Sample records for sample temperature modeling

  1. Estimation of river and stream temperature trends under haphazard sampling

    USGS Publications Warehouse

    Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao

    2015-01-01

    Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.

  2. Temperature Control Diagnostics for Sample Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santodonato, Louis J; Walker, Lakeisha MH; Church, Andrew J

    2010-01-01

    In a scientific laboratory setting, standard equipment such as cryocoolers are often used as part of a custom sample environment system designed to regulate temperature over a wide range. The end user may be more concerned with precise sample temperature control than with base temperature. But cryogenic systems tend to be specified mainly in terms of cooling capacity and base temperature. Technical staff at scientific user facilities (and perhaps elsewhere) often wonder how to best specify and evaluate temperature control capabilities. Here we describe test methods and give results obtained at a user facility that operates a large sample environmentmore » inventory. Although this inventory includes a wide variety of temperature, pressure, and magnetic field devices, the present work focuses on cryocooler-based systems.« less

  3. Temperature and flow fields in samples heated in monoellipsoidal mirror furnaces

    NASA Astrophysics Data System (ADS)

    Rivas, D.; Haya, R.

    The temperature field in samples heated in monoellipsoidal mirror furnaces will be analyzed. The radiation heat exchange between the sample and the mirror is formulated analytically, taking into account multiple reflections at the mirror. It will be shown that the effect of these multiple reflections in the heating process is quite important, and, as a consequence, the effect of the mirror reflectance in the temperature field is quite strong. The conduction-radiation model will be used to simulate the heating process in the floating-zone technique in microgravity conditions; important parameters like the Marangoni number (that drives the thermocapillary flow in the melt), and the temperature gradient at the melt-crystal interface will be estimated. The model will be validated comparing with experimental data. The case of samples mounted in a wall-free configuration (as in the MAXUS-4 programme) will be also considered. Application to the case of compound samples (graphite-silicon-graphite) will be made; the melting of the silicon part and the surface temperature distribution in the melt will be analyzed. Of special interest is the temperature difference between the two graphite rods that hold the silicon part, since it drives the thermocapillary flow in the melt. This thermocapillary flow will be studied, after coupling the previous model with the convective effects. The possibility of counterbalancing this flow by the controlled vibration of the graphite rods will be studied as well. Numerical results show that suppressing the thermocapillary flow can be accomplished quite effectively.

  4. Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique

    NASA Astrophysics Data System (ADS)

    Tianmin, Wu; Tianjun, Wang; Xian, Chen; Bin, Fang; Ruiting, Zhang; Wei, Zhuang

    2016-01-01

    We herein review our studies on simulating the thermal unfolding Fourier transform infrared and two-dimensional infrared spectra of peptides. The peptide-water configuration ensembles, required forspectrum modeling, aregenerated at a series of temperatures using the GBOBC implicit solvent model and the integrated tempering sampling technique. The fluctuating vibrational Hamiltonians of the amide I vibrational band are constructed using the Frenkel exciton model. The signals are calculated using nonlinear exciton propagation. The simulated spectral features such as the intensity and ellipticity are consistent with the experimental observations. Comparing the signals for two beta-hairpin polypeptides with similar structures suggests that this technique is sensitive to peptide folding landscapes. Project supported by the National Natural Science Foundation of China (Grant No. 21203178), the National Natural Science Foundation of China (Grant No. 21373201), the National Natural Science Foundation of China (Grant No. 21433014), the Science and Technological Ministry of China (Grant No. 2011YQ09000505), and “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB10040304 and XDB100202002).

  5. Global analysis of the temperature and flow fields in samples heated in multizone resistance furnaces

    NASA Astrophysics Data System (ADS)

    Pérez-Grande, I.; Rivas, D.; de Pablo, V.

    The temperature field in samples heated in multizone resistance furnaces will be analyzed, using a global model where the temperature fields in the sample, the furnace and the insulation are coupled; the input thermal data is the electric power supplied to the heaters. The radiation heat exchange between the sample and the furnace is formulated analytically, taking into account specular reflections at the sample; for the solid sample the reflectance is both diffuse and specular, and for the melt it is mostly specular. This behavior is modeled through the exchange view factors, which depend on whether the sample is solid or liquid, and, therefore, they are not known a priori. The effect of this specular behavior in the temperature field will be analyzed, by comparing with the case of diffuse samples. A parameter of great importance is the thermal conductivity of the insulation material; it will be shown that the temperature field depends strongly on it. A careful characterization of the insulation is therefore necessary, here it will be done with the aid of experimental results, which will also serve to validate the model. The heating process in the floating-zone technique in microgravity conditions will be simulated; parameters like the Marangoni number or the temperature gradient at the melt-crystal interface will be estimated. Application to the case of compound samples (graphite-silicon-graphite) will be made; the temperature distribution in the silicon part will be studied, especially the temperature difference between the two graphite rods that hold the silicon, since it drives the thermocapillary flow in the melt. This flow will be studied, after coupling the previous model with the convective effects. The possibility of suppresing this flow by the controlled vibration of the graphite rods will be also analyzed. Numerical results show that the thermocapillary flow can indeed be counterbalanced quite effectively.

  6. Recommended Maximum Temperature For Mars Returned Samples

    NASA Technical Reports Server (NTRS)

    Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Hays, L. E.

    2016-01-01

    The Returned Sample Science Board (RSSB) was established in 2015 by NASA to provide expertise from the planetary sample community to the Mars 2020 Project. The RSSB's first task was to address the effect of heating during acquisition and storage of samples on scientific investigations that could be expected to be conducted if the samples are returned to Earth. Sample heating may cause changes that could ad-versely affect scientific investigations. Previous studies of temperature requirements for returned mar-tian samples fall within a wide range (-73 to 50 degrees Centigrade) and, for mission concepts that have a life detection component, the recommended threshold was less than or equal to -20 degrees Centigrade. The RSSB was asked by the Mars 2020 project to determine whether or not a temperature requirement was needed within the range of 30 to 70 degrees Centigrade. There are eight expected temperature regimes to which the samples could be exposed, from the moment that they are drilled until they are placed into a temperature-controlled environment on Earth. Two of those - heating during sample acquisition (drilling) and heating while cached on the Martian surface - potentially subject samples to the highest temperatures. The RSSB focused on the upper temperature limit that Mars samples should be allowed to reach. We considered 11 scientific investigations where thermal excursions may have an adverse effect on the science outcome. Those are: (T-1) organic geochemistry, (T-2) stable isotope geochemistry, (T-3) prevention of mineral hydration/dehydration and phase transformation, (T-4) retention of water, (T-5) characterization of amorphous materials, (T-6) putative Martian organisms, (T-7) oxidation/reduction reactions, (T-8) (sup 4) He thermochronometry, (T-9) radiometric dating using fission, cosmic-ray or solar-flare tracks, (T-10) analyses of trapped gasses, and (T-11) magnetic studies.

  7. Beam Heating of Samples: Modeling and Verification. Part 2

    NASA Technical Reports Server (NTRS)

    Kazmierczak, Michael; Gopalakrishnan, Pradeep; Kumar, Raghav; Banerjee Rupak; Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark

    2006-01-01

    Energy absorbed from the X-ray beam by the sample requires cooling by forced convection (i.e. cryostream) to minimize temperature increase and the damage caused to the sample by the X-ray heating. In this presentation we will first review the current theoretical models and recent studies in the literature, which predict the sample temperature rise for a given set of beam parameters. It should be noted that a common weakness of these previous studies is that none of them provide actual experimental confirmation. This situation is now remedied in our investigation where the problem of x-ray sample heating is taken up once more. We have theoretically investigated, and at the same time, in addition to the numerical computations, performed experiments to validate the predictions. We have modeled, analyzed and experimentally tested the temperature rise of a 1 mm diameter glass sphere (sample surrogate) exposed to an intense synchrotron X-ray beam, while it is being cooled in a uniform flow of nitrogen gas. The heat transfer, including external convection and internal heat conduction was theoretically modeled using CFD to predict the temperature variation in the sphere during cooling and while it was subjected to an undulator (ID sector 19) X-ray beam at the APS. The surface temperature of the sphere during the X-ray beam heating was measured using the infrared camera measurement technique described in a previous talk. The temperatures from the numerical predictions and experimental measurements are compared and discussed. Additional results are reported for the two different sphere sizes and for two different supporting pin orientations.

  8. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    PubMed

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  9. Radiation and temperature effects on LDEF fiber optic samples

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Hartmayer, R.; Bergman, L. A.

    1993-01-01

    Results obtained from the JPL Fiber Optics Long Duration Exposure Facility (LDEF) Experiment since the June 1991 Experimenters' Workshop are addressed. Radiation darkening of laboratory control samples and the subsequent annealing was measured in the laboratory for the control samples. The long-time residual loss was compared to the LDEF flight samples and found to be in agreement. The results of laboratory temperature tests on the flight samples, extending over a period of about nine years, including the pre-flight and post-flight analysis periods, are described. The temperature response of the different cable samples varies widely, and appears in two samples to be affected by polymer aging. Conclusions to date are summarized.

  10. Statistical analysis of temperature data sampled at Station-M in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Lorentzen, Torbjørn

    2014-02-01

    The paper analyzes sea temperature data sampled at Station-M in the Norwegian Sea. The data cover the period 1948-2010. The following questions are addressed: What type of stochastic process characterizes the temperature series? Are there any changes or patterns which indicate climate change? Are there any characteristics in the data which can be linked to the shrinking sea-ice in the Arctic area? Can the series be modeled consistently and applied in forecasting of the future sea temperature? The paper applies the following methods: Augmented Dickey-Fuller tests for testing of unit-root and stationarity, ARIMA-models in univariate modeling, cointegration and error-correcting models are applied in estimating short- and long-term dynamics of non-stationary series, Granger-causality tests in analyzing the interaction pattern between the deep and upper layer temperatures, and simultaneous equation systems are applied in forecasting future temperature. The paper shows that temperature at 2000 m Granger-causes temperature at 150 m, and that the 2000 m series can represent an important information carrier of the long-term development of the sea temperature in the geographical area. Descriptive statistics shows that the temperature level has been on a positive trend since the beginning of the 1980s which is also measured in most of the oceans in the North Atlantic. The analysis shows that the temperature series are cointegrated which means they share the same long-term stochastic trend and they do not diverge too far from each other. The measured long-term temperature increase is one of the factors that can explain the shrinking summer sea-ice in the Arctic region. The analysis shows that there is a significant negative correlation between the shrinking sea ice and the sea temperature at Station-M. The paper shows that the temperature forecasts are conditioned on the properties of the stochastic processes, causality pattern between the variables and specification of model

  11. Effects of room temperature aging on two cryogenic temperature sensor models used in aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Krause, John

    2012-06-01

    Cryogenic temperature sensors used in aerospace applications are typically procured far in advance of the mission launch date. Depending upon the program, the temperature sensors may be stored at room temperature for extended periods as installation and groundbased testing can take years before the actual flight. The effects of long term storage at room temperature are sometimes approximated by the use of accelerated aging at temperatures well above room temperature, but this practice can yield invalid results as the sensing material and/or electrical contacting method can be increasingly unstable with higher temperature exposure. To date, little data are available on the effects of extended room temperature aging on sensors commonly used in aerospace applications. This research examines two such temperature sensors models - the Lake Shore Cryotronics, Inc. model CernoxTM and DT-670-SD temperature sensors. Sample groups of each model type have been maintained for ten years or longer with room temperature storage between calibrations. Over an eighteen year period, the CernoxTM temperature sensors exhibited a stability of better than ±20 mK for T<30 K and better than ±0.1% of temperature for T>30 K. Over a ten year period the model DT-670-SD sensors exhibited a stability of better than ±140 mK for T<25 K and better than ±75 mK for T>25 K.

  12. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  13. Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling

    NASA Astrophysics Data System (ADS)

    Awasthi, Shalini; Nair, Nisanth N.

    2017-03-01

    Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques.

  14. AN EVALUATION OF PERSONAL SAMPLING PUMPS IN SUB-ZERO TEMPERATURES

    EPA Science Inventory

    Personal sampling pumps suitable for industrial hygiene surveys were evaluated to discover their characteristics as a function of temperature for temperatures between 25 and -50C. The pumps evaluated were significantly influenced by low temperatures. In general, most provided a s...

  15. Efficiency of Adaptive Temperature-Based Replica Exchange for Sampling Large-Scale Protein Conformational Transitions.

    PubMed

    Zhang, Weihong; Chen, Jianhan

    2013-06-11

    Temperature-based replica exchange (RE) is now considered a principal technique for enhanced sampling of protein conformations. It is also recognized that existence of sharp cooperative transitions (such as protein folding/unfolding) can lead to temperature exchange bottlenecks and significantly reduce the sampling efficiency. Here, we revisit two adaptive temperature-based RE protocols, namely, exchange equalization (EE) and current maximization (CM), that were previously examined using atomistic simulations (Lee and Olson, J. Chem. Physics2011, 134, 24111). Both protocols aim to overcome exchange bottlenecks by adaptively adjusting the simulation temperatures, either to achieve uniform exchange rates (in EE) or to maximize temperature diffusion (CM). By designing a realistic yet computationally tractable coarse-grained protein model, one can sample many reversible folding/unfolding transitions using conventional constant temperature molecular dynamics (MD), standard REMD, EE-REMD, and CM-REMD. This allows rigorous evaluation of the sampling efficiency, by directly comparing the rates of folding/unfolding transitions and convergence of various thermodynamic properties of interest. The results demonstrate that both EE and CM can indeed enhance temperature diffusion compared to standard RE, by ∼3- and over 10-fold, respectively. Surprisingly, the rates of reversible folding/unfolding transitions are similar in all three RE protocols. The convergence rates of several key thermodynamic properties, including the folding stability and various 1D and 2D free energy surfaces, are also similar. Therefore, the efficiency of RE protocols does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational rearrangements. This is particularly true considering that virtually all RE simulations of proteins in practice involve exchange attempt frequencies (∼ps(-1)) that are several orders of magnitude faster than the

  16. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    NASA Astrophysics Data System (ADS)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  17. Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping.

    PubMed

    Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A; Debelius, Justine; Morton, James T; Hyde, Embriette; Robbins-Pianka, Adam; Knight, Rob

    2017-01-01

    The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria , grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., "bloomed") at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called "Deblur" to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has been shown not

  18. The effects of spatial sampling choices on MR temperature measurements.

    PubMed

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  19. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples

    PubMed Central

    Sun, Xiaocun; Flatland, Bente

    2016-01-01

    Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Discussion Canine

  20. Absorbed dose measurement in low temperature samples:. comparative methods using simulated material

    NASA Astrophysics Data System (ADS)

    Garcia, Ruth; Harris, Anthony; Winters, Martell; Howard, Betty; Mellor, Paul; Patil, Deepak; Meiner, Jason

    2004-09-01

    There is a growing need to reliably measure absorbed dose in low temperature samples, especially in the pharmaceutical and tissue banking industries. All dosimetry systems commonly used in the irradiation industry are temperature sensitive. Radiation of low temperature samples, such as those packaged with dry ice, must therefore take these dosimeter temperature effects into consideration. This paper will suggest a method to accurately deliver an absorbed radiation dose using dosimetry techniques designed to abrogate the skewing effects of low temperature environments on existing dosimetry systems.

  1. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  2. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  3. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2,5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  4. Temperature-viscosity models reassessed.

    PubMed

    Peleg, Micha

    2017-05-04

    The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.

  5. Development of an Integrated Thermocouple for the Accurate Sample Temperature Measurement During High Temperature Environmental Scanning Electron Microscopy (HT-ESEM) Experiments.

    PubMed

    Podor, Renaud; Pailhon, Damien; Ravaux, Johann; Brau, Henri-Pierre

    2015-04-01

    We have developed two integrated thermocouple (TC) crucible systems that allow precise measurement of sample temperature when using a furnace associated with an environmental scanning electron microscope (ESEM). Sample temperatures measured with these systems are precise (±5°C) and reliable. The TC crucible systems allow working with solids and liquids (silicate melts or ionic liquids), independent of the gas composition and pressure. These sample holder designs will allow end users to perform experiments at high temperature in the ESEM chamber with high precision control of the sample temperature.

  6. Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping

    PubMed Central

    Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A.; Debelius, Justine; Morton, James T.; Hyde, Embriette; Robbins-Pianka, Adam

    2017-01-01

    ABSTRACT The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria, grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., “bloomed”) at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called “Deblur” to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has

  7. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  8. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  9. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  10. Ultra sound absorption measurements in rock samples at low temperatures

    NASA Technical Reports Server (NTRS)

    Herminghaus, C.; Berckhemer, H.

    1974-01-01

    A new technique, comparable with the reverberation method in room acoustics, is described. It allows Q-measurements at rock samples of arbitrary shape in the frequency range of 50 to 600 kHz in vacuum (.1 mtorr) and at low temperatures (+20 to -180 C). The method was developed in particular to investigate rock samples under lunar conditions. Ultrasound absorption has been measured at volcanics, breccia, gabbros, feldspar and quartz of different grain size and texture yielding the following results: evacuation raises Q mainly through lowering the humidity in the rock. In a dry compact rock, the effect of evacuation is small. With decreasing temperature, Q generally increases. Between +20 and -30 C, Q does not change much. With further decrease of temperature in many cases distinct anomalies appear, where Q becomes frequency dependent.

  11. Modeling of the viscoelastic behavior of a polyimide matrix at elevated temperature

    NASA Astrophysics Data System (ADS)

    Crochon, Thibaut

    Use of Polymer Matrix Composite Materials (PMCMs) in aircraft engines requires materials able to withstand extreme service conditions, such as elevated temperatures, high mechanical loadings and an oxidative environment. In such an environment, the polymer matrix is likely to exhibit a viscoelastic behavior dependent on the mechanical loading and temperature. In addition, the combined effects of elevated temperature and the environment near the engines are likely to increase physical as well as chemical aging. These various parameters need to be taken into consideration for the designer to be able to predict the material behavior over the service life of the components. The main objective of this thesis was to study the viscoelastic behavior of a high temperature polyimide matrix and develop a constitutive theory able to predict the material behavior for every of service condition. Then, the model had to have to be implemented into commercially available finite-element software such as ABAQUS or ANSYS. Firstly, chemical aging of the material at service temperature was studied. To that end, a thermogravimetric analysis of the matrix was conducted on powder samples in air atmosphere. Two kinds of tests were performed: i) kinetic tests in which powder samples were heated at a constant rate until complete sublimation; ii) isothermal tests in which the samples were maintained at a constant temperature for 24 hours. The first tests were used to develop a degradation model, leading to an excellent fit of the experimental data. Then, the model was used to predict the isothermal data but which much less success, particularly for the lowest temperatures. At those temperatures, the chemical degradation was preceded by an oxidation phase which the model was not designed to predict. Other isothermal degradation tests were also performed on tensile tests samples instead of powders. Those tests were conducted at service temperature for a much longer period of time. The samples

  12. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    NASA Astrophysics Data System (ADS)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust

  13. An integrate-over-temperature approach for enhanced sampling.

    PubMed

    Gao, Yi Qin

    2008-02-14

    A simple method is introduced to achieve efficient random walking in the energy space in molecular dynamics simulations which thus enhances the sampling over a large energy range. The approach is closely related to multicanonical and replica exchange simulation methods in that it allows configurations of the system to be sampled in a wide energy range by making use of Boltzmann distribution functions at multiple temperatures. A biased potential is quickly generated using this method and is then used in accelerated molecular dynamics simulations.

  14. Modeling the effect of temperature on survival rate of Salmonella Enteritidis in yogurt.

    PubMed

    Szczawiński, J; Szczawińska, M E; Łobacz, A; Jackowska-Tracz, A

    2014-01-01

    The aim of the study was to determine the inactivation rates of Salmonella Enteritidis in commercially produced yogurt and to generate primary and secondary mathematical models to predict the behaviour of these bacteria during storage at different temperatures. The samples were inoculated with the mixture of three S. Enteritidis strains and stored at 5 degrees C, 10 degrees C, 15 degrees C, 20 degrees C and 25 degrees C for 24 h. The number of salmonellae was determined every two hours. It was found that the number of bacteria decreased linearly with storage time in all samples. Storage temperature and pH of yogurt significantly influenced survival rate of S. Enteritidis (p < 0.05). In samples kept at 5 degrees C the number of salmonellae decreased at the lowest rate, whereas at 25 degrees C the reduction in number of bacteria was the most dynamic. The natural logarithm of mean inactivation rates of Salmonella calculated from primary model was fitted to two secondary models: linear and polynomial. Equations obtained from both secondary models can be applied as a tool for prediction of inactivation rate of Salmonella in yogurt stored under temperature range from 5 to 25 degrees C; however, polynomial model gave the better fit to the experimental data.

  15. Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma

    NASA Astrophysics Data System (ADS)

    Yang, LIU; Yue, TONG; Ying, WANG; Dan, ZHANG; Suyu, LI; Yuanfei, JIANG; Anmin, CHEN; Mingxing, JIN

    2017-12-01

    In this paper, we investigated the influence of sample temperature on the expansion dynamics and the optical emission spectroscopy of laser-induced plasma, and Ge was selected as the test sample. The target was heated from room temperature (22 °C) to 300 °C, and excited in atmospheric environment by using a Q-Switched Nd:YAG pulse laser with the wavelength of 1064 nm. To study the plasma expansion dynamics, we observed the plasma plume at different laser energies (5.0, 7.4 and 9.4 mJ) and different sample temperatures by using time-resolved image. We found that the heated target temperature could accelerate the expansion of plasma plume. Moreover, we also measured the effect of target temperature on the optical emission spectroscopy and signal-to-noise ratio.

  16. Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Candido; Nichols, Kevin

    2013-11-27

    This report describes the preliminary validation of a high-temperature microfluidic chip system for sampling of electrochemical process salt. Electroanalytical and spectroscopic techniques are attractive candidates for improvement through high-throughput sample analysis via miniaturization. Further, microfluidic chip systems are amenable to micro-scale chemical processing such as rapid, automated sample purification to improve sensor performance. The microfluidic chip was tested to determine the feasibility of the system for high temperature applications and conditions under which microfluidic systems can be used to generate salt droplets at process temperature to support development of material balance and control systems in a used fuel treatment facility.more » In FY13, the project focused on testing a quartz microchip device with molten salts at near process temperatures. The equipment was installed in glove box and tested up to 400°C using commercial thermal transfer fluids as the carrier phase. Preliminary tests were carried out with a low-melting halide salt to initially characterize the properties of this novel liquid-liquid system and to investigate the operating regimes for inducing droplet flow within candidate carrier fluids. Initial results show that the concept is viable for high temperature sampling but further development is required to optimize the system to operate with process relevant molten salts.« less

  17. Dual-temperature acoustic levitation and sample transport apparatus

    NASA Technical Reports Server (NTRS)

    Trinh, E.; Robey, J.; Jacobi, N.; Wang, T.

    1986-01-01

    The properties of a dual-temperature resonant chamber to be used for acoustical levitation and positioning have been theoretically and experimentally studied. The predictions of a first-order dissipationless treatment of the generalized wave equation for an inhomogeneous medium are in close agreement with experimental results for the temperature dependence of the resonant mode spectrum and the acoustic pressure distribution, although the measured magnitude of the pressure variations does not correlate well with the calculated one. Ground-based levitation of low-density samples has been demonstrated at 800 C, where steady-state forces up to 700 dyn were generated.

  18. A low temperature scanning force microscope for biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Mats Gustaf Lennart

    1993-05-01

    An SFM has been constructed capable of operating at 143 K. Two contributions to SFM technology are described: a new method of fabricating tips, and new designs of SFM springs that significantly lower the noise level. The SFM has been used to image several biological samples (including collagen, ferritin, RNA, purple membrane) at 143 K and room temperature. No improvement in resolution resulted from 143 K operation; several possible reasons for this are discussed. Possibly sharper tips may help. The 143 K SFM will allow the study of new categories of samples, such as those prepared by freeze-frame, single moleculesmore » (temperature dependence of mechanical properties), etc. The SFM was used to cut single collagen molecules into segments with a precision of {le} 10 nm.« less

  19. Effects of different temperature treatments on biological ice nuclei in snow samples

    NASA Astrophysics Data System (ADS)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  20. Investigations into the low temperature behavior of jet fuels: Visualization, modeling, and viscosity studies

    NASA Astrophysics Data System (ADS)

    Atkins, Daniel L.

    Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during

  1. Modeling the effect of temperature on survival rate of Listeria monocytogenes in yogurt.

    PubMed

    Szczawiński, J; Szczawińska, M E; Łobacz, A; Jackowska-Tracz, A

    2016-01-01

    The aim of the study was to (i) evaluate the behavior of Listeria monocytogenes in a commercially produced yogurt, (ii) determine the survival/inactivation rates of L. monocytogenes during cold storage of yogurt and (iii) to generate primary and secondary mathematical models to predict the behavior of these bacteria during storage at different temperatures. The samples of yogurt were inoculated with the mixture of three L. monocytogenes strains and stored at 3, 6, 9, 12 and 15°C for 16 days. The number of listeriae was determined after 0, 1, 2, 3, 5, 7, 9, 12, 14 and 16 days of storage. From each sample a series of decimal dilutions were prepared and plated onto ALOA agar (agar for Listeria according to Ottaviani and Agosti). It was found that applied temperature and storage time significantly influenced the survival rate of listeriae (p<0.01). The number of L. monocytogenes in all the samples decreased linearly with storage time. The slowest decrease in the number of the bacteria was found in the samples stored at 6°C (D-10 value = 243.9 h), whereas the highest reduction in the number of the bacteria was observed in the samples stored at 15°C (D-10 value = 87.0 h). The number of L. monocytogenes was correlated with the pH value of the samples (p<0.01). The natural logarithm of the mean survival/inactivation rates of L. monocytogenes calculated from the primary model was fitted to two secondary models, namely linear and polynomial. Mathematical equations obtained from both secondary models can be applied as a tool for the prediction of the survival/inactivation rate of L. monocytogenes in yogurt stored under temperature range from 3 to 15°C, however, the polynomial model gave a better fit to the experimental data.

  2. Modelling daily water temperature from air temperature for the Missouri River.

    PubMed

    Zhu, Senlin; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana

    2018-01-01

    The bio-chemical and physical characteristics of a river are directly affected by water temperature, which thereby affects the overall health of aquatic ecosystems. It is a complex problem to accurately estimate water temperature. Modelling of river water temperature is usually based on a suitable mathematical model and field measurements of various atmospheric factors. In this article, the air-water temperature relationship of the Missouri River is investigated by developing three different machine learning models (Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). Standard models (linear regression, non-linear regression, and stochastic models) are also developed and compared to machine learning models. Analyzing the three standard models, the stochastic model clearly outperforms the standard linear model and nonlinear model. All the three machine learning models have comparable results and outperform the stochastic model, with GPR having slightly better results for stations No. 2 and 3, while BA-DT has slightly better results for station No. 1. The machine learning models are very effective tools which can be used for the prediction of daily river temperature.

  3. Simple DNA extraction of urine samples: Effects of storage temperature and storage time.

    PubMed

    Ng, Huey Hian; Ang, Hwee Chen; Hoe, See Ying; Lim, Mae-Lynn; Tai, Hua Eng; Soh, Richard Choon Hock; Syn, Christopher Kiu-Choong

    2018-06-01

    Urine samples are commonly analysed in cases with suspected illicit drug consumption. In events of alleged sample mishandling, urine sample source identification may be necessary. A simple DNA extraction procedure suitable for STR typing of urine samples was established on the Promega Maxwell ® 16 paramagnetic silica bead platform. A small sample volume of 1.7mL was used. Samples were stored at room temperature, 4°C and -20°C for 100days to investigate the influence of storage temperature and time on extracted DNA quantity and success rate of STR typing. Samples stored at room temperature exhibited a faster decline in DNA yield with time and lower typing success rates as compared to those at 4°C and -20°C. This trend can likely be attributed to DNA degradation. In conclusion, this study presents a quick and effective DNA extraction protocol from a small urine volume stored for up to 100days at 4°C and -20°C. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Noncontact true temperature measurement. [of levitated sample using laser pyrometer

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Allen, James L.

    1987-01-01

    A laser pyrometer has been developed for acquiring the true temperature of a levitated sample. The laser beam is first expanded to cover the entire cross-sectional surface of the target. For calibration of such a system, the reflectivity signal of an ideal 0.95 cm diameter gold-coated sphere (reflectivity = 0.99) is used as the reference for any other real targets. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of a blackbody furnace (emissivity = 1.0) at a known, arbitrary temperature. Since the photo sensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. Preliminary results indicate that true temperatures thus obtained are in excellent correlation with thermocouple measured temperatures.

  5. Automated sample exchange and tracking system for neutron research at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Rix, J. E.; Weber, J. K. R.; Santodonato, L. J.; Hill, B.; Walker, L. M.; McPherson, R.; Wenzel, J.; Hammons, S. E.; Hodges, J.; Rennich, M.; Volin, K. J.

    2007-01-01

    An automated system for sample exchange and tracking in a cryogenic environment and under remote computer control was developed. Up to 24 sample "cans" per cycle can be inserted and retrieved in a programed sequence. A video camera acquires a unique identification marked on the sample can to provide a record of the sequence. All operations are coordinated via a LABVIEW™ program that can be operated locally or over a network. The samples are contained in vanadium cans of 6-10mm in diameter and equipped with a hermetically sealed lid that interfaces with the sample handler. The system uses a closed-cycle refrigerator (CCR) for cooling. The sample was delivered to a precooling location that was at a temperature of ˜25K, after several minutes, it was moved onto a "landing pad" at ˜10K that locates the sample in the probe beam. After the sample was released onto the landing pad, the sample handler was retracted. Reading the sample identification and the exchange operation takes approximately 2min. The time to cool the sample from ambient temperature to ˜10K was approximately 7min including precooling time. The cooling time increases to approximately 12min if precooling is not used. Small differences in cooling rate were observed between sample materials and for different sample can sizes. Filling the sample well and the sample can with low pressure helium is essential to provide heat transfer and to achieve useful cooling rates. A resistive heating coil can be used to offset the refrigeration so that temperatures up to ˜350K can be accessed and controlled using a proportional-integral-derivative control loop. The time for the landing pad to cool to ˜10K after it has been heated to ˜240K was approximately 20min.

  6. Geostatistical modeling of riparian forest microclimate and its implications for sampling

    USGS Publications Warehouse

    Eskelson, B.N.I.; Anderson, P.D.; Hagar, J.C.; Temesgen, H.

    2011-01-01

    Predictive models of microclimate under various site conditions in forested headwater stream - riparian areas are poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used riparian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging (OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature (Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for increasing efficiency of microclimate monitoring in riparian areas.

  7. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    NASA Astrophysics Data System (ADS)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  8. High-Pressure, High-Temperature Equations of State Using Fabricated Controlled-Geometry Ni/SiO2 Double Hot-Plate Samples

    NASA Astrophysics Data System (ADS)

    Pigott, J. S.; Ditmer, D. A.; Fischer, R. A.; Reaman, D. M.; Davis, R. J.; Panero, W. R.

    2014-12-01

    To model and predict the structure, dynamics, and composition of Earth's deep interior, accurate and precise measurements of thermal expansion and compressibility are required. The laser-heated diamond-anvil cell (LHDAC) coupled with synchrotron-based x-ray diffraction (XRD) is a powerful tool to determine pressure-volume-temperature (P-V-T) relationships. However, LHDAC experiments may be hampered by non-uniform heating caused by the mixing of transparent materials with opaque laser absorbers. Additionally, radial temperature gradients are exacerbated by small misalignments (1-3 µm) of the x-ray beam with respect to the center of the laser-heated hotspot. We have fabricated three-dimensional, controlled-geometry, double hot-plate samples. In this double hot-plate arrangement, a transparent oxide layer (SiO2) is sandwiched between two laser absorbing layers (Ni) in a single, cohesive sample. These samples were mass manufactured (>105 samples) using a combination of physical vapor deposition, photolithography, wet etching, and plasma etching. The double hot-plate arrangement coupled with the chemical and spatial homogeneity of the laser absorbing layers addresses problems caused by mixtures of transparent and opaque samples. The controlled-geometry samples have dimensions of 50 μm x 50 μm x 1.4 μm. The dimensions of the samples are much larger than the synchrotron x-ray beam. With a heating laser FWHM of ~50 μm, the radial temperature gradients within the volume probed by the x-ray are reduced. We conducted XRD experiments to P > 50 GPa and T > 2200 K at beamline 16-ID-B (HPCAT) of the Advanced Photon Source. Here we present relevant thermal modeling of the LHDAC environment along with Ni and SiO2 P-V-T equations of state. Our photolithography method of sample fabrication can be extended to different materials including but not limited to Fe and MgO.

  9. Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature

    DOEpatents

    Eckels, David E.; Hass, William J.

    1989-05-30

    A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

  10. A surface temperature and moisture parameterization for use in mesoscale numerical models

    NASA Technical Reports Server (NTRS)

    Tremback, C. J.; Kessler, R.

    1985-01-01

    A modified multi-level soil moisture and surface temperature model is presented for use as in defining lower boundary conditions in mesoscale weather models. Account is taken of the hydraulic and thermal diffusion properties of the soil, their variations with soil type, and the mixing ratio at the surface. Techniques are defined for integrating the surface input into the multi-level scheme. Sample simulation runs were performed with the modified model and the original model defined by Pielke, et al. (1977, 1981). The models were applied to regional weather forecasting over soils composed of sand and clay loam. The new form of the model avoided iterations necessary in the earlier version of the model and achieved convergence at reasonable profiles for surface temperature and moisture in regions where the earlier version of the model failed.

  11. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presentedmore » in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.« less

  12. Temperature dependence on the pesticide sampling rate of polar organic chemical integrative samplers (POCIS).

    PubMed

    Yabuki, Yoshinori; Nagai, Takashi; Inao, Keiya; Ono, Junko; Aiko, Nobuyuki; Ohtsuka, Nobutoshi; Tanaka, Hitoshi; Tanimori, Shinji

    2016-10-01

    Laboratory experiments were performed to determine the sampling rates of pesticides for the polar organic chemical integrative samplers (POCIS) used in Japan. The concentrations of pesticides in aquatic environments were estimated from the accumulated amounts of pesticide on POCIS, and the effect of water temperature on the pesticide sampling rates was evaluated. The sampling rates of 48 pesticides at 18, 24, and 30 °C were obtained, and this study confirmed that increasing trend of sampling rates was resulted with increasing water temperature for many pesticides.

  13. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf.

    PubMed

    Searles, J A; Carpenter, J F; Randolph, T W

    2001-07-01

    The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production.

  14. Effect of sample storage temperature and buffer formulation on faecal immunochemical test haemoglobin measurements.

    PubMed

    Symonds, Erin L; Cole, Stephen R; Bastin, Dawn; Fraser, Robert Jl; Young, Graeme P

    2017-12-01

    Objectives Faecal immunochemical test accuracy may be adversely affected when samples are exposed to high temperatures. This study evaluated the effect of two sample collection buffer formulations (OC-Sensor, Eiken) and storage temperatures on faecal haemoglobin readings. Methods Faecal immunochemical test samples returned in a screening programme and with ≥10 µg Hb/g faeces in either the original or new formulation haemoglobin stabilizing buffer were stored in the freezer, refrigerator, or at room temperature (22℃-24℃), and reanalysed after 1-14 days. Samples in the new buffer were also reanalysed after storage at 35℃ and 50℃. Results were expressed as percentage of the initial concentration, and the number of days that levels were maintained to at least 80% was calculated. Results Haemoglobin concentrations were maintained above 80% of their initial concentration with both freezer and refrigerator storage, regardless of buffer formulation or storage duration. Stability at room temperature was significantly better in the new buffer, with haemoglobin remaining above 80% for 20 days compared with six days in the original buffer. Storage at 35℃ or 50℃ in the new buffer maintained haemoglobin above 80% for eight and two days, respectively. Conclusion The new formulation buffer has enhanced haemoglobin stabilizing properties when samples are exposed to temperatures greater than 22℃.

  15. Groundwater temperature estimation and modeling using hydrogeophysics.

    NASA Astrophysics Data System (ADS)

    Nguyen, F.; Lesparre, N.; Hermans, T.; Dassargues, A.; Klepikova, M.; Kemna, A.; Caers, J.

    2017-12-01

    Groundwater temperature may be of use as a state variable proxy for aquifer heat storage, highlighting preferential flow paths, or contaminant remediation monitoring. However, its estimation often relies on scarce temperature data collected in boreholes. Hydrogeophysical methods such as electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) may provide more exhaustive spatial information of the bulk properties of interest than samples from boreholes. If a properly calibrated DTS reading provides direct measurements of the groundwater temperature in the well, ERT requires one to determine the fractional change per degree Celsius. One advantage of this petrophysical relationship is its relative simplicity: the fractional change is often found to be around 0.02 per degree Celcius, and represents mainly the variation of electrical resistivity due to the viscosity effect. However, in presence of chemical and kinetics effects, the variation may also depend on the duration of the test and may neglect reactions occurring between the pore water and the solid matrix. Such effects are not expected to be important for low temperature systems (<30 °C), at least for short experiments. In this contribution, we use different field experiments under natural and forced flow conditions to review developments for the joint use of DTS and ERT to map and monitor the temperature distribution within aquifers, to characterize aquifers in terms of heterogeneity and to better understand processes. We show how temperature time-series measurements might be used to constraint the ERT inverse problem in space and time and how combined ERT-derived and DTS estimation of temperature may be used together with hydrogeological modeling to provide predictions of the groundwater temperature field.

  16. Modeling maximum daily temperature using a varying coefficient regression model

    Treesearch

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  17. Effect of temperature on the breakthrough of a charcoal tube during vinyl chloride monomer sampling.

    PubMed

    Roh, J; Park, Y J; Kim, C N; Lim, N G; Lee, S H; Song, J S; Won, J U; Talaska, G

    2000-01-01

    This study evaluated the effects of temperature on breakthrough of two standard collection media at various concentrations during vinyl chloride monomer (VCM) sampling. The National Institute for Occupational Safety and Health (NIOSH) and Occupational Safety and Health Administration (OSHA) methods were evaluated. To determine whether breakthrough of VCM would occur at the extremes of exposure and temperature that might be encountered in some workplaces, air samples containing 4 ppm (10.24 mg/m3), 8 ppm (20.45 mg/m3), 16 ppm (40.98 mg/m3), and 32 ppm (81.80 mg/m3) of VCM were collected at temperatures of 4, 22, and 40 degrees C. Five liters of air was sampled at the rate of 0.05 L/min for 100 min using the activated charcoal tube recommended by NIOSH. A second tube was added to the sampling train to collect any VCM that might not have been absorbed in the first tube. To collect VCM air samples by the OSHA method, two carbon molecular sieve tubes were connected serially and 3 L of air was sampled at the rate of 0.05 L/min for 60 min. A gas chromatograph with a flame ionization detector and ultra 2 capillary column was used to analyze VCM. Significant breakthrough was found when sampling at higher temperatures with the NIOSH method. No breakthrough was found when samples were collected using the OSHA media at different temperatures and concentrations. Therefore, under hot ambient conditions (>22 degrees C), the possibility of breakthrough should be considered when sampling VCM by the NIOSH method.

  18. Long-term storage of salivary cortisol samples at room temperature

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Ming; Cintron, Nitza M.; Whitson, Peggy A.

    1992-01-01

    Collection of saliva samples for the measurement of cortisol during space flights provides a simple technique for studying changes in adrenal function due microgravity. In the present work, several methods for preserving saliva cortisol at room temperature were investigated using radioimmunoassays for determining cortisol in saliva samples collected on a saliva-collection device called Salivettes. It was found that a pretreatment of Salivettes with citric acid resulted in preserving more than 85 percent of the salivary cortisol for as long as six weeks. The results correlated well with those for a sample stored in a freezer on an untreated Salivette.

  19. An internal reference model-based PRF temperature mapping method with Cramer-Rao lower bound noise performance analysis.

    PubMed

    Li, Cheng; Pan, Xinyi; Ying, Kui; Zhang, Qiang; An, Jing; Weng, Dehe; Qin, Wen; Li, Kuncheng

    2009-11-01

    The conventional phase difference method for MR thermometry suffers from disturbances caused by the presence of lipid protons, motion-induced error, and field drift. A signal model is presented with multi-echo gradient echo (GRE) sequence using a fat signal as an internal reference to overcome these problems. The internal reference signal model is fit to the water and fat signals by the extended Prony algorithm and the Levenberg-Marquardt algorithm to estimate the chemical shifts between water and fat which contain temperature information. A noise analysis of the signal model was conducted using the Cramer-Rao lower bound to evaluate the noise performance of various algorithms, the effects of imaging parameters, and the influence of the water:fat signal ratio in a sample on the temperature estimate. Comparison of the calculated temperature map and thermocouple temperature measurements shows that the maximum temperature estimation error is 0.614 degrees C, with a standard deviation of 0.06 degrees C, confirming the feasibility of this model-based temperature mapping method. The influence of sample water:fat signal ratio on the accuracy of the temperature estimate is evaluated in a water-fat mixed phantom experiment with an optimal ratio of approximately 0.66:1. (c) 2009 Wiley-Liss, Inc.

