP1 was identified as a biomarker candidate for chronic pancreatitis. The discovery and technical challenges associated with plasma-based quantitative proteomics are discussed and may benefit the development of plasma proteomics technology in general. The protein

  8. Proteomic profiling reveals insights into Triticeae stigma development and function.

    PubMed

    Nazemof, Nazila; Couroux, Philippe; Rampitsch, Christof; Xing, Tim; Robert, Laurian S

    2014-11-01

    To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function. PMID:25170101

  9. Proteomic profiling reveals insights into Triticeae stigma development and function

    PubMed Central

    Nazemof, Nazila; Couroux, Philippe; Rampitsch, Christof; Xing, Tim; Robert, Laurian S.

    2014-01-01

    To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen–stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function. PMID:25170101

  10. A Proteomic Study of the HUPO Plasma Proteome Project's Pilot Samples using an Accurate Mass and Time Tag Strategy

    SciTech Connect

    Adkins, Joshua N.; Monroe, Matthew E.; Auberry, Kenneth J.; Shen, Yufeng; Jacobs, Jon M.; Camp, David G.; Vitzthum, Frank; Rodland, Karin D.; Zangar, Richard C.; Smith, Richard D.; Pounds, Joel G.

    2005-08-01

    Characterization of the human blood plasma proteome is critical to the discovery of routinely useful clinical biomarkers. We used an Accurate Mass and Time (AMT) tag strategy with high-resolution mass accuracy capillary liquid chromatography Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (cLC-FTICR MS) to perform a global proteomic analysis of pilot study samples as part of the HUPO Plasma Proteome Project. HUPO reference serum and citrated plasma samples from African Americans, Asian Americans, and Caucasian Americans were analyzed, in addition to a Pacific Northwest National Laboratory reference serum and plasma. The AMT tag strategy allowed us to leverage two previously published “shotgun” proteomics experiments to perform global analyses on these samples in triplicate in less than 4 days total analysis time. A total of 722 (22% with multiple peptide identifications) International Protein Index (IPI) redundant proteins, or 377 protein families by ProteinProphet, were identified over the 6 individual HUPO serum and plasma samples. The samples yielded a similar number of identified redundant proteins in the plasma samples (average 446 +/-23) as found in the serum samples (average 440+/-20). These proteins were identified by an average of 956+/-35 unique peptides in plasma and 930+/-11 unique peptides in serum. In addition to this high-throughput analysis, the AMT tag approach was used with a Z-score normalization to compare relative protein abundances. This analysis highlighted both known differences in serum and citrated plasma such as fibrinogens, and reproducible differences in peptide abundances from proteins such as soluble activin receptor-like kinase 7b and glycoprotein m6b. The AMT tag strategy not only improved our sample throughput, and provided a basis for estimated quantitation.

  11. Comparative Bioinformatics Analyses and Profiling of Lysosome-Related Organelle Proteomes

    PubMed Central

    Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy

    2007-01-01

    Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for 7 lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles. PMID:17375895

  12. Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy

    2007-01-01

    Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for seven lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.

  13. Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.

    PubMed

    Abegg, Daniel; Frei, Reto; Cerato, Luca; Prasad Hari, Durga; Wang, Chao; Waser, Jerome; Adibekian, Alexander

    2015-09-01

    In this study, we present a highly efficient method for proteomic profiling of cysteine residues in complex proteomes and in living cells. Our method is based on alkynylation of cysteines in complex proteomes using a "clickable" alkynyl benziodoxolone bearing an azide group. This reaction proceeds fast, under mild physiological conditions, and with a very high degree of chemoselectivity. The formed azide-capped alkynyl-cysteine adducts are readily detectable by LC-MS/MS, and can be further functionalized with TAMRA or biotin alkyne via CuAAC. We demonstrate the utility of alkynyl benziodoxolones for chemical proteomics applications by identifying the proteomic targets of curcumin, a diarylheptanoid natural product that was and still is part of multiple human clinical trials as anticancer agent. Our results demonstrate that curcumin covalently modifies several key players of cellular signaling and metabolism, most notably the enzyme casein kinase I gamma. We anticipate that this new method for cysteine profiling will find broad application in chemical proteomics and drug discovery. PMID:26211368

  14. In-Depth Analysis of a Plasma or Serum Proteome Using a 4D Protein Profiling Method

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Speicher, David W.

    2011-01-01

    Comprehensive proteomic analysis of human plasma or serum has been a major strategy used to identify biomarkers that serve as indicators of disease. However, such in-depth proteomic analyses are challenging due to the complexity and extremely large dynamic range of protein concentrations in plasma. Therefore, reduction in sample complexity through multidimensional pre-fractionation strategies is critical, particularly for the detection of low-abundance proteins that have the potential to be the most specific disease biomarkers. We describe here a 4D protein profiling method that we developed for comprehensive proteomic analyses of both plasma and serum. Our method consists of abundant protein depletion coupled with separation strategies – microscale solution isoelectrofocusing and 1D SDS-PAGE – followed by reversed-phase separation of tryptic peptides prior to LC–MS/MS. Using this profiling strategy, we routinely identify a large number of proteins over nine orders of magnitude, including a substantial number of proteins at the low ng/mL or lower levels from approximately 300 μL of plasma sample. PMID:21468940

  15. Chemical proteomic probes for profiling cytochrome P450 activities and drug interactions in vivo

    PubMed Central

    Wright, Aaron T.; Cravatt, Benjamin F.

    2007-01-01

    The cytochrome P450 (P450) superfamily metabolizes many endogenous signaling molecules and drugs. P450 enzymes are regulated by post-translational mechanisms in vivo, which hinders their functional characterization by conventional genomic or proteomic methods. Here, we describe a chemical proteomic strategy to profile P450 activities directly in living systems. Derivatization of a mechanism-based inhibitor with a “clickable” handle provided an activity-based probe that labels multiple P450s both in proteomic extracts and in vivo. This probe was used to record alterations in liver P450 activities triggered by chemical agents, including inducers of P450 expression and direct P450 inhibitors. The chemical proteomic strategy described herein thus offers a versatile method to monitor P450 activities and small molecule interactions in any biological system and, through doing so, should facilitate the functional characterization of this large and diverse enzyme class. PMID:17884636

  16. The proteome of Hypobaric Induced Hypoxic Lung: Insights from Temporal Proteomic Profiling for Biomarker Discovery

    PubMed Central

    Ahmad, Yasmin; Sharma, Narendra K.; Ahmad, Mohammad Faiz; Sharma, Manish; Garg, Iti; Srivastava, Mousami; Bhargava, Kalpana

    2015-01-01

    Exposure to high altitude induces physiological responses due to hypoxia. Lungs being at the first level to face the alterations in oxygen levels are critical to counter and balance these changes. Studies have been done analysing pulmonary proteome alterations in response to exposure to hypobaric hypoxia. However, such studies have reported the alterations at specific time points and do not reflect the gradual proteomic changes. These studies also identify the various biochemical pathways and responses induced after immediate exposure and the resolution of these effects in challenge to hypobaric hypoxia. In the present study, using 2-DE/MS approach, we attempt to resolve these shortcomings by analysing the proteome alterations in lungs in response to different durations of exposure to hypobaric hypoxia. Our study thus highlights the gradual and dynamic changes in pulmonary proteome following hypobaric hypoxia. For the first time, we also report the possible consideration of SULT1A1, as a biomarker for the diagnosis of high altitude pulmonary edema (HAPE). Higher SULT1A1 levels were observed in rats as well as in humans exposed to high altitude, when compared to sea-level controls. This study can thus form the basis for identifying biomarkers for diagnostic and prognostic purposes in responses to hypobaric hypoxia. PMID:26022216

  17. Proteomic Profiling of Bladders from Mice Exposed with Sodium Arsenite

    EPA Science Inventory

    Arsenic, an environmental contaminant, has been linked with cancer of the bladder in humans. To study the mode of action of arsenic, female CH3 mice were exposed to 85 ppm sodium arsenite in their drinking water for 30 days. Following the exposure a comparative proteomic analysis...

  18. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development.

    PubMed

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment. PMID:27136540

  19. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development

    PubMed Central

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment. PMID:27136540

  20. Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer

    SciTech Connect

    Schoenherr, Regine M.; Kelly-Spratt, Karen S.; Lin, Chen Wei; Whiteaker, Jeffrey R.; Liu, Tao; Holzman, Ted; Coleman, Ilsa; Feng, Li-Chia; Lorentzen, Travis D.; Krasnoselsky, Alexei L.; Wang, Pei; Liu, Yan; Gurley, Kay E.; Amon, Lynn M.; Schepmoes, Athena A.; Moore, Ronald J.; Camp, David G.; Chodosh, Lewis A.; Smith, Richard D.; Nelson, Peter S.; McIntosh, Martin; Kemp, Christopher; Paulovich, Amanda G.

    2011-04-01

    In recent years, mouse models have proven to be invaluable in expanding our understanding of cancer biology. We have amassed a tremendous amount of proteomics and transcriptomics data profiling blood and tissues from a Her2-driven mouse model of breast cancer that closely recapitulates the pathology and natural history of human breast cancer. The purpose of this report is to make all of these data publicly available in raw and processed forms, as a resource to the community. Importantly, high quality biospecimens from this same mouse model are freely available through a sample repository that we established, so researchers can readily obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Specifically, six proteomics and six transcriptomics datasets are available, with the former encompassing 841 liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments of both plasma and tissue samples, and the latter including 255 individual microarray analyses of five different tissue types (thymus, spleen, liver, blood cells, and breast ± laser capture microdissection). A total of 18,880 unique peptides were identified with a PeptideProphet error rate ≤1%, with 3884 non-redundant protein groups identified in five plasma datasets, and 1659 non-redundant protein groups in a tissue dataset (4977 non-redundant protein groups in total). We anticipate that these data will be of use to the community for software tool development, investigations of analytical variation in MS/MS data, development of quality control tools (multiple technical replicates are provided for a subset of the data), empirical selection of proteotypic peptides for multiple reaction monitoring mass spectrometry, and for advancing our understanding of cancer biology.

  1. Effects of stem cell therapy on protein profile of parkinsonian rats using an(18) O-labeling quantitative proteomic approach.

    PubMed

    Liu, Yahui; Liu, Kefu; Qin, Wei; Liu, Chenghao; Zheng, Xiaowei; Deng, Yulin; Qing, Hong

    2016-03-01

    The application of neural stem cell (NSC) research to neurodegenerative diseases has led to promising clinical trials. Currently, NSC therapy is most promising for Parkinson's disease (PD). We conducted behavioral tests and immunoassays for the profiling of a PD model in rats to assess the therapeutic effects of NSC treatments. Further, using a multiple sample comparison workflow, combined with (18) O-labeled proteome mixtures, we compared the differentially expressed proteins from control, PD, and NSC-treated PD rats. The results were analyzed bioinformatically and verified by Western blot. Based on our initial findings, we believe that the proteomic approach is a valuable tool in evaluating the therapeutic effects of NSC transplantation on neurodegenerative disorders. PMID:26791447

  2. Mass Spectrometry–based Proteomic Profiling of Lung Cancer

    PubMed Central

    Ocak, Sebahat; Chaurand, Pierre; Massion, Pierre P.

    2009-01-01

    In an effort to further our understanding of lung cancer biology and to identify new candidate biomarkers to be used in the management of lung cancer, we need to probe these tissues and biological fluids with tools that address the biology of lung cancer directly at the protein level. Proteins are responsible of the function and phenotype of cells. Cancer cells express proteins that distinguish them from normal cells. Proteomics is defined as the study of the proteome, the complete set of proteins produced by a species, using the technologies of large-scale protein separation and identification. As a result, new technologies are being developed to allow the rapid and systematic analysis of thousands of proteins. The analytical advantages of mass spectrometry (MS), including sensitivity and high-throughput, promise to make it a mainstay of novel biomarker discovery to differentiate cancer from normal cells and to predict individuals likely to develop or recur with lung cancer. In this review, we summarize the progress made in clinical proteomics as it applies to the management of lung cancer. We will focus our discussion on how MS approaches may advance the areas of early detection, response to therapy, and prognostic evaluation. PMID:19349484

  3. Restoring Aperture Profile At Sample Plane

    SciTech Connect

    Jackson, J L; Hackel, R P; Lungershausen, A W

    2003-08-03

    Off-line conditioning of full-size optics for the National Ignition Facility required a beam delivery system to allow conditioning lasers to rapidly raster scan samples while achieving several technical goals. The main purpose of the optical system designed was to reconstruct at the sample plane the flat beam profile found at the laser aperture with significant reductions in beam wander to improve scan times. Another design goal was the ability to vary the beam size at the sample to scan at different fluences while utilizing all of the laser power and minimizing processing time. An optical solution was developed using commercial off-the-shelf lenses. The system incorporates a six meter relay telescope and two sets of focusing optics. The spacing of the focusing optics is changed to allow the fluence on the sample to vary from 2 to 14 Joules per square centimeter in discrete steps. More importantly, these optics use the special properties of image relaying to image the aperture plane onto the sample to form a pupil relay with a beam profile corresponding almost exactly to the flat profile found at the aperture. A flat beam profile speeds scanning by providing a uniform intensity across a larger area on the sample. The relayed pupil plane is more stable with regards to jitter and beam wander. Image relaying also reduces other perturbations from diffraction, scatter, and focus conditions. Image relaying, laser conditioning, and the optical system designed to accomplish the stated goals are discussed.

  4. Investigating the Correspondence Between Transcriptomic and Proteomic Expression Profiles Using Coupled Cluster Models.

    SciTech Connect

    Rogers, Simon; Girolami, Mark; Kolch, Walter; Waters, Katrina M.; Liu, Tao; Thrall, Brian D.; Wiley, H. S.

    2008-12-01

    Modern transcriptomics and proteomics enable us to survey the expression of RNAs and proteins at large scales. While these data are usually generated and analysed separately, there is an increasing interest in comparing and co-analysing transcriptome and proteome expression data. A major open question is whether transcriptome and proteome expression is linked and how it is coordinated. Results: Here we have developed a probabilistic clustering model that permits analysis of the links between transcriptomic and proteomic profiles in a sensible and flexible manner. Our coupled mixture model defines a prior probability distribution over the component to which a protein profile should be assigned conditioned on which component the associated mRNA profile belongs to. By providing probabilistic assignments this approach sits between the two extremes of concatenating the data on the assumption that mRNA and protein clusters would have a one-to-one relationship, and independent clustering where the mRNA profile provides no information on the protein profile and vice-versa. We apply this approach to a large dataset of quantitative transcriptomic and proteomic expression data obtained from a human breast epithelial cell line (HMEC) stimulated by epidermal growth factor (EGF) over a series of timepoints corresponding to one cell cycle. The results reveal a complex relationship between transcriptome and proteome with most mRNA clusters linked to at least two protein clusters, and vice versa. A more detailed analysis incorporating information on gene function from the gene ontology database shows that a high correlation of mRNA and protein expression is limited to the components of some molecular machines, such as the ribosome, cell adhesion complexes and the TCP-1 chaperonin involved in protein folding. Conclusions: The dynamic regulation of the transcriptome and proteome in mammalian cells in response to an acute mitogenic stimulus appears largely independent with very little

  5. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues*

    PubMed Central

    Bruderer, Roland; Bernhardt, Oliver M.; Gandhi, Tejas; Miladinović, Saša M.; Cheng, Lin-Yang; Messner, Simon; Ehrenberger, Tobias; Zanotelli, Vito; Butscheid, Yulia; Escher, Claudia; Vitek, Olga; Rinner, Oliver; Reiter, Lukas

    2015-01-01

    The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics. We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics. Utilizing HRM, we profiled acetaminophen (APAP)1-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD). Our findings imply that DIA should be the preferred method for quantitative protein profiling. PMID:25724911

  6. Mass Spectrometry-based Proteomics: Qualitative Identification to Activity-based Protein Profiling

    PubMed Central

    Cardoza, Job D.; Parikh, Jignesh R.; Ficarro, Scott B.; Marto, Jarrod A.

    2011-01-01

    Mass spectrometry has become the method of choice for proteome characterization, including multi-component protein complexes (typically tens to hundreds of proteins) and total protein expression (up to tens of thousands of proteins), in biological samples. Qualitative sequence assignment based on MS/MS spectra is relatively well-defined, while statistical metrics for relative quantification have not completely stabilized. Nonetheless, proteomics studies have progressed to the point whereby various gene-, pathway-, or network-oriented computational frameworks may be used to place mass spectrometry data into biological context. Despite this progress, the dynamic range of protein expression remains a significant hurdle, and impedes comprehensive proteome analysis. Methods designed to enrich specific protein classes have emerged as an effective means to characterize enzymes or other catalytically active proteins that are otherwise difficult to detect in typical discovery mode proteomics experiments. Collectively, these approaches will facilitate identification of biomarkers and pathways relevant to diagnosis and treatment of human disease. PMID:22231900

  7. Experimental Approach for Deep Proteome Measurements from Small-Scale Microbial Biomass Samples.

    SciTech Connect

    Thompson, Melissa R; Chourey, Karuna; Froelich, Jennifer M.; Erickson, Brian K; Verberkmoes, Nathan C; Hettich, Robert {Bob} L

    2008-01-01

    Many methods of microbial proteome characterizations require large quantities of cellular biomass (> 1-2 g) for sample preparation and protein identification. Our experimental approach differs from traditional techniques by providing the ability to identify the proteomic state of a microbe from a few milligrams of starting cellular material. The small-scale, guanidine-lysis method minimizes sample loss by achieving cellular lysis and protein digestion in a single tube experiment. For this experimental approach, the freshwater microbe Shewanella oneidensis MR-1 and the purple non-sulfur bacterium Rhodopseudomonas palustris CGA0010 were used as model organisms for technology development and evaluation. A 2-D LC-MS/MS comparison between a standard sonication lysis method and the small-scale guanidine-lysis techniques demonstrates that the guanidine-lysis method is more efficient with smaller sample amounts of cell pellet (i.e. down to 1 mg). The described methodology would enable deep proteome measurements from a few milliliters of confluent bacterial cultures. We also report a new protocol for efficient lysis from small amounts of natural biofilm samples for deep proteome measurements, which should greatly enhance the emerging field of microbial community proteomics. This straightforward sample boiling protocol is complementary to the small-scale guanidine-lysis technique, is amenable for small sample quantities, and requires no special reagents that might complicate the MS measurements.

  8. ProfileDB: a resource for proteomics and cross-omics biomarker discovery.

    PubMed

    Bauer, Chris; Glintschert, Alexander; Schuchhardt, Johannes

    2014-05-01

    The increasing size and complexity of high-throughput datasets pose a growing challenge for researchers. Often very different (cross-omics) techniques with individual data analysis pipelines are employed making a unified biomarker discovery strategy and a direct comparison of different experiments difficult and time consuming. Here we present the comprehensive web-based application ProfileDB. The application is designed to integrate data from different high-throughput 'omics' data types (Transcriptomics, Proteomics, Metabolomics) with clinical parameters and prior knowledge on pathways and ontologies. Beyond data storage, ProfileDB provides a set of dedicated tools for study inspection and data visualization. The user can gain insights into a complex experiment with just a few mouse clicks. We will demonstrate the application by presenting typical use cases for the identification of proteomics biomarkers. All presented analyses can be reproduced using the public ProfileDB web server. The ProfileDB application is available by standard browser (Firefox 18+, Internet Explorer Version 9+) technology via http://profileDB.-microdiscovery.de/ (login and pass-word: profileDB). The installation contains several public datasets including different cross-'omics' experiments. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. PMID:24270047

  9. PiB-PET Imaging-Based Serum Proteome Profiles Predict Mild Cognitive Impairment and Alzheimer's Disease.

    PubMed

    Kang, Seokjo; Jeong, Hyobin; Baek, Je-Hyun; Lee, Seung-Jin; Han, Sun-Ho; Cho, Hyun Jin; Kim, Hee; Hong, Hyun Seok; Kim, Young Ho; Yi, Eugene C; Seo, Sang Won; Na, Duk L; Hwang, Daehee; Mook-Jung, Inhee

    2016-07-01

    Development of a simple, non-invasive early diagnosis platform of Alzheimer's disease (AD) using blood is urgently required. Recently, PiB-PET imaging has been shown to be powerful to quantify amyloid-β plaque loads leading to pathophysiological alterations in AD brains. Thus, there has been a need for serum biomarkers reflecting PiB-PET imaging data as an early diagnosis platform of AD. Here, using LC-MS/MS analysis coupled with isobaric tagging, we performed comprehensive proteome profiling of serum samples from cognitively normal controls, mild cognitive impairment (MCI), and AD patients, who were selected using PiB-PET imaging. Comparative analysis of the proteomes revealed 79 and 72 differentially expressed proteins in MCI and AD, respectively, compared to controls. Integrated analysis of these proteins with genomic and proteomic data of AD brain tissues, together with network analysis, identified three biomarker candidates representing the altered proteolysis-related process in MCI or AD: proprotein convertase subtilisin/kexin type 9 (PCSK9), coagulation factor XIII, A1 polypeptide (F13A1), and dermcidin (DCD). In independent serum samples of MCI and AD, we confirmed the elevation of the candidates using western blotting and ELISA. Our results suggest that these biomarker candidates can serve as a potential non-invasive early diagnosis platform reflecting PiB-PET imaging for MCI and AD. PMID:27392853

  10. Redox Proteomics in Human Biofluids: Sample Preparation, Separation and Immunochemical Tagging for Analysis of Protein Oxidation.

    PubMed

    Di Domenico, Fabio; Perluigi, Marzia; Butterfield, D Allan

    2016-01-01

    Proteomics offers the simultaneous detection of a large number of proteins in a single experiment and can provide important information regarding crucial aspects of specific proteins, particularly post-translational modifications (PTMs). Investigations of oxidative PTMs are currently performed using focused redox proteomics techniques, which rely on gel electrophoresis separations of intact proteins with the final detection of oxidative PTMs being performed by mass spectrometry (MS) analysis. The application of this technique to human biofluids is being subject of increasing investigation and is expected to provide new insights on the oxidative status of the peripheral proteome in neurological diseases such as Alzheimer's disease, towards purposes of early diagnosis and prognosis. This chapter describes all the experimental steps to perform redox proteomics analysis of cerebrospinal fluid and plasma/serum samples. PMID:26235080

  11. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves

    PubMed Central

    Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  12. Proteomic profile of KSR1-regulated signalling in response to genotoxic agents in breast cancer.

    PubMed

    Zhang, Hua; Angelopoulos, Nicos; Xu, Yichen; Grothey, Arnhild; Nunes, Joao; Stebbing, Justin; Giamas, Georgios

    2015-06-01

    Kinase suppressor of Ras 1 (KSR1) has been implicated in tumorigenesis in multiple cancers, including skin, pancreatic and lung carcinomas. However, our recent study revealed a role of KSR1 as a tumour suppressor in breast cancer, the expression of which is potentially correlated with chemotherapy response. Here, we aimed to further elucidate the KSR1-regulated signalling in response to genotoxic agents in breast cancer. Stable isotope labelling by amino acids in cell culture (SILAC) coupled to high-resolution mass spectrometry (MS) was implemented to globally characterise cellular protein levels induced by KSR1 in the presence of doxorubicin or etoposide. The acquired proteomic signature was compared and GO-STRING analysis was subsequently performed to illustrate the activated functional signalling networks. Furthermore, the clinical associations of KSR1 with identified targets and their relevance in chemotherapy response were examined in breast cancer patients. We reveal a comprehensive repertoire of thousands of proteins identified in each dataset and compare the unique proteomic profiles as well as functional connections modulated by KSR1 after doxorubicin (Doxo-KSR1) or etoposide (Etop-KSR1) stimulus. From the up-regulated top hits, several proteins, including STAT1, ISG15 and TAP1 are also found to be positively associated with KSR1 expression in patient samples. Moreover, high KSR1 expression, as well as high abundance of these proteins, is correlated with better survival in breast cancer patients who underwent chemotherapy. In aggregate, our data exemplify a broad functional network conferred by KSR1 with genotoxic agents and highlight its implication in predicting chemotherapy response in breast cancer. PMID:26022350

  13. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves.

    PubMed

    Dong, Chun-Juan; Cao, Ning; Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  14. Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling

    PubMed Central

    Atrih, A; Mudaliar, M A V; Zakikhani, P; Lamont, D J; Huang, J T-J; Bray, S E; Barton, G; Fleming, S; Nabi, G

    2014-01-01

    Background: Proteomics-based approaches for biomarker discovery are promising strategies used in cancer research. We present state-of-art label-free quantitative proteomics method to assess proteome of renal cell carcinoma (RCC) compared with noncancer renal tissues. Methods: Fresh frozen tissue samples from eight primary RCC lesions and autologous adjacent normal renal tissues were obtained from surgically resected tumour-bearing kidneys. Proteins were extracted by complete solubilisation of tissues using filter-aided sample preparation (FASP) method. Trypsin digested proteins were analysed using quantitative label-free proteomics approach followed by data interpretation and pathways analysis. Results: A total of 1761 proteins were identified and quantified with high confidence (MASCOT ion score threshold of 35 and P-value <0.05). Of these, 596 proteins were identified as differentially expressed between cancer and noncancer tissues. Two upregulated proteins in tumour samples (adipose differentiation-related protein and Coronin 1A) were further validated by immunohistochemistry. Pathway analysis using IPA, KOBAS 2.0, DAVID functional annotation and FLink tools showed enrichment of many cancer-related biological processes and pathways such as oxidative phosphorylation, glycolysis and amino acid synthetic pathways. Conclusions: Our study identified a number of differentially expressed proteins and pathways using label-free proteomics approach in RCC compared with normal tissue samples. Two proteins validated in this study are the focus of on-going research in a large cohort of patients. PMID:24548857

  15. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    SciTech Connect

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin; Wang, Lu; Gao, Xiaoli; Su, Dian; Nicora, Carrie D.; Shukla, Anil K.; Moore, Ronald J.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides. Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.

  16. Differential proteomic profiles from distinct Toxoplasma gondii strains revealed by 2D-difference gel electrophoresis.

    PubMed

    Zhou, Huaiyu; Zhao, Qunli; Das Singla, Lachhman; Min, Juan; He, Shenyi; Cong, Hua; Li, Ying; Su, Chunlei

    2013-04-01

    Toxoplasma gondii is an obligate intracellular protozoan that infects mammals and birds. Human infection during pregnancy may cause severe damage to the fetus. Reactivation of latent infection in immunocompromised patients can cause life-threatening encephalitis. T. gondii strains are highly diverse but only a few lineages (Type I, II and III) are widely spread. In mouse model, Type I strains are highly virulent, whereas Type II and III strains are intermediately or non virulent. It is not clear how much quantitative difference exists in proteomic profiles among these distinct T. gondii lineages. In the present study, the proteomic profiles of T. gondii tachyzoites from these lineages were investigated by two dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS) technologies. A total of 2321 protein spots were detected. Overall, the GT1 strain of Type I lineage and the strain PTG of Type II lineage have highly similar proteomic profiles and both are different from that of the CTG strain of Type III lineage. Eighty-four protein spots were differentially expressed by greater than 1.5-fold in relative abundance and 10 of them were identified to 7 T. gondii proteins in existing database. Investigation of the quantitative differences in proteomics among distinct T. gondii strains should facilitate our understanding of difference in biological processes and pathogenesis of distinct T. gondii genotypes, which will provide basic information to determine treatment regimen for different manifestation of toxoplasmosis. PMID:23340323

  17. Sample Preparation Approaches for iTRAQ Labeling and Quantitative Proteomic Analyses in Systems Biology.

    PubMed

    Spanos, Christos; Moore, J Bernadette

    2016-01-01

    Among a variety of global quantification strategies utilized in mass spectrometry (MS)-based proteomics, isobaric tags for relative and absolute quantitation (iTRAQ) are an attractive option for examining the relative amounts of proteins in different samples. The inherent complexity of mammalian proteomes and the diversity of protein physicochemical properties mean that complete proteome coverage is still unlikely from a single analytical method. Numerous options exist for reducing protein sample complexity and resolving digested peptides prior to MS analysis. Indeed, the reliability and efficiency of protein identification and quantitation from an iTRAQ workflow strongly depend on sample preparation upstream of MS. Here we describe our methods for: (1) total protein extraction from immortalized cells; (2) subcellular fractionation of murine tissue; (3) protein sample desalting, digestion, and iTRAQ labeling; (4) peptide separation by strong cation-exchange high-performance liquid chromatography; and (5) peptide separation by isoelectric focusing. PMID:26700038

  18. Proteomic profiling of the infective trophozoite stage of Acanthamoeba polyphaga.

    PubMed

    Caumo, Karin Silva; Monteiro, Karina Mariante; Ott, Thiely Rodrigues; Maschio, Vinicius José; Wagner, Glauber; Ferreira, Henrique Bunselmeyer; Rott, Marilise Brittes

    2014-12-01

    Acanthamoeba polyphaga is a free-living protozoan pathogen, whose infective trophozoite form is capable of causing a blinding keratitis and fatal granulomatous encephalitis in humans. The damage caused by A. polyphaga trophozoites in human corneal or brain infections is the result of several different pathogenic mechanisms that have not yet been elucidated at the molecular level. We performed a comprehensive analysis of the proteins expressed by A. polyphaga trophozoites, based on complementary 2-DE MS/MS and gel-free LC-MS/MS approaches. Overall, 202 non-redundant proteins were identified. An A. polyphaga proteomic map in the pH range 3-10 was produced, with protein identification for 184 of 370 resolved spots, corresponding to 142 proteins. Additionally, 94 proteins were identified by gel-free LC-MS/MS. Functional classification revealed several proteins with potential importance for pathogen survival and infection of mammalian hosts, including surface proteins and proteins related to defense mechanisms. Our study provided the first comprehensive proteomic survey of the trophozoite infective stage of an Acanthamoeba species, and established foundations for prospective, comparative and functional studies of proteins involved in mechanisms of survival, development, and pathogenicity in A. polyphaga and other pathogenic amoebae. PMID:25149354

  19. Transcriptional and proteomic profiling of flatfish (Solea senegalensis) spermatogenesis.

    PubMed

    Forné, Ignasi; Castellana, Bárbara; Marín-Juez, Rubén; Cerdà, Joan; Abián, Joaquín; Planas, Josep V

    2011-06-01

    The Senegalese sole (Solea senegalensis) is a marine flatfish of high economic value and a target species for aquaculture. The efforts to reproduce this species in captivity have been hampered by the fact that farmed males (F1) often show lower sperm production and fertilization capacity than wild-type males (F0). Our knowledge on spermatogenesis is however limited to a few studies. In a previous work, we identified by 2-D DIGE several potential protein markers in testis for the poor reproductive performance of F1 males. Therefore, the objectives of the present study were, first, to investigate changes in genes and proteins expressed in the testis throughout spermatogenesis in F0 males by using a combination of transcriptomic and proteomic approaches and, second, to further compare the testis proteome between late spermatogenic stages of F0 and F1 fish to identify potential indicators of hampered reproductive performance in F1 fish. We identified approximately 400 genes and 49 proteins that are differentially expressed during the progression of spermatogenesis and that participate in processes such as transcriptional activation, the ubiquitin-proteasome system, sperm maturation and motility or cytoskeletal remodeling. Interestingly, a number of these proteins differed in abundance between F0 and F1 fish, pointing toward alterations in cytoskeleton, sperm motility, the ubiquitin-proteasome system and the redox state during spermiogenesis as possible causes for the decreased fertility of F1 fish. PMID:21538881

  20. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling.

    PubMed

    Meuwis, Marie-Alice; Fillet, Marianne; Geurts, Pierre; de Seny, Dominique; Lutteri, Laurence; Chapelle, Jean-Paul; Bours, Vincent; Wehenkel, Louis; Belaiche, Jacques; Malaise, Michel; Louis, Edouard; Merville, Marie-Paule

    2007-05-01

    Crohn's disease and ulcerative colitis known as inflammatory bowel diseases (IBD) are chronic immuno-inflammatory pathologies of the gastrointestinal tract. These diseases are multifactorial, polygenic and of unknown etiology. Clinical presentation is non-specific and diagnosis is based on clinical, endoscopic, radiological and histological criteria. Novel markers are needed to improve early diagnosis and classification of these pathologies. We performed a study with 120 serum samples collected from patients classified in 4 groups (30 Crohn, 30 ulcerative colitis, 30 inflammatory controls and 30 healthy controls) according to accredited criteria. We compared protein sera profiles obtained with a Surface Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometer (SELDI-TOF-MS). Data analysis with univariate process and a multivariate statistical method based on multiple decision trees algorithms allowed us to select some potential biomarkers. Four of them were identified by mass spectrometry and antibody based methods. Multivariate analysis generated models that could classify samples with good sensitivity and specificity (minimum 80%) discriminating groups of patients. This analysis was used as a tool to classify peaks according to differences in level on spectra through the four categories of patients. Four biomarkers showing important diagnostic value were purified, identified (PF4, MRP8, FIBA and Hpalpha2) and two of these: PF4 and Hpalpha2 were detected in sera by classical methods. SELDI-TOF-MS technology and use of the multiple decision trees method led to protein biomarker patterns analysis and allowed the selection of potential individual biomarkers. Their downstream identification may reveal to be helpful for IBD classification and etiology understanding. PMID:17258689

  1. Proteomic profiling of human sera for discovery of potential biomarkers to monitor abstinence from alcohol abuse

    PubMed Central

    Lai, Xianyin; Liangpunsakul, Suthat; Li, Kaigang; Witzmann, Frank A.

    2015-01-01

    Although numerous biomarkers or biomarker candidates have been discovered to detect levels of drinking and intervals of time after last drinking episode, only a few biomarkers have been applied to monitor abstinence in a longer interval (≥ 6 weeks) from alcohol abuse. Considering sample sources, sensitivity, and specificity, new biomarkers from blood with better accuracy are needed. To address this, serum proteomic profiles were compared between pre- and post- treatment samples from subjects seeking treatment for alcohol abuse and dependence in an intensive 6-week daily outpatient program using high-abundance plasma protein immunodepletion and LC-MS/MS techniques. Protein identification, quantification, candidate biomarker selection, and prioritization analyses were carried out. Among the 246 quantified serum proteins, abundance of 13 and 45 proteins in female and male subjects were significantly changed (p ≤ 0.05), respectively. Of these biomarker candidate proteins, 2 (female) and 8 (male) proteins were listed in category 1, with high area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, and fold change. In summary, several new biomarker candidates have been identified to monitor abstinence from alcohol abuse. PMID:25475211

  2. Quantitative Proteome Profiling of Street Rabies Virus-Infected Mouse Hippocampal Synaptosomes.

    PubMed

    Sun, Xiaoning; Shi, Ning; Li, Ying; Dong, Chunyan; Zhang, Maolin; Guan, Zhenhong; Duan, Ming

    2016-09-01

    It is well established now that neuronal dysfunction rather than structural damage may be responsible for the development of rabies. In order to explore the underlying mechanisms in rabies virus (RABV) and synaptic dysfunctions, a quantitative proteome profiling was carried out on synaptosome samples from mice hippocampus. Synaptosome samples from mice hippocampus were isolated and confirmed by Western blot and transmission electron microscopy. Synaptosome protein content changes were quantitatively detected by Nano-LC-MS/MS. Protein functions were classified by the Gene Ontology (GO) and KEGG pathway. PSICQUIC was used to create a network. MCODE algorithm was applied to obtain subnetworks. Of these protein changes, 45 were upregulated and 14 were downregulated following RABV infection relative to non-infected (mock) synaptosomes. 28 proteins were unique to mock treatment and 12 were unique to RABV treatment. Proteins related to metabolism and synaptic vesicle showed the most changes in expression levels. Furthermore, protein-protein interaction (PPI) networks revealed that several key biological processes related to synaptic functions potentially were modulated by RABV, including energy metabolism, cytoskeleton organization, and synaptic transmission. These data will be useful for better understanding of neuronal dysfunction of rabies and provide the foundation for future research. PMID:27155843

  3. Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions.

    PubMed

    Wei, Xiao; Wang, Simiao; Zhao, Xiangna; Wang, Xuesong; Li, Huan; Lin, Weishi; Lu, Jing; Zhurina, Daria; Li, Boxing; Riedel, Christian U; Sun, Yansong; Yuan, Jing

    2016-01-01

    Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and

  4. Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions

    PubMed Central

    Wei, Xiao; Wang, Simiao; Zhao, Xiangna; Wang, Xuesong; Li, Huan; Lin, Weishi; Lu, Jing; Zhurina, Daria; Li, Boxing; Riedel, Christian U.; Sun, Yansong; Yuan, Jing

    2016-01-01

    Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and

  5. Unravelling the proteomic profile of rice meiocytes during early meiosis

    PubMed Central

    Collado-Romero, Melania; Alós, Enriqueta; Prieto, Pilar

    2014-01-01

    Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier. PMID:25104955

  6. Proteome profile of salt gland-rich epidermis extracted from a salt-tolerant tree species.

    PubMed

    Tan, Wee-Kee; Ang, Yiqian; Lim, Teck-Kwang; Lim, Tit-Meng; Kumar, Prakash; Loh, Chiang-Shiong; Lin, Qingsong

    2015-10-01

    Preparation of proteins from salt-gland-rich tissues of mangrove plant is necessary for a systematic study of proteins involved in the plant's unique desalination mechanism. Extraction of high-quality proteins from the leaves of mangrove tree species, however, is difficult due to the presence of high levels of endogenous phenolic compounds. In our study, preparation of proteins from only a part of the leaf tissues (i.e. salt gland-rich epidermal layers) was required, rendering extraction even more challenging. By comparing several extraction methods, we developed a reliable procedure for obtaining proteins from salt gland-rich tissues of the mangrove species Avicennia officinalis. Protein extraction was markedly improved using a phenol-based extraction method. Greater resolution 1D protein gel profiles could be obtained. More promising proteome profiles could be obtained through 1D-LC-MS/MS. The number of proteins detected was twice as much as compared to TUTS extraction method. Focusing on proteins that were solely present in each extraction method, phenol-based extracts contained nearly ten times more proteins than those in the extracts without using phenol. The approach could thus be applied for downstream high-throughput proteomic analyses involving LC-MS/MS or equivalent. The proteomics data presented herein are available via ProteomeXchange with identifier PXD001691. PMID:26105009

  7. Comparative proteomic profiling of cerebrospinal fluid between living and post mortem ALS and control subjects

    PubMed Central

    RANGANATHAN, SRIKANTH; NICHOLL, GEORGINA C.B.; HENRY, SARAH; LUTKA, FRAN; SATHANOORI, RAMASRI; LACOMIS, DAVID; BOWSER, ROBERT

    2010-01-01

    Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), lack definitive diagnostic tests or biomarkers of disease progression. Most studies that investigate protein abnormalities in ALS have used biofluids such as blood or cerebrospinal fluid (CSF), while some have used post mortem tissue or CSF samples. Since ALS disease progression and post mortem effects probably induce significant alterations to protein modifications or proteolysis, we directly examined the CSF proteome from ALS subjects at various lengths of time from symptom onset and at autopsy by mass spectrometry based proteomics. CSF was also obtained from both healthy age-matched control subjects and at autopsy from healthy and Alzheimer's disease (AD) controls. We identified significant differences in the CSF proteome between living and post mortem ALS subjects, as well as living and post mortem control subjects. We also noted differences in the CSF proteome of ALS subjects that have exhibited symptoms for varying lengths of time and between ALS and AD subjects at end-stage of disease. This is the first study describing differences in the CSF proteome from post mortem and living ALS subjects using a mass spectrometric approach. These differences highlight the importance of utilizing CSF from living ALS subjects near the time of symptom onset for the identification of early protein biomarkers, although some protein alterations that occur early in the disease process are maintained throughout the course of disease and in post mortem samples. PMID:17852009

  8. Comparative Proteomic Analysis of Whole-Gut Lavage Fluid and Pancreatic Juice Reveals a Less Invasive Method of Sampling Pancreatic Secretions

    PubMed Central

    Rocker, Jana M; Tan, Marcus C; Thompson, Lee W; Contreras, Carlo M; DiPalma, Jack A; Pannell, Lewis K

    2016-01-01

    OBJECTIVES: There are currently no reliable, non-invasive screening tests for pancreatic ductal adenocarcinoma. The fluid secreted from the pancreatic ductal system (“pancreatic juice”) has been well-studied as a potential source of cancer biomarkers. However, it is invasive to collect. We recently observed that the proteomic profile of intestinal effluent from the bowel in response to administration of an oral bowel preparation solution (also known as whole-gut lavage fluid, WGLF) contains large amounts of pancreas-derived proteins. We therefore hypothesized that the proteomic profile is similar to that of pancreatic juice. In this study, we compared the proteomic profiles of 77 patients undergoing routine colonoscopy with the profiles of 19 samples of pure pancreatic juice collected during surgery. METHODS: WGLF was collected from patients undergoing routine colonoscopy, and pancreatic juice was collected from patients undergoing pancreatic surgery. Protein was isolated from both samples using an optimized method and analyzed by LC-MS/MS. Identified proteins were compared between samples and groups to determine similarity of the two fluids. We then compared our results with literature reports of pancreatic juice-based studies to determine similarity. RESULTS: We found 104 proteins in our pancreatic juice samples, of which 90% were also found in our WGLF samples. The majority (67%) of the total proteins found in the WGLF were common to pancreatic juice, with intestine-specific proteins making up a smaller proportion. CONCLUSIONS: WGLF and pancreatic juice appear to have similar proteomic profiles. This supports the notion that WGLF is a non-invasive, surrogate bio-fluid for pancreatic juice. Further studies are required to further elucidate its role in the diagnosis of pancreatic cancer. PMID:27228405

  9. An Integrated Platform for Isolation, Processing, and Mass Spectrometry-based Proteomic Profiling of Rare Cells in Whole Blood*

    PubMed Central

    Li, Siyang; Plouffe, Brian D.; Belov, Arseniy M.; Ray, Somak; Wang, Xianzhe; Murthy, Shashi K.; Karger, Barry L.; Ivanov, Alexander R.

    2015-01-01

    Isolation and molecular characterization of rare cells (e.g. circulating tumor and stem cells) within biological fluids and tissues has significant potential in clinical diagnostics and personalized medicine. The present work describes an integrated platform of sample procurement, preparation, and analysis for deep proteomic profiling of rare cells in blood. Microfluidic magnetophoretic isolation of target cells spiked into 1 ml of blood at the level of 1000–2000 cells/ml, followed by focused acoustics-assisted sample preparation has been coupled with one-dimensional PLOT-LC-MS methodology. The resulting zeptomole detection sensitivity enabled identification of ∼4000 proteins with injection of the equivalent of only 100–200 cells per analysis. The characterization of rare cells in limited volumes of physiological fluids is shown by the isolation and quantitative proteomic profiling of first MCF-7 cells spiked into whole blood as a model system and then two CD133+ endothelial progenitor and hematopoietic cells in whole blood from volunteers. PMID:25755294

  10. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling.

    PubMed

    Liu, Xing; Xu, Yanli; Meng, Qian; Zheng, Qingqing; Wu, Jianhong; Wang, Chen; Jia, Weiping; Figeys, Daniel; Chang, Ying; Zhou, Hu

    2016-08-01

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. PMID:27230957

  11. Proteomic profiling of 16 cereal grains and the application of targeted proteomics to detect wheat contamination.

    PubMed

    Colgrave, Michelle L; Goswami, Hareshwar; Byrne, Keren; Blundell, Malcolm; Howitt, Crispin A; Tanner, Gregory J

    2015-06-01

    Global proteomic analysis utilizing SDS-PAGE, Western blotting and LC-MS/MS of total protein and gluten-enriched extracts derived from 16 economically important cereals was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of wheat contamination in foods. The number of proteins identified in each grain correlated with the number of entries in publicly available databases, highlighting the importance of continued advances in genome sequencing to facilitate accurate protein identification. Subsequently, candidate wheat-specific peptide markers were evaluated by multiple-reaction monitoring MS. The selected markers were unique to wheat, yet present in a wide range of wheat varieties that represent up to 80% of the bread wheat genome. The final analytical method was rapid (15 min) and robust (CV < 10%), showed linearity (R(2) > 0.98) spanning over 3 orders of magnitude, and was highly selective and sensitive with detection down to 15 mg/kg in intentionally contaminated soy flour. Furthermore, application of this technology revealed wheat contamination in commercially sourced flours, including rye, millet, oats, sorghum, buckwheat and three varieties of soy. PMID:25873154

  12. Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics.

    PubMed

    Monneuse, Jean-Marc; Sugano, Madeleine; Becue, Thierry; Santoni, Véronique; Hem, Sonia; Rossignol, Michel

    2011-05-01

    Plant membranes bear a variety of transporters belonging to multigene families that are affected by environmental and nutritional conditions. In addition, they often display high-sequence identity, making difficult in-depth investigation by current shot-gun strategies. In this study, we set up a targeted proteomics approach aimed at identifying and quantifying within single experiments the five major proton pumps of the autoinhibited H(+) ATPases (AHA) family, the 13 plasma membrane intrinsic proteins (PIP) water channels (PIPs), and ten members of ammonium transporters (AMTs) and nitrate transporter (NRT) families. Proteotypic peptides were selected and isotopically labeled heavy versions were used for technical optimization and for quantification of the corresponding light version in biological samples. This approach allowed to quantify simultaneously nine PIPs in leaf membranes and 13 PIPs together with three autoinhibited H(+) ATPases, two ammonium transporters, and two NRTs in root membranes. Similarly, it was used to investigate the effect of a salt stress on the expression of these latter 20 transporters in roots. These novel isoform-specific data were compared with published transcriptome information and revealed a close correlation between PIP isoforms and transcripts levels. The obtained resource is reusable and can be expanded to other transporter families for large-scale profiling of membrane transporters. PMID:21413151

  13. The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins

    PubMed Central

    2014-01-01

    Background Colostrum intake by newborn lambs plays a fundamental role in the perinatal period, ensuring lamb survival. In this study, blood plasma samples from two groups of newborn lambs (Colostrum group and Delayed Colostrum group) at 2 and 14 h after birth were treated to reduce the content of high abundance proteins and analyzed using Two-Dimensional Differential in Gel Electrophoresis and MALDI MS/MS for protein identification in order to investigate low abundance proteins with immune function in newborn lambs. Results The results showed that four proteins were increased in the blood plasma of lambs due to colostrum intake. These proteins have not been previously described as increased in blood plasma of newborn ruminants by colostrum intake. Moreover, these proteins have been described as having an immune function in other species, some of which were previously identified in colostrum and milk. Conclusions In conclusion, colostrum intake modified the low abundance proteome profile of blood plasma from newborn lambs, increasing the concentration of apolipoprotein A-IV, plasminogen, serum amyloid A and fibrinogen, demonstrating that colostrum is essential, not only for the provision of immunoglobulins, but also because of increases in several low abundance proteins with immune function. PMID:24708841

  14. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed).

