Note: This page contains sample records for the topic sandia laboratories radiation from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories is a multiprogram engineering laboratory that serves the nation through the Department of Energy (DOE), both in its programs and those of other agencies. Major research and development responsibilities cover nuclear weapons, arms control, energy, environment and other areas of strategic importance to national security. The principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, security, control and military performance. In May of 1968, the Albuquerque Office of DOE (then AEC) assigned the Quality Assurance function to Sandia Laboratories on all products for which Sandia has design responsibility. The Sandia Quality Improvement Plan presents a Quality Management System that integrates the Sandia quality policies and several independent improvement processes into a cohesive structure. This structure guides day-to-day operations toward strategic objectives. The Sandia Quality Policy provides the underlying principles for the management of our research and engineering efforts and establishes our customers as the central focus of our Sandia quality improvement efforts. Operationally, these efforts are centered around quality improvement processes based on good management practices developed by AT T, and progress is measured against the Malcolm Baldridge National Quality Award criteria. Developing a comprehensive plan based on these processes requires that we determine where we are, where we want to be, and how we measure our progress. 1 fig. (JF)

Not Available

1991-01-01

2

RHIC (Radiation Hardened Integrated Circuit) 2 building deionized water system specification for Sandia National Laboratories, Albuquerque, NM  

Microsoft Academic Search

The specification for a 150 gpm ultrapure water system has been written to support the development of radiation tolerant submicron silicon integrated circuit technologies and designs of the 1990's in the new Radiation Hardened Integrated Circuit (RHIC) facility at Sandia National Laboratories, Albuquerque. The design, based on comprehensive analyses of the high silica (20 to 40 ppM) well water, the

J. P. Scofield; G. S. Fry; D. L. Weaver; N. E. Brown

1986-01-01

3

Sandia National Laboratories: News Center  

NSDL National Science Digital Library

Sandia National Laboratories publishes its quarterly journal of research and development at this Web site. Free to the general public, Sandia Technology summarizes current work related to national security, energy development and infrastructure, and various other advances made at the installation. The fall/ winter 2002 issue centers on sensors for all kinds of purposes. From sensors that monitor water supplies to air-sniffing devices that can detect chemical and biological toxins, Sandia is extremely adept in this area. All back issues of Sandia Technology are also available for browsing, which cover topics such as nuclear power and smart machines.

1999-01-01

4

New developments and applications of intense pulsed radiation sources at Sandia National Laboratories  

SciTech Connect

In the past thirty-six months, tremendous strides have been made in x-ray production using high-current z-pinches. Today, the x-ray energy (1.9 MJ) and power (200 TW) output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources are being developed for research into the physics of high energy density plasmas of interest in weapon behavior and in inertial confinement fusion. Beyond the Z accelerator current of 20 MA, an extrapolation to the X-1 accelerator level of 60 MA may have the potential to drive high-yield ICF reactions at affordable cost if several challenging technical problems can be overcome. New developments have also taken place at Sandia in the area of high current, mm-diameter electron beams for advanced hydrodynamic radiography. On SABRE, x-ray spot diameters were less than 2 mm with a dose of 100 R at 1 meter in a 40 ns pulse.

Cook, D.

1998-02-01

5

Photometrics at Sandia National Laboratories  

SciTech Connect

This report highlights Sandia National Laboratories' work in the following areas: photometrics and optical development; still and time-lapse photography; real-time motion photography; high-speed photography; image-motion photography; schlieren photography; ultra-high-speed photography; electronic imaging; shuttered video and high-speed video; infrared imaging radiometry; exoatmospheric photography and videography; microdensitometry and image analysis; and optical system design and development.

McWilliams, J.Y.; Hill, R.A.; Hughes, R.L. (eds.)

1990-07-01

6

History of Building 828, Sandia National Laboratories.  

National Technical Information Service (NTIS)

This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building ha...

R. Ullrich

1999-01-01

7

Sandia National Laboratories: The First Fifty Years  

SciTech Connect

On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

MORA,CARL J.

1999-11-03

8

Mobile robotics research at Sandia National Laboratories  

SciTech Connect

Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

Morse, W.D.

1998-09-01

9

Sandia National Laboratories analysis code data base  

SciTech Connect

Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

Peterson, C.W.

1994-11-01

10

Sandia Laboratories Energy System Simulation Computer Program.  

National Technical Information Service (NTIS)

The Solar Energy Systems Division of Sandia Laboratories has developed a computer program (SOLSYS) which is primarily used to simulate the transient performance of solar energy systems. The program consists of a component subroutine library, an informatio...

M. W. Edenburn

1975-01-01

11

POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES  

EPA Science Inventory

These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

12

Technology transfer at Sandia National Laboratories  

SciTech Connect

Transferring technology to the private sector to help improve the competitiveness of key US industries is now an official mission of the US Department of Energy`s (DOE) defense program national laboratories. We believe that national laboratories can play an important role in addressing US industrial competitiveness. Sandia is seeking to match laboratory strengths with industry-defined market needs in targeted industrial sectors. Sandia, like other national and federal laboratories, is developing an aggressive technology transfer program. This paper provides a brief review of our program and provides a snap-shot of where we are at today.

Allen, M.S.; Arvizu, D.E.

1993-10-01

13

MEMS packaging efforts at Sandia National Laboratories.  

SciTech Connect

Sandia National Laboratories has programs covering a broad range of MEMS technologies from LIGA to bulk to surface micromachining. These MEMS technologies are being considered for an equally broad range of applications, including sensors, actuators, optics, and microfluidics. As these technologies have moved from the research to the prototype product stage, packaging has been required to develop new capabilities to integrated MEMS and other technologies into functional microsystems. This paper discusses several of Sandia's MEMS packaging efforts, focusing mainly on inserting Sandia's SUMMIT V (5-level polysilicon) surface micromachining technology into fieldable microsystems.

Custer, Jonathan Sloane

2003-02-01

14

Sandia National Laboratories analysis code data base  

NASA Astrophysics Data System (ADS)

Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

Peterson, C. W.

1994-11-01

15

Sandia Laboratories rocket program - A review  

Microsoft Academic Search

A historical review of Sandia Laboratories rocket programs is presented. From the 60 rocket systems developed at Sandia since 1957, 1225 rockets have been launched at 19 sites, worldwide. Typical rockets developed for the nuclear readiness test program are the Terrier-Sandhawk sounding rocket (boosts a 91-kg, 33-cm-diam payload to an altitude of 427 km) and the Strypi II warhead carrier

G. A. Fowler; R. C. Maydew; W. R. Barton

1976-01-01

16

1986 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico  

Microsoft Academic Search

Sandia National Laboratories Albuquerque (SNLA) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides potentially are released in small quantities from its research activities, SNLA has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with

G. Millard; P. Pei; S. Felicetti; C. Gray; D. Thompson; J. Phelan

1987-01-01

17

1987 environmental monitoring report: Sandia National Laboratories, Albuquerque, New Mexico  

Microsoft Academic Search

Sandia National Laboratories Albuquerque (SNLA) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNLA has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with

G. Millard; P. Pei; S. Felicetti; C. Gray; D. Thompson; J. Phelan

1988-01-01

18

Microsystem technology development at Sandia National Laboratories  

SciTech Connect

An overview of the major sensor and actuator projects using the micromachining capabilities of the Microelectronics Development Laboratory at Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has also been developed for integrating microelectronics with surface micromachined micromechanical devices.

Smith, J.H.

1995-11-01

19

Characterization of Neutron Test Facilities at Sandia National Laboratories  

NASA Astrophysics Data System (ADS)

The Sandia Pulsed Reactor (SPR-III) and Annular Core Research Reactor (ACRR), with a variety of test environments, have been used for many years at Sandia National Laboratories (SNL) for radiation effects testing. Dosimetry has played a crucial role in their operation and characterization, and neutron energy spectral determinations have advanced as progress was made in the available nuclear data and spectrum adjustment techniques. This paper presents a historical perspective of the neutron energy spectra for several environments and their impact on several integral parameters of particular interest to facility users.

Vehar, D. W.; Griffin, P. J.; King, D. B.; Depriest, K. R.; Williams, J. G.

2009-08-01

20

Sandia National Laboratories Education Outreach Activities  

SciTech Connect

The US Department of Energy and its national laboratories are a major employer of scientists and engineers and consequently have a strong interest in the development and training of a qualified pool of employment candidates. For many years the DOE and its national laboratories have supported education activities devoted to increasing the number and quality of science and engineering graduates. This is part of the DOE mission because of the critical national need for scientists and engineers and the recognized deficiencies in the education system for science and mathematics training. Though funding support for such activities has waxed and waned, strong education programs have survived in spite of budget pressures. This paper reviews a few of the education programs presently supported at Sandia by the Science and Technology Outreach Department. The US DOE Defense Programs Office and Sandia National Laboratories provide financial support for these education activities.

Dawes, William R. Jr.

1999-08-26

21

Solar activities at Sandia National Laboratories  

SciTech Connect

The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

Klimas, P.C.; Hasti, D.E.

1994-03-01

22

Safety-related, task and site-specific training for accelerator crews at Sandia National Laboratories.  

National Technical Information Service (NTIS)

Sandia National Laboratories, and specifically the Radiation Effects and Testing Directorate, have taken aggressive action to comply with the Institute of Nuclear Power Operations (INTO) guidelines concerning conduct of operations. A review of crew perfor...

L. O. Knudson

1991-01-01

23

Sandia National Laboratories approach to emergency preparedness  

SciTech Connect

Sandia National Laboratories is located on Kirtland AFB on Albuquerque, NM. The Air Force Base proper covers about 74 square miles in which SNL maintains 5 technical areas and the Coyote Test Field. These SNL areas add up to about 18,000 acres. However, SNL has other locations where we conduct corporate emergency planning: Kauai Test Facility (at Pacific Missile Range Facility in Kauai, Hawaii), and the Tonopah Test Range (Nevada). SNL/California located in Livermore has an independent emergency preparedness organization for their emergency planning activities.

Galegar, F.H.; Yourick, P.D.; Ross, S.A.

1997-12-31

24

Power supplies for space systems quality assurance by Sandia Laboratories  

Microsoft Academic Search

The Sandia Laboratories' participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are presented,

R. L. Hannigan; R. R. Harnar

1976-01-01

25

Transient dynamics capability at Sandia National Laboratories  

SciTech Connect

This report will present a brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, will be described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time have been used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard HP-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, will be presented. Abstracts and references for the codes are listed at the end of the report.

Attaway, S.W.; Biffle, J.H.; Sjaardema, G.D.; Heinstein, M.W.; Schoof, L.A.

1992-11-01

26

Transient dynamics capability at Sandia National Laboratories  

SciTech Connect

This report will present a brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, will be described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time have been used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard HP-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, will be presented. Abstracts and references for the codes are listed at the end of the report.

Attaway, S.W.; Biffle, J.H.; Sjaardema, G.D.; Heinstein, M.W.; Schoof, L.A.

1992-01-01

27

Nanosatellite program at Sandia National Laboratories  

SciTech Connect

The concept of building extremely small satellites which, either independently or as a collective, can perform missions which are comparable to their much larger cousins, has fascinated scientists and engineers for several years now. In addition to the now commonplace microelectronic integrated circuits, the more recent advent of technologies such as photonic integrated circuits (PIC's) and micro-electromechanical systems (MEMS) have placed such a goal within their grasp. Key to the acceptance of this technology will be the ability to manufacture these very small satellites in quantity without sacrificing their performance or versatility. In support of its nuclear treaty verification, proliferation monitoring and other remote sensing missions, Sandia National laboratories has had a 35-year history of providing highly capable systems, densely packaged for unintrusive piggyback missions on government satellites. As monitoring requirements have become more challenging and remote sensing technologies become more sophisticated, packaging greater capability into these systems has become a requirement. Likewise, dwindling budgets are pushing satellite programs toward smaller and smaller platforms, reinforcing the need for smaller, cheaper satellite systems. In the next step of its miniaturization plan, Sandia has begun development of technologies for a highly integrated miniature satellite. The focus of this development is to achieve nanosat or smaller dimensions while maintaining significant capability utilizing semiconductor wafer-level integration and, at the same time promoting affordability through modular generic construction.

Reynolds, D.A.; Kern, J.P.; Schoeneman, J.L.

1999-11-11

28

Space robotics programs at Sandia National Laboratories  

SciTech Connect

Existing robotic rover and space satellite technologies at Sandia National Laboratories (SNL), coupled with existing launch vehicles and converted military Multiple Independent Reentry Vehicle (MIRV) technologies, can be applied towards the realization of a robotic lunar rover mission in the near term. SNL's Advanced Vehicle Development Department has been designing, producing, and operating prototype rover systems at the Robotic Vehicle Range facility since 1984, and has extensive experience with teleoperated and semiautonomous mobile robotic systems. SNL's Space Systems Directorate has been designing, producing, and operating satellite systems and subsystems in earth orbit for national security missions since the early 1960's. The facilities and robotic vehicle fleet at SNL's Robotic Vehicle Range (SNL-RVR) have been used to support technology base development in applications ranging from DoD battlefield and security missions, to multi-agency nuclear emergency response team exercises and the development of a prototype robotic rover for planetary exploration. Recent activities at the SNL-RVR include the Robotic All Terrain Lunar Exploration Rover (RATLER) prototype development program, exploratory studies on a Near Term Lunar Return Mission scenario for small robotic rovers based on existing space hardware technology, and demonstrations of the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low data rate teleoperation, multi-vehicle control, remote site and sample inspection, and standard bandwidth stereo vision. The paper describes Sandia National Laboratories' activities in the Space Robotics area, and highlights the laboratory's supporting technical capabilities.

Klarer, P.

1993-01-01

29

Site environmental report for 2004 Sandia National Laboratories, California.  

SciTech Connect

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

2005-06-01

30

Site environmental report for 2003 Sandia National Laboratories, California.  

SciTech Connect

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

Larsen, Barbara L.

2004-06-01

31

Sandia National Laboratory High School Internship  

NSDL National Science Digital Library

The High School Internship Program at Sandia National Laboratories has a wide variety of challenging and rewarding learning experiences for our nations future engineers, scientists, technologists, and business leaders. This program will provide a year-round opportunity to work with people who are global leaders in their fields. Are you interested in continuing your education and obtaining a science, math, engineering, or business degree? Would you like to see how classroom theory applies in a work environment? If the answer is yes, an exceptional educational experience awaits you. To take advantage of this opportunity, you must... Be attending a local high school in the Albuquerque metropolitan area (Pre-college program for local students only) Be at least 16 years of age Maintain a minimum cumulative 3.2 GPA for technical and business assignments, or a minimum 2.5 GPA for clerical or laborer assignments

32

An aerial radiological survey of the Sandia National Laboratories and surrounding area  

Microsoft Academic Search

A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the area surrounding the Sandia National Laboratories and Kirtland Air Force Base in Albuquerque, New Mexico, during March and April 1993. The survey team measured the terrestrial gamma radiation at the site to determine the levels of natural and man-made radiation. This survey includes the areas covered

Riedhauser

1994-01-01

33

A History of Building 828, Sandia National Laboratories  

SciTech Connect

This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

Ullrich, Rebecca

1999-08-01

34

Radiation Environment and Shielding Requirements for the Sandia Particle-Beam Fusion Accelerator PBFA-II.  

National Technical Information Service (NTIS)

The Sandia National Laboratories Particle Beam Fusion Accelerator PBFA-II is expected to produce significant amounts of penetrating radiation. The present study considers a postulated operational scenario for the accelerator and determines the amount of s...

S. A. Dupree

1982-01-01

35

Laser materials processing at Sandia National Laboratories.  

National Technical Information Service (NTIS)

The interest in laser processing has been driven by Sandia's responsibility to design, prototype, manufacture, and steward high reliability defense hardware for the Department of Energy. The system requirements for the hardware generally necessitate herme...

J. L. Jellison M. J. Cieslak

1994-01-01

36

Power Supplies for Space Systems Quality Assurance by Sandia Laboratories.  

National Technical Information Service (NTIS)

The Sandia Laboratories' participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recogn...

R. L. Hannigan R. R. Harnar

1976-01-01

37

Integrated water conservation program at Sandia National Laboratories.  

National Technical Information Service (NTIS)

Sandia National Laboratories (SNL), located on Kirkland Air Force Base (KAFB) in Albuquerque, NM, is implementing a comprehensive water conservation program. SNL/NM is taking a systematic, comprehensive approach to water conservation. The approach is to e...

D. Rogers

1997-01-01

38

Sandia National Laboratories, California Environmental Management System Program Manual.  

National Technical Information Service (NTIS)

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, I...

2011-01-01

39

DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES  

EPA Science Inventory

Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

40

Sandia National Laboratories/New Mexico Geographic Data Atlas.  

National Technical Information Service (NTIS)

The Geographic Data Atlas is published jointly by the Environmental Geographic Information System (EGIS) and the Facilities Geographic Information System (FGIS) to support the data-gathering efforts of Sandia National Laboratories/New Mexico (SNL/NM) for ...

D. R. Bleakly L. Eshelman

1999-01-01

41

1986 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico.  