  20. Effective temperatures of red giants in the APOKASC catalogue and the mixing length calibration in stellar models

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Cassisi, S.; Schiavon, R. P.; Pietrinferni, A.

    2018-04-01

    Red giants in the updated APOGEE-Kepler catalogue, with estimates of mass, chemical composition, surface gravity and effective temperature, have recently challenged stellar models computed under the standard assumption of solar calibrated mixing length. In this work, we critically reanalyse this sample of red giants, adopting our own stellar model calculations. Contrary to previous results, we find that the disagreement between the Teff scale of red giants and models with solar calibrated mixing length disappears when considering our models and the APOGEE-Kepler stars with scaled solar metal distribution. However, a discrepancy shows up when α-enhanced stars are included in the sample. We have found that assuming mass, chemical composition and effective temperature scale of the APOGEE-Kepler catalogue, stellar models generally underpredict the change of temperature of red giants caused by α-element enhancements at fixed [Fe/H]. A second important conclusion is that the choice of the outer boundary conditions employed in model calculations is critical. Effective temperature differences (metallicity dependent) between models with solar calibrated mixing length and observations appear for some choices of the boundary conditions, but this is not a general result.

  1. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2017-08-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  2. OMNY PIN—A versatile sample holder for tomographic measurements at room and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Holler, M.; Raabe, J.; Wepf, R.; Shahmoradian, S. H.; Diaz, A.; Sarafimov, B.; Lachat, T.; Walther, H.; Vitins, M.

    2017-11-01

    Nowadays ptychographic tomography in the hard x-ray regime, i.e., at energies above about 2 keV, is a well-established measurement technique. At the Paul Scherrer Institut, currently two instruments are available: one is measuring at room temperature and atmospheric pressure, and the other, the so-called OMNY (tOMography Nano crYo) instrument, is operating at ultra-high vacuum and offering cryogenic sample temperatures down to 10 K. In this manuscript, we present the sample mounts that were developed for these instruments. Aside from excellent mechanical stability and thermal conductivity, they also offer highly reproducible mounting. Various types were developed for different kinds of samples and are presented in detail, including examples of how specimens can be mounted on these holders. We also show the first hard x-ray ptychographic tomography measurements of high-pressure frozen biological samples, in the present case Chlamydomonas cells, the related sample pins and preparation steps. For completeness, we present accessories such as transportation containers for both room temperature and cryogenic samples and a gripper mechanism for automatic sample changing. The sample mounts are not limited to x-ray tomography or hard x-ray energies, and we believe that they can be very useful for other instrumentation projects.

  3. A regional neural network model for predicting mean daily river water temperature

    USGS Publications Warehouse

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  4. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air.

    PubMed

    Bastistella, Luciane; Rousset, Patrick; Aviz, Antonio; Caldeira-Pires, Armando; Humbert, Gilles; Nogueira, Manoel

    2018-02-09

    New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens , Cyclobalanopsis glauca , Trigonostemon huangmosun , and Bambusa vulgaris , and involved five relative humidity conditions (22, 43, 75, 84, and 90%), two mass samples (0.1 and 1 g), and two particle sizes (powder and piece). Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  5. Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.

    2011-01-01

    Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.

  6. Application of a temperature-dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiation-induced temperature changes in biological samples.

    PubMed

    Chen, Yuen Y; Wood, Andrew W

    2009-10-01

    We have applied a non-contact method for studying the temperature changes produced by radiofrequency (RF) radiation specifically to small biological samples. A temperature-dependent fluorescent dye, Rhodamine B, as imaged by laser scanning confocal microscopy (LSCM) was used to do this. The results were calibrated against real-time temperature measurements from fiber optic probes, with a calibration factor of 3.4% intensity change degrees C(-1) and a reproducibility of +/-6%. This non-contact method provided two-dimensional and three-dimensional images of temperature change and distributions in biological samples, at a spatial resolution of a few micrometers and with an estimated absolute precision of around 1.5 degrees C, with a differential precision of 0.4 degree C. Temperature rise within tissue was found to be non-uniform. Estimates of specific absorption rate (SAR) from absorbed power measurements were greater than those estimated from rate of temperature rise, measured at 1 min intervals, probably because this interval is too long to permit accurate estimation of initial temperature rise following start of RF exposure. Future experiments will aim to explore this.

  7. Modeling abundance effects in distance sampling

    USGS Publications Warehouse

    Royle, J. Andrew; Dawson, D.K.; Bates, S.

    2004-01-01

    Distance-sampling methods are commonly used in studies of animal populations to estimate population density. A common objective of such studies is to evaluate the relationship between abundance or density and covariates that describe animal habitat or other environmental influences. However, little attention has been focused on methods of modeling abundance covariate effects in conventional distance-sampling models. In this paper we propose a distance-sampling model that accommodates covariate effects on abundance. The model is based on specification of the distance-sampling likelihood at the level of the sample unit in terms of local abundance (for each sampling unit). This model is augmented with a Poisson regression model for local abundance that is parameterized in terms of available covariates. Maximum-likelihood estimation of detection and density parameters is based on the integrated likelihood, wherein local abundance is removed from the likelihood by integration. We provide an example using avian point-transect data of Ovenbirds (Seiurus aurocapillus) collected using a distance-sampling protocol and two measures of habitat structure (understory cover and basal area of overstory trees). The model yields a sensible description (positive effect of understory cover, negative effect on basal area) of the relationship between habitat and Ovenbird density that can be used to evaluate the effects of habitat management on Ovenbird populations.

  8. The Construction and Validation of All-Atom Bulk-Phase Models of Amorphous Polymers Using the TIGER2/TIGER3 Empirical Sampling Method

    PubMed Central

    Li, Xianfeng; Murthy, Sanjeeva; Latour, Robert A.

    2011-01-01

    A new empirical sampling method termed “temperature intervals with global exchange of replicas and reduced radii” (TIGER3) is presented and demonstrated to efficiently equilibrate entangled long-chain molecular systems such as amorphous polymers. The TIGER3 algorithm is a replica exchange method in which simulations are run in parallel over a range of temperature levels at and above a designated baseline temperature. The replicas sampled at temperature levels above the baseline are run through a series of cycles with each cycle containing four stages – heating, sampling, quenching, and temperature level reassignment. The method allows chain segments to pass through one another at elevated temperature levels during the sampling stage by reducing the van der Waals radii of the atoms, thus eliminating chain entanglement problems. Atomic radii are then returned to their regular values and re-equilibrated at elevated temperature prior to quenching to the baseline temperature. Following quenching, replicas are compared using a Metropolis Monte Carlo exchange process for the construction of an approximate Boltzmann-weighted ensemble of states and then reassigned to the elevated temperature levels for additional sampling. Further system equilibration is performed by periodic implementation of the previously developed TIGER2 algorithm between cycles of TIGER3, which applies thermal cycling without radii reduction. When coupled with a coarse-grained modeling approach, the combined TIGER2/TIGER3 algorithm yields fast equilibration of bulk-phase models of amorphous polymer, even for polymers with complex, highly branched structures. The developed method was tested by modeling the polyethylene melt. The calculated properties of chain conformation and chain segment packing agreed well with published data. The method was also applied to generate equilibrated structural models of three increasingly complex amorphous polymer systems: poly(methyl methacrylate), poly

  9. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts

    NASA Astrophysics Data System (ADS)

    Gao, Jianrong; Kao, Andrew; Bojarevics, Valdis; Pericleous, Koulis; Galenko, Peter K.; Alexandrov, Dmitri V.

    2017-08-01

    Melt flow is often quoted as the reason for a discrepancy between experiment and theory on dendritic growth kinetics at low undercoolings. But this flow effect is not justified for glass-fluxed melts where the flow field is weaker. In the present work, we modeled the thermal history, flow pattern and dendritic structure of a glass-fluxed nickel sample by magnetohydrodynamics calculations. First, the temperature distribution and flow structure in the molten and undercooled melt were simulated by reproducing the observed thermal history of the sample prior to solidification. Then the dendritic structure and surface temperature of the recalescing sample were simulated. These simulations revealed a large thermal gradient crossing the sample, which led to an underestimation of the real undercooling for dendritic growth in the bulk volume of the sample. By accounting for this underestimation, we recalculated the dendritic tip velocities in the glass-fluxed nickel melt using a theory of three-dimensional dendritic growth with convection and concluded an improved agreement between experiment and theory.

  10. Determination of temperature dependence of full matrix material constants of PZT-8 piezoceramics using only one sample.

    PubMed

    Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu

    2017-08-15

    Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.

  11. Thermospheric temperature, density, and composition: New models

    NASA Technical Reports Server (NTRS)

    Jacchia, L. G.

    1977-01-01

    The models essentially consist of two parts: the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation. For the basic static models, tables are given for heights from 90 to 2,500 km and for exospheric temperatures from 500 to 2600 K. In the formulae for the variations, an attempt has been made to represent the changes in composition observed by mass spectrometers on the OGO 6 and ESRO 4 satellites.

  12. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions.

    PubMed

    Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E

    2016-05-01

    The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken. Copyright © 2015

  13. Multiaxial Temperature- and Time-Dependent Failure Model

    NASA Technical Reports Server (NTRS)

    Richardson, David; McLennan, Michael; Anderson, Gregory; Macon, David; Batista-Rodriquez, Alicia

    2003-01-01

    A temperature- and time-dependent mathematical model predicts the conditions for failure of a material subjected to multiaxial stress. The model was initially applied to a filled epoxy below its glass-transition temperature, and is expected to be applicable to other materials, at least below their glass-transition temperatures. The model is justified simply by the fact that it closely approximates the experimentally observed failure behavior of this material: The multiaxiality of the model has been confirmed (see figure) and the model has been shown to be applicable at temperatures from -20 to 115 F (-29 to 46 C) and to predict tensile failures of constant-load and constant-load-rate specimens with failure times ranging from minutes to months..

  14. Temperature modeling of laser-irradiated azo-polymer thin films.

    PubMed

    Yager, Kevin G; Barrett, Christopher J

    2004-01-08

    Azobenzene polymer thin films exhibit reversible surface mass transport when irradiated with a light intensity and/or polarization gradient, although the exact mechanism remains unknown. In order to address the role of thermal effects in the surface relief grating formation process peculiar to azo polymers, a cellular automaton simulation was developed to model heat flow in thin films undergoing laser irradiation. Typical irradiation intensities of 50 mW/cm2 resulted in film temperature rises on the order of 5 K, confirmed experimentally. The temperature gradient between the light maxima and minima was found, however, to stabilize at only 10(-4) K within 2 micros. These results indicate that thermal effects play a negligible role during inscription, for films of any thickness. Experiments monitoring surface relief grating formation on substrates of different thermal conductivity confirm that inscription is insensitive to film temperature. Further simulations suggest that high-intensity pulsed irradiation leads to destructive temperatures and sample ablation, not to reversible optical mass transport. (c) 2004 American Institute of Physics

  15. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability.

    PubMed

    Kim, Jungdae; Nam, Hyoungdo; Qin, Shengyong; Kim, Sang-ui; Schroeder, Allan; Eom, Daejin; Shih, Chih-Kang

    2015-09-01

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.

  16. Developing a New Thermophysical Model for Lunar Regolith Soil at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Woods-Robinson, R.; Siegler, M. A.; Paige, D. A.

    2016-12-01

    The thermophysical properties of the lunar regolith soil have been thoroughly investigated within the temperature range of 100 - 400 K. Extensive laboratory measurements of temperature-dependent thermal conductivity and specific heat have been performed on lunar samples collected from the Apollo and Luna missions. However, recent thermal emission measurements from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment have revealed temperatures near the poles as low 20 K, far below where existing thermophysical models begin to break down. In the absence of comprehensive laboratory measurements of lunar soil thermal properties at these low temperatures (20 - 100 K), we investigate solid state theory and lunar simulant materials to derive a physically-based theoretical model of specific heat and thermal conductivity in lunar soils in the full range 20 - 400 K. The primary distinctions between this model and its predecessors are: The focus on soil bulk density as a master variable The temperature dependence of the solid conduction component of thermal conductivity at low temperatures, and The concept that the composition and modal petrology of grains - both amorphous and crystalline components - could significantly influence thermal properties of the bulk soil. The simplest version of this model, which assumes that the soil behaves predominantly as a homogeneous particulate material composed of amorphous grains, shows that at low temperatures (20 - 100 K), specific heat is likely higher than expected from current models ( 0.027 J/gK at 20 K) and that thermal conductivity is almost an order of magnitude lower than has generally been assumed in the literature.Any higher-order approximation is difficult at this stage; the thermal conductivity at low temperature could vary drastically depending on the constituent grain materials, their degree of crystallinity, and contributions from phonon scattering modes, among other factors. We use a one

  17. Modeling stream temperature in the Anthropocene: An earth system modeling approach

    DOE PAGES

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu; ...

    2015-10-29

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  18. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    NASA Astrophysics Data System (ADS)

    Fernandez-Lopez, Maria; Anastasakis, Kostas; De Jong, Wiebren; Valverde, Jose Luis; Sanchez-Silva, Luz

    2017-11-01

    Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C) on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM) was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC). A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  19. Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model

    NASA Astrophysics Data System (ADS)

    Qi, Shengqi; Hou, Deyi; Luo, Jian

    2017-09-01

    This study presents a numerical model based on field data to simulate groundwater flow in both the aquifer and the well-bore for the low-flow sampling method and the well-volume sampling method. The numerical model was calibrated to match well with field drawdown, and calculated flow regime in the well was used to predict the variation of dissolved oxygen (DO) concentration during the purging period. The model was then used to analyze sampling representativeness and sampling time. Site characteristics, such as aquifer hydraulic conductivity, and sampling choices, such as purging rate and screen length, were found to be significant determinants of sampling representativeness and required sampling time. Results demonstrated that: (1) DO was the most useful water quality indicator in ensuring groundwater sampling representativeness in comparison with turbidity, pH, specific conductance, oxidation reduction potential (ORP) and temperature; (2) it is not necessary to maintain a drawdown of less than 0.1 m when conducting low flow purging. However, a high purging rate in a low permeability aquifer may result in a dramatic decrease in sampling representativeness after an initial peak; (3) the presence of a short screen length may result in greater drawdown and a longer sampling time for low-flow purging. Overall, the present study suggests that this new numerical model is suitable for describing groundwater flow during the sampling process, and can be used to optimize sampling strategies under various hydrogeological conditions.

  20. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature.

    PubMed

    Nuin, Maider; Alfaro, Begoña; Cruz, Ziortza; Argarate, Nerea; George, Susie; Le Marc, Yvan; Olley, June; Pin, Carmen

    2008-10-31

    Kinetic models were developed to predict the microbial spoilage and the sensory quality of fresh fish and to evaluate the efficiency of a commercial time-temperature integrator (TTI) label, Fresh Check(R), to monitor shelf life. Farmed turbot (Psetta maxima) samples were packaged in PVC film and stored at 0, 5, 10 and 15 degrees C. Microbial growth and sensory attributes were monitored at regular time intervals. The response of the Fresh Check device was measured at the same temperatures during the storage period. The sensory perception was quantified according to a global sensory indicator obtained by principal component analysis as well as to the Quality Index Method, QIM, as described by Rahman and Olley [Rahman, H.A., Olley, J., 1984. Assessment of sensory techniques for quality assessment of Australian fish. CSIRO Tasmanian Regional Laboratory. Occasional paper n. 8. Available from the Australian Maritime College library. Newnham. Tasmania]. Both methods were found equally valid to monitor the loss of sensory quality. The maximum specific growth rate of spoilage bacteria, the rate of change of the sensory indicators and the rate of change of the colour measurements of the TTI label were modelled as a function of temperature. The temperature had a similar effect on the bacteria, sensory and Fresh Check kinetics. At the time of sensory rejection, the bacterial load was ca. 10(5)-10(6) cfu/g. The end of shelf life indicated by the Fresh Check label was close to the sensory rejection time. The performance of the models was validated under fluctuating temperature conditions by comparing the predicted and measured values for all microbial, sensory and TTI responses. The models have been implemented in a Visual Basic add-in for Excel called "Fish Shelf Life Prediction (FSLP)". This program predicts sensory acceptability and growth of spoilage bacteria in fish and the response of the TTI at constant and fluctuating temperature conditions. The program is freely

  1. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    PubMed Central

    Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637

  2. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    NASA Astrophysics Data System (ADS)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.

    2013-04-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie

  3. On modeling and measuring the temperature of the z ∼ 5 intergalactic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lidz, Adam; Malloy, Matthew, E-mail: alidz@sas.upenn.edu

    2014-06-20

    The temperature of the low-density intergalactic medium (IGM) at high redshift is sensitive to the timing and nature of hydrogen and He II reionization, and can be measured from Lyman-alpha (Lyα) forest absorption spectra. Since the memory of intergalactic gas to heating during reionization gradually fades, measurements as close as possible to reionization are desirable. In addition, measuring the IGM temperature at sufficiently high redshifts should help to isolate the effects of hydrogen reionization since He II reionization starts later, at lower redshift. Motivated by this, we model the IGM temperature at z ≳ 5 using semi-numeric models of patchymore » reionization. We construct mock Lyα forest spectra from these models and consider their observable implications. We find that the small-scale structure in the Lyα forest is sensitive to the temperature of the IGM even at redshifts where the average absorption in the forest is as high as 90%. We forecast the accuracy at which the z ≳ 5 IGM temperature can be measured using existing samples of high resolution quasar spectra, and find that interesting constraints are possible. For example, an early reionization model in which reionization ends at z ∼ 10 should be distinguishable—at high statistical significance—from a lower redshift model where reionization completes at z ∼ 6. We discuss improvements to our modeling that may be required to robustly interpret future measurements.« less

  4. Sample weight and digestion temperature as critical factors in mercury determination in fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadiq, M.; Zaidi, T.H.; Al-Mohana, H.

    The concern about mercury (Hg) pollution of the marine environment started with the well publicized case of Minimata (Japan) where in the 1950s several persons died or became seriously ill after consuming fish or shellfish containing high levels of methylmercury. It is now accepted that Hg contaminated seafoods constitute a hazard to human health. To safeguard humans, accurate determination of Hg in marine biota is, therefore, very important. Two steps are involved in the determination of total Hg in biological materials: (a) decomposition of organic matrix (sample preparation), and (b) determination of Hg in aliquot samples. Although the procedures formore » determining Hg using the cold vapor technique are well established, sample preparation procedures have not been standardized. In general, samples of marine biota have been prepared by digesting different weights at different temperatures, by using mixtures of different chemicals and of varying quantities, and by digesting for variable durations. The objectives of the present paper were to evaluate the effects of sample weights and digestion temperatures on Hg determination in fish.« less

  5. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    PubMed

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.

  6. Sample sizes and model comparison metrics for species distribution models

    Treesearch

    B.B. Hanberry; H.S. He; D.C. Dey

    2012-01-01

    Species distribution models use small samples to produce continuous distribution maps. The question of how small a sample can be to produce an accurate model generally has been answered based on comparisons to maximum sample sizes of 200 observations or fewer. In addition, model comparisons often are made with the kappa statistic, which has become controversial....

  7. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungdae; Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749; Nam, Hyoungdo

    2015-09-15

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper andmore » stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.« less

  8. The Influence of Temperature on Time-Dependent Deformation and Failure in Granite: A Mesoscale Modeling Approach

    NASA Astrophysics Data System (ADS)

    Xu, T.; Zhou, G. L.; Heap, Michael J.; Zhu, W. C.; Chen, C. F.; Baud, Patrick

    2017-09-01

    An understanding of the influence of temperature on brittle creep in granite is important for the management and optimization of granitic nuclear waste repositories and geothermal resources. We propose here a two-dimensional, thermo-mechanical numerical model that describes the time-dependent brittle deformation (brittle creep) of low-porosity granite under different constant temperatures and confining pressures. The mesoscale model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The mesoscale physico-mechanical parameters for the model were first determined using a trial-and-error method (until the modeled output accurately captured mechanical data from constant strain rate experiments on low-porosity granite at three different confining pressures). The thermo-physical parameters required for the model, such as specific heat capacity, coefficient of linear thermal expansion, and thermal conductivity, were then determined from brittle creep experiments performed on the same low-porosity granite at temperatures of 23, 50, and 90 °C. The good agreement between the modeled output and the experimental data, using a unique set of thermo-physico-mechanical parameters, lends confidence to our numerical approach. Using these parameters, we then explore the influence of temperature, differential stress, confining pressure, and sample homogeneity on brittle creep in low-porosity granite. Our simulations show that increases in temperature and differential stress increase the creep strain rate and therefore reduce time-to-failure, while increases in confining pressure and sample homogeneity decrease creep strain rate and increase time-to-failure. We anticipate that the

  9. Modeling uncertainty: quicksand for water temperature modeling

    USGS Publications Warehouse

    Bartholow, John M.

    2003-01-01

    Uncertainty has been a hot topic relative to science generally, and modeling specifically. Modeling uncertainty comes in various forms: measured data, limited model domain, model parameter estimation, model structure, sensitivity to inputs, modelers themselves, and users of the results. This paper will address important components of uncertainty in modeling water temperatures, and discuss several areas that need attention as the modeling community grapples with how to incorporate uncertainty into modeling without getting stuck in the quicksand that prevents constructive contributions to policy making. The material, and in particular the reference, are meant to supplement the presentation given at this conference.

  10. Study of Low Temperature Baking Effect on Field Emission on Nb Samples Treated by BEP, EP, and BCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andy Wu, Song Jin, Robert Rimmer, Xiang Yang Lu, K. Zhao, Laura MacIntyre, Robert Ike

    Field emission is still one of the major obstacles facing Nb superconducting radio frequency (SRF) community for allowing Nb SRF cavities to reach routinely accelerating gradient of 35 MV/m that is required for the international linear collider. Nowadays, the well know low temperature backing at 120 oC for 48 hours is a common procedure used in the SRF community to improve the high field Q slope. However, some cavity production data have showed that the low temperature baking may induce field emission for cavities treated by EP. On the other hand, an earlier study of field emission on Nb flatmore » samples treated by BCP showed an opposite conclusion. In this presentation, the preliminary measurements of Nb flat samples treated by BEP, EP, and BCP via our unique home-made scanning field emission microscope before and after the low temperature baking are reported. Some correlations between surface smoothness and the number of the observed field emitters were found. The observed experimental results can be understood, at least partially, by a simple model that involves the change of the thickness of the pent-oxide layer on Nb surfaces.« less

  11. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    PubMed

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  12. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  13. Design and evaluation of a new Peltier-cooled laser ablation cell with on-sample temperature control.

    PubMed

    Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-01-27

    A new custom-built Peltier-cooled laser ablation cell is described. The proposed cryogenic cell combines a small internal volume (20 cm(3)) with a unique and reliable on-sample temperature control. The use of a flexible temperature sensor, directly located on the sample surface, ensures a rigorous sample temperature control throughout the entire analysis time and allows instant response to any possible fluctuation. In this way sample integrity and, therefore, reproducibility can be guaranteed during the ablation. The refrigeration of the proposed cryogenic cell combines an internal refrigeration system, controlled by a sensitive thermocouple, with an external refrigeration system. Cooling of the sample is directly carried out by 8 small (1 cm×1 cm) Peltier elements placed in a circular arrangement in the base of the cell. These Peltier elements are located below a copper plate where the sample is placed. Due to the small size of the cooling electronics and their circular allocation it was possible to maintain a peephole under the sample for illumination allowing a much better visualization of the sample, a factor especially important when working with structurally complex tissue sections. The analytical performance of the cryogenic cell was studied using a glass reference material (SRM NIST 612) at room temperature and at -20°C. The proposed cell design shows a reasonable signal washout (signal decay within less than 10 s to background level), high sensitivity and good signal stability (in the range 6.6-11.7%). Furthermore, high precision (0.4-2.6%) and accuracy (0.3-3.9%) in the isotope ratio measurements were also observed operating the cell both at room temperature and at -20°C. Finally, experimental results obtained for the cell application to qualitative elemental imaging of structurally complex tissue samples (e.g. eye sections from a native frozen porcine eye and fresh flower leaves) demonstrate that working in cryogenic conditions is critical in such

  14. Assimilation of Surface Temperature in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1998-01-01

    Hydrological models have been calibrated and validated using catchment streamflows. However, using a point measurement does not guarantee correct spatial distribution of model computed heat fluxes, soil moisture and surface temperatures. With the advent of satellites in the late 70s, surface temperature is being measured two to four times a day from various satellite sensors and different platforms. The purpose of this paper is to demonstrate use of satellite surface temperature in (a) validation of model computed surface temperatures and (b) assimilation of satellite surface temperatures into a hydrological model in order to improve the prediction accuracy of soil moistures and heat fluxes. The assimilation is carried out by comparing the satellite and the model produced surface temperatures and setting the "true"temperature midway between the two values. Based on this "true" surface temperature, the physical relationships of water and energy balance are used to reset the other variables. This is a case of nudging the water and energy balance variables so that they are consistent with each other and the true" surface temperature. The potential of this assimilation scheme is demonstrated in the form of various experiments that highlight the various aspects. This study is carried over the Red-Arkansas basin in the southern United States (a 5 deg X 10 deg area) over a time period of a year (August 1987 - July 1988). The land surface hydrological model is run on an hourly time step. The results show that satellite surface temperature assimilation improves the accuracy of the computed surface soil moisture remarkably.

  15. Temperature modelling and prediction for activated sludge systems.

    PubMed

    Lippi, S; Rosso, D; Lubello, C; Canziani, R; Stenstrom, M K

    2009-01-01

    Temperature is an important factor affecting biomass activity, which is critical to maintain efficient biological wastewater treatment, and also physiochemical properties of mixed liquor as dissolved oxygen saturation and settling velocity. Controlling temperature is not normally possible for treatment systems but incorporating factors impacting temperature in the design process, such as aeration system, surface to volume ratio, and tank geometry can reduce the range of temperature extremes and improve the overall process performance. Determining how much these design or up-grade options affect the tank temperature requires a temperature model that can be used with existing design methodologies. This paper presents a new steady state temperature model developed by incorporating the best aspects of previously published models, introducing new functions for selected heat exchange paths and improving the method for predicting the effects of covering aeration tanks. Numerical improvements with embedded reference data provide simpler formulation, faster execution, easier sensitivity analyses, using an ordinary spreadsheet. The paper presents several cases to validate the model.

  16. An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Quigley, K. W.; Roberts, D. A.; Miller, D.

    2017-12-01

    Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those

  17. An Accurate Temperature Correction Model for Thermocouple Hygrometers 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred; de Jager, James M.

    1982-01-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241

  18. Study of Aerothermodynamic Modeling Issues Relevant to High-Speed Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.

    2014-01-01

    This paper examines the application of state-of-the-art coupled ablation and radiation simulations to highspeed sample return vehicles, such as those returning from Mars or an asteroid. A defining characteristic of these entries is that the surface recession rates and temperatures are driven by nonequilibrium convective and radiative heating through a boundary layer with significant surface blowing and ablation products. Measurements relevant to validating the simulation of these phenomena are reviewed and the Stardust entry is identified as providing the best relevant measurements. A coupled ablation and radiation flowfield analysis is presented that implements a finite-rate surface chemistry model. Comparisons between this finite-rate model and a equilibrium ablation model show that, while good agreement is seen for diffusion-limited oxidation cases, the finite-rate model predicts up to 50% lower char rates than the equilibrium model at sublimation conditions. Both the equilibrium and finite rate models predict significant negative mass flux at the surface due to sublimation of atomic carbon. A sensitivity analysis to flowfield and surface chemistry rates show that, for a sample return capsule at 10, 12, and 14 km/s, the sublimation rates for C and C3 provide the largest changes to the convective flux, radiative flux, and char rate. A parametric uncertainty analysis of the radiative heating due to radiation modeling parameters indicates uncertainties ranging from 27% at 10 km/s to 36% at 14 km/s. Applying the developed coupled analysis to the Stardust entry results in temperatures within 10% of those inferred from observations, and final recession values within 20% of measurements, which improves upon the 60% over-prediction at the stagnation point obtained through an uncoupled analysis. Emission from CN Violet is shown to be over-predicted by nearly and order-of-magnitude, which is consistent with the results of previous independent analyses. Finally, the

  19. Modelling Cerebral Blood Flow and Temperature Using a Vascular Porous Model

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Thrippleton, Michael; Marshall, Ian; Harris, Bridget; Andrews, Peter; Valluri, Prashant

    2016-11-01

    Macro-modelling of cerebral blood flow can assist in determining the impact of temperature intervention to reduce permanent tissue damage during instances of brain trauma. Here we present a 3D two phase fluid-porous model for simulating blood flow through the capillary region linked to intersecting 1D arterial and venous vessel trees. This combined vasculature porous (VaPor) model simulates both flow and energy balances, including heat from metabolism, using a vasculature extracted from MRI data which are expanded upon using a tree generation algorithm. Validation of temperature balance has been achieved using rodent brain data. Direct flow validation is not as straight forward due to the method used in determining regional cerebral blood flow (rCBF). In-vivo measurements are achieved using a tracer, which disagree with direct measurements of simulated flow. However, by modelling a virtual tracer, rCBF values are obtained that agree with those found in literature. Temperature profiles generated with the VaPor model show a reduction in core brain temperature after cooling the scalp not seen previously in other models.

  20. Mathematical modeling of sample stacking methods in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Horek, Jon

    Gradient focusing methods are a general class of experimental techniques used to simultaneously separate and increase the cross-sectionally averaged concentration of charged particle mixtures. In comparison, Field Amplified Sample Stacking (FASS) techniques first concentrate the collection of molecules before separating them. Together, we denote gradient focusing and FASS methods "sample stacking" and study the dynamics of a specific method, Temperature Gradient Focusing (TGF), in which an axial temperature gradient is applied along a channel filled with weak buffer. Gradients in electroosmotic fluid flow and electrophoretic species velocity create the simultaneous separating and concentrating mechanism mentioned above. In this thesis, we begin with the observation that very little has been done to model the dynamics of gradient focusing, and proceed to solve the fundamental equations of fluid mechanics and scalar transport, assuming the existence of slow axial variations and the Taylor-Aris dispersion coefficient. In doing so, asymptotic methods reduce the equations from 3D to 1D, and we arrive at a simple 1D model which can be used to predict the transient evolution of the cross-sectionally averaged analyte concentration. In the second half of this thesis, we run several numerical focusing experiments with a 3D finite volume code. Comparison of the 1D theory and 3D simulations illustrates not only that the asymptotic theory converges as a certain parameter tends to zero, but also that fairly large axial slip velocity gradients lead to quite small errors in predicted steady variance. Additionally, we observe that the axial asymmetry of the electrophoretic velocity model leads to asymmetric peak shapes, a violation of the symmetric Gaussians predicted by the 1D theory. We conclude with some observations on the effect of Peclet number and gradient strength on the performance of focusing experiments, and describe a method for experimental optimization. Such knowledge

  1. West Flank Coso, CA FORGE 3D temperature model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104˚C was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20˚C was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73˚C/km (4˚F/100’) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20˚C surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6˚C (20˚F), or one contour interval, of the

  2. Elevated body temperature is linked to fatigue in an Italian sample of relapsing-remitting multiple sclerosis patients.

    PubMed

    Leavitt, V M; De Meo, E; Riccitelli, G; Rocca, M A; Comi, G; Filippi, M; Sumowski, J F

    2015-11-01

    Elevated body temperature was recently reported for the first time in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy controls. In addition, warmer body temperature was associated with worse fatigue. These findings are highly novel, may indicate a novel pathophysiology for MS fatigue, and therefore warrant replication in a geographically separate sample. Here, we investigated body temperature and its association to fatigue in an Italian sample of 44 RRMS patients and 44 age- and sex-matched healthy controls. Consistent with our original report, we found elevated body temperature in the RRMS sample compared to healthy controls. Warmer body temperature was associated with worse fatigue, thereby supporting the notion of endogenous temperature elevations in patients with RRMS as a novel pathophysiological factor underlying fatigue. Our findings highlight a paradigm shift in our understanding of the effect of heat in RRMS, from exogenous (i.e., Uhthoff's phenomenon) to endogenous. Although randomized controlled trials of cooling treatments (i.e., aspirin, cooling garments) to reduce fatigue in RRMS have been successful, consideration of endogenously elevated body temperature as the underlying target will enhance our development of novel treatments.

  3. A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pristavu, G.; Brezeanu, G.; Badila, M.

    2015-06-29

    Ni Schottky contacts on SiC have a nonideal behavior, with strong temperature dependence of the electrical parameters, caused by a mixed barrier on the contact area and interface states. A simple analytical model that establishes a quantitative correlation between Schottky contact parameter variation with temperature and barrier height non-uniformity is proposed. A Schottky contact surface with double Schottky barrier is considered. The main model parameters are the lower barrier (Φ{sub Bn,l}) and a p factor which quantitatively evaluates the barrier non-uniformity on the Schottky contact area. The model is validated on Ni/4H-SiC Schottky contacts, post metallization sintered at high temperatures.more » The measured I{sub F}–V{sub F}–T characteristics, selected so as not to be affected by interface states, were used for model correlation. An inhomogeneous double Schottky barrier (with both nickel silicide and Ni droplets at the interface) is formed by a rapid thermal annealing (RTA) at 750 °C. High values of the p parameter are obtained from samples annealed at this temperature, using the proposed model. A significant improvement in the electrical properties occurs following RTA at 800 °C. The expansion of the Ni{sub 2}Si phase on the whole contact area is evinced by an X-Ray diffraction investigation. In this case, the p factor is much lower, attesting the uniformity of the contact. The model makes it possible to evaluate the real Schottky barrier, for a homogenous Schottky contact. Using data measured on samples annealed at 800 °C, a true barrier height of around 1.73 V has been obtained for Ni{sub 2}Si/4H-SiC Schottky contacts.« less

  4. A measurement and modeling study of temperature in living and fixed tissue during and after radiofrequency exposure.

    PubMed

    Bermingham, Jacqueline F; Chen, Yuen Y; McIntosh, Robert L; Wood, Andrew W

    2014-04-01

    Fluorescent intensity of the dye Rhodamine-B (Rho-B) decreases with increasing temperature. We show that in fresh rat brain tissue samples in a custom-made radiofrequency (RF) tissue exposure device, temperature rise due to RF radiation as measured by absorbed dye correlates well with temperature measured nearby by fiber optic probes. Estimates of rate of initial temperature rise (using both probe measurement and the dye method) accord well with estimates of local specific energy absorption rate (SAR). We also modeled the temperature characteristics of the exposure device using combined electromagnetic and finite-difference thermal modeling. Although there are some differences in the rate of cooling following cessation of RF exposure, there is reasonable agreement between modeling and both probe measurement and dye estimation of temperature. The dye method also permits measurement of regional temperature rise (due to RF). There is no clear evidence of local differential RF absorption, but further refinement of the method may be needed to fully clarify this issue. © 2014 Wiley Periodicals, Inc.

  5. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  6. Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations▿

    PubMed Central

    Coleman, Matthew C.; Fish, Russell; Block, David E.

    2007-01-01

    A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology. PMID:17616615

  7. A simple vibrating sample magnetometer for macroscopic samples

    NASA Astrophysics Data System (ADS)

    Lopez-Dominguez, V.; Quesada, A.; Guzmán-Mínguez, J. C.; Moreno, L.; Lere, M.; Spottorno, J.; Giacomone, F.; Fernández, J. F.; Hernando, A.; García, M. A.

    2018-03-01

    We here present a simple model of a vibrating sample magnetometer (VSM). The system allows recording magnetization curves at room temperature with a resolution of the order of 0.01 emu and is appropriated for macroscopic samples. The setup can be mounted with different configurations depending on the requirements of the sample to be measured (mass, saturation magnetization, saturation field, etc.). We also include here examples of curves obtained with our setup and comparison curves measured with a standard commercial VSM that confirms the reliability of our device.

  8. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 2. [sample problem library guide

    NASA Technical Reports Server (NTRS)

    Jackson, C. E., Jr.

    1977-01-01

    A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.

  9. A simple method to predict body temperature of small reptiles from environmental temperature.

    PubMed

    Vickers, Mathew; Schwarzkopf, Lin

    2016-05-01

    To study behavioral thermoregulation, it is useful to use thermal sensors and physical models to collect environmental temperatures that are used to predict organism body temperature. Many techniques involve expensive or numerous types of sensors (cast copper models, or temperature, humidity, radiation, and wind speed sensors) to collect the microhabitat data necessary to predict body temperatures. Expense and diversity of requisite sensors can limit sampling resolution and accessibility of these methods. We compare body temperature predictions of small lizards from iButtons, DS18B20 sensors, and simple copper models, in both laboratory and natural conditions. Our aim was to develop an inexpensive yet accurate method for body temperature prediction. Either method was applicable given appropriate parameterization of the heat transfer equation used. The simplest and cheapest method was DS18B20 sensors attached to a small recording computer. There was little if any deficit in precision or accuracy compared to other published methods. We show how the heat transfer equation can be parameterized, and it can also be used to predict body temperature from historically collected data, allowing strong comparisons between current and previous environmental temperatures using the most modern techniques. Our simple method uses very cheap sensors and loggers to extensively sample habitat temperature, improving our understanding of microhabitat structure and thermal variability with respect to small ectotherms. While our method was quite precise, we feel any potential loss in accuracy is offset by the increase in sample resolution, important as it is increasingly apparent that, particularly for small ectotherms, habitat thermal heterogeneity is the strongest influence on transient body temperature.

  10. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  11. A generalized conditional heteroscedastic model for temperature downscaling

    NASA Astrophysics Data System (ADS)

    Modarres, R.; Ouarda, T. B. M. J.

    2014-11-01

    This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.

  12. Impact of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization method.

    PubMed

    do Nascimento, Cássio; dos Santos, Janine Navarro; Pedrazzi, Vinícius; Pita, Murillo Sucena; Monesi, Nadia; Ribeiro, Ricardo Faria; de Albuquerque, Rubens Ferreira

    2014-01-01

    Molecular diagnosis methods have been largely used in epidemiological or clinical studies to detect and quantify microbial species that may colonize the oral cavity in healthy or disease. The preservation of genetic material from samples remains the major challenge to ensure the feasibility of these methodologies. Long-term storage may compromise the final result. The aim of this study was to evaluate the effect of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization. Saliva and supragingival biofilm were taken from 10 healthy subjects, aliquoted (n=364) and processed according to proposed protocols: immediate processing and processed after 2 or 4 weeks, and 6 or 12 months of storage at 4°C, -20°C and -80°C. Either total or individual microbial counts were recorded in lower values for samples processed after 12 months of storage, irrespective of temperatures tested. Samples stored up to 6 months at cold temperatures showed similar counts to those immediately processed. The microbial incidence was also significantly reduced in samples stored during 12 months in all temperatures. Temperature and time of oral samples storage have relevant impact in the detection and quantification of bacterial and fungal species by Checkerboard DNA-DNA hybridization method. Samples should be processed immediately after collection or up to 6 months if conserved at cold temperatures to avoid false-negative results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The use of variable temperature and magic-angle sample spinning in studies of fulvic acids

    USGS Publications Warehouse

    Earl, W.L.; Wershaw, R. L.; Thorn, K.A.

    1987-01-01

    Intensity distortions and poor signal to noise in the cross-polarization magic-angle sample spinning NMR of fulvic acids were investigated and attributed to molecular mobility in these ostensibly "solid" materials. We have shown that inefficiencies in cross polarization can be overcome by lowering the sample temperature to about -60??C. These difficulties can be generalized to many other synthetic and natural products. The use of variable temperature and cross-polarization intensity as a function of contact time can yield valuable qualitative information which can aid in the characterization of many materials. ?? 1987.

  14. Improving the Performance of Temperature Index Snowmelt Model of SWAT by Using MODIS Land Surface Temperature Data

    PubMed Central

    Yang, Yan; Onishi, Takeo; Hiramatsu, Ken

    2014-01-01

    Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of determination (R 2) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the temperature index model in an area with sparse air temperature observations. PMID:25165746

  15. Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models.

    PubMed

    Blutke, Andreas; Wanke, Rüdiger

    2018-03-06

    In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical

  16. A stream temperature model for the Peace-Athabasca River basin

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  17. Modeling Low-temperature Geochemical Processes

    NASA Astrophysics Data System (ADS)

    Nordstrom, D. K.