    PubMed

    Alanazi, Ibrahim O; Benabdelkamel, Hicham; Alfadda, Assim A; AlYahya, Sami A; Alghamdi, Waleed M; Aljohi, Hasan A; Almalik, Abdulaziz; Masood, Afshan

    2016-08-01

    Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach. PMID:27020565

  15. Trauma-associated Human Neutrophil Alterations Revealed by Comparative Proteomics Profiling

    PubMed Central

    Zhou, Jian-Ying; Krovvidi, Ravi K.; Gao, Yuqian; Gao, Hong; Petritis, Brianne O.; De, Asit; Miller-Graziano, Carol; Bankey, Paul E.; Petyuk, Vladislav A.; Nicora, Carrie D.; Clauss, Therese R; Moore, Ronald J.; Shi, Tujin; Brown, Joseph N.; Kaushal, Amit; Xiao, Wenzhong; Davis, Ronald W.; Maier, Ronald V.; Tompkins, Ronald G.; Qian, Wei-Jun; Camp, David G.; Smith, Richard D.

    2013-01-01

    PURPOSE Polymorphonuclear neutrophils (PMNs) play an important role in mediating the innate immune response after severe traumatic injury; however, the cellular proteome response to traumatic condition is still largely unknown. EXPERIMENTAL DESIGN We applied 2D-LC-MS/MS based shotgun proteomics to perform comparative proteome profiling of human PMNs from severe trauma patients and healthy controls. RESULTS A total of 197 out of ~2500 proteins (being identified with at least two peptides) were observed with significant abundance changes following the injury. The proteomics data were further compared with transcriptomics data for the same genes obtained from an independent patient cohort. The comparison showed that the protein abundance changes for the majority of proteins were consistent with the mRNA abundance changes in terms of directions of changes. Moreover, increased protein secretion was suggested as one of the mechanisms contributing to the observed discrepancy between protein and mRNA abundance changes. Functional analyses of the altered proteins showed that many of these proteins were involved in immune response, protein biosynthesis, protein transport, NRF2-mediated oxidative stress response, the ubiquitin-proteasome system, and apoptosis pathways. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggest increased neutrophil activation and inhibited neutrophil apoptosis in response to trauma. The study not only reveals an overall picture of functional neutrophil response to trauma at the proteome level, but also provides a rich proteomics data resource of trauma-associated changes in the neutrophil that will be valuable for further studies of the functions of individual proteins in PMNs. PMID:23589343

  16. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets. PMID:27003162

  17. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection

    PubMed Central

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M.; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets. PMID:27003162

  18. Proteomic profiling of lymphedema development in mouse model.

    PubMed

    Lee, Joomin; Song, Haeun; Roh, Kangsan; Cho, Sungrae; Lee, Sukchan; Yeom, Chang-Hwan; Park, Seyeon

    2016-07-01

    The lymphatic vascular system plays an important role in tissue fluid homeostasis. Lymphedema is a chronic, progressive, and incurable condition that leads to lymphatic fluid retention; it may be primary (heritable) or secondary (acquired) in nature. Although there is a growing understanding of lymphedema, methods for the prevention and treatment of lymphedema are still limited. In this study, we investigated differential protein expressions in sham-operated and lymphedema-operated mice for 3 days, using two-dimensional gel electrophoresis (2-DE) and mass spectrometry analysis. Male improved methodology for culturing noninbred (ICR) mice developed lymphedema in the right hindlimb. Twenty functional proteins were found to be differentially expressed between lymphedema induced-right leg tissue and normal left leg tissue. Out of these proteins, the protein levels of apolipoprotein A-1 preprotein, alpha-actinin-3, mCG21744, parkinson disease, serum amyloid P-component precursor, annexin A8, mKIAA0098 protein, and fibrinogen beta chain precursor were differentially upregulated in the lymphedema mice compared with the sham-operated group. Western blotting analysis was used to validate the proteomics results. Our results showing differential up-regulation of serum amyloid P-component precursor, parkinson disease, and apolipoprotein A-1 preprotein in lymphedema model over sham-operated model suggest important insights into pathophysiological target for lymphedema. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27151289

  19. Cigarette smoke alters the proteomic profile of lung fibroblasts.

    PubMed

    D'Anna, Claudia; Cigna, Diego; Costanzo, Giorgia; Bruno, Andreina; Ferraro, Maria; Di Vincenzo, Serena; Bianchi, Laura; Bini, Luca; Gjomarkaj, Mark; Pace, Elisabetta

    2015-06-01

    Smoking is strongly associated with diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). Lung fibroblasts are crucial for the integrity of alveolar structure by producing extracellular matrix proteins which are required for attachment, structure, and function of alveolar epithelial cells. Despite the well-known association between cigarette smoke exposure and pulmonary and cardiovascular diseases, many questions remain regarding the mechanisms by which smoking induces diseases. The aim of this study is to detect differentially expressed proteins in human foetal lung cells (HFL-1) after 5 and 10% doses of cigarette smoke extract (CSE) exposure, combining two-dimensional electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In order to evaluate cellular ability to recover as well as lasting damage, we analysed the proteomic pattern 24 hours after the CSE removal (release). Eleven proteins had significant changes at various experimental points. Among these, 7 were up-regulated after CSE-treatments and 4 were down-regulated. Some spots seemed to be modified permanently or in a transient manner, in fact they returned to baseline levels after CSE-removal (normalisation after CSE release) and others were modified by selective CSE concentrations or only after release. MS identified, differentially expressed proteins are involved in stress response, mitochondrial activity, and aging. These findings may improve our understanding about molecular mechanisms underlying CSE caused damage and they may also integrate the comprehension of cigarette smoke effects on human health. PMID:25900673

  20. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    SciTech Connect

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi; Park, Bong-Wook; Byun, June-Ho; Ahn, Chun-Seob; Kim, Jae-Won; Rho, Gyu-Jin

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  1. Proteomic Analysis of Propiconazole Responses in Mouse Liver-Comparison of Genomic and Proteomic Profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this commonly used fungicide. Utilizing t...

  2. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing twodimensional...

  3. A DATABASE FOR TRACKING TOXICOGENOMIC SAMPLES AND PROCEDURES WITH GENOMIC, PROTEOMIC AND METABONOMIC COMPONENTS

    EPA Science Inventory

    A Database for Tracking Toxicogenomic Samples and Procedures with Genomic, Proteomic and Metabonomic Components
    Wenjun Bao1, Jennifer Fostel2, Michael D. Waters2, B. Alex Merrick2, Drew Ekman3, Mitchell Kostich4, Judith Schmid1, David Dix1
    Office of Research and Developmen...

  4. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration.

    PubMed

    Liguori, Maria; Qualtieri, Antonio; Tortorella, Carla; Direnzo, Vita; Bagalà, Angelo; Mastrapasqua, Mariangela; Spadafora, Patrizia; Trojano, Maria

    2014-01-01

    The aim of our project was to perform an exploratory analysis of the cerebrospinal fluid (CSF) proteomic profiles of Multiple Sclerosis (MS) patients, collected in different phases of their clinical course, in order to investigate the existence of peculiar profiles characterizing the different MS phenotypes. The study was carried out on 24 Clinically Isolated Syndrome (CIS), 16 Relapsing Remitting (RR) MS, 11 Progressive (Pr) MS patients. The CSF samples were analysed using the Matrix Assisted Laser Desorption Ionisation Time Of Flight (MALDI-TOF) mass spectrometer in linear mode geometry and in delayed extraction mode (m/z range: 1000-25000 Da). Peak lists were imported for normalization and statistical analysis. CSF data were correlated with demographic, clinical and MRI parameters. The evaluation of MALDI-TOF spectra revealed 348 peak signals with relative intensity ≥ 1% in the study range. The peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05), whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients (p<0.04). Additionally, the intensity of the Tymosin β4 peak was the only signal to be significantly discriminated between the CIS and RRMS patients (p = 0.013). Although with caution due to the relatively small size of the study populations, and considering that not all the findings remained significant after adjustment for multiple comparisons, in our opinion this mass spectrometry evaluation confirms that this technique may provide useful and important information to improve our understanding of the complex pathogenesis of MS. PMID:25098164

  5. Methodologies and perspectives of proteomics applied to filamentous fungi: from sample preparation to secretome analysis.

    PubMed

    Bianco, Linda; Perrotta, Gaetano

    2015-01-01

    Filamentous fungi possess the extraordinary ability to digest complex biomasses and mineralize numerous xenobiotics, as consequence of their aptitude to sensing the environment and regulating their intra and extra cellular proteins, producing drastic changes in proteome and secretome composition. Recent advancement in proteomic technologies offers an exciting opportunity to reveal the fluctuations of fungal proteins and enzymes, responsible for their metabolic adaptation to a large variety of environmental conditions. Here, an overview of the most commonly used proteomic strategies will be provided; this paper will range from sample preparation to gel-free and gel-based proteomics, discussing pros and cons of each mentioned state-of-the-art technique. The main focus will be kept on filamentous fungi. Due to the biotechnological relevance of lignocellulose degrading fungi, special attention will be finally given to their extracellular proteome, or secretome. Secreted proteins and enzymes will be discussed in relation to their involvement in bio-based processes, such as biomass deconstruction and mycoremediation. PMID:25775160

  6. Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis.

    SciTech Connect

    Piehowski, Paul D.; Petyuk, Vladislav A.; Orton, Daniel J.; Xie, Fang; Moore, Ronald J.; Ramirez Restrepo, Manuel; Engel, Anzhelika; Lieberman, Andrew P.; Albin, Roger L.; Camp, David G.; Smith, Richard D.; Myers, Amanda J.

    2013-05-03

    To design a robust quantitative proteomics study, an understanding of both the inherent heterogeneity of the biological samples being studied as well as the technical variability of the proteomics methods and platform is needed. Additionally, accurately identifying the technical steps associated with the largest variability would provide valuable information for the improvement and design of future processing pipelines. We present an experimental strategy that allows for a detailed examination of the variability of the quantitative LC-MS proteomics measurements. By replicating analyses at different stages of processing, various technical components can be estimated and their individual contribution to technical variability can be dissected. This design can be easily adapted to other quantitative proteomics pipelines. Herein, we applied this methodology to our label-free workflow for the processing of human brain tissue. For this application, the pipeline was divided into four critical components: Tissue dissection and homogenization (extraction), protein denaturation followed by trypsin digestion and SPE clean-up (digestion), short-term run-to-run instrumental response fluctuation (instrumental variance), and long-term drift of the quantitative response of the LC-MS/MS platform over the 2 week period of continuous analysis (instrumental stability). From this analysis, we found the following contributions to variability: extraction (72%) >> instrumental variance (16%) > instrumental stability (8.4%) > digestion (3.1%). Furthermore, the stability of the platform and its’ suitability for discovery proteomics studies is demonstrated.

  7. Methodologies and Perspectives of Proteomics Applied to Filamentous Fungi: From Sample Preparation to Secretome Analysis

    PubMed Central

    Bianco, Linda; Perrotta, Gaetano

    2015-01-01

    Filamentous fungi possess the extraordinary ability to digest complex biomasses and mineralize numerous xenobiotics, as consequence of their aptitude to sensing the environment and regulating their intra and extra cellular proteins, producing drastic changes in proteome and secretome composition. Recent advancement in proteomic technologies offers an exciting opportunity to reveal the fluctuations of fungal proteins and enzymes, responsible for their metabolic adaptation to a large variety of environmental conditions. Here, an overview of the most commonly used proteomic strategies will be provided; this paper will range from sample preparation to gel-free and gel-based proteomics, discussing pros and cons of each mentioned state-of-the-art technique. The main focus will be kept on filamentous fungi. Due to the biotechnological relevance of lignocellulose degrading fungi, special attention will be finally given to their extracellular proteome, or secretome. Secreted proteins and enzymes will be discussed in relation to their involvement in bio-based processes, such as biomass deconstruction and mycoremediation. PMID:25775160

  8. Proteomic profiling of salivary gland after nonviral gene transfer mediated by conventional plasmids and minicircles

    PubMed Central

    Geguchadze, Ramaz; Wang, Zhimin; Zourelias, Lee; Perez-Riveros, Paola; Edwards, Paul C; Machen, Laurie; Passineau, Michael J

    2014-01-01

    In this study, we compared gene transfer efficiency and host response to ultrasound-assisted, nonviral gene transfer with a conventional plasmid and a minicircle vector in the submandibular salivary glands of mice. Initially, we looked at gene transfer efficiency with equimolar amounts of the plasmid and minicircle vectors, corroborating an earlier report showing that minicircle is more efficient in the context of a physical method of gene transfer. We then sought to characterize the physiological response of the salivary gland to exogenous gene transfer using global proteomic profiling. Somewhat surprisingly, we found that sonoporation alone, without a gene transfer vector present, had virtually no effect on the salivary gland proteome. However, when a plasmid vector was used, we observed profound perturbations of the salivary gland proteome that compared in magnitude to that seen in a previous report after high doses of adeno-associated virus. Finally, we found that gene transfer with a minicircle induces only minor proteomic alterations that were similar to sonoporation alone. Using mass spectrometry, we assigned protein IDs to 218 gel spots that differed between plasmid and minicircle. Bioinformatic analysis of these proteins demonstrated convergence on 68 known protein interaction pathways, most notably those associated with innate immunity, cellular stress, and morphogenesis. PMID:25414909

  9. Novel possibilities in the study of the salivary proteomic profile using SELDI-TOF/MS technology

    PubMed Central

    ARDITO, FATIMA; PERRONE, DONATELLA; COCCHI, ROBERTO; LO RUSSO, LUCIO; DE LILLO, ALFREDO; GIANNATEMPO, GIOVANNI; LO MUZIO, LORENZO

    2016-01-01

    There is currently an increasing interest in exploring human saliva to identify salivary diagnostic and prognostic biomarkers, since the collection of saliva is rapid, non-invasive and stress-free. Diagnostic tests on saliva are common and cost-effective, particularly for patients who need to monitor their hormone levels or the effectiveness of undergoing therapies. Furthermore, salivary diagnostics is ideal for surveillance studies and in situations where fast results and inexpensive technologies are required. The most important constituents of saliva are proteins, the expression levels of which may be modified due to variations of the cellular conditions. Therefore, the different profile of proteins detected in saliva, including their absence, presence or altered levels, is a potential biomarker of certain physiological and/or pathological conditions. A promising novel approach to study saliva is the global analysis of salivary proteins using proteomic techniques. In the present study, surface-enhanced laser desorption/ionization-time-of-flight/mass spectrometry (SELDI-TOF/MS), one of the most recent proteomic tools for the identification of novel biomarkers, is reviewed. In addition, the possible use of this technique in salivary proteomic studies is discussed, since SELDI technology combines the precision of matrix-assisted laser desorption/ionization-TOF/MS proteomic analysis and the high-throughput nature of protein array analysis. PMID:26998108

  10. Distinctive proteomic profiles among different regions of human carotid plaques in men and women

    PubMed Central

    Liang, Wenzhao; Ward, Liam J.; Karlsson, Helen; Ljunggren, Stefan A.; Li, Wei; Lindahl, Mats; Yuan, Xi-Ming

    2016-01-01

    The heterogeneity of atherosclerotic tissue has limited comprehension in proteomic and metabolomic analyses. To elucidate the functional implications, and differences between genders, of atherosclerotic lesion formation we investigated protein profiles from different regions of human carotid atherosclerotic arteries; internal control, fatty streak, plaque shoulder, plaque centre, and fibrous cap. Proteomic analysis was performed using 2-DE with MALDI-TOF, with validation using nLC-MS/MS. Protein mapping of 2-DE identified 52 unique proteins, including 15 previously unmapped proteins, of which 41 proteins were confirmed by nLC-MS/MS analysis. Expression levels of 18 proteins were significantly altered in plaque regions compared to the internal control region. Nine proteins showed site-specific alterations, irrespective of gender, with clear associations to extracellular matrix remodelling. Five proteins display gender-specific alterations with 2-DE, with two alterations validated by nLC-MS/MS. Gender differences in ferritin light chain and transthyretin were validated using both techniques. Validation of immunohistochemistry confirmed significantly higher levels of ferritin in plaques from male patients. Proteomic analysis of different plaque regions has reduced the effects of plaque heterogeneity, and significant differences in protein expression are determined in specific regions and between genders. These proteomes have functional implications in plaque progression and are of importance in understanding gender differences in atherosclerosis. PMID:27198765

  11. Proteomic Profiles of Mesenchymal Stem Cells Induced by a Liver Differentiation Protocol

    PubMed Central

    Leelawat, Kawin; Narong, Siriluck; Chaijan, Suthidarak; Sa-ngiamsuntorn, Khanit; Disthabanchong, Sinee; Wongkajornsilp, Adisak; Hongeng, Suradej

    2010-01-01

    The replacement of disease hepatocytes and the stimulation of endogenous or exogenous regeneration by human mesenchymal stem cells (MSCs) are promising candidates for liver-directed cell therapy. In this study, we isolated MSCs from adult bone marrow by plastic adhesion and induced differentiation with a liver differentiation protocol. Western blot analyses were used to assess the expression of liver-specific markers. Next, MSC-specific proteins were analyzed with two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). To confirm the results from the proteomic study, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed. We demonstrated that MSCs treated with the liver differentiation protocol expressed significantly more albumin, CK19 and CK20, than did undifferentiated cells. In addition the results of proteomic study demonstrated increases expression of FEM1B, PSMC2 and disulfide-isomerase A3 in MSCs treated with the liver differentiation protocol. These results from proteomic profiling will not only provide insight into the global responses of MSCs to hepatocyte differentiation, but will also lead to in-depth studies on the mechanisms of proteomic changes in MSCs. PMID:21614181

  12. Plasma proteome profiles of White Sucker (Catostomus commersonii) from the Athabasca River within the oil sands deposit.

    PubMed

    Simmons, Denina B D; Sherry, James P

    2016-09-01

    There are questions about the potential for oil sands related chemicals to enter the Athabasca River, whether from tailing ponds, atmospheric deposition, precipitation, or transport of mining dust, at concentrations sufficient to negatively impact the health of biota. We applied shotgun proteomics to generate protein profiles of mature male and female White Sucker (Catostomus commersonii) that were collected from various sites along the main stem of the Athabasca River in 2011 and 2012. On average, 399±131 (standard deviation) proteins were identified in fish plasma from each location in both years. Ingenuity Pathway Analysis software was used to determine the proteins' core functions and to compare the datasets by location, year, and sex. Principal component analysis (PCA) was used to determine if variation in the number of proteins related to a core function among all male and female individuals from both sampling years was affected by location. The core biological functions of plasma proteins that were common to both sampling years for males and females from each location were also estimated separately (based on Ingenuity's Knowledge Base). PCA revealed site-specific differences in the functional characteristics of the plasma proteome from white sucker sampled from downstream of oil sands extraction facilities compared with fish from upstream. Plasma proteins that were unique to fish downstream of oil sands extraction were related to lipid metabolism, small molecule biochemistry, vitamin and mineral metabolism, endocrine system disorders, skeletal and muscular development and function, neoplasia, carcinomas, and gastrointestinal disease. PMID:27013027

  13. Time-course proteomic profile of Candida albicans during adaptation to a fetal serum.

    PubMed

    Aoki, Wataru; Ueda, Tomomi; Tatsukami, Yohei; Kitahara, Nao; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-02-01

    Candida albicans is a commensal organism; however, it causes fatal diseases if the host immunity is compromised. The mortality rate is very high due to the lack of effective treatment, leading to ceaseless demand for novel pharmaceuticals. In this study, time-course proteomics of C. albicans during adaptation to fetal bovine serum (FBS) was described. Time-course proteomics is a promising way to understand the exact process of going adaptation in dynamically changing environments. Candida albicans was cultivated in yeast nitrogen base (YNB) ± FBS media, and we identified 1418 proteins in the endpoint samples incubated for 0 or 60 min by a LC-MS/MS system with a long monolithic silica capillary column. Next, we carried out time-course proteomics of the YNB + FBS samples to identify top-priority proteins for adaption to FBS. We identified 16 proteins as nascent/newly synthesized proteins, and they were recognized as candidates of important virulent factors. Gene ontology analysis revealed that transport-related proteins were enriched in the 16 proteins, indicating that C. albicans probably put priority in time on the acquisition of essential elements. Time-course proteomics of C. albicans revealed the order of priority to adapt to FBS. Depicting time-course dynamics will lead to profound understandings of virulence of C. albicans. PMID:23620121

  14. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer

    SciTech Connect

    Duijvesz, Diederick; Burnum-Johnson, Kristin E.; Gritsenko, Marina A.; Hoogland, Marije; Vredenbregt-van den Berg, Mirella S.; Willemsen, Rob; Luider, Theo N.; Pasa-Tolic, Ljiljana; Jenster, Guido

    2013-12-31

    Introduction: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, biomarker discovery from body fluids is often hampered by the high abundance of many proteins unrelated to disease. An attractive alternative biomarker discovery approach is the isolation of small vesicles (exosomes, ~100 nm). They contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific marker discovery. Profiling prostate cancer-derived exosomes could reveal new markers for this malignancy. Materials and Methods: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. Proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode, followed by the Accurate Mass and Time (AMT) tag approach. Exosomal proteins were validated by Western blotting. A Tissue Micro Array, containing 481 different PCa samples (radical prostatectomy), was used to correlate candidate markers with several clinical-pathological parameters such as PSA, Gleason score, biochemical recurrence, and (PCa-related) death. Results: Proteomic characterization resulted in the identification of 263 proteins by at least 2 peptides. Specifically analysis of exosomes from PNT2C2, RWPE-1, PC346C, and VCaP identified 248, 233, 169, and 216 proteins, respectively. Statistical analyses revealed 52 proteins differently expressed between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. The Tissue Micro 4 Array showed strong correlation of higher Gleason scores and local recurrence with increased cytoplasmic XPO1 (P<0.001). Conclusions: Differentially abundant proteins of cell line-derived exosomes make a clear subdivision between

  15. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics

    PubMed Central

    Zheng, Yonghua; Cretoiu, Dragos; Yan, Guoquan; Cretoiu, Sanda Maria; Popescu, Laurentiu M; Fang, Hao; Wang, Xiangdong

    2014-01-01

    Telocytes (TCs) are described as a particular type of cells of the interstitial space (www.telocytes.com). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2-D nano-ESI LC-MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two-sample t-test, P < 0.05) as up- or down-regulated (fold change >2). We found that in TCs there are 38 up-regulated proteins at the 5th day and 26 up-regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up-regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54-fold) and von Willebrand factor (5.74-fold). The 26 up-regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down-regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might

  16. A brain proteome profile in rats exposed to methylmercury or thimerosal (ethylmercury).

    PubMed

    de Oliveira Souza, Vanessa Cristina; de Marco, Kátia Cristina; Laure, Hélen Julie; Rosa, José Cesar; Barbosa, Fernando

    2016-01-01

    Exposure to organomercurials has been associated with harmful effects on the central nervous system (CNS). However, the mechanisms underlying organomercurial-mediated neurotoxic effects need to be elucidated. Exposure to toxic elements may promote cellular modifications such as alterations in protein synthesis in an attempt to protect tissues and organs from damage. In this context, the use of a "proteomic profile" is an important tool to identify potential early biomarkers or targets indicative of neurotoxicity. The aim of this study was to investigate potential modifications in rat cerebral cell proteome following exposure to methylmercury (MeHg) or ethylmercury (EtHg). For MeHg exposure, animals were administered by gavage daily 140 µg/kg/d of Hg (as MeHg) for 60 d and sacrificed 24 h after the last treatment. For EtHg exposure, 800 µg/kg/d of Hg (as EtHg) was given intramuscularly (im) in a single dose and rats were sacrificed after 4 h. Control groups received saline either by gavage or im. After extraction of proteins from whole brain samples and separation by two-dimensional electrophoresis (2-DE), 26 differentially expressed proteins were identified from exposed animals by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF). Both MeHg and EtHg exposure induced an overexpression of calbindin, a protein that acts as a neuroprotective agent by (1) adjusting the concentration of Ca(2+) within cells and preventing neurodegenerative diseases and (2) decreasing expression of glutamine synthetase, a crucial protein involved in regulation of glutamate concentration in synaptic cleft. In contrast, expression of superoxide dismutase (SOD), a protein involved in antioxidant defense, was elevated in brain of MeHg-exposed animals. Taken together, our data provide new valuable information on the possible molecular mechanisms associated with MeHg- and EtHg-mediated toxicity in cerebral tissue. These observed protein alterations may be considered as

  17. Elucidation of Xenobiotic Metabolism Pathways in Human Skin and Human Skin Models by Proteomic Profiling

    PubMed Central

    van Eijl, Sven; Zhu, Zheying; Cupitt, John; Gierula, Magdalena; Götz, Christine; Fritsche, Ellen; Edwards, Robert J.

    2012-01-01

    Background Human skin has the capacity to metabolise foreign chemicals (xenobiotics), but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. Methodology/Principal Findings Label-free proteomic analysis of whole human skin (10 donors) was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4–10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. Conclusions/Significance The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these results provide a

  18. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics.

    PubMed

    Bell, Alexander W; Deutsch, Eric W; Au, Catherine E; Kearney, Robert E; Beavis, Ron; Sechi, Salvatore; Nilsson, Tommy; Bergeron, John J M

    2009-06-01

    We performed a test sample study to try to identify errors leading to irreproducibility, including incompleteness of peptide sampling, in liquid chromatography-mass spectrometry-based proteomics. We distributed an equimolar test sample, comprising 20 highly purified recombinant human proteins, to 27 laboratories. Each protein contained one or more unique tryptic peptides of 1,250 Da to test for ion selection and sampling in the mass spectrometer. Of the 27 labs, members of only 7 labs initially reported all 20 proteins correctly, and members of only 1 lab reported all tryptic peptides of 1,250 Da. Centralized analysis of the raw data, however, revealed that all 20 proteins and most of the 1,250 Da peptides had been detected in all 27 labs. Our centralized analysis determined missed identifications (false negatives), environmental contamination, database matching and curation of protein identifications as sources of problems. Improved search engines and databases are needed for mass spectrometry-based proteomics. PMID:19448641

  19. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells.

    PubMed

    Tan, Grace Min Yi; Lim, Hui Jing; Yeow, Tee Cian; Movahed, Elaheh; Looi, Chung Yeng; Gupta, Rishein; Arulanandam, Bernard P; Abu Bakar, Sazaly; Sabet, Negar Shafiei; Chang, Li-Yen; Wong, Won Fen

    2016-05-01

    Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection. PMID:27134121

  20. Proteomic profile of saliva and plasma from women with impalpable breast lesions

    PubMed Central

    Delmonico, Lucas; Bravo, Maryah; Silvestre, Rafaele Tavares; Ornellas, Maria Helena Faria; De Azevedo, Carolina Maria; Alves, Gilda

    2016-01-01

    The present study evaluated the proteomic profile of saliva and plasma from women with impalpable breast lesions using nano-liquid chromatography-quadrupole-time-of-flight (nLC-Q-TOF) technology. Plasma and saliva from patients with fibroadenoma (n=10), infiltrating ductal carcinoma (n=10) and healthy control groups (n=8) were assessed by combinations of inter/intra-group analyses, revealing significant quantitative and qualitative differences. The major differentially-expressed proteins in the saliva of patients compared with the controls were α2-macroglobulin and ceruloplasmin, but the proteins that met the minimum fold-change and P-value cut-offs were leukocyte elastase inhibitor and α-enolase, and deleted in malignant brain tumors 1. Concerning plasma, α-2-macroglobulin and ceruplasmin were upregulated, while other proteins such as haptoglobin, hemopexin and vitamin D-binding protein were downregulated compared with the control. The changes in immune, molecular transport and signaling pathways were the most representative in the proteomic profile of the saliva and plasma. This is the first study to describe the proteome of saliva and plasma from the same women with impalpable breast lesions. PMID:27602154

  1. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Krovvidi, Ravi K.; Gritsenko, Marina A.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2011-12-01

    Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis reveals fundamental insights into the control and regulation of these functions. To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Analysis of protein functions revealed that the expression of nitrogenase in the dark is mediated by higher respiration and glycogen metabolism. We have also shown that Cyanothece ATCC51142 utilizes alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. In conclusion, this study provides a deeper insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

  2. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling

    PubMed Central

    Tannu, Nilesh S; Hemby, Scott E

    2007-01-01

    Quantitative proteomics is the workhorse of the modern proteomics initiative. The gel-based and MuDPIT approaches have facilitated vital advances in the measurement of protein expression alterations in normal and disease phenotypic states. The methodological advance in two-dimensional gel electrophoresis (2DGE) has been the multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). 2D-DIGE is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of 2–3 samples with different dyes and electrophoresis of all the samples on the same 2D gel. This capability minimizes spot pattern variability and the number of gels in an experiment while providing simple, accurate and reproducible spot matching. This protocol can be completed in 3–5 weeks depending on the sample size of the experiment and the level of expertise of the investigator. PMID:17487156

  3. O-GlcNAc profiling: from proteins to proteomes

    PubMed Central

    2014-01-01

    O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) onto serine and threonine residues of proteins is an important post-translational modification (PTM), which is involved in many crucial biological processes including transcription, translation, proteasomal degradation, and signal transduction. Aberrant protein O-GlcNAcylation is directly linked to the pathological progression of chronic diseases including diabetes, cancer, and neurodegenerative disorders. Identification, site mapping, and quantification of O-GlcNAc proteins are a prerequisite to decipher their functions. In this review, we mainly focus on technological developments regarding O-GlcNAc protein profiling. Specifically, on one hand, we show how these techniques are being used for the comprehensive characterization of certain targeted proteins in which biologists are most interested. On the other hand, we present several newly developed approaches for O-GlcNAcomic profiling as well as how they provide us with a systems perspective to crosstalk amongst different PTMs and complicated biological events. Promising technical trends are also highlighted to evoke more efforts by diverse laboratories, which would further expand our understanding of the physiological and pathological roles of protein O-GlcNAcylation in chronic diseases. PMID:24593906

  4. Proteomic profiling of the influence of iron availability on Cryptococcus gattii

    PubMed Central

    Crestani, Juliana; Carvalho, Paulo Costa; Han, Xuemei; Seixas, Adriana; Broetto, Leonardo; de Saldanha da Gama Fischer, Juliana; Staats, Charley Christian; Schrank, Augusto; Yates, John R; Vainstein, Marilene Henning

    2011-01-01

    Iron is essential and ubiquitous in living organisms. The competition for this micronutrient between the host and its pathogens has been related to disease establishment. Cryptococcus gattii is an encapsulated yeast that causes cryptococcosis mainly in immunocompetent individuals. In this study, we analyzed the proteomic profile of the C. gattii R265 Vancouver Island isolate under iron-depleted and –replete conditions by Multidimensional Protein Identification Technology (MudPIT) and by 2D-GE. Proteins and key mechanisms affected by alteration of iron levels such as capsule production, cAMP-signaling pathway, response to stress, and metabolic pathways related to mitochondrial function were identified. Our results also show both proteomic methodologies employed to be complementary. PMID:21970549

  5. Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome.

    PubMed

    Zhou, Yiqing; Li, Weichao; Xiao, Youli

    2016-04-15

    The antimalarial drug artemisinin is found to have diverse biological activities ranging from anti-inflammatory to anticancer properties; however, as of today, the cellular targets and mechanism of action of this important compound have remained elusive. Here, we report the global protein target profiling of artemisinin in the HeLa cancer cell proteome using a chemical proteomics approach. In the presence of hemin, multiple proteins were targeted by artemisinin probe through covalent modification. Further studies revealed that reducing of hemin to heme by protein thiols was essential for endoperoxide activation and subsequent protein alkylation. Artemisinin may exert its synergistic therapeutic anticancer effects via modulation of a variety of cellular pathways through acting on multiple targets. PMID:26854499

  6. Proteomic profile of Ortleppascaris sp.: A helminth parasite of Rhinella marina in the Amazonian region

    PubMed Central

    e Silva, Jefferson Pereira; Furtado, Adriano Penha; dos Santos, Jeannie Nascimento

    2014-01-01

    Ortleppascaris sp. is a helminth that, in its larval stage, infects the liver parenchyma of the amphibian Rhinella marina, resulting in severe physiological and pathological changes. This study used a proteomic approach to determine the overall profile of proteins expressed in a somatic extract from the nematodes to investigate the relationship between the parasite and its host. A total of 60 abundant proteins were selected from the two-dimensional electrophoresis, identified by peptide mass fingerprinting, and grouped based on their Gene Ontology by the biological processes in which they are potentially involved. Important helminthic derivatives, such as the immunoreactive As37 antigen, guanylyl cyclases, proteolytic enzymes, and other proteins conserved among different parasites, were identified through homology. This study represents a new approach to helminth-related proteomic studies using an amphibian animal model. Furthermore, this study identified protein markers that are important to the host–parasite relationship and the viability, development, infectivity, and virulence of helminths. PMID:25161903

  7. Proteomic tools for environmental microbiology--a roadmap from sample preparation to protein identification and quantification.

    PubMed

    Wöhlbrand, Lars; Trautwein, Kathleen; Rabus, Ralf

    2013-10-01

    The steadily increasing amount of (meta-)genomic sequence information of diverse organisms and habitats has a strong impact on research in microbial physiology and ecology. In-depth functional understanding of metabolic processes and overall physiological adaptation to environmental changes, however, requires application of proteomics, as the context specific proteome constitutes the true functional output of a cell. Considering the enormous structural and functional diversity of proteins, only rational combinations of various analytical approaches allow a holistic view on the overall state of the cell. Within the past decade, proteomic methods became increasingly accessible to microbiologists mainly due to the robustness of analytical methods (e.g. 2DE), and affordability of mass spectrometers and their relative ease of use. This review provides an overview on the complex portfolio of state-of-the-art proteomics and highlights the basic principles of key methods, ranging from sample preparation of laboratory or environmental samples, via protein/peptide separation (gel-based or gel-free) and different types of mass spectrometric protein/peptide analyses, to protein identification and abundance determination. PMID:23894077

  8. Proteomic identification of sperm antigens using serum samples from individuals with and without antisperm antibodies.

    PubMed

    Nowicka-Bauer, K; Kamieniczna, M; Cibulka, J; Ulcova-Gallova, Z; Kurpisz, M

    2016-08-01

    The aim of the study was to identify human sperm antigens reacting with polyclonal antisperm antibodies. Protein sperm extracts were subjected to electrofocusing, and next immune reactions (immunoblotting) were carried out with positive for antisperm antibodies and control (not containing antisperm antibodies) serum samples. Proteomic analysis of human sperm proteins resulted in identification of 80 sperm antigens that could be divided into three groups: antigens specific for patients with antisperm antibodies (32), antigens recognised by both infertile patients and control sera (35) and antigens detected by control serum samples only (13). Among antigens specific for infertile patients, there were 12 sperm entities known to be involved in fertilisation process. We have also characterised three protein entities identified only by sera of infertile women. Altogether, the proteomic analysis resulted in identification of 27 sperm entities not reported previously in human sperm proteome. Identified proteins are sperm antigens that could be potentially responsible for immunological infertility. The study also sheds new light on the sperm antigens in aspect of gender specificity. The investigation of human sperm proteome by the use of antisperm antibodies-containing sera of infertile individuals not only may indicate new proteins but also can draft their immunological nature. PMID:26659478

  9. A Proteomics Sample Preparation Method for Mature, Recalcitrant Leaves of Perennial Plants

    PubMed Central

    Na, Zhang; Chengying, Lao; Bo, Wang; Dingxiang, Peng; Lijun, Liu

    2014-01-01

    Sample preparation is key to the success of proteomics studies. In the present study, two sample preparation methods were tested for their suitability on the mature, recalcitrant leaves of six representative perennial plants (grape, plum, pear, peach, orange, and ramie). An improved sample preparation method was obtained: Tris and Triton X-100 were added together instead of CHAPS to the lysis buffer, and a 20% TCA-water solution and 100% precooled acetone were added after the protein extraction for the further purification of protein. This method effectively eliminates nonprotein impurities and obtains a clear two-dimensional gel electrophoresis array. The method facilitates the separation of high-molecular-weight proteins and increases the resolution of low-abundance proteins. This method provides a widely applicable and economically feasible technology for the proteomic study of the mature, recalcitrant leaves of perennial plants. PMID:25028960

  10. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps

    PubMed Central

    Guo, Tiannan; Kouvonen, Petri; Koh, Ching Chiek; Gillet, Ludovic C; Wolski, Witold E; Röst, Hannes L; Rosenberger, George; Collins, Ben C; Blum, Lorenz C; Gillessen, Silke; Joerger, Markus; Jochum, Wolfram; Aebersold, Ruedi

    2015-01-01

    Clinical specimens are each inherently unique, limited and non-renewable. As such, small samples such as tissue biopsies are often completely consumed after a limited number of analyses. Here we present a method that enables fast and reproducible conversion of a small amount of tissue (approximating the quantity obtained by a biopsy) into a single, permanent digital file representing the mass spectrometry-measurable proteome of the sample. The method combines pressure cycling technology (PCT) and SWATH mass spectrometry (MS), and the resulting proteome maps can be analyzed, re-analyzed, compared and mined in silico to detect and quantify specific proteins across multiple samples. We used this method to process and convert 18 biopsy samples from 9 renal cell carcinoma patients into SWATH-MS fragment ion maps. From these proteome maps we detected and quantified more than 2,000 proteins with a high degree of reproducibility across all samples. The identified proteins clearly separated tumorous kidney tissues from healthy tissue, and differentiated distinct histomorphological kidney cancer subtypes. PMID:25730263

  11. Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry.

    PubMed

    Cominetti, Ornella; Núñez Galindo, Antonio; Corthésy, John; Oller Moreno, Sergio; Irincheeva, Irina; Valsesia, Armand; Astrup, Arne; Saris, Wim H M; Hager, Jörg; Kussmann, Martin; Dayon, Loïc

    2016-02-01

    The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validation trials. Compromised study designs and insufficient statistical power are consequences of the to-date still limited capacity of mass spectrometry (MS)-based workflows to handle large numbers of samples in a realistic time frame, while delivering comprehensive proteome coverages. We developed a highly automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study "DiOGenes". Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results. PMID:26620284

  12. Feeding low or pharmacological concentrations of zinc oxide changes the hepatic proteome profiles in weaned piglets.

    PubMed

    Bondzio, Angelika; Pieper, Robert; Gabler, Christoph; Weise, Christoph; Schulze, Petra; Zentek, Juergen; Einspanier, Ralf

    2013-01-01

    Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter). After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05) expressed between groups receiving control (150 mg/kg) or pharmacological levels of zinc (2500 mg/kg) with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70) and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase) proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn) in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs. PMID:24282572

  13. Feeding Low or Pharmacological Concentrations of Zinc Oxide Changes the Hepatic Proteome Profiles in Weaned Piglets

    PubMed Central

    Bondzio, Angelika; Pieper, Robert; Gabler, Christoph; Weise, Christoph; Schulze, Petra; Zentek, Juergen; Einspanier, Ralf

    2013-01-01

    Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter). After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05) expressed between groups receiving control (150 mg/kg) or pharmacological levels of zinc (2500 mg/kg) with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70) and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase) proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn) in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs. PMID:24282572

  14. Beyond the Western front: Targeted proteomics and organelle abundance profiling

    DOE PAGESBeta

    Parsons, Harriet T.; Heazlewood, Joshua L.

    2015-05-05

    The application of westerns or immunoblotting techniques for assessing the composition, dynamics, and purity of protein extracts from plant material has become common practice. While the approach is reproducible, can be readily applied and is generally considered robust, the field of plant science suffers from a lack of antibody variety against plant proteins. The development of approaches that employ mass spectrometry to enable both relative and absolute quantification of many hundreds of proteins in a single sample from a single analysis provides a mechanism to overcome the expensive impediment in having to develop antibodies in plant science. Here, we considermore » it an opportune moment to consider and better develop the adoption of multiple reaction monitoring (MRM)-based analyses in plant biochemistry.« less

  15. Beyond the Western front: Targeted proteomics and organelle abundance profiling

    SciTech Connect

    Parsons, Harriet T.; Heazlewood, Joshua L.

    2015-05-05

    The application of westerns or immunoblotting techniques for assessing the composition, dynamics, and purity of protein extracts from plant material has become common practice. While the approach is reproducible, can be readily applied and is generally considered robust, the field of plant science suffers from a lack of antibody variety against plant proteins. The development of approaches that employ mass spectrometry to enable both relative and absolute quantification of many hundreds of proteins in a single sample from a single analysis provides a mechanism to overcome the expensive impediment in having to develop antibodies in plant science. Here, we consider it an opportune moment to consider and better develop the adoption of multiple reaction monitoring (MRM)-based analyses in plant biochemistry.

  16. The human liver-specific proteome defined by transcriptomics and antibody-based profiling.

    PubMed

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Edlund, Karolina; Lundberg, Emma; Pontén, Fredrik; Nielsen, Jens; Uhlen, Mathias

    2014-07-01

    Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.-Kampf, C., Mardinoglu, A., Fagerberg, L., Hallström, B. M., Edlund, K., Lundberg, E., Pontén, F., Nielsen, J., Uhlen, M. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. PMID:24648543

  17. S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure

    PubMed Central

    Spratt, Heidi M.; Gupta, Shivali; Petersen, John R.; Kuyumcu-Martinez, Muge N.

    2016-01-01

    Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure.

  18. Proteomic Profiling of Fast-To-Slow Muscle Transitions during Aging

    PubMed Central

    Ohlendieck, Kay

    2011-01-01

    Old age is associated with a large spectrum of physical ailments, including muscle wasting. Skeletal muscle degeneration drastically increases the risk of poor balance, frequent falling and impaired mobility in the elderly. In order to identify new therapeutic targets to halt or even reverse age-dependent muscle weakness and improve diagnostic methods to properly evaluate sarcopenia as a common geriatric syndrome, there is an urgent need to establish a reliable biomarker signature of muscle aging. In this respect, mass spectrometry-based proteomics has been successfully applied for studying crude extracts and subcellular fractions from aged animal and human muscle tissues to identify novel aging marker proteins. This review focuses on key physiological and metabolic aspects of sarcopenia, i.e., age-related muscle fiber transitions and metabolic shifts in aging muscle as revealed by proteomics. Over the last decade, proteomic profiling studies have clearly confirmed the idea that sarcopenia is based on a multi-factorial pathophysiology and that a glycolytic-to-oxidative shift occurs in slower-twitching senescent muscles. Both, newly identified protein factors and confirmed alterations in crucial metabolic and contractile elements can now be employed to establish a sarcopenia-specific biomarker signature. PMID:22207852

  19. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    PubMed

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  20. Proteomic and functional profiles of a follicle-stimulating hormone positive human nonfunctional pituitary adenoma.

    PubMed

    Wang, Xiaowei; Guo, Tianyao; Peng, Fang; Long, Ying; Mu, Yun; Yang, Haiyan; Ye, Ningrong; Li, Xuejun; Zhan, Xianquan

    2015-06-01

    Nonfunctional pituitary adenoma (NFPA) is highly heterogeneous with different hormone-expressed subtypes in NFPA tissues including follicle-stimulating hormone (FSH) positive, luteinizing hormone-positive, FSH/luteinizing hormone-positive, and negative types. To analyze in-depth the variations in the proteomes among different NFPA subtypes for our long-term goal to clarify molecular mechanisms of NFPA and to detect tumor biomarker for personalized medicine practice, a reference map of proteome of a human FSH-expressed NFPA tissue was described here. 2DE and PDQuest image analysis were used to array each protein. MALDI-TOF PMF and human Swiss-Prot databases with MASCOT search were used to identify each protein. A good 2DE pattern with high level of between-gel reproducibility was attained with an average positional deviation 1.98 ± 0.75 mm in the IEF direction and 1.62 ± 0.68 mm in the SDS-PAGE direction. Approximately 1200 protein spots were 2DE-detected and 192 redundant proteins that were contained in 141 protein spots were PMF-identified, representing 107 nonredundant proteins. Those proteins were located in cytoplasm, nucleus, plasma membrane, extracellular space, and so on, and those functioned in transmembrane receptor, ion channel, transcription/translation regulator, transporter, enzyme, phosphatase, kinase, and so on. Several important pathway networks were characterized from those identified proteins with DAVID and Ingenuity Pathway Analysis systems, including gluconeogenesis and glycolysis, mitochondrial dysfunction, oxidative stress, cell-cycle alteration, MAPKsignaling system, immune response, TP53-signaling, VEGF-signaling, and inflammation signaling pathways. Those resulting data contribute to a functional profile of the proteome of a human FSH-positive NFPA tissue, and will serve as a reference for the heterogeneity analysis of NFPA proteomes. PMID:25809007

  1. Development and Evaluation of a Micro- and Nanoscale Proteomic Sample Preparation Method

    SciTech Connect

    Wang, Haixing H.; Qian, Weijun; Mottaz, Heather M.; Clauss, Therese R.W.; Anderson, David J.; Moore, Ronald J.; Camp, David G.; Khan, Arshad H.; Sforza, Daniel M.; Pallavicini, Maria; Smith, Desmond J.; Smith, Richard D.