National Technical Information Service (NTIS)

Sandia National Laboratories Albuquerque (SNLA) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides potentially are released in small quantities from its research activities, SNLA has a continuing environmental monitoring pro...

G. Millard P. Pei S. Felicetti C. Gray D. Thompson

1987-01-01

42

Environmental Monitoring Report: Sandia National Laboratories, Albuquerque, New Mexico, 1987.  

National Technical Information Service (NTIS)

Sandia National Laboratories Albuquerque (SNLA) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNLA has a continuing environmental monitoring pro...

G. Millard P. Pei S. Felicetti C. Gray D. Thompson

1988-01-01

43

Feasibility study of medical isotope production at Sandia National Laboratories.  

National Technical Information Service (NTIS)

In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes usi...

C. D. Massey D. L. Miller S. D. Carson

1995-01-01

44

Partnering with Sandia National Laboratories through alliances or consortia  

SciTech Connect

To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

Winchell, B.M.

1994-04-01

45

Partnering with Sandia National Laboratories through alliances or consortia  

SciTech Connect

To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

Winchell, B.M.

1994-12-01

46

Lessons learned from early microelectronics production at Sandia National Laboratories  

SciTech Connect

During the 1980s Sandia designed, developed, fabricated, tested, and delivered hundreds of thousands of radiation hardened Integrated Circuits (IC) for use in weapons and satellites. Initially, Sandia carried out all phases, design through delivery, so that development of next generation ICs and production of current generation circuits were carried out simultaneously. All this changed in the mid-eighties when an outside contractor was brought in to produce ICs that Sandia developed, in effect creating a crisp separation between development and production. This partnership had a severe impact on operations, but its more damaging effect was the degradation of Sandia`s microelectronics capabilities. This report outlines microelectronics development and production in the early eighties and summarizes the impact of changing to a separate contractor for production. This record suggests that low volume production be best accomplished within the development organization.

Weaver, H.T.

1998-02-01

47

Laser materials processing at Sandia National Laboratories  

SciTech Connect

The interest in laser processing has been driven by Sandia`s responsibility to design, prototype, manufacture, and steward high reliability defense hardware for the Department of Energy. The system requirements for the hardware generally necessitate hermetic sealing for ensured long life operation. With the advent of miniaturized electronic devices, traditional welding processes were no longer practical choices because of their limited ability to make very small weld closures without heat damage to the hardware. Gas and solid state lasers offered the opportunity to make hermetic closure welds in small, heat sensitive hardware. In order to consistently produce quality product, the Sandia laser materials processing team performed research aimed at identifying those critical parameters which controlled the laser welding process. This has been directed towards both the development of quantitative engineering data needed in product design and process control, and research to achieve fundamental process understanding. In addition, they have developed novel diagnostic systems to measure these important parameters, pioneered the use of calorimetric techniques to measure energy transfer efficiencies, and correlated the occurrence of welding defects with alloy compositions and type of laser welding process. Today, Sandia`s laser materials processing team continues to advance the state of laser processing technology in many areas, including aluminum laser welding, the design of novel optics for specific laser processing needs, laser micromachining of silicon and diamond for microelectronics applications, and fluxless laser soldering. This paper will serve to highlight some examples of where Sandia has made contributions to the field of laser materials processing and will indicate the directions where they expect to focus their future efforts.

Jellison, J.L.; Cieslak, M.J.

1994-11-01

48

Salary administration practices, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

This report concerns the Department of Energy's (Department) oversight of Sandia National Laboratories' (Sandia) salary administration practices for employees not covered by union agreements. Sandia is a management and operating (MandO) contractor responsible for research and development (RandD) relating to nuclear weapons and energy. Sandia's 1987 payroll was $319 million, $42 million for bargaining and $277 million for non-bargaining unit employees. For the period covered by the audit, Department policy required Headquarters monitoring and approval of the reasonableness of MandO contractor salary administration practices in cases where the annual non-bargaining payroll exceeded $75 million. The purpose of this audit was to determine whether Department oversight of Sandia employee compensation assured that contractor pay rates were consistent with Department policy.

Not Available

1989-03-20

49

Micromachined sensor and actuator research at Sandia`s Microelectronics Development Laboratory  

SciTech Connect

An overview of surface micromachining projects at the Microelectronics Development Laboratory of Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has also been developed for integrating microelectronics with surface micromachined micromechanical devices.

Smith, J.H.

1996-02-01

50

Vibration control for precision manufacturing at Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

Hinnerichs, T.; Martinez, D. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

1995-04-01

51

Sandia National Laboratories participation in the National Ignition Facility project  

SciTech Connect

The National Ignition Facility is a $1.1B DOE Defense Programs Inertial Confinement Fusion facility supporting the Science Based Stockpile Stewardship Program. The goal of the facility is to achieve fusion ignition and modest gain in the laboratory. The NIF project is responsible for the design and construction of the 192 beam, 1.8 MJ laser necessary to meet that goal. - The project is a National project with participation by Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester Laboratory for Laser Energetics (URLLE) and numerous industrial partners. The project is centered at LLNL which has extensive expertise in large solid state lasers. The other partners in the project have negotiated their participation based on the specific expertise they can bring to the project. In some cases, this negotiation resulted in the overall responsibility for a WBS element; in other cases, the participating laboratories have placed individuals in the project in areas that need their individual expertise. The main areas of Sandia`s participation are in the management of the conventional facility design and construction, the design of the power conditioning system, the target chamber system, target diagnostic instruments, data acquisition system and several smaller efforts in the areas of system integration and engineering analysis. Sandia is also contributing to the technology development necessary to support the project by developing the power conditioning system and several target diagnostics, exploring alternate target designs, and by conducting target experiments involving the ``foot`` region of the NIF power pulse. The project has just passed the mid-point of the Title I (preliminary) design phase. This paper will summarize Sandia`s role in supporting the National Ignition Facility and discuss the areas in which Sandia is contributing. 3 figs.

Boyes, J.; Boyer, W.; Chael, J.; Cook, D.; Cook, W.; Downey, T.; Hands, J.; Harjes, C.; Leeper, R.; McKay, P.; Micano, P.; Olson, R.; Porter, J.; Quintenz, J.; Roberts, V.; Savage, M.; Simpson, W.; Seth, A.; Smith, R.; Wavrik, M.; Wilson, M.

1996-08-01

52

1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.

Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

1993-09-01

53

POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES  

EPA Science Inventory

These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

54

Sandia National Laboratories Technical Library status report  

SciTech Connect

The Technical Library collection consists of the following types of materials: (1) 45,000 cataloged books, (2) 100,000 cataloged reports originating from Sandia and other private and governmental agencies which grows at the rate of approximately 6000 reports per year, (4) 1500 cataloged periodical subscriptions, (5) A 216,000-item central technical file composed of memos, correspondence, trip reports, minutes of meetings, test reports and similar documents originated by Sandia, which grows at the rate of about 3000 items per year, and (6) A 60,000-item document accountability file which serves to track the movement of classified documents from origination to destruction. Sandia's Technical Library has been automated since the 1960's using an in-house designed system. The automated system provided acquisitions, cataloging, circulation, Boolean searching and SDI services for the books collection using indexed-sequential files and batch updating. Various automated functions were provided for the other types of materials using sequential files with batch updating. In early 1981 the library began the process of acquiring a stand-alone computer. Library software packages were evaluated and DOBIS was selected as the software which was best able to meet our needs. As of January 1983 DOBIS acquisition and circulation functions are being used for the books file, cataloging for new reports was started and manual key-in begun on the borrower (about 7000 records) and funds files. The reports and CTF files on the Univac were written to tape until modifications of the conversion program have been done. Conversion of the periodicals records has been postponed until the periodicals functions release is available. In the meantime, manual records are being kept.

Kurtz, S.

1983-01-01

55

Sandia National Laboratories Institutional Plan: FY 1999-2004  

SciTech Connect

This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

Garber, D.P.

1999-01-06

56

An overview of Sandia National Laboratories' plasma switched, gigawatt, ultra-wideband impulse transmitter program  

Microsoft Academic Search

Sandia National Laboratories has developed several repetitive, ultra-wideband (UWB), impulse transmitters to address impulse source technology and to support experimental applications. The sources fall into two different classes, pulse peaking and pulse shorting depending on how the UWB frequency components are generated. The frequency spectrum of the radiated pulse from these sources include the spectrum of 100-MHz to 3-GHz. Depending

R. S. Clark; L. F. Rinehart; M. T. Buttram; J. F. Aurand

1992-01-01

57

Micromachined sensor and actuator research at Sandia`s Microelectronics Development Laboratory  

SciTech Connect

An overview of the surface micromachining program at the Microelectronics Development Laboratory of Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators for both defense and commercial applications. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has been developed for integrating microelectronics with surface-micromachined micromechanical devices. The application of chemical-mechanical polishing to increase the manufacturability of micromechanical devices is also presented.

Smith, J.H.

1996-11-01

58

Flat panel display development activities at Sandia National Laboratories  

SciTech Connect

The flat panel display development activities underway at Sandia National Laboratories are described. Research is being conducted in the areas of glass substrates, phosphors, large area processes, and electron emissions. Projects are focused on improving process yield, developing large area processes, and using modeling techniques to predict design performance.

DiBello, E.G.; Worobey, W.; Burchett, S.; Hareland, W.; Felter, T.; Mays, B.

1994-12-31

59

Cable condition monitoring research activities at Sandia National Laboratories  

Microsoft Academic Search

Sandia National Laboratories is currently conducting long-term aging research on representative samples of nuclear power plant cables. The objectives of the program are to determine the suitability of these cables for extended life (beyond 40 year design basis) and to assess various cable condition monitoring techniques for predicting remaining cable life. The cables are being aged for long times at

M. J. Jacobus; G. L. Zigler; L. D. Bustard

1988-01-01

60

Successful Waste Treatment Methods at Sandia National Laboratories  

Microsoft Academic Search

During the remediation of the waste landfills at Sandia National Laboratory in Albuquerque, New Mexico nine drums of mock high explosives were generated. This mixed waste stream was proposed to several offsite vendors for treatment and prices ranged from $2.50 to $10 per gram a total cost estimated to be in excess of $2 million dollars. This cost represents more

D. M. Rast; J. J. Thompson; T. W. Cooper; D. J Stockham

2007-01-01

61

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories  

Microsoft Academic Search

Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the

D. R. Adkins; C. E. Andraka; J. B. Moreno; T. A. Moss; K. S. Rawlinson; S. K. Showalter

1999-01-01

62

1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

Shyr, L.J.; Duncan, D. [eds.] [eds.; Sanchez, R.

1996-09-01

63

Quality Assurance at Sandia Laboratories. [Nuclear weapons materials  

Microsoft Academic Search

The publication describes the Sandia Laboratories Quality Assurance (QA) program, its role with the Albuquerque Operations Office of the Department of Energy (DOE\\/ALO) in achieving the stringent safety and reliability goals which have been established for weapon material, and its expanding role in national security, energy, and other programs of national importance.

S. L. Love; F. W. Muller

1978-01-01

64

Tiger Team Assessment of the Sandia National Laboratories, Livermore, California.  

National Technical Information Service (NTIS)

This report provides the results of the Tiger Team Assessment of the Sandia National Laboratories (SNL) in Livermore, California, conducted from April 30 to May 18, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status...

1990-01-01

65

Status of Repetitive Pulsed Power at Sandia National Laboratories.  

National Technical Information Service (NTIS)

Multi-kilojoule repetitive pulsed power technology moved from a laboratory environment into its first commercial application in 1997 as a driver for ion beam surface treatment. Sandia's RHEPP II, a repetitive 2.5 kJ/pulse electron beam accelerator, has su...

M. Harden H. Harjes L. Martinez G. Pena K. Reed

1999-01-01

66

1988 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico  

Microsoft Academic Search

Sandia National Laboratories (SNL), Albuquerque is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNL, Albuquerque has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. A total of 5.23 curies of argon-41 were

G. Millard; G. Yeager; J. Phelan; T. Wolff; P. Pei; D. Dionne; C. Gray; D. Thompson

1989-01-01

67

The integrated water conservation program at Sandia National Laboratories  

Microsoft Academic Search

Sandia National Laboratories (SNL), located on Kirkland Air Force Base (KAFB) in Albuquerque, NM, is implementing a comprehensive water conservation program. Because the average rainfall in this metropolitan area of 500,000 is approximately 8 inches per year, conservation of this precious resource is critical to the economic health of the city and state, and the continued operations at SNL\\/NM. To

1997-01-01

68

Solar energy at Sandia National Laboratories  

SciTech Connect

Basic concepts for using the energy of the sun have been known for centuries. The challenge today, the goal of the Department of Energy`s National Solar Energy Program is to create the technology needed to establish solar energy as a practical, economical alternative to energy produced by depletable fuels--and to use that solar-produced energy in a wide variety of applications. To assist the DOE in this national effort, Sandia sponsors industrial and university research and development, manages a series of technical programs, operates solar experimental facilities, and carries out its own scientific and engineering research. This booklet describes their projects, their technical objectives, and explains how their experimental facilities are used to find the answers we`re seeking. Prospective participants from companies involved in solar-energy development or applications should find it especially useful since it outlines broad areas of opportunity. Projects include: central receiver technology; line-focus thermal technology; photovoltaic systems technology; wind turbine development; energy storage technology; and applied research in improved polycrystalline materials for solar cells and photoelectrolysis of water.

NONE

1981-12-31

69

PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories  

SciTech Connect

From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

Finger, J.T.; Glowka, D.A.

1989-06-01

70

Renewable energy technology development at Sandia National Laboratories  

SciTech Connect

The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earths present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

Klimas, P.C.

1994-03-01

71

Sandia Laboratories Education and Training Programs. Third Annual Report, 1977--1978.  

National Technical Information Service (NTIS)

This third annual report, prepared by the Education and Training Departments at Sandia Laboratories (Albuquerque and Livermore), describes Sandia Laboratories' education and training programs for academic year 1977--1978. The educational programs offered ...

1979-01-01

72

1987 environmental monitoring report: Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

Sandia National Laboratories Albuquerque (SNLA) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNLA has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with local background in 1987. A total of 7.7 curies of argon-41 were released as a result of SNLA operations in 1987. The Albuquerque population received an estimated 0.058 person-rem from airborne radioactive releases, whereas it received greater than 44,100 person-rem from naturally occurring radionuclides. A nonradioactive effluent monitoring program has been started at SNLA which includes groundwater, stormwater, and sewage monitoring. Results indicate that groundwater quality conformed the USEPA drinking water standards. Preliminary testing of stormwater showed that no pollutants were above minimum detectable levels. A program to investigate potential remedial action sites has been started. 36 refs., 9 figs., 111 tabs.

Millard, G.; Pei, P.; Felicetti, S.; Gray, C.; Thompson, D.; Phelan, J.

1988-04-01

73

1986 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

Sandia National Laboratories Albuquerque (SNLA) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides potentially are released in small quantities from its research activities, SNLA has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with local background in 1986. A total of 7.5 curies of argon-41 were released as a result of SNLA operations in 1986. The Albuquerque population received an estimated 0.057 person-rem from airborne radioactive releases, whereas it received greater than 40,050 person-rem from naturally occurring radionuclides. A nonradioactive effluent monitoring program has been started at SNLA which includes groundwater, stormwater and sewage monitoring. Results indicate that water quality conformed to USEPA drinking water standards. Preliminary testing of stormwater showed that no pollutants were above minimum detectable levels. A program to investigate potential remedial action sites has been started.

Millard, G.; Pei, P.; Felicetti, S.; Gray, C.; Thompson, D.; Phelan, J.

1987-04-01

74

Dual-benefit technologies at Sandia National Laboratories  

SciTech Connect

What does the pulp and paper industry have in common with the desert southwest and nuclear weapons? As a representative of one of the Nations three nuclear weapons design laboratories (Los Alamos National Laboratory, Livermore National Laboratory and Sandia National Laboratories), my goal is to identify ``dual-benefit`` technologies where codevelopment will both strengthen the nation`s competitive position and enhance national security. In development of this presentation, I found more common elements than I could possibly survey in this brief period.

Schaefer, D.W.

1993-12-31

75

Dual benefit robotics programs at Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories has one of the largest integrated robotics laboratories in the United States. Projects include research, development, and application of one-of-a-kind systems, primarily for the Department of Energy (DOE) complex. This work has been underway for more than 10 years. It began with on-site activities that required remote operation, such as reactor and nuclear waste handling. Special purpose robot systems were developed using existing commercial manipulators and fixtures and programs designed in-house. These systems were used in applications such as servicing the Sandia pulsed reactor and inspecting remote roof bolts in an underground radioactive waste disposal facility. In the beginning, robotics was a small effort, but with increasing attention to the use of robots for hazardous operations, efforts now involve a staff of more than 100 people working in a broad robotics research, development, and applications program that has access to more than 30 robotics systems.

Jones, A.T.