    2003-12-01

    Geochemical modeling has become a popular and useful tool for a wide number of applications from research on the fundamental processes of water-rock interactions to regulatory requirements and decisions regarding permits for industrial and hazardous wastes. In low-temperature environments, generally thought of as those in the temperature range of 0-100 °C and close to atmospheric pressure (1 atm=1.01325 bar=101,325 Pa), complex hydrobiogeochemical reactions participate in an array of interconnected processes that affect us, and that, in turn, we affect. Understanding these complex processes often requires tools that are sufficiently sophisticated to portray multicomponent, multiphase chemical reactions yet transparent enough to reveal the main driving forces. Geochemical models are such tools. The major processes that they are required to model include mineral dissolution and precipitation; aqueous inorganic speciation and complexation; solute adsorption and desorption; ion exchange; oxidation-reduction; or redox; transformations; gas uptake or production; organic matter speciation and complexation; evaporation; dilution; water mixing; reaction during fluid flow; reaction involving biotic interactions; and photoreaction. These processes occur in rain, snow, fog, dry atmosphere, soils, bedrock weathering, streams, rivers, lakes, groundwaters, estuaries, brines, and diagenetic environments. Geochemical modeling attempts to understand the redistribution of elements and compounds, through anthropogenic and natural means, for a large range of scale from nanometer to global. "Aqueous geochemistry" and "environmental geochemistry" are often used interchangeably with "low-temperature geochemistry" to emphasize hydrologic or environmental objectives.Recognition of the strategy or philosophy behind the use of geochemical modeling is not often discussed or explicitly described. Plummer (1984, 1992) and Parkhurst and Plummer (1993) compare and contrast two approaches for

  18. A Soil Temperature Model for Closed Canopied Forest Stands

    Treesearch

    James M. Vose; Wayne T. Swank

    1991-01-01

    A microcomputer-based soil temperature model was developed to predict temperature at the litter-soil interface and soil temperatures at three depths (0.10 m, 0.20 m, and 1.25 m) under closed forest canopies. Comparisons of predicted and measured soil temperatures indicated good model performance under most conditions. When generalized parameters describing soil...

  19. Modeling abundance using hierarchical distance sampling

    USGS Publications Warehouse

    Royle, Andy; Kery, Marc

    2016-01-01

    In this chapter, we provide an introduction to classical distance sampling ideas for point and line transect data, and for continuous and binned distance data. We introduce the conditional and the full likelihood, and we discuss Bayesian analysis of these models in BUGS using the idea of data augmentation, which we discussed in Chapter 7. We then extend the basic ideas to the problem of hierarchical distance sampling (HDS), where we have multiple point or transect sample units in space (or possibly in time). The benefit of HDS in practice is that it allows us to directly model spatial variation in population size among these sample units. This is a preeminent concern of most field studies that use distance sampling methods, but it is not a problem that has received much attention in the literature. We show how to analyze HDS models in both the unmarked package and in the BUGS language for point and line transects, and for continuous and binned distance data. We provide a case study of HDS applied to a survey of the island scrub-jay on Santa Cruz Island, California.

  20. Annual cycle and temperature dependence of pinene oxidation products and other water-soluble organic compounds in coarse and fine aerosol samples

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse particulate matter were collected over a period of one year and analyzed for water-soluble organic compounds, including the pinene oxidation products pinic acid, pinonic acid, 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) and a variety of dicarboxylic acids (C5-C16) and nitrophenols. Seasonal variations and other characteristic features are discussed with regard to aerosol sources and sinks and data from other studies and regions. The ratios of adipic acid (C6) and phthalic acid (Ph) to azelaic acid (C9) indicate that the investigated aerosols samples were mainly influenced by biogenic sources. An Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature. Model calculations suggest that the temperature dependence is largely due to enhanced emissions and OH radical concentrations at elevated temperatures, whereas the influence of gas-particle partitioning appears to play a minor role. Enhanced ratios of pinic acid to 3-MBTCA indicate strong chemical aging of the investigated aerosols in summer and spring. Acknowledgment: The authors would like to thank M. Claeys for providing synthetic 3-methyl-1,2,3-butanetricarboxylic acid standards for LC-MS analysis and J. Fröhlich for providing filter samples and related information.

  1. Graphite sample preparation for AMS in a high pressure and temperature press

    USGS Publications Warehouse

    Rubin, M.; Mysen, B.O.; Polach, H.

    1984-01-01

    A high pressure-high temperature press is used to make target material for accelerator mass spectrometry. Graphite was produced from typical 14C samples including oxalic acid and carbonates. Beam strength of 12C was generally adequate, but random radioactive contamination by 14C made age measurements impractical. ?? 1984.

  2. Monte Carlo grain growth modeling with local temperature gradients

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Maniatty, A. M.; Zheng, C.; Wen, J. T.

    2017-09-01

    This work investigated the development of a Monte Carlo (MC) simulation approach to modeling grain growth in the presence of non-uniform temperature field that may vary with time. We first scale the MC model to physical growth processes by fitting experimental data. Based on the scaling relationship, we derive a grid site selection probability (SSP) function to consider the effect of a spatially varying temperature field. The SSP function is based on the differential MC step, which allows it to naturally consider time varying temperature fields too. We verify the model and compare the predictions to other existing formulations (Godfrey and Martin 1995 Phil. Mag. A 72 737-49 Radhakrishnan and Zacharia 1995 Metall. Mater. Trans. A 26 2123-30) in simple two-dimensional cases with only spatially varying temperature fields, where the predicted grain growth in regions of constant temperature are expected to be the same as for the isothermal case. We also test the model in a more realistic three-dimensional case with a temperature field varying in both space and time, modeling grain growth in the heat affected zone of a weld. We believe the newly proposed approach is promising for modeling grain growth in material manufacturing processes that involves time-dependent local temperature gradient.

  3. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  4. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope.

    PubMed

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  5. Possible causes of data model discrepancy in the temperature history of the last Millennium.

    PubMed

    Neukom, Raphael; Schurer, Andrew P; Steiger, Nathan J; Hegerl, Gabriele C

    2018-05-15

    Model simulations and proxy-based reconstructions are the main tools for quantifying pre-instrumental climate variations. For some metrics such as Northern Hemisphere mean temperatures, there is remarkable agreement between models and reconstructions. For other diagnostics, such as the regional response to volcanic eruptions, or hemispheric temperature differences, substantial disagreements between data and models have been reported. Here, we assess the potential sources of these discrepancies by comparing 1000-year hemispheric temperature reconstructions based on real-world paleoclimate proxies with climate-model-based pseudoproxies. These pseudoproxy experiments (PPE) indicate that noise inherent in proxy records and the unequal spatial distribution of proxy data are the key factors in explaining the data-model differences. For example, lower inter-hemispheric correlations in reconstructions can be fully accounted for by these factors in the PPE. Noise and data sampling also partly explain the reduced amplitude of the response to external forcing in reconstructions compared to models. For other metrics, such as inter-hemispheric differences, some, although reduced, discrepancy remains. Our results suggest that improving proxy data quality and spatial coverage is the key factor to increase the quality of future climate reconstructions, while the total number of proxy records and reconstruction methodology play a smaller role.

  6. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  7. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGES

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  8. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  9. A physically based model of global freshwater surface temperature

    NASA Astrophysics Data System (ADS)

    Beek, Ludovicus P. H.; Eikelboom, Tessa; Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  10. Modeling sea-surface temperature and its variability

    NASA Technical Reports Server (NTRS)

    Sarachik, E. S.

    1985-01-01

    A brief review is presented of the temporal scales of sea surface temperature variability. Progress in modeling sea surface temperature, and remaining obstacles to the understanding of the variability is discussed.

  11. Graphite sample preparation for AMS in a high pressure and temperature press

    USGS Publications Warehouse

    Rubin, Meyer; Mysen, Bjorn O.; Polach, Henry

    1984-01-01

    A high pressure-temperature press is used to make target material for accelerator mass spectrometry. Graphite was produced from typical **1**4C samples including oxalic acid and carbonates. Beam strength of **1**2C was generally adequate, but random radioactive contamination by **1**4C made age measurements impractical.

  12. THE TWO-LEVEL MODEL AT FINITE-TEMPERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, A.L.

    1980-07-01

    The finite-temperature HFB cranking equations are solved for the two-level model. The pair gap, moment of inertia and internal energy are determined as functions of spin and temperature. Thermal excitations and rotations collaborate to destroy the pair correlations. Raising the temperature eliminates the backbending effect and improves the HFB approximation.

  13. Simulating canopy temperature for modelling heat stress in cereals

    USDA-ARS?s Scientific Manuscript database

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  14. Friedberg-Lee model at finite temperature and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao Hong; CCAST; Yao Minjie

    2008-06-15

    The Friedberg-Lee model is studied at finite temperature and density. By using the finite temperature field theory, the effective potential of the Friedberg-Lee model and the bag constant B(T) and B(T,{mu}) have been calculated at different temperatures and densities. It is shown that there is a critical temperature T{sub C}{approx_equal}106.6 MeV when {mu}=0 MeV and a critical chemical potential {mu}{approx_equal}223.1 MeV for fixing the temperature at T=50 MeV. We also calculate the soliton solutions of the Friedberg-Lee model at finite temperature and density. It turns out that when T{<=}T{sub C} (or {mu}{<=}{mu}{sub C}), there is a bag constant B(T) [ormore » B(T,{mu})] and the soliton solutions are stable. However, when T>T{sub C} (or {mu}>{mu}{sub C}) the bag constant B(T)=0 MeV [or B(T,{mu})=0 MeV] and there is no soliton solution anymore, therefore, the confinement of quarks disappears quickly.« less

  15. Temperature sensitivity of a numerical pollen forecast model

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone

    2016-04-01

    Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.

  16. Temperature Calculations in the Coastal Modeling System

    DTIC Science & Technology

    2017-04-01

    tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature...during a clear (i.e., cloudless) sky (Wm-2); CLDC is the cloud cover fraction (0-1.0); SWR is the surface reflection coefficient; and SHDf is the

  17. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments

    PubMed Central

    Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard

    2017-01-01

    Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775

  18. Kinetic modelling of ascorbic and dehydroascorbic acids concentrations in a model solution at different temperatures and oxygen contents.

    PubMed

    Gómez Ruiz, Braulio; Roux, Stéphanie; Courtois, Francis; Bonazzi, Catherine

    2018-04-01

    The degradation kinetics of vitamin C (ascorbic and dehydroascorbic acids, AA and DHA) were determined under controlled conditions of temperature (50-90 °C) and oxygen concentrations in the gas phase (10-30% mol/mol) using a specific reactor. The degradation of vitamin C in malate buffer (20 mM, pH 3.8), mimetic of an apple puree, was assessed by sampling at regular intervals and spectrophotometric quantification of AA and DHA levels at 243 nm. The results showed that AA degradation increased with temperature and oxygen concentration, while DHA exhibited the behaviour of an intermediate species, appearing then disappearing. A kinetic model was successfully developed to simulate the experimental data by two first order consecutive reactions. The first one represented AA degradation as a function of temperature and concentration in dissolved oxygen, and the second reflected DHA degradation as a function of temperature only, both adequately following Arrhenius' law. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Numerical Modeling of High-Temperature Corrosion Processes

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1995-01-01

    Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing varying amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.

  20. Improving Shade Modelling in a Regional River Temperature Model Using Fine-Scale LIDAR Data

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Loicq, P.; Moatar, F.; Beaufort, A.; Melin, E.; Jullian, Y.

    2015-12-01

    Air temperature is often considered as a proxy of the stream temperature to model the distribution areas of aquatic species water temperature is not available at a regional scale. To simulate the water temperature at a regional scale (105 km²), a physically-based model using the equilibrium temperature concept and including upstream-downstream propagation of the thermal signal was developed and applied to the entire Loire basin (Beaufort et al., submitted). This model, called T-NET (Temperature-NETwork) is based on a hydrographical network topology. Computations are made hourly on 52,000 reaches which average 1.7 km long in the Loire drainage basin. The model gives a median Root Mean Square Error of 1.8°C at hourly time step on the basis of 128 water temperature stations (2008-2012). In that version of the model, tree shadings is modelled by a constant factor proportional to the vegetation cover on 10 meters sides the river reaches. According to sensitivity analysis, improving the shade representation would enhance T-NET accuracy, especially for the maximum daily temperatures, which are currently not very well modelized. This study evaluates the most efficient way (accuracy/computing time) to improve the shade model thanks to 1-m resolution LIDAR data available on tributary of the LoireRiver (317 km long and an area of 8280 km²). Two methods are tested and compared: the first one is a spatially explicit computation of the cast shadow for every LIDAR pixel. The second is based on averaged vegetation cover characteristics of buffers and reaches of variable size. Validation of the water temperature model is made against 4 temperature sensors well spread along the stream, as well as two airborne thermal infrared imageries acquired in summer 2014 and winter 2015 over a 80 km reach. The poster will present the optimal length- and crosswise scale to characterize the vegetation from LIDAR data.

  1. A Temperature-Dependent Battery Model for Wireless Sensor Networks.

    PubMed

    Rodrigues, Leonardo M; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-02-22

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.

  2. Temperature dependence of standard model CP violation.

    PubMed

    Brauner, Tomáš; Taanila, Olli; Tranberg, Anders; Vuorinen, Aleksi

    2012-01-27

    We analyze the temperature dependence of CP violation effects in the standard model by determining the effective action of its bosonic fields, obtained after integrating out the fermions from the theory and performing a covariant gradient expansion. We find nonvanishing CP violating terms starting at the sixth order of the expansion, albeit only in the C-odd-P-even sector, with coefficients that depend on quark masses, Cabibbo-Kobayashi-Maskawa matrix elements, temperature and the magnitude of the Higgs field. The CP violating effects are observed to decrease rapidly with temperature, which has important implications for the generation of a matter-antimatter asymmetry in the early Universe. Our results suggest that the cold electroweak baryogenesis scenario may be viable within the standard model, provided the electroweak transition temperature is at most of order 1 GeV.

  3. A new weighted mean temperature model in China

    NASA Astrophysics Data System (ADS)

    Liu, Jinghong; Yao, Yibin; Sang, Jizhang

    2018-01-01

    The Global Positioning System (GPS) has been applied in meteorology to monitor the change of Precipitable Water Vapor (PWV) in atmosphere, transformed from Zenith Wet Delay (ZWD). A key factor in converting the ZWD into the PWV is the weighted mean temperature (Tm), which has a direct impact on the accuracy of the transformation. A number of Bevis-type models, like Tm -Ts and Tm -Ts,Ps type models, have been developed by statistics approaches, and are not able to clearly depict the relationship between Tm and the surface temperature, Ts . A new model for Tm , called weighted mean temperature norm model (abbreviated as norm model), is derived as a function of Ts , the lapse rate of temperature, δ, the tropopause height, htrop , and the radiosonde station height, hs . It is found that Tm is better related to Ts through an intermediate temperature. The small effects of lapse rate can be ignored and the tropopause height be obtained from an empirical model. Then the norm model is reduced to a simplified form, which causes fewer loss of accuracy and needs two inputs, Ts and hs . In site-specific fittings, the norm model performs much better, with RMS values reduced averagely by 0.45 K and the Mean of Absolute Differences (MAD) values by 0.2 K. The norm model is also found more appropriate than the linear models to fit Tm in a large area, not only with the RMS value reduced from 4.3 K to 3.80 K, correlation coefficient R2 increased from 0.84 to 0.88, and MAD decreased from 3.24 K to 2.90 K, but also with the distribution of simplified model values to be more reasonable. The RMS and MAD values of the differences between reference and computed PWVs are reduced by on average 16.3% and 14.27%, respectively, when using the new norm models instead of the linear model.

  4. Errors of five-day mean surface wind and temperature conditions due to inadequate sampling

    NASA Technical Reports Server (NTRS)

    Legler, David M.

    1991-01-01

    Surface meteorological reports of wind components, wind speed, air temperature, and sea-surface temperature from buoys located in equatorial and midlatitude regions are used in a simulation of random sampling to determine errors of the calculated means due to inadequate sampling. Subsampling the data with several different sample sizes leads to estimates of the accuracy of the subsampled means. The number N of random observations needed to compute mean winds with chosen accuracies of 0.5 (N sub 0.5) and 1.0 (N sub 1,0) m/s and mean air and sea surface temperatures with chosen accuracies of 0.1 (N sub 0.1) and 0.2 (N sub 0.2) C were calculated for each 5-day and 30-day period in the buoy datasets. Mean values of N for the various accuracies and datasets are given. A second-order polynomial relation is established between N and the variability of the data record. This relationship demonstrates that for the same accuracy, N increases as the variability of the data record increases. The relationship is also independent of the data source. Volunteer-observing ship data do not satisfy the recommended minimum number of observations for obtaining 0.5 m/s and 0.2 C accuracy for most locations. The effect of having remotely sensed data is discussed.

  5. Intercomparison of thermal-optical method with different temperature protocols: Implications from source samples and solvent extraction

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Duan, Feng-kui; He, Ke-bin; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2012-12-01

    Three temperature protocols with different peak inert mode temperature (Tpeak-inert) were compared based on source and ambient samples (both untreated and extracted using a mixture of hexane, methylene chloride, and acetone) collected in Beijing, China. The ratio of EC580 (elemental carbon measured by the protocol with a Tpeak-inert of 580 °C; similar hereinafter) to EC850 could be as high as 4.8 for biomass smoke samples whereas the ratio was about 1.0 for diesel and gasoline exhaust samples. The EC580 to EC850 ratio averaged 1.95 ± 0.89 and 1.13 ± 0.20 for the untreated and extracted ambient samples, whereas the EC580 to EC650 ratio of ambient samples was 1.22 ± 0.10 and 1.20 ± 0.12 before and after extraction. It was suggested that there are two competing mechanisms for the effects of Tpeak-inert on the EC results such that when Tpeak-inert is increased, one mechanism tends to decrease EC by increasing the amount of charring whereas the other tends to increase EC through promoting more charring to evolve before native EC. Results from this study showed that EC does not always decrease when increasing the peak inert mode temperature. Moreover, reducing the charring amount could improve the protocols agreement on EC measurements, whereas temperature protocol would not influence the EC results if no charring is formed. This study also demonstrated the benefits of allowing for the OC and EC split occurring in the inert mode when a high Tpeak-inert is used (e.g., 850 °C).

  6. Meth math: modeling temperature responses to methamphetamine

    PubMed Central

    Molkov, Yaroslav I.; Zaretskaia, Maria V.

    2014-01-01

    Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants. PMID:24500434

  7. Meth math: modeling temperature responses to methamphetamine.

    PubMed

    Molkov, Yaroslav I; Zaretskaia, Maria V; Zaretsky, Dmitry V

    2014-04-15

    Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.

  8. A Model for Temperature Fluctuations in a Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Bisignano, A.; Devenish, B. J.

    2015-11-01

    We present a hybrid Lagrangian stochastic model for buoyant plume rise from an isolated source that includes the effects of temperature fluctuations. The model is based on that of Webster and Thomson (Atmos Environ 36:5031-5042, 2002) in that it is a coupling of a classical plume model in a crossflow with stochastic differential equations for the vertical velocity and temperature (which are themselves coupled). The novelty lies in the addition of the latter stochastic differential equation. Parametrizations of the plume turbulence are presented that are used as inputs to the model. The root-mean-square temperature is assumed to be proportional to the difference between the centreline temperature of the plume and the ambient temperature. The constant of proportionality is tuned by comparison with equivalent statistics from large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and linear stratification. We compare plume trajectories for a wide range of crossflow velocities and find that the model generally compares well with the equivalent LES results particularly when added mass is included in the model. The exception occurs when the crossflow velocity component becomes very small. Comparison of the scalar concentration, both in terms of the height of the maximum concentration and its vertical spread, shows similar behaviour. The model is extended to allow for realistic profiles of ambient wind and temperature and the results are compared with LES of the plume that emanated from the explosion and fire at the Buncefield oil depot in 2005.

  9. A Temperature-Dependent Battery Model for Wireless Sensor Networks

    PubMed Central

    Rodrigues, Leonardo M.; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments. PMID:28241444

  10. Thermal Infrared Spectra of a Suite of Forsterite Samples and Ab-initio Modelling of theirs Spectra

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Stangarone, C.; Helbert, J.; Tribaudino, M.; Prencipe, M.

    2017-12-01

    Forsterite is the dominating component in olivine, a major constituent in ultrafemic rocks, as well as planetary bodies. Messenger X-ray spectrometer has shown that Mg-rich silicate minerals, such as enstatite and forsterite, dominate Mercury's surface (Weider et al 2012). A careful and detailed acquaintance with the forsterite spectral features and their dependence wrt environmental conditions on Mercury is needed to interpret the remote sensing data from previous and forthcoming missions. We propose an experimental vs calculation approach to reproduce and describe the spectral features of forsterite. TIR emissivity measurements are performed by the Planetary Spectroscopy Laboratory (PSL) of DLR. PSL offers the unique capability to measure the emissivity of samples at temperature up to 1000K under vacuum conditions. TIR emissivity and reflectance measurements are performed on 11 olivine samples having a different composition within the forsterite-fayalite series. When available, the sample has been measured in 2 different grain sizes (<25µm and 125-250µm ranges). Emissivity measurements are taken for temperatures from 300K to 900K step 100K in the 1-100µm spectral range. Modelling is based on ab initio calculation techniques, which allow reproducing properties of crystals, at any P/T condition, with the least possible amount of a priori empirical information. Spectra are calculated evaluating vibrational frequencies at different volume cell, here 0K, 300K and 1000K (extreme situations), taking into account zero point effects. The aim of this work is to study experimentally the effects of temperature, composition and grain sizes on emissivity band minima shifts. The outcomes will benefit the modelling of emissivity spectra with ab initio methods, already successfully enabling to foresee the bands shift due to temperature and composition, but not taking into account band shape due to grain size variations. Considering the chameleon-like effects of Mercury surface

  11. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats.

    PubMed

    Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A

    2003-01-15

    To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.

  12. Modeling soil temperature change in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Debolskiy, M. V.; Nicolsky, D.; Romanovsky, V. E.; Muskett, R. R.; Panda, S. K.

    2017-12-01

    Increasing demand for assessment of climate change-induced permafrost degradation and its consequences promotes creation of high-resolution modeling products of soil temperature changes. This is especially relevant for areas with highly vulnerable warm discontinuous permafrost in the Western Alaska. In this study, we apply ecotype-based modeling approach to simulate high-resolution permafrost distribution and its temporal dynamics in Seward Peninsula, Alaska. To model soil temperature dynamics, we use a transient soil heat transfer model developed at the Geophysical Institute Permafrost Laboratory (GIPL-2). The model solves one dimensional nonlinear heat equation with phase change. The developed model is forced with combination of historical climate and different future scenarios for 1900-2100 with 2x2 km resolution prepared by Scenarios Network for Alaska and Arctic Planning (2017). Vegetation, snow and soil properties are calibrated by ecotype and up-scaled by using Alaska Existing Vegetation Type map for Western Alaska (Flemming, 2015) with 30x30 m resolution provided by Geographic Information Network of Alaska (UAF). The calibrated ecotypes cover over 75% of the study area. We calibrate the model using a data assimilation technique utilizing available observations of air, surface and sub-surface temperatures and snow cover collected by various agencies and research groups (USGS, Geophysical Institute, USDA). The calibration approach takes into account a natural variability between stations in the same ecotype and finds an optimal set of model parameters (snow and soil properties) within the study area. This approach allows reduction in microscale heterogeneity and aggregated soil temperature data from shallow boreholes which is highly dependent on local conditions. As a result of this study we present a series of preliminary high resolution maps for the Seward Peninsula showing changes in the active layer depth and ground temperatures for the current climate

  13. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples

    NASA Astrophysics Data System (ADS)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  14. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples.

    PubMed

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  15. New temperature model of the Netherlands from new data and novel modelling methodology

    NASA Astrophysics Data System (ADS)

    Bonté, Damien; Struijk, Maartje; Békési, Eszter; Cloetingh, Sierd; van Wees, Jan-Diederik

    2017-04-01

    Deep geothermal energy has grown in interest in Western Europe in the last decades, for direct use but also, as the knowledge of the subsurface improves, for electricity generation. In the Netherlands, where the sector took off with the first system in 2005, geothermal energy is seen has a key player for a sustainable future. The knowledge of the temperature subsurface, together with the available flow from the reservoir, is an important factor that can determine the success of a geothermal energy project. To support the development of deep geothermal energy system in the Netherlands, we have made a first assessment of the subsurface temperature based on thermal data but also on geological elements (Bonté et al, 2012). An outcome of this work was ThermoGIS that uses the temperature model. This work is a revision of the model that is used in ThermoGIS. The improvement from the first model are multiple, we have been improving not only the dataset used for the calibration and structural model, but also the methodology trough an improved software (called b3t). The temperature dataset has been updated by integrating temperature on the newly accessible wells. The sedimentary description in the basin has been improved by using an updated and refined structural model and an improved lithological definition. A major improvement in from the methodology used to perform the modelling, with b3t the calibration is made not only using the lithospheric parameters but also using the thermal conductivity of the sediments. The result is a much more accurate definition of the parameters for the model and a perfected handling of the calibration process. The result obtain is a precise and improved temperature model of the Netherlands. The thermal conductivity variation in the sediments associated with geometry of the layers is an important factor of temperature variations and the influence of the Zechtein salt in the north of the country is important. In addition, the radiogenic heat

  16. Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.

    PubMed

    Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale

    2016-08-01

    Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. © The Author(s) 2016.

  17. Analytical modelling of temperature effects on an AMPA-type synapse.

    PubMed

    Kufel, Dominik S; Wojcik, Grzegorz M

    2018-05-11

    It was previously reported, that temperature may significantly influence neural dynamics on the different levels of brain function. Thus, in computational neuroscience, it would be useful to make models scalable for a wide range of various brain temperatures. However, lack of experimental data and an absence of temperature-dependent analytical models of synaptic conductance does not allow to include temperature effects at the multi-neuron modeling level. In this paper, we propose a first step to deal with this problem: A new analytical model of AMPA-type synaptic conductance, which is able to incorporate temperature effects in low-frequency stimulations. It was constructed based on Markov model description of AMPA receptor kinetics using the set of coupled ODEs. The closed-form solution for the set of differential equations was found using uncoupling assumption (introduced in the paper) with few simplifications motivated both from experimental data and from Monte Carlo simulation of synaptic transmission. The model may be used for computationally efficient and biologically accurate implementation of temperature effects on AMPA receptor conductance in large-scale neural network simulations. As a result, it may open a wide range of new possibilities for researching the influence of temperature on certain aspects of brain functioning.

  18. The stability of hydrogen ion and specific conductance in filtered wet-deposition samples stored at ambient temperatures

    USGS Publications Warehouse

    Gordon, J.D.; Schroder, L.J.; Morden-Moore, A. L.; Bowersox, V.C.

    1995-01-01

    Separate experiments by the U.S. Geological Survey (USGS) and the Illinois State Water Survey Central Analytical Laboratory (CAL) independently assessed the stability of hydrogen ion and specific conductance in filtered wet-deposition samples stored at ambient temperatures. The USGS experiment represented a test of sample stability under a diverse range of conditions, whereas the CAL experiment was a controlled test of sample stability. In the experiment by the USGS, a statistically significant (?? = 0.05) relation between [H+] and time was found for the composited filtered, natural, wet-deposition solution when all reported values are included in the analysis. However, if two outlying pH values most likely representing measurement error are excluded from the analysis, the change in [H+] over time was not statistically significant. In the experiment by the CAL, randomly selected samples were reanalyzed between July 1984 and February 1991. The original analysis and reanalysis pairs revealed that [H+] differences, although very small, were statistically different from zero, whereas specific-conductance differences were not. Nevertheless, the results of the CAL reanalysis project indicate there appears to be no consistent, chemically significant degradation in sample integrity with regard to [H+] and specific conductance while samples are stored at room temperature at the CAL. Based on the results of the CAL and USGS studies, short-term (45-60 day) stability of [H+] and specific conductance in natural filtered wet-deposition samples that are shipped and stored unchilled at ambient temperatures was satisfactory.

  19. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1997-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red- Arkansas basin in the Southwestern United States (31 deg 50 min N - 36 deg N, 94 deg 30 min W - 104 deg 30 min W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  20. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1999-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red-Arkansas basin in the Southwestern United States (31 degs 50 sec N - 36 degrees N, 94 degrees 30 seconds W - 104 degrees 3 seconds W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  1. Mathematical modeling of high and low temperature heat pipes

    NASA Technical Reports Server (NTRS)

    Chi, S. W.

    1971-01-01

    Mathematical models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are appended. These programs enable the performance of heat pipes with wrapped-screen, rectangular-groove or screen-covered rectangular-groove wick to be predicted.

  2. Applications of a New England stream temperature model to ...

    EPA Pesticide Factsheets

    We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that extend into Canada (Detenbeck et al., in review). We excluded stream temperature observations within one kilometer downstream of dams from our model development, so our predictions for those reaches represent potential thermal regimes in the absence of dam effects. We used stream thermal thresholds for mean July temperatures delineating transitions between coldwater, transitional coolwater, and warmwater fish communities derived by Beauchene et al. (2014) to classify expected stream and river thermal regimes across New England. Within the model domain and based on 2006 land-use and air temperatures, the model predicts that 21.8% of stream + river kilometers would support coldwater fish communities (mean July water temperatures 22.3 degrees C mean July temperatures). Application of the model allows us to assess potential condition given full riparian zone restoration as well as potential loss of cold or coolwater habitat given loss of riparian shading. Given restoration of all ripa

  3. Note: A sample holder design for sensitive magnetic measurements at high temperatures in a magnetic properties measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arauzo, A.; Guerrero, E.; Urtizberea, A.

    2012-06-15

    A sample holder design for high temperature measurements in a commercial MPMS SQUID magnetometer from Quantum Design is presented. It fulfills the requirements for the simultaneous use of the oven and reciprocating sample option (RSO) options, thus allowing sensitive magnetic measurements up to 800 K. Alternating current susceptibility can also be measured, since the holder does not induce any phase shift relative to the ac driven field. It is easily fabricated by twisting Constantan Copyright-Sign wires into a braid nesting the sample inside. This design ensures that the sample be placed tightly into a tough holder with its orientation fixed,more » and prevents any sample displacement during the fast movements of the RSO transport, up to high temperatures.« less

  4. Movement of moisture in refrigerated cheese samples transferred to room temperature.

    PubMed

    Emmons, D B; Bradley, R L; Campbell, C; Sauvé, J P

    2001-01-01

    When cheese samples refrigerated at 4 degrees C in 120 mL plastic tubs were transferred to room temperature at 23 degrees C, moisture began to move from the warmer surface to the cooler interior; the difference after 1 h was 0.2-0.4%. Others had observed that moisture moved from the interior of warmer blocks of cheese to the cooler surface during cooling at the end of cheese manufacture. In loosely packed cheese prepared for analysis, part of the moisture movement may have been due to evaporation from the warmer surface and condensation on the cooler cheese. It is recommended that cheese be prepared for analysis immediately before weighing. Cheese samples that have been refrigerated, as in interlaboratory trials, should also be remixed or prepared again.

  5. An open-population hierarchical distance sampling model

    USGS Publications Warehouse

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  6. An open-population hierarchical distance sampling model.

    PubMed

    Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott

    2015-02-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  7. Sampling model of government travel vouchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, P.S.; Wright, T.

    1987-02-01

    A pilot survey was designed and executed to better understand the structure of the universe of all government travel vouchers. Thirteen civilian and military sites were selected for the pilot survey. A total of 3916 travel vouchers with attached tickets were sampled. During the course of the pilot survey, it was felt that the compounding problems of the relative rarity of the expired, unused tickets and the enormously huge universe were too much of an obstacle to overcome in sampling the entire universe (including the US Air Force, US Army, US Navy, US Marines, other Department of Defense offices, andmore » civil) in the first year. The universe was then narrowed to the US Air Force, and US Army which have to two largest government travel expenditures. Based on the results of the pilot survey, ORNL recommends a stratified two-stage cluster sampling model. With probability of 0.90, a sample of size 78 (sites) will be needed to estimate the amounts per airline which will not be more than $50,000 from the true values. This sampling model allows one to estimate the total dollar amounts of expired, unused tickets for individual airlines.« less

  8. Brain temperature changes during selective cooling with endovascular intracarotid cold saline infusion: simulation using human data fitted with an integrated mathematical model.

    PubMed

    Neimark, Matthew Aaron Harold; Konstas, Angelos Aristeidis; Lee, Leslie; Laine, Andrew Francis; Pile-Spellman, John; Choi, Jae

    2013-03-01

    The feasibility of rapid cerebral hypothermia induction in humans with intracarotid cold saline infusion (ICSI) was investigated using a hybrid approach of jugular venous bulb temperature (JVBT) sampling and mathematical modeling of transient and steady state brain temperature distribution. This study utilized both forward mathematical modeling, in which brain temperatures were predicted based on input saline temperatures, and inverse modeling, where brain temperatures were inferred based on JVBT. Changes in ipsilateral anterior circulation territory temperature (IACT) were estimated in eight patients as a result of 10 min of a cold saline infusion of 33 ml/min. During ICSI, the measured JVBT dropped by 0.76±0.18°C while the modeled JVBT decreased by 0.86±0.18°C. The modeled IACT decreased by 2.1±0.23°C. In the inverse model, IACT decreased by 1.9±0.23°C. The results of this study suggest that mild cerebral hypothermia can be induced rapidly and safely with ICSI in the neuroangiographical setting. The JVBT corrected mathematical model can be used as a non-invasive estimate of transient and steady state cerebral temperature changes.

  9. Global River Water Temperature Modelling at Hyper-Resolution

    NASA Astrophysics Data System (ADS)

    Wanders, N.; van Vliet, M. T. H.; Wada, Y.; Van Beek, L. P.

    2017-12-01

    The temperature of river water plays a crucial role in many physical, chemical and biological aquatic processes. The influence of changing water temperatures is not only felt locally, but also has regional and downstream impacts. Sectors that might be affected by sudden or gradual changes in the water temperature are: energy production, industry and recreation. Although it is very important to have detailed information on this environmental variable, high-resolution simulations of water temperature on a large scale are currently lacking. Here we present a novel hyper-resolution water temperature dataset at the global scale. We developed the 1-D energy routing model WARM, to simulate river temperature for the period 1980-2014 at 10 km and 50 km resolution. The WARM model accounts for surface water abstraction, reservoirs, riverine flooding and formation of ice, therefore enabling a realistic representation of the water temperature. The water temperature simulations have been validated against 358 river monitoring stations globally for the period 1980 to 2014. The results indicate the increase in resolution significantly improves the simulation performance with a decrease in the water temperature RMSE from 3.5°C to 3.0°C and an increase in the mean correlation of the daily discharge simulations, from R=0.4 to 0.6. We find an average global increase in water temperature of 0.22°C per decade between 1960-2014, with increasing trends towards the end of the simulations period. Strong increasing trends in maxima in the Northern Hemisphere (0.62°C per decade) and minima in the Southern Hemisphere (0.45°C per decade). Finally, we show the impact of major heatwaves and drought events on the water temperature and water availability. The high resolution not only improves the model performance; it also positively impacts the relevancy of the simulation for local and regional scale studies and impact assessments. This new global water temperature dataset could help to

  10. Temperature-dependent rate models of vascular cambium cell mortality

    Treesearch

    Matthew B. Dickinson; Edward A. Johnson

    2004-01-01

    We use two rate-process models to describe cell mortality at elevated temperatures as a means of understanding vascular cambium cell death during surface fires. In the models, cell death is caused by irreversible damage to cellular molecules that occurs at rates that increase exponentially with temperature. The models differ in whether cells show cumulative effects of...

  11. Continental-scale temperature covariance in proxy reconstructions and climate models

    NASA Astrophysics Data System (ADS)

    Hartl-Meier, Claudia; Büntgen, Ulf; Smerdon, Jason; Zorita, Eduardo; Krusic, Paul; Ljungqvist, Fredrik; Schneider, Lea; Esper, Jan

    2017-04-01

    Inter-continental temperature variability over the past millennium has been reported to be more coherent in climate model simulations than in multi-proxy-based reconstructions, a finding that undermines the representation of spatial variability in either of these approaches. We assess the covariance of summer temperatures among Northern Hemisphere continents by comparing tree-ring based temperature reconstructions with state-of-the-art climate model simulations over the past millennium. We find inter-continental temperature covariance to be larger in tree-ring-only reconstructions compared to those derived from multi-proxy networks, thus enhancing the agreement between proxy- and model-based spatial representations. A detailed comparison of simulated temperatures, however, reveals substantial spread among the models. Over the past millennium, inter-continental temperature correlations are driven by the cooling after major volcanic eruptions in 1257, 1452, 1601, and 1815. The coherence of these synchronizing events appears to be elevated in several climate simulations relative to their own covariance baselines and the proxy reconstructions, suggesting these models overestimate the amplitude of cooling in response to volcanic forcing at large spatial scales.

  12. Modeling Lunar Borehole Temperature in order to Reconstruct Historical Total Solar Irradiance and Estimate Surface Temperature in Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.

    2007-12-01

    The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is

  13. Novel Integration of a 6t Cryogen-Free Magneto-Optical System with a Variable Temperature Sample Using a Single Cryocooler

    NASA Astrophysics Data System (ADS)

    Berryhill, A. B.; Coffey, D. M.; McGhee, R. W.; Burkhardt, E. E.

    2008-03-01

    Cryomagnetics' new "C-Mag Optical" Magneto-Optic Property Measurement System is a versatile materials and device characterization system that allows the researcher to simultaneously control the applied magnetic field and temperature of a sample while studying its electrical and optic properties. The system integrates a totally liquid cryogen-free 6T superconducting split-pair magnet with a variable temperature sample space, both cooled using a single 4.2K pulse tube refrigerator. To avoid warming the magnet when operating a sample at elevated temperatures, a novel heat switch was developed. The heat switch allows the sample temperature to be varied from 10K to 300K while maintaining the magnet at 4.2K or below. In this paper, the design and performance of the overall magnet system and the heat switch will be presented. New concepts for the next generation system will also be discussed.

  14. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    USGS Publications Warehouse

    Letcher, Benjamin; Hocking, Daniel; O'Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  15. Modeling Regolith Temperatures and Volatile Ice Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Mellon, M. T.

    2013-12-01

    Surface and subsurface temperatures are an important tool for exploring the distribution and dynamics of volatile ices on and within planetary regoliths. I will review thermal-analysis approaches and recent applications in the studies of volatile ice processes. Numerical models of regolith temperatures allow us to examine the response of ices to periodic and secular changes in heat sources such as insolation. Used in conjunction with spatially and temporally distributed remotely-sensed temperatures, numerical models can: 1) constrain the stability and dynamics of volatile ices; 2) define the partitioning between phases of ice, gas, liquid, and adsorbate; and 3) in some instances be used to probe the distribution of ice hidden from view beneath the surface. The vapor pressure of volatile ices (such as water, carbon dioxide, and methane) depends exponentially on temperature. Small changes in temperature can result in transitions between stable phases. Cyclic temperatures and the propagation of thermal waves into the subsurface can produce a strong hysteresis in the population and partitioning of various phases (such as between ice, vapor, and adsorbate) and result in bulk transport. Condensation of ice will also have a pronounced effect on the thermal properties of otherwise loose particulate regolith. Cementing grains at their contacts through ice deposition will increase the thermal conductivity, and may enhance the stability of additional ice. Likewise sintering of grains within a predominantly icy regolith will increase the thermal conductivity. Subsurface layers that result from ice redistribution can be discriminated by remote sensing when combined with numerical modeling. Applications of these techniques include modeling of seasonal carbon dioxide frosts on Mars, predicting and interpreting the subsurface ice distribution on Mars and in Antarctica, and estimating the current depth of ice-rich permafrost on Mars. Additionally, understanding cold trapping ices

  16. Triple point temperature of neon isotopes: Dependence on nitrogen impurity and sealed-cell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavese, F.; Steur, P. P. M.; Giraudi, D.

    2013-09-11

    This paper illustrates a study conducted at INRIM, to further check how some quantities influence the value of the triple point temperature of the neon high-purity isotopes {sup 20}Ne and {sup 22}Ne. The influence of nitrogen as a chemical impurity in neon is critical with regard to the present best total uncertainty achieved in the measurement of these triple points, but only one determination is available in the literature. Checks are reported, performed on two different samples of {sup 22}Ne known to contain a N{sub 2} amount of 157⋅10{sup −6}, using two different models of sealed cells. The model ofmore » the cell can, in principle, have some effects on the shape of the melting plateau or on the triple point temperature observed for the sample sealed in it. This can be due to cell thermal parameters, or because the INRIM cell element mod. c contains many copper wires closely packed, which can, in principle, constrain the interface and induce a premelting-like effect. The reported results on a cell mod. Bter show no evident effect from the cell model and provide a value for the effect of N{sub 2} in Ne liquidus point of 8.6(1.9) μK ppm N{sub 2}{sup −1}, only slightly different from the literature datum.« less

  17. A Two-Temperature Model of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Takizawa, Motokazu

    1998-12-01

    We investigate evolution of the intracluster medium (ICM), considering the relaxation process between the ions and electrons. According to the standard scenario of structure formation, the ICM is heated by the shock in the accretion flow to the gravitational potential well of the dark halo. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. Then the electrons and ions exchange the energy through Coulomb collisions and reach equilibrium. From simple order estimation we find that the region where the electron temperature is considerably lower than the ion temperature spreads out on a megaparsec scale. We then calculate the ion and electron temperature profiles by combining the adiabatic model of a two-temperature plasma by Fox & Loeb with spherically symmetric N-body and hydrodynamic simulations based on three different cosmological models. It is found that the electron temperature is about half the mean temperature at radii ~1 Mpc. This could lead to about a 50% underestimation in the total mass contained within ~1 Mpc when the electron temperature profiles are used. The polytropic indices of the electron temperature profiles are ~=1.5, whereas those of mean temperature are ~=1.3 for r >= 1 Mpc. This result is consistent both with the X-ray observations on electron temperature profiles and with some theoretical and numerical predictions about mean temperature profiles.