    2005-10-05

    Efficient and effective sample preparation of micro- and nano-scale (micro- and nano-gram) clinical specimens for proteomic applications is often difficult due to losses during the processing steps. Herein we describe a simple “single-tube” preparation protocol appropriate for small proteomic samples using the organic co-solvent, trifluoroethanol (TFE). TFE facilitates both protein extraction and protein denaturation without requiring a separate cleanup step, thus minimizing sample loss. The performance of the TFE method was initially evaluated by comparing to traditional detergent-based methods on relatively large scale sample processing using human breast cancer cells and mouse brain tissue. The results demonstrated that the TFE protocol provided comparable results to the traditional detergent-based protocols for larger samples (milligrams), based on both sample recovery and peptide/protein identification. The effectiveness of this protocol for micro- and nano-scale sample processing was then evaluated for the extraction of proteins/peptides and shown effective for small mouse brain tissue samples (~ 20 μg total protein content) and also for samples of ~ 5 000 human breast cancer MCF-7 cells (~ 500 ng total protein content), where the detergent-based methods were ineffective due to losses during cleanup and transfer steps.

  2. Proteomic analysis of a podocyte vesicle-enriched fraction from human normal and pathological urine samples.

    PubMed

    Lescuyer, Pierre; Pernin, Agnès; Hainard, Alexandre; Bigeire, Caty; Burgess, Jennifer A; Zimmermann-Ivol, Catherine; Sanchez, Jean-Charles; Schifferli, Jürg A; Hochstrasser, Denis F; Moll, Solange

    2008-07-01

    Podocytes (glomerular visceral epithelial cells) release vesicles into urine. Podocyte vesicle-enriched fractions from normal and pathological human urine samples were prepared for proteomic analysis. An immunoadsorption method was applied and enrichment of podocyte vesicles was assessed. We identified 76 unique proteins. One protein, serum paraoxonase/arylesterase 1 (PON-1), was newly identified in normal human urine sample. We confirmed this result and showed PON-1 expression in normal human kidney. These results demonstrated the potential for using the urine samples enriched in podocyte vesicles as a starting material in studies aimed at discovery of biomarkers for diseases. PMID:21136901

  3. Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: Methods development.

    PubMed

    Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R

    2016-03-01

    The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. PMID:26790989

  4. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    PubMed Central

    2011-01-01

    Background Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions. Results To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. Conclusion This study provides a deeper systems level insight into how Cyanothece ATCC51142

  5. Comparative proteomic analysis of four Bacillus clausii strains: proteomic expression signature distinguishes protein profile of the strains.

    PubMed

    Lippolis, Rosa; Gnoni, Antonio; Abbrescia, Anna; Panelli, Damiano; Maiorano, Stefania; Paternoster, Maria Stefania; Sardanelli, Anna Maria; Papa, Sergio; Gaballo, Antonio

    2011-11-18

    A comparative proteomic approach, using two dimensional gel electrophoresis and mass spectrometry, has been developed to compare and elucidate the differences among the cellular proteomes of four closely related isogenic O/C, SIN, N/R and T, B. clausii strains during both exponential and stationary phases of growth. Image analysis of the electropherograms reveals a high degree of concordance among the four proteomes, some proteins result, however, differently expressed. The proteins spots exhibiting high different expression level were identified, by mass-spectrometry analysis, as alcohol dehydrogenase (ADHA, EC1.2.1.3; ABC0046 isoform) aldehyde dehydrogenase (DHAS, EC 1.2.1.3; ABC0047 isoform) and flagellin-protein of B. clausii KSM-k16. The different expression levels of the two dehydrogenases were confirmed by quantitative RT-PCR and dehydrogenases enzymatic activity. The different patterns of protein expression can be considered as cell proteome signatures of the different strains. PMID:21810490

  6. An analysis of the impact of pre‐analytical factors on the urine proteome: Sample processing time, temperature, and proteolysis

    PubMed Central

    Hepburn, Sophie; Cairns, David A.; Jackson, David; Craven, Rachel A.; Riley, Beverley; Hutchinson, Michelle; Wood, Steven; Smith, Matthew Welberry; Thompson, Douglas

    2015-01-01

    Purpose We have examined the impact of sample processing time delay, temperature, and the addition of protease inhibitors (PIs) on the urinary proteome and peptidome, an important aspect of biomarker studies. Experimental design Ten urine samples from patients with varying pathologies were each divided and PIs added to one‐half, with aliquots of each then processed and frozen immediately, or after a delay of 6 h at 4°C or room temperature (20–22°C), effectively yielding 60 samples in total. Samples were then analyzed by 2D‐PAGE, SELDI‐TOF‐MS, and immunoassay. Results Interindividual variability in profiles was the dominant feature in all analyses. Minimal changes were observed by 2D‐PAGE as a result of delay in processing, temperature, or PIs and no changes were seen in IgG, albumin, β2‐microglobulin, or α1‐microglobulin measured by immunoassay. Analysis of peptides showed clustering of some samples by presence/absence of PIs but the extent was very patient‐dependent with most samples showing minimal effects. Conclusions and clinical relevance The extent of processing‐induced changes and the benefit of PI addition are patient‐ and sample‐dependent. A consistent processing methodology is essential within a study to avoid any confounding of the results. PMID:25400092

  7. Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models

    PubMed Central

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J.; Lockwood, William W.; Faça, Vitor M.; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F.; Sage, Julien; Dinulescu, Daniela M.; Kucherlapati, Raju; DePinho, Ronald A.; Kemp, Christopher J.; Varmus, Harold E.; Hanash, Samir M.

    2012-01-01

    SUMMARY We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  8. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models.

    PubMed

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J; Lockwood, William W; Faça, Vitor M; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F; Sage, Julien; Dinulescu, Daniela M; Kucherlapati, Raju; Depinho, Ronald A; Kemp, Christopher J; Varmus, Harold E; Hanash, Samir M

    2011-09-13

    We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  9. Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa

    PubMed Central

    Kwon, Woo-Sung; Oh, Shin-Ae; Kim, Ye-Ji; Rahman, Md Saidur; Park, Yoo-Jin; Pang, Myung-Geol

    2015-01-01

    The ability to predict male fertility is of paramount importance for animal breeding industries and for human reproduction. Conventional semen analysis generally provides information on the quantitative parameters of spermatozoa, but yields no information concerning its functional competence. Proteomics have identified candidates for male fertility biomarkers, but no studies have clearly identified the relationship between the proteome and sperm fertility. Therefore, we performed a proteomic analysis to investigate small and large litter size boar spermatozoa and identify proteins related to male fertility. In this study, 20 proteins showed differential expression levels in small and large litter size groups. Nineteen of these proteins exhibited decreased expression in large litter size samples and increased expression in the small litter group. Interestingly, only one protein was highly expressed in the large litter size spermatozoa. We then identified signaling pathways associated with the differentially expressed protein markers. Glutathione S-transferase Mu3 and glutathione peroxidase 4 were related to the glutathione metabolic pathway and arginine vasopressin receptor 2 was linked to vasopressin R2/STAT. In summary, this is the first study to consider negative fertility biomarkers, and the identified proteins could potentially be used as biomarkers for the detection of inferior male fertility. PMID:26348888

  10. SHOTGUN PROTEOMICS: IDENTIFICATION OF UNIQUE PROTEIN PROFILES OF APOPTOTIC BODIES FROM BILIARY EPITHELIAL CELLS

    PubMed Central

    Lleo, Ana; Zhang, Weici; McDonald, W. Hayes; Seeley, Erin H.; Leung, Patrick S.C.; Coppel, Ross L.; Ansari, Aftab A.; Adams, David H.; Afford, Simon; Invernizzi, Pietro; Gershwin, M. Eric

    2014-01-01

    Shotgun proteomics is a powerful analytic method to characterize complex protein mixtures in combination with multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). We have used this platform for proteomic characterization of apoptotic bodies in efforts to define the complex protein mixtures found in primary cultures of human intrahepatic biliary epithelial cells (HiBEC), human renal proximal tubular epithelial cells, human bronchial epithelial cells, isolated intrahepatic biliary epithelial cells from explanted primary biliary cirrhosis (PBC) and control liver, using a total of 24 individual samples. Further, as additional controls and for purposes of comparison, proteomic signatures were also obtained from intact cells and apoptotic bodies. The data obtained from LC-MS/MS, combined with database searches and protein assembly algorithms, allowed us to address significant differences in protein spectral counts and identify unique pathways that may be a component to the induction of the signature inflammatory cytokine response against BECs, including the Notch signaling pathway, IL8, IL6, CXCR2 and integrin signaling. Indeed there are 11 proteins that localize specifically to apoptotic bodies of HiBEC and 8 proteins that were specifically absent in HiBEC apoptotic bodies. In conclusion, proteomic analysis of BECs from PBC liver compared to normal liver are significantly different, suggesting that an immunological attack affects the repertoire of proteins expressed and that such cells should be thought of as living in an environment undergoing continuous selection secondary to an innate and adaptive immune response, reflecting an almost “Darwinian” bias. PMID:24841946

  11. Investigation of urine proteomic profile of cosmonauts after long-term space flight

    NASA Astrophysics Data System (ADS)

    Obraztcova, Olga; Liudmila Pastushkova, MRS.; Larina, Irina; Dobrokhotov, Igor; Kononikhin, Alexey; Nikolaev, Eugene

    The main interest is the study of changes in the protein composition of urine caused by aggressive factors of space flight. To analyze these changes, we investigated the proteome of urine obtained from cosmonauts after long-term spaceflight. We studied the protein composition of the second morning urine fractions obtained from six Russian cosmonauts aged 35 to 51 years, whose mission at the International Space Station continued from 169 to 199 days. Were used proteomic data acquisition technology and advanced bioinformatics analysis approaches. Collection of biomaterial was held within the space experiment "Proteome" before the flight, on the first and seventh day after landing. Urine protein was not detected spectrophotometrically in the majority of the urine samples before the flight, but on the first day after landing it was detected in four cosmonauts, and later - in two cosmonauts. By liquid chromatography (Agilent Technologies Inc., USA) - mass-spectrometry (Thermo, Germany) technic, proteins in urine samples were detected in all periods of observation. As a result of our analysis, we have determined that the detected proteins had different origin. There were identified proteins synthesized in the kidney, liver and prostate. There was observed the drift of the protein composition in urine. One of the hallmarks of this drift was the disappearance of the five proteins in urine samples during the first day after the flight, despite their presence in the samples pre-flight period. They were: receptor tyrosine kinases, cytoskeletal keratin-1, G-protein-coupled receptors, inter-alpha (globulin) inhibitor H4. Such changes could be explained by the influence of factors of space flight, as well as the individual response of each cosmonaut’ organism when they return to the Earth conditions. Also, there was detected the trend to activate proteolysis of proteins in post-flight period, based on the identified secretory proteins with protease activity (cystatin M

  12. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors.

    PubMed

    Rørvig, Sara; Østergaard, Ole; Heegaard, Niels H H; Borregaard, Niels

    2013-10-01

    Neutrophils are indispensable in the innate immune defense against invading microorganisms. Neutrophils contain SVs and several subsets of granules that are essential for their function. Proteins present in neutrophil SVs and granules are synthesized during terminal granulopoiesis in the bone marrow. The heterogeneity of granules, as determined by marker proteins characteristic of each granule subset, is thought to result from differences in the biosynthetic windows of major classes of granule proteins, a process referred to as targeting by timing. Qualitative proteomic analysis of neutrophil granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in-gel-digested with trypsin. The resulting peptides were analyzed using LTQ Orbitrap XL tandem MS. A total of 1292 unique proteins were identified and grouped, according to the neutrophil fraction, in which they displayed maximal expression. In addition to various known neutrophil proteins, several uncharacterized proteins were found, as well as proteins not described previously in neutrophils. To study the correlation between mRNA expression in neutrophil precursors and the localization of their cognate proteins, the distribution of 126 identified proteins was compared with their mRNA expression profiles. The neutrophil subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes. PMID:23650620

  13. Serum Proteome Profiles in Stricturing Crohn’s Disease: A pilot study.

    SciTech Connect

    Townsend, Peter; Zhang, Qibin; Shapiro, Jason; Webb-Robertson, Bobbie-Jo M.; Bramer, Lisa M.; Schepmoes, Athena A.; Weitz, Karl K.; Mallette, Meaghan; Moniz, Heather; Bright, Renee; Merrick, Marjorie; Shah, Samir A.; Sands, Bruce E.; Leleiko, Neal

    2015-08-01

    Background: Crohn’s disease (CD) is a form of inflammatory bowel disease (IBD) with different described behaviors, including stricture. At present, there are no laboratory studies that can differentiate stricturing CD from other phenotypes of IBD. We performed a pilot study to examine differences in the proteome among patients with stricturing Crohn’s disease, non-stricturing Crohn’s disease, and ulcerative colitis (UC). Methods: Serum samples were selected from the Ocean State Crohn’s and Colitis Area Registry (OSCCAR), an established cohort of patients with IBD. Crohn’s disease patients with surgically-resected stricture were matched with similar patients with Crohn’s disease without known stricture, and with UC. Serum samples from each patient were digested and analyzed using liquid chromatography-mass spectrometry to characterize the proteome. Statistical analyses were performed to identify peptides and proteins that can differentiate CD with stricture. Results: Samples from 9 patients in each group (27 total patients) were analyzed. Baseline demographic characteristics were similar among the three groups. We quantified 7668 peptides and 897 proteins for analysis. ROC analysis identified a subset of peptides with an area under the curve greater than 0.9, indicating greater separation potential. Partial least squares discriminant analysis was able to distinguish among the three groups with up to 70% accuracy by peptides, and up to 80% accuracy by proteins. We identified the significantly different proteins and peptides, and determined their function based on previously published literature. Conclusions: The serum of patients with stricturing CD, non-stricturing CD, and UC are distinguishable via proteomic analysis. Some of the proteins that differentiate the stricturing phenotype have been implicated in complement activation, fibrinolytic pathways, and lymphocyte adhesion.

  14. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    SciTech Connect

    Swelm, Rachel P.L. van; Laarakkers, Coby M.M.; Pertijs, Jeanne C.L.M.; Verweij, Vivienne; Masereeuw, Rosalinde; Russel, Frans G.M.

    2013-06-01

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p < 0.01). Kidney injury was confirmed by histology and increased Kim1 and Il-6 mRNA expression levels (p < 0.001 and p < 0.01). Liver histology and plasma ALT levels in DF-treated mice were not different from control, but mRNA expression of Stat3 (p < 0.001) and protein expression of PCNA (p < 0.05) were increased, indicating liver regeneration. In conclusion, urinary proteome analysis revealed that DF treatment in mice induced kidney and liver injury. Within 24 h, however, the liver was able to recover by activating tissue regeneration processes. Hence, the proteins found in urine of DF-treated mice represent kidney damage rather than hepatic injury. - Highlights: • The urinary proteome shows biological processes involved in adverse drug reactions. • Urine proteins of DF-treated mice relate to kidney injury rather than liver injury. • Liver regeneration, not liver injury, is apparent 24h after oral DF administration. • Pretreatment with LPS does not enhance DF-induced liver injury in mice.

  15. Proteome Profile of Swine Testicular Cells Infected with Porcine Transmissible Gastroenteritis Coronavirus

    PubMed Central

    Ma, Ruili; Zhang, Yanming; Liu, Haiquan; Ning, Pengbo

    2014-01-01

    The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV)-infected swine testicular (ST) cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1), caspase-8, and heat shock protein 90 alpha (HSP90α) were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis. PMID:25333634

  16. Proteomic Profiling and Protein Identification by MALDI-TOF Mass Spectrometry in Unsequenced Parasitic Nematodes

    PubMed Central

    Millares, Paul; LaCourse, E. James; Perally, Samirah; Ward, Deborah A.; Prescott, Mark C.; Hodgkinson, Jane E.; Brophy, Peter M.; Rees, Huw H.

    2012-01-01

    Lack of genomic sequence data and the relatively high cost of tandem mass spectrometry have hampered proteomic investigations into helminths, such as resolving the mechanism underpinning globally reported anthelmintic resistance. Whilst detailed mechanisms of resistance remain unknown for the majority of drug-parasite interactions, gene mutations and changes in gene and protein expression are proposed key aspects of resistance. Comparative proteomic analysis of drug-resistant and -susceptible nematodes may reveal protein profiles reflecting drug-related phenotypes. Using the gastro-intestinal nematode, Haemonchus contortus as case study, we report the application of freely available expressed sequence tag (EST) datasets to support proteomic studies in unsequenced nematodes. EST datasets were translated to theoretical protein sequences to generate a searchable database. In conjunction with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), Peptide Mass Fingerprint (PMF) searching of databases enabled a cost-effective protein identification strategy. The effectiveness of this approach was verified in comparison with MS/MS de novo sequencing with searching of the same EST protein database and subsequent searches of the NCBInr protein database using the Basic Local Alignment Search Tool (BLAST) to provide protein annotation. Of 100 proteins from 2-DE gel spots, 62 were identified by MALDI-TOF-MS and PMF searching of the EST database. Twenty randomly selected spots were analysed by electrospray MS/MS and MASCOT Ion Searches of the same database. The resulting sequences were subjected to BLAST searches of the NCBI protein database to provide annotation of the proteins and confirm concordance in protein identity from both approaches. Further confirmation of protein identifications from the MS/MS data were obtained by de novo sequencing of peptides, followed by FASTS algorithm searches of the EST putative protein database. This

  17. Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages

    PubMed Central

    2012-01-01

    Background Human mesenchymal stem cells (hMSC) have recently raised the attention because of their therapeutic potential in the novel context of regenerative medicine. However, the safety of these new and promising cellular products should be carefully defined before they can be used in the clinical setting, as. The protein expression profile of these cells might reveal potential hazards associated with senescence and tumoral transformation which may occur during culture. Proteomic is a valuable tool for hMSC characterization and identification of possible changes during expansion. Results We used Surface Enhanced Laser Desorption/Ionization-Time Of Flight-Mass Spectrometry (SELDI-ToF-MS) to evaluate the presence of stable molecular markers in adipose tissue-derived mesenchymal stem cells (AD-MSC) produced under conditions of good manufacturing practices (GMP). Proteomic patterns of cells prepared were consistent, with 4 up-regulated peaks (mass-to-charge ratio (m/z) 8950, 10087, 10345, and 13058) through subculture steps (P0-P7) with similar trend in three donors. Among the differentially expressed proteins found in the cytoplasmic and nuclear fractions, a cytoplasmic 10.1 kDa protein was upregulated during culture passages and was identified as S100A6 (Calcyclin). Conclusions This study suggests for the first time that common variation could occur in AD-MSC from different donors, with the identification of S100A6, a protein prevalently related to cell proliferation and cell culture condition. These results support the hypothesis of common proteomic changes during MSCs expansion and could give important insight in the knowledge of molecular mechanisms intervening during MSC expansion. PMID:22828447

  18. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    PubMed

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  19. Glycomic and Proteomic Profiling of Pancreatic Cyst Fluids Identifies Hyperfucosylated Lactosamines on the N-linked Glycans of Overexpressed Glycoproteins*

    PubMed Central

    Mann, Benjamin F.; Goetz, John A.; House, Michael G.; Schmidt, C. Max; Novotny, Milos V.

    2012-01-01

    Pancreatic cancer is now the fourth leading cause of cancer deaths in the United States, and it is associated with an alarmingly low 5-year survival rate of 5%. However, a patient's prognosis is considerably improved when the malignant lesions are identified at an early stage of the disease and removed by surgical resection. Unfortunately, the absence of a practical screening strategy and clinical diagnostic test for identifying premalignant lesions within the pancreas often prevents early detection of pancreatic cancer. To aid in the development of a molecular screening system for early detection of the disease, we have performed glycomic and glycoproteomic profiling experiments on 21 pancreatic cyst fluid samples, including fluids from mucinous cystic neoplasms and intraductal papillary mucinous neoplasms, two types of mucinous cysts that are considered high risk to undergo malignant transformation. A total of 80 asparagine-linked (N-linked) glycans, including high mannose and complex structures, were identified. Of special interest was a series of complex N-linked glycans containing two to six fucose residues, located predominantly as substituents on β-lactosamine extensions. Following the observation of these “hyperfucosylated” glycans, bottom-up proteomics experiments utilizing a label-free quantitative approach were applied to the investigation of two sets of tryptically digested proteins derived from the cyst fluids: 1) all soluble proteins in the raw samples and 2) a subproteome of the soluble cyst fluid proteins that were selectively enriched for fucosylation through the use of surface-immobilized Aleuria aurantia lectin. A comparative analysis of these two proteomic data sets identified glycoproteins that were significantly enriched by lectin affinity. Several candidate glycoproteins that appear hyperfucosylated were identified, including triacylglycerol lipase and pancreatic α-amylase, which were 20- and 22-fold more abundant, respectively

  20. Universal Solid-Phase Reversible Sample-Prep for Concurrent Proteome and N-Glycome Characterization.

    PubMed

    Zhou, Hui; Morley, Samantha; Kostel, Stephen; Freeman, Michael R; Joshi, Vivek; Brewster, David; Lee, Richard S

    2016-03-01

    We describe a novel solid-phase reversible sample-prep (SRS) platform that enables rapid sample preparation for concurrent proteome and N-glycome characterization for nearly all protein samples. SRS utilizes a uniquely functionalized, silica-based bead that has strong affinity toward proteins with minimal to no affinity for peptides and other small molecules. By leveraging this inherent size difference between proteins and peptides, SRS permits high-capacity binding of proteins, rapid removal of small molecules (detergents, metabolites, salts, peptides, etc.), extensive manipulation including enzymatic and chemical treatments on bead-bound proteins, and easy recovery of N-glycans and peptides. SRS was evaluated in a wide range of samples including glycoproteins, cell lysate, murine tissues, and human urine. SRS was also coupled to a quantitative strategy to investigate the differences between DU145 prostate cancer cells and its DIAPH3-silenced counterpart. Previous studies suggested that DIAPH3 silencing in DU145 induced transition to an amoeboid phenotype that correlated with tumor progression and metastasis. In this pilot study we identified distinct proteomic and N-glycomic alterations between them. A metastasis-associated tyrosine kinase receptor ephrin-type-A receptor (EPHA2) was highly up-regulated in DIAPH3-silenced cells, indicating a possible connection between EPHA2 and DIAPH3. Moreover, distinct alterations in the N-glycome were identified, suggesting cross-links between DIAPH3 and glycosyltransferase networks. PMID:26791391

  1. Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling.

    PubMed

    Wilson, Kate E; Marouga, Rita; Prime, John E; Pashby, D Paul; Orange, Paul R; Crosier, Steven; Keith, Alexander B; Lathe, Richard; Mullins, John; Estibeiro, Peter; Bergling, Helene; Hawkins, Edward; Morris, Christopher M

    2005-10-01

    Comparative proteomic methods are rapidly being applied to many different biological systems including complex tissues. One pitfall of these methods is that in some cases, such as oncology and neuroscience, tissue complexity requires isolation of specific cell types and sample is limited. Laser microdissection (LMD) is commonly used for obtaining such samples for proteomic studies. We have combined LMD with sensitive thiol-reactive saturation dye labelling of protein samples and 2-D DIGE to identify protein changes in a test system, the isolated CA1 pyramidal neurone layer of a transgenic (Tg) rat carrying a human amyloid precursor protein transgene. Saturation dye labelling proved to be extremely sensitive with a spot map of over 5,000 proteins being readily produced from 5 mug total protein, with over 100 proteins being significantly altered at p < 0.0005. Of the proteins identified, all showed coherent changes associated with transgene expression. It was, however, difficult to identify significantly different proteins using PMF and MALDI-TOF on gels containing less than 500 mug total protein. The use of saturation dye labelling of limiting samples will therefore require the use of highly sensitive MS techniques to identify the significantly altered proteins isolated using methods such as LMD. PMID:16145713

  2. Protein profiling of microdomains purified from renal cell carcinoma and normal kidney tissue samples.

    PubMed

    Raimondo, F; Morosi, L; Chinello, C; Perego, R; Bianchi, C; Albo, G; Ferrero, S; Rocco, F; Magni, F; Pitto, M

    2012-04-01

    Renal cell carcinoma (RCC) is representing about 3% of all adult cancers. A promising strategy for cancer biomarker discovery is subcellular comparative proteomics, allowing enriching specific cell compartments and assessing differences in protein expression patterns. We investigated the proteomic profile of a peculiar RCC subcellular compartment, plasma membrane microdomains (MD), involved in cell signalling, transport, proliferation and in many human diseases, such as cancer. Subcellular fractions were prepared by differential centrifugation from surgical samples of RCC and adjacent normal kidney (ANK). MD were isolated from plasma-membrane-enriched fractions after Triton X-100 treatment and sucrose density gradient ultracentrifugation. MD derived from RCC and ANK tissues were analyzed after SDS-PAGE separation by LC-ESI-MS/MS. We identified 93 proteins from MD isolated from RCC tissue, and 98 proteins from ANK MD. About 70% of the identified proteins are membrane-associated and about half of these are known as microdomain-associated. GRAVY scores assignment shows that most identified proteins (about 70%) are in the hydrophobic range. We chose a panel of proteins to validate their differential expression by WB. In conclusion, our work shows that RCC microdomain proteome is reproducibly different from ANK, and suggests that mining into such differences may support new biomarker discovery. PMID:22159573

  3. Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery.

    PubMed

    Lin, Xiangmin; Shi, Min; Masilamoni, Jeyaraj Gunasingh; Dator, Romel; Movius, James; Aro, Patrick; Smith, Yoland; Zhang, Jing

    2015-07-01

    Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology. PMID:25617661

  4. Immunostimulatory potential and proteome profiling of Leishmania donovani soluble exogenous antigens.

    PubMed

    Kumar, A; Samant, M; Misra, P; Khare, P; Sundar, S; Garg, Ravendra; Dube, A

    2015-07-01

    Isolation of the soluble exogenous antigens (SEAgs), its immune response study and proteome profiling is an essential prerequisite for understanding the molecular pathogenesis of Leishmania donovani. The immunostimulatory potential of L. donovani SEAgs, purified from culture of L. donovani clinical isolate, was evaluated for their ability to induce cellular responses in treated/cured hamsters. SEAgs induced significant proliferative responses in lymphocytes (SI 5.6 ± 2.3; P < 0.01) isolated from cured hamster. In addition, significant NO production in response to SEAgs was also noticed in macrophages of hamsters, mouse and human cell lines (J774A-1 and THP1). Western blot analyses with antibodies against proteophosphoglycan (PPG; surface-expressed and secreted molecule) of L. donovani revealed that PPG molecules are also present in L. donovani SEAgs. Mass spectrometry (MS)-based proteome analysis of 12 protein bands of SEAgs through MALDI-TOF/TOF endorsed the identification of some Th1-stimulatory immunogenic proteins. These immunogenic proteins may offer increased hope for the discovery of new promising vaccine candidates against visceral leishmaniasis (VL). The overall results suggest that immunostimulatory molecules are present in the SEAgs, which may be further exploited, for developing a subunit vaccine against VL a fatal human disease. PMID:25824598

  5. Discovery of Lung Cancer Biomarkers by Profiling the Plasma Proteome with Monoclonal Antibody Libraries*

    PubMed Central

    Guergova-Kuras, Mariana; Kurucz, István; Hempel, William; Tardieu, Nadège; Kádas, János; Malderez-Bloes, Carole; Jullien, Anne; Kieffer, Yann; Hincapie, Marina; Guttman, András; Csánky, Eszter; Dezső, Balázs; Karger, Barry L.; Takács, László

    2011-01-01

    A challenge in the treatment of lung cancer is the lack of early diagnostics. Here, we describe the application of monoclonal antibody proteomics for discovery of a panel of biomarkers for early detection (stage I) of non-small cell lung cancer (NSCLC). We produced large monoclonal antibody libraries directed against the natural form of protein antigens present in the plasma of NSCLC patients. Plasma biomarkers associated with the presence of lung cancer were detected via high throughput ELISA. Differential profiling of plasma proteomes of four clinical cohorts, totaling 301 patients with lung cancer and 235 healthy controls, identified 13 lung cancer-associated (p < 0.05) monoclonal antibodies. The monoclonal antibodies recognize five different cognate proteins identified using immunoprecipitation followed by mass spectrometry. Four of the five antigens were present in non-small cell lung cancer cells in situ. The approach is capable of generating independent antibodies against different epitopes of the same proteins, allowing fast translation to multiplexed sandwich assays. Based on these results, we have verified in two independent clinical collections a panel of five biomarkers for classifying patient disease status with a diagnostics performance of 77% sensitivity and 87% specificity. Combining CYFRA, an established cancer marker, with the panel resulted in a performance of 83% sensitivity at 95% specificity for stage I NSCLC. PMID:21947365

  6. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    PubMed Central

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  7. Discovery of lung cancer biomarkers by profiling the plasma proteome with monoclonal antibody libraries.

    PubMed

    Guergova-Kuras, Mariana; Kurucz, István; Hempel, William; Tardieu, Nadège; Kádas, János; Malderez-Bloes, Carole; Jullien, Anne; Kieffer, Yann; Hincapie, Marina; Guttman, András; Csánky, Eszter; Dezso, Balázs; Karger, Barry L; Takács, László

    2011-12-01

    A challenge in the treatment of lung cancer is the lack of early diagnostics. Here, we describe the application of monoclonal antibody proteomics for discovery of a panel of biomarkers for early detection (stage I) of non-small cell lung cancer (NSCLC). We produced large monoclonal antibody libraries directed against the natural form of protein antigens present in the plasma of NSCLC patients. Plasma biomarkers associated with the presence of lung cancer were detected via high throughput ELISA. Differential profiling of plasma proteomes of four clinical cohorts, totaling 301 patients with lung cancer and 235 healthy controls, identified 13 lung cancer-associated (p < 0.05) monoclonal antibodies. The monoclonal antibodies recognize five different cognate proteins identified using immunoprecipitation followed by mass spectrometry. Four of the five antigens were present in non-small cell lung cancer cells in situ. The approach is capable of generating independent antibodies against different epitopes of the same proteins, allowing fast translation to multiplexed sandwich assays. Based on these results, we have verified in two independent clinical collections a panel of five biomarkers for classifying patient disease status with a diagnostics performance of 77% sensitivity and 87% specificity. Combining CYFRA, an established cancer marker, with the panel resulted in a performance of 83% sensitivity at 95% specificity for stage I NSCLC. PMID:21947365

  8. Profiling the erythrocyte membrane proteome isolated from patients diagnosed with chronic obstructive pulmonary disease.

    PubMed

    Alexandre, Bruno M; Charro, Nuno; Blonder, Josip; Lopes, Carlos; Azevedo, Pilar; Bugalho de Almeida, António; Chan, King C; Prieto, DaRue A; Issaq, Haleem; Veenstra, Timothy D; Penque, Deborah

    2012-12-01

    Structural and metabolic alterations in erythrocytes play an important role in the pathophysiology of Chronic Obstructive Pulmonary Disease (COPD). Whether these dysfunctions are related to the modulation of erythrocyte membrane proteins in patients diagnosed with COPD remains to be determined. Herein, a comparative proteomic profiling of the erythrocyte membrane fraction isolated from peripheral blood of smokers diagnosed with COPD and smokers with no COPD was performed using differential (16)O/(18)O stable isotope labeling. A total of 219 proteins were quantified as being significantly differentially expressed within the erythrocyte membrane proteomes of smokers with COPD and healthy smokers. Functional pathway analysis showed that the most enriched biofunctions were related to cell-to-cell signaling and interaction, hematological system development, immune response, oxidative stress and cytoskeleton. Chorein (VPS13A), a cytoskeleton related protein whose defects had been associated with the presence of cell membrane deformation of circulating erythrocytes was found to be down-regulated in the membrane fraction of erythrocytes obtained from COPD patients. Methemoglobin reductase (CYB5R3) was also found to be underexpressed in these cells, suggesting that COPD patients may be at higher risk for developing methemoglobinemia. This article is part of a Special Issue entitled: Integrated omics. PMID:22538302

  9. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis

    PubMed Central

    Ranganathan, Srikanth; Williams, Eric; Ganchev, Philip; Gopalakrishnan, Vanathi; Lacomis, David; Urbinelli, Leo; Newhall, Kristyn; Cudkowicz, Merit E.; Brown, Robert H.; Bowser, Robert

    2006-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons. We tested the hypothesis that proteomic analysis will identify protein biomarkers that provide insight into disease pathogenesis and are diagnostically useful. To identify ALS specific biomarkers, we compared the proteomic profile of cerebrospinal fluid (CSF) from ALS and control subjects using surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). We identified 30 mass ion peaks with statistically significant (p < 0.01) differences between control and ALS subjects. Initial analysis with a rule-learning algorithm yielded biomarker panels with diagnostic predictive value as subsequently assessed using an independent set of coded test subjects. Three biomarkers were identified that are either decreased (transthyretin, cystatin C) or increased (carboxy-terminal fragment of neuroendocrine protein 7B2) in ALS CSF. We validated the SELDI-TOF-MS results for transthyretin and cystatin C by immunoblot and immunohistochemistry using commercially available antibodies. These findings identify a panel of CSF protein biomarkers for ALS. PMID:16313519

  10. Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery

    PubMed Central

    Lin, Xiangmin; Shi, Min; Gunasingh Masilamoni, Jeyaraj; Dator, Romel; Movius, James; Aro, Patrick; Smith, Yoland; Zhang, Jing

    2015-01-01

    Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology. PMID:25617661

  11. Serum proteomic profiling in patients with drug-induced liver injury

    PubMed Central

    Bell, L. N.; Vuppalanchi, R.; Watkins, P. B.; Bonkovsky, H. L.; Serrano, J.; Fontana, R. J.; Wang, M.; Rochon, J.; Chalasani, N.

    2013-01-01

    SUMMARY Background Idiosyncratic drug-induced liver injury (DILI) is a complex disorder that is difficult to predict, diagnose and treat. Aim To describe the global serum proteome of patients with DILI and controls. Methods A label-free, mass spectrometry-based quantitative proteomic approach was used to explore protein expression in serum samples from 74 DILI patients (collected within 14 days of DILI onset) and 40 controls. A longitudinal analysis was conducted in a subset of 21 DILI patients with available 6-month follow-up serum samples. Results Comparison of DILI patients based on pattern, severity and causality assessment of liver injury revealed many differentially expressed priority 1 proteins among groups. Expression of fumarylacetoacetase was correlated with alanine aminotransferase (ALT; r = 0.237; P = 0.047), aspartate aminotransferase (AST; r = 0.389; P = 0.001) and alkaline phosphatase (r = −0.240; P = 0.043), and this was the only protein with significant differential expression when comparing patients with hepatocellular vs. cholestatic or mixed injury. In the longitudinal analysis, expression of 53 priority 1 proteins changed significantly from onset of DILI to 6-month follow-up, and nearly all proteins returned to expression levels comparable to control subjects. Ninety-two serum priority 1 proteins with significant differential expression were identified when comparing the DILI and control groups. Pattern analysis revealed proteins that are components of inflammation, immune system activation and several hepatotoxicity-specific pathways. Apolipoprotein E expression had the greatest power to differentiate DILI patients from controls (89% correct classification; AUROC = 0.97). Conclusion This proteomic analysis identified differentially expressed proteins that are components of pathways previously implicated in the pathogenesis of idiosyncratic drug-induced liver injury. PMID:22403816

  12. 2-D DIGE proteomic profiles of three strains of Fusarium graminearum grown in agmatine or glutamic acid medium

    PubMed Central

    Serchi, Tommaso; Pasquali, Matias; Leclercq, Céline C.; Planchon, Sébastien; Hoffmann, Lucien; Renaut, Jenny

    2016-01-01

    2D DIGE proteomics data obtained from three strains belonging to Fusarium graminearum s.s. species growing in a glutamic acid or agmatine containing medium are provided. A total of 381 protein species have been identified which do differ for abundance among the two treatments and among the strains (ANOVA<0.05 and abundance ratio>±1.3). Data on the diversity of protein species profiles between the two media for each strain are made available. Shared profiles among strains are discussed in Pasquali et al. [1]. Here proteins that with diverse profile can be used to differentiate strains are highlighted. The full dataset allow to obtaining single strain proteomic profiles. PMID:26981549

  13. 2-D DIGE proteomic profiles of three strains of Fusarium graminearum grown in agmatine or glutamic acid medium.

    PubMed

    Serchi, Tommaso; Pasquali, Matias; Leclercq, Céline C; Planchon, Sébastien; Hoffmann, Lucien; Renaut, Jenny

    2016-03-01

    2D DIGE proteomics data obtained from three strains belonging to Fusarium graminearum s.s. species growing in a glutamic acid or agmatine containing medium are provided. A total of 381 protein species have been identified which do differ for abundance among the two treatments and among the strains (ANOVA<0.05 and abundance ratio>±1.3). Data on the diversity of protein species profiles between the two media for each strain are made available. Shared profiles among strains are discussed in Pasquali et al. [1]. Here proteins that with diverse profile can be used to differentiate strains are highlighted. The full dataset allow to obtaining single strain proteomic profiles. PMID:26981549

  14. Sampling From the Proteome to the Human Leukocyte Antigen-DR (HLA-DR) Ligandome Proceeds Via High Specificity*

    PubMed Central

    Mommen, Geert P. M.; Marino, Fabio; Meiring, Hugo D.; Poelen, Martien C. M.; van Gaans-van den Brink, Jacqueline A. M.; Mohammed, Shabaz; Heck, Albert J. R.; van Els, Cécile A. C. M.

    2016-01-01

    Comprehensive analysis of the complex nature of the Human Leukocyte Antigen (HLA) class II ligandome is of utmost importance to understand the basis for CD4+ T cell mediated immunity and tolerance. Here, we implemented important improvements in the analysis of the repertoire of HLA-DR-presented peptides, using hybrid mass spectrometry-based peptide fragmentation techniques on a ligandome sample isolated from matured human monocyte-derived dendritic cells (DC). The reported data set constitutes nearly 14 thousand unique high-confident peptides, i.e. the largest single inventory of human DC derived HLA-DR ligands to date. From a technical viewpoint the most prominent finding is that no single peptide fragmentation technique could elucidate the majority of HLA-DR ligands, because of the wide range of physical chemical properties displayed by the HLA-DR ligandome. Our in-depth profiling allowed us to reveal a strikingly poor correlation between the source proteins identified in the HLA class II ligandome and the DC cellular proteome. Important selective sieving from the sampled proteome to the ligandome was evidenced by specificity in the sequences of the core regions both at their N- and C- termini, hence not only reflecting binding motifs but also dominant protease activity associated to the endolysosomal compartments. Moreover, we demonstrate that the HLA-DR ligandome reflects a surface representation of cell-compartments specific for biological events linked to the maturation of monocytes into antigen presenting cells. Our results present new perspectives into the complex nature of the HLA class II system and will aid future immunological studies in characterizing the full breadth of potential CD4+ T cell epitopes relevant in health and disease. PMID:26764012

  15. Profile Analysis of the Universal Nonverbal Intelligence Test Standardization Sample.

    ERIC Educational Resources Information Center

    Wilhoit, Brian E.; McCallum, R. Steve

    2002-01-01

    A normative typology was developed and applied using multivariate profile analysis of subtest scores of the Universal Nonverbal Intelligence Test (UNIT) standardization sample. The results yielded a seven-profile cluster solution for the Extended Battery, and a six-profile cluster solution for the Standard Battery. Additionally, the results lend…

  16. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound

    NASA Astrophysics Data System (ADS)

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q.

    2015-06-01

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail.

  17. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound.

    PubMed

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q

    2015-01-01

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail. PMID:26105662

  18. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants

    PubMed Central

    Mol, Juliana P. S.; Pires, Simone F.; Chapeaurouge, Alexander D.; Perales, Jonas; Santos, Renato L.; Andrade, Hélida M.; Lage, Andrey P.

    2016-01-01

    Brucella abortus is the etiological agent of bovine brucellosis, a zoonotic disease that causes significant economic losses worldwide. The differential proteomic profile of bovine chorioallantoic membrane (CAM) explants at early stages of infection with B. abortus (0.5, 2, 4, and 8 h) was determined. Analysis of CAM explants at 0.5 and 4 h showed the highest differences between uninfected and infected CAM explants, and therefore were used for the Differential Gel Electrophoresis (DIGE). A total of 103 spots were present in only one experimental group and were selected for identification by mass spectrometry (MALDI/ToF-ToF). Proteins only identified in extracts of CAM explants infected with B. abortus were related to recognition of PAMPs by TLR, production of reactive oxygen species, intracellular trafficking, and inflammation. PMID:27104343

  19. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound

    PubMed Central

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q.

    2015-01-01

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail. PMID:26105662

  20. MBPpred: Proteome-wide detection of membrane lipid-binding proteins using profile Hidden Markov Models.

    PubMed

    Nastou, Katerina C; Tsaousis, Georgios N; Papandreou, Nikos C; Hamodrakas, Stavros J

    2016-07-01

    A large number of modular domains that exhibit specific lipid binding properties are present in many membrane proteins involved in trafficking and signal transduction. These domains are present in either eukaryotic peripheral membrane or transmembrane proteins and are responsible for the non-covalent interactions of these proteins with membrane lipids. Here we report a profile Hidden Markov Model based method capable of detecting Membrane Binding Proteins (MBPs) from information encoded in their amino acid sequence, called MBPpred. The method identifies MBPs that contain one or more of the Membrane Binding Domains (MBDs) that have been described to date, and further classifies these proteins based on their position in respect to the membrane, either as peripheral or transmembrane. MBPpred is available online at http://bioinformatics.biol.uoa.gr/MBPpred. This method was applied in selected eukaryotic proteomes, in order to examine the characteristics they exhibit in various eukaryotic kingdoms and phyla. PMID:27048983

  1. Proteomic profiling differences in serum from silicosis and chronic bronchitis patients: a comparative analysis

    PubMed Central

    Miao, Rongming; Ding, Bangmei; Zhang, Yingyi; Xia, Qian; Li, Yong

    2016-01-01

    Background Silicosis is a severe occupational disease characterized by pulmonary fibrosis, whereas chronic bronchitis (CB) is an acute inflammation of the airways. Differences in the mechanisms of pathogenesis of these diseases are not well understood, therefore we performed proteomic profiling of silicosis and CB patients and, compared the results. Methods Two-dimensional gel electrophoresis and MALDI-TOF-MS (matrix assisted laser desorption ionization time of flight mass spectrometry) were used to identify differentially accumulated proteins in stage I of silicosis (SI), stage II of silicosis (SII) and CB. Enzyme linked immunosorbent assay (ELISA) was employed to validate protein expression data. Results A total of 28 and 10 proteins were up- and down-regulated in SI, and 21 and 9 proteins were up- and down-regulated SII, compared with CB. Transforming growth factor beta-1 precursor and interferon beta precursor were up-regulated in CB, while interleukin 6, tumor necrosis factor (TNF) and a variant TNF receptor 13B were down-regulated in CB. Additionally, glycoprotein- and apolipoprotein-associated proteins including apolipoprotein A-IV and α-1-B-glycoprotein were up-regulated in CB, indicating an involvement in the pathogenesis of CB but not silicosis. By contrast, HLA-DRB1, medullasin and the proto-oncogene c-Fos were up-regulated in CB. Conclusions The immune, metabolism and apolipoprotein-related proteins were identified as playing specific and different roles in silicosis and CB. These proteomic profiling differences would facilitate further studies on the mechanisms underlying silicosis and CB, and may also prove useful to disease diagnosis and treatments. PMID:27076939

  2. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    PubMed Central

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376

  3. Comprehensive Analysis of the Triterpenoid Saponins Biosynthetic Pathway in Anemone flaccida by Transcriptome and Proteome Profiling

    PubMed Central

    Zhan, Chuansong; Li, Xiaohua; Zhao, Zeying; Yang, Tewu; Wang, Xuekui; Luo, Biaobiao; Zhang, Qiyun; Hu, Yanru; Hu, Xuebo

    2016-01-01

    Background: Anemone flaccida Fr. Shmidt (Ranunculaceae), commonly known as ‘Di Wu’ in China, is a perennial herb with limited distribution. The rhizome of A. flaccida has long been used to treat arthritis as a tradition in China. Studies disclosed that the plant contains a rich source of triterpenoid saponins. However, little is known about triterpenoid saponins biosynthesis in A. flaccida. Results: In this study, we conducted the tandem transcriptome and proteome profiling of a non-model medicinal plant, A. flaccida. Using Illumina HiSeq 2000 sequencing and iTRAQ technique, a total of 46,962 high-quality unigenes were obtained with an average sequence length of 1,310 bp, along with 1473 unique proteins from A. flaccida. Among the A. flaccida transcripts, 36,617 (77.97%) showed significant similarity (E-value < 1e-5) to the known proteins in the public database. Of the total 46,962 unigenes, 36,617 open reading frame (ORFs) were predicted. By the fragments per kilobases per million reads (FPKM) statistics, 14,004 isoforms/unigenes were found to be upregulated, and 14,090 isoforms/unigenes were down-regulated in the rhizomes as compared to those in the leaves. Based on the bioinformatics analysis, all possible enzymes involved in the triterpenoid saponins biosynthetic pathway of A. flaccida were identified, including cytosolic mevalonate pathway (MVA) and the plastidial methylerythritol pathway (MEP). Additionally, a total of 126 putative cytochrome P450 (CYP450) and 32 putative UDP glycosyltransferases were selected as the candidates of triterpenoid saponins modifiers. Among them, four of them were annotated as the gene of CYP716A subfamily, the key enzyme in the oleanane-type triterpenoid saponins biosynthetic pathway. Furthermore, based on RNA-Seq and proteome analysis, as well as quantitative RT-PCR verification, the expression level of gene and protein committed to triterpenoids biosynthesis in the leaf versus the rhizome was compared. Conclusion: A

  4. Rapid Sample Processing For LC-MS Based Quantitative Proteomics Using High Intensity Focused Ultrasounds

    SciTech Connect

    Lopez-Ferrer, Daniel; Heibeck, Tyler H.; Petritis, Konstantinos; Hixson, Kim K.; Qian, Weijun; Monroe, Matthew E.; Mayampurath, Anoop M.; Moore, Ronald J.; Belov, Mikhail E.; Camp, David G.; Smith, Richard D.