1994-09-01

76

Purchasing and Materials Management Organization, Sandia National Laboratories  

SciTech Connect

This report contains the purchasing and materials management operating highlights for Fiscal Year 1991. Included in the report are compiled data on: personnel; type of procurement; small business procurements; disadvantaged business procurements; woman-owned business procurements; New Mexico commercial business procurements; Bay Area commercial business procurements; commitments by states and foreign countries to commercial suppliers; and, transportation activities. Other statistical data tables enumerate the following: the twenty-five commercial contractors receiving the largest dollar commitments; commercial contractors receiving commitments of $1000 or over; integrated contractor and federal agency commitments of $1000 or over from Sandia National Laboratories-Albuquerque and Livermore; and, transportation commitments of $1000 or over from Sandia National Laboratories-Albuquerque and Livermore.

Zaeh, R.A.

1992-04-01

77

Sandia National Laboratories, California Environmental Management System program manual.  

SciTech Connect

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

Larsen, Barbara L.

2012-03-01

78

Sandia National Laboratories shock thermodynamics applied research (STAR) facility  

Microsoft Academic Search

The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m\\/s to 8 km\\/s.

Asay

1981-01-01

79

Advanced coordinate measuring machine at Sandia National Laboratories/California  

SciTech Connect

Sandia National Laboratories/California has acquired a new Moore M-48V CNC five-axis universal coordinate measuring machine (CMM). Site preparation, acceptance testing, and initial performance results are discussed. Unique features of the machine include a ceramic ram and vacuum evacuated laser pathways (VELPS). The implementation of a VELPS system on the machine imposed certain design requirements and entailed certain start-up problems. The machine`s projected capabilities, workload, and research possibilities are outlined.

Pilkey, R.D.; Klevgard, P.A.

1993-03-01

80

Advanced coordinate measuring machine at Sandia National Laboratories/California  

SciTech Connect

Sandia National Laboratories/California has acquired a new Moore M-48V CNC five-axis universal coordinate measuring machine (CMM). Site preparation, acceptance testing, and initial performance results are discussed. Unique features of the machine include a ceramic ram and vacuum evacuated laser pathways (VELPS). The implementation of a VELPS system on the machine imposed certain design requirements and entailed certain start-up problems. The machine's projected capabilities, workload, and research possibilities are outlined.

Pilkey, R.D.; Klevgard, P.A.

1993-03-01

81

1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico  

Microsoft Academic Search

Sandia National Laboratories\\/New Mexico (SNL\\/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of

C. H. Fink; D. Duncan; R. Sanchez

1997-01-01

82

Sandia Laboratories hybrid computer and motion simulator facilities  

SciTech Connect

Hybrid computer and motion simulator facilities at Sandia National Laboratories include an AD/FIVE-AD10-PDP11/60, an AD/FIVE-PDP11/45, an EAI7800-EAI640, an EAI580/TR48-Nova 800, and two Carco S-45OR-3/R-493A three-axis motion simulators. An EAI680 is used in the analog mode only. This report describes the current equipment.

Curry, W. H.; French, R. E.

1980-05-01

83

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01

84

Site Environmental Report for 2010 Sandia National Laboratories, California.  

SciTech Connect

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

Larsen, Barbara L.

2011-06-01

85

Photonics at Sandia National Laboratories: From research to applications  

SciTech Connect

Photonics activities at Sandia National Laboratories (SNL) are founded on a strong materials research program. The advent of the Compound Semiconductor Research Laboratory (CSRL) in 1988, accelerated device and materials research and development. Recently, industrial competitiveness has been added as a major mission of the labs. Photonics projects have expanded towards applications-driven programs requiring device and subsystem prototype deliveries and demonstrations. This evolution has resulted in a full range of photonics programs from materials synthesis and device fabrication to subsystem packaging and test.

Meyer, J.; Owyoung, A.; Zipperian, T.E.; Tsao, J.Y.; Myers, D.R.

1994-02-01

86

National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories  

SciTech Connect

This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

1995-08-01

87

Tiger Team assessment of the Sandia National Laboratories, Albuquerque  

SciTech Connect

This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES H). The assessment was comprehensive, encompassing ES H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES H programs was conducted.

Not Available

1991-05-01

88

Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service  

SciTech Connect

Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P. [Sandia National Labs., Albuquerque, NM (United States). Advanced Networking Integration Dept.

1995-01-01

89

NDE activities and technology transfer at Sandia National Laboratories  

SciTech Connect

The NDE, Photometrics, and Optical Data Reduction Department at Sandia National Laboratories in New Mexico (S provides nondestructive evaluation (NDE) support for all phases of research and development at Sandia. Present facilities and personnel provide radiography, acoustic monitoring, ultrasonic scanning, computed tomography, shearography/ESPI, infrared imaging, high speed and ultra-high speed photometrics, and image processing. Although the department includes photometrics and optical data reduction as well as NDE, I will refer to the NDE department from now on for simplicity. The NDE department has worked on technology transfer to organizations inside and outside the weapons complex. This work has been performed in all the Sandia business sectors: Defense Programs, Energy and Environment, and Work for Others. The technology transfer has been in the form of testing for product improvement such as validation of aircraft inspection equipment, consultation such as detecting lathe bearing slip for a major machine tool manufacturer, and products such as an acoustic sand detector for the oil and gas industry.

Shurtleff, W.W.

1993-12-31

90

Radioactive material package testing capabilities at Sandia National Laboratories  

SciTech Connect

Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia`s facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns.

Uncapher, W.L.; Hohnstreiter, G.F.

1995-12-31

91

Sandia National Laboratories CDC7800 version of MORSE-SGC  

SciTech Connect

A version of the MORSE-SGC code has been developed for the Sandia National Laboratories' CDC7600 computer. MORSE is a Monte Carlo code designed to solve neutron and gamma-ray transport problems. This report is intended as a guide for the use of this code and includes discussions of source definition, geometry specification, biasing, and detectors. Preparation of input for the code is described in detail, and several example problems are presented. Use of auxiliary codes PICTURE, SCEPLOT, and LAVA is also discussed.

Dupree, S.A.; Lighthill, R.E.

1982-02-01

92

Update on Engine Combustion Research at Sandia National Laboratories  

SciTech Connect

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

Jay Keller; Gurpreet Singh

2001-05-14

93

The passive autocatalytic recombiner test program at Sandia National Laboratories  

SciTech Connect

Passive autocatalytic recombiners (PARs) are being considered by the nuclear power industry as a combustible gas control system in operating plants and advanced light water reactor (ALWR) containments for design basis events. Sandia National Laboratories (SNL) has developed systems and methodologies to measure the amount of hydrogen that can be depleted in a containment by a PAR. Experiments were performed that determined the hydrogen depletion rate of a PAR in the presence of steam and also evaluated the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations.

Blanchat, T.K. [Sandia National Labs., Albuquerque, NM (United States). Reactor Safety Experiments; Malliakos, A. [Nuclear Regulatory Commission, Washington, DC (United States)

1997-10-01

94

Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico  

Microsoft Academic Search

Sandia National Laboratories, New Mexico (SNL\\/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL\\/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection

Katrina Wagner; Rebecca V. Sanchez; Lucie Mayeux; Susan I. Koss; Stephanie A. Salinas

2004-01-01

95

Calendar year 2004 annual site environmental report:Sandia National Laboratories, Albuquerque, New Mexico  

Microsoft Academic Search

Sandia National Laboratories, New Mexico (SNL\\/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL\\/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection

Amber L. Montoya; Teresa Lynn Goering; Katrina Wagner; Susan I. Koss; Stephanie A. Salinas

2005-01-01

96

Annual Site Environmental Report for Sandia National Laboratories, New Mexico, Calendar Year 2007.  

National Technical Information Service (NTIS)

Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/ contractor-operated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (D...

E. Otto J. Orozco K. Agogino R. Sanchez S. Koss

2008-01-01

97

Prototype dish testing and analysis at Sandia National Laboratories  

SciTech Connect

During the past year, Sandia National Laboratories performed on-sun testing of several dish concentrator concepts. These tests were undertaken at the National Solar Thermal Test Facility (NSTTF). Two of the tests were performed in support of the DOE Concentrator Receiver Development Program. The first was on-sun testing of the single-element stretched-membrane dish; this 7-meter diameter dish uses a single preformed metal membrane with an aluminized polyester optical surface and shows potential for future dish-Stirling systems. The next involved two prototype facets from the Faceted Stretched-Membrane Dish Program. These facets, representing competitive design concepts, are closest to commercialization. Five 1-meter triangular facets were tested on-sun as part of the development program for a solar dynamic system on Space Station Freedom. While unique in character, all the tests utilized the Beam Characterization System (BCS) as the main measurement tool and all were analyzed using the Sandia-developed CIRCE2 computer code. The BCS is used to capture and digitize an image of the reflected concentrator beam that is incident on a target surface. The CIRCE2 program provides a computational tool, which when given the geometry of the concentrator and target as well as other design parameters will predict the flux distribution of the reflected beam. One of these parameters, slope error, is the variable that has a major effect in determining the quality of the reflected beam. The methodology used to combine these two tools to predict uniform slope errors for the dishes is discussed in this document. As the Concentrator Development Programs continue, Sandia will test and evaluate two prototype dish systems. The first, the faceted stretched-membrane dish, is expected to be tested in 1992, followed by the full-scale single-element stretched-membrane dish in 1993. These tests will use the tools and methodology discussed in this document. 14 refs., 10 figs., 5 tabs.

Grossman, J.W.; Houser, R.M.; Erdman, W.W.

1991-01-01

98

Sandia National Laboratories, California Chemical Management Program annual report.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

Brynildson, Mark E.

2012-02-01

99

Certain irregularities in the use of computer facilities at Sandia Laboratory  

SciTech Connect

This report concerns irregularities in the use of computer systems at Sandia Laboratories (Sandia) in Albuquerque, New Mexico. Our interest in this subject was triggered when we learned late last year that the Federal Bureau of Investigation (FBI) was planning to undertake an investigation into possible misuse of the computer systems at Sandia. That investigation, which was carried out with the assistance of our staff, disclosed that an employee of Sandia was apparently using the Sandia computer system to assist in running a bookmaking operation for local gamblers. As a result of that investigation, we decided to conduct a separate review of Sandia's computer systems to determine the extent of computer misuse at Sandia. We found that over 200 employees of Sandia had stored games, personal items, classified material, and otherwise sensitive material on their computer files.

Not Available

1980-10-22

100

RF and mm-Wave Photonics at Sandia National Laboratories  

SciTech Connect

RF and mm-wave photonic devices and circuits have been developed at Sandia National Laboratories for applications ranging from RF optical data links to optical generation of mm-wave frequencies. This talk will explore recent high-speed photonics technology developments at Sandia including: (1) A monolithic optical integrated circuit for all-optical generation of mm-waves. Using integrated mode-locked diode lasers, amplifiers, and detectors, frequencies between 30 GHz and 90 GHz are generated by a single monolithic (Al,Ga)As optical circuit less than 2mm in its largest dimension. (2) Development of polarization-maintaining, low-insertion-loss, low v-pi, Mach-Zehnder interferometer (MZI) modulators with DC-to-potentially-K-band modulation bandwidth. New low-loss polarization-maintaining waveguide designs using binary alloys have been shown to reduce polarization crosstalk in undoped (Al,Ga)As waveguides, yielding high extinction ratio (>40dB) and low on-chip loss (<6dB) in Mach-Zehnder interferometers. RF drive voltage is reduced through use of 45rnrn-active length devices with modulator sensitivity, v-pi, less than 3V.

Vawter, G.A.; Sullivan, C.

1999-07-08

101

Successful Waste Treatment Methods at Sandia National Laboratories  

SciTech Connect

During the remediation of the waste landfills at Sandia National Laboratory in Albuquerque, New Mexico nine drums of mock high explosives were generated. This mixed waste stream was proposed to several offsite vendors for treatment and prices ranged from $2.50 to $10 per gram a total cost estimated to be in excess of $2 million dollars. This cost represents more than 30 percent of the annual budget for the Sandia Waste Management Operations. Concentrated solutions of common oxidizers, such as nitrates, nitrites, and peroxides, will also act as oxidizers and will give positive results in the Hazard Categorization oxidizer test. These solutions carry an EPA Hazardous Waste Number D001, Ignitable Waste, and Oxidizer as defined in 49 CFR 173.151. Sandia decided that given budget and time constraints to meet a Federal Facilities Compliance Act milestone, a process for onsite treatment should be evaluated. Clean samples of mock high explosive materials were obtained from Pantex excess inventory and treatability studies initiated to develop a treatment formula and process. The following process was developed and implemented in the summer of 2006: - Size reduction to allow for dissolution of the barium nitrate in water; - Dissolution of the Mock HE in water; - Deactivation of the oxidizer; - Stabilization of the barium and the cadmium contamination present as an underlying hazardous constituent. This project was completed and the treatment milestone achieved for less than $300,000. The Disassembly Sanitization Operation (DSO) is a process that was implemented to support weapon disassembly and disposition using recycling and waste minimization while achieving the demilitarization mission. The Department of Energy is faced with disassembling and disposition of a huge inventory of retired weapons, components, training equipment, spare parts, and weapon maintenance equipment. Environmental regulations have caused a dramatic increase for information needed to support the disposal and handling of these parts and materials. Manufacturing information from past decades often does not meet the needs for regulatory decisions of today to assure proper management of weapons components. Huge inventories of classified weapon components were required to have long-term storage at Sandia and many other locations throughout the complex. These materials are stored because they are classified, they may also contain radiological and/or hazardous components and disposal options may not have existed for this material. Long-term storage is costly and somewhat problematic. It requires a secured storage area, monitoring, auditing and it also has the potential for loss or theft of this material. Overall recycling rates for materials sent through the DSO process have enabled 70 to 80% of these components to be recycled. These components are made to extreme standards and are made of high quality materials. Once the material has been sanitized, the demand for these metals is very high. The DSO process for the NGPF classified components established the credibility of this technique as a viable process for addressing the long-term storage requirements of classified weapons component inventory. The success of this operation has generated interest from other Sandia Organization other locations throughout the complex. Other organizations are soliciting the help of the DSO team and the DSO is responding to these solicitations by expanding its scope to include work for other projects. For example, Pantex has asked the DSO team to assist with the destruction of their classified components. The operation is full scale and continues to grow and serve SNL/NM and DoE by providing a solution to this evolving issue. On an ongoing basis, SNL has been incurring expenses for the management and storage of classified components. It is estimated that this project will save the DoE and Sandia several hundreds of thousands of dollars until the excess inventory is eliminated. This innovative approach eliminates the need for long-term storage of classified weapons components and the

Rast, D.M.; Thompson, J.J.; Cooper, T.W.; Stockham, D.J

2007-07-01

102

Pulsed power driven hohlraum research at Sandia National Laboratories  

SciTech Connect

Three pulsed power driven hohlraum concepts are being investigated at Sandia for application to inertial fusion research. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. Research on these hohlraum systems will continue on Sandia`s PBFA II-Z facility.

Leeper, R.J.; Alberts, T.E.; Allshouse, G.A. [and others

1996-06-01

103

Investigations of the Radiative Drive Produced by the Sandia Z-Pinch Machine and its Applications  

Microsoft Academic Search

The Z-Machine at Sandia National Laboratories in Albuquerque, New Mexico is a reliable and high-quality source of soft x-rays which can be used for a variety of applications in the study of physics phenomena. Radiation temperatures of 250 eV with pulse widths of 5 ns FWHM in a central target are typical. The x-rays are produced when the kinetic energy

Joysree Aubrey; Richard Bowers; Darrell Peterson

2000-01-01

104

Sandia National Laboratories: A product of postwar readiness, 1945-1950  

SciTech Connect

The genesis and growth of Sandia National Laboratories, the nation's largest nuclear weapons lab, stands as a pertinent case study showing the oftentimes complex, but effective interaction of government, industry, and the growth of cooperative research. Originally a part of Los Alamos Scientific Laboratory under management by the University of California, Sandia traces its roots to Z Division, an ordnance-engineering arm located at Sandia Base on the desert outskirts of Albuquerque, New Mexico, in September 1945. For Sandia National Laboratories, the early postwar years/emdash/rather than representing a transformation to peacetime/emdash/were characterized by a continued mobilization of engineering and science in the name of national readiness.

Furman, N.S.

1988-04-01

105

DOE-sponsored cable aging research at Sandia National Laboratories  

SciTech Connect

Cables have been identified as critical components requiring detailed technical evaluation for extending the lifetime of Light Water Reactors beyond 40 years. This paper highlights some of the DOE-sponsored cable aging studies currently underway at Sandia. These studies are focused on two important issues: the validity of the often-used Arrhenius thermal aging prediction method and methods for predicting lifetimes in combined thermal-radiation environments. Accelerated thermal aging results are presented for three cable jacket and insulation materials, which indicate that hardening of the outside surface has an Arrhenius temperature dependence and correlates well with reductions in ultimate tensile elongation. This suggests that the indentor approach is a promising NDE technique for cable jacket and unjacketed insulation materials installed in thermally-dominated regions of nuclear power plants.

Gillen, K.T.; Clough, R.L.; Celina, M.; Wise, J.; Malone, G.M.