  18. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoirmore » temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.« less

  19. Automatic control of finite element models for temperature-controlled radiofrequency ablation.

    PubMed

    Haemmerich, Dieter; Webster, John G

    2005-07-14

    The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.

  20. Automatic control of finite element models for temperature-controlled radiofrequency ablation

    PubMed Central

    Haemmerich, Dieter; Webster, John G

    2005-01-01

    Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811

  1. Spatiotemporal modeling of node temperatures in supercomputers

    DOE PAGES

    Storlie, Curtis Byron; Reich, Brian James; Rust, William Newton; ...

    2016-06-10

    Los Alamos National Laboratory (LANL) is home to many large supercomputing clusters. These clusters require an enormous amount of power (~500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently a project was initiated to investigate the effect that changes to the cooling system in a machine room had on three large machines that were housed there. Coupled with this goal was the aim to develop a general good-practice for characterizing the effect of cooling changes and monitoring machine node temperatures in this andmore » other machine rooms. This paper focuses on the statistical approach used to quantify the effect that several cooling changes to the room had on the temperatures of the individual nodes of the computers. The largest cluster in the room has 1,600 nodes that run a variety of jobs during general use. Since extremes temperatures are important, a Normal distribution plus generalized Pareto distribution for the upper tail is used to model the marginal distribution, along with a Gaussian process copula to account for spatio-temporal dependence. A Gaussian Markov random field (GMRF) model is used to model the spatial effects on the node temperatures as the cooling changes take place. This model is then used to assess the condition of the node temperatures after each change to the room. The analysis approach was used to uncover the cause of a problematic episode of overheating nodes on one of the supercomputing clusters. Lastly, this same approach can easily be applied to monitor and investigate cooling systems at other data centers, as well.« less

  2. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    PubMed

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of

  3. Tissue Sampling Guides for Porcine Biomedical Models.

    PubMed

    Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas

    2016-04-01

    This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results. © The Author(s) 2016.

  4. Effect of short-term room temperature storage on the microbial community in infant fecal samples.

    PubMed

    Guo, Yong; Li, Sheng-Hui; Kuang, Ya-Shu; He, Jian-Rong; Lu, Jin-Hua; Luo, Bei-Jun; Jiang, Feng-Ju; Liu, Yao-Zhong; Papasian, Christopher J; Xia, Hui-Min; Deng, Hong-Wen; Qiu, Xiu

    2016-05-26

    Sample storage conditions are important for unbiased analysis of microbial communities in metagenomic studies. Specifically, for infant gut microbiota studies, stool specimens are often exposed to room temperature (RT) conditions prior to analysis. This could lead to variations in structural and quantitative assessment of bacterial communities. To estimate such effects of RT storage, we collected feces from 29 healthy infants (0-3 months) and partitioned each sample into 5 portions to be stored for different lengths of time at RT before freezing at -80 °C. Alpha diversity did not differ between samples with storage time from 0 to 2 hours. The UniFrac distances and microbial composition analysis showed significant differences by testing among individuals, but not by testing between different time points at RT. Changes in the relative abundance of some specific (less common, minor) taxa were still found during storage at room temperature. Our results support previous studies in children and adults, and provided useful information for accurate characterization of infant gut microbiomes. In particular, our study furnished a solid foundation and justification for using fecal samples exposed to RT for less than 2 hours for comparative analyses between various medical conditions.

  5. On incomplete sampling under birth-death models and connections to the sampling-based coalescent.

    PubMed

    Stadler, Tanja

    2009-11-07

    The constant rate birth-death process is used as a stochastic model for many biological systems, for example phylogenies or disease transmission. As the biological data are usually not fully available, it is crucial to understand the effect of incomplete sampling. In this paper, we analyze the constant rate birth-death process with incomplete sampling. We derive the density of the bifurcation events for trees on n leaves which evolved under this birth-death-sampling process. This density is used for calculating prior distributions in Bayesian inference programs and for efficiently simulating trees. We show that the birth-death-sampling process can be interpreted as a birth-death process with reduced rates and complete sampling. This shows that joint inference of birth rate, death rate and sampling probability is not possible. The birth-death-sampling process is compared to the sampling-based population genetics model, the coalescent. It is shown that despite many similarities between these two models, the distribution of bifurcation times remains different even in the case of very large population sizes. We illustrate these findings on an Hepatitis C virus dataset from Egypt. We show that the transmission times estimates are significantly different-the widely used Gamma statistic even changes its sign from negative to positive when switching from the coalescent to the birth-death process.

  6. MAFAGS-OS: New opacity sampling model atmospheres for A, F and G stars. I. The model and the solar flux

    NASA Astrophysics Data System (ADS)

    Grupp, F.

    2004-06-01

    We present a new opacity sampling model atmosphere code, named MAFAGS-OS. This code, designed for stars reaching from A0 down to G9 on a solar and metal poor main sequence and up to an evolutionary stage represented by the turnoff is introduced in its basic input physics and modelling techniques. Fe I bound-free cross-sections of \\citet{BAUTISTA97} are used and convection is treated according to \\citet{canuto91}. An αcm-parameter for the efficiency of convection of 0.82 is used as determined by \\citet{BERNKOPF98} from stellar evolution requirements. Within the process of opacity sampling, special attention is drawn to the matter of line selection. We show that a selection criterion, in which lines are chosen by their opacity weighted relative to the continuous background opacity, is useful and valid. The solar model calculated using this new code is shown to fit the measured solar flux distribution. It is also tested against the measured solar colours and leads to U-B=0.21 and B-V=0.64, in good agreement with observation. Comparison with measured centre-to-limb continuum data show only small improvement with respect to opacity-sampling type model atmospheres. This is the first of a series of 2 papers. Paper II will deal with the matter of temperature determination using Balmer lines and the infrared-flux method; furthermore it will present three ``standard'' stars analysed using this new model.

  7. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  8. Mathematical modeling of high and low temperature heat pipes

    NASA Technical Reports Server (NTRS)

    Chi, S. W.

    1971-01-01

    Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.

  9. Summer stream water temperature models for Great Lakes streams: New York

    USGS Publications Warehouse

    Murphy, Marilyn K.; McKenna, James E.; Butryn, Ryan S.; McDonald, Richard P.

    2010-01-01

    Temperature is one of the most important environmental influences on aquatic organisms. It is a primary driver of physiological rates and many abiotic processes. However, despite extensive research and measurements, synoptic estimates of water temperature are not available for most regions, limiting our ability to make systemwide and large-scale assessments of aquatic resources or estimates of aquatic species abundance and biodiversity. We used subwatershed averaging of point temperature measurements and associated multiscale landscape habitat conditions from over 3,300 lotic sites throughout New York State to develop and train artificial neural network models. Separate models predicting water temperature (in cold, cool, and warm temperature classes) within small catchment–stream order groups were developed for four modeling units, which together encompassed the entire state. Water temperature predictions were then made for each stream segment in the state. All models explained more than 90% of data variation. Elevation, riparian forest cover, landscape slope, and growing degree-days were among the most important model predictors of water temperature classes. Geological influences varied among regions. Predicted temperature distributions within stream networks displayed patterns of generally increasing temperature downstream but were patchy due to the averaging of water temperatures within stream size-classes of small drainages. Models predicted coldwater streams to be most numerous and warmwater streams to be generally associated with the largest rivers and relatively flat agricultural areas and urban areas. Model predictions provide a complete, georeferenced map of summer daytime mean stream temperature potential throughout New York State that can be used for planning and assessment at spatial scales from the stream segment class to the entire state.

  10. Time series modelling of global mean temperature for managerial decision-making.

    PubMed

    Romilly, Peter

    2005-07-01

    Climate change has important implications for business and economic activity. Effective management of climate change impacts will depend on the availability of accurate and cost-effective forecasts. This paper uses univariate time series techniques to model the properties of a global mean temperature dataset in order to develop a parsimonious forecasting model for managerial decision-making over the short-term horizon. Although the model is estimated on global temperature data, the methodology could also be applied to temperature data at more localised levels. The statistical techniques include seasonal and non-seasonal unit root testing with and without structural breaks, as well as ARIMA and GARCH modelling. A forecasting evaluation shows that the chosen model performs well against rival models. The estimation results confirm the findings of a number of previous studies, namely that global mean temperatures increased significantly throughout the 20th century. The use of GARCH modelling also shows the presence of volatility clustering in the temperature data, and a positive association between volatility and global mean temperature.

  11. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  12. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  13. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.

    PubMed

    Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci

    2017-07-01

    In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.

  14. Integrated research in constitutive modelling at elevated temperatures, part 1

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.; Allen, D. H.

    1986-01-01

    Topics covered include: numerical integration techniques; thermodynamics and internal state variables; experimental lab development; comparison of models at room temperature; comparison of models at elevated temperature; and integrated software development.

  15. Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning

    NASA Astrophysics Data System (ADS)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2016-08-01

    An increase in the efficiency of sampling from Boltzmann distributions would have a significant impact on deep learning and other machine-learning applications. Recently, quantum annealers have been proposed as a potential candidate to speed up this task, but several limitations still bar these state-of-the-art technologies from being used effectively. One of the main limitations is that, while the device may indeed sample from a Boltzmann-like distribution, quantum dynamical arguments suggest it will do so with an instance-dependent effective temperature, different from its physical temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the learning of a special class of a restricted Boltzmann machine embedded on quantum hardware, which can serve as a building block for deep-learning architectures. We also provide a comparison to k -step contrastive divergence (CD-k ) with k up to 100. Although assuming a suitable fixed effective temperature also allows us to outperform one-step contrastive divergence (CD-1), only when using an instance-dependent effective temperature do we find a performance close to that of CD-100 for the case studied here.

  16. Nuclear Ensemble Approach with Importance Sampling.

    PubMed

    Kossoski, Fábris; Barbatti, Mario

    2018-06-12

    We show that the importance sampling technique can effectively augment the range of problems where the nuclear ensemble approach can be applied. A sampling probability distribution function initially determines the collection of initial conditions for which calculations are performed, as usual. Then, results for a distinct target distribution are computed by introducing compensating importance sampling weights for each sampled point. This mapping between the two probability distributions can be performed whenever they are both explicitly constructed. Perhaps most notably, this procedure allows for the computation of temperature dependent observables. As a test case, we investigated the UV absorption spectra of phenol, which has been shown to have a marked temperature dependence. Application of the proposed technique to a range that covers 500 K provides results that converge to those obtained with conventional sampling. We further show that an overall improved rate of convergence is obtained when sampling is performed at intermediate temperatures. The comparison between calculated and the available measured cross sections is very satisfactory, as the main features of the spectra are correctly reproduced. As a second test case, one of Tully's classical models was revisited, and we show that the computation of dynamical observables also profits from the importance sampling technique. In summary, the strategy developed here can be employed to assess the role of temperature for any property calculated within the nuclear ensemble method, with the same computational cost as doing so for a single temperature.

  17. Investigation of the UK37' vs. SST relationship for Atlantic Ocean suspended particulate alkenones: An alternative regression model and discussion of possible sampling bias

    NASA Astrophysics Data System (ADS)

    Gould, Jessica; Kienast, Markus; Dowd, Michael

    2017-05-01

    Alkenone unsaturation, expressed as the UK37' index, is closely related to growth temperature of prymnesiophytes, thus providing a reliable proxy to infer past sea surface temperatures (SSTs). Here we address two lingering uncertainties related to this SST proxy. First, calibration models developed for core-top sediments and those developed for surface suspended particulates organic material (SPOM) show systematic offsets, raising concerns regarding the transfer of the primary signal into the sedimentary record. Second, questions remain regarding changes in slope of the UK37' vs. growth temperature relationship at the temperature extremes. Based on (re)analysis of 31 new and 394 previously published SPOM UK37' data from the Atlantic Ocean, a new regression model to relate UK37' to SST is introduced; the Richards curve (Richards, 1959). This non-linear regression model provides a robust calibration of the UK37' vs. SST relationship for Atlantic SPOM samples and uniquely accounts for both the fact that the UK37' index is a proportion, and so must lie between 0 and 1, as well as for the observed reduction in slope at the warm and cold ends of the temperature range. As with prior fits of SPOM UK37' vs. SST, the Richards model is offset from traditional regression models of sedimentary UK37' vs. SST. We posit that (some of) this offset can be attributed to the seasonally and depth biased sampling of SPOM material.

  18. A Nonlinear Viscoelastic Model for Ceramics at High Temperatures

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.

    2002-01-01

    High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.

  19. Relationship between fire temperature and changes in chemical soil properties: a conceptual model of nutrient release

    NASA Astrophysics Data System (ADS)

    Thomaz, Edivaldo L.; Doerr, Stefan H.

    2014-05-01

    The purpose of this study was to evaluate the effects of fire temperatures (i.e., soil heating) on nutrient release and aggregate physical changes in soil. A preliminary conceptual model of nutrient release was established based on results obtained from a controlled burn in a slash-and-burn agricultural system located in Brazil. The study was carried out in clayey subtropical soil (humic Cambisol) from a plot that had been fallow for 8 years. A set of three thermocouples were placed in four trenches at the following depths: 0 cm on the top of the mineral horizon, 1.0 cm within the mineral horizon, and 2 cm within the mineral horizon. Three soil samples (true independent sample) were collected approximately 12 hours post-fire at depths of 0-2.5 cm. Soil chemical changes were more sensitive to fire temperatures than aggregate physical soil characteristics. Most of the nutrient response to soil heating was not linear. The results demonstrated that moderate temperatures (< 400°C) had a major effect on nutrient release (i.e., the optimum effect), whereas high temperatures (> 500 °C) decreased soil fertility.

  20. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K.

    PubMed

    Kirichek, O; Timms, J D; Kelleher, J F; Down, R B E; Offer, C D; Kabra, S; Zhang, S Y

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  1. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Timms, J. D.; Kelleher, J. F.; Down, R. B. E.; Offer, C. D.; Kabra, S.; Zhang, S. Y.

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  2. The seasonal response of the Held-Suarez climate model to prescribed ocean temperature anomalies. II - Dynamical analysis

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.

    1984-01-01

    The heating associated with equatorial, subtropical, and midlatitude ocean temperature anamolies in the Held-Suarez climate model is analyzed. The local and downstream response to the anomalies is analyzed, first by examining the seasonal variation in heating associated with each ocean temperature anomaly, and then by combining knowledge of the heating with linear dynamical theory in order to develop a more comprehensive explanation of the seasonal variation in local and downstream atmospheric response to each anomaly. The extent to which the linear theory of propagating waves can assist the interpretation of the remote cross-latitudinal response of the model to the ocean temperature anomalies is considered. Alternative hypotheses that attempt to avoid the contradictions inherent in a strict application of linear theory are investigated, and the impact of sampling errors on the assessment of statistical significance is also examined.

  3. Understanding and quantifying foliar temperature acclimation for Earth System Models

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly

  4. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation

    PubMed Central

    Ji, Zhen; Brace, Christopher L

    2011-01-01

    Microwaves are a promising source for thermal tumor ablation due to their ability to rapidly heat dispersive biological tissues, often to temperatures in excess of 100 °C. At these high temperatures, tissue dielectric properties change rapidly and, thus, so do the characteristics of energy delivery. Precise knowledge of how tissue dielectric properties change during microwave heating promises to facilitate more accurate simulation of device performance and helps optimize device geometry and energy delivery parameters. In this study, we measured the dielectric properties of liver tissue during high-temperature microwave heating. The resulting data were compiled into either a sigmoidal function of temperature or an integration of the time–temperature curve for both relative permittivity and effective conductivity. Coupled electromagnetic–thermal simulations of heating produced by a single monopole antenna using the new models were then compared to simulations with existing linear and static models, and experimental temperatures in liver tissue. The new sigmoidal temperature-dependent model more accurately predicted experimental temperatures when compared to temperature–time integrated or existing models. The mean percent differences between simulated and experimental temperatures over all times were 4.2% for sigmoidal, 10.1% for temperature–time integration, 27.0% for linear and 32.8% for static models at the antenna input power of 50 W. Correcting for tissue contraction improved agreement for powers up to 75 W. The sigmoidal model also predicted substantial changes in heating pattern due to dehydration. We can conclude from these studies that a sigmoidal model of tissue dielectric properties improves prediction of experimental results. More work is needed to refine and generalize this model. PMID:21791728

  5. Modeling of the Temperature Field Recovery in the Oil Pool

    NASA Astrophysics Data System (ADS)

    Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.

    2018-05-01

    This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).

  6. Multi-water-bag models of ion temperature gradient instability in cylindrical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulette, David; Besse, Nicolas

    2013-05-15

    Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less

  7. An Improved Nested Sampling Algorithm for Model Selection and Assessment

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Ye, M.; Wu, J.; WANG, D.

    2017-12-01

    Multimodel strategy is a general approach for treating model structure uncertainty in recent researches. The unknown groundwater system is represented by several plausible conceptual models. Each alternative conceptual model is attached with a weight which represents the possibility of this model. In Bayesian framework, the posterior model weight is computed as the product of model prior weight and marginal likelihood (or termed as model evidence). As a result, estimating marginal likelihoods is crucial for reliable model selection and assessment in multimodel analysis. Nested sampling estimator (NSE) is a new proposed algorithm for marginal likelihood estimation. The implementation of NSE comprises searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm and its variants are often used for local sampling in NSE. However, M-H is not an efficient sampling algorithm for high-dimensional or complex likelihood function. For improving the performance of NSE, it could be feasible to integrate more efficient and elaborated sampling algorithm - DREAMzs into the local sampling. In addition, in order to overcome the computation burden problem of large quantity of repeating model executions in marginal likelihood estimation, an adaptive sparse grid stochastic collocation method is used to build the surrogates for original groundwater model.

  8. Three-dimensional temperature fields of the North Patagonian Sea recorded by Magellanic penguins as biological sampling platforms

    NASA Astrophysics Data System (ADS)

    Sala, Juan E.; Pisoni, Juan P.; Quintana, Flavio

    2017-04-01

    Temperature is a primary determinant of biogeographic patterns and ecosystem processes. Standard techniques to study the ocean temperature in situ are, however, particularly limited by their time and spatial coverage, problems which might be partially mitigated by using marine top predators as biological platforms for oceanographic sampling. We used small archival tags deployed on 33 Magellanic penguins (Spheniscus magellanicus), and obtained 21,070 geo-localized profiles of water temperature, during late spring of 2008, 2011, 2012 and 2013; in a region of the North Patagonian Sea with limited oceanographic records in situ. We compared our in situ data of sea surface temperature (SST) with those available from satellite remote sensing; to describe the three-dimensional temperature fields around the area of influence of two important tidal frontal systems; and to study the inter-annual variation in the three-dimensional temperature fields. There was a strong positive relationship between satellite- and animal-derived SST data although there was an overestimation by remote-sensing by a maximum difference of +2 °C. Little inter-annual variability in the 3-dimensional temperature fields was found, with the exception of 2012 (and to a lesser extent in 2013) where the SST was significantly higher. In 2013, we found weak stratification in a region which was unexpected. In addition, during the same year, a warm small-scale vortex is indicated by the animal-derived temperature data. This allowed us to describe and better understand the dynamics of the water masses, which, so far, have been mainly studied by remote sensors and numerical models. Our results highlight again the potential of using marine top predators as biological platforms to collect oceanographic data, which will enhance and accelerate studies on the Southwest Atlantic Ocean. In a changing world, threatened by climate change, it is urgent to fill information gaps on the coupled ocean-atmosphere system

  9. A New Model for Temperature Jump at a Fluid-Solid Interface

    PubMed Central

    Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong

    2016-01-01

    The problem presented involves the development of a new analytical model for the general fluid-solid temperature jump. To the best of our knowledge, there are no analytical models that provide the accurate predictions of the temperature jump for both gas and liquid systems. In this paper, a unified model for the fluid-solid temperature jump has been developed based on our adsorption model of the interfacial interactions. Results obtained from this model are validated with available results from the literature. PMID:27764230

  10. A hybrid model for river water temperature as a function of air temperature and discharge

    NASA Astrophysics Data System (ADS)

    Toffolon, Marco; Piccolroaz, Sebastiano

    2015-11-01

    Water temperature controls many biochemical and ecological processes in rivers, and theoretically depends on multiple factors. Here we formulate a model to predict daily averaged river water temperature as a function of air temperature and discharge, with the latter variable being more relevant in some specific cases (e.g., snowmelt-fed rivers, rivers impacted by hydropower production). The model uses a hybrid formulation characterized by a physically based structure associated with a stochastic calibration of the parameters. The interpretation of the parameter values allows for better understanding of river thermal dynamics and the identification of the most relevant factors affecting it. The satisfactory agreement of different versions of the model with measurements in three different rivers (root mean square error smaller than 1oC, at a daily timescale) suggests that the proposed model can represent a useful tool to synthetically describe medium- and long-term behavior, and capture the changes induced by varying external conditions.

  11. Rough-surface model for surface temperature calculations on Vesta

    NASA Astrophysics Data System (ADS)

    Palmer, E.; Sykes, M.

    2014-07-01

    We model observations by the Dawn Visual and Infrared spectrometer (VIR) [1] to reproduce the observed surface temperature of Vesta. The VIR instrument has collected over 3,700 spectral cubes of Vesta out to 5.1 microns. The observed surface temperature is derived by matching the irradiance near 5 microns with a grey body, the Planck function after removing a reflected-light component per previous procedures [2--5] with similar results. We noted that the observed surface temperatures are significantly hotter than what simple theoretical models would predict [2]. To better understand this, we used a high-resolution topographic model of Vesta [6] that provided exact phase, incidence, and emission angles for every VIR pixel. We assume an emissivity of 0.9, Bond albedo of between 0.16 and 0.22 [5], and a variety of thermal inertia values for a low-contrast, highly degraded, homogenous crater. We have created a ''rough-surface'' thermal model that takes into account how irregular grains create sub-pixel variations in the thermal spectrum and describe the effect it has on the observed surface temperatures of Vesta. We have applied this method to the VIR observations of Vesta, which produced a high level of agreement with the observed surface temperatures.

  12. A sampling model of social judgment.

    PubMed

    Galesic, Mirta; Olsson, Henrik; Rieskamp, Jörg

    2018-04-01

    Studies of social judgments have demonstrated a number of diverse phenomena that were so far difficult to explain within a single theoretical framework. Prominent examples are false consensus and false uniqueness, as well as self-enhancement and self-depreciation. Here we show that these seemingly complex phenomena can be a product of an interplay between basic cognitive processes and the structure of social and task environments. We propose and test a new process model of social judgment, the social sampling model (SSM), which provides a parsimonious quantitative account of different types of social judgments. In the SSM, judgments about characteristics of broader social environments are based on sampling of social instances from memory, where instances receive activation if they belong to a target reference class and have a particular characteristic. These sampling processes interact with the properties of social and task environments, including homophily, shapes of frequency distributions, and question formats. For example, in line with the model's predictions we found that whether false consensus or false uniqueness will occur depends on the level of homophily in people's social circles and on the way questions are asked. The model also explains some previously unaccounted-for patterns of self-enhancement and self-depreciation. People seem to be well informed about many characteristics of their immediate social circles, which in turn influence how they evaluate broader social environments and their position within them. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. A multifluid model extended for strong temperature nonequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chong

    2016-08-08

    We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregatedmore » material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.« less

  14. Integrating a human thermoregulatory model with a clothing model to predict core and skin temperatures.

    PubMed

    Yang, Jie; Weng, Wenguo; Wang, Faming; Song, Guowen

    2017-05-01

    This paper aims to integrate a human thermoregulatory model with a clothing model to predict core and skin temperatures. The human thermoregulatory model, consisting of an active system and a passive system, was used to determine the thermoregulation and heat exchanges within the body. The clothing model simulated heat and moisture transfer from the human skin to the environment through the microenvironment and fabric. In this clothing model, the air gap between skin and clothing, as well as clothing properties such as thickness, thermal conductivity, density, porosity, and tortuosity were taken into consideration. The simulated core and mean skin temperatures were compared to the published experimental results of subject tests at three levels of ambient temperatures of 20 °C, 30 °C, and 40 °C. Although lower signal-to-noise-ratio was observed, the developed model demonstrated positive performance at predicting core temperatures with a maximum difference between the simulations and measurements of no more than 0.43 °C. Generally, the current model predicted the mean skin temperatures with reasonable accuracy. It could be applied to predict human physiological responses and assess thermal comfort and heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2016-05-01

    Recent experiments have demonstrated that the metamaterial approach is capable of a drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al -A l2O3 ENZ core-shell metamaterials. Here, we perform theoretical modeling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modeling and experimental results in both aluminum- and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium-, Mg B2- , and H2S -based metamaterial superconductors is evaluated. The Mg B2 -based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of a H2S -based metamaterial Tc appears to reach ˜250 K.

  16. Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes

    USGS Publications Warehouse

    Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.

    2013-01-01

    Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may

  17. Impact of spatial variability and sampling design on model performance

    NASA Astrophysics Data System (ADS)

    Schrape, Charlotte; Schneider, Anne-Kathrin; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Many environmental physical and chemical parameters as well as species distributions display a spatial variability at different scales. In case measurements are very costly in labour time or money a choice has to be made between a high sampling resolution at small scales and a low spatial cover of the study area or a lower sampling resolution at the small scales resulting in local data uncertainties with a better spatial cover of the whole area. This dilemma is often faced in the design of field sampling campaigns for large scale studies. When the gathered field data are subsequently used for modelling purposes the choice of sampling design and resulting data quality influence the model performance criteria. We studied this influence with a virtual model study based on a large dataset of field information on spatial variation of earthworms at different scales. Therefore we built a virtual map of anecic earthworm distributions over the Weiherbach catchment (Baden-Württemberg in Germany). First of all the field scale abundance of earthworms was estimated using a catchment scale model based on 65 field measurements. Subsequently the high small scale variability was added using semi-variograms, based on five fields with a total of 430 measurements divided in a spatially nested sampling design over these fields, to estimate the nugget, range and standard deviation of measurements within the fields. With the produced maps, we performed virtual samplings of one up to 50 random points per field. We then used these data to rebuild the catchment scale models of anecic earthworm abundance with the same model parameters as in the work by Palm et al. (2013). The results of the models show clearly that a large part of the non-explained deviance of the models is due to the very high small scale variability in earthworm abundance: the models based on single virtual sampling points on average obtain an explained deviance of 0.20 and a correlation coefficient of 0.64. With

  18. Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii.

    PubMed

    Heiland, Ines; Bodenstein, Christian; Hinze, Thomas; Weisheit, Olga; Ebenhoeh, Oliver; Mittag, Maria; Schuster, Stefan

    2012-06-01

    Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.

  19. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  20. Network Model-Assisted Inference from Respondent-Driven Sampling Data.

    PubMed

    Gile, Krista J; Handcock, Mark S

    2015-06-01

    Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population.

  1. An analysis of the impact of pre‐analytical factors on the urine proteome: Sample processing time, temperature, and proteolysis

    PubMed Central

    Hepburn, Sophie; Cairns, David A.; Jackson, David; Craven, Rachel A.; Riley, Beverley; Hutchinson, Michelle; Wood, Steven; Smith, Matthew Welberry; Thompson, Douglas

    2015-01-01

    Purpose We have examined the impact of sample processing time delay, temperature, and the addition of protease inhibitors (PIs) on the urinary proteome and peptidome, an important aspect of biomarker studies. Experimental design Ten urine samples from patients with varying pathologies were each divided and PIs added to one‐half, with aliquots of each then processed and frozen immediately, or after a delay of 6 h at 4°C or room temperature (20–22°C), effectively yielding 60 samples in total. Samples were then analyzed by 2D‐PAGE, SELDI‐TOF‐MS, and immunoassay. Results Interindividual variability in profiles was the dominant feature in all analyses. Minimal changes were observed by 2D‐PAGE as a result of delay in processing, temperature, or PIs and no changes were seen in IgG, albumin, β2‐microglobulin, or α1‐microglobulin measured by immunoassay. Analysis of peptides showed clustering of some samples by presence/absence of PIs but the extent was very patient‐dependent with most samples showing minimal effects. Conclusions and clinical relevance The extent of processing‐induced changes and the benefit of PI addition are patient‐ and sample‐dependent. A consistent processing methodology is essential within a study to avoid any confounding of the results. PMID:25400092

  2. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: application to low-temperature kinetics and product detection.

    PubMed

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-12-01

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C(2)H with C(2)H(2) is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.

  3. An analysis of the impact of pre-analytical factors on the urine proteome: Sample processing time, temperature, and proteolysis.

    PubMed

    Hepburn, Sophie; Cairns, David A; Jackson, David; Craven, Rachel A; Riley, Beverley; Hutchinson, Michelle; Wood, Steven; Smith, Matthew Welberry; Thompson, Douglas; Banks, Rosamonde E

    2015-06-01

    We have examined the impact of sample processing time delay, temperature, and the addition of protease inhibitors (PIs) on the urinary proteome and peptidome, an important aspect of biomarker studies. Ten urine samples from patients with varying pathologies were each divided and PIs added to one-half, with aliquots of each then processed and frozen immediately, or after a delay of 6 h at 4°C or room temperature (20-22°C), effectively yielding 60 samples in total. Samples were then analyzed by 2D-PAGE, SELDI-TOF-MS, and immunoassay. Interindividual variability in profiles was the dominant feature in all analyses. Minimal changes were observed by 2D-PAGE as a result of delay in processing, temperature, or PIs and no changes were seen in IgG, albumin, β2 -microglobulin, or α1 -microglobulin measured by immunoassay. Analysis of peptides showed clustering of some samples by presence/absence of PIs but the extent was very patient-dependent with most samples showing minimal effects. The extent of processing-induced changes and the benefit of PI addition are patient- and sample-dependent. A consistent processing methodology is essential within a study to avoid any confounding of the results. © 2014 The Authors PROTEOMICS Clinical Applications Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. An improved model for soil surface temperature from air temperature in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China

    NASA Astrophysics Data System (ADS)

    Hu, Guojie; Wu, Xiaodong; Zhao, Lin; Li, Ren; Wu, Tonghua; Xie, Changwei; Pang, Qiangqiang; Cheng, Guodong

    2017-08-01

    Soil temperature plays a key role in hydro-thermal processes in environments and is a critical variable linking surface structure to soil processes. There is a need for more accurate temperature simulation models, particularly in Qinghai-Xizang (Tibet) Plateau (QXP). In this study, a model was developed for the simulation of hourly soil surface temperatures with air temperatures. The model incorporated the thermal properties of the soil, vegetation cover, solar radiation, and water flux density and utilized field data collected from Qinghai-Xizang (Tibet) Plateau (QXP). The model was used to simulate the thermal regime at soil depths of 5 cm, 10 cm and 20 cm and results were compared with those from previous models and with experimental measurements of ground temperature at two different locations. The analysis showed that the newly developed model provided better estimates of observed field temperatures, with an average mean absolute error (MAE), root mean square error (RMSE), and the normalized standard error (NSEE) of 1.17 °C, 1.30 °C and 13.84 %, 0.41 °C, 0.49 °C and 5.45 %, 0.13 °C, 0.18 °C and 2.23 % at 5 cm, 10 cm and 20 cm depths, respectively. These findings provide a useful reference for simulating soil temperature and may be incorporated into other ecosystem models requiring soil temperature as an input variable for modeling permafrost changes under global warming.

  5. Ultrasound thermography: A new temperature reconstruction model and in vivo results

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.

    2017-03-01

    The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.

  6. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  7. Electrical conductivity of high-purity germanium crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  8. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    NASA Astrophysics Data System (ADS)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  9. Network Model-Assisted Inference from Respondent-Driven Sampling Data

    PubMed Central

    Gile, Krista J.; Handcock, Mark S.

    2015-01-01

    Summary Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population. PMID:26640328

  10. Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage

    PubMed Central

    2011-01-01

    Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338

  11. Low-Temperature Thermochronology of Borehole and Surface Samples From the Wind River and Beartooth Laramide Ranges, Wyoming and Montana, USA

    NASA Astrophysics Data System (ADS)

    Peyton, S. L.; Reiners, P. W.

    2007-12-01

    We dated borehole and surface samples from the Wind River and Beartooth Laramide-age, basement-cored uplifts of the Rocky Mountain foreland using the apatite (U-Th)/He (AHe) system. Comparison of these results to previously published apatite fission-track (AFT) data along with the incorporation of new He diffusion models (Shuster et al., 2006), reveals several new insights into, and poses new interpretational challenges for, the shallow exhumation histories of these ranges. Deep (2.2-2.8 km below surface) borehole samples from the Wind River Range have AHe ages of 9-12 Ma, and suggest at least 600 m of rapid exhumation during the Miocene. Shallower samples range from 35-66 Ma and are consistent with exhumation of a fossil partial retention zone. Previously-published apatite fission track (AFT) data from the same borehole show at least 2 km of rapid exhumation at ~45-38 Ma at depths where AHe ages are 9-50 Ma. This contrasts with the AHe ages which show slow exhumation between 12-66 Ma and have a trend on an age-elevation plot that appears to cut across the AFT age trend. Forward modeling of the cooling ages of these data using well-constrained thermal histories and conventional Durango apatite He diffusion data cannot explain these coupled AFT-AHe age-elevation relationships. However, modeling using diffusion kinetics of the Shuster et al. radiation-damage trapping model can explain the observed age trends, including the apparent presence of a 45-38 Ma exhumation event in the AFT data and its absence in the AHe data. In the model the shallow samples do not reach high enough temperatures for annealing of accumulated radiation damage, so He is trapped and ages are much older than predicted by conventional diffusion models. Previously-published AFT data from the Beartooth Range also show a large Laramide-age exhumation event, dated at 57-52 Ma. Similar to our observations from the Wind River Range, this event is not represented in our AHe results from borehole samples

  12. Measuring temperature dependence of soil respiration: importance of incubation time, soil type, moisture content and model fits

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; Robinson, J.; O'Neill, T.; Ryburn, J.; Arcus, V. L.

    2015-12-01

    Developing robust models of the temperature response and sensitivity of soil respiration is critical for determining changes carbon cycling in response to climate change and at daily to annual time scales. Currently, approaches for measuring temperature dependence of soil respiration generally use long incubation times (days to weeks and months) at a limited number of incubation temperatures. Long incubation times likely allow thermal adaptation by the microbial population so that results are poorly representative of in situ soil responses. Additionally, too few incubation temperatures allows for the fit and justification of many different predictive equations, which can lead to inaccuracies when used for carbon budgeting purposes. We have developed a method to rapidly determine the response of soil respiration rate to wide range of temperatures. An aluminium block with 44 sample slots is heated at one end and cooled at the other to give a temperature gradient from 0 to 55°C at about one degree increments. Soil respiration is measured within 5 hours to minimise the possibility of thermal adaptation. We have used this method to demonstrate the similarity of temperature sensitivity of respiration for different soils from the same location across seasons. We are currently testing whether long-term (weeks to months) incubation alter temperature response and sensitivity that occurs in situ responses. This method is also well suited for determining the most appropriate models of temperature dependence and sensitivity of soil respiration (including macromolecular rate theory MMRT). With additional testing, this method is expected to be a more reliable method of measuring soil respiration rate for soil quality and modelling of soil carbon processes.

  13. Enhancement of low-temperature thermometry by strong coupling

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Perarnau-Llobet, Martí; Hovhannisyan, Karen V.; Hernández-Santana, Senaida; Mehboudi, Mohammad; Sanpera, Anna

    2017-12-01

    We consider the problem of estimating the temperature T of a very cold equilibrium sample. The temperature estimates are drawn from measurements performed on a quantum Brownian probe strongly coupled to it. We model this scenario by resorting to the canonical Caldeira-Leggett Hamiltonian and find analytically the exact stationary state of the probe for arbitrary coupling strength. In general, the probe does not reach thermal equilibrium with the sample, due to their nonperturbative interaction. We argue that this is advantageous for low-temperature thermometry, as we show in our model that (i) the thermometric precision at low T can be significantly enhanced by strengthening the probe-sampling coupling, (ii) the variance of a suitable quadrature of our Brownian thermometer can yield temperature estimates with nearly minimal statistical uncertainty, and (iii) the spectral density of the probe-sample coupling may be engineered to further improve thermometric performance. These observations may find applications in practical nanoscale thermometry at low temperatures—a regime which is particularly relevant to quantum technologies.

  14. Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction.

    PubMed

    Saska, Pavel; van der Werf, Wopke; Hemerik, Lia; Luff, Martin L; Hatten, Timothy D; Honek, Alois; Pocock, Michael

    2013-02-01

    Carabids and other epigeal arthropods make important contributions to biodiversity, food webs and biocontrol of invertebrate pests and weeds. Pitfall trapping is widely used for sampling carabid populations, but this technique yields biased estimates of abundance ('activity-density') because individual activity - which is affected by climatic factors - affects the rate of catch. To date, the impact of temperature on pitfall catches, while suspected to be large, has not been quantified, and no method is available to account for it. This lack of knowledge and the unavailability of a method for bias correction affect the confidence that can be placed on results of ecological field studies based on pitfall data.Here, we develop a simple model for the effect of temperature, assuming a constant proportional change in the rate of catch per °C change in temperature, r , consistent with an exponential Q 10 response to temperature. We fit this model to 38 time series of pitfall catches and accompanying temperature records from the literature, using first differences and other detrending methods to account for seasonality. We use meta-analysis to assess consistency of the estimated parameter r among studies.The mean rate of increase in total catch across data sets was 0·0863 ± 0·0058 per °C of maximum temperature and 0·0497 ± 0·0107 per °C of minimum temperature. Multiple regression analyses of 19 data sets showed that temperature is the key climatic variable affecting total catch. Relationships between temperature and catch were also identified at species level. Correction for temperature bias had substantial effects on seasonal trends of carabid catches. Synthesis and Applications . The effect of temperature on pitfall catches is shown here to be substantial and worthy of consideration when interpreting results of pitfall trapping. The exponential model can be used both for effect estimation and for bias correction of observed data. Correcting for temperature

  15. A Unimodal Model for Double Observer Distance Sampling Surveys.

    PubMed

    Becker, Earl F; Christ, Aaron M

    2015-01-01

    Distance sampling is a widely used method to estimate animal population size. Most distance sampling models utilize a monotonically decreasing detection function such as a half-normal. Recent advances in distance sampling modeling allow for the incorporation of covariates into the distance model, and the elimination of the assumption of perfect detection at some fixed distance (usually the transect line) with the use of double-observer models. The assumption of full observer independence in the double-observer model is problematic, but can be addressed by using the point independence assumption which assumes there is one distance, the apex of the detection function, where the 2 observers are assumed independent. Aerially collected distance sampling data can have a unimodal shape and have been successfully modeled with a gamma detection function. Covariates in gamma detection models cause the apex of detection to shift depending upon covariate levels, making this model incompatible with the point independence assumption when using double-observer data. This paper reports a unimodal detection model based on a two-piece normal distribution that allows covariates, has only one apex, and is consistent with the point independence assumption when double-observer data are utilized. An aerial line-transect survey of black bears in Alaska illustrate how this method can be applied.

  16. Prediction of temperature and HAZ in thermal-based processes with Gaussian heat source by a hybrid GA-ANN model

    NASA Astrophysics Data System (ADS)

    Fazli Shahri, Hamid Reza; Mahdavinejad, Ramezanali

    2018-02-01

    Thermal-based processes with Gaussian heat source often produce excessive temperature which can impose thermally-affected layers in specimens. Therefore, the temperature distribution and Heat Affected Zone (HAZ) of materials are two critical factors which are influenced by different process parameters. Measurement of the HAZ thickness and temperature distribution within the processes are not only difficult but also expensive. This research aims at finding a valuable knowledge on these factors by prediction of the process through a novel combinatory model. In this study, an integrated Artificial Neural Network (ANN) and genetic algorithm (GA) was used to predict the HAZ and temperature distribution of the specimens. To end this, a series of full factorial design of experiments were conducted by applying a Gaussian heat flux on Ti-6Al-4 V at first, then the temperature of the specimen was measured by Infrared thermography. The HAZ width of each sample was investigated through measuring the microhardness. Secondly, the experimental data was used to create a GA-ANN model. The efficiency of GA in design and optimization of the architecture of ANN was investigated. The GA was used to determine the optimal number of neurons in hidden layer, learning rate and momentum coefficient of both output and hidden layers of ANN. Finally, the reliability of models was assessed according to the experimental results and statistical indicators. The results demonstrated that the combinatory model predicted the HAZ and temperature more effective than a trial-and-error ANN model.