    2008-09-01

    A new sample processing workflow that uses high intensity focused ultrasound to rapidly reduce and alkylate cysteines, digest proteins and then label peptides with 18O was developed for quantitative proteomics applications. Each step was individually refined to minimize reaction times, peptide loses and undesired by-products or modifications. By using this novel workflow, mouse plasma proteins were successfully denatured, alkylated, in-solution digested, and 18O labelled in < 10 min for subsequent analysis by liquid chromatography-electrospray ionization high resolution mass spectrometry. Performance was evaluated in terms of the number of mouse plasma peptides and proteins identified in a shotgun approach and the quantitative dynamic range. The results were compared with previously published results obtained using conventional sample preparation methods and were found to be similar. Advantages of the new method include greatly simplified and accelerated sample processing, as well as being readily amenable to automation.

  5. Rapid Sample Processing For LC-MS Based Quantitative Proteomics Using High Intensity Focused Ultrasounds

    PubMed Central

    López-Ferrer, Daniel; Heibeck, Tyler H.; Petritis, Konstantinos; Hixson, Kim K.; Qian, Weijun; Monroe, Matthew E.; Mayampurath, Anoop; Moore, Ronald J.; Belov, Mikhail E.; Camp, David G.; Smith, Richard D.

    2009-01-01

    A new sample processing workflow that uses high intensity focused ultrasound to rapidly reduce and alkylate cysteines, digest proteins and then label peptides with 18O was developed for quantitative proteomics applications. Each step was individually refined to minimize reaction times, peptide loses and undesired by-products or modifications. By using this novel workflow, mouse plasma proteins were successfully denatured, alkylated, in-solution digested, and 18O labelled in < 10 min for subsequent analysis by liquid chromatography-electrospray ionization high resolution mass spectrometry. Performance was evaluated in terms of the number of mouse plasma peptides and proteins identified in a shotgun approach and the quantitative dynamic range. The results were compared with previously published results obtained using conventional sample preparation methods and were found to be similar. Advantages of the new method include greatly simplified and accelerated sample processing, as well as being readily amenable to automation. PMID:18686986

  6. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human

    PubMed Central

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  7. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human.

    PubMed

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  8. Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis.

    PubMed

    Zougman, Alexandre; Selby, Peter J; Banks, Rosamonde E

    2014-05-01

    Despite recent developments in bottom-up proteomics, the need still exists in a fast, uncomplicated, and robust method for comprehensive sample processing especially when applied to low protein amounts. The suspension trapping method combines the advantage of efficient SDS-based protein extraction with rapid detergent removal, reactor-type protein digestion, and peptide cleanup. Proteins are solubilized in SDS. The sample is acidified and introduced into the suspension trapping tip incorporating the depth filter and hydrophobic compartments, filled with the neutral pH methanolic solution. The instantly formed fine protein suspension is trapped in the depth filter stack-this crucial step is aimed at separating the particulate matter in space. SDS and other contaminants are removed in the flow-through, and a protease is introduced. Following the digestion, the peptides are cleaned up using the tip's hydrophobic part. The methodology allows processing of protein loads down to the low microgram/submicrogram levels. The detergent removal takes about 5 min, whereas the tryptic proteolysis of a cellular lysate is complete in as little as 30 min. We have successfully utilized the method for analysis of cellular lysates, enriched membrane preparations, and immunoprecipitates. We expect that due to its robustness and simplicity, the method will become an essential proteomics tool. PMID:24678027

  9. Analysis of the expression protein profiles of lung squamous carcinoma cell using shot-gun proteomics strategy.

    PubMed

    Nan, Yandong; Yang, Shuanying; Tian, Yingxuan; Zhang, Wei; Zhou, Bin; Bu, Lina; Huo, Shufen

    2009-01-01

    The aim of this study is to globally screen and identify the expression protein profiles of lung squamous carcinoma cell (SqCC) using shot-gun proteomics strategy and to further analyze function of individual proteins by bioinformatics, which may likely result in the identification of new biomarkers and provide helpful clues for pathogenesis, early diagnosis, and progression of lung SqCC. The specific tumor cells were isolated and collected from the tissues of six patients with lung SqCC by laser capture microdissection (LCM). Total proteins from the LCM cells were extracted, digested with trypsin. The sequence information of resulting peptides was acquired by high-performance liquid chromatography (HPLC) and tandem mass spectrometry (TMS). The global protein profiles of lung SqCC cell were identified with BioworksTM software in IPI human protein database. Cellular component, molecular function, and biological process of the all proteins were analyzed using gene ontology (GO). About 720,000 tumor cells were satisfactorily collected from tissues of six patients with lung SqCC by LCM and the homogeneities of cell population were estimated to be over 95% as determined by microscopic visualization. The high resolution profiles including HPLC, full mass spectrum, and tandem mass spectrum were successfully obtained. Database searching of the resulting bimolecular sequence information identified 1982 proteins in all samples. The bioinformatics of these proteins, including amino acids sequence, fraction of coverage, molecular weight, isoelectric point, etc., were analyzed in detail. Among them, the function of most proteins was recognized by using GO. Five candidate proteins, Prohibitin (PHB), Mitogen-activated protein kinase (MAPK), Heat shock protein27 (HSP27), Annexin A1(ANXA1), and High mobility group protein B1 (HMGB1), might play an important role in SqCC genesis, progression, recurrence, and metastasis according to relative literatures. We have successfully isolated

  10. Data for proteomic profiling of Anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Ji; Pang, Chaoyou; Wei, Hengling; Song, Meizhen; Meng, Yanyan; Ma, Jianhui; Fan, Shuli; Yu, Shuxun

    2015-09-01

    Cotton is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To study the male sterile mechanisms of CCRI9106, histological and iTRAQ-facilitated proteomic analyses of anthers were performed. This data article contains data related to the research article titled iTRAQ-Facilitated Proteomic Profiling of Anthers From a Photosensitive Male Sterile Mutant and Wild-type Cotton (Gossypium hirsutum L.)[1]. This research article describes the iTRAQ-facilitated proteomic analysis of the wild-type and a photosensitive male sterile mutant in cotton. The report indicated that exine formation defect is the key reason for male sterility in mutant plant. The information presented here represents the tables and figures that detail the processing of the raw data obtained from iTRAQ analysis. PMID:26958592

  11. A Quantitative Proteomic Approach for Detecting Protein Profiles of Activated Human Myeloid Dendritic Cells

    PubMed Central

    Schlatzer, Daniela M; Sugalski, Julia; Dazard, Jean-Eudes; Chance, Mark R; Anthony, Donald D.

    2011-01-01

    Dendritic cells (DC) direct the magnitude, polarity and effector function of the adaptive immune response. DC express toll-like receptors (TLR), antigen capturing and processing machinery, and costimulatory molecules, which facilitate innate sensing and T cell activation. Once activated, DC can efficiently migrate to lymphoid tissue and prime T cell responses. Therefore, DC play an integral role as mediators of the immune response to multiple pathogens. Elucidating the molecular mechanisms involved in DC activation is therefore central in gaining an understanding of host response to infection. Unfortunately, technical constraints have limited system-wide ‘omic’ analysis of human DC subsets collected ex vivo. Here we have applied novel proteomic approaches to human myeloid dendritic cells (mDCs) purified from 100 milliliters of peripheral blood to characterize specific molecular networks of cell activation at the individual patient level, and have successfully quantified over 700 proteins from individual samples containing as little as 200,000 mDCs. The proteomic and network readouts after ex vivo stimulation of mDCs with TLR3 agonists is measured and verified using flow cytometry. PMID:21945394

  12. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.

    PubMed

    Paulo, Joao A; O'Connell, Jeremy D; Gaun, Aleksandr; Gygi, Steven P

    2015-11-01

    The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry-based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid-related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production. PMID:26399295

  13. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae

    PubMed Central

    Paulo, Joao A.; O’Connell, Jeremy D.; Gaun, Aleksandr; Gygi, Steven P.

    2015-01-01

    The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry–based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid–related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production. PMID:26399295

  14. A rapid high throughput proteomic method based on profiling of proteolytic free peptides to assess post-delivery degradation of placental tissue.

    PubMed

    Heywood, Wendy E; Pryce, Jeremy; Virasami, Alex; Preece, Rhian Lauren; Dezateux, Carol; Mills, Kevin; Sebire, Neil J

    2016-08-01

    A rapid method to determine quality for placental proteomic studies is required due to varying lengths of time between delivery and sampling in routine protocols. We developed a rapid 10 min LC-MS based scanning method to profile free peptides liberated from natural proteolytic degradation. The assay was applied to placenta samples obtained following refrigeration for varying time periods post-delivery (12 h, +24 h, +48 h and +72 h). Analysis reveals time dependant overlapping profiles for groups <24 to +48 h with greatest variation in the +72 h group, indicating that significant proteolysis affects tissue integrity between 48 and 72 h. PMID:27161200

  15. Optimization of proteomic sample preparation procedures for comprehensive protein characterization of pathogenic systems

    SciTech Connect

    Brewer, Heather M.; Norbeck, Angela D.; Adkins, Joshua N.; Manes, Nathan P.; Ansong, Charles; Shi, Liang; Rikihisa, Yasuko; Kikuchi, Takane; Wong, Scott; Estep, Ryan D.; Heffron, Fred; Pasa-Tolic, Ljiljana; Smith, Richard D.

    2008-12-19

    The elucidation of critical functional pathways employed by pathogens and hosts during an infectious cycle is both challenging and central to our understanding of infectious diseases. In recent years, mass spectrometry-based proteomics has been used as a powerful tool to identify key pathogenesis-related proteins and pathways. Despite the analytical power of mass spectrometry-based technologies, samples must be appropriately prepared to characterize the functions of interest (e.g. host-response to a pathogen or a pathogen-response to a host). The preparation of these protein samples requires multiple decisions about what aspect of infection is being studied, and it may require the isolation of either host and/or pathogen cellular material.

  16. Profiling Lipid–protein Interactions Using Nonquenched Fluorescent Liposomal Nanovesicles and Proteome Microarrays*

    PubMed Central

    Lu, Kuan-Yi; Tao, Sheng-Ce; Yang, Tzu-Ching; Ho, Yu-Hsuan; Lee, Chia-Hsien; Lin, Chen-Ching; Juan, Hsueh-Fen; Huang, Hsuan-Cheng; Yang, Chin-Yu; Chen, Ming-Shuo; Lin, Yu-Yi; Lu, Jin-Ying; Zhu, Heng; Chen, Chien-Sheng

    2012-01-01

    Fluorescent liposomal nanovesicles (liposomes) are commonly used for lipid research and/or signal enhancement. However, the problem of self-quenching with conventional fluorescent liposomes limits their applications because these liposomes must be lysed to detect the fluorescent signals. Here, we developed a nonquenched fluorescent (NQF)1 liposome by optimizing the proportion of sulforhodamine B (SRB) encapsulant and lissamine rhodamine B-dipalmitoyl phosphatidylethanol (LRB-DPPE) on a liposomal surface for signal amplification. Our study showed that 0.3% of LRB-DPPE with 200 μm of SRB provided the maximal fluorescent signal without the need to lyse the liposomes. We also observed that the NQF liposomes largely eliminated self-quenching effects and produced greatly enhanced signals than SRB-only liposomes by 5.3-fold. To show their application in proteomics research, we constructed NQF liposomes that contained phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and profiled its protein interactome using a yeast proteome microarray. Our profiling led to the identification of 162 PI(3,5)P2-specific binding proteins (PI(3,5)P2-BPs). We not only recovered many proteins that possessed known PI(3,5)P2-binding domains, but we also found two unknown Pfam domains (Pfam-B_8509 and Pfam-B_10446) that were enriched in our dataset. The validation of many newly discovered PI(3,5)P2-BPs was performed using a bead-based affinity assay. Further bioinformatics analyses revealed that the functional roles of 22 PI(3,5)P2-BPs were similar to those associated with PI(3,5)P2, including vesicle-mediated transport, GTPase, cytoskeleton, and kinase. Among the 162 PI(3,5)P2-BPs, we found a novel motif, HRDIKP[ES]NJLL that showed statistical significance. A docking simulation showed that PI(3,5)P2 interacted primarily with lysine or arginine side chains of the newly identified PI(3,5)P2-binding kinases. Our study showed that this new tool would greatly benefit profiling lipid

  17. Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells

    PubMed Central

    Zhou, Quan; Guo, Yueshuai; Zheng, Bo; Shao, Binbin; Jiang, Min; Wang, Gaigai; Zhou, Tao; Wang, Lei; Zhou, Zuomin; Guo, Xuejiang; Huang, Xiaoyan

    2015-01-01

    Spermatogonial stem cells (SSCs) are undifferentiated cells that are required to maintain spermatogenesis throughout the reproductive life of mammals. Although SSC transplantation and culture provide a powerful tool to identify the mechanisms regulating SSC function, the precise signalling mechanisms governing SSC self-renewal and specific surface markers for purifying SSCs remain to be clearly determined. In the present study, we established a steady SSC culture according to the method described by Shinohara's lab. Fertile progeny was produced after transplantation of cultured SSCs into infertile mouse testis, and the red fluorescence exhibited by the culture cell membranes was stably and continuously transmitted to the offspring. Next, via advanced mass spectrometry and an optimized proteomics platform, we constructed the proteome profile, with 682 proteins expressed in SSCs. Furthermore bioinformatics analysis showed that the list contained several known molecules that are regulated in SSCs. Several nucleoproteins and membrane proteins were chosen for further exploration using immunofluorescence and RT-PCR. The results showed that SALL1, EZH2, and RCOR2 are possibly involved in the self-renewal mechanism of SSCs. Furthermore, the results of tissue-specific expression analysis showed that Gpat2 and Pld6 were uniquely and highly expressed in mouse testes and cultured SSCs. The cellular localization of PLD6 was further explored and the results showed it was primarily expressed in the spermatogonial membrane of mouse testes and cultured SSCs. The proteins identified in this study form the basis for further exploring the molecular mechanism of self-renewal in SSCs and for identifying specific surface markers of SSCs. PMID:25352495

  18. Feeding milk replacer instead of whole milk affects blood plasma proteome and lipid profile in preruminant calves.

    PubMed

    Lepczyński, A; Herosimczyk, A; Ożgo, M; Skrzypczak, W F

    2015-01-01

    The study was undertaken to determine the effect of feeding milk or milk-replacer on the blood plasma proteome and lipid profile in calves during the second week of life. Feeding milk-replacer significantly decreased the expression of plasma apoA-I. Age of calves affected apoA-I expression, which was higher on the 8th than on the 11th and 14th day of life. A significant effect of interaction between diet and age was also observed. The expression of apoA-IV, was significantly affected by diet and was lower in calves fed milk replacer. Expression of this protein was significantly lower at the 8th day of life and was up-regulated in the calves fed milk-replacer at the second week of life. Calves fed milk-replacer had greater expression of haptoglobin, which differed significantly between days of blood sampling, being higher on the 8th than on the 11th and 14th day. The interactive effect of diet and age affected haptoglobin expression, which was successively down-regulated in calves fed milk re- placer. Diet had a significant effect on the plasma lipid profile. Animals fed milk had a greater concentration of TC, HDLC and LDLC. The composition of milk-replacer, especially fat source, is probably the main factor that affects expression of proteins involved in cholesterol metabolism and level of components of lipid profile in calves fed formula. We claim that the initially increased level of haptoglobin, followed by its decrease during the second week of life in calves fed milk-replacer may indicate the presence of short-term stress induced by changes in the feeding system. PMID:25928915

  19. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    PubMed

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  20. Proteomics profiling of cholangiocarcinoma exosomes: A potential role of oncogenic protein transferring in cancer progression.

    PubMed

    Dutta, Suman; Reamtong, Onrapak; Panvongsa, Wittaya; Kitdumrongthum, Sarunya; Janpipatkul, Keatdamrong; Sangvanich, Polkit; Piyachaturawat, Pawinee; Chairoungdua, Arthit

    2015-09-01

    Cholangiocarcinoma (CCA), a common primary malignant tumor of bile duct epithelia, is highly prevalent in Asian countries and unresponsive to chemotherapeutic drugs. Thus, a newly recognized biological entity for early diagnosis and treatment is highly needed. Exosomes are small membrane bound vesicles found in body fluids and released by most cell types including cancer cells. The vesicles contain specific subset of proteins and nucleic acids corresponding to cell types and play essential roles in pathophysiological processes. The present study aimed to assess the protein profiles of CCA-derived exosomes and their potential roles. We have isolated exosomes from CCA cells namely KKU-M213 and KKU-100 derived from Thai patients and their roles were investigated by incubation with normal human cholangiocyte (H69) cells. Exosomes were internalized into H69 cells and had no effects on viability or proliferation of the host cells. Interestingly, the exosomes from KKU-M213 cells only induced migration and invasion of H69 cells. Proteomic analysis of the exosomes from KKU-M213 cells disclosed multiple cancer related proteins that are not present in H69 exosomes. Consistent with the protein profile, treatment with KKU-M213 exosomes induced β-catenin and reduced E-cadherin expressions in H69 cells. Collectively, our results suggest that a direct cell-to-cell transfer of oncogenic proteins via exosomal pathway may be a novel mechanism for CCA progression and metastasis. PMID:26148937

  1. Proteomic profile of carbonylated proteins in rat liver: discovering possible mechanisms for tetracycline-induced steatosis.

    PubMed

    Deng, Zhenglu; Yan, Siyu; Hu, Hui; Duan, Zhigui; Yin, Lanxuan; Liao, Shenke; Sun, Yubai; Yin, Dazhong; Li, Guolin

    2015-01-01

    To investigate biochemical mechanisms for the tetracycline-induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long-chain specific acyl-CoA dehydrogenase was one of the key enzymes regulating fatty acid β-oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline-induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline-induced steatosis. PMID:25332112

  2. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    PubMed Central

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L.; Huber, Steven C.; Zhao, Youfu

    2015-01-01

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  3. Comparative analysis of proteomic profiles between endometrial caruncular and intercaruncular areas in ewes during the peri-implantation period

    PubMed Central

    2013-01-01

    The endometrium of sheep consists of plenty of raised aglandular areas called caruncular (C), and intensely glandular intercaruncular areas (IC). In order to better understand the endometrium involved mechanisms of implantation, we used LC-MS/MS technique to profile the proteome of ovine endometrial C areas and IC areas separately during the peri-implantation period, and then compared the proteomic profiles between these two areas. We successfully detected 1740 and 1813 proteins in C areas and IC areas respectively. By comparing the proteome of these two areas, we found 170 differentially expressed proteins (DEPs) (P < 0.05), functional bioinformatics analysis showed these DEPs were mainly involved in growth and remodeling of endometrial tissue, cell adhesion and protein transport, and so on. Our study, for the first time, provided a proteomic reference for elucidating the differences between C and IC areas, as an integrated function unit respectively, during the peri-implantation period. The results could help us to better understand the implantation in the ewes. In addition, we established a relatively detailed protein database of ovine endometrium, which provide a unique reference for further studies. PMID:24093944

  4. Gel-aided sample preparation (GASP)--a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells.

    PubMed

    Fischer, Roman; Kessler, Benedikt M

    2015-04-01

    We describe a "gel-assisted" proteomic sample preparation method for MS analysis. Solubilized protein extracts or intact cells are copolymerized with acrylamide, facilitating denaturation, reduction, quantitative cysteine alkylation, and matrix formation. Gel-aided sample preparation has been optimized to be highly flexible, scalable, and to allow reproducible sample generation from 50 cells to milligrams of protein extracts. This methodology is fast, sensitive, easy-to-use on a wide range of sample types, and accessible to nonspecialists. PMID:25515006

  5. Proteome-derived Peptide Libraries to Study the Substrate Specificity Profiles of Carboxypeptidases*

    PubMed Central

    Tanco, Sebastian; Lorenzo, Julia; Garcia-Pardo, Javier; Degroeve, Sven; Martens, Lennart; Aviles, Francesc Xavier; Gevaert, Kris; Van Damme, Petra

    2013-01-01

    Through processing peptide and protein C termini, carboxypeptidases participate in the regulation of various biological processes. Few tools are however available to study the substrate specificity profiles of these enzymes. We developed a proteome-derived peptide library approach to study the substrate preferences of carboxypeptidases. Our COFRADIC-based approach takes advantage of the distinct chromatographic behavior of intact peptides and the proteolytic products generated by the action of carboxypeptidases, to enrich the latter and facilitate its MS-based identification. Two different peptide libraries, generated either by chymotrypsin or by metalloendopeptidase Lys-N, were used to determine the substrate preferences of human metallocarboxypeptidases A1 (hCPA1), A2 (hCPA2), and A4 (hCPA4). In addition, our approach allowed us to delineate the substrate specificity profile of mouse mast cell carboxypeptidase (MC-CPA or mCPA3), a carboxypeptidase suggested to function in innate immune responses regulation and mast cell granule homeostasis, but which thus far lacked a detailed analysis of its substrate preferences. mCPA3 was here shown to preferentially remove bulky aromatic amino acids, similar to hCPA2. This was also shown by a hierarchical cluster analysis, grouping hCPA1 close to hCPA4 in terms of its P1 primed substrate specificity, whereas hCPA2 and mCPA3 cluster separately. The specificity profile of mCPA3 may further aid to elucidate the function of this mast cell carboxypeptidase and its biological substrate repertoire. Finally, we used this approach to evaluate the substrate preferences of prolylcarboxypeptidase, a serine carboxypeptidase shown to cleave C-terminal amino acids linked to proline and alanine. PMID:23620545

  6. Lens proteome map and alpha-crystallin profile of the catfish Rita rita.

    PubMed

    Mohanty, Bimal Prasanna; Bhattacharjee, Soma; Das, Manas Kumar

    2011-02-01

    Crystallins are a diverse group of proteins that constitute nearly 90% of the total soluble proteins of the vertebrate eye lens and these tightly packed crystallins are responsible for transparency of the lens. These proteins have been studied in different model and non-model species for understanding the modifications they undergo with ageing that lead to cataract, a disease of protein aggregation. In the present investigation, we studied the lens crystallin profile of the tropical freshwater catfish Rita rita. Profiles of lens crystallins were analyzed and crystallin proteome maps of Rita rita were generated for the first time. alphaA-crystallins, member of the alpha-crystallin family, which are molecular chaperons and play crucial role in maintaining lens transparency were identified by 1- and 2-D immunoblot analysis with anti-alphaA-crystallin antibody. Two protein bands of 19-20 kDa were identified as alphaA-crystallins on 1-D immunoblots and these bands separated into 10 discrete spots on 2-D immunoblot. However, anti-alphaB-crystallin and antiphospho-alphaB-crystallin antibodies were not able to detect any immunoreactive bands on 1- and 2-D immunoblots, indicating alphaB-crystallin was either absent or present in extremely low concentration in Rita rita lens. Thus, Rita rita alpha-crystallins are more like that of the catfish Clarias batrachus and the mammal kangaroo in its alphaA- and alphaB-crystallin content (contain low amount from 5-9% of alphaB-crystallin) and unlike the dogfish, zebrafish, human, bovine and mouse alpha-crystallins (contain higher amount of alphaB-crystallin from 25% in mouse and bovine to 85% in dogfish). Results of the present study can be the baseline information for stimulating further investigation on Rita rita lens crystallins for comparative lens proteomics. Comparing and contrasting the alpha-crystallins of the dogfish and Rita rita may provide valuable information on the functional attributes of alphaA- and alphaB-isoforms, as

  7. Comparison of analytical methods for profiling N- and O-linked glycans from cultured cell lines : HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study.

    PubMed

    Ito, Hiromi; Kaji, Hiroyuki; Togayachi, Akira; Azadi, Parastoo; Ishihara, Mayumi; Geyer, Rudolf; Galuska, Christina; Geyer, Hildegard; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Karlsson, Niclas G; Jin, Chunsheng; Kato, Koichi; Yagi, Hirokazu; Kondo, Sachiko; Kawasaki, Nana; Hashii, Noritaka; Kolarich, Daniel; Stavenhagen, Kathrin; Packer, Nicolle H; Thaysen-Andersen, Morten; Nakano, Miyako; Taniguchi, Naoyuki; Kurimoto, Ayako; Wada, Yoshinao; Tajiri, Michiko; Yang, Pengyuan; Cao, Weiqian; Li, Hong; Rudd, Pauline M; Narimatsu, Hisashi

    2016-06-01

    The Human Disease Glycomics/Proteome Initiative (HGPI) is an activity in the Human Proteome Organization (HUPO) supported by leading researchers from international institutes and aims at development of disease-related glycomics/glycoproteomics analysis techniques. Since 2004, the initiative has conducted three pilot studies. The first two were N- and O-glycan analyses of purified transferrin and immunoglobulin-G and assessed the most appropriate analytical approach employed at the time. This paper describes the third study, which was conducted to compare different approaches for quantitation of N- and O-linked glycans attached to proteins in crude biological samples. The preliminary analysis on cell pellets resulted in wildly varied glycan profiles, which was probably the consequence of variations in the pre-processing sample preparation methodologies. However, the reproducibility of the data was not improved dramatically in the subsequent analysis on cell lysate fractions prepared in a specified method by one lab. The study demonstrated the difficulty of carrying out a complete analysis of the glycome in crude samples by any single technology and the importance of rigorous optimization of the course of analysis from preprocessing to data interpretation. It suggests that another collaborative study employing the latest technologies in this rapidly evolving field will help to realize the requirements of carrying out the large-scale analysis of glycoproteins in complex cell samples. PMID:26511985

  8. Open Tubular Lab-On-Column/Mass Spectrometry for Targeted Proteomics of Nanogram Sample Amounts

    PubMed Central

    Hustoft, Hanne Kolsrud; Vehus, Tore; Brandtzaeg, Ole Kristian; Krauss, Stefan; Greibrokk, Tyge; Wilson, Steven Ray; Lundanes, Elsa

    2014-01-01

    A novel open tubular nanoproteomic platform featuring accelerated on-line protein digestion and high-resolution nano liquid chromatography mass spectrometry (LC-MS) has been developed. The platform features very narrow open tubular columns, and is hence particularly suited for limited sample amounts. For enzymatic digestion of proteins, samples are passed through a 20 µm inner diameter (ID) trypsin + endoproteinase Lys-C immobilized open tubular enzyme reactor (OTER). Resulting peptides are subsequently trapped on a monolithic pre-column and transferred on-line to a 10 µm ID porous layer open tubular (PLOT) liquid chromatography LC separation column. Wnt/ß-catenein signaling pathway (Wnt-pathway) proteins of potentially diagnostic value were digested+detected in targeted-MS/MS mode in small cell samples and tumor tissues within 120 minutes. For example, a potential biomarker Axin1 was identifiable in just 10 ng of sample (protein extract of ∼1,000 HCT15 colon cancer cells). In comprehensive mode, the current OTER-PLOT set-up could be used to identify approximately 1500 proteins in HCT15 cells using a relatively short digestion+detection cycle (240 minutes), outperforming previously reported on-line digestion/separation systems. The platform is fully automated utilizing common commercial instrumentation and parts, while the reactor and columns are simple to produce and have low carry-over. These initial results point to automated solutions for fast and very sensitive MS based proteomics, especially for samples of limited size. PMID:25222838

  9. SwellGel: a sample preparation affinity chromatography technology for high throughput proteomic applications.

    PubMed

    Haney, Paul J; Draveling, Connie; Durski, Wendy; Romanowich, Kathryn; Qoronfleh, M Walid

    2003-04-01

    Development of high throughput systems for purification and analysis of proteins is essential for the success of today's proteomic research. We have developed an affinity chromatography technology that allows the customization of high capacity/high throughput chromatographic separation of proteins. This technology utilizes selected chromatography media that are dehydrated to form uniform SwellGel discs. Unlike wet resin slurries, these discs are easily adaptable to a variety of custom formats, eliminating problems associated with resin dispensing, equilibration, or leakage. Discs can be made in assorted sizes (resin volume 15 microl-3 ml) dispensed in various formats (384-, 96-, 48-, and 24-well microplates or columns) and different ligands can be attached to the matrix. SwellGel discs rapidly hydrate upon addition of either water or the protein sample, providing dramatically increased capacity compared to coated plates. At the same time, the discs offer greater stability, reproducibility, and ease of handling than standard wet chromatography resins. We previously reported the development of SwellGel for the purification of 6x His- and glutathione-S-transferase (GST)-tagged fusion proteins [Prot. Exp. Purif. 22 (2001) 359-366]. In this paper, we discuss an expanded list of SwellGel stabilized chromatographic methods that have been adapted to high throughput formats for processing protein samples ranging from 10 microl to 10 ml (1 microg to 50 mg protein). Data are presented applying SwellGel discs to high throughput proteomic applications such as affinity tag purification, protein desalting, the removal of abundant proteins from serum including albumin and immunoglobulin, and the isolation of phosphorylated peptides for mass spectrometry. PMID:12699691

  10. Analysis of Biostimulated Microbial Communities from Two Field Experiments Reveals Temporal and Spatial Differences in Proteome Profiles

    SciTech Connect

    Callister, Stephen J.; Wilkins, Michael J.; Nicora, Carrie D.; Williams, Kenneth H.; Banfield, Jillian F.; VerBerkmoes, Nathan; Hettich, Robert L.; N'Guessan, A. Lucie; Mouser, Paula; Elifantz, H.; Smith, Richard D.; Lovley, Derek R.; Lipton, Mary S.; Long, Philip E.

    2010-12-01

    Stimulated by acetate-amendment field experiments conducted in 2007 and 2008, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this period, planktonic biomass was sampled at various time points and used to quantitatively evaluate proteomes, both spatially and temporally to study the dynamics of the microbial community proteome dynamics in relationship to geochemical measurements. As there were no comprehensive genome sequence data available at the time, we systematically evaluated different organisms to generate a "pseudo-metagenome" for proteomics analyses. Proteomics results supported the dominance of Geobacteraceae during biostimulation and revealed a shift from iron reduction to sulfate reduction, evidenced by changes in community membership. Because U(VI) is reduced at a lower rate during sulfate reduction, detecting this shift is important to maintaining the maximum rate of U(VI) reduction. In addition, the comparison of proteome measurements made at the end of the 2007 field experiment to the 2008 field experiment revealed a modified community structure. Importantly, the failure of a community to rebound following the cessation of biostimulation needs to be included in long-term remediation strategies.

  11. Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster.

    PubMed

    Subramanian, Perumal; Jayapalan, Jaime J; Abdul-Rahman, Puteri S; Arumugam, Manjula; Hashim, Onn H

    2016-01-01

    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock. PMID:27257555

  12. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    PubMed

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-11-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  13. Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster

    PubMed Central

    Jayapalan, Jaime J.; Abdul-Rahman, Puteri S.; Arumugam, Manjula; Hashim, Onn H.

    2016-01-01

    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock. PMID:27257555

  14. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    PubMed Central

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  15. Proteomic profiling of neuromas reveals alterations in protein composition and local protein synthesis in hyper-excitable nerves

    PubMed Central

    Huang, Hong-Lei; Cendan, Cruz-Miguel; Roza, Carolina; Okuse, Kenji; Cramer, Rainer; Timms, John F; Wood, John N

    2008-01-01

    Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis (2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a >1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel α2δ-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S35methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability. PMID:18700027

  16. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

    PubMed Central

    Kawamura, Tatsuro; Kawatani, Makoto; Muroi, Makoto; Kondoh, Yasumitsu; Futamura, Yushi; Aono, Harumi; Tanaka, Miho; Honda, Kaori; Osada, Hiroyuki

    2016-01-01

    Since recent publications suggested that the survival of cancer cells depends on MTH1 to avoid incorporation of oxidized nucleotides into the cellular DNA, MTH1 has attracted attention as a potential cancer therapeutic target. In this study, we identified new purine-based MTH1 inhibitors by chemical array screening. However, although the MTH1 inhibitors identified in this study targeted cellular MTH1, they exhibited only weak cytotoxicity against cancer cells compared to recently reported first-in-class inhibitors. We performed proteomic profiling to investigate the modes of action by which chemically distinct MTH1 inhibitors induce cancer cell death, and found mechanistic differences among the first-in-class MTH1 inhibitors. In particular, we identified tubulin as the primary target of TH287 and TH588 responsible for the antitumor effects despite the nanomolar MTH1-inhibitory activity in vitro. Furthermore, overexpression of MTH1 did not rescue cells from MTH1 inhibitor–induced cell death, and siRNA-mediated knockdown of MTH1 did not suppress cancer cell growth. Taken together, we conclude that the cytotoxicity of MTH1 inhibitors is attributable to off-target effects and that MTH1 is not essential for cancer cell survival. PMID:27210421

  17. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT)

    PubMed Central

    Amin, Nirav M.; Greco, Todd M.; Kuchenbrod, Lauren M.; Rigney, Maggie M.; Chung, Mei-I; Wallingford, John B.; Cristea, Ileana M.; Conlon, Frank L.

    2014-01-01

    The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development. PMID:24496632

  18. Deciphering the proteomic profile of rice (Oryza sativa) bran: a pilot study.

    PubMed

    Ferrari, Fabio; Fumagalli, Marco; Profumo, Antonella; Viglio, Simona; Sala, Alberto; Dolcini, Lorenzo; Temporini, Caterina; Nicolis, Stefania; Merli, Daniele; Corana, Federica; Casado, Begona; Iadarola, Paolo

    2009-12-01

    The exact knowledge of the qualitative and quantitative protein components of rice bran is an essential aspect to be considered for a better understanding of the functional properties of this resource. Aim of the present investigation was to extract the largest number of rice bran proteins and to obtain their qualitative characterization. For this purpose, three different extraction protocols have been applied either on full-fat or on defatted rice bran. Likewise, to identify the highest number of proteins, MS data collected from 1-DE, 2-DE and gel-free procedures have been combined. These approaches allowed to unambiguously identify 43 proteins that were classified as signalling/regulation proteins (30%), proteins with enzymatic activity (30%), storage proteins (30%), transfer (5%) and structural (5%) proteins. The fact that all extraction and identification procedures have been performed in triplicate with an excellent reproducibility provides a rationale for considering the platform of proteins shown in this study as the potential proteome profile of rice bran. It also represents a source of information to evaluate better the qualities of rice bran as food resource. PMID:19960476

  19. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival.

    PubMed

    Kawamura, Tatsuro; Kawatani, Makoto; Muroi, Makoto; Kondoh, Yasumitsu; Futamura, Yushi; Aono, Harumi; Tanaka, Miho; Honda, Kaori; Osada, Hiroyuki

    2016-01-01

    Since recent publications suggested that the survival of cancer cells depends on MTH1 to avoid incorporation of oxidized nucleotides into the cellular DNA, MTH1 has attracted attention as a potential cancer therapeutic target. In this study, we identified new purine-based MTH1 inhibitors by chemical array screening. However, although the MTH1 inhibitors identified in this study targeted cellular MTH1, they exhibited only weak cytotoxicity against cancer cells compared to recently reported first-in-class inhibitors. We performed proteomic profiling to investigate the modes of action by which chemically distinct MTH1 inhibitors induce cancer cell death, and found mechanistic differences among the first-in-class MTH1 inhibitors. In particular, we identified tubulin as the primary target of TH287 and TH588 responsible for the antitumor effects despite the nanomolar MTH1-inhibitory activity in vitro. Furthermore, overexpression of MTH1 did not rescue cells from MTH1 inhibitor-induced cell death, and siRNA-mediated knockdown of MTH1 did not suppress cancer cell growth. Taken together, we conclude that the cytotoxicity of MTH1 inhibitors is attributable to off-target effects and that MTH1 is not essential for cancer cell survival. PMID:27210421

  20. Proteomic profiling of 13 paired ductal infiltrating breast carcinomas and non-tumoral adjacent counterparts.

    PubMed

    Pucci-Minafra, Ida; Cancemi, Patrizia; Marabeti, Maria Rita; Albanese, Nadia Ninfa; Di Cara, Gianluca; Taormina, Pietra; Marrazzo, Antonio

    2007-01-01

    According to recent statistics, breast cancer remains one of the leading causes of death among women in Western countries. Breast cancer is a complex and heterogeneous disease, presently classified into several subtypes according to their cellular origin. Among breast cancer histotypes, infiltrating ductal carcinoma represents the most common and potentially aggressive form. Despite the current progress achieved in early cancer detection and treatment, including the new generation of molecular therapies, there is still need for identification of multiparametric biomarkers capable of discriminating between cancer subtypes and predicting cancer progression for personalized therapies. One established step in this direction is the proteomic strategy, expected to provide enough information on breast cancer profiling. To this aim, in the present study we analyzed 13 breast cancer tissues and their matched non-tumoral tissues by 2-DE. Collectively, we identified 51 protein spots, corresponding to 34 differentially expressed proteins, which may represent promising candidate biomarkers for molecular-based diagnosis of breast cancer and for pattern discovery. The relevance of these proteins as factors contributing to breast carcinogenesis is discussed. PMID:21136615

  1. Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture

    PubMed Central

    Lai, Xianyin; Agarwal, Mangilal; Lvov, Yuri M.; Pachpande, Chetan; Varahramyan, Kody; Witzmann, Frank A.

    2013-01-01

    Halloysite is aluminosilicate clay with a hollow tubular structure with nanoscale internal and external diameters. Assessment of halloysite biocompatibility has gained importance in view of its potential application in oral drug delivery. To investigate the effect of halloysite nanotubes on an in vitro model of the large intestine, Caco-2/HT29-MTX cells in monolayer co-culture were exposed to nanotubes for toxicity tests and proteomic analysis. Results indicate that halloysite exhibits a high degree of biocompatibility characterized by an absence of cytotoxicity, in spite of elevated pro-inflammatory cytokine release. Exposure-specific changes in expression were observed among 4081 proteins analyzed. Bioinformatic analysis of differentially expressed protein profiles suggest that halloysite stimulates processes related to cell growth and proliferation, subtle responses to cell infection, irritation and injury, enhanced antioxidant capability, and an overall adaptive response to exposure. These potentially relevant functional effects warrant further investigation in in vivo models and suggest that chronic or bolus occupational exposure to halloysite nanotubes may have unintended outcomes. PMID:23606564

  2. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate

    PubMed Central

    Rejón, Juan David; Delalande, François; Castro, Antonio Jesús

    2013-01-01

    Proteomic analysis of the stigmatic exudate of Lilium longiflorum and Olea europaea led to the identification of 51 and 57 proteins, respectively, most of which are described for the first time in this secreted fluid. These results indicate that the stigmatic exudate is an extracellular environment metabolically active, participating in at least 80 different biological processes and 97 molecular functions. The stigma exudate showed a markedly catabolic profile and appeared to possess the enzyme machinery necessary to degrade large polysaccharides and lipids secreted by papillae to smaller units, allowing their incorporation into the pollen tube during pollination. It may also regulate pollen-tube growth in the pistil through the selective degradation of tube-wall components. Furthermore, some secreted proteins were involved in pollen-tube adhesion and orientation, as well as in programmed cell death of the papillae cells in response to either compatible pollination or incompatible pollen rejection. Finally, the results also revealed a putative cross-talk between genetic programmes regulating stress/defence and pollination responses in the stigma. PMID:24151302

  3. Genomic and proteomic profiling of oxidative stress response in human diploid fibroblasts

    PubMed Central

    Xie, Lifang; Pandey, Ritu; Xu, Beibei; Tsaprailis, George; Chen, Qin M.

    2016-01-01

    A number of lines of evidence suggest that senescence of normal human diploid fibroblasts (HDFs) in culture is relevant to the process of aging in vivo. Using normal human skin diploid fibroblasts, we examine the changes in genes and proteins following treatment with a mild dose of H2O2, which induces premature senescence. Multidimensional Protein Identification Technology (MudPIT) in combination with mass spectrometry analyses of whole cell lysates from HDFs detected 65 proteins in control group, 48 proteins in H2O2-treated cells and 109 proteins common in both groups. In contrast, cDNA microarray analyses show 173 genes up-regulated and 179 genes down-regulated upon H2O2 treatment. Both MudPIT and cDNA microarray analyses indicate that H2O2 treatment caused elevated levels of thioredoxin reductase 1. Semi-quantitative RT-PCR and Western-blot were able to verify the finding. Out of a large number of genes or proteins detected, only a small fraction shows the overlap between the outcomes of microarray versus proteomics. The low overlap suggests the importance of considering proteins instead of transcripts when investigating the gene expression profile altered by oxidative stress. PMID:18654835

  4. Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture.

    PubMed

    Lai, Xianyin; Agarwal, Mangilal; Lvov, Yuri M; Pachpande, Chetan; Varahramyan, Kody; Witzmann, Frank A

    2013-11-01

    Halloysite is aluminosilicate clay with a hollow tubular structure with nanoscale internal and external diameters. Assessment of halloysite biocompatibility has gained importance in view of its potential application in oral drug delivery. To investigate the effect of halloysite nanotubes on an in vitro model of the large intestine, Caco-2/HT29-MTX cells in monolayer co-culture were exposed to nanotubes for toxicity tests and proteomic analysis. Results indicate that halloysite exhibits a high degree of biocompatibility characterized by an absence of cytotoxicity, in spite of elevated pro-inflammatory cytokine release. Exposure-specific changes in expression were observed among 4081 proteins analyzed. Bioinformatic analysis of differentially expressed protein profiles suggest that halloysite stimulates processes related to cell growth and proliferation, subtle responses to cell infection, irritation and injury, enhanced antioxidant capability, and an overall adaptive response to exposure. These potentially relevant functional effects warrant further investigation in in vivo models and suggest that chronic or bolus occupational exposure to halloysite nanotubes may have unintended outcomes. PMID:23606564

  5. Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes.