1995-12-01

106

1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 {times} 10{sup {minus}3} mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs.

Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D. (Sandia National Labs., Albuquerque, NM (United States)); Goodrich, M. (GRAM, Inc., Albuquerque, NM (United States))

1991-05-01

107

Overview of Engine Combustion Research at Sandia National Laboratories  

SciTech Connect

The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

Robert W. Carling; Gurpreet Singh

1999-04-26

108

1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on the environment. 46 refs., 20 figs., 31 tabs.

Hwang, S.; Chavez, G.; Phelan, J.; Parsons, A.; Yeager, G.; Dionne, D.; Schwartz, B.; Wolff, T.; Fish, J.; Gray, C.; Thompson, D.

1990-05-01

109

1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 {times} 10{sup {minus}3} mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment.

Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

1992-11-01

110

Epidemiologic surveillance. Annual report for Sandia National Laboratories 1994  

SciTech Connect

Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, 1994 morbidity data for the Sandia National Laboratories are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 15-76 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and pay status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

NONE

1994-12-31

111

Review of subsidence prediction research conducted at Sandia National Laboratories  

SciTech Connect

This paper reviews the results of the subsidence research program at Sandia National Laboratories. The manuscript highlights the following: the application of empirical methods (profile functions) to the subsidence above longwall panels in the US; the use of the rubble model to describe the behavior of broken strata as it distends when it falls to the mine floor (or top of the rubble pile) and then is subsequently compacted as it is loaded by overlying elements of strata; and, the application of physical modeling techniques (centrifuge simulations) and numerical techniques to study the failure mechanisms in highly structured stratigraphy. The capabilities of the latter two are illustrated by comparing their predictions to the results of a field case that has complicated stratigraphy.

Sutherland, H.J.; Schuler, K.W.

1982-04-01

112

Sandia National Laboratories shock thermodynamics applied research (STAR) facility  

SciTech Connect

The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

Asay, J.R.

1981-08-01

113

Sandia National Laboratories' new high level acoustic test facility  

NASA Astrophysics Data System (ADS)

A high intensity acoustic test facility has been designed and is under construction at Sandia National Laboratories in Albuquerque, NM. The chamber is designed to provide an acoustic environment of 154dB (re 20 microPa) overall sound pressure level over the bandwidth of 50 Hz to 10,000 Hz. The chamber has a volume of 16,000 cubic feet with interior dimensions of 21.6 ft x 24.6 ft x 30 ft. The construction of the chamber should be complete by the summer of 1990. The design goals and constraints of the facility are discussed. The construction characteristics are discussed in detail, as are the acoustic performance design characteristics. The authors hope that this work will help others in designing acoustic chambers.

Rogers, Jonathan D.; Hendrick, David M.

114

Current radar responsive tag development activities at Sandia National Laboratories.  

SciTech Connect

Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking and Combat ID application.

Plummer, Kenneth W.; Ormesher, Richard C.

2003-09-01

115

Computing at SNL (Sandia National Laboratory): 'The Way It Should Be' - Circa 1993.  

National Technical Information Service (NTIS)

This document depicts a dynamic, laboratory-wide, integrated computing environment, the Sandia Laboratories Integrated Computing Environment (SLICE), of supercomputers, applications, application servers, computer servers, file servers, file storage device...

D. Daigle L. Fine M. McGlaun L. Pierson M. Sears

1988-01-01

116

Architect and engineering costs at Los Alamos and Sandia National Laboratories  

SciTech Connect

The objective of this audit was to determine whether architect and engineering (A-E) costs at Los Alamos National Laboratory and Sandia National Laboratories were reasonable in comparison with industry standards.

NONE

1998-08-01

117

Feasibility study of medical isotope production at Sandia National Laboratories  

SciTech Connect

In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

Massey, C.D.; Miller, D.L.; Carson, S.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Regulatory Assessment Dept.] [and others

1995-12-01

118

Calendar Year 2001 Annual Site Environmental Report, Sandia National Laboratories, Albuquerque, New Mexico  

Microsoft Academic Search

Sandia National Laboratories, New Mexico (SNL\\/NM) is a government-owned, contractor-operated facility overseen by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) through the Albuquerque Operations Office (AL), Office of Kirtland Site Operations (OKSO). Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL\\/NM. Work performed at SNL\\/NM is in support of the DOE and Sandia Corporation's

FRANCINE S. VIGIL; REBECCA D. SANCHEZ; KATRINA WAGNER; LUCIE MAYEUX

2002-01-01

119

Zinc/bromine battery evaluation at SNL (Sandia National Laboratory)  

NASA Astrophysics Data System (ADS)

Three prototype zinc/bromine batteries were evaluated at Sandia during the last year. The objectives of these tests were to determine performance, cycle life, durability of the auxiliary components, and failure mechanisms. All three were deliverables from a Sandia development contract with Energy Research Corporation (ERC). The test results were communicated to ERC along with suggestions for improving battery design and reliability.

Lott, S. L.; Butler, P. C.; Freese, J. M.

120

Zinc\\/bromine battery evaluation at SNL (Sandia National Laboratory)  

Microsoft Academic Search

Three prototype zinc\\/bromine batteries were evaluated at Sandia during the last year. The objectives of these tests were to determine performance, cycle life, durability of the auxiliary components, and failure mechanisms. All three were deliverables from a Sandia development contract with Energy Research Corporation (ERC). The test results were communicated to ERC along with suggestions for improving battery design and

S. L. Lott; P. C. Butler; J. M. Freese

1989-01-01

121

Energy technologies at Sandia National Laboratories: Past, Present, Future  

SciTech Connect

We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

Not Available

1989-08-01

122

Tonopah test range - outpost of Sandia National Laboratories  

SciTech Connect

Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

Johnson, L.

1996-03-01

123

An Organizational Cultural Assessment of Sandia National Laboratories  

SciTech Connect

An Organizational Cultural Assessment (OCA) was performed at the Sandia National Laboratories (SNL) by administering an Organizational Culture Survey (OCS) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental concerns, hazardous nature of work, safety and overall job satisfaction. Many of these subjects are assessed in the OCS through highly developed and validated scales that have been administered in many different types of organizations. Some of the issues, especially the questions on environmental, safety, and health concerns, are newly developed and are still being modified. The purpose of the OCS is to measure in a quantitative and objective way the notion of culture;'' that is, the values, attitudes, and beliefs of the individuals working within the organization. In addition, through the OCS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OCS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization. 9 refs., 81 figs., 6 tabs.

Haber, S.B.; Crouch, D.A.

1991-05-01

124

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01

125

The integrated water conservation program at Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories (SNL), located on Kirkland Air Force Base (KAFB) in Albuquerque, NM, is implementing a comprehensive water conservation program. Because the average rainfall in this metropolitan area of 500,000 is approximately 8 inches per year, conservation of this precious resource is critical to the economic health of the city and state, and the continued operations at SNL/NM. To address this need, SNL/NM is taking a systematic, comprehensive approach to water conservation. The approach is to estimate the water consumption for all of SNL/NM by type of consumption. For each type of water consumption, all cost effective measures for reducing, reclaiming, and/or recycling that usage will be ranked. These water conservation measures range from the simple such as retrofitting plumbing fixtures with low cost devices to reduce water required to flush toilets to the very complex. As an example of the very complex, a Microelectronics Development Laboratory (MDL) lab will implement a near zero water discharge from clean room wet benches. Deionized (DI) water can be sent back to the DI water input generation stream when the DI water is not being used for rinsing wafers. This paper discusses completed, ongoing and proposed projects at SNL/NM to reduce water consumption and recycle water to maximize its use, and how water conservation has resulted in energy savings, reductions in wastewater discharges, reductions in water treatment chemicals, and reduction in hazardous waste. Additionally the paper discusses preparation of SNL/NM`s Water Conservation Plan, and solutions to overcoming programmatic and bureaucratic hurdles to achieve reductions in water use, wastewater discharges, chemical use and energy.

Rogers, D.

1997-08-22

126

Investigations of the Radiative Drive Produced by the Sandia Z-Pinch Machine and its Applications  

NASA Astrophysics Data System (ADS)

The Z-Machine at Sandia National Laboratories in Albuquerque, New Mexico is a reliable and high-quality source of soft x-rays which can be used for a variety of applications in the study of physics phenomena. Radiation temperatures of 250 eV with pulse widths of 5 ns FWHM in a central target are typical. The x-rays are produced when the kinetic energy of an imploding cylindrical plasma sheath is converted to internal and radiative energy as it decelerates and stagnates against a central foam target. We have used two-dimensional Lagrangian and Eulerian codes to simulate the generation and transport of radiation in the system. Sensitivities of the calculational results to material properties (such as foam opacities) and various radiation models have been investigated. The results of these parameter studies are presented along with predictions of the spectral distribution of the radiation and the energy output as a function of time.

Aubrey, Joysree; Bowers, Richard; Peterson, Darrell

2000-10-01

127

Chemical processing and production of {sup 99}Mo at Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories (SNL) has recently completed the irradiation of five isotope production targets at its Annular Core Research Reactor using targets fabricated by Los Alamos National Laboratory. Four of the irradiated targets were chemically processed in the SNL Hot-Cell Facility using the Cintichem process. The Cintichem method for processing {sup 99}Mo isotope production targets involves dissolution of a UO{sub 2} coating, separation of the molybdenum from the other fission products, and purification of the final product. Several processing issues were addressed during the initial process verification work. This paper discusses the results of work involving dissolving the UO{sub 2} coating, recovering molybdenum losses in purification columns, and radiation exposure testing of process glassware and components.

Talley, D.G.; Bourcier, S.C. [Sandia National Lab., Albuquerque, NM (United States)

1997-12-01

128

Chemical Processing and Production of {sup 99}Mo at Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories (SNL) has recently completed the irradiation of five isotope production targets at its Annular Core Research Reactor (ACRR) using targets fabricated by Los Alamos National Laboratory. Four of the irradiated targets were chemically processed in the SNL Hot Cell Facility (HCF) using the Cintichem process. The Cintichem method for processing {sup 99}Mo isotope production targets involves dissolution of a UO{sub 2} coating, separation of the Mo from the other fission products, and purifying the final product. Several processing issues were addressed during the initial process verification work. This paper discusses the results of work involving dissolving the UO{sub 2} coating, recovering Mo losses in purification columns, and radiation exposure testing of process glassware and components.

Talley, Darren G.; Bourcier, Susan C.

1997-06-01

129

PDC (Polycrystalline Diamond Compact) Bit Research at Sandia National Laboratories.  

National Technical Information Service (NTIS)

From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, ra...

J. T. Finger D. A. Glowka

1989-01-01

130

Sandia National Laboratories and higher education in New Mexico. Revision.  

National Technical Information Service (NTIS)

New Mexico education institutions have had an extraordinary influence on the Sandia workforce throughout the years. Today, our approximately 8400 employees hold 2028 graduate and undergraduate degrees from the 4-year colleges and universities in the state...

R. R. Fairbanks

1990-01-01

131

Approach to Wireless Communications at Sandia National Laboratories.  

National Technical Information Service (NTIS)

Wireless communication plays an increasing role in military, industrial, public safety, and academic computer networks. Although in general, radio transmitters are not currently permitted in secured areas at Sandia, wireless communications would open new ...

E. L. Witzke

2002-01-01

132

Zinc/bromine battery evaluation at SNL (Sandia National Laboratory)  

SciTech Connect

Three prototype zinc/bromine batteries were evaluated a Sandia during the last year. The objectives of these tests were to determine performance, cycle life, durability of the auxiliary components, and failure mechanisms. All three were deliverables from a Sandia development contract with Energy Research Corporation (ERC). The test results were communicated to ERC along with suggestions for improving battery design and reliability. 3 figs., 2 tabs.

Lott, S.L.; Butler, P.C.; Freese, J.M. (Sandia National Labs., Albuquerque, NM (USA))

1989-01-01

133

Simulations and modeling of highly pbotoionized low density samples on the Sandia National Laboratory Z-machine  

Microsoft Academic Search

The absorption and transport of radiation is a key process in determining the degree of ionization and temperature in many astrophysical X-ray sources such as binary systems and AGNs. At the same time, accurate models of such plasmas are increasingly relied upon for interpreting the high-quality X-ray spectra arriving from Chandra and XMM. Ongoing experiments at the Sandia National Laboratory

M. E. Foord; R. F. Heeter; D. A. Liedahl; P. T. Springer; D. Cohen; J. E. Bailey; M. E. Cuneo

2000-01-01

134

The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories  

SciTech Connect

Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems.

Graham, R.H.; Workhoven, R.M.

1987-07-01

135

SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT  

EPA Science Inventory

As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico. The SITE demonstration results show ...

136

Building 832 and Small Neighborhood Applications for Sandia Laboratories Solar Energy System Test Bed.  

National Technical Information Service (NTIS)

Applications of Sandia Laboratories solar energy system test bed to Building 832 and to a small neighborhood of single family homes have been simulated by using the energy system simulation computer program SOLSYS. Component requirements and system perfor...

M. W. Edenburn

1975-01-01

137

Position of Sandia National Laboratories with Respect to Product Definition Standards.  

National Technical Information Service (NTIS)

Sandia National Laboratories, in conjunction with the Department of Energy Computer Integrated Manufacturing Program, supports the use of the Department of Energy Data Exchange Format (DOEDEF) subset of IGES (the Initial Graphics Exchange Specification) f...

1989-01-01

138

Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories.  

National Technical Information Service (NTIS)

The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear fa...

P. C. Bennett

1996-01-01

139

Sandia National Laboratories Chemical Waste Landfill: Innovative strategies towards characterization and remediation.  

National Technical Information Service (NTIS)

The Chemical Waste Landfill (CWL) was used by Sandia National Laboratories (SNL), Albuquerque for disposal of hazardous chemicals from the years 1962 to 1985. Prompted by the detection of low levels of trichlorethylene (TCE) in groundwater samples from a ...

C. P. Ardito A. M. Parsons E. R. Lindgren J. M. Phelan E. D. Mattson

1992-01-01

140

Tiger Team Assessment of the Sandia National Laboratories, Livermore, California  

SciTech Connect

This report provides the results of the Tiger Team Assessment of the Sandia National Laboratories (SNL) in Livermore, California, conducted from April 30 to May 18, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety and health (ES H) activities at SNL, Livermore. The assessment was conducted by a team consisting of three subteams of federal and private sector technical specialists in the disciplines of environment, safety and health, and management. On-site activities for the assessment included document reviews, observation of site operations, and discussions and interviews with DOE personnel, site contractor personnel, and regulators. Using these sources of information and data, the Tiger Team identified a significant number of findings and concerns having to do with the environment, safety and health, and management, as well as concerns regarding noncompliance with Occupational Safety and Health Administration (OSHA) standards. Although the Tiger Team concluded that none of the findings or concerns necessitated immediate cessation of any operations at SNL, Livermore, it does believe that a sizable number of them require prompt management attention. A special area of concern identified for the near-term health and safety of on-site personnel pertained to the on-site Trudell Auto Repair Shop site. Several significant OSHA concerns and environmental findings relating to this site prompted the Tiger Team Leader to immediately advise SNL, Livermore and AL management of the situation. A case study was prepared by the Team, because the root causes of the problems associated with this site were believed to reflect the overall root causes for the areas of ES H noncompliance at SNL, Livermore. 4 figs., 3 tabs.

Not Available

1990-08-01

141

M and S for Life Cycle Management at Sandia National Laboratories: From Engineering Simulations to Enterprise Modeling.  

National Technical Information Service (NTIS)

Sandia National Laboratories has responsibility for designing all non-nuclear components for the U.S. nuclear weapons program, as well as performing a wide variety of energy research and development projects. More generically, Sandia works on assignments ...

P. F. Chavez P. E. Nielan R. D. Skocypec P. Yarrington

2000-01-01

142

An Approach to Wireless Communications at Sandia National Laboratories  

SciTech Connect

Wireless communication plays an increasing role in military, industrial, public safety, and academic computer networks. Although in general, radio transmitters are not currently permitted in secured areas at Sandia, wireless communications would open new opportunities, allowing mobile and pervasive user access. Without wireless communications, we must live in a ''non-mainstream'' world of fixed, wired networks, where it becomes ever more difficult to attract and retain the best professionals. This report provides a review of the current state of wireless communications, which direction wireless technology is heading, and where wireless technology could be employed at Sandia. A list of recommendations on harnessing the power of wireless communications is provided to aid in building a state-of-the-art communication environment for the 21st century at Sandia.

WITZKE, EDWARD L.

2002-10-01

143

A review of physical security robotics at Sandia National Laboratories  

Microsoft Academic Search

As an outgrowth of research into physical security technologies, Sandia is investigating the role of robotics in security systems. Robotics may allow more effective utilization of guard forces, especially in scenarios where personnel would be exposed to harmful environments. Robots can provide intrusion detection and assessment functions for failed sensors or transient assets, can test existing fixed site sensors, and

Roerig

1990-01-01

144

An analysis of microsystems development at Sandia National Laboratories  

NASA Astrophysics Data System (ADS)

While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.

Herrera, Gilbert V.; Myers, David R.