  17. Breakdown of the independent electron picture in mesoscopic samples at low temperatures: The hunt for the Unicorn

    NASA Astrophysics Data System (ADS)

    Webb, R. A.

    1998-03-01

    A variety of experiments are discussed where, at low temperatures, it appears that the non-interacting picture of electrons in a Fermi liquid description of a mesoscopic sample is breaking down. Specifically, experiments on the temperature dependence of the phase-coherence time, energy relaxation rate, spin-flip scattering time, persistent currents in normal metals and transmission through a barrier in the fractional quantum Hall regime all display low-temperature properties which can not be accounted for in the independent electron picture.

  18. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    DOE PAGES

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. Furthermore, themore » method is particularly useful for the fast and reliable estimation of the microcanonical temperature T(U) or, equivalently, of the density of states g(U) over a wide range of energies.« less

  19. Specific gravity of bovine colostrum immunoglobulins as affected by temperature and colostrum components.

    PubMed

    Mechor, G D; Gröhn, Y T; McDowell, L R; Van Saun, R J

    1992-11-01

    The effects of temperature and colostrum components on specific gravity in bovine colostrum were investigated. Thirty-nine first milking colostrum samples were collected from Holstein cows. The samples were assayed for alpha-tocopherol, fat, protein, total solids, and IgG. The concentrations of total solids, total protein, total IgG, and fat in colostrum were 26.6, 12.5, 3.7, and 9.4 g/100 g, respectively. A range of 1.8 to 24.7 micrograms/ml for alpha-tocopherol was measured in the colostrum samples. Specific gravity of the colostrum was measured using a hydrometer in increments of 5 degrees C from 0 to 40 degrees C. Specific gravity explained 76% of the variation in colostral total IgG at a colostrum temperature of 20 degrees C. The regression model was improved only slightly with the addition of protein, fat, and total solids. The model for samples at 20 degrees C was IgG (milligrams per milliliter) = 958 x (specific gravity) - 969. Measurement of specific gravity at variable temperatures necessitated inclusion of temperature in the model for estimation of IgG. Inclusion of the other components of colostrum into the model slightly improved the fit. The regression model for samples at variable temperatures was as follows: IgG (milligrams per milliliter) = 853 x (specific gravity) + .4 x temperature (Celsius degrees) - 866.

  20. A model to forecast short-term snowmelt runoff using synoptic observations of streamflow, temperature, and precipitation

    USGS Publications Warehouse

    Tangborn, Wendell V.

    1980-01-01

    Snowmelt runoff is forecast with a statistical model that utilizes daily values of stream discharge, gaged precipitation, and maximum and minimum observations of air temperature. Synoptic observations of these variables are made at existing low- and medium-altitude weather stations, thus eliminating the difficulties and expense of new, high-altitude installations. Four model development steps are used to demonstrate the influence on prediction accuracy of basin storage, a preforecast test season, air temperature (to estimate ablation), and a prediction based on storage. Daily ablation is determined by a technique that employs both mean temperature and a radiative index. Radiation (both long- and short-wave components) is approximated by using the range in daily temperature, which is shown to be closely related to mean cloud cover. A technique based on the relationship between prediction error and prediction season weather utilizes short-term forecasts of precipitation and temperature to improve the final prediction. Verification of the model is accomplished by a split sampling technique for the 1960–1977 period. Short- term (5–15 days) predictions of runoff throughout the main snowmelt season are demonstrated for mountain drainages in western Washington, south-central Arizona, western Montana, and central California. The coefficient of prediction (Cp) based on actual, short-term predictions for 18 years is for Thunder Creek (Washington), 0.69; for South Fork Flathead River (Montana), 0.45; for the Black River (Arizona), 0.80; and for the Kings River (California), 0.80.

  1. Statistical Modeling of Daily Stream Temperature for Mitigating Fish Mortality

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Rajagopalan, B.

    2011-12-01

    Water allocations in the Central Valley Project (CVP) of California require the consideration of short- and long-term needs of many socioeconomic factors including, but not limited to, agriculture, urban use, flood mitigation/control, and environmental concerns. The Endangered Species Act (ESA) ensures that the decision-making process provides sufficient water to limit the impact on protected species, such as salmon, in the Sacramento River Valley. Current decision support tools in the CVP were deemed inadequate by the National Marine Fisheries Service due to the limited temporal resolution of forecasts for monthly stream temperature and fish mortality. Finer scale temporal resolution is necessary to account for the stream temperature variations critical to salmon survival and reproduction. In addition, complementary, long-range tools are needed for monthly and seasonal management of water resources. We will present a Generalized Linear Model (GLM) framework of maximum daily stream temperatures and related attributes, such as: daily stream temperature range, exceedance/non-exceedance of critical threshold temperatures, and the number of hours of exceedance. A suite of predictors that impact stream temperatures are included in the models, including current and prior day values of streamflow, water temperatures of upstream releases from Shasta Dam, air temperature, and precipitation. Monthly models are developed for each stream temperature attribute at the Balls Ferry gauge, an EPA compliance point for meeting temperature criteria. The statistical framework is also coupled with seasonal climate forecasts using a stochastic weather generator to provide ensembles of stream temperature scenarios that can be used for seasonal scale water allocation planning and decisions. Short-term weather forecasts can also be used in the framework to provide near-term scenarios useful for making water release decisions on a daily basis. The framework can be easily translated to other

  2. Heat Transfer In High-Temperature Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Miller, Stephen D.; Cunnington, George R.

    2006-01-01

    The combined radiation/conduction heat transfer in high-temperature multilayer insulations for typical reentry of reusable launch vehicles from low Earth orbit was investigated experimentally and numerically. The high-temperature multilayer insulation investigated consisted of gold-coated reflective foils separated by alumina fibrous insulation spacers. The steady-state heat transfer through four multilayer insulation configurations was investigated experimentally over the temperature range of 300-1300 K and environmental pressure range of 1.33 10(exp -5)-101.32 kPa. It was shown that including the reflective foils reduced the effective thermal conductivity compared to fibrous insulation sample at 1.5 times the density of the multilayer sample. A finite volume numerical model was developed to solve the governing combined radiation/conduction heat transfer equations. The radiation heat transfer in the fibrous insulation spacers was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. The numerical model was validated by comparison with steady-state experimental data. The root mean square deviation between the predicted and measured effective thermal conductivity of the samples was 9.5%.

  3. Investigation of approximate models of experimental temperature characteristics of machines

    NASA Astrophysics Data System (ADS)

    Parfenov, I. V.; Polyakov, A. N.

    2018-05-01

    This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.

  4. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418

  5. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.

  6. Climate change, global warming and coral reefs: modelling the effects of temperature.

    PubMed

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  7. Unified constitutive models for high-temperature structural applications

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.

    1988-01-01

    Unified constitutive models are characterized by the use of a single inelastic strain rate term for treating all aspects of inelastic deformation, including plasticity, creep, and stress relaxation under monotonic or cyclic loading. The structure of this class of constitutive theory pertinent for high temperature structural applications is first outlined and discussed. The effectiveness of the unified approach for representing high temperature deformation of Ni-base alloys is then evaluated by extensive comparison of experimental data and predictions of the Bodner-Partom and the Walker models. The use of the unified approach for hot section structural component analyses is demonstrated by applying the Walker model in finite element analyses of a benchmark notch problem and a turbine blade problem.

  8. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  9. Modeling temperature variations in a pilot plant thermophilic anaerobic digester.

    PubMed

    Valle-Guadarrama, Salvador; Espinosa-Solares, Teodoro; López-Cruz, Irineo L; Domaschko, Max

    2011-05-01

    A model that predicts temperature changes in a pilot plant thermophilic anaerobic digester was developed based on fundamental thermodynamic laws. The methodology utilized two simulation strategies. In the first, model equations were solved through a searching routine based on a minimal square optimization criterion, from which the overall heat transfer coefficient values, for both biodigester and heat exchanger, were determined. In the second, the simulation was performed with variable values of these overall coefficients. The prediction with both strategies allowed reproducing experimental data within 5% of the temperature span permitted in the equipment by the system control, which validated the model. The temperature variation was affected by the heterogeneity of the feeding and extraction processes, by the heterogeneity of the digestate recirculation through the heating system and by the lack of a perfect mixing inside the biodigester tank. The use of variable overall heat transfer coefficients improved the temperature change prediction and reduced the effect of a non-ideal performance of the pilot plant modeled.

  10. Modeling the Surface Temperature of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Vladilo, Giovanni; Silva, Laura; Murante, Giuseppe; Filippi, Luca; Provenzale, Antonello

    2015-05-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface energy balance model (EBM) complemented by: radiative-convective atmospheric column calculations, a set of physically based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (ɛ ≲ 45{}^\\circ ). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ≈ 5 K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5≲ {Ω }/{{{Ω }}\\oplus }≲ 2, 0.75≲ S/{{S}\\circ }≲ 1.25, 0.3≲ p/(1 bar)≲ 10, and 0.5≲ R/{{R}\\oplus }≲ 2, respectively. The ESTM has an extremely low computational cost and can be used when the planetary parameters are scarcely known (as for most exoplanets) and/or whenever many runs for different parameter configurations are needed. Model simulations of a test-case exoplanet (Kepler-62e) indicate that an uncertainty in surface pressure within the range expected for terrestrial planets may impact the mean temperature by ˜ 60 K. Within the limits of validity of the ESTM, the impact of surface pressure is larger than that predicted by uncertainties in rotation rate, axis obliquity, and ocean fractions. We discuss the possibility of performing a statistical ranking of planetary habitability taking advantage of the flexibility of the ESTM.

  11. Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model.

    PubMed

    Roth, T R; Westhoff, M C; Huwald, H; Huff, J A; Rubin, J F; Barrenetxea, G; Vetterli, M; Parriaux, A; Selkeer, J S; Parlange, M B

    2010-03-15

    Elevated in-stream temperature has led to a surge in the occurrence of parasitic intrusion proliferative kidney disease and has resulted in fish kills throughout Switzerland's waterways. Data from distributed temperature sensing (DTS) in-stream measurements for three cloud-free days in August 2007 over a 1260 m stretch of the Boiron de Merges River in southwest Switzerland were used to calibrate and validate a physically based one-dimensional stream temperature model. Stream temperature response to three distinct riparian conditions were then modeled: open, in-stream reeds, and forest cover. Simulation predicted a mean peak stream temperature increase of 0.7 °C if current vegetation was removed, an increase of 0.1 °C if dense reeds covered the entire stream reach, and a decrease of 1.2 °C if a mature riparian forest covered the entire reach. Understanding that full vegetation canopy cover is the optimal riparian management option for limiting stream temperature, in-stream reeds, which require no riparian set-aside and grow very quickly, appear to provide substantial thermal control, potentially useful for land-use management.

  12. A model-based 'varimax' sampling strategy for a heterogeneous population.

    PubMed

    Akram, Nuzhat A; Farooqi, Shakeel R

    2014-01-01

    Sampling strategies are planned to enhance the homogeneity of a sample, hence to minimize confounding errors. A sampling strategy was developed to minimize the variation within population groups. Karachi, the largest urban agglomeration in Pakistan, was used as a model population. Blood groups ABO and Rh factor were determined for 3000 unrelated individuals selected through simple random sampling. Among them five population groups, namely Balochi, Muhajir, Pathan, Punjabi and Sindhi, based on paternal ethnicity were identified. An index was designed to measure the proportion of admixture at parental and grandparental levels. Population models based on index score were proposed. For validation, 175 individuals selected through stratified random sampling were genotyped for the three STR loci CSF1PO, TPOX and TH01. ANOVA showed significant differences across the population groups for blood groups and STR loci distribution. Gene diversity was higher across the sub-population model than in the agglomerated population. At parental level gene diversities are significantly higher across No admixture models than Admixture models. At grandparental level the difference was not significant. A sub-population model with no admixture at parental level was justified for sampling the heterogeneous population of Karachi.

  13. Exact sampling hardness of Ising spin models

    NASA Astrophysics Data System (ADS)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  14. A lithium-ion capacitor model working on a wide temperature range

    NASA Astrophysics Data System (ADS)

    Barcellona, S.; Piegari, L.

    2017-02-01

    Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.

  15. On effective temperature in network models of collective behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porfiri, Maurizio, E-mail: mporfiri@nyu.edu; Ariel, Gil, E-mail: arielg@math.biu.ac.il

    Collective behavior of self-propelled units is studied analytically within the Vectorial Network Model (VNM), a mean-field approximation of the well-known Vicsek model. We propose a dynamical systems framework to study the stochastic dynamics of the VNM in the presence of general additive noise. We establish that a single parameter, which is a linear function of the circular mean of the noise, controls the macroscopic phase of the system—ordered or disordered. By establishing a fluctuation–dissipation relation, we posit that this parameter can be regarded as an effective temperature of collective behavior. The exact critical temperature is obtained analytically for systems withmore » small connectivity, equivalent to low-density ensembles of self-propelled units. Numerical simulations are conducted to demonstrate the applicability of this new notion of effective temperature to the Vicsek model. The identification of an effective temperature of collective behavior is an important step toward understanding order–disorder phase transitions, informing consistent coarse-graining techniques and explaining the physics underlying the emergence of collective phenomena.« less

  16. Temperature gradient interaction chromatography of polymers: A molecular statistical model.

    PubMed

    Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun

    2010-11-01

    A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Assimilation of temperature and salinity profile data in the Norwegian Climate Prediction Model

    NASA Astrophysics Data System (ADS)

    Wang, Yiguo; Counillon, Francois; Bertino, Laurent; Bethke, Ingo; Keenlyside, Noel

    2016-04-01

    Assimilating temperature and salinity profile data is promising to constrain the ocean component of Earth system models for the purpose of seasonal-to-dedacal climate predictions. However, assimilating temperature and salinity profiles that are measured in standard depth coordinate (z-coordinate) into isopycnic coordinate ocean models that are discretised by water densities is challenging. Prior studies (Thacker and Esenkov, 2002; Xie and Zhu, 2010) suggested that converting observations to the model coordinate (i.e. innovations in isopycnic coordinate) performs better than interpolating model state to observation coordinate (i.e. innovations in z-coordinate). This problem is revisited here with the Norwegian Climate Prediction Model, which applies the ensemble Kalman filter (EnKF) into the ocean isopycnic model (MICOM) of the Norwegian Earth System Model. We perform Observing System Simulation Experiments (OSSEs) to compare two schemes (the EnKF-z and EnKF-ρ). In OSSEs, the truth is set to the EN4 objective analyses and observations are perturbations of the truth with white noises. Unlike in previous studies, it is found that EnKF-z outperforms EnKF-ρ for different observed vertical resolution, inhomogeneous sampling (e.g. upper 1000 meter observations only), or lack of salinity measurements. That is mostly because the operator converting observations into isopycnic coordinate is strongly non-linear. We also study the horizontal localisation radius at certain arbitrary grid points. Finally, we perform the EnKF-z with the chosen localisation radius in a realistic framework with NorCPM over a 5-year analysis period. The analysis is validated by different independent datasets.

  18. A physically based analytical spatial air temperature and humidity model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  19. Development of Predictive Models for the Growth Kinetics of Listeria monocytogenes on Fresh Pork under Different Storage Temperatures.

    PubMed

    Luo, Ke; Hong, Sung-Sam; Wang, Jun; Chung, Mi-Ja; Deog-Hwan, Oh

    2015-05-01

    This study was conducted to develop a predictive model to estimate the growth of Listeria monocytogenes on fresh pork during storage at constant temperatures (5, 10, 15, 20, 25, 30, and 35°C). The Baranyi model was fitted to growth data (log CFU per gram) to calculate the specific growth rate (SGR) and lag time (LT) with a high coefficient of determination (R(2) > 0.98). As expected, SGR increased with a decline in LT with rising temperatures in all samples. Secondary models were then developed to describe the variation of SGR and LT as a function of temperature. Subsequently, the developed models were validated with additional independent growth data collected at 7, 17, 27, and 37°C and from published reports using proportion of relative errors and proportion of standard error of prediction. The proportion of relative errors of the SGR and LT models developed herein were 0.79 and 0.18, respectively. In addition, the standard error of prediction values of the SGR and LT of L. monocytogenes ranged from 25.7 to 33.1% and from 44.92 to 58.44%, respectively. These results suggest that the model developed in this study was capable of predicting the growth of L. monocytogenes under various isothermal conditions.

  20. Thermal Response Modeling System for a Mars Sample Return Vehicle

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Miles, Frank S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite-element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas eneration and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.

  1. Thermal Response Modeling System for a Mars Sample Return Vehicle

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.

    2002-01-01

    A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.

  2. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation

    NASA Astrophysics Data System (ADS)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.

    2017-12-01

    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  3. Using pairs of physiological models to estimate temporal variation in amphibian body temperature.

    PubMed

    Roznik, Elizabeth A; Alford, Ross A

    2014-10-01

    Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures

  4. Sample mounting and transfer for coupling an ultrahigh vacuum variable temperature beetle scanning tunneling microscope with conventional surface probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.

    2001-01-01

    We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHVmore » flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects.« less

  5. Effect of electrical stimulation and cooking temperature on the within-sample variation of cooking loss and shear force of lamb.

    PubMed

    Lewis, P K; Babiker, S A

    1983-01-01

    Electrical stimulation decreased the shear force and increased the cooking loss in seven paired lamb Longissimus dorsi (LD) muscles. This treatment did not have any effect on the within-sample variation. Cooking in 55°, 65° and 75°C water baths for 90 min caused a linear increase in the cooking loss and shear force. There was no stimulation-cooking temperature interaction observed. Cooking temperature also had no effect on the within-sample variation. A possible explanation as to why electrical stimulation did not affect the within-sample variation is given. Copyright © 1983. Published by Elsevier Ltd.

  6. Estimating future temperature maxima in lakes across the United States using a surrogate modeling approach

    PubMed Central

    Zi, Tan; Schmidt, Michelle; Johnson, Thomas E.; Nover, Daniel M.; Clark, Christopher M.

    2017-01-01

    A warming climate increases thermal inputs to lakes with potential implications for water quality and aquatic ecosystems. In a previous study, we used a dynamic water column temperature and mixing simulation model to simulate chronic (7-day average) maximum temperatures under a range of potential future climate projections at selected sites representative of different U.S. regions. Here, to extend results to lakes where dynamic models have not been developed, we apply a novel machine learning approach that uses Gaussian Process regression to describe the model response surface as a function of simplified lake characteristics (depth, surface area, water clarity) and climate forcing (winter and summer air temperatures and potential evapotranspiration). We use this approach to extrapolate predictions from the simulation model to the statistical sample of U.S. lakes in the National Lakes Assessment (NLA) database. Results provide a national-scale scoping assessment of the potential thermal risk to lake water quality and ecosystems across the U.S. We suggest a small fraction of lakes will experience less risk of summer thermal stress events due to changes in stratification and mixing dynamics, but most will experience increases. The percentage of lakes in the NLA with simulated 7-day average maximum water temperatures in excess of 30°C is projected to increase from less than 2% to approximately 22% by the end of the 21st century, which could significantly reduce the number of lakes that can support cold water fisheries. Site-specific analysis of the full range of factors that influence thermal profiles in individual lakes is needed to develop appropriate adaptation strategies. PMID:29121058

  7. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation.

    PubMed

    Bååth, Erland

    2018-07-01

    Numerous models have been used to express the temperature sensitivity of microbial growth and activity in soil making it difficult to compare results from different habitats. Q10 still is one of the most common ways to express temperature relationships. However, Q10 is not constant with temperature and will differ depending on the temperature interval used for the calculation. The use of the square root (Ratkowsky) relationship between microbial activity (A) and temperature below optimum temperature, √A = a × (T-T min ), is proposed as a simple and adequate model that allow for one descriptor, T min (a theoretical minimum temperature for growth and activity), to estimate correct Q10-values over the entire in situ temperature interval. The square root model can adequately describe both microbial growth and respiration, allowing for an easy determination of T min . Q10 for any temperature interval can then be calculated by Q10 = [(T + 10 - T min )/(T-T min )] 2 , where T is the lowest temperature in the Q10 comparison. T min also describes the temperature adaptation of the microbial community. An envelope of T min covering most natural soil habitats varying between -15°C (cold habitats like Antarctica/Arctic) to 0°C (tropical habitats like rain forests and deserts) is suggested, with an 0.3°C increase in T min per 1°C increase in mean annual temperature. It is shown that the main difference between common temperature relationships used in global models is differences in the assumed temperature adaptation of the soil microbial community. The use of the square root equation will allow for one descriptor, T min , determining the temperature response of soil microorganisms, and at the same time allow for comparing temperature sensitivity of microbial activity between habitats, including future projections. © 2018 John Wiley & Sons Ltd.

  8. Uncertainty in a Markov state model with missing states and rates: Application to a room temperature kinetic model obtained using high temperature molecular dynamics.

    PubMed

    Chatterjee, Abhijit; Bhattacharya, Swati

    2015-09-21

    Several studies in the past have generated Markov State Models (MSMs), i.e., kinetic models, of biomolecular systems by post-analyzing long standard molecular dynamics (MD) calculations at the temperature of interest and focusing on the maximally ergodic subset of states. Questions related to goodness of these models, namely, importance of the missing states and kinetic pathways, and the time for which the kinetic model is valid, are generally left unanswered. We show that similar questions arise when we generate a room-temperature MSM (denoted MSM-A) for solvated alanine dipeptide using state-constrained MD calculations at higher temperatures and Arrhenius relation — the main advantage of such a procedure being a speed-up of several thousand times over standard MD-based MSM building procedures. Bounds for rate constants calculated using probability theory from state-constrained MD at room temperature help validate MSM-A. However, bounds for pathways possibly missing in MSM-A show that alternate kinetic models exist that produce the same dynamical behaviour at short time scales as MSM-A but diverge later. Even in the worst case scenario, MSM-A is found to be valid longer than the time required to generate it. Concepts introduced here can be straightforwardly extended to other MSM building techniques.

  9. Experimental testing of olivine-melt equilibrium models at high temperatures

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. P.; Sobolev, A. V.; Batanova, V. G.; Kargaltsev, A. A.; Borisov, A. A.

    2017-08-01

    Data are presented on the equilibrium compositions of olivine and melts in the products of 101 experiments performed at 1300-1600°C, atmospheric pressure, and controlled oxygen fugacity by means of new equipment at the Vernadsky Institute. It was shown that the available models of the olivine-melt equilibrium describe with insufficient adequacy the natural systems at temperatures over 1400°C. The most adequate is the model by Ford et al. (1983). However, this model overestimates systematically the equilibrium temperature with underestimating by 20-40°C at 1450-1600°C. These data point to the need for developing a new, improved quantitative model of the olivine-melt equilibrium for high-temperature magnesian melts, as well as to the possibility of these studies on the basis of the equipment presented.

  10. Temperature-influenced energetics model for migrating waterfowl

    USGS Publications Warehouse

    Aagaard, Kevin; Thogmartin, Wayne E.; Lonsdorg, Eric V.

    2018-01-01

    Climate and weather affect avian migration by influencing when and where birds fly, the energy costs and risks of flight, and the ability to sense cues necessary for proper navigation. We review the literature of the physiology of avian migration and the influence of climate, specifically temperature, on avian migration dynamics. We use waterfowl as a model guild because of the ready availability of empirical physiological data and their enormous economic value, but our discussion and expectations are broadly generalizable to migratory birds in general. We detail potential consequences of an increasingly warm climate on avian migration, including the possibility of the cessation of migration by some populations and species. Our intent is to lay the groundwork for including temperature effects on energetic gains and losses of migratory birds with the expected consequences of increasing temperatures into a predictive modeling framework. To this end, we provide a simulation of migration progression exclusively focused on the influence of temperature on the physiological determinants of migration. This simulation produced comparable results to empirically derived and observed values for different migratory factors (e.g., body fat content, flight range, departure date). By merging knowledge from the arenas of avian physiology and migratory theory we have identified a clear need for research and have developed hypotheses for a path forward.

  11. A dynamic model for plant growth: validation study under changing temperatures

    NASA Technical Reports Server (NTRS)

    Wann, M.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1984-01-01

    A dynamic simulation model to describe vegetative growth of plants, for which some functions and parameter values have been estimated previously by optimization search techniques and numerical experimentation based on data from constant temperature experiments, is validated under conditions of changing temperatures. To test the predictive capacity of the model, dry matter accumulation in the leaves, stems, and roots of tobacco plants (Nicotiana tabacum L.) was measured at 2- or 3-day intervals during a 5-week period when temperatures in controlled-environment rooms were programmed for changes at weekly and daily intervals and in ascending or descending sequences within a range of 14 to 34 degrees C. Simulations of dry matter accumulation and distribution were carried out using the programmed changes for experimental temperatures and compared with the measured values. The agreement between measured and predicted values was close and indicates that the temperature-dependent functional forms derived from constant-temperature experiments are adequate for modelling plant growth responses to conditions of changing temperatures with switching intervals as short as 1 day.

  12. Modelling the temperature evolution of bone under high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  13. Modeling the Effect of Temperature on Ozone-Related Mortality.

    EPA Science Inventory

    Modeling the Effect of Temperature on Ozone-Related Mortality. Wilson, Ander, Reich, Brian J, Neas, Lucas M., Rappold, Ana G. Background: Previous studies show ozone and temperature are associated with increased mortality; however, the joint effect is not well explored. Underst...

  14. Temperature driven annealing of perforations in bicellar model membranes.

    PubMed

    Nieh, Mu-Ping; Raghunathan, V A; Pabst, Georg; Harroun, Thad; Nagashima, Kazuomi; Morales, Hannah; Katsaras, John; Macdonald, Peter

    2011-04-19

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing. © 2011 American Chemical Society

  15. Homogenous Nucleation and Crystal Growth in a Model Liquid from Direct Energy Landscape Sampling Simulation

    NASA Astrophysics Data System (ADS)

    Walter, Nathan; Zhang, Yang

    Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex

  16. Domain Motion Enhanced (DoME) Model for Efficient Conformational Sampling of Multidomain Proteins.

    PubMed

    Kobayashi, Chigusa; Matsunaga, Yasuhiro; Koike, Ryotaro; Ota, Motonori; Sugita, Yuji

    2015-11-19

    Large conformational changes of multidomain proteins are difficult to simulate using all-atom molecular dynamics (MD) due to the slow time scale. We show that a simple modification of the structure-based coarse-grained (CG) model enables a stable and efficient MD simulation of those proteins. "Motion Tree", a tree diagram that describes conformational changes between two structures in a protein, provides information on rigid structural units (domains) and the magnitudes of domain motions. In our new CG model, which we call the DoME (domain motion enhanced) model, interdomain interactions are defined as being inversely proportional to the magnitude of the domain motions in the diagram, whereas intradomain interactions are kept constant. We applied the DoME model in combination with the Go model to simulations of adenylate kinase (AdK). The results of the DoME-Go simulation are consistent with an all-atom MD simulation for 10 μs as well as known experimental data. Unlike the conventional Go model, the DoME-Go model yields stable simulation trajectories against temperature changes and conformational transitions are easily sampled despite domain rigidity. Evidently, identification of domains and their interfaces is useful approach for CG modeling of multidomain proteins.

  17. Gradient of the temperature function at the voxel (i, j, k) for heterogeneous bio-thermal model

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Hoppe, Ralph; Sun, Aiwu; Gu, Ning; Lu, Rongbo

    2018-06-01

    Determination of the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples based on numerical methods is essential in biomedical engineering (e.g. microwave thermal ablation in clinic). In this paper, the gradient expression is examined and analyzed in detail, as how the gradient operators can be discretized is the only real difficulty to the solution of bio-heat equation for highly inhomogeneous model utilizing implicit scheme.

  18. Recovery of temperature records from slow-growing corals by fine scale sampling of skeletons

    NASA Astrophysics Data System (ADS)

    Cohen, Anne L.; Thorrold, Simon R.

    2007-09-01

    We used laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) to analyze Sr/Ca ratios in 5 colonies of the Atlantic corals, Diploria labyrinthiformis and Montastrea franski, each growing less than 5 mm yr-1. By targeting the centers of septa we avoided thickening deposits to achieve an analytical sampling resolution of 5-10 days. The sensitivity of Sr/Ca to temperature (-0.096 mmol/mol/°C) is ˜3 times higher than previously reported for these species and equivalent to that exhibited by fast-growing Porites corals from the Indo-Pacific. The Sr/Ca-sea surface temperature (SST) calibrations derived from these corals were not statistically different and were independent of colony growth rate over the period studied. Data from 4 D. labyrinthiformis colonies were pooled to produce a single Sr/Ca-SST calibration with a calculated standard error on the predicted ocean temperature of ±0.51°C. Applying our calibration to Sr/Ca analyses of D. labyrinthiformis skeleton deposited in the late 18th century indicated that average annual sea surface temperatures around Bermuda were ˜1°C cooler than today.

  19. Low-temperature behavior of the quark-meson model

    NASA Astrophysics Data System (ADS)

    Tripolt, Ralf-Arno; Schaefer, Bernd-Jochen; von Smekal, Lorenz; Wambach, Jochen

    2018-02-01

    We revisit the phase diagram of strong-interaction matter for the two-flavor quark-meson model using the functional renormalization group. In contrast to standard mean-field calculations, an unusual phase structure is encountered at low temperatures and large quark chemical potentials. In particular, we identify a regime where the pressure decreases with increasing temperature and discuss possible reasons for this unphysical behavior.

  20. Temperature measurements during high flux ion beam irradiations

    DOE PAGES

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; ...

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au 3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10 12 cm –2 s –1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparisonmore » with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.« less

  1. Statistical models for fever forecasting based on advanced body temperature monitoring.

    PubMed

    Jordan, Jorge; Miro-Martinez, Pau; Vargas, Borja; Varela-Entrecanales, Manuel; Cuesta-Frau, David

    2017-02-01

    Body temperature monitoring provides health carers with key clinical information about the physiological status of patients. Temperature readings are taken periodically to detect febrile episodes and consequently implement the appropriate medical countermeasures. However, fever is often difficult to assess at early stages, or remains undetected until the next reading, probably a few hours later. The objective of this article is to develop a statistical model to forecast fever before a temperature threshold is exceeded to improve the therapeutic approach to the subjects involved. To this end, temperature series of 9 patients admitted to a general internal medicine ward were obtained with a continuous monitoring Holter device, collecting measurements of peripheral and core temperature once per minute. These series were used to develop different statistical models that could quantify the probability of having a fever spike in the following 60 minutes. A validation series was collected to assess the accuracy of the models. Finally, the results were compared with the analysis of some series by experienced clinicians. Two different models were developed: a logistic regression model and a linear discrimination analysis model. Both of them exhibited a fever peak forecasting accuracy greater than 84%. When compared with experts' assessment, both models identified 35 (97.2%) of 36 fever spikes. The models proposed are highly accurate in forecasting the appearance of fever spikes within a short period in patients with suspected or confirmed febrile-related illnesses. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A model of the ground surface temperature for micrometeorological analysis

    NASA Astrophysics Data System (ADS)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  3. Stability of Drugs of Abuse in Urine Samples at Room Temperature by Use of a Salts Mixture.

    PubMed

    Pellegrini, Manuela; Graziano, Silvia; Mastrobattista, Luisa; Minutillo, Adele; Busardo, Francesco Paolo; Scarsella, Gianfranco

    2017-01-01

    It has long been recognized that ensuring analyte stability is of crucial importance in the use of any quantitative bioanalytical method. As analyses are usually not performed directly after collection of the biological samples, but after these have been processed and stored, it is essential that analyte stability can be maintained at storage conditions to ensure that the obtained concentration results adequately reflect those directly after sampling. The conservation of urine samples in refrigerated/ frozen conditions is strongly recommended; but not always feasible. The aim of this study was to assess the stability of some well-known drugs of abuse methamphetamine (MA), 11-nor-9-carboxy-Δ9- tetrahydrocannabinol (THC-COOH), benzoylecgonine (BE), and morphine (MOR) in urine samples kept at room temperature by adding a salt mixture (sodium citrate, sodium ascorbate, borax). Two different urine samples were prepared with and without salt mixture, stored at room temperature and then analyzed by gas chromatography-mass spectrometry at 0, 1, 7, 15, and 30 days after collection/preparation to look for eventual analyte degradation. Methamphetamine showed no significant changes with respect to the time of collection/ preparation (T0) up to 7 days later (T7), with or without salt mixture addiction. Then a significant degradation occurred in both salted and non salted urine. BE decrease was observed starting from day 1 after sample collection in salted and not salted samples, respectively. Salt addition seemed to reduce at least the initial BE degradation, with a significant difference (p<0.001) at 7 and 15 days of storage. However, the degradation was not more prevented in salted samples at 30 days of storage. A 20% decrease of MOR concentration was observed starting from day 1 after collection/preparation, both in salted and not salted samples with no subsequent decrease. With regard to THCCOOH, a significant decrease was observed starting from 7 days after collection

  4. Characterization of the low-temperature properties of a simplified protein model

    NASA Astrophysics Data System (ADS)

    Hagmann, Johannes-Geert; Nakagawa, Naoko; Peyrard, Michel

    2014-01-01

    Prompted by results that showed that a simple protein model, the frustrated Gō model, appears to exhibit a transition reminiscent of the protein dynamical transition, we examine the validity of this model to describe the low-temperature properties of proteins. First, we examine equilibrium fluctuations. We calculate its incoherent neutron-scattering structure factor and show that it can be well described by a theory using the one-phonon approximation. By performing an inherent structure analysis, we assess the transitions among energy states at low temperatures. Then, we examine nonequilibrium fluctuations after a sudden cooling of the protein. We investigate the violation of the fluctuation-dissipation theorem in order to analyze the protein glass transition. We find that the effective temperature of the quenched protein deviates from the temperature of the thermostat, however it relaxes towards the actual temperature with an Arrhenius behavior as the waiting time increases. These results of the equilibrium and nonequilibrium studies converge to the conclusion that the apparent dynamical transition of this coarse-grained model cannot be attributed to a glassy behavior.

  5. Time series modelling of increased soil temperature anomalies during long period

    NASA Astrophysics Data System (ADS)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  6. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  7. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi

  8. FPL roof temperature and moisture model : description and verification

    Treesearch

    A. TenWolde

    This paper describes a mathematical model developed by the Forest Products Laboratory to predict attic temperatures, relative humidities, and roof sheathing moisture content. Comparison of data from model simulation and measured data provided limited validation of the model and led to the following conclusions: (1) the model can...

  9. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  10. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain.

    PubMed

    Selwa, Edithe; Huynh, Tru; Ciccotti, Giovanni; Maragliano, Luca; Malliavin, Thérèse E

    2014-10-01

    The catalytic domain of the adenyl cyclase (AC) toxin from Bordetella pertussis is activated by interaction with calmodulin (CaM), resulting in cAMP overproduction in the infected cell. In the X-ray crystallographic structure of the complex between AC and the C terminal lobe of CaM, the toxin displays a markedly elongated shape. As for the structure of the isolated protein, experimental results support the hypothesis that more globular conformations are sampled, but information at atomic resolution is still lacking. Here, we use temperature-accelerated molecular dynamics (TAMD) simulations to generate putative all-atom models of globular conformations sampled by CaM-free AC. As collective variables, we use centers of mass coordinates of groups of residues selected from the analysis of standard molecular dynamics (MD) simulations. Results show that TAMD allows extended conformational sampling and generates AC conformations that are more globular than in the complexed state. These structures are then refined via energy minimization and further unrestrained MD simulations to optimize inter-domain packing interactions, thus resulting in the identification of a set of hydrogen bonds present in the globular conformations. © 2014 Wiley Periodicals, Inc.

  11. Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst

    DOE PAGES

    Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.

    2014-11-10

    In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements inmore » energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.« less

  12. Development of a Mechanistically Based, Basin-Scale Stream Temperature Model: Applications to Cumulative Effects Modeling

    Treesearch

    Douglas Allen; William Dietrich; Peter Baker; Frank Ligon; Bruce Orr

    2007-01-01

    We describe a mechanistically-based stream model, BasinTemp, which assumes that direct shortwave radiation moderated by riparian and topographic shading, controls stream temperatures during the hottest part of the year. The model was developed to support a temperature TMDL for the South Fork Eel basin in Northern California and couples a GIS and a 1-D energy balance...

  13. Electrosurgical vessel sealing tissue temperature: experimental measurement and finite element modeling.

    PubMed

    Chen, Roland K; Chastagner, Matthew W; Dodde, Robert E; Shih, Albert J

    2013-02-01

    The temporal and spatial tissue temperature profile in electrosurgical vessel sealing was experimentally measured and modeled using finite element modeling (FEM). Vessel sealing procedures are often performed near the neurovascular bundle and may cause collateral neural thermal damage. Therefore, the heat generated during electrosurgical vessel sealing is of concern among surgeons. Tissue temperature in an in vivo porcine femoral artery sealed using a bipolar electrosurgical device was studied. Three FEM techniques were incorporated to model the tissue evaporation, water loss, and fusion by manipulating the specific heat, electrical conductivity, and electrical contact resistance, respectively. These three techniques enable the FEM to accurately predict the vessel sealing tissue temperature profile. The averaged discrepancy between the experimentally measured temperature and the FEM predicted temperature at three thermistor locations is less than 7%. The maximum error is 23.9%. Effects of the three FEM techniques are also quantified.

  14. A model for evaluating stream temperature response to climate change scenarios in Wisconsin

    USGS Publications Warehouse

    Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven

    2010-01-01

    Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.

  15. Comparison of room temperature and cyrogenic sample processing in the analysis of chemical contaminants in foods

    USDA-ARS?s Scientific Manuscript database

    In this study, analytical results were compared when using different approaches to bulk food sample comminution, consisting of a vertical chopper (Blixer) at room temperature and at dry ice cryogenic conditions, followed by further subsample processing (20 g) using liquid nitrogen cryogenic conditio...

  16. Optimal time points sampling in pathway modelling.

    PubMed

    Hu, Shiyan

    2004-01-01

    Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.

  17. Influence of spatial temperature estimation method in ecohydrologic modeling in the western Oregon Cascades

    Treesearch

    E. Garcia; C.L. Tague; J. Choate

    2013-01-01

    Most spatially explicit hydrologic models require estimates of air temperature patterns. For these models, empirical relationships between elevation and air temperature are frequently used to upscale point measurements or downscale regional and global climate model estimates of air temperature. Mountainous environments are particularly sensitive to air temperature...

  18. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    NASA Astrophysics Data System (ADS)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  19. Modeling quantum fluid dynamics at nonzero temperatures

    PubMed Central

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  20. Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes

    DOE PAGES

    Cheng, L.; Phillips, T. J.; AghaKouchak, A.

    2015-05-01

    The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are mostmore » subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.« less

  1. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    NASA Astrophysics Data System (ADS)

    Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O'Brien, Katherine R.

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  2. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species.

    PubMed

    Adams, Matthew P; Collier, Catherine J; Uthicke, Sven; Ow, Yan X; Langlois, Lucas; O'Brien, Katherine R

    2017-01-04

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt ) for maximum photosynthetic rate (P max ). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  3. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    PubMed Central

    Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O’Brien, Katherine R.

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike. PMID:28051123

  4. Back to Basics: Adherence With Guidelines for Glucose and Temperature Control in an American Comprehensive Stroke Center Sample.

    PubMed

    Alexandrov, Anne W; Palazzo, Paola; Biby, Sharon; Doerr, Abbigayle; Dusenbury, Wendy; Young, Rhonda; Lindstrom, Anne; Grove, Mary; Tsivgoulis, Georgios; Middleton, Sandy; Alexandrov, Andrei V

    2018-06-01

    Variance from guideline-directed care for glucose and temperature control remains unknown in the United States at a time when priorities have shifted to ensure rapid diagnosis and treatment of acute stroke patients. However, protocol-driven nursing surveillance for control of hyperglycemia and hyperthermia has been shown to improve patient outcomes. We conducted an observational pilot study to assess compliance with American guidelines for glucose and temperature control and association with discharge outcomes in consecutive acute stroke patients admitted to 5 US comprehensive stroke centers. Data for the first 5 days of stroke admission were collected from electronic medical records and entered and analyzed in SPSS using descriptive statistics, Mann-Whitney U test, Student t tests, and logistic regression. A total of 1669 consecutive glucose and 3782 consecutive temperature measurements were taken from a sample of 235 acute stroke patients; the sample was 87% ischemic and 13% intracerebral hemorrhage. Poor glucose control was found in 33% of patients, and the most frequent control method ordered (35%) was regular insulin sliding scale without basal dosing. Poor temperature control was noted in 10%, and 39% did not have temperature recorded in the emergency department. Lower admission National Institutes of Health Stroke Scale score and well-controlled glucose were independent predictors of favorable outcome (discharge modified Rankin Scale score, 0-2) in reperfusion patients. Glucose and temperature control may be overlooked in this era of rapid stroke diagnosis and treatment. Acute stroke nurses are well positioned to assume leadership of glucose and temperature monitoring and treatment.