    PubMed

    Andrade-Silva, Débora; Zelanis, André; Kitano, Eduardo S; Junqueira-de-Azevedo, Inácio L M; Reis, Marcelo S; Lopes, Aline S; Serrano, Solange M T

    2016-08-01

    Snake venoms are biological weapon systems composed of secreted proteins and peptides that are used for immobilizing or killing prey. Although post-translational modifications are widely investigated because of their importance in many biological phenomena, we currently still have little understanding of how protein glycosylation impacts the variation and stability of venom proteomes. To address these issues, here we characterized the venom proteomes of seven Bothrops snakes using a shotgun proteomics strategy. Moreover, we compared the electrophoretic profiles of native and deglycosylated venoms and, in order to assess their subproteomes of glycoproteins, we identified the proteins with affinity for three lectins with different saccharide specificities and their putative glycosylation sites. As proteinases are abundant glycosylated toxins, we examined the effect of N-deglycosylation on their catalytic activities and show that the proteinases of the seven venoms were similarly affected by removal of N-glycans. Moreover, we prospected putative glycosylation sites of transcripts of a B. jararaca venom gland data set and detected toxin family related patterns of glycosylation. Based on our global analysis, we report that Bothrops venom proteomes and glycoproteomes contain a core of components that markedly define their composition, which is conserved upon evolution in parallel to other molecular markers that determine their phylogenetic classification. PMID:27297130

  6. Critical comparison of sample preparation strategies for shotgun proteomic analysis of formalin-fixed, paraffin-embedded samples: insights from liver tissue

    PubMed Central

    2014-01-01

    Background The growing field of formalin-fixed paraffin-embedded (FFPE) tissue proteomics holds promise for improving translational research. Direct tissue trypsinization (DT) and protein extraction followed by in solution digestion (ISD) or filter-aided sample preparation (FASP) are the most common workflows for shotgun analysis of FFPE samples, but a critical comparison of the different methods is currently lacking. Experimental design DT, FASP and ISD workflows were compared by subjecting to the same label-free quantitative approach three independent technical replicates of each method applied to FFPE liver tissue. Data were evaluated in terms of method reproducibility and protein/peptide distribution according to localization, MW, pI and hydrophobicity. Results DT showed lower reproducibility, good preservation of high-MW proteins, a general bias towards hydrophilic and acidic proteins, much lower keratin contamination, as well as higher abundance of non-tryptic peptides. Conversely, FASP and ISD proteomes were depleted in high-MW proteins and enriched in hydrophobic and membrane proteins; FASP provided higher identification yields, while ISD exhibited higher reproducibility. Conclusions These results highlight that diverse sample preparation strategies provide significantly different proteomic information, and present typical biases that should be taken into account when dealing with FFPE samples. When a sufficient amount of tissue is available, the complementary use of different methods is suggested to increase proteome coverage and depth. PMID:25097466

  7. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis

    PubMed Central

    Gobezie, Reuben; Kho, Alvin; Krastins, Bryan; Sarracino, David A; Thornhill, Thomas S; Chase, Michael; Millett, Peter J; Lee, David M

    2007-01-01

    The development of increasingly high-throughput and sensitive mass spectroscopy-based proteomic techniques provides new opportunities to examine the physiology and pathophysiology of many biologic fluids and tissues. The purpose of this study was to determine protein expression profiles of high-abundance synovial fluid (SF) proteins in health and in the prevalent joint disease osteoarthritis (OA). A cross-sectional study of 62 patients with early OA (n = 21), patients with late OA (n = 21), and control individuals (n = 20) was conducted. SF proteins were separated by using one-dimensional PAGE, and the in-gel digested proteins were analyzed by electrospray ionization tandem mass spectrometry. A total of 362 spots were examined and 135 high-abundance SF proteins were identified as being expressed across all three study cohorts. A total of 135 SF proteins were identified. Eighteen proteins were found to be significantly differentially expressed between control individuals and OA patients. Two subsets of OA that are not dependent on disease duration were identified using unsupervised analysis of the data. Several novel SF proteins were also identified. Our analyses demonstrate no disease duration-dependent differences in abundant protein composition of SF in OA, and we clearly identified two previously unappreciated yet distinct subsets of protein profiles in this disease cohort. Additionally, our findings reveal novel abundant protein species in healthy SF whose functional contribution to SF physiology was not previously recognized. Finally, our studies identify candidate biomarkers for OA with potential for use as highly sensitive and specific tests for diagnostic purposes or for evaluating therapeutic response. PMID:17407561

  8. Protein profiling of mefloquine resistant Plasmodium falciparum using mass spectrometry-based proteomics

    PubMed Central

    Reamtong, Onrapak; Srimuang, Krongkan; Saralamba, Naowarat; Sangvanich, Polkit; Day, Nicholas P.J.; White, Nicholas J.; Imwong, Mallika

    2015-01-01

    Malaria is a mosquito borne infectious disease caused by protozoa of genus Plasmodium. There are five species of Plasmodium that are found to infect humans. Plasmodium falciparum can cause severe malaria leading to higher morbidity and mortality of malaria than the other four species. Antimalarial resistance is the major obstacle to control malaria. Mefloquine was used in combination with Artesunate for uncomplicated P. falciparum in South East Asia and it has developed and established mefloquine resistance in this region. Here, gel-enhanced liquid chromatography/tandem mass spectrometry (GeLC–MS/MS)-based proteomics and label-free quantification were used to explore the protein profiles of mefloquine-sensitive and -induced resistant P. falciparum. A Thai P. falciparum isolate (S066) was used as a model in this research. Our data revealed for the first time that 69 proteins exhibited at least 2-fold differences in their expression levels between the two parasite lines. Of these, 36 were up-regulated and 33 were down-regulated in the mefloquine-resistant line compared with the mefloquine-sensitive line. These findings are consistent with those of past studies, where the multidrug resistance protein Pgh1 showed an up-regulation pattern consistent with that expected from its average 3-copy pfmdr1 gene number. Pgh1 and eight other up-regulated proteins (i.e., histo-aspartyl protease protein, exportin 1, eukaryotic translation initiation factor 3 subunit 8, peptidyl-prolyl cis-trans isomerase, serine rich protein homologue, exported protein 1, ATP synthase beta chain and phospholipid scramblase 1) were further validated for their expression levels using reverse transcriptase quantitative real-time PCR. The data support the up-regulation status in the mefloquine-resistant parasite line of all the candidate genes referred to above. Therefore, GeLC–MS/MS-based proteomics combined with label-free quantification is a reliable approach for exploring mefloquine resistance

  9. Mars Sample Return: The Value of Depth Profiles

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Navarre-Sitchler, A. K.; Moore, J.; Sak, P. B.; Brantley, S. L.; Golden, D. C.; Sutter, B.; Schroeder, C.; Socki, R.; Morris, R. V.; Ming, D. W.

    2008-01-01

    Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.

  10. Optimized Sample Handling Strategy for Metabolic Profiling of Human Feces.

    PubMed

    Gratton, Jasmine; Phetcharaburanin, Jutarop; Mullish, Benjamin H; Williams, Horace R T; Thursz, Mark; Nicholson, Jeremy K; Holmes, Elaine; Marchesi, Julian R; Li, Jia V

    2016-05-01

    Fecal metabolites are being increasingly studied to unravel the host-gut microbial metabolic interactions. However, there are currently no guidelines for fecal sample collection and storage based on a systematic evaluation of the effect of time, storage temperature, storage duration, and sampling strategy. Here we derive an optimized protocol for fecal sample handling with the aim of maximizing metabolic stability and minimizing sample degradation. Samples obtained from five healthy individuals were analyzed to assess topographical homogeneity of feces and to evaluate storage duration-, temperature-, and freeze-thaw cycle-induced metabolic changes in crude stool and fecal water using a (1)H NMR spectroscopy-based metabolic profiling approach. Interindividual variation was much greater than that attributable to storage conditions. Individual stool samples were found to be heterogeneous and spot sampling resulted in a high degree of metabolic variation. Crude fecal samples were remarkably unstable over time and exhibited distinct metabolic profiles at different storage temperatures. Microbial fermentation was the dominant driver in time-related changes observed in fecal samples stored at room temperature and this fermentative process was reduced when stored at 4 °C. Crude fecal samples frozen at -20 °C manifested elevated amino acids and nicotinate and depleted short chain fatty acids compared to crude fecal control samples. The relative concentrations of branched-chain and aromatic amino acids significantly increased in the freeze-thawed crude fecal samples, suggesting a release of microbial intracellular contents. The metabolic profiles of fecal water samples were more stable compared to crude samples. Our recommendation is that intact fecal samples should be collected, kept at 4 °C or on ice during transportation, and extracted ideally within 1 h of collection, or a maximum of 24 h. Fecal water samples should be extracted from a representative amount (∼15 g

  11. Glyco-centric lectin magnetic bead array (LeMBA) - proteomics dataset of human serum samples from healthy, Barrett׳s esophagus and esophageal adenocarcinoma individuals.

    PubMed

    Shah, Alok K; Lê Cao, Kim-Anh; Choi, Eunju; Chen, David; Gautier, Benoît; Nancarrow, Derek; Whiteman, David C; Baker, Peter R; Clauser, Karl R; Chalkley, Robert J; Saunders, Nicholas A; Barbour, Andrew P; Joshi, Virendra; Hill, Michelle M

    2016-06-01

    This data article describes serum glycoprotein biomarker discovery and qualification datasets generated using lectin magnetic bead array (LeMBA) - mass spectrometry techniques, "Serum glycoprotein biomarker discovery and qualification pipeline reveals novel diagnostic biomarker candidates for esophageal adenocarcinoma" [1]. Serum samples collected from healthy, metaplastic Barrett׳s esophagus (BE) and esophageal adenocarcinoma (EAC) individuals were profiled for glycoprotein subsets via differential lectin binding. The biomarker discovery proteomics dataset consisting of 20 individual lectin pull-downs for 29 serum samples with a spiked-in internal standard chicken ovalbumin protein has been deposited in the PRIDE partner repository of the ProteomeXchange Consortium with the data set identifier PRIDE: PXD002442. Annotated MS/MS spectra for the peptide identifications can be viewed using MS-Viewer (〈http://prospector2.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewer〉) using search key "jn7qafftux". The qualification dataset contained 6-lectin pulldown-coupled multiple reaction monitoring-mass spectrometry (MRM-MS) data for 41 protein candidates, from 60 serum samples. This dataset is available as a supplemental files with the original publication [1]. PMID:27408916

  12. Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank.

    PubMed

    Xu, Benhong; Xiong, Feng; Tian, Rui; Zhan, Shaohua; Gao, Yanpan; Qiu, Wenying; Wang, Renzhi; Ge, Wei; Ma, Chao

    2016-01-01

    The temporal lobe is a portion of the cerebral cortex with critical functionality. The age-related protein profile changes in the human temporal lobe have not been previously studied. This 4-plex tandem mass tag labeled proteomic study was performed on samples of temporal lobe from Chinese donors. Tissue samples were assigned to four age groups: Group A (the young, age: 34±13 years); Group B (the elderly, 62±5 years); Group C (the aged, 84±4 years) and Group D (the old, 95±1 years). Pooled samples from the different groups were subjected to proteomics and bioinformatics analysis to identify age-related changes in protein expression and associated pathways. We isolated 5072 proteins, and found that 67 proteins were downregulated and 109 proteins were upregulated in one or more groups during the aging process. Western blotting assays were performed to verify the proteomic results. Bioinformatic analysis identified proteins involved in neuronal degeneration, including proteins involved in neuronal firing, myelin sheath damage, and cell structure stability. We also observed the accumulation of extracellular matrix and lysosomal proteins which imply the occurrence of fibrosis and autophagy. Our results suggest a series of changes across a wide range of proteins in the human temporal lobe that may relate to aging and age-related neurodegenerative disorders. PMID:26631761

  13. MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.

    PubMed

    Berger, Sebastian T; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-10-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification. PMID:26223766

  14. Plasma Proteomic Profiling in Hereditary Breast Cancer Reveals a BRCA1-Specific Signature: Diagnostic and Functional Implications

    PubMed Central

    Scumaci, Domenica; Tammè, Laura; Fiumara, Claudia Vincenza; Pappaianni, Giusi; Concolino, Antonio; Leone, Emanuela; Faniello, Maria Concetta; Quaresima, Barbara; Ricevuto, Enrico; Costanzo, Francesco Saverio; Cuda, Giovanni

    2015-01-01

    Background Breast cancer (BC) is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are correlated with quantitative changes of proteins in body fluids. Plasma potentially carries important information whose knowledge could help to improve early disease detection, prognosis, and response to therapeutic treatments. The aim of this study was to develop a comprehensive approach finalized to improve the recovery of specific biomarkers from plasma samples of subjects affected by hereditary BC. Methods To perform this analysis, we used samples from patients belonging to highly homogeneous population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were used into an integrated approach to investigate tumor-specific changes in the plasma proteome of BC patients and healthy family members sharing the same BRCA1 gene founder mutation (5083del19), previously reported by our group, with the aim to identify specific signatures. Results The comparative analysis of the experimental results led to the identification of gelsolin as the most promising biomarker. Conclusions Further analyses, performed using a panel of breast cancer cell lines, allowed us to further elucidate the signaling network that might modulate the expression of gelsolin in breast cancer. PMID:26061043

  15. Gas chromatographic column for the storage of sample profiles

    NASA Technical Reports Server (NTRS)

    Dimandja, J. M.; Valentin, J. R.; Phillips, J. B.

    1994-01-01

    The concept of a sample retention column that preserves the true time profile of an analyte of interest is studied. This storage system allows for the detection to be done at convenient times, as opposed to the nearly continuous monitoring that is required by other systems to preserve a sample time profile. The sample storage column is essentially a gas chromatography column, although its use is not the separation of sample components. The functions of the storage column are the selective isolation of the component of interest from the rest of the components present in the sample and the storage of this component as a function of time. Using octane as a test substance, the sample storage system was optimized with respect to such parameters as storage and readout temperature, flow rate through the storage column, column efficiency and storage time. A 3-h sample profile was collected and stored at 30 degrees C for 20 h. The profile was then retrieved, essentially intact, in 5 min at 130 degrees C.

  16. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa

    PubMed Central

    2014-01-01

    Background Saccharopolyspora spinosa is an important producer of antibiotic spinosad with clarified biosynthesis pathway but its complex regulation networks associated with primary metabolism and secondary metabolites production almost have never been concerned or studied before. The proteomic analysis of a novel Saccharopolyspora spinosa CCTCC M206084 was performed and aimed to provide a global profile of regulatory proteins. Results Two-dimensional-liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1090, 1166, 701, and 509 proteins from four phases respectively, i.e., the logarithmic growth phase (T1), early stationary phase (T2), late stationary phase (T3), and decline phase (T4). Among the identified proteins, 1579 were unique to the S. spinosa proteome, including almost all the enzymes for spinosad biosynthesis. Trends in protein expression over the various time phases were deduced from using the modified protein abundance index (PAI), revealed the importance of stress pathway proteins and other global regulatory network proteins during spinosad biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis followed by one-dimensional LC-MS/MS identification revealed similar trend of protein expression from four phases with the results of semi-quantification by PAI. qRT-PCR analysis revealed that 6 different expressed genes showed a positive correlation between changes at translational and transcriptional expression level. Expression of three proteins that likely promote spinosad biosynthesis, namely, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase (MHSM), glutamine synthetase (GS) and cyclic nucleotide-binding domain-containing protein (CNDP) was validated by western blot, which confirmed the results of proteomic analysis. Conclusions This study is the first systematic analysis of the S. spinosa proteome during fermentation and its valuable proteomic data of regulatory proteins may be used to enhance

  17. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen☆☆☆

    PubMed Central

    Eckhard, Ulrich; Huesgen, Pitter F.; Brandstetter, Hans; Overall, Christopher M.

    2014-01-01

    Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified > 100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1′, proline at P2 and P2′, and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage. Biological significance We demonstrate the striking sequence specificity of a family of clostridial collagenases using proteome derived peptide libraries and PICS, Proteomic Identification of protease Cleavage Sites. In combination with the previously published crystal structures of these proteases, our results represent an important piece of the puzzle in understanding the complex mechanism underlying collagen hydrolysis, and pave the way for the rational design of

  18. Mitochondrial proteome: toward the detection and profiling of disease associated alterations.

    PubMed

    Herrmann, Paul C; Herrmann, E Clifford

    2012-01-01

    Existing at the heart of cellular energy metabolism, the mitochondrion is uniquely positioned to have a major impact on human disease processes. Examples of mitochondrial impact on human pathology abound and include etiologies ranging from inborn errors of metabolism to the site of activity of a variety of toxic compounds. In this review, the unique aspects of the mechanisms related to the mitochondrial proteome are discussed along with an overview of the literature related to mitochondrial proteomic exploration. The review includes discussion of potential areas for exploration and advantages of applying proteomic techniques to the study of mitochondria. PMID:22081351

  19. A comparative study of phosphopeptide-selective techniques for a sub-proteome of a complex biological sample.

    PubMed

    Källsten, Malin; Bergquist, Jonas; Zhao, Hongxing; Konzer, Anne; Lind, Sara Bergström

    2016-03-01

    Phosphorylation of proteins is important for controlling cellular signaling and cell cycle regulatory events. The process is reversible and phosphoproteins normally constitute a minor part of the global proteome in a cell. Thus, sample preparation techniques tailored for phosphoproteome studies are continuously invented and evaluated. This paper aims at evaluating the performances of the most popular techniques for phospho-enrichments in sub-proteome analysis, such as viral proteomes expressed in human cells during infection. A two-species sample of Adenovirus type 2 infected human cells was used, and in-solution digestion, strong cation exchange (SCX), and electrostatic repulsion hydrophilic interaction chromatography (ERLIC) fractionation, and subsequent enrichment by TiO2, were compared with SDS-PAGE fractionation and in-gel digestion. Evaluation was focused on phosphopeptide detection in the sub-proteome. The results showed that the SCX+TiO2 or ERLIC+TiO2 combinations had the highest enrichment efficiencies, but SDS-PAGE fractionation and in-gel digestion resulted in the highest number of identified proteins and phosphopeptides. Furthermore, the study demonstrates the usefulness of applying as many orthogonal techniques as possible in deep phosphoproteome analysis, since the overlap between approaches was low. PMID:26886742

  20. Solid-phase extraction strategies to surmount body fluid sample complexity in high-throughput mass spectrometry-based proteomics.

    PubMed

    Bladergroen, Marco R; van der Burgt, Yuri E M

    2015-01-01

    For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations. PMID:25692071

  1. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease

    PubMed Central

    Soman, Kizhake V.; Zago, Maria P.; Koo, Sue-Jie; Spratt, Heidi; Stafford, Susan; Blell, Zinzi N.; Gupta, Shivali; Nuñez Burgos, Julio; Barrientos, Natalia; Brasier, Allan R.

    2016-01-01

    Trypanosoma cruzi (Tc) infection causes chagasic cardiomyopathy; however, why 30–40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs) of normal healthy controls (N/H, n = 30) and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25) or clinically symptomatic (C/S, n = 28) with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol) and resolved by two-dimensional gel electrophoresis (2D-GE). After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p< 0.05) were differentially abundant in C/A and C/S individuals, respectively, with respect to N/H controls. Ingenuity Pathway Analysis (IPA) of PBMCs proteome dataset identified an increase in disorganization of cytoskeletal assembly and recruitment/activation and migration of immune cells in all chagasic subjects, though the invasion capacity of cells was decreased in C/S individuals. IPA predicted with high probability a decline in cell survival and free radical scavenging capacity in C/S (but not C/A) subjects. The MYC/SP1 transcription factors that regulate hypoxia and oxidative/inflammatory stress were predicted to be key targets in the context of control of Chagas disease severity. Further, MARS-modeling identified a panel of proteins that had >93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting

  2. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease.

    PubMed

    Garg, Nisha Jain; Soman, Kizhake V; Zago, Maria P; Koo, Sue-Jie; Spratt, Heidi; Stafford, Susan; Blell, Zinzi N; Gupta, Shivali; Nuñez Burgos, Julio; Barrientos, Natalia; Brasier, Allan R; Wiktorowicz, John E

    2016-02-01

    Trypanosoma cruzi (Tc) infection causes chagasic cardiomyopathy; however, why 30-40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs) of normal healthy controls (N/H, n = 30) and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25) or clinically symptomatic (C/S, n = 28) with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol) and resolved by two-dimensional gel electrophoresis (2D-GE). After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p< 0.05) were differentially abundant in C/A and C/S individuals, respectively, with respect to N/H controls. Ingenuity Pathway Analysis (IPA) of PBMCs proteome dataset identified an increase in disorganization of cytoskeletal assembly and recruitment/activation and migration of immune cells in all chagasic subjects, though the invasion capacity of cells was decreased in C/S individuals. IPA predicted with high probability a decline in cell survival and free radical scavenging capacity in C/S (but not C/A) subjects. The MYC/SP1 transcription factors that regulate hypoxia and oxidative/inflammatory stress were predicted to be key targets in the context of control of Chagas disease severity. Further, MARS-modeling identified a panel of proteins that had >93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting seropositive

  3. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in protein expression in midgut tissue of uninfected and Babesia bovis-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus, were investigated in an effort to establish a proteome database containing proteins involved in successful pathogen transmission. The electrophoreti...

  4. Serum Proteome Profiling Identifies Novel and Powerful Markers of Cystic Fibrosis Liver Disease

    PubMed Central

    Kügler, Marion; Menendez Menendez, Katrin; Zachoval, Reinhart; Naehrlich, Lutz; Schulz, Richard; Roderfeld, Martin; Roeb, Elke

    2013-01-01

    Background and Aims Cystic Fibrosis associated liver disease (CFLD) develops in approximately 30% of CF patients. However, routine sensitive diagnostic tools for CFLD are lacking. Within this study, we aimed to identify new experimental biomarkers for the detection of CFLD. Methods 45 CF patients were included in the study and received transient elastography. Differential regulation of 220 different serum proteins was assessed in a subgroup of patients with and without CFLD. Most interesting candidate proteins were further quantified and validated by ELISA in the whole patient cohort. To assess a potential relation of biomarker expression to the degree of hepatic fibrosis, serum biomarkers were further determined in 18 HCV patients where liver histology was available. Results 43 serum proteins differed at least 2-fold in patients with CFLD compared to those without liver disease as identified in proteome profiling. In ELISA quantifications, TIMP-4 and Endoglin were significantly up-regulated in patients with CFLD as diagnosed by clinical guidelines or increased liver stiffness. Pentraxin-3 was significantly decreased in patients with CFLD. Serum TIMP-4 and Endoglin showed highest values in HCV patients with liver cirrhosis compared to those with fibrosis but without cirrhosis. At a cut-off value of 6.3 kPa, transient elastography compassed a very high diagnostic accuracy and specificity for the detection of CFLD. Among the biomarkers, TIMP-4 and Endoglin exhibited a high diagnostic accuracy for CFLD. Diagnostic sensitivities and negative predictive values were increased when elastography and TIMP-4 and Endoglin were combined for the detection of CFLD. Conclusions Serum TIMP-4 and Endoglin are increased in CFLD and their expression correlates with hepatic staging. Determination of TIMP-4 and Endoglin together with transient elastography can increase the sensitivity for the non-invasive diagnosis of CFLD. PMID:23516586

  5. Comprehensive analyses of prostate gene expression: convergence of expressed sequence tag databases, transcript profiling and proteomics.

    PubMed

    Nelson, P S; Han, D; Rochon, Y; Corthals, G L; Lin, B; Monson, A; Nguyen, V; Franza, B R; Plymate, S R; Aebersold, R; Hood, L

    2000-05-01

    Several methods have been developed for the comprehensive analysis of gene expression in complex biological systems. Generally these procedures assess either a portion of the cellular transcriptome or a portion of the cellular proteome. Each approach has distinct conceptual and methodological advantages and disadvantages. We have investigated the application of both methods to characterize the gene expression pathway mediated by androgens and the androgen receptor in prostate cancer cells. This pathway is of critical importance for the development and progression of prostate cancer. Of clinical importance, modulation of androgens remains the mainstay of treatment for patients with advanced disease. To facilitate global gene expression studies we have first sought to define the prostate transcriptome by assembling and annotating prostate-derived expressed sequence tags (ESTs). A total of 55000 prostate ESTs were assembled into a set of 15953 clusters putatively representing 15953 distinct transcripts. These clusters were used to construct cDNA microarrays suitable for examining the androgen-response pathway at the level of transcription. The expression of 20 genes was found to be induced by androgens. This cohort included known androgen-regulated genes such as prostate-specific antigen (PSA) and several novel complementary DNAs (cDNAs). Protein expression profiles of androgen-stimulated prostate cancer cells were generated by two-dimensional electrophoresis (2-DE). Mass spectrometric analysis of androgen-regulated proteins in these cells identified the metastasis-suppressor gene NDKA/nm23, a finding that may explain a marked reduction in metastatic potential when these cells express a functional androgen receptor pathway. PMID:10870968

  6. Dysbindin as a novel biomarker for pancreatic ductal adenocarcinoma identified by proteomic profiling.

    PubMed

    Guo, Xin; Lv, Xiaohui; Fang, Cheng; Lv, Xing; Wang, Fengsong; Wang, Dongmei; Zhao, Jun; Ma, Yueyun; Xue, Yu; Bai, Quan; Yao, Xuebiao; Chen, Yong

    2016-10-15

    Pancreatic adenocarcinoma (PDAC) is known to have a poor prognosis partly because of lack of effective biomarkers. In the test set, we investigated dysbindin (DTNBP1) as a potential biomarker for PDAC by comparing preoperative and postoperative serum mass spectrometry (MS) proteomic profilings. Of the included 50 PDAC patients, 42 (positivity of 84.0%) detected a lower MS peak in postoperative serums than preoperative ones which was then identified as dysbindin. In the verification set, receiver operating characteristics (ROC) were used to assess diagnostic efficiency. 550 participants were included in the verification set [250 with PDAC, 80 with benign biliary obstruction (BBO), 70 with chronic pancreatitis (CP) and 150 healthy donors (HD)]. Dysbindin was increased in PDAC patient sera than in all controls. ROC curves revealed the optimum diagnostic cutoff for dysbindin was 699.16 pg/ml [area under curve (AUC) 0.849 (95% CI 0.812-0.885), sensitivity 81.9% and specificity 84.7%]. Raised concentration of dysbindin in sera could differentiate PDAC from BBO, CP and HD. Moreover, dysbindin maintained its diagnostic accuracy for PDAC patients who were CA19-9 negative [AUC 0.875 (95% CI 0.804-0.945), sensitivity 83.0%, specificity 89.0%] and for patients with benign biliary obstruction [AUC 0.849 (95% CI 0.803-0.894), sensitivity 82.3%, specificity 84.0%].Our discovery of dysbindin may complement measurement of CA19-9 in the diagnosis of PDAC and help to discriminate PDAC from other pancreatic diseases or begin biliary obstruction. PMID:27281120

  7. Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis‡

    PubMed Central

    DelVecchio, Vito G.; Connolly, Joseph P.; Alefantis, Timothy G.; Walz, Alexander; Quan, Marian A.; Patra, Guy; Ashton, John M.; Whittington, Jessica T.; Chafin, Ryan D.; Liang, Xudong; Grewal, Paul; Khan, Akbar S.; Mujer, Cesar V.

    2006-01-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Δ-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development. PMID:16957262

  8. Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes.

    PubMed

    Ythier, Mathilde; Resch, Grégory; Waridel, Patrice; Panchaud, Alexandre; Gfeller, Aurélie; Majcherczyk, Paul; Quadroni, Manfredo; Moreillon, Philippe

    2012-11-01

    Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence

  9. Plasma Fractionation Enriches Post-Myocardial Infarction Samples Prior to Proteomics Analysis

    PubMed Central

    de Castro Brás, Lisandra E.; DeLeon, Kristine Y.; Ma, Yonggang; Dai, Qiuxia; Hakala, Kevin; Weintraub, Susan T.; Lindsey, Merry L.

    2012-01-01

    Following myocardial infarction (MI), matrix metalloproteinase-9 (MMP-9) levels increase, and MMP-9 deletion improves post-MI remodeling of the left ventricle (LV). We provide here a technical report on plasma-analysis from wild type (WT) and MMP-9 null mice using fractionation and mass-spectrometry-based proteomics. MI was induced by coronary artery ligation in male WT and MMP-9 null mice (4–8 months old; n = 3/genotype). Plasma was collected on days 0 (pre-) and 1 post-MI. Plasma proteins were fractionated and proteins in the lowest (fraction 1) and highest (fraction 12) molecular weight fractions were separated by 1-D SDS-PAGE, digested in-gel with trypsin and analyzed by HPLC-ESI-MS/MS on an Orbitrap Velos. We tried five different fractionation protocols, before reaching an optimized protocol that allowed us to identify over 100 proteins. Serum amyloid A substantially increased post-MI in both genotypes, while alpha-2 macroglobulin increased only in the null samples. In fraction 12, extracellular matrix proteins were observed only post-MI. Interestingly, fibronectin-1, a substrate of MMP-9, was identified at both day 0 and day 1 post-MI in the MMP-9 null mice but was only identified post-MI in the WT mice. In conclusion, plasma fractionation offers an improved depletion-free method to evaluate plasma changes following MI. PMID:22778955

  10. Influence of pathogenic bacteria species present in the postpartum bovine uterus on proteome profiles.

    PubMed

    Ledgard, A M; Smolenski, G A; Henderson, H; Lee, R S F

    2015-01-01

    In the first 2-3 weeks after parturition >90% of dairy cows will have some form of uterine infection. Uterine contamination with pathogens, such as Trueperella (formerly Arcanobacterium) pyogenes increases the risk of developing more severe endometritis, which can reduce conception rates. In this study, we compared the uterine proteome of cows infected with Trueperella pyogenes with that of uninfected cows, using 2D gel electrophoresis, and identified annexins A1 and A2 (ANXA1 and ANXA2), apolipoprotein A-1, calprotectin (S100A9), cathelicidin, enolase 1 (ENO1), peptidoglycan recognition protein 1 (PGLYRP1), phosphoglycerate mutase 1 (PGAM1), serine dehydratase (SDS) and serine protease inhibitors (SERPIN) B1, B3 and B4 proteins as differing in abundance in endometritis. Subsequently, levels of ten of these proteins were monitored in uterine samples collected from a herd of lactating, dairy cows at 15 and 42 days post-partum (DPP). The levels were compared with the cytology scores of the samples and the bacterial species isolated from the uterus. Cathelicidin, PGLYRP1, SERPINB1 and S100A9 levels at 15DPP showed strong positive correlations (r=0.78, 0.80, 0.79, and 0.68 respectively; P<0.001) with % of polymorphonuclear neutrophils (PMN). When compared with other bacterial pathogens identified, Streptococcus agalactiae and Truperella pyogenes induced increased expression of the indicator proteins, suggesting that these organisms may adversely affect the subsequent ability of the cow to conceive. Interestingly, there was no difference in the proportion of cows pregnant at 6 and 17 weeks after start of mating between the cows with high or low %PMN. PMID:24331367

  11. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification. PMID:26935773

  12. A rapid wire-based sampling method for DNA profiling.

    PubMed

    Chen, Tong; Catcheside, David E A; Stephenson, Alice; Hefford, Chris; Kirkbride, K Paul; Burgoyne, Leigh A

    2012-03-01

    This paper reports the results of a commission to develop a field deployable rapid short tandem repeat (STR)-based DNA profiling system to enable discrimination between tissues derived from a small number of individuals. Speed was achieved by truncation of sample preparation and field deployability by use of an Agilent 2100 Bioanalyser(TM). Human blood and tissues were stabbed with heated stainless steel wire and the resulting sample dehydrated with isopropanol prior to direct addition to a PCR. Choice of a polymerase tolerant of tissue residues and cycles of amplification appropriate for the amount of template expected yielded useful profiles with a custom-designed quintuplex primer set suitable for use with the Bioanalyser(TM). Samples stored on wires remained amplifiable for months, allowing their transportation unrefrigerated from remote locations to a laboratory for analysis using AmpFlSTR(®) Profiler Plus(®) without further processing. The field system meets the requirements for discrimination of samples from small sets and retains access to full STR profiling when required. PMID:22211864

  13. Standardized Profiling of The Membrane-Enriched Proteome of Mouse Dorsal Root Ganglia (DRG) Provides Novel Insights Into Chronic Pain.

    PubMed

    Rouwette, Tom; Sondermann, Julia; Avenali, Luca; Gomez-Varela, David; Schmidt, Manuela

    2016-06-01

    Chronic pain is a complex disease with limited treatment options. Several profiling efforts have been employed with the aim to dissect its molecular underpinnings. However, generated results are often inconsistent and nonoverlapping, which is largely because of inherent technical constraints. Emerging data-independent acquisition (DIA)-mass spectrometry (MS) has the potential to provide unbiased, reproducible and quantitative proteome maps - a prerequisite for standardization among experiments. Here, we designed a DIA-based proteomics workflow to profile changes in the abundance of dorsal root ganglia (DRG) proteins in two mouse models of chronic pain, inflammatory and neuropathic. We generated a DRG-specific spectral library containing 3067 DRG proteins, which enables their standardized quantification by means of DIA-MS in any laboratory. Using this resource, we profiled 2526 DRG proteins in each biological replicate of both chronic pain models and respective controls with unprecedented reproducibility. We detected numerous differentially regulated proteins, the majority of which exhibited pain model-specificity. Our approach recapitulates known biology and discovers dozens of proteins that have not been characterized in the somatosensory system before. Functional validation experiments and analysis of mouse pain behaviors demonstrate that indeed meaningful protein alterations were discovered. These results illustrate how the application of DIA-MS can open new avenues to achieve the long-awaited standardization in the molecular dissection of pathologies of the somatosensory system. Therefore, our findings provide a valuable framework to qualitatively extend our understanding of chronic pain and somatosensation. PMID:27103637

  14. SELDI-TOF-MS Proteomic Profiling of Serum, Urine, and Amniotic Fluid in Neural Tube Defects

    PubMed Central

    Liu, Zhenjiang; Yuan, Zhengwei; Zhao, Qun

    2014-01-01

    Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection. PMID:25054433

  15. A proteomic glimpse into human ureter proteome

    PubMed Central

    Hirao, Yoshitoshi; Elguoshy, Amr; Xu, Bo; Zhang, Ying; Fujinaka, Hidehiko; Yamamoto, Keiko; Yates, John R.; Yamamoto, Tadashi

    2015-01-01

    Urine has evolved as one of the most important biofluids in clinical proteomics due to its noninvasive sampling and its stability. Yet, it is used in clinical diagnostics of several disorders by detecting changes in its components including urinary protein/polypeptide profile. Despite the fact that majority of proteins detected in urine are primarily originated from the urogenital (UG) tract, determining its precise source within the UG tract remains elusive. In this article, we performed a comprehensive analysis of ureter proteome to assemble the first unbiased ureter dataset. Next, we compared these data to urine, urinary exosome, and kidney mass spectrometric datasets. Our result concluded that among 2217 nonredundant ureter proteins, 751 protein candidates (33.8%) were detected in urine as urinary protein/polypeptide or exosomal protein. On the other hand, comparing ureter protein hits (48) that are not shown in corresponding databases to urinary bladder and prostate human protein atlas databases pinpointed 21 proteins that might be unique to ureter tissue. In conclusion, this finding offers future perspectives for possible identification of ureter disease‐associated biomarkers such as ureter carcinoma. In addition, the ureter proteomic dataset published in this article will provide a valuable resource for researchers working in the field of urology and urine biomarker discovery. All MS data have been deposited in the ProteomeXchange with identifier PXD002620 (http://proteomecentral.proteomexchange.org/dataset/PXD002620). PMID:26442468

  16. Proteomic profiles of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece.

    PubMed

    Aryal, Uma K; Callister, Stephen J; McMahon, Benjamin H; McCue, Lee-Ann; Brown, Joseph; Stöckel, Jana; Liberton, Michelle; Mishra, Sujata; Zhang, Xiaohui; Nicora, Carrie D; Angel, Thomas E; Koppenaal, David W; Smith, Richard D; Pakrasi, Himadri B; Sherman, Louis A

    2014-07-01

    Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex, an annotation-independent method for ascribing gene functions, we confirmed significant species-specific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected ∼28-48% of the theoretical Cyanothece proteome, depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein, and RNA metabolism, photosynthesis, respiration, and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility, and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682), provided direct evidence of evolutionary differences in this strain. We conclude that Cyanothece PCC7425 diverged significantly from the other Cyanothece strains or evolved from a different lineage. PMID:24846609

  17. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.).

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Pathak, Dharminder; Chen, Sixue; Wendel, Jonathan F

    2014-12-01

    Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution. PMID:25156487

  18. Proteomic profiles of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece

    SciTech Connect

    Aryal, Uma K.; Callister, Stephen J.; McMahon, Benjamin H.; McCue, Lee Ann; Brown, Joseph N.; Stockel, Jana; Liberton, Michelle L.; Mishra, Sujata; Zhang, Xiaohui; Nicora, Carrie D.; Angel, Thomas E.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Sherman, Louis A.

    2014-07-03

    Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex (http://sequedex.lanl.gov), an annotationindependent method for ascribing gene functions, we confirmed significant speciesspecific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected ~28-48% of the theoretical Cyanothece proteome depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their protein abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein and RNA metabolism, photosynthesis, respiration and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682),

  19. Proteomic profiling of Plasmodium falciparum through improved, semiquantitative two-dimensional gel electrophoresis.

    PubMed

    Smit, Salome; Stoychev, Stoyan; Louw, Abraham I; Birkholtz, Lyn-Marie

    2010-05-01

    Two-dimensional gel electrophoresis (2-DE) is one of the most commonly used technologies to obtain a snapshot of the proteome at any specific time. However, its application to study the Plasmodial (malaria parasite) proteome is still limited due to inefficient extraction and detection methods and the extraordinarily large size of some proteins. Here, we report an optimized protein extraction method, the most appropriate methods for Plasmodial protein quantification and 2-DE detection, and finally protein identification by mass spectrometry (MS). Linear detection of Plasmodial proteins in a optimized lysis buffer was only possible with the 2-D Quant kit, and of the four stains investigated, Flamingo Pink was superior regarding sensitivity, linearity, and excellent MS-compatibility. 2-DE analyses of the Plasmodial proteome using this methodology resulted in the reliable detection of 349 spots and a 95% success rate in MS/MS identification. Subsequent application to the analyses of the Plasmodial ring and trophozoite proteomes ultimately resulted in the identification of 125 protein spots, which constituted 57 and 49 proteins from the Plasmodial ring and trophozoite stages, respectively. This study additionally highlights the presence of various isoforms within the Plasmodial proteome, which is of significant biological importance within the Plasmodial parasite during development in the intraerythrocytic developmental cycle. PMID:20218691

  20. Differential proteomic profile of spermatogenic and Sertoli cells from peri-pubertal testes of three different bovine breeds

    PubMed Central

    Tripathi, Utkarsh K.; Aslam, Muhammad K. M.; Pandey, Shashank; Nayak, Samiksha; Chhillar, Shivani; Srinivasan, A.; Mohanty, T. K.; Kadam, Prashant H.; Chauhan, M. S.; Yadav, Savita; Kumaresan, Arumugam

    2014-01-01

    Sub-fertility is one of the most common problems observed in crossbred males, but the etiology remains unknown in most of the cases. Although proteomic differences in the spermatozoa and seminal plasma between breeds have been investigated, the possible differences at the sperm precursor cells and supporting/nourishing cells have not been studied. The present study reports the differential proteomic profile of spermatogenic and Sertoli cells in crossbred and purebred bulls. Testis was removed by unilateral castration of 12 peri-pubertal bulls (10 months age), four each from crossbred (Holstein Friesian × Tharparkar), exotic purebred [Holstein Friesian (HF)] and indigenous purebred [Tharparkar (TP)] bulls. Spermatogenic and Sertoli cells were isolated and subjected to proteomic analysis. Protein extracts from the Sertoli and spermatogenic cells of each breed were analyzed with 2-dimensional difference gel electrophoresis (2D-DIGE) and analyzed with Decyder™ software. Compared to HF, 26 protein spots were over expressed and 14 protein spots were under expressed in spermatogenic cells of crossbred bulls. Similarly, 7 protein spots were over expressed and 15 protein spots were under expressed in the spermatogenic cells of TP bulls compared to that of crossbred bulls. Out of 12 selected protein spots identified through mass spectrometry, Phosphatidyl ethanolamine binding protein was found to be over expressed in the spermatogenic cells of crossbred bulls compared to TP bulls. The protein, gamma actin was found to be over expressed in the Sertoli cells of HF bulls, whereas Speedy Protein-A was found to be over expressed in Sertoli cells of crossbred bulls. It may be concluded that certain proteomic level differences exist in sperm precursor cells and nourishing cells between breeds, which might be associated with differences in the fertility among these breeds. PMID:25364731

  1. Antibody profiling as an identification tool for forensic samples

    NASA Astrophysics Data System (ADS)

    Thompson, Vicki S.; Barrett, Karen B.; Davis, Tilton; Nieto, Sylvia R.; Unger, Thomas F.

    1999-02-01

    A novel identification technique called antibody profiling was examined as an alternative to DNA-based methods for matching crime scene evidence to a suspect. This technique provides results within 2 hours, is 1/100 the cost of DNA tests, and does not require skilled technicians or expensive equipment. A matrix of 422 blood samples were prepared to mimic typical crime scene conditions and provide validation for the technique. The effects of sample size, drying temperature, binary and ternary blood mixtures, adulteration with chemicals, and placement on a variety of surfaces were examined. Using the antibody profiling method, 91% of the 422 samples were correctly identified. In addition, binary blood mixtures could be identified with up to 40% contaminating blood. Temperatures at or above 60 degree(s)C and the presence of soil in the samples interfered with the ability to correctly identify samples. In this study, the antibody profiling technique was shown to be an excellent alternative to DNA-based identification methods. This method will find applications in situations where results are needed rapidly, where it is necessary to screen multiple suspects, and in remote areas where the equipment and technical skills needed for DNA testing are not available.

  2. Profile sampling to characterize particulate lead risks in potable water.

    PubMed

    Clark, Brandi; Masters, Sheldon; Edwards, Marc

    2014-06-17

    Traditional lead (Pb) profiling, or collecting sequential liters of water that flow from a consumer tap after a stagnation event, has recently received widespread use in understanding sources of Pb in drinking water and risks to consumer health, but has limitations in quantifying particulate Pb risks. A new profiling protocol was developed in which a series of traditional profiles are collected from the same tap at escalating flow rates. The results revealed marked differences in risks of Pb exposure from one consumer home to another as a function of flow rate, with homes grouped into four risk categories with differing flushing requirements and public education to protect consumers. On average, Pb concentrations detected in water at high flow without stagnation were at least three to four times higher than in first draw samples collected at low flow with stagnation, demonstrating a new "worst case" lead release scenario, contrary to the original regulatory assumption that stagnant, first draw samples contain the highest lead concentrations. Testing also revealed that in some cases water samples with visible particulates had much higher Pb than samples without visible particulates, and tests of different sample handling protocols confirmed that some EPA-allowed methods would not quantify as much as 99.9% of the Pb actually present (avg. 27% of Pb not quantified). PMID:24865841

  3. Atypical carcinoid and large cell neuroendocrine carcinoma of the lung: a proteomic dataset from formalin-fixed archival samples.

    PubMed

    Tanca, Alessandro; Addis, Maria Filippa; Pisanu, Salvatore; Abbondio, Marcello; Pagnozzi, Daniela; Eccher, Albino; Rindi, Guido; Cossu-Rocca, Paolo; Uzzau, Sergio; Fanciulli, Giuseppe

    2016-06-01

    Here we present a dataset generated using formalin-fixed paraffin-embedded archival samples from two rare lung neuroendocrine tumor subtypes (namely, two atypical carcinoids, ACs, and two large-cell neuroendocrine carcinomas, LCNECs). Samples were subjected to a shotgun proteomics pipeline, comprising full-length protein extraction, SDS removal through spin columns, in solution trypsin digestion, long gradient liquid chromatography peptide separation and LTQ-Orbitrap mass spectrometry analysis. A total of 1260 and 2436 proteins were identified in the AC and LCNEC samples, respectively, with FDR <1%. MS data are available in the PeptideAtlas repository at http://www.peptideatlas.org/PASS/PASS00375. PMID:27054153

  4. Atypical carcinoid and large cell neuroendocrine carcinoma of the lung: a proteomic dataset from formalin-fixed archival samples

    PubMed Central

    Tanca, Alessandro; Addis, Maria Filippa; Pisanu, Salvatore; Abbondio, Marcello; Pagnozzi, Daniela; Eccher, Albino; Rindi, Guido; Cossu-Rocca, Paolo; Uzzau, Sergio; Fanciulli, Giuseppe

    2016-01-01

    Here we present a dataset generated using formalin-fixed paraffin-embedded archival samples from two rare lung neuroendocrine tumor subtypes (namely, two atypical carcinoids, ACs, and two large-cell neuroendocrine carcinomas, LCNECs). Samples were subjected to a shotgun proteomics pipeline, comprising full-length protein extraction, SDS removal through spin columns, in solution trypsin digestion, long gradient liquid chromatography peptide separation and LTQ-Orbitrap mass spectrometry analysis. A total of 1260 and 2436 proteins were identified in the AC and LCNEC samples, respectively, with FDR <1%. MS data are available in the PeptideAtlas repository at http://www.peptideatlas.org/PASS/PASS00375. PMID:27054153

  5. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi

    PubMed Central

    Val, Stéphanie; Burgett, Katelyn; Brown, Kristy J.; Preciado, Diego

    2016-01-01

    Background Chronic Otitis Media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi), the most common acute Otitis Media (OM) pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line. Methods NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC) cultured at air-liquid interface over 48 hours– 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling. Results Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05). The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface. Conclusions NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level. PMID:26859300

  6. Integrative Proteomics and Tissue Microarray Profiling Indicate the Association between Overexpressed Serum Proteins and Non-Small Cell Lung Cancer

    PubMed Central

    Hu, Haichuan; Wang, Rui; Sun, Yihua; Zeng, Rong; Chen, Haiquan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC) can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA) and Multiple reaction monitoring (MRM) assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG) and Leucine-rich alpha-2-glycoprotein (LRG1), two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases. PMID:23284758

  7. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele

    PubMed Central

    Camargo, Mariana; Intasqui, Paula; Bertolla, Ricardo Pimenta

    2016-01-01

    Varicocele, the most important treatable cause of male infertility, is present in 15% of adult males, 35% of men with primary infertility, and 80% of men with secondary infertility. On the other hand, 80% of these men will not present infertility. Therefore, there is a need to differentiate a varicocele that is exerting a deleterious effect that is treatable from a “silent” varicocele. Despite the growing evidence of the cellular effects of varicocele, its underlying molecular mechanisms are still eluding. Proteomics has become a promising area to determine the reproductive biology of semen as well as to improve diagnosis of male infertility. This review aims to discuss the state-of-art in seminal plasma proteomics in patients with varicocele to discuss the challenges in undertaking these studies, as well as the future outlook derived from the growing body of evidence on the seminal proteome. PMID:26643563

  8. Application of GelC-MS/MS to Proteomic Profiling of Chikungunya Virus Infection: Preparation of Peptides for Analysis.

    PubMed

    Paemanee, Atchara; Wikan, Nitwara; Roytrakul, Sittiruk; Smith, Duncan R

    2016-01-01

    Gel-enhanced liquid chromatography coupled with tandem mass spectrometry (GeLC-MS/MS) is a labor intensive, but relatively straightforward methodology that generates high proteome coverage which can be applied to the proteome analysis of a range of starting materials such as cells or patient specimens. Sample proteins are resolved electrophoretically in one dimension through a sodium dodecyl sulfate (SDS) polyacrylamide gel after which the lanes are sliced into sections. The sections are further diced and the gel cubes generated are subjected to in-gel tryptic digestion. The resultant peptides can then be analyzed by tandem mass spectroscopy to identify the proteins by database searching. The methodology can routinely detect several thousand proteins in one analysis. The protocol we describe here has been used with both cells in culture that have been infected with chikungunya virus and specimens from Chikungunya fever patients. This protocol details the process for generating peptides for subsequent mass spectroscopic and bioinformatic analysis. PMID:27233271

  9. Proteomic profiling: a novel approach to understanding the biological causes of soil water repellency

    NASA Astrophysics Data System (ADS)

    van Keulen, Geertje; Doerr, Stefan H.; Urbanek, Emilia; Jones, Alun; Dudley, Ed

    2010-05-01

    conditions rendering them hydrophilic. The dynamics of production of these proteins and the formation of these hydrophobic protein surfaces in soils are not known. Other, yet unknown, proteins may also contribute to development, reduction and temporal variability of soil water repellency. Here we present the first steps of a new NERC funded project aimed at exploring the relationship between the presence and/or absence of (hydrophobic) protein and soil water repellency. It involves isolation and characterisation of hydrophobic protein and the temporal metaproteomic profiles in UK grassland and dune soils with varying degrees of water repellency. This contributes to identifying the proteomic dynamics, which may influence soil hydrology and structure, and ultimately the ability of soils to absorb water, support biomass growth, store carbon, and to capture and degrade pollutants.