2011-05-01

145

The SEMATECH - Sandia National Laboratories partnership: A case study  

SciTech Connect

SEMATECH was established in 1987 for defense and economic reasons to help the U.S. regain a competitive posture in semiconductor manufacturing. For 10 years SEMATECH was jointly funded by the federal government and semiconductor manufacturing companies representing 85 percent of the U.S. semiconductor industry. SEMATECH has spent about 80 percent of these funds on activities intended to produce useful results between 1 and 3 years. Very early in the establishment of SEMATECH, its members determined that their first priority would be to strengthen their U.S. based suppliers of semiconductor manufacturing equipment. This has been the primary thrust of SEMATECH. SEMATECH first held some 30 workshops on a broad set of technical topics to assess the needs and opportunities to help the industry recover. These workshops scoped manufacturing areas where SEMATECH should focus. These early meetings were an early form of what later came to be termed roadmapping. The scope of R&D needs identified in these workshops well exceeded what SEMATECH could hope to accomplish with its $200 million annual budget. Wayne Johnson of Sandia participated in five of these workshops and used the knowledge gained as the basis for proposals later submitted to SEMATECH on behalf of Sandia. In the fall of 1989 the SETEC program was established at Sandia to support SEMATECH. This was initially a funds-in, work-for-others project that was fully funded by SEMATECH. Thus, the early work was entirely focused on SEMATECH`s needs. Later in the program when SEMATECH funds were supplemented by Department of Energy Cooperative Research and Development funds, attention was given to how this project would benefit Sandia`s defense microelectronics program.

Carayannis, E. [George Washington Univ., DC (United States). School of Business and Public Management; Gover, J. [Sandia National Labs., Albuquerque, NM (United States)

1997-11-01

146

An aerial radiological survey of the Sandia National Laboratories and surrounding area  

SciTech Connect

A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the area surrounding the Sandia National Laboratories and Kirtland Air Force Base in Albuquerque, New Mexico, during March and April 1993. The survey team measured the terrestrial gamma radiation at the site to determine the levels of natural and man-made radiation. This survey includes the areas covered by a previous survey in 1981. The results of the aerial survey show a background exposure rate which varies between 5 and 18 {mu}R/h plus an approximate 6 {mu}R/h contribution from cosmic rays. The major radioactive isotopes found in this survey were: potassium-40, thallium-208, bismuth-214, and actinium-228, which are all naturally-occurring isotopes, and cobalt-60, cesium-137, and excess amounts of thallium-208 and actinium-228, which are due to human actions in the survey area. In regions away from man-made activity, the exposure rates inferred from this survey`s gamma ray measurements agree almost exactly with the exposure rates inferred from the 1981 survey. In addition to the aerial measurements, another survey team conducted in situ and soil sample radiation measurements at three sites within the survey perimeter. These ground-based measurements agree with the aerial measurements within {+-} 5%.

Riedhauser, S.R.

1994-06-01

147

History and testimony of competency-based development at Sandia National Laboratories.  

SciTech Connect

More than ten years ago, Sandia managers defined a set of traits and characteristics that were needed for success at Sandia. Today, the Sandia National Laboratories Success Profile Competencies continue to be powerful tools for employee and leadership development. The purpose of this report is to revisit the historical events that led to the creation and adaptation of the competencies and to position them for integration in future employee selection, development, and succession planning processes. This report contains an account of how the competencies were developed, testimonies of how they are used within the organization, and a description of how they will be foundational elements of new processes.

Burt, Rebecca A.; Narahara, Sheryl K.

2004-04-01

148

Pulsed power safety and technical training at Sandia National Laboratories  

SciTech Connect

The expansion of pulsed power applications research at Sandia National Labs requires increasing technician-level support from individuals trained in high voltage, short pulse technology. Large superpower generators need a broad-based training curriculum in all aspects of accelerator operation to satisfy recent Department of Energy (DOE) desires for formal certification of accelerator operators. This paper discusses the status of Sandia's safety and technical training program in pulsed power technology directed mainly towards high school graduate and technical school level students. Present safety training methodology requires that hazards for experimental facilities are identified first, a specific curriculum is then tailored to individuals' background experiences and hazards involved with their current assignments. In the technical training program, certification requirements are being established and a coursework program has been initiated in which subjects are organized into two sections. The first covers electrical principles and physical properties of pulsed power components. The second presents various support-type subsystems for accelerators.

Goldstein, S.A.; Zawadzkas, G.A.; Donovan, G.L.; Mikkelson, K.A.; Sharpe, A.W.; Johnston, R.R.

1987-01-01

149

Hierarchical high-performance storage system Testbed project at Sandia National Laboratories  

SciTech Connect

The Hierarchical High-Performance Storage System (HPSS) Testbed project at Sandia National Laboratories was part of a research collaboration between industry, national research centers, and national laboratories to develop mass storage system software that would scale to meet the capacity and performance required by supercomputer and massively parallel computational environments. This report describes the software that was developed within this collaboration as a result of a cooperative research and development agreement between Sandia National Laboratories and International Business Machines (IBM) Corporation, Government Systems.

Haynes, R.A.

1997-01-01

150

Inside Sandia  

SciTech Connect

Inside Sandia, published every other month, presents technological advances made at Sandia National Laboratories. The articles in IS will cover a wide range of technologies that have been developed at Sandia. Some of the areas that will receive a good deal of attention in these pages include information sciences, manufacturing and robotics, environmental science, energy research, transportation technology, and biomedical engineering. All of this work is done to further Sandia National Laboratories` missions in defense, energy, and environmental research, and technology transfer.

Goetsch, B. [ed.

1995-08-01

151

Initial evaluation of Sandia National Laboratory-prepared crystalline silico-titanates for cesium recovery  

Microsoft Academic Search

Pacific Northwest Laboratory initiated a study of a new class of inorganic ion exchange materials that selectively extracts cesium (Cs), strontium (Sr), and plutonium (Pu) from alkaline radioactive waste solutions. These materials, identified as crystalline silico-titanates (CST), were developed by scientists at the Sandia National Laboratory (SNL) and Texas A&M. This report summarizes preliminary results for the measurement of batch

L. A. Bray; K. J. Carson; R. J. Elovich

1993-01-01

152

Dose algorithm for EXTRAD 4100S extremity dosimeter for use at Sandia National Laboratories.  

SciTech Connect

An updated algorithm for the EXTRAD 4100S extremity dosimeter has been derived. This algorithm optimizes the binning of dosimeter element ratios and uses a quadratic function to determine the response factors for low response ratios. This results in lower systematic bias across all test categories and eliminates the need for the 'red strap' algorithm that was used for high energy beta/gamma emitting radionuclides. The Radiation Protection Dosimetry Program (RPDP) at Sandia National Laboratories uses the Thermo Fisher EXTRAD 4100S extremity dosimeter, shown in Fig 1.1 to determine shallow dose to the extremities of potentially exposed individuals. This dosimeter consists of two LiF TLD elements or 'chipstrates', one of TLD-700 ({sup 7}Li) and one of TLD-100 (natural Li) separated by a tin filter. Following readout and background subtraction, the ratio of the responses of the two elements is determined defining the penetrability of the incident radiation. While this penetrability approximates the incident energy of the radiation, X-rays and beta particles exist in energy distributions that make determination of dose conversion factors less straightforward in their determination.

Potter, Charles Augustus

2011-05-01

153

Calendar year 2002 annual site environmental report for Sandia National Laboratories, New Mexico.  

SciTech Connect

Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility overseen by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) through the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2002. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2003-09-01

154

Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.  

SciTech Connect

Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2004-09-01

155

Sandia bicycle commuters group -- pollution prevention at Sandia National Laboratories, New Mexico  

SciTech Connect

The Sandia Bicycle Commuters Group (SBCG) formed three years ago for the purpose of addressing issues that impact the bicycle commuting option. The meeting that launched the SBCG was scheduled in conjunction with National Bike-to-Work day in May 1995. Results from a survey handed out at the meeting solidly confirmed the issues and that an advocacy group was needed. The purpose statement for the Group headlines its web site and brochure: ``Existing to assist and educate the SNL workforce bicyclist on issues regarding Kirtland Air Force Base (KAFB) access, safety and bicycle-supporting facilities, in order to promote bicycling as an effective and enjoyable means of commuting.`` The SNL Pollution Prevention (P2) Team`s challenge to the SNL workforce is to ``prevent pollution, conserve natural resources, and save money``. In the first winter of its existence, the SBCG sponsored a winter commute contest in conjunction with the City`s Clean Air Campaign (CAC). The intent of the CAC is to promote alternative (to the single-occupant vehicle) commuting during the Winter Pollution Advisory Period (October 1--February 28), when the City runs the greatest risk of exceeding federal pollution limits.

Wrons, R.

1998-06-01

156

Overview of catalyst testing and coprocessing studies at Sandia National Laboratories  

SciTech Connect

Prior to the initiation of Sandia`s fine particle size catalyst testing project, it was not feasible to compare the activities of the many direct coal liquefaction catalysts developed in various laboratories. This was due to the wide variety of testing methods used by the different catalyst developers. Sandia developed a procedure that uses a bituminous coal (DECS-17 Blind Canyon coal), phenathrene as the reaction solvent, and a factorial experimental design with three variables: temperature, time, and catalyst loading. Numerous catalysts have been evaluated. Pacific Northwest National Laboratories` (PNNL) 6-line ferrihydrite catalyst is the most active among the particulate catalysts. West Virginia University`s (WVU) iron catalyst impregnated on Blind Canyon coal is the best iron catalyst evaluated to date. Because this catalyst was prepared by impregnation, which involves several preparation steps, it cannot be directly compared to particulate catalysts. In an effort to enable this comparison, WVU produced a particulate iron catalyst that has been tested at Sandia. In addition, Sandia has also evaluated several of Argonne National Laboratory`s molybdenum and iron catalysts that were impregnated on Wyodak subbituminous coal from the Argonne Premium Coal Sample Program. Current activities are focused on developing capabilities for performing coprocessing experiments to support FETC`s coprocessing thrust and a new project aimed at helping Puerto Rico solve its waste disposal problems.

Stohl, F.V.; Goodnow, D.C.; Diegert, K.V.; Andujar, L.

1997-10-01

157

Bridging the Cold War and the 21st century: chronicling the history of Sandia National Laboratories  

SciTech Connect

A historical perspective is given for Sandia National Laboratories from its beginnings as a small engineering group at an offshoot of Los Alamos Laboratory to a facility of 7000 people at its main facility in Albuquerque, another 1000 people in Livermore, California and test ranges in Tonopah, Nevada and Kauai, Hawaii. The Sandia army base became the Z division of Los Alamos and $25 million construction program began the structures that would carry out a test program for nuclear weapons during the cold war. Bell System/AT&T stewardship of the site continued from 1949 to 1993, when Martin Marietta (now Lockheed Martin) was chosen as the new contractor. Management decisions, personnel, and political aspects of the Laboratory are presented up to 1997 and forecasts are given for future policy and programs of Sandia.

Mora, C.J.

1997-04-01

158

Nonionizing Radiation Laboratory Manual (583).  

National Technical Information Service (NTIS)

A laboratory manual for the study of nonionizing radiation, designed for industrial hygienists, health physicists and other health personnel, is presented. Topics include nonionizing radiation sources, radiation hazards, and basic principles of radiation ...

1977-01-01

159

National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)  

SciTech Connect

This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

1998-08-01

160

Sandia National Laboratories, Albuquerque property-management-awareness program  

SciTech Connect

The purpose of this program is to create a higher level of awareness among Sandia employees of their responsibility to protect government-owned property, resulting in the minimization of losses due to misuse, theft and willful damage or destruction. Basically the approach has been to first orient all employees, beginning from top management down, to the system and responsibilities for property management, and then to reinforce this information with reminders, examples and sanctions on a reasonably regular basis. Since the responsibility for property accountability is managerial in nature, the stewardship function is emphasized. Essentially, the program is designed to advise and continually remind supervision that care and control of property assigned to them is a serious matter. They, in turn, will be expected to pass information along to their employees, including policy statements, procedures and ramifications of property loss or misuse.

Gaeddert, R.E.; Mefford, M.E.

1982-01-01

161

Pulsed power -- Research and technology at Sandia National Laboratories  

SciTech Connect

Over the past 15 years, steady and sometimes exciting progress has been made in the hybrid technology called Pulsed Power. Based on both electrical engineering and physics, pulsed power involves the generation, modification, and use of electrical pulses up to the multitrillion-watt and multimillion-volt ranges. The final product of these powerful pulses can take diverse forms--hypervelocity projectiles or imploding liners, energetic and intense particle beams, X-ray and gamma-ray pulses, laser light beams that cover the spectrum from ultraviolet to infrared, or powerful microwave bursts. At first, the needs of specific applications largely shaped research and technology in this field. New the authors are beginning to see the reverse--new applications arising from technical capabilities that until recently were though impossible. Compressing and heating microscopic quantities of matter until they reach ultra-high energy density represents one boundary of their scientific exploration. The other boundary might be a defensive weapon that can project vast amounts of highly directed energy over long distances. Other applications of the technology may range from the use of electron beams to sterilize sewage, to laboratory simulation of radiation effects on electronics, to electromagnetic launchings of projectiles into earth or into solar orbits. Eventually the authors hope to use pulsed power to produce an inexhaustible supply of energy by means of inertial confinement fusion (ICF)--a technique for heating and containing deuterium-tritium fuel through compression. Topics covered here are: (1) inertial confinement fusion; (2) simulation technology; (3) development of new technology; and (4) application to directed energy technologies.

NONE

1981-12-31

162

Sandia National Laboratories/New Mexico Environmental Baseline update--Revision 1.0  

SciTech Connect

This report provides a baseline update to provide the background information necessary for personnel to prepare clear and consise NEPA documentation. The environment of the Sandia National Laboratories is described in this document, including the ecology, meteorology, climatology, seismology, emissions, cultural resources and land use, visual resources, noise pollution, transportation, and socioeconomics.

NONE

1996-07-01

163

Long-Term Environmental Stewardship (LTES) life-cycle material management at Sandia National Laboratories  

Microsoft Academic Search

The Long-Term Environmental Stewardship (LTES) mission is to ensure long-term protection of human health and the environment, and proactive management toward sustainable use and protection of natural and cultural resources affected by any Sandia National Laboratories (SNL) operations and operational legacies. The primary objectives of the LTES program are to: (1) Protect the environment from present and future operations; (2)

Nagy; Michael D

2010-01-01

164

Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico  

Microsoft Academic Search

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL\\/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major

DEBBY S. OSCAR; SHARON ANN WALKER; REGINA LEE HUNTER; CHERYL A. WALKER

1999-01-01

165

Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories  

Microsoft Academic Search

The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to

1996-01-01

166

Sandia National Laboratories Chemical Waste Landfill: Innovative strategies towards characterization and remediation  

Microsoft Academic Search

The Chemical Waste Landfill (CWL) was used by Sandia National Laboratories (SNL), Albuquerque for disposal of hazardous chemicals from the years 1962 to 1985. Prompted by the detection of low levels of trichlorethylene (TCE) in groundwater samples from a water table aquifer approximately 146 meters below ground surface, a RCRA Site Investigation (RSI) and remediation of organic contaminants will be

C. P. Ardito; A. M. Parsons; E. R. Lindgren; J. M. Phelan; E. D. Mattson

1992-01-01

167

Environmental testing philosophy for a Sandia National Laboratories small satellite project  

SciTech Connect

Sandia National Laboratories is the system integrator on a small satellite project. Following the intent of the NASA GEVS document, an integrated test philosophy was formulated to certify the satellite for flight. The purpose of this paper is to present that philosophy.

Cap, J.S.; Rackley, N.G.

1996-03-01

168

Description of the Sandia National Laboratories science, technology & engineering metrics process  

Microsoft Academic Search

There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will

Gretchen B. Jordan; Randall D. Watkins; Timothy Guy Trucano; Alan Richard Burns; Peter Oelschlaeger

2010-01-01

169

Sandia National Laboratories interactions with organizations in the Former Soviet Union  

SciTech Connect

This document describes Sandia National Laboratories involvement with scientists and engineers at various organizations within the states of the Former Soviet Union (FSU). The purpose of these interactions is twofold: first, to acquire technical information to enhance United States technology and second, to assist FSU states in converting their defense-oriented industry to civilian, market- oriented business.

Whiting, G.H.; Nokes, K.D.

1994-03-01

170

Performance of a solar-heated assembly building at Sandia National Laboratories  

SciTech Connect

The passive solar-heating system of the assembly building at Sandia National Laboratories' Photovoltaic Advanced Systems Test Facility is described and the thermal analysis of the building is given. Performance predictions are also given, and actual performance for December 1979 and January 1980 are shown.

Haskins, D.E.