  5. Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations

    Treesearch

    C. H. Luce; D. G. Tarboton

    2010-01-01

    The snow surface temperature is an important quantity in the snow energy balance, since it modulates the exchange of energy between the surface and the atmosphere as well as the conduction of energy into the snowpack. It is therefore important to correctly model snow surface temperatures in energy balance snowmelt models. This paper focuses on the relationship between...

  6. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  7. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  8. Measuring the mechanical efficiency of a working cardiac muscle sample at body temperature using a flow-through calorimeter.

    PubMed

    Taberner, Andrew J; Johnston, Callum M; Pham, Toan; June-Chiew Han; Ruddy, Bryan P; Loiselle, Denis S; Nielsen, Poul M F

    2015-08-01

    We have developed a new `work-loop calorimeter' that is capable of measuring, simultaneously, the work-done and heat production of isolated cardiac muscle samples at body temperature. Through the innovative use of thermoelectric modules as temperature sensors, the development of a low-noise fluid-flow system, and implementation of precise temperature control, the heat resolution of this device is 10 nW, an improvement by a factor of ten over previous designs. These advances have allowed us to conduct the first flow-through measurements of work output and heat dissipation from cardiac tissue at body temperature. The mechanical efficiency is found to vary with peak stress, and reaches a peak value of approximately 15 %, a figure similar to that observed in cardiac muscle at lower temperatures.

  9. Modeling apple surface temperature dynamics based on weather data.

    PubMed

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  10. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    PubMed Central

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-01-01

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management. PMID:25350507

  11. An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha

    2018-02-01

    In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.

  12. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.

    PubMed

    Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A

    2018-04-24

    While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.

  13. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    NASA Astrophysics Data System (ADS)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  14. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans.

    PubMed

    Schirmack, Janosch; Fiebrandt, Marcel; Stapelmann, Katharina; Schulze-Makuch, Dirk

    2016-05-26

    We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples.

  15. Influence of temperature on Cole-Cole dielectric model of oil-immersed bushing

    NASA Astrophysics Data System (ADS)

    Wang, K.; Chen, X. J.; Xu, X. W.; Liu, G. Q.; Zou, D. X.; Liu, W. D.

    2017-07-01

    In this paper, 72.5 kV oil-immersed bushing was produced in laboratory. The frequency-domain dielectric response tests of oil-immersed bushings were carried out at different test temperatures. The experimental data were fitted by using the modified double relaxation Cole-Cole dielectric model. The influence of temperature variation on the dielectric response test of the oil-immersed bushing and the Cole-Cole dielectric model parameters were analysed. The results showed that with the increase of the test temperature, the spectrum of the real and imaginary of the complex permittivity are shifted to the high frequency direction; the parameters of the dielectric model are significantly affected by temperature.

  16. A microscale three-dimensional urban energy balance model for studying surface temperatures

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. Scott; Voogt, James A.

    2007-06-01

    A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).

  17. Modeling the wet bulb globe temperature using standard meteorological measurements.

    PubMed

    Liljegren, James C; Carhart, Richard A; Lawday, Philip; Tschopp, Stephen; Sharp, Robert

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 degree C based on comparisons with wet bulb globe temperature measurements at all depots.

  18. The genealogy of samples in models with selection.

    PubMed

    Neuhauser, C; Krone, S M

    1997-02-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models. DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.

  19. The Genealogy of Samples in Models with Selection

    PubMed Central

    Neuhauser, C.; Krone, S. M.

    1997-01-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models, DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case. PMID:9071604

  20. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

    PubMed

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2013-04-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

  1. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS

    PubMed Central

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2015-01-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM’s expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses. PMID:26166910

  2. Sampling through time and phylodynamic inference with coalescent and birth–death models

    PubMed Central

    Volz, Erik M.; Frost, Simon D. W.

    2014-01-01

    Many population genetic models have been developed for the purpose of inferring population size and growth rates from random samples of genetic data. We examine two popular approaches to this problem, the coalescent and the birth–death-sampling model (BDM), in the context of estimating population size and birth rates in a population growing exponentially according to the birth–death branching process. For sequences sampled at a single time, we found the coalescent and the BDM gave virtually indistinguishable results in terms of the growth rates and fraction of the population sampled, even when sampling from a small population. For sequences sampled at multiple time points, we find that the birth–death model estimators are subject to large bias if the sampling process is misspecified. Since BDMs incorporate a model of the sampling process, we show how much of the statistical power of BDMs arises from the sequence of sample times and not from the genealogical tree. This motivates the development of a new coalescent estimator, which is augmented with a model of the known sampling process and is potentially more precise than the coalescent that does not use sample time information. PMID:25401173

  3. Modeling Silicate Weathering for Elevated CO2 and Temperature

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  4. Model Fe-Al Steel with Exceptional Resistance to High Temperature Coarsening. Part II: Experimental Validation and Applications

    NASA Astrophysics Data System (ADS)

    Zhou, Tihe; Zhang, Peng; O'Malley, Ronald J.; Zurob, Hatem S.; Subramanian, Mani

    2015-01-01

    In order to achieve a fine uniform grain-size distribution using the process of thin slab casting and directing rolling (TSCDR), it is necessary to control the grain-size prior to the onset of thermomechanical processing. In the companion paper, Model Fe- Al Steel with Exceptional Resistance to High Temperature Coarsening. Part I: Coarsening Mechanism and Particle Pinning Effects, a new steel composition which uses a small volume fraction of austenite particles to pin the growth of delta-ferrite grains at high temperature was proposed and grain growth was studied in reheated samples. This paper will focus on the development of a simple laboratory-scale setup to simulate thin-slab casting of the newly developed steel and demonstrate the potential for grain size control under industrial conditions. Steel bars with different diameters are briefly dipped into the molten steel to create a shell of solidified material. These are then cooled down to room temperature at different cooling rates. During cooling, the austenite particles nucleate along the delta-ferrite grain boundaries and greatly retard grain growth. With decreasing temperature, more austenite particles precipitate, and grain growth can be completely arrested in the holding furnace. Additional applications of the model alloy are discussed including grain-size control in the heat affected zone in welds and grain-growth resistance at high temperature.

  5. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  6. Model-based inference for small area estimation with sampling weights

    PubMed Central

    Vandendijck, Y.; Faes, C.; Kirby, R.S.; Lawson, A.; Hens, N.

    2017-01-01

    Obtaining reliable estimates about health outcomes for areas or domains where only few to no samples are available is the goal of small area estimation (SAE). Often, we rely on health surveys to obtain information about health outcomes. Such surveys are often characterised by a complex design, stratification, and unequal sampling weights as common features. Hierarchical Bayesian models are well recognised in SAE as a spatial smoothing method, but often ignore the sampling weights that reflect the complex sampling design. In this paper, we focus on data obtained from a health survey where the sampling weights of the sampled individuals are the only information available about the design. We develop a predictive model-based approach to estimate the prevalence of a binary outcome for both the sampled and non-sampled individuals, using hierarchical Bayesian models that take into account the sampling weights. A simulation study is carried out to compare the performance of our proposed method with other established methods. The results indicate that our proposed method achieves great reductions in mean squared error when compared with standard approaches. It performs equally well or better when compared with more elaborate methods when there is a relationship between the responses and the sampling weights. The proposed method is applied to estimate asthma prevalence across districts. PMID:28989860

  7. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    NASA Astrophysics Data System (ADS)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  8. Modeling the Effect of Storage Temperatures on the Growth of Listeria monocytogenes on Ready-to-Eat Ham and Sausage.

    PubMed

    Luo, Ke; Hong, Sung-Sam; Oh, Deog-Hwan

    2015-09-01

    The aim of this study was to model the growth kinetics of Listeria monocytogenes on ready-to-eat ham and sausage at different temperatures (4 to 35°C). The observed data fitted well with four primary models (Baranyi, modified Gompertz, logistic, and Huang) with high coefficients of determination (R(2) > 0.98) at all measured temperatures. After the mean square error (0.009 to 0.051), bias factors (0.99 to1.06), and accuracy factors (1.01 to 1.09) were obtained in all models, the square root and the natural logarithm model were employed to describe the relation between temperature and specific growth rate (SGR) and lag time (LT) derived from the primary models. These models were validated against the independent data observed from additional experiments using the acceptable prediction zone method and the proportion of the standard error of prediction. All secondary models based on each of the four primary models were acceptable to describe the growth of the pathogen in the two samples. The validation results indicate that the optimal primary model for estimating the SGR was the Baranyi model, and the optimal primary model for estimating LT was the logistic model in ready-to-eat (RTE) ham. The Baranyi model was also the optimal model to estimate the SGR and LT in RTE sausage. These results could be used to standardize predictive models, which are commonly used to identify critical control points in hazard analysis and critical control point systems or for the quantitative microbial risk assessment to improve the food safety of RTE meat products.

  9. Sample Handling in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Avellar, Louisa; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2013-01-01

    Harsh environments, such as that on Venus, preclude the use of existing equipment for functions that involve interaction with the environment. The operating limitations of current high temperature electronics are well below the actual temperature and pressure found on Venus (460 deg C and 92 atm), so proposed lander configurations typically include a pressure vessel where the science instruments are kept at Earth-like temperature and pressure (25 deg C and 1 atm). The purpose of this project was to develop and demonstrate a method for sample transfer from an external drill to internal science instruments for a lander on Venus. The initial concepts were string and pneumatically driven systems; and the latter system was selected for its ability to deliver samples at very high speed. The pneumatic system was conceived to be driven by the pressure difference between the Venusian atmosphere and the inside of the lander. The pneumatic transfer of a small capsule was demonstrated, and velocity data was collected from the lab experiment. The sample transfer system was modeled using CAD software and prototyped using 3D printing. General structural and thermal analyses were performed to approximate the proposed system's mass and effects on the temperature and pressure inside of the lander. Additionally, a sampler breadboard for use on Titan was tested and functionality problems were resolved.

  10. Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata.

    PubMed

    Heather, F J; Childs, D Z; Darnaude, A M; Blanchard, J L

    2018-01-01

    Accurate information on the growth rates of fish is crucial for fisheries stock assessment and management. Empirical life history parameters (von Bertalanffy growth) are widely fitted to cross-sectional size-at-age data sampled from fish populations. This method often assumes that environmental factors affecting growth remain constant over time. The current study utilized longitudinal life history information contained in otoliths from 412 juveniles and adults of gilthead seabream, Sparus aurata, a commercially important species fished and farmed throughout the Mediterranean. Historical annual growth rates over 11 consecutive years (2002-2012) in the Gulf of Lions (NW Mediterranean) were reconstructed to investigate the effect of temperature variations on the annual growth of this fish. S. aurata growth was modelled linearly as the relationship between otolith size at year t against otolith size at the previous year t-1. The effect of temperature on growth was modelled with linear mixed effects models and a simplified linear model to be implemented in a cohort Integral Projection Model (cIPM). The cIPM was used to project S. aurata growth, year to year, under different temperature scenarios. Our results determined current increasing summer temperatures to have a negative effect on S. aurata annual growth in the Gulf of Lions. They suggest that global warming already has and will further have a significant impact on S. aurata size-at-age, with important implications for age-structured stock assessments and reference points used in fisheries.

  11. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: a statistical modeling study

    PubMed Central

    Shi, Liuhua; Liu, Pengfei; Kloog, Itai; Lee, Mihye; Kosheleva, Anna; Schwartz, Joel

    2015-01-01

    Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1 km × 1 km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts to Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R2 of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R2 of 0.969 and a mean squared prediction error (RMSPE) of 1.376 °C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably. PMID:26717080

  12. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  13. Chemical kinetic modeling of propene oxidation at low and intermediate temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilk, R.D.; Cernansky, N.P.; Pitz, W.J.

    1986-01-13

    A detailed chemical kinetic mechanism for propene oxidation is developed and used to model reactions in a static reactor at temperatures of 590 to 740/sup 0/K, equivalence ratios of 0.8 to 2.0, and a pressure of 600 torr. Modeling of hydrocarbon oxidation in this temperature range is important for the validation of detailed models to be used for performing calculations related to automotive engine knock. The model predicted induction periods and species concentrations for all the species measured experimentally in a static reactor by Wilk, Cernansky, and Cohen. The detailed model predicted a temperature region of approximately constant induction periodmore » which corresponded very closely to the region of negative temperature coefficient behavior found in the experiment. Overall, the calculated concentrations of acetaldehyde, ethene, and methane were somewhat low compared to the experimental measurements, and the calculated concentrations of formaldehyde and methanol were high. The characteristic s-shape of the fuel concentration history was well predicted. The importance of OH+C/sub 3/H/sub 6/ and related rections in determining product distributions and the importance of consumption reactions for allyl radicals was demonstrated by the modeling calculations. 18 refs., 4 figs., 1 tab.« less

  14. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  15. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    PubMed

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.

  16. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    USGS Publications Warehouse

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.

  17. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  18. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  19. Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation

    DOEpatents

    LaCount, Robert B.

    1993-01-01

    A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes.

  20. Modeling demographic response to constant temperature in Hypera postica (Coleoptera: Curculionidae).

    PubMed

    Zahiri, Babak; Fathipour, Yaghoub; Khanjani, Mohammad; Moharramipour, Saeid; Zalucki, Myron P

    2010-04-01

    Alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae), is among the most destructive pests of alfalfa, Medicago sativa L., in the world. Survivorship and fecundity schedules of H. postica were investigated to characterize the population growth potential of the weevil at six constant temperatures: 11.5, 14.0, 19.0, 24.0, 29.0, and 31.5 degrees C. Preoviposition period, oviposition period and female longevity significantly decreased with rising temperature within the temperature range tested. At the respective temperatures adult female lived an average of 294.2, 230.2, 163.6, 141.0, 84.10, and 32.9 d, with average lifetime progeny production of 470, 814, 2209, 3619, 2656, and 338 eggs per female. The net reproductive rates (R0) were 86.9, 288.0, 869.7, 1,479.7, 989.8, and 107.8 females per female, respectively. Mean daily fecundity (Mx) was modeled as a function of time by using both Enkegaard and Analytis models. Survivorship data (l(x)) of adult females were summarized and compared using the shape and scale parameters of the Weibull frequency distribution model across the temperature range tested. Life table entropy values within the range 14.0-31.5 degrees C (H < 0.5) indicates Slobodkin's type I survivorship curve; however, the value of 0.806 at 11.5 degrees C (H > 0.5) corresponds to type III. As temperature increased, the r(m) exhibited an asymmetrical dome-shaped pattern, with a maximum value of 0.114 females per female per d at 29.0 degrees C. The r(m)-temperature relation of weevils was modeled and critical temperatures (T(Min), T(Opt), and T(Max)) for intrinsic rate of increase of the weevil were computed as 8.83, 30.61, and 32.14 degrees C and 5.72, 29.94, and 32.12 degrees C by using Analytis/Allahyari and Analytis/Briere-2 models, respectively.

  1. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    NASA Astrophysics Data System (ADS)

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  2. Heat Transfer in High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2002-01-01

    The combined radiation/conduction heat transfer in high-porosity, high-temperature fibrous insulations was investigated experimentally and numerically. The effective thermal conductivity of fibrous insulation samples was measured over the temperature range of 300-1300 K and environmental pressure range of 1.33 x 10(exp -5)-101.32 kPa. The fibrous insulation samples tested had nominal densities of 24, 48, and 72 kilograms per cubic meter and thicknesses of 13.3, 26.6 and 39.9 millimeters. Seven samples were tested such that the applied heat flux vector was aligned with local gravity vector to eliminate natural convection as a mode of heat transfer. Two samples were tested with reverse orientation to investigate natural convection effects. It was determined that for the fibrous insulation densities and thicknesses investigated no heat transfer takes place through natural convection. A finite volume numerical model was developed to solve the governing combined radiation and conduction heat transfer equations. Various methods of modeling the gas/solid conduction interaction in fibrous insulations were investigated. The radiation heat transfer was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. A genetic-algorithm based parameter estimation technique was utilized with this model to determine the relevant radiative properties of the fibrous insulation over the temperature range of 300-1300 K. The parameter estimation was performed by least square minimization of the difference between measured and predicted values of effective thermal conductivity at a density of 24 kilograms per cubic meters and at nominal pressures of 1.33 x 10(exp -4) and 99.98 kPa. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements at other densities and pressures. The numerical model was also validated by comparison with a transient thermal test simulating reentry aerodynamic heating

  3. Stability of procalcitonin at room temperature.

    PubMed

    Milcent, Karen; Poulalhon, Claire; Fellous, Christelle Vauloup; Petit, François; Bouyer, Jean; Gajdos, Vincent

    2014-01-01

    The aim was to assess procalcitonin (PCT) stability after two days of storage at room temperature. Samples were collected from febrile children aged 7 to 92 days and were rapidly frozen after sampling. PCT levels were measured twice after thawing: immediately (named y) and 48 hours later after storage at room temperature (named x). PCT values were described with medians and interquartile ranges or by categorizing them into classes with thresholds 0.25, 0.5, and 2 ng/mL. The relationship between x and y PCT levels was analyzed using fractional polynomials in order to predict the PCT value immediately after thawing (named y') from x. A significant decrease in PCT values was observed after 48 hours of storage at room temperature, either in median, 30% lowering (p < 0.001), or as categorical variable (p < 0.001). The relationship between x and y can be accurately modeled with a simple linear model: y = 1.37 x (R2 = 0.99). The median of the predicted PCT values y' was quantitatively very close to the median of y and the distributions of y and y' across categories were very similar and not statistically different. PCT levels noticeably decrease after 48 hours of storage at room temperature. It is possible to pre- dict accurately effective PCT values from the values after 48 hours of storage at room temperature with a simple statistical model.

  4. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  5. P2S--Coupled simulation with the Precipitation-Runoff Modeling System (PRMS) and the Stream Temperature Network (SNTemp) Models

    USGS Publications Warehouse

    Markstrom, Steven L.

    2012-01-01

    A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.

  6. Data-driven modeling of surface temperature anomaly and solar activity trends

    USGS Publications Warehouse

    Friedel, Michael J.

    2012-01-01

    A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.

  7. A simultaneous derivatization of 3-monochloropropanediol and 1,3-dichloropropane with hexamethyldisilazane-trimethylsilyl trifluoromethanesulfonate at room temperature for efficient analysis of food sample analysis.

    PubMed

    Lee, Bai Qin; Wan Mohamed Radzi, Che Wan Jasimah Bt; Khor, Sook Mei

    2016-02-05

    This paper reports the application of hexamethyldisilazane-trimethylsilyl trifluoromethanesulfonate (HMDS-TMSOTf) for the simultaneous silylation of 3-monochloro-1,2-propanediol (3-MCPD) and 1,3-dicholoropropanol (1,3-DCP) in solid and liquid food samples. 3-MCPD and 1,3-DCP are chloropropanols that have been established as Group 2B carcinogens in clinical testing. They can be found in heat-processed food, especially when an extended high-temperature treatment is required. However, the current AOAC detection method is time-consuming and expensive. Thus, HMDS-TMSOTf was used in this study to provide a safer, and cost-effective alternative to the HFBI method. Three important steps are involved in the quantification of 3-MCPD and 1,3-DCP: extraction, derivatization and quantification. The optimization of the derivatization process, which involved focusing on the catalyst volume, derivatization temperature, and derivatization time was performed based on the findings obtained from both the Box-Behnken modeling and a real experimental set up. With the optimized conditions, the newly developed method was used for actual food sample quantification and the results were compared with those obtained via the standard AOAC method. The developed method required less samples and reagents but it could be used to achieve lower limits of quantification (0.0043mgL(-1) for 1,3-DCP and 0.0011mgL(-1) for 3-MCPD) and detection (0.0028mgL(-1) for 1,3-DCP and 0.0008mgL(-1) for 3-MCPD). All the detected concentrations are below the maximum tolerable limit of 0.02mgL(-1). The percentage of recovery obtained from food sample analysis was between 83% and 96%. The new procedure was validated with the AOAC method and showed a comparable performance. The HMDS-TMSOTf derivatization strategy is capable of simultaneously derivatizing 1,3-DCP and 3-MCPD at room temperature, and it also serves as a rapid, sensitive, and accurate analytical method for food samples analysis. Copyright © 2015 Elsevier B

  8. A neural network model for predicting weighted mean temperature

    NASA Astrophysics Data System (ADS)

    Ding, Maohua

    2018-02-01

    Water vapor is an important element of the Earth's atmosphere, and most of it concentrates at the bottom of the troposphere. Knowledge of the water vapor measured by Global Navigation Satellite Systems (GNSS) is an important direction of GNSS research. In particular, when the zenith wet delay is converted to precipitable water vapor, the weighted mean temperature T_m is a variable parameter to be determined in this conversion. The purpose of the study is getting a more accurate T_m model for global users by a combination of two different characteristics of T_m (i.e., the T_m seasonal variations and the relationships between T_m and surface meteorological elements). The modeling process was carried out by using the neural network technology. A multilayer feedforward neural network model (the NN) was established. The NN model is used with measurements of only surface temperature T_S . The NN was validated and compared with four other published global T_m models. The results show that the NN performed better than any of the four compared models on the global scale.

  9. Modelling of peak temperature during friction stir processing of magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Vaira Vignesh, R.; Padmanaban, R.

    2018-02-01

    Friction stir processing (FSP) is a solid state processing technique with potential to modify the properties of the material through microstructural modification. The study of heat transfer in FSP aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSP of magnesium alloy AZ91 was simulated using finite element modelling. The numerical model results were validated using the experimental results from the published literature. The model was used to predict the peak temperature obtained during FSP for various process parameter combinations. The simulated peak temperature results were used to develop a statistical model. The effect of process parameters namely tool rotation speed, tool traverse speed and shoulder diameter of the tool on the peak temperature was investigated using the developed statistical model. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed.

  10. Modeling low-temperature geochemical processes: Chapter 2

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Campbell, Kate M.

    2014-01-01

    This chapter provides an overview of geochemical modeling that applies to water–rock interactions under ambient conditions of temperature and pressure. Topics include modeling definitions, historical background, issues of activity coefficients, popular codes and databases, examples of modeling common types of water–rock interactions, and issues of model reliability. Examples include speciation, microbial redox kinetics and ferrous iron oxidation, calcite dissolution, pyrite oxidation, combined pyrite and calcite dissolution, dedolomitization, seawater–carbonate groundwater mixing, reactive-transport modeling in streams, modeling catchments, and evaporation of seawater. The chapter emphasizes limitations to geochemical modeling: that a proper understanding and ability to communicate model results well are as important as completing a set of useful modeling computations and that greater sophistication in model and code development is not necessarily an advancement. If the goal is to understand how a particular geochemical system behaves, it is better to collect more field data than rely on computer codes.

  11. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.

    PubMed

    Ge, Zhengwei; Wang, Wei; Yang, Chun

    2011-04-07

    It is challenging to continuously concentrate sample solutes in microfluidic channels. We present an improved electrokinetic technique for enhancing microfluidic temperature gradient focusing (TGF) of sample solutes using combined AC and DC field induced Joule heating effects. The introduction of an AC electric field component services dual functions: one is to produce Joule heat for generating temperature gradient; the other is to suppress electroosmotic flow. Consequently the required DC voltages for achieving sample concentration by Joule heating induced TGF are reduced, thereby leading to smaller electroosmotic flow (EOF) and thus backpressure effects. As a demonstration, the proposed technique can lead to concentration enhancement of sample solutes of more than 2500-fold, which is much higher than the existing literature reported microfluidic concentration enhancement by utilizing the Joule heating induced TGF technique.

  12. Salinity/temperature ranges for application of seawater SA-T-P models

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Millero, F. J.; Feistel, R.

    2009-01-01

    At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g. Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases (e.g. CaCO3(s) or CaSO42H2O(s)) will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric concentrations of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-1 and 40°C (at SA=66 g kg-1. At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (in Year 2008) to 550 μatm (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculations) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.

  13. Microclimate Data Improve Predictions of Insect Abundance Models Based on Calibrated Spatiotemporal Temperatures.

    PubMed

    Rebaudo, François; Faye, Emile; Dangles, Olivier

    2016-01-01

    A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species

  14. Microclimate Data Improve Predictions of Insect Abundance Models Based on Calibrated Spatiotemporal Temperatures

    PubMed Central

    Rebaudo, François; Faye, Emile; Dangles, Olivier

    2016-01-01

    A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species

  15. Comprehensive kinetic model for the low-temperature oxidation of hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffuri, P.; Faravelli, T.; Ranzi, E.

    1997-05-01

    The oxidation chemistry in the low- and intermediate-temperature regimes (600--900 K) is important and plays a significant role in the overall combustion process. Autoignition in diesel engines as well as end-gas autoignition and knock phenomena in s.i. engines are initiated at these low temperatures. The low-temperature oxidation chemistry of linear and branched alkanes is discussed with the aim of unifying their complex behavior in various experimental systems using a single detailed kinetic model. New experimental data, obtained in a pressurized flow reactor, as well as in batch- and jet-stirred reactors, are useful for a better definition of the region ofmore » cool flames and negative temperature coefficient (NTC) for pure hydrocarbons from propane up to isooctane. Thermochemical oscillations and the NTC region of the reaction rate of the low-temperature oxidation of n-heptane and isooctane in a jet-stirred flow reactor are reproduced quite well by the model, not only in a qualitative way but in terms of the experimental frequencies and intensities of cool flames. Very good agreement is also observed for fuel conversion and intermediate-species formation. Irrespective of the experimental system, the same critical reaction steps always control these phenomena. The results contribute to the definition of a limited set of fundamental kinetic parameters that should be easily extended to model heavier alkanes.« less

  16. Model-based estimation of adiabatic flame temperature during coal gasification

    NASA Astrophysics Data System (ADS)

    Sarigul, Ihsan Mert

    Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential

  17. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  18. Estimating water temperatures in small streams in western Oregon using neural network models

    USGS Publications Warehouse

    Risley, John C.; Roehl, Edwin A.; Conrads, Paul

    2003-01-01

    Artificial neural network models were developed to estimate water temperatures in small streams using data collected at 148 sites throughout western Oregon from June to September 1999. The sites were located on 1st-, 2nd-, or 3rd-order streams having undisturbed or minimally disturbed conditions. Data collected at each site for model development included continuous hourly water temperature and description of riparian habitat. Additional data pertaining to the landscape characteristics of the basins upstream of the sites were assembled using geographic information system (GIS) techniques. Hourly meteorological time series data collected at 25 locations within the study region also were assembled. Clustering analysis was used to partition 142 sites into 3 groups. Separate models were developed for each group. The riparian habitat, basin characteristic, and meteorological time series data were independent variables and water temperature time series were dependent variables to the models, respectively. Approximately one-third of the data vectors were used for model training, and the remaining two-thirds were used for model testing. Critical input variables included riparian shade, site elevation, and percentage of forested area of the basin. Coefficient of determination and root mean square error for the models ranged from 0.88 to 0.99 and 0.05 to 0.59 oC, respectively. The models also were tested and validated using temperature time series, habitat, and basin landscape data from 6 sites that were separate from the 142 sites that were used to develop the models. The models are capable of estimating water temperatures at locations along 1st-, 2nd-, and 3rd-order streams in western Oregon. The model user must assemble riparian habitat and basin landscape characteristics data for a site of interest. These data, in addition to meteorological data, are model inputs. Output from the models include simulated hourly water temperatures for the June to September period

  19. A comparison between modeled and measured permafrost temperatures at Ritigraben borehole, Switzerland

    NASA Astrophysics Data System (ADS)

    Mitterer-Hoinkes, Susanna; Lehning, Michael; Phillips, Marcia; Sailer, Rudolf

    2013-04-01

    The area-wide distribution of permafrost is sparsely known in mountainous terrain (e.g. Alps). Permafrost monitoring can only be based on point or small scale measurements such as boreholes, active rock glaciers, BTS measurements or geophysical measurements. To get a better understanding of permafrost distribution, it is necessary to focus on modeling permafrost temperatures and permafrost distribution patterns. A lot of effort on these topics has been already expended using different kinds of models. In this study, the evolution of subsurface temperatures over successive years has been modeled at the location Ritigraben borehole (Mattertal, Switzerland) by using the one-dimensional snow cover model SNOWPACK. The model needs meteorological input and in our case information on subsurface properties. We used meteorological input variables of the automatic weather station Ritigraben (2630 m) in combination with the automatic weather station Saas Seetal (2480 m). Meteorological data between 2006 and 2011 on an hourly basis were used to drive the model. As former studies showed, the snow amount and the snow cover duration have a great influence on the thermal regime. Low snow heights allow for deeper penetration of low winter temperatures into the ground, strong winters with a high amount of snow attenuate this effect. In addition, variations in subsurface conditions highly influence the temperature regime. Therefore, we conducted sensitivity runs by defining a series of different subsurface properties. The modeled subsurface temperature profiles of Ritigraben were then compared to the measured temperatures in the Ritigraben borehole. This allows a validation of the influence of subsurface properties on the temperature regime. As expected, the influence of the snow cover is stronger than the influence of sub-surface material properties, which are significant, however. The validation presented here serves to prepare a larger spatial simulation with the complex hydro

  20. Lithosphere temperature model and resource assessment for deep geothermal exploration in Hungary

    NASA Astrophysics Data System (ADS)

    Bekesi, Eszter; van Wees, Jan-Diederik; Vrijlandt, Mark; Lenkey, Laszlo; Horvath, Ferenc

    2017-04-01

    The demand for deep geothermal energy has increased considerably over the past years. To reveal potential areas for geothermal exploration, it is crucial to have an insight into the subsurface temperature distribution. Hungary is one of the most suitable countries in Europe for geothermal development, as a result of Early and Middle Miocene extension and subsequent thinning of the lithosphere. Hereby we present the results of a new thermal model of Hungary extending from the surface down to the lithosphere-astenosphere boundary (LAB). Subsurface temperatures were calculated through a regular 3D grid with a horizontal resolution of 2.5 km, a vertical resolution of 200 m for the uppermost 7 km, and 3 km down to the depth of the LAB The model solves the heat equation in steady-state, assuming conduction as the main heat transfer mechanism. At the base, it adopts a constant basal temperature or heat flow condition. For the calibration of the model, more than 5000 temperature measurements were collected from the Geothermal Database of Hungary. The model is built up by five sedimentary layers, upper crust, lower crust, and lithospheric mantle, where each layer has its own thermal properties. The prior thermal properties and basal condition of the model is updated through the ensemble smoother with multiple data assimilation technique. The conductive model shows misfits with the observed temperatures, which cannot be explained by neglected transient effects related to lithosphere extension. These anomalies are explained mostly by groundwater flow in Mesozoic carbonates and other porous sedimentary rocks. To account for the effect of heat convection, we use a pseudo-conductive approach by adjusting the thermal conductivity of the layers where fluid flow may occur. After constructing the subsurface temperature model of Hungary, the resource base for EGS (Enhanced Geothermal Systems) is quantified. To this end, we applied a cash-flow model to translate the geological

  1. Thermodynamically complete equation of state of MgO from true radiative shock temperature measurements on samples preheated to 1850 K

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.; Ahrens, T. J.

    2018-01-01

    Plate impact experiments in the 100-250 GPa pressure range were done on a 〈100 〉 single-crystal MgO preheated before compression to 1850 K. Hot Mo(driver)-MgO targets were impacted with Mo or Ta flyers launched by the Caltech two-stage light-gas gun up to 7.5 km/s. Radiative temperatures and shock velocities were measured with 3%-4% and 1%-2% uncertainty, respectively, by a six-channel pyrometer with 3-ns time resolution, over a 500-900-nm spectral range. MgO shock front reflectivity was determined in additional experiments at 220 and 248 GPa using ≈50 /50 high-temperature sapphire beam splitters. Our measurements yield accurate experimental data on the mechanical, optical, and thermodynamic properties of B1 phase MgO from 102 GPa and 3900 K to 248 GPa and 9100 K, a region not sampled by previous studies. Reported Hugoniot data for MgO initially at ambient temperature, T =298 K, and the results of our current Hugoniot measurements on samples preheated to 1850 K were analyzed using the most general methods of least-squares fitting to constrain the Grüneisen model. This equation of state (EOS) was then used to construct maximum likelihood linear Hugoniots of MgO with initial temperatures from 298 to 2400 K. A parametrization of all EOS values and best-fit coefficients was done over the entire range of relevant particle velocities. Total uncertainties of all the EOS parameters and correlation coefficients for these uncertainties are also given. The predictive capabilities of our updated Mie-Grüneisen EOS were confirmed by (1) the good agreement between our Grüneisen data and five semiempirical γ (V ) models derived from porous shock data only or from combined static and shock data sets, (2) the very good agreement between our 1-bar Grüneisen values and γ (T ) at ambient pressure recalculated from reported experimental data on the adiabatic bulk modulus Ks(T ) , and (3) the good agreement of the brightness temperatures, corrected for shock reflectivity

  2. Correcting Model Fit Criteria for Small Sample Latent Growth Models with Incomplete Data

    ERIC Educational Resources Information Center

    McNeish, Daniel; Harring, Jeffrey R.

    2017-01-01

    To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…

  3. Knock probability estimation through an in-cylinder temperature model with exogenous noise

    NASA Astrophysics Data System (ADS)

    Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.

    2018-01-01

    This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.

  4. Manipulation of Samples at Extreme Temperatures for Fast in-situ Synchrotron Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Richard

    An aerodynamic sample levitation system with laser beam heating was integrated with the APS beamlines 6 ID-D, 11 ID-C and 20 BM-B. The new capability enables in-situ measurements of structure and XANES at extreme temperatures (300-3500 °C) and in conditions that completely avoid contact with container surfaces. In addition to maintaining a high degree of sample purity, the use of aerodynamic levitation enables deep supercooling and greatly enhanced glass formation from a wide variety of melts and liquids. Development and integration of controlled extreme sample environments and new measurement techniques is an important aspect of beamline operations and user support.more » Processing and solidifying liquids is a critical value-adding step in manufacturing semiconductors, optical materials, metals and in the operation of many energy conversion devices. Understanding structural evolution is of fundamental importance in condensed materials, geology, and biology. The new capability provides unique possibilities for materials research and helps to develop and maintain a competitive materials manufacturing and energy utilization industry. Test samples were used to demonstrate key features of the capability including experiments on hot crystalline materials, liquids at temperatures from about 500 to 3500 °C. The use of controlled atmospheres using redox gas mixtures enabled in-situ changes in the oxidation states of cations in melts. Significant innovations in this work were: (i) Use of redox gas mixtures to adjust the oxidation state of cations in-situ (ii) Operation with a fully enclosed system suitable for work with nuclear fuel materials (iii) Making high quality high energy in-situ x-ray diffraction measurements (iv) Making high quality in-situ XANES measurements (v) Publishing high impact results (vi) Developing independent funding for the research on nuclear materials This SBIR project work led to a commercial instrument product for the niche market of

  5. A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature

    PubMed Central

    Llorente, Isidre; Montesinos, Emilio; Moragrega, Concepció

    2017-01-01

    A two-step modeling approach was used for predicting the effect of temperature on the growth of Xanthomonas arboricola pv. pruni, causal agent of bacterial spot disease of stone fruit. The in vitro growth of seven strains was monitored at temperatures from 5 to 35°C with a Bioscreen C system, and a calibrating equation was generated for converting optical densities to viable counts. In primary modeling, Baranyi, Buchanan, and modified Gompertz equations were fitted to viable count growth curves over the entire temperature range. The modified Gompertz model showed the best fit to the data, and it was selected to estimate the bacterial growth parameters at each temperature. Secondary modeling of maximum specific growth rate as a function of temperature was performed by using the Ratkowsky model and its variations. The modified Ratkowsky model showed the best goodness of fit to maximum specific growth rate estimates, and it was validated successfully for the seven strains at four additional temperatures. The model generated in this work will be used for predicting temperature-based Xanthomonas arboricola pv. pruni growth rate and derived potential daily doublings, and included as the inoculum potential component of a bacterial spot of stone fruit disease forecaster. PMID:28493954

  6. Linear model correction: A method for transferring a near-infrared multivariate calibration model without standard samples.

    PubMed

    Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2016-12-05

    Calibration transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. For most of calibration transfer methods, standard samples are necessary to construct the transfer model using the spectra of the samples measured on two instruments, named as master and slave instrument, respectively. In this work, a method named as linear model correction (LMC) is proposed for calibration transfer without standard samples. The method is based on the fact that, for the samples with similar physical and chemical properties, the spectra measured on different instruments are linearly correlated. The fact makes the coefficients of the linear models constructed by the spectra measured on different instruments are similar in profile. Therefore, by using the constrained optimization method, the coefficients of the master model can be transferred into that of the slave model with a few spectra measured on slave instrument. Two NIR datasets of corn and plant leaf samples measured with different instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra can be correctly predicted using the transferred partial least squares (PLS) models. Because standard samples are not necessary in the method, it may be more useful in practical uses. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Latent spatial models and sampling design for landscape genetics

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  8. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    PubMed

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  9. Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-01

    The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less

  10. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    NASA Astrophysics Data System (ADS)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  11. Development of a Numerical Model for High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.

    2006-01-01

    A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

  12. Advanced flight design systems subsystem performance models. Sample model: Environmental analysis routine library

    NASA Technical Reports Server (NTRS)

    Parker, K. C.; Torian, J. G.

    1980-01-01

    A sample environmental control and life support model performance analysis using the environmental analysis routines library is presented. An example of a complete model set up and execution is provided. The particular model was synthesized to utilize all of the component performance routines and most of the program options.

  13. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions

    PubMed Central

    Nguyen, Jennifer L.; Dockery, Douglas W.

    2015-01-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements at the nearest weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10°N) to the Arctic (64°N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor, airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. Our results suggest that, depending on the measure, season, and location, outdoor weather measurements can be reliably used to represent indoor exposures and that, in general, outdoor measures of actual moisture content in air better capture indoor exposure than temperature and relative humidity. Therefore, absolute measures of water vapor should be examined in conjunction with other measures (e.g. temperature, relative humidity) in studies of the effect of weather and climate on human health. PMID:26054827

  14. Sworn testimony of the model evidence: Gaussian Mixture Importance (GAME) sampling

    NASA Astrophysics Data System (ADS)

    Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.

    2017-07-01

    What is the "best" model? The answer to this question lies in part in the eyes of the beholder, nevertheless a good model must blend rigorous theory with redeeming qualities such as parsimony and quality of fit. Model selection is used to make inferences, via weighted averaging, from a set of K candidate models, Mk; k=>(1,…,K>), and help identify which model is most supported by the observed data, Y>˜=>(y˜1,…,y˜n>). Here, we introduce a new and robust estimator of the model evidence, p>(Y>˜|Mk>), which acts as normalizing constant in the denominator of Bayes' theorem and provides a single quantitative measure of relative support for each hypothesis that integrates model accuracy, uncertainty, and complexity. However, p>(Y>˜|Mk>) is analytically intractable for most practical modeling problems. Our method, coined GAussian Mixture importancE (GAME) sampling, uses bridge sampling of a mixture distribution fitted to samples of the posterior model parameter distribution derived from MCMC simulation. We benchmark the accuracy and reliability of GAME sampling by application to a diverse set of multivariate target distributions (up to 100 dimensions) with known values of p>(Y>˜|Mk>) and to hypothesis testing using numerical modeling of the rainfall-runoff transformation of the Leaf River watershed in Mississippi, USA. These case studies demonstrate that GAME sampling provides robust and unbiased estimates of the evidence at a relatively small computational cost outperforming commonly used estimators. The GAME sampler is implemented in the MATLAB package of DREAM and simplifies considerably scientific inquiry through hypothesis testing and model selection.

  15. An assessment of precipitation and surface air temperature over China by regional climate models

    NASA Astrophysics Data System (ADS)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  16. Generalized two-temperature model for coupled phonon-magnon diffusion.

    PubMed

    Liao, Bolin; Zhou, Jiawei; Chen, Gang

    2014-07-11

    We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.

  17. Cloud Impacts on Pavement Temperature in Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  18. Modulation transfer function cascade model for a sampled IR imaging system.

    PubMed

    de Luca, L; Cardone, G

    1991-05-01

    The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.