  10. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle.

    PubMed

    Vincent, A; Louveau, I; Gondret, F; Tréfeu, C; Gilbert, H; Lefaucheur, L

    2015-06-01

    Improving feed efficiency is a relevant strategy to reduce feed cost and environmental waste in livestock production. Selection experiments on residual feed intake (RFI), a measure of feed efficiency, previously indicated that low RFI was associated with lower feed intake, similar growth rate, and greater lean meat content compared with high RFI. To gain insights into the molecular mechanisms underlying these differences, 24 Large White females from 2 lines divergently selected for RFI were examined. Pigs from a low-RFI ("efficient") and high-RFI ("inefficient") line were individually fed ad libitum from 67 d of age (27 kg BW) to slaughter at 115 kg BW (n = 8 per group). Additional pigs of the high-RFI line were feed restricted to the daily feed intake of the ad libitum low-RFI pigs (n = 8) to investigate the impact of selection independently of feed intake. Global gene and protein expression profiles were assessed in the LM collected at slaughter. The analyses involved a porcine commercial microarray and 2-dimensional gel electrophoresis. About 1,000 probes were differentially expressed (P < 0.01) between RFI lines. Only 10% of those probes were also affected by feed restriction. Gene functional classification indicated a greater expression of genes involved in protein synthesis and a lower expression of genes associated with mitochondrial energy metabolism in the low-RFI pigs compared with the high-RFI pigs. At the protein level, 11 unique identified proteins exhibited a differential abundance (P < 0.05) between RFI lines. Differentially expressed proteins were generally not significantly affected by feed restriction. Mitochondrial oxidative proteins such as aconitase hydratase, ATP synthase subunit α, and creatine kinase S-type had a lower abundance in the low-RFI pigs, whereas fructose-biphosphate aldolase A and glyceraldehyde-3-phosphate dehydrogenase, 2 proteins involved in glycolysis, had a greater abundance in those pigs compared with high-RFI pigs

  11. imFASP: An integrated approach combining in-situ filter-aided sample pretreatment with microwave-assisted protein digestion for fast and efficient proteome sample preparation.

    PubMed

    Zhao, Qun; Fang, Fei; Wu, Ci; Wu, Qi; Liang, Yu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-03-17

    An integrated sample preparation method, termed "imFASP", which combined in-situ filter-aided sample pretreatment and microwave-assisted trypsin digestion, was developed for preparation of microgram and even nanogram amounts of complex protein samples with high efficiency in 1 h. For imFASP method, proteins dissolved in 8 M urea were loaded onto a filter device with molecular weight cut off (MWCO) as 10 kDa, followed by in-situ protein preconcentration, denaturation, reduction, alkylation, and microwave-assisted tryptic digestion. Compared with traditional in-solution sample preparation method, imFASP method generated more protein and peptide identifications (IDs) from preparation of 45 μg Escherichia coli protein sample due to the higher efficiency, and the sample preparation throughput was significantly improved by 14 times (1 h vs. 15 h). More importantly, when the starting amounts of E. coli cell lysate decreased to nanogram level (50-500 ng), the protein and peptide identified by imFASP method were improved at least 30% and 44%, compared with traditional in-solution preparation method, suggesting dramatically higher peptide recovery of imFASP method for trace amounts of complex proteome samples. All these results demonstrate that the imFASP method developed here is of high potential for high efficient and high throughput preparation of trace amounts of complex proteome samples. PMID:26920773

  12. In-depth 2-DE reference map of Aspergillus fumigatus and its proteomic profiling on exposure to itraconazole.

    PubMed

    Gautam, Poonam; Mushahary, Dolly; Hassan, Wazid; Upadhyay, Santosh Kumar; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Sarma, Puranam Usha

    2016-07-01

    Aspergillus fumigatus (A. fumigatus) is a medically important opportunistic fungus that may lead to invasive aspergillosis in humans with weak immune system. Proteomic profiling of this fungus on exposure to itraconazole (ITC), an azole antifungal drug, may lead to identification of its molecular targets and better understanding on the development of drug resistance against ITC in A. fumigatus. Here, proteome analysis was performed using 2-DE followed by mass spectrometric analysis which resulted in identification of a total of 259 unique proteins. Further, proteome profiling of A. fumigatus was carried out on exposure to ITC, 0.154 μg/ml, the minimum inhibitory concentration (MIC50). Image analysis showed altered levels of 175 proteins (66 upregulated and 109 downregulated) of A. fumigatus treated with ITC as compared to the untreated control. Peptide mass fingerprinting led to the identification of 54 proteins (12 up-regulated and 42 down-regulated). The differentially expressed proteins include proteins related to cell stress, carbohydrate metabolism and amino acid metabolism. We also observed four proteins, including nucleotide phosphate kinase (NDK), that are reported to interact with calcineurin, a protein involved in regulation of cell morphology and fungal virulence. Comparison of differentially expressed proteins on exposure to ITC with artemisinin (ART), an antimalarial drug with antifungal activity(1), revealed a total of 26 proteins to be common among them suggesting that common proteins and pathways are targeted by these two antifungal agents. The proteins targeted by ITC may serve as important leads for development of new antifungal drugs. PMID:26868900

  13. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics.

    PubMed

    Vowinckel, Jakob; Capuano, Floriana; Campbell, Kate; Deery, Michael J; Lilley, Kathryn S; Ralser, Markus

    2013-01-01

    The combination of qualitative analysis with label-free quantification has greatly facilitated the throughput and flexibility of novel proteomic techniques. However, such methods rely heavily on robust and reproducible sample preparation procedures. Here, we benchmark a selection of in gel, on filter, and in solution digestion workflows for their application in label-free proteomics. Each procedure was associated with differing advantages and disadvantages. The in gel methods interrogated were cost effective, but were limited in throughput and digest efficiency. Filter-aided sample preparations facilitated reasonable processing times and yielded a balanced representation of membrane proteins, but led to a high signal variation in quantification experiments. Two in solution digest protocols, however, gave optimal performance for label-free proteomics. A protocol based on the detergent RapiGest led to the highest number of detected proteins at second-best signal stability, while a protocol based on acetonitrile-digestion, RapidACN, scored best in throughput and signal stability but came second in protein identification. In addition, we compared label-free data dependent (DDA) and data independent (SWATH) acquisition on a TripleTOF 5600 instrument. While largely similar in protein detection, SWATH outperformed DDA in quantification, reducing signal variation and markedly increasing the number of precisely quantified peptides. PMID:24741437

  14. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics

    PubMed Central

    Campbell, Kate; Deery, Michael J.; Lilley, Kathryn S.; Ralser, Markus

    2014-01-01

    The combination of qualitative analysis with label-free quantification has greatly facilitated the throughput and flexibility of novel proteomic techniques. However, such methods rely heavily on robust and reproducible sample preparation procedures. Here, we benchmark a selection of in gel, on filter, and in solution digestion workflows for their application in label-free proteomics. Each procedure was associated with differing advantages and disadvantages. The in gel methods interrogated were cost effective, but were limited in throughput and digest efficiency. Filter-aided sample preparations facilitated reasonable processing times and yielded a balanced representation of membrane proteins, but led to a high signal variation in quantification experiments. Two in solution digest protocols, however, gave optimal performance for label-free proteomics. A protocol based on the detergent RapiGest led to the highest number of detected proteins at second-best signal stability, while a protocol based on acetonitrile-digestion, RapidACN, scored best in throughput and signal stability but came second in protein identification. In addition, we compared label-free data dependent (DDA) and data independent (SWATH) acquisition on a TripleTOF 5600 instrument. While largely similar in protein detection, SWATH outperformed DDA in quantification, reducing signal variation and markedly increasing the number of precisely quantified peptides. PMID:24741437

  15. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    PubMed Central

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2. PMID:27292372

  16. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans.

    PubMed

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2. PMID:27292372

  17. Multiplex Imaging and Cellular Target Identification of Kinase Inhibitors via an Affinity-Based Proteome Profiling Approach

    PubMed Central

    Su, Ying; Pan, Sijun; Li, Zhengqiu; Li, Lin; Wu, Xiaoyuan; Hao, Piliang; Sze, Siu Kwan; Yao, Shao Q.

    2015-01-01

    MLN8237 is a highly potent and presumably selective inhibitor of Aurora kinase A (AKA) and has shown promising antitumor activities. Like other kinase inhibitors which target the ATP-binding site of kinases, MLN8237 might be expected to have potential cellular off-targets. Herein, we report the first photoaffinity-based, small molecule AKA probe capable of both live-cell imaging of AKA activities and in situ proteome profiling of potential off-targets of MLN8237 (including AKA-associating proteins). By using two mutually compatible, bioorthogonal reactions (copper-catalyzed azide-alkyne cycloaddition chemistry and TCO-tetrazine ligation), we demostrate small molecule-based multiplex bioimaging for simultaneous in situ monitoring of two important cell-cycle regulating kinases (AKA and CDK1). A broad range of proteins, as potential off-targets of MLN8237 and AKA's-interacting partners, is subsequently identified by affinity-based proteome profiling coupled with large-scale LC-MS/MS analysis. From these studies, we discover novel AKA interactions which were further validated by cell-based immunoprecipitation (IP) experiments. PMID:25579846

  18. Skin toxicology of lead species evaluated by their permeability and proteomic profiles: a comparison of organic and inorganic lead.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Al-Suwayeh, Saleh A; Chen, Chih-Chieh; Fang, Jia-You

    2010-08-01

    Lead compounds are known to cause cytotoxicity and genotoxicity. Lead absorption by the skin is an important route through which this metal enters the body. The purpose of this work was to evaluate the skin permeability and toxicological profiles of two lead species, lead acetate and lead nitrate. This study assessed lead-induced toxicity mechanisms by focusing on the histopathology, proteomics, cell growth, and cellular ATP. In vitro skin permeation assays showed that there was no significant difference of lead accumulation within and across the skin between the two lead species. The presence of simulated sweat reduced the skin uptake of lead. The skin deposition of lead acetate was greater than that of lead nitrate with in vivo topical application. On the other hand, lead nitrate produced greater changes in the skin's histology and proteomic profiles compared to lead acetate. Four protein spots which showed significant changes were identified and are discussed in this study. These included glucose-related protein precursor (GRP) 78, K14, alpha-actin, and Rho GDP-dissociation inhibitor 2 (RhoGDI2). These proteins are respectively associated with oxidative stress, apoptosis, wound healing, and proliferation. Lead presented a biphasic pattern on cell growth and intracellular ATP content, with a stimulating effect at low concentrations and an inhibitory effect on cell proliferation at higher concentrations. PMID:20435106

  19. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  20. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes.

    PubMed

    Oberbach, Andreas; Blüher, Matthias; Wirth, Henry; Till, Holger; Kovacs, Peter; Kullnick, Yvonne; Schlichting, Nadine; Tomm, Janina M; Rolle-Kampczyk, Ulrike; Murugaiyan, Jayaseelan; Binder, Hans; Dietrich, Arne; von Bergen, Martin

    2011-10-01

    Obesity is associated with multiple adverse health effects and a high risk of developing metabolic and cardiovascular diseases. Therefore, there is a great need to identify circulating parameters that link changes in body fat mass with obesity. This study combines proteomic and metabolomic approaches to identify circulating molecules that discriminate healthy lean from healthy obese individuals in an exploratory study design. To correct for variations in physical activity, study participants performed a one hour exercise bout to exhaustion. Subsequently, circulating factors differing between lean and obese individuals, independent of physical activity, were identified. The DIGE approach yielded 126 differentially abundant spots representing 39 unique proteins. Differential abundance of proteins was confirmed by ELISA for antithrombin-III, clusterin, complement C3 and complement C3b, pigment epithelium-derived factor (PEDF), retinol binding protein 4 (RBP4), serum amyloid P (SAP), and vitamin-D binding protein (VDBP). Targeted serum metabolomics of 163 metabolites identified 12 metabolites significantly related to obesity. Among those, glycine (GLY), glutamine (GLN), and glycero-phosphatidylcholine 42:0 (PCaa 42:0) serum concentrations were higher, whereas PCaa 32:0, PCaa 32:1, and PCaa 40:5 were decreased in obese compared to lean individuals. The integrated bioinformatic evaluation of proteome and metabolome data yielded an improved group separation score of 2.65 in contrast to 2.02 and 2.16 for the single-type use of proteomic or metabolomics data, respectively. The identified circulating parameters were further investigated in an extended set of 30 volunteers and in the context of two intervention studies. Those included 14 obese patients who had undergone sleeve gastrectomy and 12 patients on a hypocaloric diet. For determining the long-term adaptation process the samples were taken six months after the treatment. In multivariate regression analyses, SAP, CLU

  1. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  2. Proteomic Profiling of the Outer Membrane Fraction of the Obligate Intracellular Bacterial Pathogen Ehrlichia ruminantium

    PubMed Central

    Moumène, Amal; Marcelino, Isabel; Ventosa, Miguel; Gros, Olivier; Lefrançois, Thierry; Vachiéry, Nathalie

    2015-01-01

    The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia’s OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs

  3. PROTEOMIC ANALYSIS OPTIMIZATION: SELECTIVE PROTEIN SAMPLE ON-COLUMN RETENTION IN REVERSE-PHASE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    Why work was done?

    To be able to identify, on a proteomic level, cytochromes P450 (CYP) and UDP-glucuronosyltransferases (UGT) in mouse liver microsomes for the conazole exposure study IRP # NHEERL-ECD-SCN-CZ-2002-01-R1_Addendum 1. The new enrichment method was necessary beca...

  4. Optimization and comparison of bottom-up proteomic sample preparation for early-stage Xenopus laevis embryos.

    PubMed

    Peuchen, Elizabeth H; Sun, Liangliang; Dovichi, Norman J

    2016-07-01

    Xenopus laevis is an important model organism in developmental biology. While there is a large literature on changes in the organism's transcriptome during development, the study of its proteome is at an embryonic state. Several papers have been published recently that characterize the proteome of X. laevis eggs and early-stage embryos; however, proteomic sample preparation optimizations have not been reported. Sample preparation is challenging because a large fraction (~90 % by weight) of the egg or early-stage embryo is yolk. We compared three common protein extraction buffer systems, mammalian Cell-PE LB(TM) lysing buffer (NP40), sodium dodecyl sulfate (SDS), and 8 M urea, in terms of protein extraction efficiency and protein identifications. SDS extracts contained the highest concentration of proteins, but this extract was dominated by a high concentration of yolk proteins. In contrast, NP40 extracts contained ~30 % of the protein concentration as SDS extracts, but excelled in discriminating against yolk proteins, which resulted in more protein and peptide identifications. We then compared digestion methods using both SDS and NP40 extraction methods with one-dimensional reverse-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS). NP40 coupled to a filter-aided sample preparation (FASP) procedure produced nearly twice the number of protein and peptide identifications compared to alternatives. When NP40-FASP samples were subjected to two-dimensional RPLC-ESI-MS/MS, a total of 5171 proteins and 38,885 peptides were identified from a single stage of embryos (stage 2), increasing the number of protein identifications by 23 % in comparison to other traditional protein extraction methods. PMID:27137514

  5. Ion Current-Based Proteomic Profiling for Understanding the Inhibitory Effect of Tumor Necrosis Factor Alpha on Myogenic Differentiation.

    PubMed

    Tu, Chengjian; Bu, Yahao; Vujcic, Marija; Shen, Shichen; Li, Jun; Qu, Miao; Hangauer, David; Clements, James L; Qu, Jun

    2016-09-01

    Despite a demonstrated role for TNF-α in promoting muscle wasting and cachexia, the associated molecular mechanisms and signaling pathways of myoblast differentiation dysregulated by TNF-α remain poorly understood. This study presents well-controlled proteomic profiling as a means to investigate the mechanisms of TNF-α-regulated myogenic differentiation. Primary human muscle precursor cells (MPCs) cultured in growth medium (GM), differentiation medium (DM) to induce myogenic differentiation, and DM with 20 ng/mL of TNF-α (n = 5/group) were comparatively analyzed by an ion current-based quantitative platform consisting of reproducible sample preparation/on-pellet digestion, a long-column nano-LC separation, and ion current-based differential analysis. The inhibition of myogenic differentiation by TNF-α was confirmed by reduced formation of multinucleated myotubes and the recovered expression of altered myogenic proteins such as MYOD and myogenin during myogenic differentiation. Functional analysis and validation by immunoassay analysis suggested that the cooperation of NF-κB and STAT proteins is responsible for dysregulated differentiation in MPCs by TNF-α treatment. Increased MHC class I components such as HLA-A, HLA-B, HLA-C, and beta-2-microglobulin were also observed in cultures in DM treated with TNF-α. Interestingly, inhibition of the cholesterol biosynthesis pathway during myogenic differentiation induced by serum starvation was not recovered by TNF-α treatment, which combined with previous reports, implies that this process may be an early event of myogenesis. This finding could lay the foundation for the potential use of statins in modulating myogenesis through cholesterol, for example, in stem cell-based myocardial infarction treatment, where differentiation of myoblasts and stem cells into force-generating mature muscle cells is a key step to the therapeutic capacity. In conclusion, the landscapes of altered transcription regulators, metabolic

  6. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    SciTech Connect

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  7. Ultrasensitive proteome analysis using paramagnetic bead technology

    PubMed Central

    Hughes, Christopher S; Foehr, Sophia; Garfield, David A; Furlong, Eileen E; Steinmetz, Lars M; Krijgsveld, Jeroen

    2014-01-01

    In order to obtain a systems-level understanding of a complex biological system, detailed proteome information is essential. Despite great progress in proteomics technologies, thorough interrogation of the proteome from quantity-limited biological samples is hampered by inefficiencies during processing. To address these challenges, here we introduce a novel protocol using paramagnetic beads, termed Single-Pot Solid-Phase-enhanced Sample Preparation (SP3). SP3 provides a rapid and unbiased means of proteomic sample preparation in a single tube that facilitates ultrasensitive analysis by outperforming existing protocols in terms of efficiency, scalability, speed, throughput, and flexibility. To illustrate these benefits, characterization of 1,000 HeLa cells and single Drosophila embryos is used to establish that SP3 provides an enhanced platform for profiling proteomes derived from sub-microgram amounts of material. These data present a first view of developmental stage-specific proteome dynamics in Drosophila at a single-embryo resolution, permitting characterization of inter-individual expression variation. Together, the findings of this work position SP3 as a superior protocol that facilitates exciting new directions in multiple areas of proteomics ranging from developmental biology to clinical applications. PMID:25358341

  8. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation

    PubMed Central

    El-Sayed, Ashraf S. A.; Yassin, Marwa A.; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway. PMID:26633307

  9. Proteomic profiling of host-biofilm interactions in an oral infection model resembling the periodontal pocket

    PubMed Central

    Bao, Kai; Belibasakis, Georgios N.; Selevsek, Nathalie; Grossmann, Jonas; Bostanci, Nagihan

    2015-01-01

    Periodontal infections cause inflammatory destruction of the tooth supporting tissues. We recently developed a dynamic, in vitro periodontal organotypic tissue model in a perfusion bioreactor system, in co-culture with an 11-species subgingival biofilm, which may recapitulate early events during the establishment of periodontal infections. This study aimed to characterize the global proteome regulations in this host-biofilm interaction model. Semi-quantitative shotgun proteomics were applied for protein identification and quantification in the co-culture supernatants (human and bacterial) and the biofilm lysates (bacterial). A total of 896 and 3363 proteins were identified as secreted in the supernatant and expressed in the biofilm lysate, respectively. Enriched gene ontology analysis revealed that the regulated secreted human tissue proteins were related to processes of cytoskeletal rearrangement, stress responses, apoptosis, and antigen presentation, all of which are commensurate with deregulated host responses. Most secreted bacterial biofilm proteins derived from their cytoplasmic domain. In the presence of the tissue, the levels of Fusobacterium nucleatum, Actinomyces oris and Campylobacter rectus proteins were significantly regulated. The functions of the up-regulated intracellular (biofilm lysate) proteins were associated with cytokinesis. In conclusion, the proteomic overview of regulated pathways in this host-biofilm interaction model provides insights to the early events of periodontal pathogenesis. PMID:26525412

  10. Global profiling of co- and post-translationally N-myristoylated proteomes in human cells

    PubMed Central

    Thinon, Emmanuelle; Serwa, Remigiusz A.; Broncel, Malgorzata; Brannigan, James A.; Brassat, Ute; Wright, Megan H.; Heal, William P.; Wilkinson, Anthony J.; Mann, David J.; Tate, Edward W.

    2014-01-01

    Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells. PMID:25255805

  11. Quantitative Subcellular Proteome and Secretome Profiling of Influenza A Virus-Infected Human Primary Macrophages

    PubMed Central

    Lietzén, Niina; Julkunen, Ilkka; Aittokallio, Tero; Matikainen, Sampsa; Nyman, Tuula A.

    2011-01-01

    Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans. Macrophages recognize influenza A virus infection with their pattern recognition receptors, and are involved in the activation of proper innate immune response. Here, we have used high-throughput subcellular proteomics combined with bioinformatics to provide a global view of host cellular events that are activated in response to influenza A virus infection in human primary macrophages. We show that viral infection regulates the expression and/or subcellular localization of more than one thousand host proteins at early phases of infection. Our data reveals that there are dramatic changes in mitochondrial and nuclear proteomes in response to infection. We show that a rapid cytoplasmic leakage of lysosomal proteins, including cathepsins, followed by their secretion, contributes to inflammasome activation and apoptosis seen in the infected macrophages. Also, our results demonstrate that P2X7 receptor and src tyrosine kinase activity are essential for inflammasome activation during influenza A virus infection. Finally, we show that influenza A virus infection is associated with robust secretion of different danger-associated molecular patterns (DAMPs) suggesting an important role for DAMPs in host response to influenza A virus infection. In conclusion, our high-throughput quantitative proteomics study provides important new insight into host-response against influenza A virus infection in human primary macrophages. PMID:21589892

  12. Next-generation proteomics faces new challenges in environmental biotechnology.

    PubMed

    Armengaud, Jean

    2016-04-01

    Environmental biotechnology relies on the exploration of novel biological systems and a thorough understanding of the underlying molecular mechanisms. Next-generation proteomics based on the latest generation of mass analyzers currently allows the recording of complete proteomes from any microorganism. Interpreting these data can be straightforward if the genome of the organism is established, or relatively easy to perform through proteogenomics approaches if a draft sequence can be obtained. However, next-generation proteomics faces new, interesting challenges when the organism is distantly related to previously characterized organisms or when mixtures of organisms have to be analyzed. New mass spectrometers and innovative bioinformatics tools are reshaping the possibilities of homology-based proteomics, proteogenomics, and metaproteomics for the characterization of biological systems. Novel time- and cost-effective screening strategies are also possible with this methodology, as exemplified by whole proteome thermal profiling and subpopulation proteomics. The complexity of environmental samples allows for unique developments of approaches and concepts. PMID:26950175

  13. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems.

    PubMed

    Goodwin, C Rory; Woodard, Crystal L; Zhou, Xin; Pan, Jianbo; Olivi, Alessandro; Xia, Shuli; Bettegowda, Chetan; Sciubba, Daniel M; Pevsner, Jonathan; Zhu, Heng; Laterra, John

    2016-04-01

    Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states. PMID:27084428

  14. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems12

    PubMed Central

    Goodwin, C. Rory; Woodard, Crystal L.; Zhou, Xin; Pan, Jianbo; Olivi, Alessandro; Xia, Shuli; Bettegowda, Chetan; Sciubba, Daniel M.; Pevsner, Jonathan; Zhu, Heng; Laterra, John

    2016-01-01

    Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states. PMID:27084428

  15. Reversed-Phase Chromatography with Multiple Fraction Concatenation Strategy for Proteome Profiling of Human MCF10A Cells

    SciTech Connect

    Wang, Yuexi; Yang, Feng; Gritsenko, Marina A.; Wang, Yingchun; Clauss, Therese RW; Liu, Tao; Shen, Yufeng; Monroe, Matthew E.; Lopez-Ferrer, Daniel; Reno, Theresa; Moore, Ronald J.; Klemke, Richard L.; Camp, David G.; Smith, Richard D.

    2011-05-01

    Two dimensional liquid chromatography (2D LC) is commonly used for shotgun proteomics to improve the analysis dynamic range. Reversed phase liquid chromatography (RPLC) has been routinely employed as the second dimensional separation prior to the mass spectrometric analysis. Construction of 2D separation with RP-RP arises a concern for the separation orthogonality. In this study, we applied a novel concatenation strategy to improve the orthogonality of 2D RP-RP formed by low pH (i.e., pH 3) and high pH (i.e., pH 10) RPLC. We confidently identified 3753 proteins (18570 unique peptides) and 5907 proteins (37633 unique peptides) from low pH RPLC-RP and high pH RPLC-RP, respectively, for a trypsin-digested human MCF10A cell sample. Compared with SCX-RP, the high pH-low pH RP-RP approach resulted in 1.8-fold and 1.6-fold in the number of peptide and protein identifications, respectively. In addition to the broader identifications, the High pH-low pH RP-RP approach has advantages including the improved protein sequence coverage, the simplified sample processing, and the reduced sample loss. These results demonstrated that the concatenation high pH-low pH RP-RP strategy is an attractive alternative to SCX for 2D LC shotgun proteomic analysis.

  16. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells

    PubMed Central

    Wang, Yuexi; Yang, Feng; Gritsenko, Marina A.; Wang, Yingchun; Clauss, Therese; Liu, Tao; Shen, Yufeng; Monroe, Matthew E.; Lopez-Ferrer, Daniel; Reno, Theresa; Moore, Ronald J.; Klemke, Richard L.; Camp, David G.; Smith, Richard D.

    2011-01-01

    In this study, we evaluated a concatenated low pH (pH 3) and high pH (pH 10) reversed-phase liquid chromatography strategy as a first dimension for two-dimensional liquid chromatography tandem mass spectrometry (“shotgun”) proteomic analysis of trypsin-digested human MCF10A cell sample. Compared with the more traditional strong cation exchange method, the use of concatenated high pH reversed-phase liquid chromatography as a first-dimension fractionation strategy resulted in 1.8- and 1.6-fold increases in the number of peptide and protein identifications (with two or more unique peptides), respectively. In addition to broader identifications, advantages of the concatenated high pH fractionation approach include improved protein sequence coverage, simplified sample processing, and reduced sample losses. The results demonstrate that the concatenated high pH reversed-phased strategy is an attractive alternative to strong cation exchange for two-dimensional shotgun proteomic analysis. PMID:21500348

  17. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus

    PubMed Central

    Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-01-01

    Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH. PMID:27277140

  18. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus.

    PubMed

    Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-01-01

    Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH. PMID:27277140

  19. Proteomic Profile of Unstable Atheroma Plaque: Increased Neutrophil Defensin 1, Clusterin, and Apolipoprotein E Levels in Carotid Secretome.

    PubMed

    Aragonès, Gemma; Auguet, Teresa; Guiu-Jurado, Esther; Berlanga, Alba; Curriu, Marta; Martinez, Salomé; Alibalic, Ajla; Aguilar, Carmen; Hernández, Esteban; Camara, María-Luisa; Canela, Núria; Herrero, Pol; Ruyra, Xavier; Martín-Paredero, Vicente; Richart, Cristóbal

    2016-03-01

    Because of the clinical significance of carotid atherosclerosis, the search for novel biomarkers has become a priority. The aim of the present study was to compare the protein secretion profile of the carotid atherosclerotic plaque (CAP, n = 12) and nonatherosclerotic mammary artery (MA, n = 10) secretomes. We used a nontargeted proteomic approach that incorporated tandem immunoaffinity depletion, iTRAQ labeling, and nanoflow liquid chromatography coupled to high-resolution mass spectrometry. In total, 162 proteins were quantified, of which 25 showed statistically significant differences in secretome levels between carotid atherosclerotic plaque and nondiseased mammary artery. We found increased levels of neutrophil defensin 1, apolipoprotein E, clusterin, and zinc-alpha-2-glycoprotein in CAP secretomes. Results were validated by ELISA assays. Also, differentially secreted proteins are involved in pathways such as focal adhesion and leukocyte transendothelial migration. In conclusion, this study provides a subset of identified proteins that are differently expressed in secretomes of clinical significance. PMID:26795031

  20. Direct Electrospray Ionization Mass Spectrometric Profiling of Real-World Samples via a Solid Sampling Probe

    NASA Astrophysics Data System (ADS)

    Yu, Zhan; Chen, Lee Chuin; Mandal, Mridul Kanti; Yoshimura, Kentaro; Takeda, Sen; Hiraoka, Kenzo

    2013-10-01

    This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.

  1. Identification of haptoglobin peptide as a novel serum biomarker for lung squamous cell carcinoma by serum proteome and peptidome profiling.

    PubMed

    Okano, Tetsuya; Seike, Masahiro; Kuribayashi, Hidehiko; Soeno, Chie; Ishii, Takeo; Kida, Kozui; Gemma, Akihiko

    2016-03-01

    To date, a number of potential biomarkers for lung squamous cell cancer (SCC) have been identified; however, sensitive biomarkers are currently lacking to detect early stage SCC due to low sensitivity and specificity. In the present study, we compared the 7 serum proteomic profiles of 11 SCC patients, 7 chronic obstructive pulmonary disease (COPD) patients and 7 healthy smokers as controls to identify potential serum biomarkers associated with SCC and COPD. Two-dimensional difference gel electrophoresis (2D-DIGE) and mass-spectrometric analysis (MS) using an affinity column revealed two candidate proteins, haptoglobin (HP) and apolipoprotein 4, as biomarkers of SCC, and α-1-antichymotrypsin as a marker of COPD. The iTRAQ technique was also used to identify SCC-specific peptides. HP protein expression was significantly higher in SCC patients than in COPD patients. Furthermore, two HP protein peptides showed significantly higher serum levels in SCC patients than in COPD patients. We established novel polyclonal antibodies for the two HP peptides and subsequently a sandwich enzyme-linked immunosorbent assay (ELISA) for the quantification of these specific peptides in patient and control sera. The sensitivity of detection by ELISA of one HP peptide (HP216) was 70% of SCC patients, 40% of COPDs patients and 13% of healthy controls. We also measured CYFRA, a cytokeratin fragment clinically used as an SCC tumor marker, in all the 28 cases and found CYFRA was detected in only seven SCC cases. However, when the measurement of HP216 was combined with that of CYFRA, 100% (10 of 10 patients) of SCC cases were detected. Our proteomic profiling demonstrates that the SCC-specific HP peptide HP216 may potentially be used as a diagnostic biomarker for SCC. PMID:26783151

  2. Identification of haptoglobin peptide as a novel serum biomarker for lung squamous cell carcinoma by serum proteome and peptidome profiling

    PubMed Central

    OKANO, TETSUYA; SEIKE, MASAHIRO; KURIBAYASHI, HIDEHIKO; SOENO, CHIE; ISHII, TAKEO; KIDA, KOZUI; GEMMA, AKIHIKO

    2016-01-01

    To date, a number of potential biomarkers for lung squamous cell cancer (SCC) have been identified; however, sensitive biomarkers are currently lacking to detect early stage SCC due to low sensitivity and specificity. In the present study, we compared the 7 serum proteomic profiles of 11 SCC patients, 7 chronic obstructive pulmonary disease (COPD) patients and 7 healthy smokers as controls to identify potential serum biomarkers associated with SCC and COPD. Two-dimensional difference gel electrophoresis (2D-DIGE) and mass-spectrometric analysis (MS) using an affinity column revealed two candidate proteins, haptoglobin (HP) and apolipoprotein 4, as biomarkers of SCC, and α-1-antichymotrypsin as a marker of COPD. The iTRAQ technique was also used to identify SCC-specific peptides. HP protein expression was significantly higher in SCC patients than in COPD patients. Furthermore, two HP protein peptides showed significantly higher serum levels in SCC patients than in COPD patients. We established novel polyclonal antibodies for the two HP peptides and subsequently a sandwich enzyme-linked immunosorbent assay (ELISA) for the quantification of these specific peptides in patient and control sera. The sensitivity of detection by ELISA of one HP peptide (HP216) was 70% of SCC patients, 40% of COPDs patients and 13% of healthy controls. We also measured CYFRA, a cytokeratin fragment clinically used as an SCC tumor marker, in all the 28 cases and found CYFRA was detected in only seven SCC cases. However, when the measurement of HP216 was combined with that of CYFRA, 100% (10 of 10 patients) of SCC cases were detected. Our proteomic profiling demonstrates that the SCC-specific HP peptide HP216 may potentially be used as a diagnostic biomarker for SCC. PMID:26783151

  3. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    PubMed Central

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  4. Proteome profiling reveals regional protein alteration in cerebrum of common marmoset (Callithrix jacchus) exposed to methylmercury.

    PubMed

    Shao, Yueting; Yamamoto, Megumi; Figeys, Daniel; Ning, Zhibin; Chan, Hing Man

    2016-03-10

    Methylmercury (MeHg) is known to selectively damage the calcarine and precentral cortices along deep sulci and fissures in adult cases, but the detailed mechanism is still unclear. This study aims to identify and analyze the differential proteome expression in two regions of the cerebrum (the frontal lobe and the occipital lobe including the calcarine sulcus) of the common marmoset exposed to MeHg using a shot-gun proteomic approach. A total of 1045 and 1062 proteins were identified in the frontal lobe (FL) and occipital lobe (OL), of which, 62 and 89 proteins were found significantly changed with MeHg exposure. Functional enrichment/depletion analysis showed that the lipid metabolic process and proteolysis were affected in both two lobes. Functional changes in FL were characterized in cell cycle and cell division, sulfur compound metabolic process, microtubule-based process and glycerolipid metabolic process. In comparison, proteins were enriched in the functions of transport, carbohydrate metabolic process, chemical caused homeostasis and regulation of body fluid levels in OL. Pathway analysis predicted that vasopressin-regulated water reabsorption was disturbed in MeHg-treated FL. Our results showed that MeHg induced regional specific protein changes in FL and OL but with similar endpoint effects such as energy diminish and disruption of water transport. APOE and GPX1 were shown to be possible key proteins targeted by MeHg leading to multiple functional changes in OL. This is the first report of the whole proteome changes of primate cerebrum for MeHg neurotoxicity, and the results will contribute to the understanding of molecular basis of MeHg intoxication in humans. PMID:27012723

  5. Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress

    PubMed Central

    Gagné, Jean-Philippe; Pic, Émilie; Isabelle, Maxim; Krietsch, Jana; Éthier, Chantal; Paquet, Éric; Kelly, Isabelle; Boutin, Michel; Moon, Kyung-Mee; Foster, Leonard J.; Poirier, Guy G.

    2012-01-01

    Upon DNA damage induction, DNA-dependent poly(ADP-ribose) polymerases (PARPs) synthesize an anionic poly(ADP-ribose) (pADPr) scaffold to which several proteins bind with the subsequent formation of pADPr-associated multiprotein complexes. We have used a combination of affinity-purification methods and proteomics approaches to isolate these complexes and assess protein dynamics with respect to pADPr metabolism. As a first approach, we developed a substrate trapping strategy by which we demonstrate that a catalytically inactive Poly(ADP-ribose) glycohydrolase (PARG) mutant can act as a physiologically selective bait for the isolation of specific pADPr-binding proteins through its macrodomain-like domain. In addition to antibody-mediated affinity-purification methods, we used a pADPr macrodomain affinity resin to recover pADPr-binding proteins and their complexes. Second, we designed a time course experiment to explore the changes in the composition of pADPr-containing multiprotein complexes in response to alkylating DNA damage-mediated PARP activation. Spectral count clustering based on GeLC-MS/MS analysis was complemented with further analyses using high precision quantitative proteomics through isobaric tag for relative and absolute quantitation (iTRAQ)- and Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics. Here, we present a valuable resource in the interpretation of systems biology of the DNA damage response network in the context of poly(ADP-ribosyl)ation and provide a basis for subsequent investigations of pADPr-binding protein candidates. PMID:22669911

  6. Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in Chlorella sorokiniana.

    PubMed

    Ma, Qian; Wang, Jiangxin; Lu, Shuhuan; Lv, Yajin; Yuan, Yingjin

    2013-03-01

    High density cultivation is essential to industrial production of biodiesel from microalgae, which involves in variations of micro-environment around individual cells, including light intensity, nutrition distribution, other abiotic stress and so on. To figure out the main limit factor in high inoculum cultivation, a quantitative proteomic analysis (iTRAQ-on-line 2-D nano-LC/MS) in a non-model green microalga, Chlorella sorokiniana, under different inoculum sizes was conducted. The resulting high-quality proteomic dataset consisted of 695 proteins. Using a cutoff of P < 0.05, 241 unique proteins with differential expression levels were identified between control and different inoculum sizes. Functional analysis showed that proteins participating in photosynthesis (light reaction) and Calvin cycle (carbon reaction pathway) had highest expression levels under inoculum size of 1 × 10(6) cells mL(-1), and lowest levels under 1 × 10(7) cells mL(-1). Canonical correlation analysis of the photosynthesis related proteins and metabolites biomarkers showed that a good correlation existed between them (canonical coefficient was 0.987), suggesting photosynthesis process greatly affected microalgae biodiesel productivity and quality. Proteomic study of C. sorokiniana under different illuminations was also conducted to confirm light intensity as a potential limit factor of high inoculum size. Nearly two thirds of proteins showed up-regulation under the illumination of 70-110 µmol m(-2) s(-1), compared to those of 40 µmol m(-2) s(-1). This result suggested that by elegantly adjusting light conditions, high cell density cultivation and high biodiesel production might be achieved. PMID:23096779

  7. Expression profiles in surgically-induced carotid stenosis: a combined transcriptomic and proteomic investigation

    PubMed Central

    Forte, A; Finicelli, M; De Luca, P; Quarto, C; Onorati, F; Santè, P; Renzulli, A; Galderisi, U; Berrino, L; De Feo, M; Rossi, F; Cotrufo, M; Cascino, A; Cipollaro, M

    2008-01-01

    Vascular injury aimed at stenosis removal induces local reactions often leading to restenosis. The aim of this study was a concerted transcriptomic-proteomics analysis of molecular variations in a model of rat carotid arteriotomy, to dissect the molecular pathways triggered by vascular surgical injury and to identify new potential anti-restenosis targets. RNA and proteins extracted from inbred Wistar Kyoro (WKY) rat carotids harvested 4 hrs, 48 hrs and 7 days after arteriotomy were analysed by Affymetrix rat microarrays and by bidi-mensional electrophoresis followed by liquid chromatography and tandem mass spectrometry, using as reference the RNA and the proteins extracted from uninjured rat carotids. Results were classified according to their biological function, and the most significant Kyoro Encyclopedia of Genes and Genomes (KEGG) pathways were identified. A total of 1163 mRNAs were differentially regulated in arteriotomy-injured carotids 4 hrs, 48 hrs and 7 days after injury (P < 0.0001, fold-change ≥2), while 48 spots exhibited significant changes after carotid arteriotomy (P < 0.05, fold-change ≥2). Among them, 16 spots were successfully identified and resulted to correspond to a set of 19 proteins. mRNAs were mainly involved in signal transduction, oxidative stress/inflammation and remodelling, including many new potential targets for limitation of surgically induced (re)stenosis (e.g. Arginase I, Kruppel like factors). Proteome analysis confirmed and extended the microrarray data, revealing time-dependent post-translational modifications of Hsp27, haptoglobin and contrapsin-like protease inhibitor 6, and the differential expression of proteins mainly involved in contractility. Transcriptomic and proteomic methods revealed functional categories with different preferences, related to the experimental sensitivity and to mechanisms of regulation. The comparative analysis revealed correlation between transcriptional and translational expression for 47% of

  8. Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress.

    PubMed

    Gagné, Jean-Philippe; Pic, Emilie; Isabelle, Maxim; Krietsch, Jana; Ethier, Chantal; Paquet, Eric; Kelly, Isabelle; Boutin, Michel; Moon, Kyung-Mee; Foster, Leonard J; Poirier, Guy G

    2012-09-01

    Upon DNA damage induction, DNA-dependent poly(ADP-ribose) polymerases (PARPs) synthesize an anionic poly(ADP-ribose) (pADPr) scaffold to which several proteins bind with the subsequent formation of pADPr-associated multiprotein complexes. We have used a combination of affinity-purification methods and proteomics approaches to isolate these complexes and assess protein dynamics with respect to pADPr metabolism. As a first approach, we developed a substrate trapping strategy by which we demonstrate that a catalytically inactive Poly(ADP-ribose) glycohydrolase (PARG) mutant can act as a physiologically selective bait for the isolation of specific pADPr-binding proteins through its macrodomain-like domain. In addition to antibody-mediated affinity-purification methods, we used a pADPr macrodomain affinity resin to recover pADPr-binding proteins and their complexes. Second, we designed a time course experiment to explore the changes in the composition of pADPr-containing multiprotein complexes in response to alkylating DNA damage-mediated PARP activation. Spectral count clustering based on GeLC-MS/MS analysis was complemented with further analyses using high precision quantitative proteomics through isobaric tag for relative and absolute quantitation (iTRAQ)- and Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics. Here, we present a valuable resource in the interpretation of systems biology of the DNA damage response network in the context of poly(ADP-ribosyl)ation and provide a basis for subsequent investigations of pADPr-binding protein candidates. PMID:22669911

  9. Quantitative Proteomic Profiling of Peanut Allergens in Food Ingredients Used for Oral Food Challenges.

    PubMed

    Johnson, Philip E; Sayers, Rebekah L; Gethings, Lee A; Balasundaram, Anuradha; Marsh, Justin T; Langridge, James I; Mills, E N Clare

    2016-06-01

    Profiling allergens in complex food ingredients used in oral food challenges and immunotherapy is crucial for regulatory acceptance. Mass spectrometry based analysis employing data-independent acquisition coupled with ion mobility mass spectrometry-mass spectrometry (DIA-IM-MS) was used to investigate the allergen composition of raw peanuts and roasted peanut flour ingredients used in challenge meals. This comprehensive qualitative and quantitative analysis using label-free approaches identified and quantified 123 unique protein accessions. Semiquantitative analysis indicated that allergens Ara h 1 and Ara h 3 were the most abundant proteins and present in approximately equal amounts and were extracted in reduced amounts from roasted peanut flours. The clinically significant allergens Ara h 2 and 6 were less abundant, but relative quantification was unaffected by roasting. Ara h 5 was undetectable in any peanut sample, while the Bet v 1 homologue Ara h 8 and the lipid transfer protein allergen, Ara h 9, were detected in low abundance. The oleosin allergens, Ara h 10 and 11, were moderately abundant in the raw peanuts but were 100-fold less abundant in the defatted roasted peanut flour than the major allergens Ara h 1, 3, 2, and 6. Certain isoforms of the major allergens dominated the profile. The relative quantitation of the major peanut allergens showed little variation between different batches of roasted peanut flour. These data will support future development of targeted approaches for absolute quantification of peanut allergens which can be applied to both food ingredients used in clinical studies and extracts used for skin testing and to identify trace levels of allergens in foods. PMID:27064171

  10. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins.

    PubMed

    Ouidir, Tassadit; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2015-07-01

    Protein lysine acetylation is a reversible and highly regulated post-translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology. PMID:25900529

  11. Activity-Based Proteome Profiling Probes Based on Woodward's Reagent K with Distinct Target Selectivity.

    PubMed

    Qian, Yong; Schürmann, Marc; Janning, Petra; Hedberg, Christian; Waldmann, Herbert

    2016-06-27

    Woodward's reagent K (WRK) is a reactive heterocyclic compound that has been employed in protein chemistry to covalently and unspecifically label proteins at nucleophilic amino acids, notably at histidine and cysteine. We have developed a panel of WRK-derived activity-based probes and show that surprisingly and unexpectedly, these probes are fairly selective for a few proteins in the human proteome. The WRK-derived probes show unique reactivity towards the catalytic N-terminal proline in the macrophage migration inhibitory factor (MIF) and can be used to label and, if equipped with a fluorophore, to image MIF activities in living cells. PMID:27159346

  12. Contributions of Immunoaffinity Chromatography to Deep Proteome Profiling of Human Biofluids

    PubMed Central

    Wu, Chaochao; Duan, Jicheng; Liu, Tao; Smith, Richard D.; Qian, Wei-Jun

    2016-01-01

    Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed. PMID:26868616

  13. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids.