1980-09-01

171

Implementation of a Distributed Computing Gateway (DCG) at Sandia National Laboratories  

Microsoft Academic Search

Several modifications to the Sandia National Laboratories' current scientific Central Computing Facility (CCF) are being made. These modifications include development of a Central Computing Network (CCN) and a dispersed Distributed Computing Network (DCN). It is necessary to develop a gateway between these two networks. This connection will permit distributed computers in the DCN to gain access to the data link,

R. C. Hall; D. H. Widman

1982-01-01

172

A review of physical security robotics at Sandia National Laboratories  

SciTech Connect

As an outgrowth of research into physical security technologies, Sandia is investigating the role of robotics in security systems. Robotics may allow more effective utilization of guard forces, especially in scenarios where personnel would be exposed to harmful environments. Robots can provide intrusion detection and assessment functions for failed sensors or transient assets, can test existing fixed site sensors, and can gather additional intelligence and dispense delaying elements. The Robotic Security Vehicle (RSV) program for DOE/OSS is developing a fieldable prototype for an exterior physical security robot based upon a commercial four wheel drive vehicle. The RSV will be capable of driving itself, being driven remotely, or being driven by an onboard operator around a site and will utilize its sensors to alert an operator to unusual conditions. The Remote Security Station (RSS) program for the Defense Nuclear Agency is developing a proof-of-principle robotic system which will be used to evaluate the role, and associated cost, of robotic technologies in exterior security systems. The RSS consists of an independent sensor pod, a mobile sensor platform and a control and display console. Sensor data fusion is used to optimize the system's intrusion detection performance. These programs are complementary, the RSV concentrates on developing autonomous mobility, while the RSS thrust is on mobile sensor employment. 3 figs.

Roerig, S.C.

1990-01-01

173

Synthetic aperture radar and interferometry development at Sandia National Laboratories  

SciTech Connect

Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

NONE

1993-04-01

174

Metallization and packaging of compound semiconductor devices at Sandia National Laboratories  

SciTech Connect

Recent advances in compound semiconductor technology utilize a variety of metal thin films fabricated by thermal and electron-beam evaporation, and electroplating. An overview of metal processes used by Sandia`s Compound Semiconductor Research Laboratory is presented. Descriptions of electrical n-type and p-type ohmic contact alloys, interconnect metal, and metal layers specifically included for packaging requirements are addressed. Several illustrations of devices incorporating gold plated air bridges are included. ``Back-end`` processes such as flip-chip under bump metallurgy with fluxless solder reflow and plated solder processes are mentioned as current research areas.

Seigal, P.K.; Armendariz, M.G.; Rieger, D.J.; Lear, K.L.; Sullivan, C.T.

1996-11-01

175

New model for public participation at Sandia National Laboratories: What comes after environmental restoration?  

SciTech Connect

As the Sandia National Laboratories' Environmental Restoration (ER) project moves toward closure, the project's experiences--including a number of successes in the public participation arena--suggest it is time for a new, more interactive model for future government-citizen involvement. This model would strive to improve the quality of public interaction with the Department of Energy (DOE) and Sandia, by using subject-specific working groups and aiming for long-term trustful relationships with the community. It would make use of interactive techniques, fewer formal public forums, and a variety of polling and communication technologies to improve information gathering and exchange.

KEENER,R. WILLIAM; BACA,STEPHEN S.; BACA,MAUREEN R.; STOTTS,AL; TOOPS,TAMI; WOLFF,THEODORE A.

2000-01-31

176

Environmental assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico  

SciTech Connect

Sandia National Laboratories/New Mexico (SNL/NM) is managed and operated for the U.S. Department of Energy (DOE) by Sandia Corporation, a subsidiary of the Lockheed Martin Company. SNL/NM is located on land controlled by DOE within the boundaries of Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. This report provides an environmental assessment of proposed remedial action activities at the solid waste management units at SNL/NM. A risk assessment of health hazards is also discussed.

NONE

1996-03-01

177

Acoustic, fiber optic, and silicon microelectronic microsensors research and development activities at Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories, an 8500+ person, multiprogram research and development facility operated for the US Department of Energy, has over 400 research, development and applications scientists and engineers working on sensor technologies. Sandia`s 20 person Microsensors Research and Development Department has invented, developed and fielded sensor systems based on acoustic, fiber optic, and silicon microelectronic technologies. These sensors have been used for diverse applications inducting the monitoring of cleaning chemical concentrations in industrial process effluent streams, detection of explosive gas concentrations in aging industrial equipment, real-time measurements of fluid viscosity in equipment lubricants, and monitoring of contaminant concentration levels in ultrapure process gases. Representative sensor technologies available for technology transfer will be described including bulk acoustic wave resonators, surface acoustic wave devices, fiber optic micromirror sensors, and silicon microelectronic sensors.

Wiczer, J.J.

1993-08-01

178

Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.  

SciTech Connect

A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

2006-11-01

179

An overview of semiconductor bridge, SCB, applications at Sandia National Laboratories  

SciTech Connect

The semiconductor bridge, SCB, developed by Sandia National Laboratories is a maturing technology now being used in several applications by Sandia customers. Most applications arose because of a need at the system level to provide explosive assemblies that were light weight, small volume, low cost and required small quantities of electrical energy to function -- for the purposes of this paper we define an explosive assembly to mean the combination of the firing set and an explosive component. As a result, and because conventional firing systems could not meet the stringent size, weight and energy requirements of our customers, we designed and are investigating SCB applications that range from devices for Sandia applications to igniters for fireworks. We present in this paper an overview of SCB technology with specific examples of the system designed for our customers to meet modern requirements that sophisticated explosive systems must satisfy in today`s market environments.

Bickes, R.W. Jr.; Grubelich, M.C.; Harris, S.M.; Merson, J.A.; Weinlein, J.H.

1995-05-01

180

Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

1999-12-01

181

Sandia National Laboratories` high power electromagnetic impulse sources  

SciTech Connect

Three impulse sources have been developed to cover a wide range of peak power, bandwidth and center frequency requirements. Each of the sources can operate in single shot, rep-rate, or burst modes. These devices are of rugged construction and are suitable for field use. This paper will describe the specifications and principals of operation for each source. The sources to be described are: SNIPER (Sub-Nanosecond ImPulsE Radiator), a coaxial Blumlein pulser with an in-line (series) peaking switch; EMBL (EnantioMorphic BLurfflein), a bipolar parallel plate Blumlein with a crowbar type (parallel) peaking switch; and the LCO (L-C Oscillator) a spark-switched L-C oscillator with damped sinusoidal output. SNIPER and EMBL are ultra-wideband (UWB) sources which produce a very fast high voltage transition. When differentiated by the antenna, an impulse whose width corresponds to the transition time is radiated. The LCO operates with a center frequency up to 800 MHz and up to 100 MHz bandwidth. Because the LCO output is relatively narrow band, high gain antennas may be employed to produce very high radiated field strengths.

Rinehart, L.F.; Buttram, M.T.; Denison, G.J.; Lundstrom, J.M.; Crowe, W.R.; Aurand, J.F.; Patterson, P.E.

1994-10-01

182

Russian surety research projects in the Sandia National Laboratories Cooperative Measures Program  

SciTech Connect

Over forty safety and security related research and development projects have been initiated between Sandia National Laboratories and the Russian nuclear weapons laboratories VNIIEF and VNIITF. About half of these projects have been completed. All relate to either safety or security methodology development, processes, accident environment analysis and testing, accident databases, assessments or product design of devices. All projects have a potential benefit to various safety or security programs and some may directly have commercial applications. In general, these projects could benefit risk assessments associated with systems that could result in accidents or incidents having high public consequences. These systems typically have already been engineered to have very low assessed probabilities of occurrence of such accidents or incidents. This paper gives an overview of the Sandia surety program with a focus on the potential for future collaboration between Sandia, three Russian Institutes; VNIIEF, VNIITF and VNIIA, and other industry and government organizations. The intent is to serve as an introduction to a roundtable session on Russian Safety Collaboration at the 14th International System Safety Conference. The current Sandia collaboration program scope and rationale is presented along with the evolved program focus. An overview of the projects is given and a few specific projects are briefly highlighted with tangible results to date.

Smith, R.E.

1996-07-01

183

Pollution prevention opportunity assessment for Sandia National Laboratories/New Mexico's fleet services department.  

SciTech Connect

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/New Mexico's (SNL/NM) Fleet Services Department between December 2001 and August 2002. This is the third PPOA conducted at Fleet in the last decade. The primary purpose of this PPOA was to review progress of past initiatives and to provide recommendations for future waste reduction measures of hazardous and solid waste streams and increasing the purchase of environmentally friendly products. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The Sandia National Laboratories/New Mexico Pollution Prevention Group will work with SNL/NM's Fleet Services to implement these options.

Richardson, Anastasia Dawn

2003-06-01

184

Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1  

SciTech Connect

This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.; KUZIO, KENNETH A.; BAILEY-WHITE, BRENDA E.

1999-09-01

185

Sandia National Laboratories/New Mexico Environmental Information Document - Volume II  

SciTech Connect

This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

GUERRERO, JOSEPH V.; KUZIO, KENNETH A.; JOHNS, WILLIAM H.; BAYLISS, LINDA S.; BAILEY-WHITE, BRENDA E.

1999-09-01

186

Purchasing and Materials Management Organization, Sandia National Laboratories. Annual report, fiscal year 1991  

SciTech Connect

This report contains the purchasing and materials management operating highlights for Fiscal Year 1991. Included in the report are compiled data on: personnel; type of procurement; small business procurements; disadvantaged business procurements; woman-owned business procurements; New Mexico commercial business procurements; Bay Area commercial business procurements; commitments by states and foreign countries to commercial suppliers; and, transportation activities. Other statistical data tables enumerate the following: the twenty-five commercial contractors receiving the largest dollar commitments; commercial contractors receiving commitments of $1000 or over; integrated contractor and federal agency commitments of $1000 or over from Sandia National Laboratories-Albuquerque and Livermore; and, transportation commitments of $1000 or over from Sandia National Laboratories-Albuquerque and Livermore.

Zaeh, R.A.

1992-04-01

187

Implementation of a Distributed Computing Gateway (DCG) at Sandia National Laboratories  

SciTech Connect

Several modifications to the Sandia National Laboratories' current scientific Central Computing Facility (CCF) are being made. These modifications include development of a Central Computing Network (CCN) and a dispersed Distributed Computing Network (DCN). It is necessary to develop a gateway between these two networks. This connection will permit distributed computers in the DCN to gain access to the data link, various support nodes, and the worker computers in the CCF. This presentation describes current efforts at Sandia National Laboratories to implement a VAX/VMS Distributed Computing Gateway (DCG) to serve as an interface node between the CCN and DCN. The functional characteristics of the DCG are identified. The hardware and software configurations are overviewed. Finally, security considerations pertinent to the implementation are addressed.

Hall, R.C.; Widman, D.H.

1982-06-01

188

2003 Sandia National Laboratories--Albuquerque Annual Illness and Injury Surveillance Report  

SciTech Connect

Annual Illness and Injury Surveillance Program report for 2003 for Sandia National Laboratories-Albuquerque. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

2007-05-23

189

Robotic lunar rover technologies and SEI supporting technologies at Sandia National Laboratories  

Microsoft Academic Search

Existing robotic rover technologies at Sandia National Laboratories (SNL) can be applied toward the realization of a robotic lunar rover mission in the near term. Recent activities at the SNL-RVR have demonstrated the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low-data-rate teleoperation,

Paul R. Klarer

1992-01-01

190

1998 Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico  

Microsoft Academic Search

Sandia National Laboratories\\/New Mexico (SNL\\/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL\\/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's

D. K. Duncan; C. H. Fink; R. V. Sanchez

1999-01-01

191

Fire protection review revisit No. 2, Sandia National Laboratories, Albuquerque, New Mexico  

NASA Astrophysics Data System (ADS)

Findings of a fire protection review conducted during July 21 to 25, July 28-August 2, 1985, and August 19-23, 1985, at Sandia National Laboratories, Albuquerque, New Mexico are summarized. The visit included: (1) a tour of the facility, (2) water tests, (3) review of records of testing and inspection of fire protection equipment, and (4) tests of selected fire protection equipment to verify equipment had been properly tested and inspected.

Dobson, P. H.; Simmons, J. M.; Wallace, H. H.

1985-10-01

192

ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL  

SciTech Connect

During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

Young, S.G.; Creech, M.N.

2003-02-27

193

Treatment of Mercury Contaminated Oil from Sandia National Laboratory  

SciTech Connect

First Article Tests of a stabilization method for greater than 260 mg mercury/kg oil were performed under a treatability study. This alternative treatment technology will address treatment of U.S. Department of Energy (DOE) organics (mainly used pump oil) contaminated with mercury and other heavy metals. Some of the oil is also co-contaminated with tritium, other radionuclides, and hazardous materials. The technology is based on contacting the oil with a sorbent powder (Self-Assembled Mercaptan on Mesoporous Support, SAMMS), proven to adsorb heavy metals, followed by stabilization of the oil/powder mixture using a stabilization agent (Nochar N990). Two variations of the treatment technology were included in the treatability study. The SAMMS (Self-Assembled Mercaptan on Mesoporous Silica) technology was developed by the Pacific Northwest National Laboratory for removal and stabilization of RCRA metals (i.e., lead, mercury, cadmium, silver, etc.) and for removal of mercury from organic solvents [1]. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide supports provide a high surface area, thereby enhancing the metal-loading capacity. SAMMS material has high flexibility in that it binds with different forms of mercury, including metallic, inorganic, organic, charged, and neutral compounds [1] The material removes mercury from both organic wastes, such as pump oils, and from aqueous wastes. Mercury-loaded SAMMS not only passes TCLP tests, but also has good long-term durability as a waste form because: (1) the covalent binding between mercury and SAMMS has good resistance in ion-exchange, oxidation, and hydrolysis over a wide pH range and (2) the uniform and small pore size of the mesoporous silica prevents bacteria from solubilizing the bound mercury. Nochar's N990 Petrobond (Nochar, Inc., Indianapolis, IN) is an oil stabilization agent, specifically formulated for stabilizing vacuum pump oil, which has fewer volatile organics than many other oils. This material is a non-uniform granular powder that resembles ground Styrofoam plastics. This material has previously been used by itself and in combination with SAMMS to stabilize oil containing low levels of mercury {approx}50 mg/kg in surrogate waste studies [2].

Klasson, KT

2002-05-28

194

External Review for Sandia National Laboratory Microelectronics and Photonics Program 1998 Review  

SciTech Connect

The committee regards Sandia's Microelectronics and Photonics Program as a vital and strategic resource for the nation. The Microsystems (MEMS) and Chem Lab programs were assessed as unique and best-in-class for the development of significant application areas. They contribute directly to the Sandia mission and impact the development of new commercial areas. The continued development and integration of Radiation hard silicon integrated circuits, micromechanical systems, sensors, and optical communications is essential to the national security mission. The quality of the programs is excellent to outstanding overall. MEMS and Chem Lab activities are examples of outstanding programs. The committee was pleased to see the relationship of the microelectronics development programs to applications in the mission. In a future review the committee would like to see Sandia's research programs and a vision for connectivity to potential national security needs. (This review may be based on analysis and assumptions about the strategic needs of the nation.) In summary, the Microelectronics and Photonics capability affords Sandia the opportunity to deliver exceptional service in the national interest across broad technology areas. The presentations were excellent and well integrated. We received ample pre-reading materials, expectations were well set and the documents were high quality. The committee was provided an agenda with sufficient time among us and some selected one-on-one time with the researchers. The composition of the committee held representation from industry, universities and government. Committee contributions were well balanced and worked as a team. However, the committee was disappointed that no member of Sandia executive management was able to be present for the readout and final debriefing. (A late, higher priority conflict developed.) The members of the EST Program and the committee put substantial effort into the review but a written report like this one is not a substitute for direct feedback in helping SNL leadership assess the value of these programs.

MCWHORTER, PAUL J.; ROMIG JR., ALTON D.

1999-02-01

195

Economic impact of Sandia National Laboratories on central New Mexico and the state of New Mexico fiscal year 1997.  

National Technical Information Service (NTIS)

Sandia National Laboratories (SNL) was established in 1949 to perform the engineering development and ordnance responsibilities associated with nuclear weapons. By the early 1960's the facility had evolved into an engineering research and development labo...

R. R. Lansford T. G. Nielsen J. Schultz L. D. Adcock L. M. Gentry

1998-01-01

196

Implementing Virtual Private Networking for Enabling Lower Cost, More Secure Wide Area Communications at Sandia National Laboratories.  

National Technical Information Service (NTIS)

Virtual Private Networking is a new communication technology that promises lower cost, more secure wide area communications by leveraging public networks such as the Internet. Sandia National laboratories has embrace the technology for interconnecting rem...