  19. Viscoelastic properties, gelation behavior and percolation theory model for the temperature induced forming (TIF) ceramic slurries

    NASA Astrophysics Data System (ADS)

    Yang, Yunpeng

    Controlled ceramic processing is required to produce ceramic parts with few strength-limiting defects and the economic forming of near net shape components. Temperature induced forming (TIF) is a novel ceramic forming process that uses colloidal processing to form ceramic green bodies by physical gelation. The dissertation research shows that TIF alumina suspensions (>40vol%) can be successfully fabricated by using 0.4wt% of ammonium citrate powder and <0.1wt% poly (acrylic acid) (PAA). It is found that increasing the volume fraction of alumina or the molecular weight of polymer will increase the shear viscosity and shear modulus. Larger molecular weight PAA tends to decrease the volume fraction gelation threshold of the alumina suspensions. The author is the first in this field to utilize the continuous percolation theory to interpret the evolution of the storage modulus with temperature for the TIF alumina suspensions. A model that relates the storage modulus with temperature and the volume fraction of solids is proposed. Calculated results using this percolation model show that the storage modulus of the suspensions can be affected by the volume fraction of solids, temperature, volume fraction gelation threshold and the percolation nature. The parameters in this model have been derived from the experimental data. The calculated results fit the measured data well. For the PAA-free TIF alumina suspensions, it is found that the ionization reaction of the magnesium citrate, which is induced by the pH or temperature of the suspensions, controls the flocculation of the suspensions. The percolation theory model was successfully applied to this type of suspension. Compared with the PAA addition TIF suspensions, these suspensions reflect a higher degree of percolation nature, as indicated by a larger value of percolation exponent. These results show that the percolation model proposed in this dissertation can be used to predict the gelation degree of the TIF suspensions

  20. Methodes d'amas quantiques a temperature finie appliquees au modele de Hubbard

    NASA Astrophysics Data System (ADS)

    Plouffe, Dany

    Depuis leur decouverte dans les annees 80, les supraconducteurs a haute temperature critique ont suscite beaucoup d'interet en physique du solide. Comprendre l'origine des phases observees dans ces materiaux, telle la supraconductivite, est l'un des grands defis de la physique theorique du solide des 25 dernieres annees. L'un des mecanismes pressentis pour expliquer ces phenomenes est la forte interaction electron-electron. Le modele de Hubbard est l'un des modeles les plus simples pour tenir compte de ces interactions. Malgre la simplicite apparente de ce modele, certaines de ses caracteristiques, dont son diagramme de phase, ne sont toujours pas bien etablies, et ce malgre plusieurs avancements theoriques dans les dernieres annees. Cette etude se consacre a faire une analyse de methodes numeriques permettant de calculer diverses proprietes du modele de Hubbard en fonction de la temperature. Nous decrivons des methodes (la VCA et la CPT) qui permettent de calculer approximativement la fonction de Green a temperature finie sur un systeme infini a partir de la fonction de Green calculee sur un amas de taille finie. Pour calculer ces fonctions de Green, nous allons utiliser des methodes permettant de reduire considerablement les efforts numeriques necessaires pour les calculs des moyennes thermodynamiques, en reduisant considerablement l'espace des etats a considerer dans ces moyennes. Bien que cette etude vise d'abord a developper des methodes d'amas pour resoudre le modele de Hubbard a temperature finie de facon generale ainsi qu'a etudier les proprietes de base de ce modele, nous allons l'appliquer a des conditions qui s'approchent de supraconducteurs a haute temperature critique. Les methodes presentees dans cette etude permettent de tracer un diagramme de phase pour l'antiferromagnetisme et la supraconductivite qui presentent plusieurs similarites avec celui des supraconducteurs a haute temperature. Mots-cles : modele de Hubbard, thermodynamique

  1. Measurement of high-temperature spectral emissivity using integral blackbody approach

    NASA Astrophysics Data System (ADS)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-11-01

    Spectral emissivity is one of the most critical thermophysical properties of a material for heat design and analysis. Especially in the traditional radiation thermometry, normal spectral emissivity is very important. We developed a prototype instrument based upon an integral blackbody method to measure material's spectral emissivity at elevated temperatures. An optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit was used to implemented the system. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated reference blackbody which had an effective total emissivity greater than 0.985. During the measurement, a pneumatic cylinder pushed a graphite rode and then the sample crucible to the cold opening within hundreds of microseconds. The linear pyrometer was used to monitor the brightness temperature of the sample surface, and the corresponding opto-converted voltage was fed and recorded by a digital multimeter. To evaluate the temperature drop of the sample along the pushing process, a physical model was proposed. The tube was discretized into several isothermal cylindrical rings, and the temperature of each ring was measurement. View factors between sample and rings were utilized. Then, the actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage signal and the calculated actual temperature, normal spectral emissivity under the that temperature point was obtained. Graphite sample at 1300°C was measured to prove the validity of the method.

  2. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    PubMed

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  3. A new approach to modeling temperature-related mortality: Non-linear autoregressive models with exogenous input.

    PubMed

    Lee, Cameron C; Sheridan, Scott C

    2018-07-01

    Temperature-mortality relationships are nonlinear, time-lagged, and can vary depending on the time of year and geographic location, all of which limits the applicability of simple regression models in describing these associations. This research demonstrates the utility of an alternative method for modeling such complex relationships that has gained recent traction in other environmental fields: nonlinear autoregressive models with exogenous input (NARX models). All-cause mortality data and multiple temperature-based data sets were gathered from 41 different US cities, for the period 1975-2010, and subjected to ensemble NARX modeling. Models generally performed better in larger cities and during the winter season. Across the US, median absolute percentage errors were 10% (ranging from 4% to 15% in various cities), the average improvement in the r-squared over that of a simple persistence model was 17% (6-24%), and the hit rate for modeling spike days in mortality (>80th percentile) was 54% (34-71%). Mortality responded acutely to hot summer days, peaking at 0-2 days of lag before dropping precipitously, and there was an extended mortality response to cold winter days, peaking at 2-4 days of lag and dropping slowly and continuing for multiple weeks. Spring and autumn showed both of the aforementioned temperature-mortality relationships, but generally to a lesser magnitude than what was seen in summer or winter. When compared to distributed lag nonlinear models, NARX model output was nearly identical. These results highlight the applicability of NARX models for use in modeling complex and time-dependent relationships for various applications in epidemiology and environmental sciences. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Temperature in lowland Danish streams: contemporary patterns, empirical models and future scenarios

    NASA Astrophysics Data System (ADS)

    Lagergaard Pedersen, Niels; Sand-Jensen, Kaj

    2007-01-01

    Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold-water and oxygen-demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air-water regression model (r2: 0.903-0.947). The predictions improved in all instances (r2: 0.927-0.964) by a non-linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0.933-0.969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un-shaded sites, relative humidity, precipitation and discharge. Application of the non-linear logistic model for a warming scenario of 4-5 °C higher air temperatures in Denmark in 2070-2100 yielded predictions of temperatures rising 1.6-3.0 °C during winter and summer and 4.4-6.0 °C during spring in un-shaded streams with low groundwater input. Groundwater-fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright

  5. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    USGS Publications Warehouse

    Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, Gretchen G.

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.

  6. On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Bazlov, A. I.; Churyumov, A. Yu.; Buchet, M.; Louzguine-Luzgin, D. V.

    2018-05-01

    Room temperature deformation process in a bulk metallic glassy sample was studied by using a hydraulic thermomechanical simulator. The temperature rise during each separate shear band propagation event was measured with a high data acquisition frequency by a thermocouple welded to the sample. Calculation showed that when propagation of the well developed shear bands takes place along the entire sample the temperature inside the shear band should be close to the glass-transition temperature. It was also possible to resolve the temporal stress distribution and a double-stage character of stress drops was also observed. The obtained results are compared with the literature data obtained by infrared camera measurements and the results of finite elements modeling.

  7. On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Bazlov, A. I.; Churyumov, A. Yu.; Buchet, M.; Louzguine-Luzgin, D. V.

    2018-03-01

    Room temperature deformation process in a bulk metallic glassy sample was studied by using a hydraulic thermomechanical simulator. The temperature rise during each separate shear band propagation event was measured with a high data acquisition frequency by a thermocouple welded to the sample. Calculation showed that when propagation of the well developed shear bands takes place along the entire sample the temperature inside the shear band should be close to the glass-transition temperature. It was also possible to resolve the temporal stress distribution and a double-stage character of stress drops was also observed. The obtained results are compared with the literature data obtained by infrared camera measurements and the results of finite elements modeling.

  8. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    PubMed

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  9. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    PubMed Central

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-01-01

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398

  10. Fragmentation Speed at Magmatic Temperatures: an Experimental Determination

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The propagation speed of the fragmentation front (fragmentation speed) is a controlling factor in the dynamics of explosive volcanic eruptions and can affect the eruptive regime. It is impossible to measure the fragmentation speed directly in natural systems. Thus, laboratory experiments using natural samples represent a unique source of information revealing the dynamics of fragmentation processes. Rapid decompression experiments of natural samples from several volcanoes allowed us to quantify the influence of sample porosity and pressure differential on the fragmentation speed. These previous experiments have been performed almost exclusively at temperatures up to 300 °C. Due to experimental constraints it is not possible to measure directly the fragmentation speed at magmatic temperatures using the same procedure as in the experiments up to moderate temperature. The magmatic temperature for the analyzed rock types varies typically between 700 - 900 °C, reflecting their moderate to high silica content. For this reason, the influence of the temperature on the fragmentation speed had not been investigated systematically. In order to determine the fragmentation speed at magmatic temperatures (700 - 900 °C), we performed rapid decompression experiments of volcanic rocks and measured with a high-speed camera the ejection speed at the front of the gas-particle mixture produced by fragmentation. Then we used a theoretical model based on a 1-D shock-tube theory considering the conservation laws across the fragmentation front that provides a relationship between the fragmentation speed and the ejection speed at the front of the gas-particle mixture. This model has been validated in fragmentation experiments at room temperature where the fragmentation and ejection speed were measured simultaneously. We investigated natural volcanic samples covering a broad range of connected porosity (16 - 65 vol. %) and applied pressures (4-20 MPa) at room temperature and up to 850

  11. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    NASA Astrophysics Data System (ADS)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  12. High temperature spectral emissivity measurement using integral blackbody method

    NASA Astrophysics Data System (ADS)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  13. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications

    NASA Astrophysics Data System (ADS)

    Fong, L. E.; Holzer, J. R.; McBride, K. K.; Lima, E. A.; Baudenbacher, F.; Radparvar, M.

    2005-05-01

    We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80μm, and achieved a field sensitivity of 1.5pT/Hz1/2 and a magnetic moment sensitivity of 5.4×10-18Am2/Hz1/2 at a sensor-to-sample spacing of 100μm in the white noise region for frequencies above 100Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250μm to 1mm, and achieved sensitivities of 480-180fT /Hz1/2 in the white noise region for frequencies above 100Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.

  14. Low Temperature Reflectance Spectra of Titan Tholins

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Dalton, J. B.; Fonda, Mark (Technical Monitor)

    2001-01-01

    Compositional interpretation of remotely obtained reflectance spectra of outer solar system surfaces is achieved by a variety of methods. These include matching spectral curves, matching spectral features, quantitative spectral interpretation, and theoretical modeling of spectra. All of these approaches rely upon laboratory measurements of one kind or another. The bulk of these laboratory measurements are obtained with the sample of interest at ambient temperatures and pressures. However, surface temperatures of planets, satellites, and asteroids in the outer solar system are significantly cooler than ambient laboratory conditions on Earth. The infrared spectra of many materials change as a function of temperature. As has been recently demonstrated it is important to assess what effects colder temperatures have on spectral properties and hence, compositional interpretations. Titan tholin is a solid residue created by energetic processing of H-, C-, and N-bearing gases. Such residues can also be created by energetic processing if the gases are condensed into ices. Titan tholin has been suggested as a coloring agent for several surfaces in the outer solar system. Here we report laboratory measurements of Titan tholin at a temperature of 100 K and compare these to measurements of the same sample near room temperature. At low temperature the absorption features beyond 1 micrometer narrow slightly. At wavelengths greater than approx. 0.8 micrometer the overall reflectance of the sample decreases slightly making the sample less red at low temperatures. We will discuss the implications of the laboratory measurements for interpretation of cold outer solar system surfaces.

  15. A simple-harmonic model for depicting the annual cycle of seasonal temperatures of streams

    USGS Publications Warehouse

    Steele, Timothy Doak

    1978-01-01

    Due to economic or operational constraints, stream-temperature records cannot always be collected at all sites where information is desired or at frequencies dictated by continuous or near-continuous surveillance requirements. For streams where only periodic measurements are made during the year, and that are not appreciably affected by regulation or by thermal loading , a simple harmonic function may adequately depict the annual seasonal cycle of stream temperature at any given site. Resultant harmonic coefficients obtained from available stream-temperature records may be used in the following ways: (1) To interpolate between discrete measurements by solving the harmonic function at specified times, thereby filling in estimates of stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature conditions; and (3) to detect and to assess any significant at a site brought about by streamflow regulation or basin development. Moreover, less-than-daily or sampling frequencies at a given site may give estimates of annual variation of stream temperatures that are statistically comparable to estimates obtained from a daily or continuous sampling scheme. The latter procedure may result in potential savings of resources in network operations, with negligible loss in information on annual stream-temperature variations. (Woodard -USGS)

  16. Stratospheric Temperature Changes: Observations and Model Simulations

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V.; Chanin, M.-L.; Angell, J.; Barnett, J.; Gaffen, D.; Gelman, M.; Keckhut, P.; Koshelkov, Y.; Labitzke, K.; Lin, J.-J. R.

    1999-01-01

    This paper reviews observations of stratospheric temperatures that have been made over a period of several decades. Those observed temperatures have been used to assess variations and trends in stratospheric temperatures. A wide range of observation datasets have been used, comprising measurements by radiosonde (1940s to the present), satellite (1979 - present), lidar (1979 - present) and rocketsonde (periods varying with location, but most terminating by about the mid-1990s). In addition, trends have also been assessed from meteorological analyses, based on radiosonde and/or satellite data, and products based on assimilating observations into a general circulation model. Radiosonde and satellite data indicate a cooling trend of the annual-mean lower stratosphere since about 1980. Over the period 1979-1994, the trend is 0.6K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend. In the northern hemisphere, the cooling trend is about 0.75K/decade in the lower stratosphere, with a reduction in the cooling in mid-stratosphere (near 35 km), and increased cooling in the upper stratosphere (approximately 2 K per decade at 50 km). Model simulations indicate that the depletion of lower stratospheric ozone is the dominant factor in the observed lower stratospheric cooling. In the middle and upper stratosphere both the well-mixed greenhouse gases (such as CO) and ozone changes contribute in an important manner to the cooling.

  17. Can spatial statistical river temperature models be transferred between catchments?

    NASA Astrophysics Data System (ADS)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  18. Estimating the urban bias of surface shelter temperatures using upper-air and satellite data. Part 1: Development of models predicting surface shelter temperatures

    NASA Technical Reports Server (NTRS)

    Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.

    1995-01-01

    Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate and site-specific data to represent the local landscape. Global monthly mean temperature models were developed using data from over 5000 stations available in the Global Historical Climate Network (GHCN). Monthly maximum, mean, and minimum temperature models for the United States were also developed using data from over 1000 stations available in the U.S. Cooperative (COOP) Network and comparative monthly mean temperature models were developed using over 1150 U.S. stations in the GHCN. Three-, six-, and full-variable models were developed for comparative purposes. Inferences about the variables selected for the various models were easier for the GHCN models, which displayed month-to-month consistency in which variables were selected, than for the COOP models, which were assigned a different list of variables for nearly every month. These and other results suggest that global calibration is preferred because data from the global spectrum of physical processes that control surface temperatures are incorporated in a global model. All of the models that were developed in this study validated relatively well, especially the global models. Recalibration of the models with validation data resulted in only slightly poorer regression statistics, indicating that the calibration list of variables was valid. Predictions using data from the validation dataset in the calibrated equation were better for the GHCN models, and the globally calibrated GHCN models generally provided better U.S. predictions than the U.S.-calibrated COOP models. Overall, the GHCN and COOP models explained approximately 64%-95% of the total variance of surface shelter temperatures, depending on the month and the number of model variables. In addition, root

  19. Sample Invariance of the Structural Equation Model and the Item Response Model: A Case Study.

    ERIC Educational Resources Information Center

    Breithaupt, Krista; Zumbo, Bruno D.

    2002-01-01

    Evaluated the sample invariance of item discrimination statistics in a case study using real data, responses of 10 random samples of 500 people to a depression scale. Results lend some support to the hypothesized superiority of a two-parameter item response model over the common form of structural equation modeling, at least when responses are…

  20. Combination of artificial neural network and genetic algorithm method for modeling of methylene blue adsorption onto wood sawdust from water samples.

    PubMed

    Khajeh, Mostafa; Sarafraz-Yazdi, Ali; Natavan, Zahra Bameri

    2016-03-01

    The aim of this research was to develop a low price and environmentally friendly adsorbent with abundant of source to remove methylene blue (MB) from water samples. Sawdust solid-phase extraction coupled with high-performance liquid chromatography was used for the extraction and determination of MB. In this study, an experimental data-based artificial neural network model is constructed to describe the performance of sawdust solid-phase extraction method for various operating conditions. The pH, time, amount of sawdust, and temperature were the input variables, while the percentage of extraction of MB was the output. The optimum operating condition was then determined by genetic algorithm method. The optimized conditions were obtained as follows: 11.5, 22.0 min, 0.3 g, and 26.0°C for pH of the solution, extraction time, amount of adsorbent, and temperature, respectively. Under these optimum conditions, the detection limit and relative standard deviation were 0.067 μg L(-1) and <2.4%, respectively. The Langmuir and Freundlich adsorption models were applied to describe the isotherm constant and for the removal and determination of MB from water samples. © The Author(s) 2013.

  1. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    PubMed

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  2. Sampling Based Influence Maximization on Linear Threshold Model

    NASA Astrophysics Data System (ADS)

    Jia, Su; Chen, Ling

    2018-04-01

    A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.

  3. Temperature prediction of space flight experiments by computer thermal analysis

    NASA Technical Reports Server (NTRS)

    Birdsong, M. B.; Luttges, M. W.

    1994-01-01

    Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commerical-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in

  4. Temperature prediction of space flight experiments by computer thermal analysis.

    PubMed

    Birdsong, M B; Luttges, M W

    1995-02-01

    Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commercial-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in

  5. Directional infrared temperature and emissivity of vegetation: Measurements and models

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Castello, S.; Balick, L. K.

    1994-01-01

    Directional thermal radiance from vegetation depends on many factors, including the architecture of the plant canopy, thermal irradiance, emissivity of the foliage and soil, view angle, slope, and the kinetic temperature distribution within the vegetation-soil system. A one dimensional model, which includes the influence of topography, indicates that thermal emissivity of vegetation canopies may remain constant with view angle, or emissivity may increase or decrease as view angle from nadir increases. Typically, variations of emissivity with view angle are less than 0.01. As view angle increases away from nadir, directional infrared canopy temperature usually decreases but may remain nearly constant or even increase. Variations in directional temperature with view angle may be 5C or more. Model predictions of directional emissivity are compared with field measurements in corn canopies and over a bare soil using a method that requires two infrared thermometers, one sensitive to the 8 to 14 micrometer wavelength band and a second to the 14 to 22 micrometer band. After correction for CO2 absorption by the atmosphere, a directional canopy emissivity can be obtained as a function of view angle in the 8 to 14 micrometer band to an accuracy of about 0.005. Modeled and measured canopy emissivities for corn varied slightly with view angle (0.990 at nadir and 0.982 at 75 deg view zenith angle) and did not appear to vary significantly with view angle for the bare soil. Canopy emissivity is generally nearer to unity than leaf emissivity may vary by 0.02 with wavelength even though leaf emissivity. High spectral resolution, canopy thermal emissivity may vary by 0.02 with wavelength even though leaf emissivity may vary by 0.07. The one dimensional model provides reasonably accurate predictions of infrared temperature and can be used to study the dependence of infrared temperature on various plant, soil, and environmental factors.

  6. Time-series modeling and prediction of global monthly absolute temperature for environmental decision making

    NASA Astrophysics Data System (ADS)

    Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun

    2013-03-01

    A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.

  7. Note: Low-temperature scanning tunneling microscope with detachable scanner and reliable transfer mechanism for tip and sample exchange

    NASA Astrophysics Data System (ADS)

    Ge, Weifeng; Wang, Jihao; Wang, Junting; Zhang, Jing; Hou, Yubin; Lu, Qingyou

    2017-12-01

    A homebuilt low-temperature scanning tunneling microscope (STM) featuring a detachable scanner based on a double slider design, along with a reliable transfer mechanism for tip and sample exchange, is present. The coarse motor is decoupled from the scanner, which prevents the motor instabilities including vibrations and drifts from entering the tip-sample loop and thus improves the performance of the STM. In addition, in situ exchange of tips and samples can be implemented easily and reliably using a winch-type transfer mechanism. Atomically resolved images on graphite are demonstrated to show the performance of the proposed STM.

  8. Note: Low-temperature scanning tunneling microscope with detachable scanner and reliable transfer mechanism for tip and sample exchange.

    PubMed

    Ge, Weifeng; Wang, Jihao; Wang, Junting; Zhang, Jing; Hou, Yubin; Lu, Qingyou

    2017-12-01

    A homebuilt low-temperature scanning tunneling microscope (STM) featuring a detachable scanner based on a double slider design, along with a reliable transfer mechanism for tip and sample exchange, is present. The coarse motor is decoupled from the scanner, which prevents the motor instabilities including vibrations and drifts from entering the tip-sample loop and thus improves the performance of the STM. In addition, in situ exchange of tips and samples can be implemented easily and reliably using a winch-type transfer mechanism. Atomically resolved images on graphite are demonstrated to show the performance of the proposed STM.

  9. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction.

    PubMed

    Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M

    2015-01-01

    Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol-chloroform-isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  10. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction

    PubMed Central

    Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M

    2015-01-01

    Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. PMID:24834966

  11. Optimizing the implementation of the target motion sampling temperature treatment technique - How fast can it get?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuomas, V.; Jaakko, L.

    This article discusses the optimization of the target motion sampling (TMS) temperature treatment method, previously implemented in the Monte Carlo reactor physics code Serpent 2. The TMS method was introduced in [1] and first practical results were presented at the PHYSOR 2012 conference [2]. The method is a stochastic method for taking the effect of thermal motion into account on-the-fly in a Monte Carlo neutron transport calculation. It is based on sampling the target velocities at collision sites and then utilizing the 0 K cross sections at target-at-rest frame for reaction sampling. The fact that the total cross section becomesmore » a distributed quantity is handled using rejection sampling techniques. The original implementation of the TMS requires 2.0 times more CPU time in a PWR pin-cell case than a conventional Monte Carlo calculation relying on pre-broadened effective cross sections. In a HTGR case examined in this paper the overhead factor is as high as 3.6. By first changing from a multi-group to a continuous-energy implementation and then fine-tuning a parameter affecting the conservativity of the majorant cross section, it is possible to decrease the overhead factors to 1.4 and 2.3, respectively. Preliminary calculations are also made using a new and yet incomplete optimization method in which the temperature of the basis cross section is increased above 0 K. It seems that with the new approach it may be possible to decrease the factors even as low as 1.06 and 1.33, respectively, but its functionality has not yet been proven. Therefore, these performance measures should be considered preliminary. (authors)« less

  12. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter.

    PubMed

    Lord, Dominique

    2006-07-01

    There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for safety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit of statistical models produced from such datasets can be significantly affected. This issue has been defined as the "low mean problem" (LMP). Despite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work has so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The dispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated. The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is, to determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion parameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma distributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly used by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments, the weighted regression, and the maximum

  13. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    PubMed Central

    Gowrishankar, TR; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-01-01

    Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the skin was solved by

  14. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    PubMed

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical

  15. THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; A.M. Ougouag

    2011-12-01

    The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the

  16. A novel theoretical model for the temperature dependence of band gap energy in semiconductors

    NASA Astrophysics Data System (ADS)

    Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo

    2017-10-01

    We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T  >  400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.

  17. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  18. An Empirical Temperature Variance Source Model in Heated Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  19. Modelling Ischemic Stroke and Temperature Intervention Using Vascular Porous Method

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2017-11-01

    In the event of cerebral infarction, a region of tissue is supplied with insufficient blood flow to support normal metabolism. This can lead to an ischemic reaction which incurs cell death. Through a reduction of temperature, the metabolic demand can be reduced, which then offsets the onset of necrosis. This allows extra time for the patient to receive medical attention and could help prevent permanent brain damage from occurring. Here, we present a vascular-porous (VaPor) blood flow model that can simulate such an event. Cerebral blood flow is simulated using a combination of 1-Dimensional vessels embedded in 3-Dimensional porous media. This allows for simple manipulation of the structure and determining the effect of an obstructed vessel. Results show regional temperature increase of 1-1.5°C comparable with results from literature (in contrast to previous simpler models). Additionally, the application of scalp cooling in such an event dramatically reduces the temperature in the affected region to near hypothermic temperatures, which points to a potential rapid form of first intervention.

  20. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    NASA Astrophysics Data System (ADS)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  1. A statistical model of the human core-temperature circadian rhythm

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Choe, Y.; Luithardt, H.; Czeisler, C. A.

    2000-01-01

    We formulate a statistical model of the human core-temperature circadian rhythm in which the circadian signal is modeled as a van der Pol oscillator, the thermoregulatory response is represented as a first-order autoregressive process, and the evoked effect of activity is modeled with a function specific for each circadian protocol. The new model directly links differential equation-based simulation models and harmonic regression analysis methods and permits statistical analysis of both static and dynamical properties of the circadian pacemaker from experimental data. We estimate the model parameters by using numerically efficient maximum likelihood algorithms and analyze human core-temperature data from forced desynchrony, free-run, and constant-routine protocols. By representing explicitly the dynamical effects of ambient light input to the human circadian pacemaker, the new model can estimate with high precision the correct intrinsic period of this oscillator ( approximately 24 h) from both free-run and forced desynchrony studies. Although the van der Pol model approximates well the dynamical features of the circadian pacemaker, the optimal dynamical model of the human biological clock may have a harmonic structure different from that of the van der Pol oscillator.

  2. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    PubMed

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  3. Advances In High Temperature (Viscoelastoplastic) Material Modeling for Thermal Structural Analysis

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Saleeb, Atef F.

    2005-01-01

    Typical High Temperature Applications High Temperature Applications Demand High Performance Materials: 1) Complex Thermomechanical Loading; 2) Complex Material response requires Time-Dependent/Hereditary Models: Viscoelastic/Viscoplastic; and 3) Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety of material systems.

  4. Tigers on trails: occupancy modeling for cluster sampling.

    PubMed

    Hines, J E; Nichols, J D; Royle, J A; MacKenzie, D I; Gopalaswamy, A M; Kumar, N Samba; Karanth, K U

    2010-07-01

    Occupancy modeling focuses on inference about the distribution of organisms over space, using temporal or spatial replication to allow inference about the detection process. Inference based on spatial replication strictly requires that replicates be selected randomly and with replacement, but the importance of these design requirements is not well understood. This paper focuses on an increasingly popular sampling design based on spatial replicates that are not selected randomly and that are expected to exhibit Markovian dependence. We develop two new occupancy models for data collected under this sort of design, one based on an underlying Markov model for spatial dependence and the other based on a trap response model with Markovian detections. We then simulated data under the model for Markovian spatial dependence and fit the data to standard occupancy models and to the two new models. Bias of occupancy estimates was substantial for the standard models, smaller for the new trap response model, and negligible for the new spatial process model. We also fit these models to data from a large-scale tiger occupancy survey recently conducted in Karnataka State, southwestern India. In addition to providing evidence of a positive relationship between tiger occupancy and habitat, model selection statistics and estimates strongly supported the use of the model with Markovian spatial dependence. This new model provides another tool for the decomposition of the detection process, which is sometimes needed for proper estimation and which may also permit interesting biological inferences. In addition to designs employing spatial replication, we note the likely existence of temporal Markovian dependence in many designs using temporal replication. The models developed here will be useful either directly, or with minor extensions, for these designs as well. We believe that these new models represent important additions to the suite of modeling tools now available for occupancy

  5. Constraining the thermal conditions of impact environments through integrated low-temperature thermochronometry and numerical modeling

    NASA Astrophysics Data System (ADS)

    Kelly, N. M.; Marchi, S.; Mojzsis, S. J.; Flowers, R. M.; Metcalf, J. R.; Bottke, W. F., Jr.

    2017-12-01

    Impacts have a significant physical and chemical influence on the surface conditions of a planet. The cratering record is used to understand a wide array of impact processes, such as the evolution of the impact flux through time. However, the relationship between impactor size and a resulting impact crater remains controversial (e.g., Bottke et al., 2016). Likewise, small variations in the impact velocity are known to significantly affect the thermal-mechanical disturbances in the aftermath of a collision. Development of more robust numerical models for impact cratering has implications for how we evaluate the disruptive capabilities of impact events, including the extent and duration of thermal anomalies, the volume of ejected material, and the resulting landscape of impacted environments. To address uncertainties in crater scaling relationships, we present an approach and methodology that integrates numerical modeling of the thermal evolution of terrestrial impact craters with low-temperature, (U-Th)/He thermochronometry. The approach uses time-temperature (t-T) paths of crust within an impact crater, generated from numerical simulations of an impact. These t-T paths are then used in forward models to predict the resetting behavior of (U-Th)/He ages in the mineral chronometers apatite and zircon. Differences between the predicted and measured (U-Th)/He ages from a modeled terrestrial impact crater can then be used to evaluate parameters in the original numerical simulations, and refine the crater scaling relationships. We expect our methodology to additionally inform our interpretation of impact products, such as lunar impact breccias and meteorites, providing robust constraints on their thermal histories. In addition, the method is ideal for sample return mission planning - robust "prediction" of ages we expect from a given impact environment enhances our ability to target sampling sites on the Moon, Mars or other solar system bodies where impacts have strongly

  6. Electrical properties of lunar soil sample 15301,38

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.; Frisillo, A. L.; Strangway, D. W.

    1974-01-01

    Electrical property measurements have been made on an Apollo 15 lunar soil sample in ultrahigh vacuum from room temperature to 827 C for the frequency spectrum from 100 Hz through 1 MHz. The dielectric constant, the total ac loss tangent, and the dc conductivity were measured. The dc conductivity showed no thermal hysteresis, but an irreversible (in vacuum) thermal effect was found in the dielectric loss tangent on heating above 700 C and during the subsequent cooling. This appears to be related to several effects associated with lunar glass above 700 C. The sample also showed characteristic low-frequency dispersion in the dielectric constant with increasing temperature, presumably due to Maxwell-Wagner intergranular effects. The dielectric properties may be fitted to a model involving a Cole-Cole frequency distribution that is relatively temperature-independent below 200 C and follows a Boltzmann temperature distribution with an activation energy of 2.5 eV above 200 C. The dc conductivity is fitted by an exponential temperature distribution and becomes the dominant loss above 700 C.

  7. A simple homogeneous model for regular and irregular metallic wire media samples

    NASA Astrophysics Data System (ADS)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  8. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    PubMed

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  9. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool.

    PubMed

    Paaijmans, Krijn P; Heusinkveld, Bert G; Jacobs, Adrie F G

    2008-11-01

    Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that can transmit malaria. Recent attempts to predict the daily water temperature dynamics in mosquito breeding sites in Kenya have been successful. However, the developed model may be too complex, as the sophisticated equipment that was used for detailed meteorological observations is not widely distributed in Africa, making it difficult to predict the daily water temperature dynamics on a local scale. Therefore, we compared two energy budget models with earlier made observations of the daily water temperature dynamics in a small, shallow and clear water pool (diameter 0.96 m, depth 0.32 m) in Kenya. This paper describes (1) a complex 1-Dimensional model, and (2) a simplified second model, and (3) shows that both models mimic the water temperature dynamics in the water pool accurately. The latter model has the advantage that it only needs common weather data (air temperature, air humidity, wind speed and cloud cover) to estimate the diurnal temperature dynamics in breeding sites of African malaria mosquitoes.

  10. Collecting cometary soil samples? Development of the ROSETTA sample acquisition system

    NASA Technical Reports Server (NTRS)

    Coste, P. A.; Fenzi, M.; Eiden, Michael

    1993-01-01

    In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.

  11. Development of numerical model for predicting heat generation and temperatures in MSW landfills.

    PubMed

    Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A

    2013-10-01

    A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing

    NASA Astrophysics Data System (ADS)

    Twigt, Daniel J.; de Goede, Erik D.; Schrama, Ernst J. O.; Gerritsen, Herman

    2007-10-01

    The present paper describes the analysis and modeling of the South China Sea (SCS) temperature cycle on a seasonal scale. It investigates the possibility to model this cycle in a consistent way while not taking into account tidal forcing and associated tidal mixing and exchange. This is motivated by the possibility to significantly increase the model’s computational efficiency when neglecting tides. The goal is to develop a flexible and efficient tool for seasonal scenario analysis and to generate transport boundary forcing for local models. Given the significant spatial extent of the SCS basin and the focus on seasonal time scales, synoptic remote sensing is an ideal tool in this analysis. Remote sensing is used to assess the seasonal temperature cycle to identify the relevant driving forces and is a valuable source of input data for modeling. Model simulations are performed using a three-dimensional baroclinic-reduced depth model, driven by monthly mean sea surface anomaly boundary forcing, monthly mean lateral temperature, and salinity forcing obtained from the World Ocean Atlas 2001 climatology, six hourly meteorological forcing from the European Center for Medium range Weather Forecasting ERA-40 dataset, and remotely sensed sea surface temperature (SST) data. A sensitivity analysis of model forcing and coefficients is performed. The model results are quantitatively assessed against climatological temperature profiles using a goodness-of-fit norm. In the deep regions, the model results are in good agreement with this validation data. In the shallow regions, discrepancies are found. To improve the agreement there, we apply a SST nudging method at the free water surface. This considerably improves the model’s vertical temperature representation in the shallow regions. Based on the model validation against climatological in situ and SST data, we conclude that the seasonal temperature cycle for the deep SCS basin can be represented to a good degree. For shallow

  13. From samples to populations in retinex models

    NASA Astrophysics Data System (ADS)

    Gianini, Gabriele

    2017-05-01

    Some spatial color algorithms, such as Brownian Milano retinex (MI-retinex) and random spray retinex (RSR), are based on sampling. In Brownian MI-retinex, memoryless random walks (MRWs) explore the neighborhood of a pixel and are then used to compute its output. Considering the relative redundancy and inefficiency of MRW exploration, the algorithm RSR replaced the walks by samples of points (the sprays). Recent works point to the fact that a mapping from the sampling formulation to the probabilistic formulation of the corresponding sampling process can offer useful insights into the models, at the same time featuring intrinsically noise-free outputs. The paper continues the development of this concept and shows that the population-based versions of RSR and Brownian MI-retinex can be used to obtain analytical expressions for the outputs of some test images. The comparison of the two analytic expressions from RSR and from Brownian MI-retinex demonstrates not only that the two outputs are, in general, different but also that they depend in a qualitatively different way upon the features of the image.

  14. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO₂-acidified brines

    DOE PAGES

    Smith, Megan M.; Hao, Yue; Mason, Harris E.; ...

    2014-12-31

    Reactive experiments were performed to expose sample cores from the Arbuckle carbonate reservoir to CO₂-acidified brine under reservoir temperature and pressure conditions. The samples consisted of dolomite with varying quantities of calcite and silica/chert. The timescales of monitored pressure decline across each sample in response to CO₂ exposure, as well as the amount of and nature of dissolution features, varied widely among these three experiments. For all samples cores, the experimentally measured initial permeability was at least one order of magnitude or more lower than the values estimated from downhole methods. Nondestructive X-ray computed tomography (XRCT) imaging revealed dissolution featuresmore » including “wormholes,” removal of fracture-filling crystals, and widening of pre-existing pore spaces. In the injection zone sample, multiple fractures may have contributed to the high initial permeability of this core and restricted the distribution of CO₂-induced mineral dissolution. In contrast, the pre-existing porosity of the baffle zone sample was much lower and less connected, leading to a lower initial permeability and contributing to the development of a single dissolution channel. While calcite may make up only a small percentage of the overall sample composition, its location and the effects of its dissolution have an outsized effect on permeability responses to CO₂ exposure. The XRCT data presented here are informative for building the model domain for numerical simulations of these experiments but require calibration by higher resolution means to confidently evaluate different porosity-permeability relationships.« less

  15. The existence of negative absolute temperatures in Axelrod’s social influence model

    NASA Astrophysics Data System (ADS)

    Villegas-Febres, J. C.; Olivares-Rivas, W.

    2008-06-01

    We introduce the concept of temperature as an order parameter in the standard Axelrod’s social influence model. It is defined as the relation between suitably defined entropy and energy functions, T=(. We show that at the critical point, where the order/disorder transition occurs, this absolute temperature changes in sign. At this point, which corresponds to the transition homogeneous/heterogeneous culture, the entropy of the system shows a maximum. We discuss the relationship between the temperature and other properties of the model in terms of cultural traits.

  16. The redshift distribution of cosmological samples: a forward modeling approach

    NASA Astrophysics Data System (ADS)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina

    2017-08-01

    Determining the redshift distribution n(z) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n(z) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc{UFig} (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n(z) distributions for the acceptable models. We demonstrate the method by determining n(z) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n(z) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  17. Measurement of temperature-dependent specific heat of biological tissues.

    PubMed

    Haemmerich, Dieter; Schutt, David J; dos Santos, Icaro; Webster, John G; Mahvi, David M

    2005-02-01

    We measured specific heat directly by heating a sample uniformly between two electrodes by an electric generator. We minimized heat loss by styrofoam insulation. We measured temperature from multiple thermocouples at temperatures from 25 degrees C to 80 degrees C while heating the sample, and corrected for heat loss. We confirm method accuracy with a 2.5% agar-0.4% saline physical model and obtain specific heat of 4121+/-89 J (kg K)(-1), with an average error of 3.1%.

  18. An Ensemble Recentering Kalman Filter with an Application to Argo Temperature Data Assimilation into the NASA GEOS-5 Coupled Model

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.

    2013-01-01

    A two-step ensemble recentering Kalman filter (ERKF) analysis scheme is introduced. The algorithm consists of a recentering step followed by an ensemble Kalman filter (EnKF) analysis step. The recentering step is formulated such as to adjust the prior distribution of an ensemble of model states so that the deviations of individual samples from the sample mean are unchanged but the original sample mean is shifted to the prior position of the most likely particle, where the likelihood of each particle is measured in terms of closeness to a chosen subset of the observations. The computational cost of the ERKF is essentially the same as that of a same size EnKF. The ERKF is applied to the assimilation of Argo temperature profiles into the OGCM component of an ensemble of NASA GEOS-5 coupled models. Unassimilated Argo salt data are used for validation. A surprisingly small number (16) of model trajectories is sufficient to significantly improve model estimates of salinity over estimates from an ensemble run without assimilation. The two-step algorithm also performs better than the EnKF although its performance is degraded in poorly observed regions.

  19. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    NASA Technical Reports Server (NTRS)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  20. Modeling and simulating vortex pinning and transport currents for high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Sockwell, K. Chad

    Superconductivity is a phenomenon characterized by two hallmark properties, zero electrical resistance and the Meissner effect. These properties give great promise to a new generation of resistance free electronics and powerful superconducting magnets. However this possibility is limited by the extremely low critical temperature the superconductors must operate under, typically close to 0K. The recent discovery of high temperature superconductors has brought the critical temperature closer to room temperature than ever before, making the realization of room temperature superconductivity a possibility. Simulations of superconducting technology and materials will be necessary to usher in the new wave of superconducting electronics. Unfortunately these new materials come with new properties such as effects from multiple electron bands, as is the case for magnesium diboride. Moreover, we must consider that all high temperature superconductors are of a Type II variety, which possess magnetic tubes of flux, known as vortices. These vortices interact with transport currents, creating an electrical resistance through a process known as flux flow. Thankfully this process can be prevented by placing impurities in the superconductor, pinning the vortices, making vortex pinning a necessary aspect of our model. At this time there are no other models or simulations that are aimed at modeling vortex pinning, using impurities, in two-band materials. In this work we modify an existing Ginzburg-Landau model for two-band superconductors and add the ability to model normal inclusions (impurities) with a new approach which is unique to the two-band model. Simulations in an attempt to model the material magnesium diboride are also presented. In particular simulations of vortex pinning and transport currents are shown using the modified model. The qualitative properties of magnesium diboride are used to validate the model and its simulations. One main goal from the computational end of

  1. Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature

    NASA Astrophysics Data System (ADS)

    Poovathingal, Savio

    An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of

  2. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  3. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; hide

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  4. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  5. Phase diagram for a two-dimensional, two-temperature, diffusive XY model.