    PubMed

    Wu, Chaochao; Duan, Jicheng; Liu, Tao; Smith, Richard D; Qian, Wei-Jun

    2016-05-15

    Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed. PMID:26868616

  14. From proteomic multimarker profiling to interesting proteins: thymosin-β4 and kininogen-1 as new potential biomarkers for inflammatory hepatic lesions

    PubMed Central

    Henkel, Corinna; Schwamborn, Kristina; Zimmermann, Henning W; Tacke, Frank; Kühnen, Elisabeth; Odenthal, Margarete; Groseclose, M Reid; Caprioli, Richard M; Weiskirchen, Ralf

    2011-01-01

    Despite tremendous efforts in disclosing the pathophysiological and epidemiological factors associated with liver fibrogenesis, non-invasive diagnostic measures to estimate the clinical outcome and progression of liver fibrogenesis are presently limited. Therefore, there is a mandatory need for methodologies allowing the reasonable and reliable assessment of the severity and/or progression of hepatic fibrogenesis. We here performed proteomic serum profiling by matrix-assisted laser desorption ionization time-of-flight mass spectrometry in 179 samples of patients chronically infected with hepatitis C virus and 195 control sera. Multidimensional analysis of spectra allowed the definition of algorithms capable to distinguish class-specific protein expression profiles in serum samples. Overall about 100 peaks could be detected per single spectrum. Different algorithms including protein peaks in the range of 2000 and 10,000 Da were generated after pre-fractionation on a weak cation exchange surface. A specificity of 93% with a sensitivity of 86% as mean of the test set results was found, respectively. The nature of three of these protein peaks that belonged to kininogen-1 and thymosin-β4 was further analysed by tandem mass spectrometry (MS)/MS. We further found that kininogen-1 mRNA was significantly down-regulated in cirrhotic livers. We have identified kininogen-1 and thymosin-β4 as potential new biomarkers for human chronic hepatitis C and conclude that serum profiling is a reliable technique to identify hepatitis-associated expression patterns. Based on the high throughput capability, the identified differential protein panel may serve as a diagnostic marker and warrants further validation in larger cohorts. PMID:21496200

  15. Proteomic Profiling of the Retinas in a Neonatal Rat Model of Oxygen-Induced Retinopathy with a Reproducible Ion-Current-Based MS1 Approach

    PubMed Central

    Shen, Xiaomeng; Li, Jun; Wang, Lianshui; Aranda, Jacob V.; Qu, Jun

    2015-01-01

    Investigation of the retina proteome during hypoxia-induced retinal neovascularization is valuable for understanding pathogenesis of retinopathy of prematurity (ROP). Here we employed a reproducible ion-current-based MS1 quantification approach (ICB) to explore the retinal proteomic changes in early stage of ROP in a rat model of oxygen-induced retinopathy (OIR). Retina proteins, which are rich in membrane proteins, were efficiently extracted by a detergent-cocktail and subjected to precipitation/on-pellet-digestion, followed by nano-LC-MS analysis on a 75-cm column with a 7-h gradient. The high reproducibility of sample preparation and chromatography separation enabled excellent peak alignment and contributed to the superior performance of ICB over parallel label-free approaches. In this study, sum-of-intensity with rejection was incorporated to determine the protein ratios. In total, 1325 unique protein groups were quantified from rat retinas (n = 4/group) with at least two distinct peptides at a protein FDR of 1%. Thirty-two significantly altered proteins were observed with confidence, and the elevated glial fibrillary acidic protein and decreased crystalline proteins in OIR retinas agree well with previous studies. Selected key alterations were further validated by Western blot analysis. Interestingly, Rab21/RhoA/ROCK2/moesin signaling pathway was found to be involved in retinal neovascularization of OIR. Moreover, highly elevated annexin A3, a potential angiogenic mediator, was observed in OIR retinas and may serve as a potential therapeutic target. In conclusion, reproducible ICB profiling enabled reliable discovery of many altered mediators and pathways in OIR retinas, thereby providing new insights into molecular mechanisms involved in pathogenesis of ROP. PMID:25780855

  16. Proteomic profiling of the retinas in a neonatal rat model of oxygen-induced retinopathy with a reproducible ion-current-based MS1 approach.

    PubMed

    Tu, Chengjian; Beharry, Kay D; Shen, Xiaomeng; Li, Jun; Wang, Lianshui; Aranda, Jacob V; Qu, Jun

    2015-05-01

    Investigation of the retina proteome during hypoxia-induced retinal neovascularization is valuable for understanding pathogenesis of retinopathy of prematurity (ROP). Here we employed a reproducible ion-current-based MS1 quantification approach (ICB) to explore the retinal proteomic changes in early stage of ROP in a rat model of oxygen-induced retinopathy (OIR). Retina proteins, which are rich in membrane proteins, were efficiently extracted by a detergent-cocktail and subjected to precipitation/on-pellet-digestion, followed by nano-LC-MS analysis on a 75-cm column with a 7-h gradient. The high reproducibility of sample preparation and chromatography separation enabled excellent peak alignment and contributed to the superior performance of ICB over parallel label-free approaches. In this study, sum-of-intensity with rejection was incorporated to determine the protein ratios. In total, 1325 unique protein groups were quantified from rat retinas (n = 4/group) with at least two distinct peptides at a protein FDR of 1%. Thirty-two significantly altered proteins were observed with confidence, and the elevated glial fibrillary acidic protein and decreased crystalline proteins in OIR retinas agree well with previous studies. Selected key alterations were further validated by Western blot analysis. Interestingly, Rab21/RhoA/ROCK2/moesin signaling pathway was found to be involved in retinal neovascularization of OIR. Moreover, highly elevated annexin A3, a potential angiogenic mediator, was observed in OIR retinas and may serve as a potential therapeutic target. In conclusion, reproducible ICB profiling enabled reliable discovery of many altered mediators and pathways in OIR retinas, thereby providing new insights into molecular mechanisms involved in pathogenesis of ROP. PMID:25780855

  17. The effects of eating marine- or vegetable-fed farmed trout on the human plasma proteome profiles of healthy men.

    PubMed

    Rentsch, Maria L; Lametsch, René; Bügel, Susanne; Jessen, Flemming; Lauritzen, Lotte

    2015-02-28

    Most human intervention studies have examined the effects on a subset of risk factors, some of which may require long-term exposure. The plasma proteome may reflect the underlying changes in protein expression and activation, and this could be used to identify early risk markers. The aim of the present study was to evaluate the impact of regular fish intake on the plasma proteome. We recruited thirty healthy men aged 40 to 70 years, who were randomly allocated to a daily meal of chicken or trout raised on vegetable or marine feeds. Blood samples were collected before and after 8 weeks of intervention, and after the removal of the twelve most abundant proteins, plasma proteins were separated by two-dimensional gel electrophoresis. Protein spots < 66 kDa with a pI > 4·3 visualised by silver staining were matched by two-dimensional imaging software. Within-subject changes in spots were compared between the treatment groups. Differentially affected spots were identified by matrix-assisted laser desorption ionisation-time of flight/time of flight MS and the human Swiss-Prot database. We found 23/681 abundant plasma protein spots, which were up- or down-regulated by the dietary treatment (P < 0·05, q < 0·30), and eighteen of these were identified. In each trout group, ten spots differed from those in subjects given the chicken meal, but only three of these were common, and only one spot differed between the two trout groups. In both groups, the affected plasma proteins were involved in biological processes such as regulation of vitamin A and haem transport, blood fibrinolysis and oxidative defence. Thus, regular fish intake affects the plasma proteome, and the changes may indicate novel mechanisms of effect. PMID:25622825

  18. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  19. Polyploidy and the proteome.

    PubMed

    Soltis, Douglas E; Misra, Biswapriya B; Shan, Shengchen; Chen, Sixue; Soltis, Pamela S

    2016-08-01

    Although major advances have been made during the past 20 years in our understanding of the genetic and genomic consequences of polyploidy, our knowledge of polyploidy and the proteome is in its infancy. One of our goals is to stimulate additional study, particularly broad-scale proteomic analyses of polyploids and their progenitors. Although it may be too early to generalize regarding the extent to which transcriptomic data are predictive of the proteome of polyploids, it is clear that the proteome does not always reflect the transcriptome. Despite limited data, important observations on the proteomes of polyploids are emerging. In some cases, proteomic profiles show qualitatively and/or quantitatively non-additive patterns, and proteomic novelty has been observed. Allopolyploids generally combine the parental contributions, but there is evidence of parental dominance of one contributing genome in some allopolyploids. Autopolyploids are typically qualitatively identical to but quantitatively different from their parents. There is also evidence of parental legacy at the proteomic level. Proteomes clearly provide insights into the consequences of genomic merger and doubling beyond what is obtained from genomic and/or transcriptomic data. Translating proteomic changes in polyploids to differences in morphology and physiology remains the holy grail of polyploidy--this daunting task of linking genotype to proteome to phenotype should emerge as a focus of polyploidy research in the next decade. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26993527

  20. Comparison of Milk Fat Globule Membrane (MFGM) Proteins of Chianina and Holstein Cattle Breed Milk Samples Through Proteomics Methods

    PubMed Central

    Murgiano, Leonardo; Timperio, Anna Maria; Zolla, Lello; Bongiorni, Silvia; Valentini, Alessio; Pariset, Lorraine

    2009-01-01

    Identification of proteins involved in milk production is important to understand the biology of lactation. Many studies have advanced the understanding of mammary function and milk secretion, but the critical molecular mechanisms implicated in milk fat secretion is still incomplete. Milk Fat Globules are secreted from the apical surface of the mammary cells, surrounded by a thin membrane bilayer, the Milk Fat Globule Membrane (MFGM), formed by proteins which have been suggested to be cholesterolemia-lowering factors, inhibitors of cancer cell growth, vitamin binders, bactericidal, suppressors of multiple sclerosis. Using a proteomic approach, we compared MFGM from milk samples of individuals belonging to two different cattle breeds, Chianina and Holstein, representative of selection for milk and meat traits, respectively. We were able to isolate some of the major MFGM proteins in the examined samples and to identify differences between the protein fractions of the two breeds. We detected differences in the amount of proteins linked to mammary gland development and lipid droplets formation, as well as host defence mechanisms. We have shown that proteomics is a suitable, unbiased method for the study of milk fractions proteins and a powerful tool in nutritional genomics. PMID:22253986

  1. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    PubMed Central

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean. PMID:27200004

  2. The Kidney Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Kampf, Caroline; Edlund, Karolina; Sivertsson, Åsa; Yamamoto, Tadashi; Pontén, Fredrik; Uhlén, Mathias; Odeberg, Jacob

    2014-01-01

    To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n = 11), proximal tubules (n = 120), distal tubules (n = 9) or collecting ducts (n = 8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease. PMID:25551756

  3. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles.

    PubMed

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T; Isidra-Arellano, Mariel C; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K; Weitz, Karl K; Aldrich, Joshua T; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean. PMID:27200004

  4. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line.

    PubMed

    Baldridge, Gerald D; Baldridge, Abigail S; Witthuhn, Bruce A; Higgins, LeeAnn; Markowski, Todd W; Fallon, Ann M

    2014-11-01

    Wolbachia pipientis, a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein 'footprint' dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulphurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation. PMID:25155417

  5. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line

    PubMed Central

    Baldridge, Gerald D; Baldridge, Abigail S; Witthuhn, Bruce A; Higgins, LeeAnn; Markowski, Todd W; Fallon, Ann M

    2014-01-01

    Wolbachia pipientis a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein “footprint” dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulfurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation. PMID:25155417

  6. The kidney transcriptome and proteome defined by transcriptomics and antibody-based profiling.

    PubMed

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M; Kampf, Caroline; Edlund, Karolina; Sivertsson, Åsa; Yamamoto, Tadashi; Pontén, Fredrik; Uhlén, Mathias; Odeberg, Jacob

    2014-01-01

    To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n = 11), proximal tubules (n = 120), distal tubules (n = 9) or collecting ducts (n = 8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease. PMID:25551756

  7. Proteomic profiling of ATM kinase proficient and deficient cell lines upon blockage of proteasome activity☆

    PubMed Central

    Marzano, Valeria; Santini, Simonetta; Rossi, Claudia; Zucchelli, Mirco; D'Alessandro, Annamaria; Marchetti, Carlo; Mingardi, Michele; Stagni, Venturina; Barilà, Daniela; Urbani, Andrea

    2012-01-01

    Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics. PMID:22641158

  8. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  9. Characterization of Functional Reprogramming during Osteoclast Development Using Quantitative Proteomics and mRNA Profiling*

    PubMed Central

    An, Eunkyung; Narayanan, Manikandan; Manes, Nathan P.; Nita-Lazar, Aleksandra

    2014-01-01

    In addition to forming macrophages and dendritic cells, monocytes in adult peripheral blood retain the ability to develop into osteoclasts, mature bone-resorbing cells. The extensive morphological and functional transformations that occur during osteoclast differentiation require substantial reprogramming of gene and protein expression. Here we employ -omic-scale technologies to examine in detail the molecular changes at discrete developmental stages in this process (precursor cells, intermediate osteoclasts, and multinuclear osteoclasts), quantitatively comparing their transcriptomes and proteomes. The data have been deposited to the ProteomeXchange with identifier PXD000471. Our analysis identified mitochondrial changes, along with several alterations in signaling pathways, as central to the development of mature osteoclasts, while also confirming changes in pathways previously implicated in osteoclast biology. In particular, changes in the expression of proteins involved in metabolism and redirection of energy flow from basic cellular function toward bone resorption appeared to play a key role in the switch from monocytic immune system function to specialized bone-turnover function. These findings provide new insight into the differentiation program involved in the generation of functional osteoclasts. PMID:25044017

  10. Special Enrichment Strategies Greatly Increase the Efficiency of Missing Proteins Identification from Regular Proteome Samples.

    PubMed

    Su, Na; Zhang, Chengpu; Zhang, Yao; Wang, Zhiqiang; Fan, Fengxu; Zhao, Mingzhi; Wu, Feilin; Gao, Yuan; Li, Yanchang; Chen, Lingsheng; Tian, Miaomiao; Zhang, Tao; Wen, Bo; Sensang, Na; Xiong, Zhi; Wu, Songfeng; Liu, Siqi; Yang, Pengyuan; Zhen, Bei; Zhu, Yunping; He, Fuchu; Xu, Ping

    2015-09-01

    As part of the Chromosome-Centric Human Proteome Project (C-HPP) mission, laboratories all over the world have tried to map the entire missing proteins (MPs) since 2012. On the basis of the first and second Chinese Chromosome Proteome Database (CCPD 1.0 and 2.0) studies, we developed systematic enrichment strategies to identify MPs that fell into four classes: (1) low molecular weight (LMW) proteins, (2) membrane proteins, (3) proteins that contained various post-translational modifications (PTMs), and (4) nucleic acid-associated proteins. Of 8845 proteins identified in 7 data sets, 79 proteins were classified as MPs. Among data sets derived from different enrichment strategies, data sets for LMW and PTM yielded the most novel MPs. In addition, we found that some MPs were identified in multiple-data sets, which implied that tandem enrichments methods might improve the ability to identify MPs. Moreover, low expression at the transcription level was the major cause of the "missing" of these MPs; however, MPs with higher expression level also evaded identification, most likely due to other characteristics such as LMW, high hydrophobicity and PTM. By combining a stringent manual check of the MS2 spectra with peptides synthesis verification, we confirmed 30 MPs (neXtProt PE2 ∼ PE4) and 6 potential MPs (neXtProt PE5) with authentic MS evidence. By integrating our large-scale data sets of CCPD 2.0, the number of identified proteins has increased considerably beyond simulation saturation. Here, we show that special enrichment strategies can break through the data saturation bottleneck, which could increase the efficiency of MP identification in future C-HPP studies. All 7 data sets have been uploaded to ProteomeXchange with the identifier PXD002255. PMID:26144840

  11. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE

    PubMed Central

    Choudhary, Mani K.; Nomura, Yuko; Shi, Hua; Nakagami, Hirofumi; Somers, David E.

    2016-01-01

    Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism. PMID:27462335

  12. Changes in amniotic fluid and umbilical cord serum proteomic profiles of foetuses with intrauterine growth retardation.

    PubMed

    Cecconi, Daniela; Lonardoni, Francesco; Favretto, Donata; Cosmi, Erich; Tucci, Marianna; Visentin, Silvia; Cecchetto, Giovanni; Fais, Paolo; Viel, Guido; Ferrara, Santo Davide

    2011-12-01

    Foetal growth is a result of a complex net of processes, requiring coordination within the maternal, placental, and foetal compartments, the imbalance or lack of which may lead to intrauterine growth restriction (IUGR). IUGR is the major cause of perinatal morbidity and mortality, and is also related to enhanced morbidity and metabolic abnormalities later in life. In the present study, the protein profiles of umbilical cord serum (UCS) and amniotic fluid (AF) of ten IUGR and ten appropriate for gestational age newborns have been analysed by 2-DE, and nanoHPLC-Chip/MS technology. A total of 18 and 13 spots were found to be differentially expressed (p<0.01) in UCS and AF respectively. The unique differentially expressed proteins identified by MS/MS analysis were 14 in UCS, and 11 in AF samples. Protein gene ontology classification indicate that 21% of proteins are involved in inflammatory response, 20% in immune response, while a smaller proportion are related to transport, blood pressure, and coagulation. These results support the conclusion that the IUGR condition alters the expression of proteins involved in the coagulation process, immune mechanisms, blood pressure and iron and copper homeostasis control, offering a new insight into IUGR pathogenesis. PMID:22180211

  13. The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Pontén, Fredrik; Yamamoto, Tadashi; Uhlen, Mathias

    2015-01-01

    To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder. PMID:26694548

  14. Identification of Analytical Factors Affecting Complex Proteomics Profiles Acquired in a Factorial Design Study with Analysis of Variance: Simultaneous Component Analysis.

    PubMed

    Mitra, Vikram; Govorukhina, Natalia; Zwanenburg, Gooitzen; Hoefsloot, Huub; Westra, Inge; Smilde, Age; Reijmers, Theo; van der Zee, Ate G J; Suits, Frank; Bischoff, Rainer; Horvatovich, Péter

    2016-04-19

    Complex shotgun proteomics peptide profiles obtained in quantitative differential protein expression studies, such as in biomarker discovery, may be affected by multiple experimental factors. These preanalytical factors may affect the measured protein abundances which in turn influence the outcome of the associated statistical analysis and validation. It is therefore important to determine which factors influence the abundance of peptides in a complex proteomics experiment and to identify those peptides that are most influenced by these factors. In the current study we analyzed depleted human serum samples to evaluate experimental factors that may influence the resulting peptide profile such as the residence time in the autosampler at 4 °C, stopping or not stopping the trypsin digestion with acid, the type of blood collection tube, different hemolysis levels, differences in clotting times, the number of freeze-thaw cycles, and different trypsin/protein ratios. To this end we used a two-level fractional factorial design of resolution IV (2(IV)(7-3)). The design required analysis of 16 samples in which the main effects were not confounded by two-factor interactions. Data preprocessing using the Threshold Avoiding Proteomics Pipeline (Suits, F.; Hoekman, B.; Rosenling, T.; Bischoff, R.; Horvatovich, P. Anal. Chem. 2011, 83, 7786-7794, ref 1) produced a data-matrix containing quantitative information on 2,559 peaks. The intensity of the peaks was log-transformed, and peaks having intensities of a low t-test significance (p-value > 0.05) and a low absolute fold ratio (<2) between the two levels of each factor were removed. The remaining peaks were subjected to analysis of variance (ANOVA)-simultaneous component analysis (ASCA). Permutation tests were used to identify which of the preanalytical factors influenced the abundance of the measured peptides most significantly. The most important preanalytical factors affecting peptide intensity were (1) the hemolysis level

  15. Automated Sample Preparation Platform for Mass Spectrometry-Based Plasma Proteomics and Biomarker Discovery

    PubMed Central

    Guryča, Vilém; Roeder, Daniel; Piraino, Paolo; Lamerz, Jens; Ducret, Axel; Langen, Hanno; Cutler, Paul

    2014-01-01

    The identification of novel biomarkers from human plasma remains a critical need in order to develop and monitor drug therapies for nearly all disease areas. The discovery of novel plasma biomarkers is, however, significantly hampered by the complexity and dynamic range of proteins within plasma, as well as the inherent variability in composition from patient to patient. In addition, it is widely accepted that most soluble plasma biomarkers for diseases such as cancer will be represented by tissue leakage products, circulating in plasma at low levels. It is therefore necessary to find approaches with the prerequisite level of sensitivity in such a complex biological matrix. Strategies for fractionating the plasma proteome have been suggested, but improvements in sensitivity are often negated by the resultant process variability. Here we describe an approach using multidimensional chromatography and on-line protein derivatization, which allows for higher sensitivity, whilst minimizing the process variability. In order to evaluate this automated process fully, we demonstrate three levels of processing and compare sensitivity, throughput and reproducibility. We demonstrate that high sensitivity analysis of the human plasma proteome is possible down to the low ng/mL or even high pg/mL level with a high degree of technical reproducibility. PMID:24833342

  16. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues.

    PubMed

    Saravanan, Ramu S; Rose, Jocelyn K C

    2004-09-01

    Most published proteomics studies of bulk plant tissues use a procedure in which proteins are precipitated with trichloroacetic acid (TCA) and acetone (TCA-A), but few attempts have been made to contrast this approach in a systematic way with alternative methods against a spectrum of tissues. To address this, TCA-A was compared with another acetone-based protocol (TCA-B) or a phenol (Phe)-based method, targeting a range of tomato tissues and three species of fruits that contain high levels of contaminating compounds: banana, avocado and orange. The Phe method gave a higher protein yield and typically greater resolution and spot intensity, particularly with extracts from tissues containing high levels of soluble polysaccharides. The methods also generated remarkably different two-dimensional gel electrophoresis (2-DE) protein spot patterns. Peptide mass fingerprinting was used to identify polypeptides that were common to multiple extracts or uniquely present in one extract type. While no clear pattern emerged to explain the basis for the differential protein extraction, it was noted that the Phe method showed enhanced extraction of glycoproteins. These results suggest that the Phe protocol is highly effective with more recalcitrant tissues and that a combination of TCA-A and Phe methods provides enhanced 2-DE based proteomic analyses of most plant tissues. PMID:15352226

  17. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomics studies

    PubMed Central

    Zhang, Ying; Bottinelli, Dario; Lisacek, Frédérique; Luban, Jeremy; De Castillia, Caterina Strambio; Varesio, Emmanuel; Hopfgartner, Gérard

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize mass spectrometry coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilisation and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA buffer, was shown to be the method of choice based on total protein extraction and on the solubilisation and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than by 10% TCA/acetone, allowing greater than 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone-wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate in the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6-11% more distinct peptides and 14-19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone with the greatest increase (34%) for hydrophobic proteins. PMID:25983236

  18. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomic studies.

    PubMed

    Zhang, Ying; Bottinelli, Dario; Lisacek, Frédérique; Luban, Jeremy; Strambio-De-Castillia, Caterina; Varesio, Emmanuel; Hopfgartner, Gérard

    2015-09-01

    Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry (MS)-based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize MS coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilization and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA (radioimmunoprecipitation assay) buffer, was shown to be the method of choice based on total protein extraction and on the solubilization and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than that by 10% trichloroacetic acid (TCA)/acetone, allowing in excess of 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate into the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6 to 11% more distinct peptides and 14 to 19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone, with the greatest increase (34%) for hydrophobic proteins. PMID:25983236

  19. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids

    DOE PAGESBeta

    Wu, Chaochao; Duan, Jicheng; Liu, Tao; Smith, Richard D.; Qian, Wei -Jun

    2016-01-12

    Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methodsmore » are also discussed.« less

  20. A chemical proteomics approach for global analysis of lysine monomethylome profiling.

    PubMed

    Wu, Zhixiang; Cheng, Zhongyi; Sun, Mingwei; Wan, Xuelian; Liu, Ping; He, Tieming; Tan, Minjia; Zhao, Yingming

    2015-02-01

    Methylation of lysine residues on histone proteins is known to play an important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. An effective approach for system-wide analysis of protein lysine methylation, particularly lysine monomethylation, is lacking. Here we describe a chemical proteomics approach for global screening for monomethyllysine substrates, involving chemical propionylation of monomethylated lysine, affinity enrichment of the modified monomethylated peptides, and HPLC/MS/MS analysis. Using this approach, we identified with high confidence 446 lysine monomethylation sites in 398 proteins, including three previously unknown histone monomethylation marks, representing the largest data set of protein lysine monomethylation described to date. Our data not only confirms previously discovered lysine methylation substrates in the nucleus and spliceosome, but also reveals new substrates associated with diverse biological processes. This method hence offers a powerful approach for dynamic study of protein lysine monomethylation under diverse cellular conditions and in human diseases. PMID:25505155

  1. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma.

    PubMed

    Dheilly, Nolwenn M; Haynes, Paul A; Raftos, David A; Nair, Sham V

    2012-06-01

    Genome sequences and high diversity cDNA arrays have provided a detailed molecular understanding of immune responses in a number of invertebrates, including sea urchins. However, complementary analyses have not been undertaken at the level of proteins. Here, we use shotgun proteomics to describe changes in the abundance of proteins from coelomocytes of sea urchins after immunological challenge and wounding. The relative abundance of 345 reproducibly identified proteins were measured 6, 24 and 48 h after injection. Significant changes in the relative abundance of 188 proteins were detected. These included pathogen-binding proteins, such as the complement component C3 and scavenger receptor cysteine rich proteins, as well as proteins responsible for cytoskeletal remodeling, endocytosis and intracellular signaling. An initial systemic reaction to wounding was followed by a more specific response to immunological challenge involving proteins such as apolipophorin, dual oxidase, fibrocystin L, aminopeptidase N and α-2-macroglobulin. PMID:22446733

  2. Proteomic profiles of mouse neuro N2a cells infected with variant virulence of rabies viruses.

    PubMed

    Wang, Xiaohu; Zhang, Shoufeng; Sun, Chenglong; Yuan, Zi-Guo; Wu, Xianfu; Wang, Dongxia; Ding, Zhuang; Hu, Rongliang

    2011-04-01

    We characterized the proteomes of murine N2a cells following infection with three rabies virus (RV) strains, characterized by distinct virulence phenotypes (i.e., virulent BD06, fixed CVS-11, and attenuated SRV9 strains), and identified 35 changes to protein expression using two-dimensional gel electrophoresis in whole-cell lysates. The annotated functions of these proteins are involved in various cytoskeletal, signal transduction, stress response, and metabolic processes. Specifically, a-enolase, prx-4, vimentin, cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and prx-6 were significantly up-regulated, whereas Trx like-1 and galectin-1 were down-regulated following infection of N2a cells with all three rabies virus strains. However, comparing expressions of all 35 proteins affected between BD06-, CVS-11-, and SRV9-infected cells, specific changes in expression were also observed. The up-regulation of vimentin, CIAPIN1, prx-4, and 14-3-3 theta/delta, and downregulation of NDPK-B and HSP-1 with CVS and SRV9 infection were ≥ 2 times greater than with BD06. Meanwhile, Zfp12 protein, splicing factor, and arginine/serine-rich 1 were unaltered in the cells infected with BD06 and CVS- 11, but were up-regulated in the group infected with SRV9. The proteomic alterations described here may suggest that these changes to protein expression correlate with the rabies virus' adaptability and virulence in N2a cells, and hence provides new clues as to the response of N2a host cells to rabies virus infections, and may also aid in uncovering new pathways in these cells that are involved in rabies infections. Further characterization of the functions of the affected proteins may contribute to our understanding of the mechanisms of RV infection and pathogenesis. PMID:21532319

  3. Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors.

    PubMed

    Bhargava, Maneesh; Becker, Trisha L; Viken, Kevin J; Jagtap, Pratik D; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Kumar, Vipin; Bitterman, Peter B; Ingbar, David H; Wendt, Christine H

    2014-01-01

    Acute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF) proteome to identify proteins that differentiate survivors from non-survivors of ARDS. Patients were divided into early-phase (1 to 7 days) and late-phase (8 to 35 days) groups based on time after initiation of mechanical ventilation for ARDS (Day 1). Isobaric tags for absolute and relative quantitation (iTRAQ) with LC MS/MS was performed on pooled BALF enriched for medium and low abundance proteins from early-phase survivors (n = 7), early-phase non-survivors (n = 8), and late-phase survivors (n = 7). Of the 724 proteins identified at a global false discovery rate of 1%, quantitative information was available for 499. In early-phase ARDS, proteins more abundant in survivors mapped to ontologies indicating a coordinated compensatory response to injury and stress. These included coagulation and fibrinolysis; immune system activation; and cation and iron homeostasis. Proteins more abundant in early-phase non-survivors participate in carbohydrate catabolism and collagen synthesis, with no activation of compensatory responses. The compensatory immune activation and ion homeostatic response seen in early-phase survivors transitioned to cell migration and actin filament based processes in late-phase survivors, revealing dynamic changes in the BALF proteome as the lung heals. Early phase proteins differentiating survivors from non-survivors are candidate biomarkers for predicting survival in ARDS. PMID:25290099

  4. Proteomic Profiling of SupT1 Cells Reveal Modulation of Host Proteins by HIV-1 Nef Variants

    PubMed Central

    Saxena, Reshu; Gupta, Sudipti; Singh, Kavita; Mitra, Kalyan; Tripathi, Anil Kumar; Tripathi, Raj Kamal

    2015-01-01

    Nef is an accessory viral protein that promotes HIV-1 replication, facilitating alterations in cellular pathways via multiple protein-protein interactions. The advent of proteomics has expanded the focus on better identification of novel molecular pathways regulating disease progression. In this study, nef was sequenced from randomly selected patients, however, sequence variability identified did not elicited any specific mutation that could have segregated HIV-1 patients in different stages of disease progression. To explore the difference in Nef functionality based on sequence variability we used proteomics approach. Proteomic profiling was done to compare the effect of Nef variants in host cell protein expression. 2DGE in control and Nef transfected SupT1 cells demonstrated several differentially expressed proteins. Fourteen protein spots were detected with more than 1.5 fold difference. Significant down regulation was seen in six unique protein spots in the Nef treated cells. Proteins were identified as Cyclophilin A, EIF5A-1 isoform B, Rho GDI 1 isoform a, VDAC1, OTUB1 and α-enolase isoform 1 (ENO1) through LC-MS/MS. The differential expression of the 6 proteins was analyzed by Real time PCR, Western blotting and Immunofluorescence studies with two Nef variants (RP14 and RP01) in SupT1 cells. There was contrasting difference between the effect of these Nef variants upon the expression of these six proteins. Downregulation of α-enolase (ENO1), VDAC1 and OTUB1 was more significant by Nef RP01 whereas Cyclophilin A and RhoGDI were found to be more downregulated by Nef RP14. This difference in Nef variants upon host protein expression was also studied through a site directed mutant of Nef RP01 (55AAAAAAA61) and the effect was found to be reversed. Deciphering the role of these proteins mediated by Nef variants will open a new avenue of research in understanding Nef mediated pathogenesis. Overall study determines modulation of cellular protein expression in T

  5. Top-Down Proteomics and Direct Surface Sampling of Neonatal Dried Blood Spots: Diagnosis of Unknown Hemoglobin Variants

    NASA Astrophysics Data System (ADS)

    Edwards, Rebecca L.; Griffiths, Paul; Bunch, Josephine; Cooper, Helen J.

    2012-11-01

    We have previously shown that liquid microjunction surface sampling of dried blood spots coupled with high resolution top-down mass spectrometry may be used for screening of common hemoglobin variants HbS, HbC, and HbD. In order to test the robustness of the approach, we have applied the approach to unknown hemoglobin variants. Six neonatal dried blood spot samples that had been identified as variants, but which could not be diagnosed by current screening methods, were analyzed by direct surface sampling top-down mass spectrometry. Both collision-induced dissociation and electron transfer dissociation mass spectrometry were employed. Four of the samples were identified as β-chain variants: two were heterozygous Hb D-Iran, one was heterozygous Hb Headington, and one was heterozygous Hb J-Baltimore. The fifth sample was identified as the α-chain variant heterozygous Hb Phnom Penh. Analysis of the sixth sample suggested that it did not in fact contain a variant. Adoption of the approach in the clinic would require speed in both data collection and interpretation. To address that issue, we have compared manual data analysis with freely available data analysis software (ProsightPTM). The results demonstrate the power of top-down proteomics for hemoglobin variant analysis in newborn samples.

  6. Brugia malayi Excreted/Secreted Proteins at the Host/Parasite Interface: Stage- and Gender-Specific Proteomic Profiling

    PubMed Central

    Bennuru, Sasisekhar; Semnani, Roshanak; Meng, Zhaojing; Ribeiro, Jose M. C.; Veenstra, Timothy D.; Nutman, Thomas B.

    2009-01-01

    Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES) products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf), L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs) in the available databases. Moreover, this analysis was able to confirm the presence of 274 “hypothetical” proteins inferred from gene prediction algorithms applied to the B. malayi (Bm) genome. Not surprisingly, the majority (160/274) of these “hypothetical” proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase), MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females) compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host–parasite interaction. PMID:19352421

  7. Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC-MS/MS

    PubMed Central

    Tchapyjnikov, Dmitry; Li, Yuedan; Pisitkun, Trairak; Hoffert, Jason D.; Yu, Ming-Jiun

    2010-01-01

    Vasopressin is a peptide hormone that regulates renal water excretion in part through its actions on the collecting duct. The regulation occurs in part via control of transcription of genes coding for the water channels aquaporin-2 (Aqp2) and aquaporin-3 (Aqp3). To identify transcription factors expressed in collecting duct cells, we have carried out LC-MS/MS-based proteomic profiling of nuclei isolated from native rat inner medullary collecting ducts (IMCDs). To maximize the number of proteins identified, we matched spectra to rat amino acid sequences using three different search algorithms (SEQUEST, InsPecT, and OMSSA). All searches were coupled to target-decoy methodology to limit false-discovery identifications to 2% of the total for single-peptide identifications. In addition, we developed a computational tool (ProMatch) to identify and eliminate ambiguous identifications. With this approach, we identified >3,500 proteins, including 154 proteins classified as “transcription factor” proteins (Panther Classification System). Among these, are members of CREB, ETS, RXR, NFAT, HOX, GATA, EBOX, EGR, MYT1, KLF, and CP2 families, which were found to have evolutionarily conserved putative binding sites in the 5′-flanking region or first intron of the Aqp2 gene, as well as members of EBOX, NR2, GRE, MAZ, KLF, and SP1 families corresponding to conserved sites in the 5′-flanking region of the Aqp3 gene. In addition, several novel phosphorylation sites in nuclear proteins were identified using the neutral loss-scanning LC-MS3 technique. The newly identified proteins have been incorporated into the IMCD Proteome Database (http://dir.nhlbi.nih.gov/papers/lkem/imcd/). PMID:19996160

  8. Chronic Morphine Alters the Presynaptic Protein Profile: Identification of Novel Molecular Targets Using Proteomics and Network Analysis

    PubMed Central

    Abul-Husn, Noura S.; Annangudi, Suresh P.; Ma'ayan, Avi; Ramos-Ortolaza, Dinah L.; Stockton, Steven D.; Gomes, Ivone; Sweedler, Jonathan V.; Devi, Lakshmi A.

    2011-01-01

    Opiates produce significant and persistent changes in synaptic transmission; knowledge of the proteins involved in these changes may help to understand the molecular mechanisms underlying opiate dependence. Using an integrated quantitative proteomics and systems biology approach, we explored changes in the presynaptic protein profile following a paradigm of chronic morphine administration that leads to the development of dependence. For this, we isolated presynaptic fractions from the striata of rats treated with saline or escalating doses of morphine, and analyzed the proteins in these fractions using differential isotopic labeling. We identified 30 proteins that were significantly altered by morphine and integrated them into a protein-protein interaction (PPI) network representing potential morphine-regulated protein complexes. Graph theory-based analysis of this network revealed clusters of densely connected and functionally related morphine-regulated clusters of proteins. One of the clusters contained molecular chaperones thought to be involved in regulation of neurotransmission. Within this cluster, cysteine-string protein (CSP) and the heat shock protein Hsc70 were downregulated by morphine. Interestingly, Hsp90, a heat shock protein that normally interacts with CSP and Hsc70, was upregulated by morphine. Moreover, treatment with the selective Hsp90 inhibitor, geldanamycin, decreased the somatic signs of naloxone-precipitated morphine withdrawal, suggesting that Hsp90 upregulation at the presynapse plays a role in the expression of morphine dependence. Thus, integration of proteomics, network analysis, and behavioral studies has provided a greater understanding of morphine-induced alterations in synaptic composition, and identified a potential novel therapeutic target for opiate dependence. PMID:22043286

  9. Proteomic profile of hemolymph and detection of induced antimicrobial peptides in response to microbial challenge in Diatraea saccharalis (Lepidoptera: Crambidae).

    PubMed

    Rocha, Iara Fernanda; Maller, Alexandre; de Cássia Garcia Simão, Rita; Kadowaki, Marina Kimiko; Angeli Alves, Luis Francisco; Huergo, Luciano Fernandes; da Conceição Silva, José Luis

    2016-04-29

    Insects are organisms extremely well adapted to diverse habitats, primarily due to their innate immune system, which provides them with a range of cellular and humoral responses against microorganisms. Lepidoptera hemolymph proteins involved in humoral responses are well known; however, there is a lack of knowledge about the sugarcane borer Diatraea saccharalis. In this present work, the hemolymph proteins of this pest insect were studied by applying proteomic methodologies. Two-dimensional electrophoresis (2-DE) gels of proteins extracted from naive larvae and larvae challenged with Escherichia coli (ATCC 11224) and Bacillus subtilis (ATCC 6623) showed an average of 300 spots, and 92 of these spots corresponded in all three 2-DE gels. Forty-one spots were excised and digested with trypsin and analyzed using mass spectrometry. After analysis, 10 proteins were identified, including some proteins of the immune system: β-defensin-like protein, Turandot A-like protein, attacin-like protein, peptidoglycan recognition protein and cyclophilin-like protein. Nine proteins were present in both experimental conditions; however, β-defensin-like protein was present only in hemolymph challenged by B. subtilis. Notably, attacin-like protein was strongly induced by challenge with E. coli, suggesting an immune response against the infection. However, antimicrobial activity was observed in the test zone of microbial growth inhibition of B. subtilis solely with the hemolymph extract of the larvae challenged with B. subtilis. We made for the first time a proteomic profile of the hemolymph of D. saccharalis in which it was possible to identify the presence of important proteins involved in the immune response. PMID:27012208

  10. N-terminal Proteomics and Ribosome Profiling Provide a Comprehensive View of the Alternative Translation Initiation Landscape in Mice and Men*

    PubMed Central

    Van Damme, Petra; Gawron, Daria; Van Criekinge, Wim; Menschaert, Gerben

    2014-01-01

    Usage of presumed 5′UTR or downstream in-frame AUG codons, next to non-AUG codons as translation start codons contributes to the diversity of a proteome as protein isoforms harboring different N-terminal extensions or truncations can serve different functions. Recent ribosome profiling data revealed a highly underestimated occurrence of database nonannotated, and thus alternative translation initiation sites (aTIS), at the mRNA level. N-terminomics data in addition showed that in higher eukaryotes around 20% of all identified protein N termini point to such aTIS, to incorrect assignments of the translation start codon, translation initiation at near-cognate start codons, or to alternative splicing. We here report on more than 1700 unique alternative protein N termini identified at the proteome level in human and murine cellular proteomes. Customized databases, created using the translation initiation mapping obtained from ribosome profiling data, additionally demonstrate the use of initiator methionine decoded near-cognate start codons besides the existence of N-terminal extended protein variants at the level of the proteome. Various newly identified aTIS were confirmed by mutagenesis, and meta-analyses demonstrated that aTIS reside in strong Kozak-like motifs and are conserved among eukaryotes, hinting to a possible biological impact. Finally, TargetP analysis predicted that the usage of aTIS often results in altered subcellular localization patterns, providing a mechanism for functional diversification. PMID:24623590

  11. Quantitative proteome profiling of dystrophic dog skeletal muscle reveals a stabilized muscular architecture and protection against oxidative stress after systemic delivery of MuStem cells.

    PubMed

    Lardenois, Aurélie; Jagot, Sabrina; Lagarrigue, Mélanie; Guével, Blandine; Ledevin, Mireille; Larcher, Thibaut; Dubreil, Laurence; Pineau, Charles; Rouger, Karl; Guével, Laëtitia

    2016-07-01

    Proteomic profiling plays a decisive role in the elucidation of molecular signatures representative of a specific clinical context. MuStem cell based therapy represents a promising approach for clinical applications to cure Duchenne muscular dystrophy (DMD). To expand our previous studies collected in the clinically relevant DMD animal model, we decided to investigate the skeletal muscle proteome 4 months after systemic delivery of allogenic MuStem cells. Quantitative proteomics with isotope-coded protein labeling was used to compile quantitative changes in the protein expression profiles of muscle in transplanted Golden Retriever muscular dystrophy (GRMD) dogs as compared to Golden Retriever muscular dystrophy dogs. A total of 492 proteins were quantified, including 25 that were overrepresented and 46 that were underrepresented after MuStem cell transplantation. Interestingly, this study demonstrates that somatic stem cell therapy impacts on the structural integrity of the muscle fascicle by acting on fibers and its connections with the extracellular matrix. We also show that cell infusion promotes protective mechanisms against oxidative stress and favors the initial phase of muscle repair. This study allows us to identify putative candidates for tissue markers that might be of great value in objectively exploring the clinical benefits resulting from our cell-based therapy for DMD. All MS data have been deposited in the ProteomeXchange with identifier PXD001768 (http://proteomecentral.proteomexchange.org/dataset/PXD001768). PMID:27246553

  12. Analysis of Proteome Profile in Germinating Soybean Seed, and Its Comparison with Rice Showing the Styles of Reserves Mobilization in Different Crops

    PubMed Central

    Han, Chao; Yin, Xiaojian; He, Dongli; Yang, Pingfang

    2013-01-01

    Background Seed germination is a complex physiological process during which mobilization of nutrient reserves happens. In different crops, this event might be mediated by different regulatory and metabolic pathways. Proteome profiling has been proved to be an efficient way that can help us to construct these pathways. However, no such studies have been performed in soybean germinating seeds up to date. Results Proteome profiling was conducted through one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy in the germinating seeds of soybean (glycine max). Comprehensive comparisons were also carried out between rice and soybean germinating seeds. 764 proteins belonging to 14 functional groups were identified and metabolism related proteins were the largest group. Deep analyses of the proteins and pathways showed that lipids were degraded through lipoxygenase dependent pathway and proteins were degraded through both protease and 26S proteosome system, and the lipoxygenase could also help to remove the reactive oxygen species during the rapid mobilization of reserves of soybean germinating seeds. The differences between rice and soybean germinating seeds proteome profiles indicate that each crop species has distinct mechanism for reserves mobilization during germination. Different reserves could be converted into starches before they are totally utilized during the germination in different crops seeds. Conclusions This study is the first comprehensive analysis of proteome profile in germinating soybean seeds to date. The data presented in this paper will improve our understanding of the physiological and biochemical status in the imbibed soybean seeds just prior to germination. Comparison of the protein profile with that of germinating rice seeds gives us new insights on mobilization of nutrient reserves during the germination of crops seeds. PMID:23460823

  13. Identification of animal glue species in artworks using proteomics: application to a 18th century gilt sample.

    PubMed

    Dallongeville, Sophie; Koperska, Monika; Garnier, Nicolas; Reille-Taillefert, Geneviève; Rolando, Christian; Tokarski, Caroline

    2011-12-15

    This study proposes a proteomic-based strategy for the identification of the origin species of glues used as binding media and adhesives in artworks. The methodology, based on FTICR high resolution mass spectrometry, was evaluated on glues from different animal origin (i.e., bovine, rabbit, and fish). The analysis of the peptide mixture resulting from the enzymatic hydrolysis of the proteins led to the identification of species-specific peptides. Up to 15 specific peptides were identified for the bovine species and three for the rabbit species and, in the case of sturgeon glue, three fish-specific peptides were found by sequence homology to the rainbow trout. Then, the method was applied to authenticate different rabbit skin glue samples, including a 100 year-old sample named "Colle à Doreurs" coming from the "Maison Totin-Frères". For this sample, two specific peptides of rabbit collagen were identified. To evaluate the method in a complex matrix, model paints composed of lead white, linseed oil, and animal glue were prepared. Species-specific peptides were identified in each paint sample. Finally, a gilt sample from St Maximin church dating from the eighteenth century was analyzed, and 13 peptides specific to bovine collagens were identified starting from very low sample amount (50 μg). PMID:22014085

  14. Global proteomic profiling in multistep hepatocarcinogenesis and identification of PARP1 as a novel molecular marker in hepatocellular carcinoma.