Miller Yonek

2001-01-01

197

Implementing the Corrective Action Management Unit at Sandia National Laboratories, New Mexico  

SciTech Connect

In September 1997, following significant public and regulator interaction, Sandia Corporation (Sandia) was granted a Resource Conservation and Recovery Act (RCRA) and Hazardous Solid Waste Amendment (HSWA) permit modification allowing construction and operation of a Correction Action Management Unit (CAMU). The CAMU follows recent regulatory guidance that allows for cost-effective, expedient cleanup of contaminated sites and management of hazardous remediation wastes. The CAMU was designed to store, treat, and provide long-term management for Environmental Restoration (ER) derived wastes. The 154 square meter CAMU site at Sandia National Laboratories, New Mexico (SNL/NM), includes facilities for storing bulk soils and containerized wastes, for treatment of bulk soils, and has a containment cell for long-term disposition of waste. Proposed treatment operations include soil washing and low temperature thermal desorption. The first waste was accepted into the CAMU for temporary storage in January 1999. Construction at the CAMU was completed in March 1999, and baseline monitoring of the containment cell has commenced. At completion of operations the facility will be closed, the waste containment cell will be covered, and long-term post-closure monitoring will begin. Sandia's CAMU is the only such facility within the US Department of Energy (DOE) complex. Implementing this innovative approach to ER waste management has required successful coordination with community representatives, state and federal regulators, the DOE, Sandia corporate management, and contractors. It is expected that cost savings to taxpayers will be significant. The life-cycle CAMU project cost is currently projected to be approximately $12 million.

MOORE,DARLENE R.; SCHRADER,SCOTT A.; KING,GABRIEL G.; CORMIER,JOHN

2000-01-26

198

The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories.  

SciTech Connect

Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Kim, Alexandre A. (High Current Electronic Institute (HCEI), Tomsk, RUSSIA); Wakeland, Peter Eric (Ktech Corporation, Albuquerque, NM); McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

2010-04-01

199

The transfer of disruptive technologies: Lessions learned from Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories has learned through their process of technology transfer that not all high tech transfers are alike. They are not alike by the nature of the customers involved, the process of becoming involved with these customers and finally and most importantly the very nature of the technology itself. Here they focus on technology transfer in the microsystems arena and specifically the sacrificial surface version of microsystems. They have learned and helped others learn that many MEMS applications are best realized through the use of surface micromachining (SMM). This is because SMM builds on the substantial integrated circuit industry. In this paper they review Sandia's process for transferring a disruptive MEMS technology in numerous cases.

MCBRAYER,JOHN D.

2000-04-19

200

Sandia National Laboratories 34-meter diameter vertical axis wind turbine test bed  

NASA Astrophysics Data System (ADS)

Sandia National Laboratories has designed, procured, and is erecting a 34-meter diameter vertical axis wind turbine test bed. The turbine incorporates many innovative features to investigate possible reductions in the cost-of-energy produced by wind energy conversion systems. These features include: blade element airfoil sections designed specifically for wind turbines, variable chord-variable section modular blades, stress reducing discontinuous slope blades, and variable speed-constant frequency generation capabilities. The modular blades allow for relatively simple partial configurational changes. Based on Sandia's twelve years of wind turbine research and testing, the test bed is heavily instrumented. The data acquisition and analysis system is capable of rapidly treating large amounts of information on both attended and unattended bases. A comprehensive test plan has been formulated. The turbine is intended to be the primary Department of Energy vehicle for validating concepts intended to improve vertical axis wind energy conversion systems.

Klimas, P. C.

201

Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume I, Chapter 1  

SciTech Connect

Sandia National Laboratories (SNL) began in 1945 as the ''Z'' Division of what was then Los Alamos Scientific Laboratory on Oxnard Field, which was owned by the Air Technical Service Command, as a base of operations to store materials and house personnel. Oxnard Field was transferred to the U.S. Engineers, Manhattan District, on July 21, 1945, who converted several wood frame structures to serve functions that were transferred from Los Alamos. Development of the SNL/New Mexico (SNL/NM) site began in 1946 and 1947 with construction of the first four buildings in what is now Tech Area I. Construction of another 14 permanent buildings in Tech Area I began in 1948. SNL constructed a high-explosive assembly area in Tech Area II, a half mile south of Tech Area I, and started plans for several outdoor testing facilities for Tech Area III, about seven miles to the south of Tech Area I, in 1952. By 1953, SNL completed and put into operation the first group of Tech Area III facilities, which included a rocket sled track, a large centrifuge, a vibration facility, and an instrument control center. Tech Area IV and Tech Area V were developed later to provide facilities for pulsed power and high-energy experiments. As the need developed for outdoor testing facilities remote from the public and other work areas, SNL added many facilities on U.S. Air Force and other federal property in the area known as Coyote Test Field (Sandia National Laboratories, 1997b). Most recently, DOE leased U.S. Air Force facilities in the Manzano Area for SNL to use for storage of low-level radioactive waste, mixed waste (a combination of radioactive and hazardous waste), and transuranic waste (Sandia National Laboratories, 1997a).

March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.; White, B.B.

1999-09-01

202

Geochemical study of groundwater at Sandia National Laboratories/New Mexico and Kirtland Air Force Base  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) and its contractor, Rust Geotech, support the Kirtland Area Office by assisting Sandia National Laboratories/New Mexico (Sandia/NM) with remedial action, remedial design, and technical support of its Environmental Restoration Program. To aid in determining groundwater origins and flow paths, the GJPO was tasked to provide interpretation of groundwater geochemical data. The purpose of this investigation was to describe and analyze the groundwater geochemistry of the Sandia/NM Kirtland Air Force Base (KAFB). Interpretations of groundwater origins are made by using these data and the results of {open_quotes}mass balance{close_quotes} and {open_quotes}reaction path{close_quote} modeling. Additional maps and plots were compiled to more fully comprehend the geochemical distributions. A more complete set of these data representations are provided in the appendices. Previous interpretations of groundwater-flow paths that were based on well-head, geologic, and geochemical data are presented in various reports and were used as the basis for developing the models presented in this investigation.

NONE

1995-10-01

203

Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document  

SciTech Connect

The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

NONE

1999-03-01

204

On the integration of technology readiness levels at Sandia National Laboratories.  

SciTech Connect

Integrating technology readiness levels (TRL) into the management of engineering projects is critical to the mitigation of risk and improved customer/supplier communications. TRLs provide a common framework and language with which consistent comparisons of different technologies and approaches can be made. At Sandia National Laboratories, where technologies are developed, integrated and deployed into high consequence systems, the use of TRLs may be transformational. They are technology independent and span the full range of technology development including scientific and applied research, identification of customer requirements, modeling and simulation, identification of environments, testing and integration. With this report, we provide a reference set of definitions for TRLs and a brief history of TRLs at Sandia National Laboratories. We then propose and describe two approaches that may be used to integrate TRLs into the NW SMU business practices. In the first approach, we analyze how TRLs can be integrated within concurrent qualification as documented in TBP-100 [1]. In the second approach we take a look at the product realization process (PRP) as documented in TBP-PRP [2]. Both concurrent qualification and product realization are fundamental to the way weapons engineering work is conducted at this laboratory and the NWC (nuclear weapons complex) as a whole. Given the current structure and definitions laid out in the TBP-100 and TBP-PRP, we believe that integrating TRLs into concurrent qualification (TBP-100) rather than TBP-PRP is optimal. Finally, we note that our charter was to explore and develop ways of integrating TRLs into the NW SMU and therefore we do not significantly cover the development and history of TRLs. This work was executed under the auspices and direction of Sandia's Weapon Engineering Program. Please contact Gerry Sleefe, Deputy Program Director, for further information.

Bailey, Beatriz R.; Mitchell, John Anthony

2006-09-01

205

Pollution prevention opportunity assessment for Sandia National Laboratories/California recycling programs.  

SciTech Connect

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/California (SNL/CA) Environmental Management Department between May 2006 and March 2007, to evaluate the current site-wide recycling program for potential opportunities to improve the efficiency of the program. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM Pollution Prevention (P2) staff worked with the SNL/CA P2 Staff to arrive at these options.

Wrons, Ralph Jordan; Vetter, Douglas Walter

2007-07-01

206

Status of the Z Refurbishment project (ZR) at Sandia National Laboratories.  

SciTech Connect

Sandia National Laboratories Z Refurbishment (ZR) Project formally began in August 2002 to increase the Z Accelerator's utilization by providing the capability to perform more shots, improve precision and pulse shape variability, increase delivered current, and accomplish the improvements with minimal disruption to Z's ongoing programs. A project overview was provided at the 14th International Pulsed Power Conference in 2003. This paper provides an update of the project including architectural changes over the past two years, timeframe for completion, and overall design and fabrication status.

Weinbrecht, Edward A.; Bloomquist, Douglas D.; Warner, Peggy Jean; McDaniel, Dillon Heirman; Faturos, Thomas V.; Tabor, Debra Ann; McKee, G. Randall; Weed, John Woodruff

2005-06-01

207

Human factors evaluation of the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico.  

SciTech Connect

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) is a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material for reuse, recycling, or ultimate disposal. Mixed waste may also be handled at the AHCF. A significant upgrade to a previous facility, the Temporary Hot Cell, was required to perform this mission. A checklist procedure was used to perform a human-factors evaluation of the AHCF modifications. This evaluation resulted in two recommendations, both of which have been implemented.

Hunter, Regina Lee; Whitehurst, Hugh O.

2003-11-01

208

EXPEDITING THE PATH TO CLOSURE THE CHEMICAL WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO  

SciTech Connect

The Chemical Waste Landfill (CWL) at Sandia National Laboratories, New Mexico (SNL/NM) is undergoing closure subject to the requirements of Subtitle C of RCRA. This paper identifies regulatory mechanisms that have and continue to expedite and simplify the closure of the CWL. These include (1) the Environmental Restoration (ER) Programmatic effort to achieve progress quickly with respect to the standard regulatory processes, which resulted in the performance of voluntary corrective measures at the CWL years in advance of the standard process schedule, (2) the management and disposal of CWL remediation wastes and materials according to the risks posed, and (3) the combination of multiple regulatory requirements into a single submittal.

Young, S.G.; Schofield, D.P.; Davis, M.J.; Methvin, R.; Mitchell, M.

2003-02-27

209

Large-Scale Field Study of Landfill Covers at Sandia National Laboratories  

SciTech Connect

A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

Dwyer, S.F.

1998-09-01

210

Monitoring Data from the Chemical Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico (2003 - 2006)  

DOE Data Explorer

The Chemical Waste Landfill (CWL) was a 1.9 acre site used from 1962 until 1985 for disposal of chemical wastes. The wastes were generated by research at Sandia's laboratories. The excavation of the CWL and the removal of 2000 intact chemical containers was completed safely and successfully. Contaminated soils were also removed for treatment or disposal. An "in-site" chemiresistor sensor was developed for the project that provided continuous monitoring of volatile organic compounds in the air, soil, and water. The monitoring data, collected from March, 2003 through April, 2006 is summarized and presented at this website.

Ho, Cliff (Sandia National Laboratories)

211

Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report  

SciTech Connect

The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.

Crowson, D.; Gibson, J.D.; Haase, C.S.; Holt, R.; Hyndman, D.; Krumhansl, J.; Lauffer, F.; McCord, J.P.; McCord, J.T.; Neel, D. [and others

1993-10-01

212

Isotope production potential at Sandia National Laboratories: Product, waste, packaging, and transportation  

SciTech Connect

The U.S. Congress directed the U.S. Department of Energy to establish a domestic source of molybdenum-99, an essential isotope used in nuclear medicine and radiopharmacology. An Environmental Impact Statement for production of {sup 99}Mo at one of four candidate sites is being prepared. As one of the candidate sites, Sandia National Laboratories is developing the Isotope Production Project. Using federally approved processes and procedures now owned by the U.S. Department of Energy, and existing facilities that would be modified to meet the production requirements, the Sandia National Laboratories` Isotope Project would manufacture up to 30 percent of the U.S. market, with the capacity to meet 100 percent of the domestic need if necessary. This paper provides a brief overview of the facility, equipment, and processes required to produce isotopes. Packaging and transportation issues affecting both product and waste are addressed, and the storage and disposal of the four low-level radioactive waste types generated by the production program are considered. Recommendations for future development are provided.

Trennel, A.J.

1995-12-31

213

Modeling, simulation, and analysis at Sandia National Laboratories for health care systems  

NASA Astrophysics Data System (ADS)

Modeling, Simulation, and Analysis are special competencies of the Department of Energy (DOE) National Laboratories which have been developed and refined through years of national defense work. Today, many of these skills are being applied to the problem of understanding the performance of medical devices and treatments. At Sandia National Laboratories we are developing models at all three levels of health care delivery: (1) phenomenology models for Observation and Test, (2) model-based outcomes simulations for Diagnosis and Prescription, and (3) model-based design and control simulations for the Administration of Treatment. A sampling of specific applications include non-invasive sensors for blood glucose, ultrasonic scanning for development of prosthetics, automated breast cancer diagnosis, laser burn debridement, surgical staple deformation, minimally invasive control for administration of a photodynamic drug, and human-friendly decision support aids for computer-aided diagnosis. These and other projects are being performed at Sandia with support from the DOE and in cooperation with medical research centers and private companies. Our objective is to leverage government engineering, modeling, and simulation skills with the biotechnical expertise of the health care community to create a more knowledge-rich environment for decision making and treatment.

Polito, Joseph

1994-12-01

214

Overview of the joint US\\/Russia surety program in the Sandia National Laboratories Cooperative Measures Program  

Microsoft Academic Search

Sandia National Laboratories has initiated many joint research and development projects with the two premier Russian nuclear laboratories, VNIIEF and VNIITF, (historically known as Arzamas-16 and Chelyabinsk-70) in a wide spectrum of areas. One of the areas in which critical dialogue and technical exchange is continuing to take place is in the realm of system surety. Activities primarily include either

R. E. Smith; O. S. Vorontsova; I. M. Blinov

1998-01-01

215

Aerial Radiological Survey of the Sandia National Laboratories/New Mexico and Surrounding Areas. Albuquerque, New Mexico.  

National Technical Information Service (NTIS)

A team from the U.S. Department of Energy's Remote Sensing Laboratory conducted an aerial radiological survey of the area surrounding the Sandia National Laboratories/ New Mexico and Kirtland Air Force Base in Albuquerque, New Mexico, during the months of...

T. J. Hendricks D. L. Prout

2001-01-01

216

Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.  

SciTech Connect

Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.

Cochran, John Russell; Danneels, Jeffrey John

2009-03-01

217

Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories  

SciTech Connect

Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This paper presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.

Kwok, Kwan S.

1999-05-04

218

Spectroscopic Analysis of Electron Beam Diodes for Flash X-ray Radiography at Sandia National Laboratories*  

NASA Astrophysics Data System (ADS)

Experiments were performed on RITS-3, a Marx driven, three stage IVA (5.5MV, 120kA), and are continuing on RITS-6, a six stage IVA (10MV, 120kA), to study the role of plasma formation and propagation on electron beam focusing for flash x-ray radiography. It is believed that plasmas formed on electrodes or by interactions with background gases limit e-beam focusing and stability and cause pulse shortening of the diode. These are concerns as higher doses (1000 Rad at 1m) from smaller sources (2mm dia.) are required for future radiographic applications. Diagnostics include time and space resolved visible and uv emission spectra using 1 meter Czerny-Turner monochromators equipped with framing and streak cameras. Line and continuum analysis are conducted using a time-dependent CR model. Self-consistent line shape calculations measure Stark, Doppler, and opacity broadening. Electron density and temperature determinations as well as neutral and ion species parameters are obtained. Such data is crucial to the fundamental understanding of electron beam diode behavior and aids in the continued development of these sources. *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94-AL85000.

Johnston, M. D.; Oliver, B. V.; Hahn, K.; Rovang, D.; Maenchen, J. E.; Droemer, D.; Welch, D. R.; Maron, Y.

2006-10-01

219

Pollution prevention opportunity assessment for MicroFab and SiFab facilities at Sandia National Laboratories.  

SciTech Connect

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the MicroFab and SiFab facilities at Sandia National Laboratories/New Mexico in Fiscal Year 2011. The primary purpose of this PPOA is to provide recommendations to assist organizations in reducing the generation of waste and improving the efficiency of their processes and procedures. This report contains a summary of the information collected, the analyses performed, and recommended options for implementation. The Sandia National Laboratories Environmental Management System (EMS) and Pollution Prevention (P2) staff will continue to work with the organizations to implement the recommendations.

Gerard, Morgan Evan

2011-12-01

220

Technology Transfer from Sandia National Laboratories and Technology Commercialization by MODE/Emcore  

SciTech Connect

This case study describes a success in technology transfer out of Sandia National Laboratories that resulted in commercialization supporting both the laboratories' national security mission and economic development. This case exemplifies how the process of technology innovation stretches from national legislation to laboratory management to entrepreneurs, and then out into the community where the technology must be developed and commercialized if innovation is to occur. Two things emerged from the research for this case study that have implications for technology transfer and commercialization from other national laboratories and may also be relevant to technology commercialization out of other federal laboratories and universities. The first is the very clear theme that partnerships were critical to the ultimate successful commercialization of the technology--partnerships between public and private research groups as well as between business development groups. The second involves identifiable factors that played a role in moving the process forward to successful commercialization. All of the factors, with two significant exceptions, focused on technology and business development directly related to creating research and business partnerships. The two exceptions, a technology with significant market applications, and entrepreneurs willing and able to take the risks and accomplish the hard work of technology innovation, were initiating requirements for the process.