    PubMed

    Reichl, Matthew D; Del Genio, Charo I; Bassler, Kevin E

    2010-10-01

    Using Monte Carlo simulations, we determine the phase diagram of a diffusive two-temperature conserved order parameter XY model. When the two temperatures are equal the system becomes the equilibrium XY model with the continuous Kosterlitz-Thouless (KT) vortex-antivortex unbinding phase transition. When the two temperatures are unequal the system is driven by an energy flow from the higher temperature heat-bath to the lower temperature one and reaches a far-from-equilibrium steady state. We show that the nonequilibrium phase diagram contains three phases: A homogenous disordered phase and two phases with long range, spin texture order. Two critical lines, representing continuous phase transitions from a homogenous disordered phase to two phases of long range order, meet at the equilibrium KT point. The shape of the nonequilibrium critical lines as they approach the KT point is described by a crossover exponent φ=2.52±0.05. Finally, we suggest that the transition between the two phases with long-range order is first-order, making the KT-point where all three phases meet a bicritical point.

  6. Advanced overlay: sampling and modeling for optimized run-to-run control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  7. Stability and accuracy of total and free PSA values in samples stored at room temperature.

    PubMed

    Forde, J C; Blake, O; Crowley, V E; Lynch, T H

    2016-11-01

    In 2010, an estimated 476,076 total PSA tests were performed in Ireland, at a cost of €3.6 million with the majority ordered by general practitioners. We aimed to replicate storage conditions at room temperature and see if prolonged storage affected total and free PSA values. Blood samples were taken from 20 male patients in four VACUETTE ® Serum Separator tubes (Greiner-Bio-One, Austria) and stored at room temperature (22 °C) for different time intervals (4, 8, 24, 48 h) before being centrifuged and analyzed. Total PSA (tPSA) and free PSA (fPSA) values were determined using the Tosoh AIA 1800 assay (Tokyo, Japan). Mean tPSA values were measured at 4, 8, 24 and 48 h with values of 7.9, 8.1, 7.8 and 8.0 μg/L, respectively. Values ranged from -1.26 to +2.53 % compared to the initial 4 h interval reading, indicating tPSA remained consistent at room temperature. The tPSA showed no significance between groups (ANOVA, p = 0.283). Mean fPSA values at 4, 8, 24 and 48 h were 2.05, 2.04, 1.83, 1.82 μg/L, respectively. At 24 and 48 h there was 10.73 and 11.22 % reduction, respectively, in fPSA compared to the 4-h time interval, indicating prolonged storage resulted in reduced fPSA values. After 24 h, there was an 8.8 % reduction in the free/total PSA %. The fPSA showed significant differences between groups (ANOVA, p = 0.024). Our recommendation is that samples that have been stored for prolonged amounts of time (greater than 24 h) should not be used for free PSA testing.

  8. 12 CFR Appendix B to Part 230 - Model Clauses and Sample Forms

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Model Clauses and Sample Forms B Appendix B to... SYSTEM TRUTH IN SAVINGS (REGULATION DD) Pt. 230, App. B Appendix B to Part 230—Model Clauses and Sample Forms Table of contents B-1—Model Clauses for Account Disclosures (Section 230.4(b)) B-2—Model Clauses...

  9. A simplified water temperature model for the Colorado River below Glen Canyon Dam

    USGS Publications Warehouse

    Wright, S.A.; Anderson, C.R.; Voichick, N.

    2009-01-01

    Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year-round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first-order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat-exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.58C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam.

  10. Modeling thermal spike driven reactions at low temperature and application to zirconium carbide radiation damage

    NASA Astrophysics Data System (ADS)

    Ulmer, Christopher J.; Motta, Arthur T.

    2017-11-01

    The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.

  11. Assimilation of Goes-Derived Skin Temperature Tendencies into Mesoscale Models to Improve Forecasts of near Surface Air Temperature and Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; McNider, Richard T.; Suggs, Ron; Jedlovec, Gary; Robertson, Franklin R.

    1998-01-01

    A technique has been developed for assimilating GOES-FR skin temperature tendencies into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature chance closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts (0-48 h) is that it does not require a complex land-surface formulation within the atmospheric model. As a result, the need to specify poorly known soil and vegetative characteristics is eliminated. The GOES assimilation technique has been incorporated into the PSU/NCAR MM5. Results will be presented to demonstrate the ability of the assimilation scheme to improve short- term (0-48h) simulations of near-surface air temperature and mixing ratio during the warm season for several selected cases which exhibit a variety of atmospheric and land-surface conditions. In addition, validation of terms in the simulated surface energy budget will be presented using in situ data collected at the Southern Great Plains (SGP) Cloud And Radiation Testbed (CART) site as part of the Atmospheric Radiation Measurements Program (ARM).

  12. Modeling temperature inversion in southeastern Yellow Sea during winter 2016

    NASA Astrophysics Data System (ADS)

    Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun

    2017-05-01

    A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.

  13. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  14. High-temperature material characterization for multispectral window

    NASA Astrophysics Data System (ADS)

    Park, James; Arida, Marvin-Ray; Ku, Zahyun; Jang, Woo-Yong; Urbas, Augustine M.

    2017-05-01

    A microwave cylindrical cavity combined with a laser has been investigated to characterize the temperature dependence of widow materials in the Air Force Research Laboratory (AFRL). This paper discusses the requirements of high temperature RF material characterizations for transparent ceramic materials, such as ALON, that can potentially be used for multispectral windows. The RF cylindrical resonator was designed and the numerical model was studied to characterize the dielectric constant of materials. The dielectric constant can be extracted from the resonant frequency shift based on the cavity perturbation method (CPM), which is sensitive to the sample size and shape. Laser heating was applied to the material under test (MUT), which could easily be heated above 1000°C by the laser irradiation, in order to conduct CPM at high temperature. The temperature distribution in a material was also analyzed to investigate the impact of the thermal properties and the sample shape.

  15. Degradation of free tryptophan in a cookie model system and its application in commercial samples.

    PubMed

    Morales, Francisco J; Açar, Ozge C; Serpen, Arda; Arribas-Lorenzo, Gema; Gökmen, Vural

    2007-08-08

    The stability of free tryptophan (Trp) was examined in five cookie-resembling models at varying baking temperatures and durations. Trp was measured by HPLC coupled with a fluorescent detector. Trp degradation was significantly greater in cookies formulated with glucose compared with sucrose, regardless of the temperatures and durations of baking. A lag period was clearly observed in cookies formulated with sucrose. The type of sugar used in the dough formulation affected not only the thermal destruction kinetics but also the degree of degradation of free Trp. However, the type of leavening agent (ammonium bicarbonate versus sodium bicarbonate) did not affect the rate of Trp destruction as happens in Maillard-driven reactions. In addition, the free Trp content was analyzed in nine different flours and sixty-two commercial cookies, and it was found that free Trp varied from 0.4 to 1287.9 mg/kg for rice and wheat bran, respectively. It was found that free Trp was significantly higher in dietetic commercial samples formulated with wheat bran compared with other flours.

  16. Merging tree ring chronologies and climate system model simulated temperature by optimal interpolation algorithm in North America

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xing, Pei; Luo, Yong; Zhao, Zongci; Nie, Suping; Huang, Jianbin; Wang, Shaowu; Tian, Qinhua

    2015-04-01

    A new dataset of annual mean surface temperature has been constructed over North America in recent 500 years by performing optimal interpolation (OI) algorithm. Totally, 149 series totally were screened out including 69 tree ring width (MXD) and 80 tree ring width (TRW) chronologies are screened from International Tree Ring Data Bank (ITRDB). The simulated annual mean surface temperature derives from the past1000 experiment results of Community Climate System Model version 4 (CCSM4). Different from existing research that applying data assimilation approach to (General Circulation Models) GCMs simulation, the errors of both the climate model simulation and tree ring reconstruction were considered, with a view to combining the two parts in an optimal way. Variance matching (VM) was employed to calibrate tree ring chronologies on CRUTEM4v, and corresponding errors were estimated through leave-one-out process. Background error covariance matrix was estimated from samples of simulation results in a running 30-year window in a statistical way. Actually, the background error covariance matrix was calculated locally within the scanning range (2000km in this research). Thus, the merging process continued with a time-varying local gain matrix. The merging method (MM) was tested by two kinds of experiments, and the results indicated standard deviation of errors can be reduced by about 0.3 degree centigrade lower than tree ring reconstructions and 0.5 degree centigrade lower than model simulation. During the recent Obvious decadal variability can be identified in MM results including the evident cooling (0.10 degree per decade) in 1940-60s, wherein the model simulation exhibit a weak increasing trend (0.05 degree per decade) instead. MM results revealed a compromised spatial pattern of the linear trend of surface temperature during a typical period (1601-1800 AD) in Little Ice Age, which basically accorded with the phase transitions of the Pacific decadal oscillation (PDO) and

  17. Sample Size Determination for Regression Models Using Monte Carlo Methods in R

    ERIC Educational Resources Information Center

    Beaujean, A. Alexander

    2014-01-01

    A common question asked by researchers using regression models is, What sample size is needed for my study? While there are formulae to estimate sample sizes, their assumptions are often not met in the collected data. A more realistic approach to sample size determination requires more information such as the model of interest, strength of the…

  18. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    PubMed

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  19. Northern Russian chironomid-based modern summer temperature data set and inference models

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Self, Angela E.; Brooks, Stephen J.; van Hardenbroek, Maarten; Herzschuh, Ulrike; Diekmann, Bernhard

    2015-11-01

    West and East Siberian data sets and 55 new sites were merged based on the high taxonomic similarity, and the strong relationship between mean July air temperature and the distribution of chironomid taxa in both data sets compared with other environmental parameters. Multivariate statistical analysis of chironomid and environmental data from the combined data set consisting of 268 lakes, located in northern Russia, suggests that mean July air temperature explains the greatest amount of variance in chironomid distribution compared with other measured variables (latitude, longitude, altitude, water depth, lake surface area, pH, conductivity, mean January air temperature, mean July air temperature, and continentality). We established two robust inference models to reconstruct mean summer air temperatures from subfossil chironomids based on ecological and geographical approaches. The North Russian 2-component WA-PLS model (RMSEPJack = 1.35 °C, rJack2 = 0.87) can be recommended for application in palaeoclimatic studies in northern Russia. Based on distinctive chironomid fauna and climatic regimes of Kamchatka the Far East 2-component WAPLS model (RMSEPJack = 1.3 °C, rJack2 = 0.81) has potentially better applicability in Kamchatka.

  20. Testing and Modeling Ultra-High Temperature Ceramic (UHTC) Materials for Hypersonic Flight

    DTIC Science & Technology

    2011-11-01

    temperatures exceed 2500 K . as they have here. E. Evidence of Volatilization Emission spectroscopy of electronically excited B , Si, and W atoms...specimens. After roughly 30 seconds around 2660 K , the surface temperature of sample 3.3 decays steadily, and the B , Si, and W atom emissions follow...175-189. 51Roine, A., HSC Chemistry for Windows, Version 5.11. Outokumpu Research Oy, Pori, Finland, (2006). 52Hirsch, K ., Roth, B ., Altmann, I

  1. Profile modifications in laser-driven temperature fronts using flux-limiters and delocalization models

    NASA Astrophysics Data System (ADS)

    Colombant, Denis; Manheimer, Wallace; Busquet, Michel

    2004-11-01

    A simple steady-state model using flux-limiters by Day et al [1] showed that temperature profiles could formally be double-valued. Stability of temperature profiles in laser-driven temperature fronts using delocalization models was also discussed by Prasad and Kershaw [2]. We have observed steepening of the front and flattening of the maximum temperature in laser-driven implosions [3]. Following the simple model first proposed in [1], we solve for a two-boundary value steady-state heat flow problem for various non-local heat transport models. For the more complicated models [4,5], we obtain the steady-state solution as the asymptotic limit of the time-dependent solution. Solutions will be shown and compared for these various models. 1.M.Day, B.Merriman, F.Najmabadi and R.W.Conn, Contrib. Plasma Phys. 36, 419 (1996) 2.M.K.Prasad and D.S.Kershaw, Phys. Fluids B3, 3087 (1991) 3.D.Colombant, W.Manheimer and M.Busquet, Bull. Amer. Phys. Soc. 48, 326 (2003) 4.E.M.Epperlein and R.W.Short, Phys. Fluids B3, 3092 (1991) 5.W.Manheimer and D.Colombant, Phys. Plasmas 11, 260 (2004)

  2. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    PubMed

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P < 0.05). The maximum population density (Nmax ) of Pseudomonas spp. was significantly greater than that of aerobic mesophilic bacteria, particularly in treated samples and/or at 4 and 10 °C (P < 0.05). The relationship between μmax of both epiphytic bacteria and temperature was linear (R(2) > 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C. © 2016 Institute of Food Technologists®

  3. Modeling of surface temperature effects on mixed material migration in NSTX-U

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2016-10-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  4. Modeling light and temperature effects on leaf emergence in wheat and barley

    NASA Technical Reports Server (NTRS)

    Volk, T.; Bugbee, B.

    1991-01-01

    Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.

  5. Modeling Streamflow and Water Temperature in the North Santiam and Santiam Rivers, Oregon, 2001-02

    USGS Publications Warehouse

    Sullivan, Annett B.; Roundsk, Stewart A.

    2004-01-01

    To support the development of a total maximum daily load (TMDL) for water temperature in the Willamette Basin, the laterally averaged, two-dimensional model CE-QUAL-W2 was used to construct a water temperature and streamflow model of the Santiam and North Santiam Rivers. The rivers were simulated from downstream of Detroit and Big Cliff dams to the confluence with the Willamette River. Inputs to the model included bathymetric data, flow and temperature from dam releases, tributary flow and temperature, and meteorologic data. The model was calibrated for the period July 1 through November 21, 2001, and confirmed with data from April 1 through October 31, 2002. Flow calibration made use of data from two streamflow gages and travel-time and river-width data. Temperature calibration used data from 16 temperature monitoring locations in 2001 and 5 locations in 2002. A sensitivity analysis was completed by independently varying input parameters, including point-source flow, air temperature, flow and water temperature from dam releases, and riparian shading. Scenario analyses considered hypothetical river conditions without anthropogenic heat inputs, with restored riparian vegetation, with minimum streamflow from the dams, and with a more-natural seasonal water temperature regime from dam releases.

  6. The redshift distribution of cosmological samples: a forward modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam

    Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizesmore » and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.« less

  7. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  8. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function.

    PubMed

    Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen

    2013-10-01

    The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Greedy Sampling and Incremental Surrogate Model-Based Tailoring of Aeroservoelastic Model Database for Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Pant, Kapil; Brenner, Martin J.; Ouellette, Jeffrey A.

    2018-01-01

    This paper presents a data analysis and modeling framework to tailor and develop linear parameter-varying (LPV) aeroservoelastic (ASE) model database for flexible aircrafts in broad 2D flight parameter space. The Kriging surrogate model is constructed using ASE models at a fraction of grid points within the original model database, and then the ASE model at any flight condition can be obtained simply through surrogate model interpolation. The greedy sampling algorithm is developed to select the next sample point that carries the worst relative error between the surrogate model prediction and the benchmark model in the frequency domain among all input-output channels. The process is iterated to incrementally improve surrogate model accuracy till a pre-determined tolerance or iteration budget is met. The methodology is applied to the ASE model database of a flexible aircraft currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that the proposed method can reduce the number of models in the original database by 67%. Even so the ASE models obtained through Kriging interpolation match the model in the original database constructed directly from the physics-based tool with the worst relative error far below 1%. The interpolated ASE model exhibits continuously-varying gains along a set of prescribed flight conditions. More importantly, the selected grid points are distributed non-uniformly in the parameter space, a) capturing the distinctly different dynamic behavior and its dependence on flight parameters, and b) reiterating the need and utility for adaptive space sampling techniques for ASE model database compaction. The present framework is directly extendible to high-dimensional flight parameter space, and can be used to guide the ASE model development, model order reduction, robust control synthesis and novel vehicle design of flexible aircraft.

  10. Modeling and testing of fast response, fiber-optic temperature sensors

    NASA Astrophysics Data System (ADS)

    Tonks, Michael James

    have a faster response time compared to the thermocouple. When the sensors were extended 12.7 cm into the flow, the fiber-optic sensors recorded a temperature change of 143 K compared to 38 K recorded by the thermocouple during the 0.5 millisecond test. This corresponds to 22% of the change of total temperature in the air recorded by the fiber-optic sensor and only 6% recorded by the thermocouple. Put another way, the fiber-optic sensor experience a rate of temperature change equal to 2.9x105 K/s and the thermocouple changed at a rate of 0.79x105 K/s. The data recorded from the fiber-optic sensor also contained much less noise than the thermocouple data. An unsteady finite element thermal model was created using ANSYS to predict the temperature response of the sensor. Test cases with known analytical solutions were used to verify the ANSYS modeling procedures. The shock tube flow environment was also modeled with Fluent, a commercially available CFD code. Fluent was used to determine the heat transfer between the shock tube flow and the sensor. The convection film coefficient for the flow was predicted by Fluent to be 27,150 W/m2K for the front of the wafer and 13,385 W/m2K for the side. The Fluent results were used with the ANSYS model to predict the response of the fiber-optic sensor when exposed to the shock tube flow. The results from the Fluent/ANSYS model were compared to the fiber-optic measurements taken in the shock tube. It was seen that the heat flux to the sensor was slightly over-predicted by the model, and the heat losses from the wafer were also over-predicted. Since the prediction fell within the uncertainty of the measurement, it was found to be in good agreement with the measured values. (Abstract shortened by UMI.)

  11. Toric-boson model: Toward a topological quantum memory at finite temperature

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Castelnovo, Claudio; Chamon, Claudio

    2009-06-01

    We discuss the existence of stable topological quantum memory at finite temperature. At stake here is the fundamental question of whether it is, in principle, possible to store quantum information for macroscopic times without the intervention from the external world, that is, without error correction. We study the toric code in two dimensions with an additional bosonic field that couples to the defects, in the presence of a generic environment at finite temperature: the toric-boson model. Although the coupling constants for the bare model are not finite in the thermodynamic limit, the model has a finite spectrum. We show that in the topological phase, there is a finite temperature below which open strings are confined and therefore the lifetime of the memory can be made arbitrarily (polynomially) long in system size. The interaction with the bosonic field yields a long-range attractive force between the end points of open strings but leaves closed strings and topological order intact.

  12. Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: Feasibility study on an agar phantom model.

    PubMed

    Blasco-Gimenez, Ramón; Lequerica, Juan L; Herrero, Maria; Hornero, Fernando; Berjano, Enrique J

    2010-04-01

    The aim of this work was to study linear deterministic models to predict tissue temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes such as electrode temperature, power and impedance between active and dispersive electrodes. The concept involves autoregressive models with exogenous input (ARX), which is a particular case of the autoregressive moving average model with exogenous input (ARMAX). The values of the mode parameters were determined from a least-squares fit of experimental data. The data were obtained from radiofrequency ablations conducted on agar models with different contact pressure conditions between electrode and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L min(-1)). Half of all the ablations were chosen randomly to be used for identification (i.e. determination of model parameters) and the other half were used for model validation. The results suggest that (1) a linear model can be developed to predict tissue temperature at a depth of 4.5 mm during RF cardiac ablation by using the variables applied power, impedance and electrode temperature; (2) the best model provides a reasonably accurate estimate of tissue temperature with a 60% probability of achieving average errors better than 5 degrees C; (3) substantial errors (larger than 15 degrees C) were found only in 6.6% of cases and were associated with abnormal experiments (e.g. those involving the displacement of the ablation electrode) and (4) the impact of measuring impedance on the overall estimate is negligible (around 1 degrees C).

  13. A model for evaluating stream temperature response to climate change in Wisconsin

    USGS Publications Warehouse

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Integrating the SWB Model with the ANN Model provided a mechanism by which downscaled global or regional climate model results could be used to estimate the potential effects of climate change on future stream temperature on a daily time step. To address future climate scenarios, statistically downscaled air temperature and precipitation projections from 10 GCMs and 2 time periods were used with the SWB-ANNv1 Model to project future stream temperature. Projections of future stream temperatures at mid- (2046–65) and late- (2081–2100) 21st century showed the July mean water temperature increasing for all stream segments with about 80 percent of stream kilometers increasing by 1 to 2 degrees Celsius (°C) by mid-century and about 99 percent increasing by 1 to 3 °C by late-century. Projected changes in stream temperatures also affected changes in thermal classes with a loss in the total amount of cold-water, cold-transition, and warm-transition thermal habitat and a gain in warm-water and very warm thermal habitat for both mid- and late-21st century time periods. The greatest losses occurred for cold-water streams and the greatest gains for warm-water streams, with a contraction of cold-water streams in the Driftless Area of western and southern Wisconsin and an expansion of warm-water streams across northern Wisconsin. Results of this study suggest that such changes will affect the composition of fish assemblages, with a loss of suitable habitat for cold-water fishes and gain in suitable habitat for warm-water fishes. In the end, these projected changes in thermal habitat attributable to climate may result in a net loss of fisheries, because many warm-water species may be unable to colonize habitats formerly occupied by cold-water species because of other habitat limitations (e.g., stream size, gradient). Although projected stream temperatures may vary greatly, depending on the emissions scenario and models used, the results presented in this report represent one

  14. Bayesian Estimation of the DINA Model with Gibbs Sampling

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew

    2015-01-01

    A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…

  15. Pattern sampling for etch model calibration

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2017-06-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.

  16. Annealed Importance Sampling for Neural Mass Models

    PubMed Central

    Penny, Will; Sengupta, Biswa

    2016-01-01

    Neural Mass Models provide a compact description of the dynamical activity of cell populations in neocortical regions. Moreover, models of regional activity can be connected together into networks, and inferences made about the strength of connections, using M/EEG data and Bayesian inference. To date, however, Bayesian methods have been largely restricted to the Variational Laplace (VL) algorithm which assumes that the posterior distribution is Gaussian and finds model parameters that are only locally optimal. This paper explores the use of Annealed Importance Sampling (AIS) to address these restrictions. We implement AIS using proposals derived from Langevin Monte Carlo (LMC) which uses local gradient and curvature information for efficient exploration of parameter space. In terms of the estimation of Bayes factors, VL and AIS agree about which model is best but report different degrees of belief. Additionally, AIS finds better model parameters and we find evidence of non-Gaussianity in their posterior distribution. PMID:26942606

  17. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Doughty, Austin; Liu, Shaojie; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2017-02-01

    We have recently developed Laser Immunotherapy (LIT), a targeted cancer treatment modality using synergistic application of near-infrared laser irradiation and in situ immunological stimulation. This study further investigates the principles underlying the immune response to LIT treatment by studying immunological impact of the laser photothermal effect in vivo, in vitro, and ex vivo. Tumor cells were stressed in vitro, and samples were collected to analyze protein expression with a Western Blot. Additionally, a tumor model was designed using bovine liver tissue suspended in agarose gel which was treated using laser interstitially and monitored with both proton-resonance frequency shift MR thermometry and thermocouples. From the bovine liver tumor model, we were able to develop the correlation between tissue temperature elevation and laser power and distance from the fiber tip. Similar data was collected by monitoring the temperature of a metastatic mammary tumor in a rat during laser irradiation. Ultimately, these results show that the laser irradiation of LIT leads to clear immunological effects for an effective combination therapy to treat metastatic cancers.

  18. Climate models predict increasing temperature variability in poor countries.

    PubMed

    Bathiany, Sebastian; Dakos, Vasilis; Scheffer, Marten; Lenton, Timothy M

    2018-05-01

    Extreme events such as heat waves are among the most challenging aspects of climate change for societies. We show that climate models consistently project increases in temperature variability in tropical countries over the coming decades, with the Amazon as a particular hotspot of concern. During the season with maximum insolation, temperature variability increases by ~15% per degree of global warming in Amazonia and Southern Africa and by up to 10%°C -1 in the Sahel, India, and Southeast Asia. Mechanisms include drying soils and shifts in atmospheric structure. Outside the tropics, temperature variability is projected to decrease on average because of a reduced meridional temperature gradient and sea-ice loss. The countries that have contributed least to climate change, and are most vulnerable to extreme events, are projected to experience the strongest increase in variability. These changes would therefore amplify the inequality associated with the impacts of a changing climate.

  19. Analysis of three variables in sampling solutions used to assay bacteria of hands: type of solution, use of antiseptic neutralizers, and solution temperature.

    PubMed Central

    Larson, E L; Strom, M S; Evans, C A

    1980-01-01

    Tests were performed using the sterile bag technique to determine the effects of type of sampling solution, use of antiseptic neutralizers, and solution temperature on the detection and quantitation of bacteria on hands. Using paired hand cultures, three sampling solutions were compared: quarter-strength Ringer solution, a phosphate buffer containing Triton X-100, and the same buffer containing antiseptic neutralizers. The phosphate buffer containing Triton X-100 was significantly better than quarter-strength Ringer solution in mean bacterial yield; the neutralizer-containing sampling solution was slightly better than Triton X-100-containing solution, although differences were not significant at the P = 0.05 level. Temperature (6 or 23 degrees C) of the sampling solution showed no consistent effect on bacterial yield from hands tested with the fluid containing neutralizers. PMID:7012171

  20. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  1. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling M.; Stoll, Danielle K.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; Bragg, Fran J.; Lunt, Daniel J.; Foley, Kevin M.; Riesselman, Christina R.

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.3–3.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history. This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  2. Temperature effects on cathodoluminescence of enstatite

    NASA Astrophysics Data System (ADS)

    Ohgo, S.; Nishido, H.

    2017-12-01

    Cathodoluminescence (CL) of enstatite has been extensively investigated for planetary science applications. The CL features are affected by many factors of impurities such as transition metal elements, structural defects and sample temperature. However, the temperature effects on enstatite CL have not been clarified so far. In this study, we have quantitatively evaluated temperature effects on enstatite CL. Three samples of luminescent enstatite were employed for CL spectral measurements. Color CL imaging was carried out using a cold-cathode type Luminoscope with a cooled-CCD camera. CL spectroscopy was made by a SEM-CL system, which is comprised of SEM (JEOL: JSM-5410LV) combined with a grating monochromator (OXFORD: Mono CL2). The CL emitted from the sample was collected in the range of 300-800 nm with a photomultiplier tube by a photon counting method at various temperatures from -193-50 degree C. All CL spectra were corrected for total instrumental response. Color CL imaging reveals various CL emissions with red, reddish-purple and bluish-purple in the terrestrial and extraterrestrial enstatite. All of them have two broad emission bands at around 400 nm in a blue region and at around 670 nm in a red region at room and liquid nitrogen temperatures. The spectral peak in a red region is sharpened and enhanced at lower temperature due to reduction of thermal lattice vibration and an increase in luminescent efficiency. CL intensity at around 670 nm of enstatite decreases with an increase in sample temperature up to -110 degree C from -193 degree C, and increases with an increase in sample temperature between -110 and 50 degree C. This behavior is not able to be explained by a temperature quenching theory based on an increase in the probability of non-radiative transition with the rise of temperature. A least-square fitting of the Arrhenius plot by assuming a Mott-Seitz model provides an activation energy of less than 0.01 eV in temperature quenching process from

  3. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging

    NASA Astrophysics Data System (ADS)

    Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli

    2018-01-01

    Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.

  4. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  5. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    USGS Publications Warehouse

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short

  6. Interpreting the Latitudinal Structure of Differences Between Modeled and Observed Temperature Trends (Invited)

    NASA Astrophysics Data System (ADS)

    Santer, B. D.; Mears, C. A.; Gleckler, P. J.; Solomon, S.; Wigley, T.; Arblaster, J.; Cai, W.; Gillett, N. P.; Ivanova, D. P.; Karl, T. R.; Lanzante, J.; Meehl, G. A.; Stott, P.; Taylor, K. E.; Thorne, P.; Wehner, M. F.; Zou, C.

    2010-12-01

    We perform the most comprehensive comparison to date of simulated and observed temperature trends. Comparisons are made for different latitude bands, timescales, and temperature variables, using information from a multi-model archive and a variety of observational datasets. Our focus is on temperature changes in the lower troposphere (TLT), the mid- to upper troposphere (TMT), and at the sea surface (SST). For SST, TLT, and TMT, trend comparisons over the satellite era (1979 to 2009) always yield closest agreement in mid-latitudes of the Northern Hemisphere. There are pronounced discrepancies in the tropics and in the Southern Hemisphere: in both regions, the multi-model average warming is consistently larger than observed. At high latitudes in the Northern Hemisphere, the observed tropospheric warming exceeds multi-model average trends. The similarity in the latitudinal structure of this discrepancy pattern across different temperature variables and observational data sets suggests that these trend differences are real, and are not due to residual inhomogeneities in the observations. The interpretation of these results is hampered by the fact that the CMIP-3 multi-model archive analyzed here convolves errors in key external forcings with errors in the model response to forcing. Under a "forcing error" interpretation, model-average temperature trends in the Southern Hemisphere extratropics are biased warm because many models neglect (and/or inaccurately specify) changes in stratospheric ozone and the indirect effects of aerosols. An alternative "response error" explanation for the model trend errors is that there are fundamental problems with model clouds and ocean heat uptake over the Southern Ocean. When SST changes are compared over the longer period 1950 to 2009, there is close agreement between simulated and observed trends poleward of 50°S. This result is difficult to reconcile with the hypothesis that the trend discrepancies over 1979 to 2009 are primarily

  7. Unified Model for the Overall Efficiency of Inlets Sampling from Horizontal Aerosol Flows

    NASA Astrophysics Data System (ADS)

    Hangal, Sunil Pralhad

    When sampling aerosols from ambient or industrial air environments, the sampled aerosol must be representative of the aerosol in the free stream. The changes that occur during sampling must be assessed quantitatively so that sampling errors can be compensated for. In this study, unified models have been developed for the overall efficiency of tubular sharp-edged inlets sampling from horizontal aerosol flows oriented at 0 to 90^circ relative to the wind direction in the vertical (pitch) and horizontal plane(yaw). In the unified model, based on experimental data, the aspiration efficiency is represented by a single equation with different inertial parameters at 0 to 60^ circ and 45 to 90^circ . Tnt transmission efficiency is separated into two components: one due to gravitational settling in the boundary layer and the other due to impaction. The gravitational settling component is determined by extending a previously developed isoaxial sampling model to nonisoaxial sampling. The impaction component is determined by a new model that quantifies the particle losses caused by wall impaction. The model also quantifies the additional particle losses resulting from turbulent motion in the vena contracta which is formed in the inlet when the inlet velocity is higher than the wind velocity. When sampling aerosols in ambient or industrial environments with an inlet, small changes in wind direction or physical constraints in positioning the inlet in the system necessitates the assessment of sampling efficiency in both the vertical and horizontal plane. The overall sampling efficiency of tubular inlets has been experimentally investigated in yaw and pitch orientations at 0 to 20 ^circ from horizontal aerosol flows using a wind tunnel facility. The model for overall sampling efficiency has been extended to include both yaw and pitch sampling based on the new data. In this model, the difference between yaw and pitch is expressed by the effect of gravity on the impaction process

  8. Evaluating performance of stormwater sampling approaches using a dynamic watershed model.

    PubMed

    Ackerman, Drew; Stein, Eric D; Ritter, Kerry J

    2011-09-01

    Accurate quantification of stormwater pollutant levels is essential for estimating overall contaminant discharge to receiving waters. Numerous sampling approaches exist that attempt to balance accuracy against the costs associated with the sampling method. This study employs a novel and practical approach of evaluating the accuracy of different stormwater monitoring methodologies using stormflows and constituent concentrations produced by a fully validated continuous simulation watershed model. A major advantage of using a watershed model to simulate pollutant concentrations is that a large number of storms representing a broad range of conditions can be applied in testing the various sampling approaches. Seventy-eight distinct methodologies were evaluated by "virtual samplings" of 166 simulated storms of varying size, intensity and duration, representing 14 years of storms in Ballona Creek near Los Angeles, California. The 78 methods can be grouped into four general strategies: volume-paced compositing, time-paced compositing, pollutograph sampling, and microsampling. The performances of each sampling strategy was evaluated by comparing the (1) median relative error between the virtually sampled and the true modeled event mean concentration (EMC) of each storm (accuracy), (2) median absolute deviation about the median or "MAD" of the relative error or (precision), and (3) the percentage of storms where sampling methods were within 10% of the true EMC (combined measures of accuracy and precision). Finally, costs associated with site setup, sampling, and laboratory analysis were estimated for each method. Pollutograph sampling consistently outperformed the other three methods both in terms of accuracy and precision, but was the most costly method evaluated. Time-paced sampling consistently underestimated while volume-paced sampling over estimated the storm EMCs. Microsampling performance approached that of pollutograph sampling at a substantial cost savings. The

  9. Multi-temperature model derived from state-to-state kinetics for hypersonic entry in Jupiter atmosphere

    NASA Astrophysics Data System (ADS)

    Colonna, G.; D'Ambrosio, D.; D'Ammando, G.; Pietanza, L. D.; Capitelli, M.

    2014-12-01

    A state-to-state model of H2/He plasmas coupling the master equations for internal distributions of heavy species with the transport equation for the free electrons has been used as a basis for implementing a multi-temperature kinetic model. In the multi-temperature model internal distributions of heavy particles are Boltzmann, the electron energy distribution function is Maxwell, and the rate coefficients of the elementary processes become a function of local temperatures associated to the relevant equilibrium distributions. The state-to-state and multi-temperature models have been compared in the case of a homogenous recombining plasma, reproducing the conditions met during supersonic expansion though converging-diverging nozzles.

  10. Use of fugacity model to analyze temperature-dependent removal of micro-contaminants in sewage treatment plants.

    PubMed

    Thompson, Kelly; Zhang, Jianying; Zhang, Chunlong

    2011-08-01

    Effluents from sewage treatment plants (STPs) are known to contain residual micro-contaminants including endocrine disrupting chemicals (EDCs) despite the utilization of various removal processes. Temperature alters the efficacy of removal processes; however, experimental measurements of EDC removal at various temperatures are limited. Extrapolation of EDC behavior over a wide temperature range is possible using available physicochemical property data followed by the correction of temperature dependency. A level II fugacity-based STP model was employed by inputting parameters obtained from the literature and estimated by the US EPA's Estimations Programs Interface (EPI) including EPI's BIOWIN for temperature-dependent biodegradation half-lives. EDC removals in a three-stage activated sludge system were modeled under various temperatures and hydraulic retention times (HRTs) for representative compounds of various properties. Sensitivity analysis indicates that temperature plays a significant role in the model outcomes. Increasing temperature considerably enhances the removal of β-estradiol, ethinyestradiol, bisphenol, phenol, and tetrachloroethylene, but not testosterone with the highest biodegradation rate. The shortcomings of BIOWIN were mitigated by the correction of highly temperature-dependent biodegradation rates using the Arrhenius equation. The model predicts well the effects of operating temperature and HRTs on the removal via volatilization, adsorption, and biodegradation. The model also reveals that an impractically long HRT is needed to achieve a high EDC removal. The STP model along with temperature corrections is able to provide some useful insight into the different patterns of STP performance, and useful operational considerations relevant to EDC removal at winter low temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya

    2014-09-01

    Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.

  12. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-up of the First Shear-selected Galaxy Cluster Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David, E-mail: amrejd@physics.rutgers.edu, E-mail: jph@physics.rutgers.edu, E-mail: dwittman@physics.ucdavis.edu

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shearmore » peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L {sub X} − T {sub X} relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (∼48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined.« less

  13. Modeling the hysteretic moisture and temperature responses of soil carbon decomposition resulting from organo-mineral interactions

    NASA Astrophysics Data System (ADS)

    Tang, J.; Riley, W. J.

    2017-12-01

    Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.

  14. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  15. Projections of Rainfall and Temperature from CMIP5 Models over BIMSTEC Countries

    NASA Astrophysics Data System (ADS)

    Pattnayak, K. C.; Kar, S. C.; Ragi, A. R.

    2014-12-01

    Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand

  16. Understanding post-operative temperature drop in cardiac surgery: a mathematical model.

    PubMed

    Tindall, M J; Peletier, M A; Severens, N M W; Veldman, D J; de Mol, B A J M

    2008-12-01

    A mathematical model is presented to understand heat transfer processes during the cooling and re-warming of patients during cardiac surgery. Our compartmental model is able to account for many of the qualitative features observed in the cooling of various regions of the body including the central core containing the majority of organs, the rectal region containing the intestines and the outer peripheral region of skin and muscle. In particular, we focus on the issue of afterdrop: a drop in core temperature following patient re-warming, which can lead to serious post-operative complications. Model results for a typical cooling and re-warming procedure during surgery are in qualitative agreement with experimental data in producing the afterdrop effect and the observed dynamical variation in temperature between the core, rectal and peripheral regions. The influence of heat transfer processes and the volume of each compartmental region on the afterdrop effect is discussed. We find that excess fat on the peripheral and rectal regions leads to an increase in the afterdrop effect. Our model predicts that, by allowing constant re-warming after the core temperature has been raised, the afterdrop effect will be reduced.

  17. Spatial statistical network models for stream and river temperature in New England, USA

    NASA Astrophysics Data System (ADS)

    Detenbeck, Naomi E.; Morrison, Alisa C.; Abele, Ralph W.; Kopp, Darin A.

    2016-08-01

    Watershed managers are challenged by the need for predictive temperature models with sufficient accuracy and geographic breadth for practical use. We described thermal regimes of New England rivers and streams based on a reduced set of metrics for the May-September growing season (July or August median temperature, diurnal rate of change, and magnitude and timing of growing season maximum) chosen through principal component analysis of 78 candidate metrics. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance along the flow network and Euclidean distance between points. Calculation of spatial autocorrelation based on travel or retention time in place of network distance yielded tighter-fitting Torgegrams with less scatter but did not improve overall model prediction accuracy. We predicted monthly median July or August stream temperatures as a function of median air temperature, estimated urban heat island effect, shaded solar radiation, main channel slope, watershed storage (percent lake and wetland area), percent coarse-grained surficial deposits, and presence or maximum depth of a lake immediately upstream, with an overall root-mean-square prediction error of 1.4 and 1.5°C, respectively. Growing season maximum water temperature varied as a function of air temperature, local channel slope, shaded August solar radiation, imperviousness, and watershed storage. Predictive models for July or August daily range, maximum daily rate of change, and timing of growing season maximum were statistically significant but explained a much lower proportion of variance than the above models (5-14% of total).

  18. Magnetic Properties and Microstructure of Some 2:17 High Temperature Magnets

    NASA Astrophysics Data System (ADS)

    Meng-Burany, X.; Hadjipanayis, George C.; Chui, S. T.

    1997-03-01

    Recent DOD demands for electric vehicle/plane applications require the use of magnets with operating temperatures > 450^circ C . Of existing high performance magnets, only the Sm(Co,Fe,Cu,Zr)z precipitation--hardened magnets have an operating temperature (300^circ C) which is close to the desired temperature and this makes these magnets potential candidates for further optimization studies. We have started a systematic study and modeling of the high temperature magnetic properties of several commercial magnets and other specially designed magnets supplied to us by Crucible Research. All the samples studied had a room temperature coercivity above 15 kOe. The coercivity was found to decrease with increasing temperature, with values of less than 4 kOe at 450^circ C , except for one sample which had a better temperature dependence with a coercivity above 6 kOe. TEM studies showed a cellular microstructure in all samples. The sample with better temperature properties had a smaller cell size but thicker cell walls. Lorentz electron microscopy studies are underway to image the domain walls and study their interaction with the cellular structure. The results of these studies will hopefully help us to understand the composition--microstructure--property relation in these magnets.

  19. Latent spatial models and sampling design for landscape genetics

    Treesearch

    Ephraim M. Hanks; Melvin B. Hooten; Steven T. Knick; Sara J. Oyler-McCance; Jennifer A. Fike; Todd B. Cross; Michael K. Schwartz

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial...

  20. Observations and model predictions of water skin temperatures at MTI core site lakes and reservoirs

    NASA Astrophysics Data System (ADS)

    Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Parker, Matthew J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel; Pagnutti, Mary A.

    2001-08-01

    The Savannah River Technology Center (SRTC) measured water skin temperatures at four of the Multi-spectral Thermal Imager (MTI) core sites. The depression of the skin temperature relative to the bulk water temperature ((Delta) T) a few centimeters below the surface is a complex function of the weather conditions, turbulent mixing in the water and the bulk water temperature. Observed skin temperature depressions range from near zero to more than 1.0 degree(s)C. Skin temperature depressions tend to be larger when the bulk water temperature is high, but large depressions were also observed in cool bodies of water in calm conditions at night. We compared (Delta) T predictions from three models (SRTC, Schlussel and Wick) against measured (Delta) T's from 15 data sets taken at the MTI core sites. The SRTC and Wick models performed somewhat better than the Schlussel model, with RMSE and average absolute errors of about 0.2 degree(s)C, relative to 0.4 degree(s)C for the Schlussel model. The average observed (Delta) T for all 15 databases was -0.7 degree(s)C.