    PubMed

    Xu, Xiao; Liu, Zhikun; Wang, Jianguo; Xie, Haiyang; Li, Jie; Cao, Jili; Zhou, Lin; Zheng, Shusen

    2016-03-22

    The more accurate biomarkers have long been desired for hepatocellular carcinoma (HCC). Here, we characterized global large-scale proteomics of multistep hepatocarcinogenesis in an attempt to identify novel biomarkers for HCC. Quantitative data of 37874 sequences and 3017 proteins during hepatocarcinogenesis were obtained in cohort 1 of 75 samples (5 pooled groups: normal livers, hepatitis livers, cirrhotic livers, peritumoral livers, and HCC tissues) by iTRAQ 2D LC-MS/MS. The diagnostic performance of the top six most upregulated proteins in HCC group and HSP70 as reference were subsequently validated in cohort 2 of 114 samples (hepatocarcinogenesis from normal livers to HCC) using immunohistochemistry. Of seven candidate protein markers, PARP1, GS and NDRG1 showed the optimal diagnostic performance for HCC. PARP1, as a novel marker, showed comparable diagnostic performance to that of classic markers GS and NDRG1 in HCC (AUCs = 0.872, 0.856 and 0.792, respectively). A significant higher AUC of 0.945 was achieved when three markers combined. For diagnosis of HCC, the sensitivity and specificity were 88.2% and 81.0% when at least two of the markers were positive. Similar diagnostic values of PARP1, GS and NDRG1 were confirmed by immunohistochemistry in cohort 3 of 180 HCC patients. Further analysis indicated that PARP1 and NDRG1 were associated with some clinicopathological features, and the independent prognostic factors for HCC patients. Overall, global large-scale proteomics on spectrum of multistep hepatocarcinogenesis are obtained. PARP1 is a novel promising diagnostic/prognostic marker for HCC, and the three-marker panel (PARP1, GS and NDRG1) with excellent diagnostic performance for HCC was established. PMID:26883192

  15. Global proteomic profiling in multistep hepatocarcinogenesis and identification of PARP1 as a novel molecular marker in hepatocellular carcinoma

    PubMed Central

    Wang, Jianguo; Xie, Haiyang; Li, Jie; Cao, Jili; Zhou, Lin; Zheng, Shusen

    2016-01-01

    The more accurate biomarkers have long been desired for hepatocellular carcinoma (HCC). Here, we characterized global large-scale proteomics of multistep hepatocarcinogenesis in an attempt to identify novel biomarkers for HCC. Quantitative data of 37874 sequences and 3017 proteins during hepatocarcinogenesis were obtained in cohort 1 of 75 samples (5 pooled groups: normal livers, hepatitis livers, cirrhotic livers, peritumoral livers, and HCC tissues) by iTRAQ 2D LC-MS/MS. The diagnostic performance of the top six most upregulated proteins in HCC group and HSP70 as reference were subsequently validated in cohort 2 of 114 samples (hepatocarcinogenesis from normal livers to HCC) using immunohistochemistry. Of seven candidate protein markers, PARP1, GS and NDRG1 showed the optimal diagnostic performance for HCC. PARP1, as a novel marker, showed comparable diagnostic performance to that of classic markers GS and NDRG1 in HCC (AUCs = 0.872, 0.856 and 0.792, respectively). A significant higher AUC of 0.945 was achieved when three markers combined. For diagnosis of HCC, the sensitivity and specificity were 88.2% and 81.0% when at least two of the markers were positive. Similar diagnostic values of PARP1, GS and NDRG1 were confirmed by immunohistochemistry in cohort 3 of 180 HCC patients. Further analysis indicated that PARP1 and NDRG1 were associated with some clinicopathological features, and the independent prognostic factors for HCC patients. Overall, global large-scale proteomics on spectrum of multistep hepatocarcinogenesis are obtained. PARP1 is a novel promising diagnostic/prognostic marker for HCC, and the three-marker panel (PARP1, GS and NDRG1) with excellent diagnostic performance for HCC was established. PMID:26883192

  16. The CPTAC Data Portal: A Resource for Cancer Proteomics Research.

    PubMed

    Edwards, Nathan J; Oberti, Mauricio; Thangudu, Ratna R; Cai, Shuang; McGarvey, Peter B; Jacob, Shine; Madhavan, Subha; Ketchum, Karen A

    2015-06-01

    The Clinical Proteomic Tumor Analysis Consortium (CPTAC), under the auspices of the National Cancer Institute's Office of Cancer Clinical Proteomics Research, is a comprehensive and coordinated effort to accelerate the understanding of the molecular basis of cancer through the application of proteomic technologies and workflows to clinical tumor samples with characterized genomic and transcript profiles. The consortium analyzes cancer biospecimens using mass spectrometry, identifying and quantifying the constituent proteins and characterizing each tumor sample's proteome. Mass spectrometry enables highly specific identification of proteins and their isoforms, accurate relative quantitation of protein abundance in contrasting biospecimens, and localization of post-translational protein modifications, such as phosphorylation, on a protein's sequence. The combination of proteomics, transcriptomics, and genomics data from the same clinical tumor samples provides an unprecedented opportunity for tumor proteogenomics. The CPTAC Data Portal is the centralized data repository for the dissemination of proteomic data collected by Proteome Characterization Centers (PCCs) in the consortium. The portal currently hosts 6.3 TB of data and includes proteomic investigations of breast, colorectal, and ovarian tumor tissues from The Cancer Genome Atlas (TCGA). The data collected by the consortium is made freely available to the public through the data portal. PMID:25873244

  17. Evaluation of two-dimensional electrophoresis and liquid chromatography – tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples

    SciTech Connect

    Schad, Martina; Lipton, Mary S.; Giavalisco, Patrick; Smith, Richard D.; Kehr, Julia

    2005-07-14

    Laser microdissection (LM) allows the collection of homogeneous tissue- and cell specific plant samples. The employment of this technique with subsequent protein analysis has thus far not been reported for plant tissues, probably due to the difficulties associated with defining a reasonable cellular morphology and, in parallel, allowing efficient protein extraction from tissue samples. The relatively large sample amount needed for successful proteome analysis is an additional issue that complicates protein profiling on a tissue- or even cell-specific level. In contrast to transcript profiling that can be performed from very small sample amounts due to efficient amplification strategies, there is as yet no amplification procedure for proteins available. In the current study, we compared different tissue preparation techniques prior to LM/laser pressure catapulting (LMPC) with respect to their suitability for protein retrieval. Cryosectioning was identified as the best compromise between tissue morphology and effective protein extraction. After collection of vascular bundles from Arabidopsis thaliana stem tissue by LMPC, proteins were extracted and subjected to protein analysis, either by classical two-dimensional gel electrophoresis (2-DE), or by high-efficiency liquid chromatography (LC) in conjunction with tandem mass spectrometry (MS/MS). Our results demonstrate that both methods can be used with LMPC collected plant material. But because of the significantly lower sample amount required for LC-MS/MS than for 2-DE, the combination of LMPC and LC-MS/MS has a higher potential to promote comprehensive proteome analysis of specific plant tissues.

  18. A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies.

    PubMed

    Jiang, Shan; Zhang, Zichuan; Li, Lingjun

    2015-09-18

    Mass spectrometry (MS) coupled to sample preparation and separation techniques has become a primary tool for proteomics studies. However, due to sample complexity, it is often challenging to achieve fast and efficient sample preparation prior to MS analysis. In recent decades, monolithic materials have been developed not only as chromatographic media, but also as efficient solid supports for immobilizing multiple types of affinity reagents. Herein, the N-acryloxysuccinimide-co-acrylamide-co-N,N'-methylenebisacrylamide (NAS-AAm-Bis) monolith was fabricated within silanized 200 μm i.d. fused-silica capillaries and was used as an immobilized enzyme reactor (IMER). The column was conjugated with trypsin/Lys-C and Lys-N enzymes to allow enzymatic digestions to occur while protein mixture was loaded onto the IMER column followed by MS-based proteomics analysis. Similar MS signal and protein sequence coverage were observed using protein standard bovine serum albumin (BSA) compared to in-solution digestion. Furthermore, mouse serum, yeast, and human cell lysate samples were also subjected to enzymatic digestion by both IMER (in seconds to minutes) and conventional in solution digestion (overnight) for comparison in large-scale proteomics studies. Comparable protein identification results obtained by the two methods highlighted the potential of employing NAS-based IMER column for fast and highly efficient sample preparation for MS analysis in proteomics studies. PMID:26300481

  19. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    SciTech Connect

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  20. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry.

    PubMed

    Liu, Fan; Rijkers, Dirk T S; Post, Harm; Heck, Albert J R

    2015-12-01

    We describe an integrated workflow that robustly identifies cross-links from endogenous protein complexes in human cellular lysates. Our approach is based on the application of mass spectrometry (MS)-cleavable cross-linkers, sequential collision-induced dissociation (CID)-tandem MS (MS/MS) and electron-transfer dissociation (ETD)-MS/MS acquisitions, and a dedicated search engine, XlinkX, which allows rapid cross-link identification against a complete human proteome database. This approach allowed us to detect 2,179 unique cross-links (1,665 intraprotein cross-links at a 5% false discovery rate (FDR) and 514 interprotein cross-links at 1% FDR) in HeLa cell lysates. We validated the confidence of our cross-linking results by using a target-decoy strategy and mapping the observed cross-link distances onto existing high-resolution structures. Our data provided new structural information about many protein assemblies and captured dynamic interactions of the ribosome in contact with different elongation factors. PMID:26414014

  1. Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2015-10-01

    Dictyostelium discoideum has historically served as a model system for cell and developmental biology, but recently it has gained increasing attention as a model for the study of human diseases. The extracellular matrix (ECM) of this eukaryotic microbe serves multiple essential functions during development. It not only provides structural integrity to the moving multicellular pseudoplasmodium, or slug, it also provides components that regulate cell motility and differentiation. An LC/MS/MS analysis of slug ECM revealed the presence of a large number of proteins in two wild-type strains, NC4 and WS380B. GO annotation identified a large number of proteins involved in some form of binding (e.g. protein, polysaccharide, cellulose, carbohydrate, ATP, cAMP, ion, lipid, vitamin), as well as proteins that modulate metabolic processes, cell movement, and multicellular development. In addition, this proteomic analysis identified numerous expected (e.g. EcmA, EcmD, discoidin I, discoidin II), as well as unexpected (e.g. ribosomal and nuclear proteins) components. These topics are discussed in terms of the structure and function of the ECM during the development of this model amoebozoan and their relevance to ongoing biomedical research. PMID:26152465

  2. Proteomic profiling of liver from Elaphe taeniura, a common snake in eastern and southeastern Asia

    PubMed Central

    Chen, Liang; Xia, Hengchuan; Wang, Yiting; Chen, Keping; Qin, Lvgao; Wang, Bin; Yao, Qin; Li, Jun; He, Yuanqing; Zhao, Ermi

    2013-01-01

    Snake liver has been implicated in the adaptation of snakes to a variety of habitats. However, to date, there has been no systematic analysis of snake liver proteins. In this study, we undertook a proteomic analysis of liver from the colubrid snake Elaphe taeniura using a combination of two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flightmass spectrometry (MALDI-TOF MS). We also constructed a local protein sequence database based on transcriptome sequencing to facilitate protein identification. Of the 268 protein spots revealed by 2-DE 109 gave positive MS signals, 84 of which were identified by searching the NCBInr, Swiss-Prot and local databases. The other 25 protein spots could not be identified, possibly because their transcripts were not be stable enough to be detected by transcriptome sequencing. GO analysis showed that most proteins may be involved in binding, catalysis, cellular processes and metabolic processes. Forty-two of the liver proteins identified were found in other reptiles and in amphibians. The findings of this study provide a good reference map of snake liver proteins that will be useful in molecular investigations of snake physiology and adaptation. PMID:24130453

  3. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R.; Shen, Han-Ming; Lin, Qingsong

    2016-01-01

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQTM quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway AnalysisTM (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death. PMID:26915414

  4. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line.

    PubMed

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R; Shen, Han-Ming; Lin, Qingsong

    2016-01-01

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQ(TM) quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway Analysis(TM) (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death. PMID:26915414

  5. Proteomic profiling of microbial transglutaminase-induced polymerization of milk proteins.

    PubMed

    Hsieh, J F; Pan, P H

    2012-02-01

    Microbial transglutaminase (MTGase)-induced polymerization of individual milk proteins during incubation was investigated using a proteomics-based approach. The addition of MTGase (0.25-2.0 units/mL) caused the milk proteins to polymerize after a 3-h incubation period. Sodium dodecyl sulfate-PAGE analysis showed that the total intensities of the protein bands that corresponded to α(S)-casein, β-casein, and κ-casein decreased from 8,245.6, 6,677.2, and 586.6 arbitrary units to 1,911.7, 0.0, and 66.2 arbitrary units, respectively. Components with higher molecular weights were observed, and the intensity of these proteins increased after 3h of incubation. These results support that inter- or intramolecular crosslinking occurred in the casein proteins of MTGase-treated milk. Two-dimensional electrophoresis analysis indicated that isomers of β-casein, κ-casein, a fraction of serum albumin, α(S1)-casein, α(S2)-casein, β-lactoglobulin, and α-lactalbumin in the milk were polymerized following incubation with MTGase. In addition, MTGase-induced polymerization occurred earlier for β-casein and κ-casein isomers than for other milk proteins. PMID:22281322

  6. Proteomic profiling of human colon cancer cells treated with the histone deacetylase inhibitor belinostat.

    PubMed

    Beck, Hans Christian; Petersen, Jørgen; Nielsen, Søren Jensby; Morsczeck, Christian; Morszeck, Christian; Jensen, Peter B; Sehested, Maxwell; Grauslund, Morten

    2010-08-01

    The anticancer drug belinostat is a hydroxamate histone deacetylase inhibitor that has shown significant antitumour activity in various tumour models and also in clinical trials. In this study, we utilized a proteomic approach in order to evaluate the effect of this drug on protein expression in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 muM belinostat were analysed by 2-D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed 45 unique differentially expressed proteins that were identified by LC-MSMS analysis. Among these proteins, of particular interest are the downregulated proteins nucleophosmin and stratifin, and the upregulated proteins nucleolin, gelsolin, heterogeneous nuclear ribonucleoprotein K, annexin 1, and HSP90B that all were related to the proto-oncogene proteins p53, Myc, activator protein 1, and c-fos protein. The modulation of these proteins is consistent with the observations that belinostat is able to inhibit clonogenic cell growth of HCT116 cells and the biological role of these proteins will be discussed. PMID:20717991

  7. Proteomic and Carbonylation Profile Analysis of Rat Skeletal Muscles following Acute Swimming Exercise

    PubMed Central

    Pietrovito, Laura; Fiaschi, Tania; Bini, Luca; Esposito, Fabio; Marini, Marina; Abruzzo, Provvidenza Maria; Gulisano, Massimo; Modesti, Alessandra

    2013-01-01

    Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE) on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL) and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS) production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies. PMID:23967250

  8. Proteome profiling of heat, oxidative, and salt stress responses in Thermococcus kodakarensis KOD1

    PubMed Central

    Jia, Baolei; Liu, Jinliang; Van Duyet, Le; Sun, Ying; Xuan, Yuan H.; Cheong, Gang-Won

    2015-01-01

    The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase) were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments. PMID:26150806

  9. Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don) Endl

    PubMed Central

    2010-01-01

    Background Restoration of rooting competence is important for rejuvenation in Sequoia sempervirens (D. Don) Endl and is achieved by repeatedly grafting Sequoia shoots after 16 and 30 years of cultivation in vitro. Results Mass spectrometry-based proteomic analysis revealed three proteins that differentially accumulated in different rejuvenation stages, including oxygen-evolving enhancer protein 2 (OEE2), glycine-rich RNA-binding protein (RNP), and a thaumatin-like protein. OEE2 was found to be phosphorylated and a phosphopeptide (YEDNFDGNSNVSVMVpTPpTDK) was identified. Specifically, the protein levels of OEE2 increased as a result of grafting and displayed a higher abundance in plants during the juvenile and rejuvenated stages. Additionally, SsOEE2 displayed the highest expression levels in Sequoia shoots during the juvenile stage and less expression during the adult stage. The expression levels also steadily increased during grafting. Conclusion Our results indicate a positive correlation between the gene and protein expression patterns of SsOEE2 and the rejuvenation process, suggesting that this gene is involved in the rejuvenation of Sequoia sempervirens. PMID:21143964

  10. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification.

    PubMed

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the Metacore(TM) database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  11. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification

    PubMed Central

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  12. Quantitative Profiling of Brain Lipid Raft Proteome in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Kalinowska, Magdalena; Castillo, Catherine; Francesconi, Anna

    2015-01-01

    Fragile X Syndrome, a leading cause of inherited intellectual disability and autism, arises from transcriptional silencing of the FMR1 gene encoding an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). FMRP can regulate the expression of approximately 4% of brain transcripts through its role in regulation of mRNA transport, stability and translation, thus providing a molecular rationale for its potential pleiotropic effects on neuronal and brain circuitry function. Several intracellular signaling pathways are dysregulated in the absence of FMRP suggesting that cellular deficits may be broad and could result in homeostatic changes. Lipid rafts are specialized regions of the plasma membrane, enriched in cholesterol and glycosphingolipids, involved in regulation of intracellular signaling. Among transcripts targeted by FMRP, a subset encodes proteins involved in lipid biosynthesis and homeostasis, dysregulation of which could affect the integrity and function of lipid rafts. Using a quantitative mass spectrometry-based approach we analyzed the lipid raft proteome of Fmr1 knockout mice, an animal model of Fragile X syndrome, and identified candidate proteins that are differentially represented in Fmr1 knockout mice lipid rafts. Furthermore, network analysis of these candidate proteins reveals connectivity between them and predicts functional connectivity with genes encoding components of myelin sheath, axonal processes and growth cones. Our findings provide insight to aid identification of molecular and cellular dysfunctions arising from Fmr1 silencing and for uncovering shared pathologies between Fragile X syndrome and other autism spectrum disorders. PMID:25849048

  13. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins

    PubMed Central

    Morton, Kyla J.; Jia, Shangang; Zhang, Chi; Holding, David R.

    2016-01-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. PMID:26712829

  14. Comparative proteomic profiling in compatible and incompatible interactions between hop roots and Verticillium albo-atrum.

    PubMed

    Mandelc, Stanislav; Timperman, Isaak; Radišek, Sebastjan; Devreese, Bart; Samyn, Bart; Javornik, Branka

    2013-07-01

    Verticillium wilt, caused by the soil borne fungal pathogen Verticillium albo-atrum, is a serious threat to hop (Humulus lupulus L.) production in several hop-growing regions. A proteomic approach was applied to analyse the response of root tissue in compatible and incompatible interactions between hop and V. albo-atrum at 10, 20 and 30 days after inoculation, using two-dimensional difference gel electrophoresis (2D-DIGE) coupled with de novo sequencing of derivatized peptides. Approximately 1200 reproducible spots were detected on the gels, of which 102 were identified. In the compatible interaction, 252 spots showed infection-specific changes in spot abundance and an accumulation of defence-related proteins, such as chitinase, β-glucanase, thaumatin-like protein, peroxidase and germin-like protein, was observed. However, no significant infection-specific changes were detected in the incompatible interaction. The results indicate that resistance in this pathosystem may be conferred by constitutive rather than induced defence mechanisms. The identification and high abundance of two mannose/glucose-specific lectin isoforms present only in the roots of the resistant cultivar suggests function of lectins in hop resistance against V. albo-atrum. PMID:23619241

  15. Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins

    PubMed Central

    Wilkinson, Tom L.

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852

  16. Effect of Acute Emotional Stress on Proteomic Profile of Selected Brain Areas and Lysosomal Proteolysis in Rats with Different Behavioral Activity.

    PubMed

    Sharanova, N E; Kirbaeva, N V; Toropygin, I Yu; Khryapova, E V; Koplik, E V; Soto, C Kh; Pertsov, S S; Vasiliev, A V

    2016-07-01

    We compared proteome profiles of selected brain areas (cortex, amygdala, hippocampus, and reticular formation) and measured cathepsins B and D activity in liver lysosomal fraction in rats with different behavioral activity under conditions of emotional stress. In passive rats, the expression of some proteins in various brain regions was changed and baseline cathepsin B activity was higher than in active animals. Taken together, the results attest to differences in the adaptive response formation in rats, depending on behavioral features. PMID:27502534

  17. Plasma Proteome Profiles Associated with Diet-Induced Metabolic Syndrome and the Early Onset of Metabolic Syndrome in a Pig Model

    PubMed Central

    te Pas, Marinus F. W.; Koopmans, Sietse-Jan; Kruijt, Leo; Calus, Mario P. L.; Smits, Mari A.

    2013-01-01

    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases. PMID:24086269

  18. Preoperative protein profiles in cerebrospinal fluid in elderly hip fracture patients at risk for delirium: A proteomics and validation study

    PubMed Central

    Westhoff, Dunja; Witlox, Joost; van Aalst, Corneli; Scholtens, Rikie M.; de Rooij, Sophia E.; van Munster, Barbara C.; de Jonghe, Jos F.M.; Houdijk, Alexander P.J.; Eikelenboom, Piet; van Westerloo, David J.; van de Beek, Diederik; van Gool, Willem A.; Koenderman, Leo

    2015-01-01

    Background A neuroinflammatory response is suggested to play an important role in delirium, a common complication in older hospitalized patients. We examined whether hip fracture patients who develop postoperative delirium have a different proteome in cerebrospinal fluid (CSF) prior to surgery. Methods Patients (≥ 75 years) were admitted for hip fracture surgery. CSF was collected during spinal anaesthesia; proteins were separated using gel electrophoresis and identified with mass spectrometry. We compared the proteome of patients with and without postoperative delirium. Findings were validated in an independent, comparable cohort using immuno-assays. Results In the derivation cohort 53 patients were included, 35.8% developed postoperative delirium. We identified differences in levels of eight CSF proteins between patients with and without subsequent delirium: complement factor C3, contactin-1, fibulin-1 and I-beta-1,3-N-acetylglucosaminyltransferase were significantly lower in patients with postoperative delirium, while neural cell adhesion molecule-2, fibrinogen, zinc-α-2-glycoprotein and haptoglobin levels were significantly higher. In the validation cohort 21.2% of 52 patients developed postoperative delirium. Immuno-assays confirmed contactin-1 results although not statistically significant. Complement factor C3 was significantly higher in patients with postoperative delirium. Conclusion Our results show the complexity of pathophysiological mechanisms involved in delirium and emphasizes the need of independent validation of findings. General significance This study highlights the challenges and inconsistent findings in studies of delirium, a serious complication in older patients. We analysed proteins in CSF, the most proximal fluid to the brain. All patients were free from delirium at the time of sampling. PMID:26675981

  19. Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress

    PubMed Central

    Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R.

    2015-01-01

    Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone. PMID:26025890

  20. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    SciTech Connect

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides with 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.

  1. Proteomic profiling of a high-producing Chinese hamster ovary cell culture.

    PubMed

    Carlage, Tyler; Hincapie, Marina; Zang, Li; Lyubarskaya, Yelena; Madden, Helena; Mhatre, Rohin; Hancock, William S

    2009-09-01

    The productivity of mammalian cell culture expression systems is critically important to the production of biopharmaceuticals. In this study, a high-producing Chinese hamster ovary cell culture which was transfected with the apoptosis inhibitor Bcl-X(L) gene was compared to a low-producing control that was not transfected. Shotgun proteomics was used to compare the high and low-producing fed-batch cell cultures at different growth time points. The goals of this study were twofold; it would be of value to find a biomarker that could predict cell lines with higher growth efficiency and to gain mechanistic insights into the effects of the introduction of a foreign gene that is known to have growth regulating properties in human cells. A total of 392 proteins were identified in this study, and 32 of these proteins were determined to be differentially expressed. In the high-producing cell culture, several proteins related to protein metabolism were upregulated, such as eukaryotic translation initiation factor 3 and ribosome 40S. In addition, several intermediate filament proteins such as vimentin and annexin, as well as histone H1.2 and H2A, were downregulated in the high producer. The expression of these proteins may be indicative of cellular productivity. A growth inhibitor, galectin-1, was downregulated in the high producer, which may be linked to the expression of Bcl-X(L). The molecular chaperone BiP was upregulated significantly in the high producer and may indicate an unfolded protein response due to endoplasmic reticulum (ER) stress. Several proteins involved in regulation of the cell cycle such as RACK1 and GTPase Ran were found to be differentially expressed, which may be due to a differentially controlled cell cycle between low- and high-producing cell cultures. PMID:19663468

  2. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    SciTech Connect

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  3. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells

    PubMed Central

    Xu, Yan-Ming; Yu, Fei-Yuan; Yang, Feng; Yao, Yue; Zhou, Yuan; Ching, Yick-Pang; Lau, Andy T. Y.

    2016-01-01

    Protein array technology is a powerful platform for the simultaneous determination of the expression levels of a number of proteins as well as post-translational modifications such as phosphorylation. Here, we screen and report for the first time, the dominant signaling cascades and apoptotic mediators during the course of cadmium (Cd)-induced cytotoxicity in human bronchial epithelial cells (BEAS-2B) by antibody array analyses. Proteins from control and Cd-treated cells were captured on Proteome Profiler™ Arrays for the parallel determination of the relative levels of protein phosphorylation and proteins associated with apoptosis. Our results indicated that the p38 MAPK- and JNK-related signal transduction pathways were dramatically activated by Cd treatment. Cd potently stimulates the phosphorylations of p38α (MAPK14), JNK1/2 (MAPK8/9), and JUN; while the phosphorylations of Akt1, ERK1/2 (MAPK3/1), GSK3β, and mTOR were suppressed. Moreover, there was an induction of proapoptotic protein BAX, release of cytochrome c (CYCS) from mitochondria, activation of caspase-3/9 (CASP3/9); as well as decreased expression of cell cycle checkpoint proteins (TP53, p21, and p27) and several inhibitors of apoptosis proteins (IAPs) [including cIAP-1/2 (BIRC2/3), XIAP (BIRC4), and survivin (BIRC5)]. Pretreatment of cells with the thiol antioxidant glutathione or p38 MAPK/JNK inhibitors before Cd treatment effectively abrogated ROS activation of p38 MAPK/JNK pathways and apoptosis-related proteins. Taken together, our results demonstrate that Cd causes oxidative stress-induced apoptosis; and the p38 MAPK/JNK and mitochondrial pathways are more importantly participated for signal transduction and the induction of apoptosis in Cd-exposed human lung cells. PMID:26716417

  4. Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles.

    PubMed

    Ayyadevara, Srinivas; Mercanti, Federico; Wang, Xianwei; Mackintosh, Samuel G; Tackett, Alan J; Prayaga, Sastry V S; Romeo, Francesco; Shmookler Reis, Robert J; Mehta, Jawahar L

    2016-05-01

    Neurodegenerative diseases are largely defined by protein aggregates in affected tissues. Aggregates contain some shared components as well as proteins thought to be specific for each disease. Aggregation has not previously been reported in the normal, aging heart or the hypertensive heart. Detergent-insoluble protein aggregates were isolated from mouse heart and characterized on 2-dimensional gels. Their levels increased markedly and significantly with aging and after sustained angiotensin II-induced hypertension. Of the aggregate components identified by high-resolution proteomics, half changed in abundance with age (392/787) or with sustained hypertension (459/824), whereas 30% (273/901) changed concordantly in both, each P<0.05. One fifth of these proteins were previously associated with age-progressive neurodegenerative or cardiovascular diseases, or both (eg, ApoE, ApoJ, ApoAIV, clusterin, complement C3, and others involved in stress-response and protein-homeostasis pathways). Because fibrosis is a characteristic of both aged and hypertensive hearts, we posited that aging of fibroblasts may contribute to the aggregates observed in cardiac tissue. Indeed, as cardiac myofibroblasts "senesced" (approached their replicative limit) in vitro, they accrued aggregates with many of the same constituent proteins observed in vivo during natural aging or sustained hypertension. In summary, we have shown for the first time that compact (detergent-insoluble) protein aggregates accumulate during natural aging, chronic hypertension, and in vitro myofibroblast senescence, sharing many common proteins. Thus, aggregates that arise from disparate causes (aging, hypertension, and replicative senescence) may have common underlying mechanisms of accrual. PMID:26975704

  5. Quantitative Profiling of the Activity of Protein Lysine Methyltransferase SMYD2 Using SILAC-Based Proteomics.

    PubMed

    Olsen, Jonathan B; Cao, Xing-Jun; Han, Bomie; Chen, Lisa Hong; Horvath, Alexander; Richardson, Timothy I; Campbell, Robert M; Garcia, Benjamin A; Nguyen, Hannah

    2016-03-01

    The significance of non-histone lysine methylation in cell biology and human disease is an emerging area of research exploration. The development of small molecule inhibitors that selectively and potently target enzymes that catalyze the addition of methyl-groups to lysine residues, such as the protein lysine mono-methyltransferase SMYD2, is an active area of drug discovery. Critical to the accurate assessment of biological function is the ability to identify target enzyme substrates and to define enzyme substrate specificity within the context of the cell. Here, using stable isotopic labeling with amino acids in cell culture (SILAC) coupled with immunoaffinity enrichment of mono-methyl-lysine (Kme1) peptides and mass spectrometry, we report a comprehensive, large-scale proteomic study of lysine mono-methylation, comprising a total of 1032 Kme1 sites in esophageal squamous cell carcinoma (ESCC) cells and 1861 Kme1 sites in ESCC cells overexpressing SMYD2. Among these Kme1 sites is a subset of 35 found to be potently down-regulated by both shRNA-mediated knockdown of SMYD2 and LLY-507, a selective small molecule inhibitor of SMYD2. In addition, we report specific protein sequence motifs enriched in Kme1 sites that are directly regulated by endogenous SMYD2 activity, revealing that SMYD2 substrate specificity is more diverse than expected. We further show direct activity of SMYD2 toward BTF3-K2, PDAP1-K126 as well as numerous sites within the repetitive units of two unique and exceptionally large proteins, AHNAK and AHNAK2. Collectively, our findings provide quantitative insights into the cellular activity and substrate recognition of SMYD2 as well as the global landscape and regulation of protein mono-methylation. PMID:26750096

  6. Replication of Major Profile Patterns in Structural Equation Modeling: Effect of Bootstrapping in a Small Sample.

    ERIC Educational Resources Information Center

    Kim, Se-Kang

    The effect of bootstrapping was studied by examining whether major profile patterns were replicated when sample sizes were reduced. Profile patterns estimated from the original sample (n=645) of the Wechsler Preschool and Primary Scale of IntelligenceThird Edition (WPPSI-III) Standardization Data were considered major profiles. For bootstrapping,…

  7. Genomic and Proteomic Profiles Reveal the Association of Gelsolin to TP53 Status and Bladder Cancer Progression

    PubMed Central

    Sanchez-Carbayo, Marta; Socci, Nicholas D.; Richstone, Lee; Corton, Marta; Behrendt, Nille; Wulkfuhle, Julia; Bochner, Bernard; Petricoin, Emmanuel; Cordon-Cardo, Carlos

    2007-01-01

    Bladder cancer transformation and immortalization require the inactivation of key regulatory genes, including TP53. Genotyping of a large cohort of bladder cancer patients (n = 256) using the TP53 GeneChip showed mutations in 103 cases (40.2%), the majority of them mapping to the DNA-binding core domain. TP53 mutation status was significantly associated with tumor stage (P = 0.0001) and overall survival for patients with advanced disease (P = 0.01). Transcript profiling using oligonucleotide arrays was performed on a subset of these cases (n = 46). Supervised analyses identified genes differentially expressed between invasive bladder tumors with wild-type (n = 24) and mutated TP53 (n = 22). Pathway analyses of top-ranked genes supported the central role of TP53 in the functional network of such gene patterns. A proteomic strategy using reverse phase arrays with protein extracts of bladder cancer cell lines validated the association of identified differentially expressed genes, such as gelsolin, to TP53 status. Immunohistochemistry on tissue microarrays (n = 294) revealed that gelsolin was associated with tumor stage and overall survival, correlating positively with TP53 status in a subset of these patients. This study further reveals that TP53 mutations are frequent events in bladder cancer progression and identified gelsolin related to TP53 status, tumor staging, and clinical outcome by independent high-throughput strategies. PMID:17982131

  8. Proteomic and toxicological profiling of the venom of Bothrocophias campbelli, a pitviper species from Ecuador and Colombia.

    PubMed

    Salazar-Valenzuela, David; Mora-Obando, Diana; Fernández, María Laura; Loaiza-Lange, Amaru; Gibbs, H Lisle; Lomonte, Bruno

    2014-11-01

    Detailed snake venom proteomes for nearly a hundred species in different pitviper genera have accumulated using 'venomics' methodologies. However, venom composition for some lineages remains poorly known. Bothrocophias (toad-headed pitvipers) is a genus restricted to the northwestern portion of South America for which information on venom composition is lacking. Here, we describe the protein composition, toxicological profiling, and antivenom neutralization of the venom of Bothrocophias campbelli, a species distributed in Colombia and Ecuador. Our analyses show that its venom mainly consists of phospholipases A2 (43.1%), serine proteinases (21.3%), and metalloproteinases (15.8%). The low proportion of metalloproteinases and high amount of a Lys49 phospholipase A2 homologue correlate well with the low hemorrhagic and high myotoxic effects found. Overall, B. campbelli venom showed a simpler composition compared to other crotalines in the region. A polyvalent antivenom prepared with a mixture of Bothrops asper, Crotalus simus, and Lachesis stenophrys venoms cross-recognized B. campbelli venom and neutralized its lethal effect in mice, albeit with a lower potency than for B. asper venom. Additional work comparing B. campbelli venom properties with those of related species could help understand the evolution of different venom protein families during the South American radiation of New World pitvipers. PMID:25091349

  9. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes

    NASA Astrophysics Data System (ADS)

    Zhang, Hong

    2016-07-01

    We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signalling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and cosmic radiation

  10. Ovarian Cancer Proteomic, Phosphoproteomic, and Glycoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples,

  11. Comparative Proteomic Profiling of Atopic Dermatitis Patients Based on History of Eczema Herpeticum Infection and Staphylococcus aureus Colonization

    PubMed Central

    Broccardo, Carolyn J; Mahaffey, Spencer; Schwarz, John; Wruck, Lisa; David, Gloria; Schlievert, Patrick M; Reisdorph, Nichole A; Leung, Donald YM

    2010-01-01

    Background Atopic dermatitis is the most common inflammatory skin disorder in the general population worldwide and the majority of patients are colonized with Staphylococcus aureus. Eczema herpeticum is a disseminated herpes simplex virus infection that occurs in a small subset of patients. Objectives The goal was to conduct proteomic profiling of atopic dermatitis patients based on Staphylococcus aureus colonization status and history of eczema herpeticum. We hoped to identify new biomarkers for improved diagnosis and prediction of eczema herpeticum and Staphylococcus aureus susceptibility, and to generate new hypotheses regarding disease pathogenesis. Methods Skin taping was performed on nonlesional skin of non-atopic controls and on lesional and nonlesional skin of atopic dermatitis patients. Subjects were classified according to history of eczema herpeticum and Staphylococcus aureus colonization. Proteins were analyzed using mass spectrometry; diagnostic groups were compared for statistically significant differences in protein expression. Results Proteins related to the skin barrier (filaggrin-2, corneodesmosin, desmoglein-1, desmocollin-1, and transglutaminase-3) and generation of natural moisturizing factor (arginase-1, caspase-14, gamma-glutamyl cyclotransferase) were expressed at significantly lower levels in lesional versus nonlesional sites of atopic dermatitis patients with and without history of eczema herpeticum; epidermal fatty acid binding protein was expressed at significantly higher levels in patients with methicillin resistant Staphylococcus aureus. Conclusion This non-invasive, semi-quantitative profiling method has revealed novel proteins likely involved in the pathogenesis of atopic dermatitis. The lower expression of skin barrier proteins and enzymes involved in the generation of the natural moisturizing factor could further exacerbate barrier defects and perpetuate water loss from the skin. The greater expression of epidermal fatty acid

  12. Microscopic resolution imaging and proteomics correlation at histogeographically identical location: point by point correlation between ex vivo tissue imaging with high field MRI and multiplex tissue immunoblotting for proteomics profiling

    NASA Astrophysics Data System (ADS)

    Matsuda, Kant M.; Chung, Joon-Yong; Ylaya, Kris; Dodd, Stephen; Fukunaga, Masaki; Hewitt, Stephen M.

    2010-03-01

    Histopathologic correlation is an essential component for validation of the radiological findings. There has been significant advancement in medical imaging technologies, including molecular imaging, such that, it is essential to establish the system beyond histopathologic correlation, to protein profiling that can be correlated with imaging at anatomically identical manner for accurate examination. Recently, a novel technology for proteomic profiling has been established, called "multiplex tissue immunoblotting (MTIB)" which can offer studying multiple protein expression from a single histology slide. Therefore, we attempted to establish the system to obtain an identical plane between high resolution imaging and histopathology at microscopic level so that proteomic profiling can be readily performed using MTIB. A variety of tissues were obtained from autopsy materials and initially scanned with high field MRI (14T) ex vivo along with the marker for tissue orientation. The histology slides were prepared from post-scanned tissue under the marker-guidance in order to obtain an identical plane with high resolution imaging. Subsequently, MTIB was carried out to study expression of proteins of interest and point by point correlation with high resolution imaging was performed at histogeographically identical manner.

  13. FETAL HEART RATE MONITORING PATTERNS IN WOMEN WITH AMNIOTIC FLUID PROTEOMIC PROFILES INDICATIVE OF INFLAMMATION

    PubMed Central

    Buhimschi, Catalin S.; Abdel-Razeq, Sonya; Cackovic, Michael; Pettker, Christian M.; Dulay, Antonette T.; Bahtiyar, Mert Ozan; Zambrano, Eduardo; Martin, Ryan; Norwitz, Errol R.; Bhandari, Vineet; Buhimschi, Irina A.

    2009-01-01

    We hypothesized that abnormal fetal heart rate monitoring patterns (FHR-MP) occur more often in pregnancies complicated by intra-amniotic inflammation. Therefore, our objective was to examine the relationships between FHR-MP abnormalities, intra-amniotic inflammation and/or infection, acute histological chorioamnionitis and early-onset neonatal sepsis (EONS) in pregnancies complicated by preterm birth. Additionally, the ability of various FHR-MPs to predict EONS was investigated. FHR-MP from 87 singleton premature neonates delivered within 48 hours from amniocentesis [gestational age: 28.9 ± 3.3 weeks] were analyzed blindly using strict NICHD criteria. Strips were evaluated at three time points: at admission, at amniocentesis and prior to delivery. Intra-amniotic inflammation was established based on a previously validated proteomic fingerprint (MR score). Diagnoses of histological chorioamnionitis and EONS were based on well-recognized pathological, clinical and laboratory criteria. We determined that fetuses of women with severe intra-amniotic inflammation had a higher FHR baseline throughout the entire monitoring period and an increased frequency of a non-reactive FHR-MP at admission. Of all FHR-MP, a non-reassuring test at admission had 32% sensitivity, 95% specificity, 73% positive predictive value, 77% negative predictive value, and 76% accuracy in predicting EONS. Although a non-reassuring FHR-MP at admission was significantly associated with EONS after correcting for gestational age (OR: 5.6 [95%CI: 1.2–26.2], p=0.030), the majority of the neonates that developed EONS had an overall reassuring FHR-MP. Non-reassuring FHR-MPs at either amniocentesis or delivery had no association with EONS. We conclude that in cases complicated by preterm birth, a non-reassuring FHR-MP at the initial evaluation is a specific but not a sensitive predictor of EONS. An abnormal FHR-MP can thus raise the level of awareness that a fetus with EONS may be born, but is not a

  14. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    SciTech Connect

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung; Kim, Chan-Wha

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study

  15. Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics.

    PubMed

    Wilson, Richard; Diseberg, Anders F; Gordon, Lavinia; Zivkovic, Snezana; Tatarczuch, Liliana; Mackie, Eleanor J; Gorman, Jeffrey J; Bateman, John F

    2010-06-01

    Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture system that produces a cartilaginous ECM. Differential analysis of the tissue proteome of 3-week neocartilage and 3-day postnatal mouse cartilage using solubility-based protein fractionation targeted components involved in neocartilage development, including ECM maturation. Initially, SDS-PAGE analysis of sequential extracts revealed the transition in protein solubility from a high proportion of readily soluble (NaCl-extracted) proteins in juvenile cartilage to a high proportion of poorly soluble (guanidine hydrochloride-extracted) proteins in neocartilage. Label-free quantitative mass spectrometry (LTQ-Orbitrap) and statistical analysis were then used to filter three significant protein groups: proteins enriched according to extraction condition, proteins differentially abundant between juvenile cartilage and neocartilage, and proteins with differential solubility properties between the two tissue types. Classification of proteins differentially abundant between NaCl and guanidine hydrochloride extracts (n = 403) using bioinformatics revealed effective partitioning of readily soluble components from subunits of larger protein complexes. Proteins significantly enriched in neocartilage (n = 78) included proteins previously not reported or with unknown function in cartilage (integrin-binding protein DEL1; coiled-coil domain-containing protein 80; emilin-1 and pigment epithelium derived factor). Proteins with differential extractability between juvenile cartilage and neocartilage

  16. GROUND WATER SAMPLING FOR VERTICAL PROFILING OF CONTAMINANTS

    EPA Science Inventory

    Accurate delineation of plume boundaries and vertical contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...

  17. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs

    PubMed Central

    Pearce, Sarah C.; Lonergan, Steven M.; Huff-Lonergan, Elisabeth; Baumgard, Lance H.; Gabler, Nicholas K.

    2015-01-01

    Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress. PMID:26575181

  18. Proteomic patterns for classification of ovarian cancer and CTCL serum samples utilizing peak pairs indicative of post-translational modifications.

    PubMed

    Liu, Chenwei; Shea, Nancy; Rucker, Sally; Harvey, Linda; Russo, Paul; Saul, Richard; Lopez, Mary F; Mikulskis, Alvydas; Kuzdzal, Scott; Golenko, Eva; Fishman, David; Vonderheid, Eric; Booher, Susan; Cowen, Edward W; Hwang, Sam T; Whiteley, Gordon R

    2007-11-01

    Proteomic patterns as a potential diagnostic technology has been well established for several cancer conditions and other diseases. The use of machine learning techniques such as decision trees, neural networks, genetic algorithms, and other methods has been the basis for pattern determination. Cancer is known to involve signaling pathways that are regulated through PTM of proteins. These modifications are also detectable with high confidence using high-resolution MS. We generated data using a prOTOF mass spectrometer on two sets of patient samples: ovarian cancer and cutaneous t-cell lymphoma (CTCL) with matched normal samples for each disease. Using the knowledge of mass shifts caused by common modifications, we built models using peak pairs and compared this to a conventional technique using individual peaks. The results for each disease showed that a small number of peak pairs gave classification equal to or better than the conventional technique that used multiple individual peaks. This simple peak picking technique could be used to guide identification of important peak pairs involved in the disease process. PMID:17952875

  19. Dried Blood Spot Proteomics: Surface Extraction of Endogenous Proteins Coupled with Automated Sample Preparation and Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.

    2013-08-01

    Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.

  20. Classification of Epidermal Growth Factor Receptor Gene Mutation Status Using Serum Proteomic Profiling Predicts Tumor Response in Patients with Stage IIIB or IV Non-Small-Cell Lung Cancer

    PubMed Central

    Yang, Lin; Tang, Chuanhao; Xu, Bin; Wang, Weixia; Li, Jianjie; Li, Xiaoyan; Qin, Haifeng; Gao, Hongjun; He, Kun; Song, Santai; Liu, Xiaoqing

    2015-01-01

    Objectives Epidermal growth factor receptor (EGFR) gene mutations in tumors predict tumor response to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). However, obtaining tumor tissue for mutation analysis is challenging. Here, we aimed to detect serum peptides/proteins associated with EGFR gene mutation status, and test whether a classification algorithm based on serum proteomic profiling could be developed to analyze EGFR gene mutation status to aid therapeutic decision-making. Patients and Methods Serum collected from 223 stage IIIB or IV NSCLC patients with known EGFR gene mutation status in their tumors prior to therapy was analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and ClinProTools software. Differences in serum peptides/proteins between patients with EGFR gene TKI-sensitive mutations and wild-type EGFR genes were detected in a training group of 100 patients; based on this analysis, a serum proteomic classification algorithm was developed to classify EGFR gene mutation status and tested in an independent validation group of 123 patients. The correlation between EGFR gene mutation status, as identified with the serum proteomic classifier and response to EGFR-TKIs was analyzed. Results Nine peptide/protein peaks were significantly different between NSCLC patients with EGFR gene TKI-sensitive mutations and wild-type EGFR genes in the training group. A genetic algorithm model consisting of five peptides/proteins (m/z 4092.4, 4585.05, 1365.1, 4643.49 and 4438.43) was developed from the training group to separate patients with EGFR gene TKI-sensitive mutations and wild-type EGFR genes. The classifier exhibited a sensitivity of 84.6% and a specificity of 77.5% in the validation group. In the 81 patients from the validation group treated with EGFR-TKIs, 28 (59.6%) of 47 patients whose matched samples were labeled as “mutant” by the classifier and 3 (8.8%) of 34 patients

  1. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  2. Proteomic profile in Perna viridis after exposed to Prorocentrum lima, a dinoflagellate producing DSP toxins.

    PubMed

    Huang, Lu; Zou, Ying; Weng, Hui-wen; Li, Hong-Ye; Liu, Jie-Sheng; Yang, Wei-Dong

    2015-01-01

    In the current study, we compared protein profiles in gills of Perna viridis after exposure to Prorocentrumlima, a dinoflagellate producing DSP toxins, and identified the differential abundances of protein spots using 2D-electrophoresis. After exposure to P. lima, the level of okadaic acid (a main component of DSP toxins) in gills of P. viridis significantly increased at 6 h, but mussels were all apparently healthy without death. Among the 28 identified protein spots by MALDI TOF/TOF-MS, 12 proteins were up-regulated and 16 were down-regulated in the P. lima-exposed mussels. These identified proteins were involved in various biological activities, such as metabolism, cytoskeleton, signal transduction, response to oxidative stress and detoxification. Taken together, our results indicated that the presence of P. lima caused DSP toxins accumulation in mussel gill, and might consequently induce cytoskeletonal disorganization,oxidative stress, a dysfunction in metabolism and ubiquitination/proteasome activity. PMID:25463732

  3. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    PubMed

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods. PMID:26381020

  4. Proteomics reveals differences in protein abundance and highly similar antigenic profiles between Besnoitia besnoiti and Besnoitia tarandi.

    PubMed

    García-Lunar, P; Regidor-Cerrillo, J; Ortega-Mora, L M; Gutiérrez-Expósito, D; Alvarez-García, G

    2014-10-15

    Besnoitia besnoiti and Besnoitia tarandi are two cyst-forming apicomplexan parasites of the genus Besnoitia. B. besnoiti uses cattle as an intermediate host, in which it causes a disease that progresses in two sequential phases: the acute anasarca stage and the chronic scleroderma stage. Reindeer and caribou act as intermediate hosts for B. tarandi, which causes clinical signs similar to those caused by B. besnoiti. Previous studies demonstrated high molecular similarity, as determined by 18S and ITS-1 RNA sequences, between these Besnoitia spp., and strong serological cross-reactivity between these species has recently been demonstrated. Thus, a difference gel electrophoresis approach and mass spectrometry analysis were used to describe the proteomes and explore differences in protein abundance between B. besnoiti and B. tarandi in tachyzoite extracts. Immunoproteomes were also compared using 2-DE immunoblotting with pol