CLARK, KATHERINE SUE; ROMIG, ALTON D. Jr.; ANDRANOVICH, GREG

2001-04-01

221

Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories  

SciTech Connect

The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to miniature robotic devices and sensors for remote sensing and micro-surgery. This paper describes six activities in the large and small scale that are underway and either nearing technology transfer stage or seeking industrial partners to continue application development. The topics of the applications include multiple arm coordination for intuitively maneuvering large, ungainly work pieces; simulation, analysis and graphical training capability for CP-5 research reactor dismantlement; miniature robots with volumes of 16 cubic centimeters and less developed for inspection and sensor deployment; and biomedical sensors to enhance automated prosthetic device production and fill laparoscopic surgery information gap.

Bennett, P.C. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

1996-11-01

222

Z-Pinch Driven Inertial Confinement Fusion Target Physics Research at Sandia National Laboratories  

SciTech Connect

Three hohlraum concepts are being pursued at Sandia National Laboratories (SNL) to investigate the possibility of using pulsed power driven magnetic implosions (z-pinches) to drive high gain targets capable of yields in the range of 200-1000 MJ. This research is being conducted on SNL'S.Z facility that is capable of driving peak currents of 20 MA in z-pinch loads producing implosion velocities as high as 7.5X 107 cm/s, x-ray energies approaching 2 MJ, and x-ray powers exceeding 200 TW. This paper will discuss each of these hohlraum concepts and will overview the experiments that have been conducted on these systems to date.

Alberts, T.E.; Asay, J.R.; Baca, P.M.; Baker, K.L.; Breeze, S.P.; Chandler, G.A.; Cook, D.L.; Cooper, G.W.; Deeney, C.; Derzon, M.S.; Douglas, M.R.; Fehl, D.L.; Gilliland, T.; Hebron, D.E.; Hurst, M.J.; Jobe, D.O.; Kellogg, J.W.; Lash, J.S.; Lazier, S.E.; Leeper, R.J.; Matzen, M.K.; McDaniel, D.H.; McGurn, J.S.; Mehlhorn, T.A.; Moats, A.R.; Mock, R.C.; Muron, D.J.; Nash, T.J.; Olson, R.E.; Porter, J.L.; Quintenz, J.P.; Reyers, P.V.; Ruggles, L.E.; Ruiz, C.L.; Sandford, T.W.L.; Schmidlapp, F.A.; Seamen, J.F.; Spielman, R.B.; Stark, M.A.; Struve, K.W.; Stygar, W.A.; Tibbetts-Russell, D.R.; Torres, J.A.; Vargas, M.; Wagoner, T.C.; Wakefield, C.

1998-10-27

223

Computer Network Availability at Sandia National Laboratories, Albuquerque NM: Measurement and Perception  

SciTech Connect

The desire to provide a measure of computer network availability at Sandia National Laboratories has existed for along time. Several attempts were made to build this measure by accurately recording network failures, identifying the type of network element involved, the root cause of the problem, and the time to repair the fault. Recognizing the limitations of available methods, it became obvious that another approach of determining network availability had to be defined. The chosen concept involved the periodic sampling of network services and applications from various network locations. A measure of ''network'' availability was then calculated based on the ratio of polling success to failure. The effort required to gather the information and produce a useful metric is not prohibitive and the information gained has verified long held feelings regarding network performance with real data.

NELSON,SPENCER D.; TOLENDINO,LAWRENCE F.

1999-11-01

224

Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories  

SciTech Connect

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

Robert W. Carling; Gurpreet Singh

2000-06-19

225

Characterization of septic and drain system releases at Sandia National Laboratories, New Mexico  

SciTech Connect

Sandia National Laboratories/New Mexico (SNL/NM) is located in Albuquerque, New Mexico. The SNL/NM Environmental Restoration (ER) Project is tasked with performing the assessment and remediation of environmental releases resulting from the almost 50 years of engineering development and testing activities. Operable Unit 1295, Septic Tanks and Drainfields, includes inactive septic and drain systems at 23 separate ER sites that were listed as Solid Waste Management Units (SWMUs) in the SNL/NM Resource Conservation and Recovery Act (RCRA) Hazardous and Solid Waste Amendments (HSWA) Module Permit. These sites were identified, based on process histories and interviews with facility personnel, as the subset of all SNL/NM septic and drain systems that had the highest potential for releases of hazardous and radioactive wastes into the environment. An additional 101 septic and drain systems not currently classified as SWMUs also have been identified as needing future characterization.

Sanders, M.R.; Galloway, R.B. [CDM Federal Programs Corp. (United States)]|[Sandia National Labs., Albuquerque, NM (United States)

1997-04-01

226

Overview of Sandia National Laboratories and Khlopin Radium Institute collaborative radiological accident consequence analysis efforts  

SciTech Connect

In January, 1995 a collaborative effort to improve radiological consequence analysis methods and tools was initiated between the V.G. Khlopin Institute (KRI) and Sandia National Laboratories (SNL). The purpose of the collaborative effort was to transfer SNL`s consequence analysis methods to KRI and identify opportunities for collaborative efforts to solve mutual problems relating to the safety of radiochemical facilities. A second purpose was to improve SNL`s consequence analysis methods by incorporating the radiological accident field experience of KRI scientists (e.g. the Chernobyl and Kyshtym accidents). The initial collaborative effort focused on the identification of: safety criteria that radiochemical facilities in Russia must meet; analyses/measures required to demonstrate that safety criteria have been met; and data required to complete the analyses/measures identified to demonstrate the safety basis of a facility.

Young, M.L.; Carlson, D.D. [Sandia National Labs., Albuquerque, NM (United States); Lazarev, L.N.; Petrov, B.F.; Romanovskiy, V.N. [V.G. Khlopin Radium Inst., St. Petersburg (Russian Federation)

1997-05-01

227

The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI  

Microsoft Academic Search

Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated

Kevin S. Ward; Finis W. Long; Vadim A. Sinebryukhov; Alexandre A. Kim; Peter Eric Wakeland; G. Randall McKee; Joseph Ray Woodworth; Dillon Heirman McDaniel; William E. Fowler; Michael Gerrassimos Mazarakis; Porter John Larry Jr; Kenneth William Struve; Mark Edward Savage; William A. Stygar; Keith R. LeChien; Maurice Keith Matzen

2010-01-01

228

Engineering Manhattan style: Sandia Laboratories as an example of postwar engineering  

SciTech Connect

A great deal has been written about the history of science in America since World War II. Much of that work has explored the government`s research and development establishment, focusing on the scientific community immediately after the war. It is generally argued that the apparent triumphs of the huge and expensive wartime research and development projects gave rise to a belief that scientific resources should be nurtured and kept on hand - ready to provide service in an emergency. The Cold War drive for more and better weapons further fed this belief, leading to a massive system of national laboratories, military laboratories, and defense industries. The science of this complex is built on extensive financial support, the central strategy of which is that by steadily, and occasionally even lavishly funding large research programs, you will have a constant stream of scientific ideas that can be applied to national security purposes. What is true of science, is also true, in slightly modified form, of postwar engineering. The story I want to tell you today is, I think, an example of the way Cold War engineering r&d for national security worked. This report describes aspects of the Sandia National Laboratories.

NONE

1996-09-01

229

INFORMATION: Inspection Report on "Removal of Categories I and II Special Nuclear Material from Sandia National Laboratories-New Mexico"  

SciTech Connect

The Department of Energy's (DOE's) Sandia National Laboratories-New Mexico (Sandia) develops science-based technologies in support of national security in areas such as nuclear weapons, nonproliferation, military technologies, and homeland security. Sandia's primary mission is ensuring that the U.S. nuclear arsenal is safe, secure, and reliable and can fully support the Nation's deterrence policy. Part of this mission includes systems engineering of nuclear weapons; research, design, and development of non-nuclear components; manufacturing of non-nuclear weapons components; the provision of safety, security, and reliability assessments of stockpile weapons; and the conduct of high-explosives research and development and environmental testing. Sandia Corporation, a subsidiary of Lockheed Martin Corporation, operates Sandia for the National Nuclear Security Administration (NNSA). On May 7, 2004, the Secretary announced that the Department would evaluate missions at DOE sites to consolidate Special Nuclear Material (SNM) in the most secure environments possible. The Administrator of the NNSA said that this effort was a key part of an overall plan to transform the nuclear weapons complex into a smaller, safer, more secure, and more efficient national security enterprise. In February 2008, Sandia was the first site to report it had reduced its on-site inventory of nuclear material below 'Categories I and II' levels, which require the highest level of security to protect material such as plutonium and highly enriched uranium. The Office of Inspector General initiated an inspection to determine if Sandia made appropriate adjustments to its security posture in response to the removal of the Categories I and II SNM. We found that Sandia adjusted its security posture in response to the removal of Categories I and II SNM. For example, security posts were closed; unneeded protective force weapons and equipment were excessed from the site; and, Sandia's Site Safeguards and Security Plan was modified. We also found that some highly enriched uranium in a complex material configuration was not removed from Sandia. This material was designated as Category III material using a methodology for assessing the attractiveness of complex materials that was not specifically addressed in any current DOE directive. Although DOE and NNSA officials believed that this designation was appropriate, the methodology used to support this designation had not, as of the time of our review, been incorporated into the DOE directives system. Historically, the Department has considered the categorization of SNM to be an important national security and public policy issue. Consequently, we believe that expedited action should be taken to formalize this methodology in the DOE directives system and that it be disseminated throughout the Department of Energy complex.

None

2010-01-01

230

Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste  

SciTech Connect

Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites.

NONE

1996-09-01

231

Ceramic-Metal Brazing, From Fundamentals to Applications: A Review of Sandia National Laboratories Brazing Capabilities, Needs and Opportunities  

SciTech Connect

The purpose of the report is to summarize discussions from a Ceramic/Metal Brazing: From Fundamentals to Applications Workshop that was held at Sandia National Laboratories in Albuquerque, NM on April 4, 2001. Brazing experts and users who bridge common areas of research, design, and manufacturing participated in the exercise. External perspectives on the general state of the science and technology for ceramics and metal brazing were given. Other discussions highlighted and critiqued Sandia's brazing research and engineering programs, including the latest advances in braze modeling and materials characterization. The workshop concluded with a facilitated dialogue that identified critical brazing research needs and opportunities.

HOSKING, F. MICHAEL; STEPHENS JR., JOHN J.; GLASS, S. JILL; JOHANNES, JUSTINE E.; KOTULA, PAUL G.; LAPETINA, NEIL A.; LOEHMAN, RONALD E.; SWILER, THOMAS P.; WEBB III, EDMUND B.; CADDEN, CHARLES H.; OYAMA, T.; TOMSIA, A.P.

2002-05-01

232

Science-based material modeling activities at Sandia National Laboratories/California : an overview.  

SciTech Connect

The purpose of this presentation is to provide an overview of the science-based materials modeling activities at Sandia National Laboratories, California. The main mission driver for the work is the development of predictive modeling and simulation capabilities leveraging high performance computing software and hardware. Presentation will highlight research accomplishments in several specific topics of current interest. Sandia/California has been engaged in the development of high performance computing based predictive modeling and simulation capabilities in support of the Science-Based Stockpile Stewardship Program of the U. S. Department of Energy. Of particular interest is the development of constitutive models that can efficiently and accurately predict post-failure material response and load-redistribution in systems and components. Fracture and failure are inherently multi-scale and our philosophy is to include required physics in our models at all appropriate scales. We approach the problems from the continuum point of view and intend to provide continuum models that include dominant subscale mechanisms. Moreover, numerical algorithms are needed to allow implementation of physical models in high performance computing codes such that large-scale modeling and simulation can be conducted. Other drivers of our effort include the emerging application of micro- and nano-systems and the increasing interest in biotechnology. In this presentation, our research in fracture and failure modeling, atomic-continuum coupling code development, microstructure-material properties relationships exploration, and general continuum theories advancement will be presented. Where appropriate, examples will be given to demonstrate the utility of the models.

Chen, Er-Ping

2004-08-01

233

``We crash, burn, and crush``: A history of packaging at Sandia National Laboratories, 1978--1997  

SciTech Connect

Even prior to the beginning of the nuclear age, the packaging and transportation of nuclear materials was a prime national concern. Nuclear materials such as uranium and plutonium had to be transported safely (and secretly) to the Manhattan Engineer District Laboratory in Los Alamos, New Mexico. The subsequent post war use of nuclear power for the generation of electricity and accelerated weapons development programs resulted in radioactive waste byproducts, such as spent fuel and plutonium, that were stored on site at utilities and federal weapons sites. While projected repositories for long term storage of radioactive waste are being planned, both low and high level radioactive materials on occasion must be moved safely. Movement to interim storage and, for low level waste, repository sites, is accomplished by a combination of truck, rail, ship, and air. The US Department of Energy (DOE) directs transportation activities including cask development technology for use in single or multimodal (a combination of land, water, and air) transport. In 1978, Sandia National Laboratories was selected as the lead contractor for basic transportation technology. This report is divided into the following topics: (1) early research and development (1936--1978); (2) radioactive material package test (1975--1977); (3) the SNL Transportation Technology Center; (4) TRUPACT-II; (5) beneficial uses of shipping system casks; (6) C-141B drop tests; (7) MIDAS; (8) MOSAIK; (9) SEARAM; (10) PATRAM; and (11) a chronology of transportation activities.

Mora, C.J.; McConnell, P.

1997-11-01

234

Standard testing procedures for optical fiber and unshielded twisted pair at Sandia National Laboratories. Revision  

SciTech Connect

This revision updates Sandia`s working standard for testing optical fiber and unshielded twisted pair cables included in the Lab-wide telecommunications cabling infrastructure. The purpose of these standard testing procedures is to deliver to all Sandians a reliable, low-maintenance, state-of-the-art, ubiquitous telecommunications cabling infrastructure capable of satisfying all current and future telecommunication needs.

Adams, R.L. [Sandia National Labs., Albuquerque, NM (United States). Communications Dept.

1994-09-01

235

Designing for explosive safety'': The Explosive Components Facility at Sandia National Laboratories  

SciTech Connect

The Explosive Components Facility (ECF) is to be a new major facility in the Sandia National Laboratories (SNL) Weapons Program. The ECF is a self-contained, secure site on SNL property and is surrounded by Kirtland Air Force Base which is located 6-1/2 miles east of downtown Albuquerque, New Mexico. The ECF will be dedicated to research, development, and testing of detonators, neutron generators, batteries, explosives, and other weapon components. It will have capabilities for conducting explosive test fires, gas gun testing, physical analyses, chemical analyses, electrical testing and ancillary explosive storage in magazines. The ECF complex is composed of a building covering an area of approximately 91,000 square feet, six exterior explosive service magazines and a remote test cell. Approximately 50% of the building space will be devoted to highly specialized laboratory and test areas, the other 50% of the building is considered nonhazardous. Critical to the laboratory and test areas are the blast-structural design consideration and operational considerations, particularly those concerning personnel access control, safety and environmental protection. This area will be decoupled from the rest of the building to the extent that routine tests will not be heard or felt in the administrative area of the building. While the ECF is designed in accordance with the DOE Explosives Safety Manual to mitigate any off-site blast effects, potential injuries or death to the ECF staff may result from an accidental detonation of explosive material within the facility. Therefore, reducing the risk of exposing operation personnel to hazardous and energetic material is paramount in the design of the ECF.

Couch, W.A.

1990-12-01

236

Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

Not Available

1993-06-01

237

Food and Drug Administration process validation activities to support 99Mo production at Sandia National Laboratories  

SciTech Connect

Prior to 1989 {sup 99}Mo was produced in the US by a single supplier, Cintichem Inc., Tuxedo, NY. Because of problems associated with operating its facility, in 1989 Cintichem elected to decommission the facility rather than incur the costs for repair. The demise of the {sup 99}Mo capability at Cintichem left the US totally reliant upon a single foreign source, Nordion International, located in Ottawa Canada. In 1992 the DOE purchased the Cintichem {sup 99}Mo Production Process and Drug Master File (DMF). In 1994 the DOE funded Sandia National Laboratories (SNL) to produce {sup 99}Mo. Although Cintichem produced {sup 99}Mo and {sup 99m}Tc generators for many years, there was no requirement for process validation which is now required by the Food and Drug Administration (FDA). In addition to the validation requirement, the requirements for current Good manufacturing Practices were codified into law. The purpose of this paper is to describe the process validation being conducted at SNL for the qualification of SNL as a supplier of {sup 99}Mo to US pharmaceutical companies.

McDonald, M.J.; Bourcier, S.C.; Talley, D.G.

1997-07-01

238

Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility  

SciTech Connect

The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists.

Gutman, W.M.; Silver, R.J. [New Mexico State Univ., Las Cruces, NM (United States). Physical Science Lab.

1994-12-01

239

Geothermal Heat Pump research and development studies at Sandia National Laboratories  

SciTech Connect

The Geothermal Heat Pump (GHP) concept was originally developed in the 1940`s. Recently, because of increasing energy costs, utility interest, and the development of simple and durable ground source heat exchangers, GHP`s have gained international attention as a proven means of energy conservation and electrical peak power demand reduction. GHP systems require installation of a buried heat exchanger to utilize the nearly constant ground temperature making them more efficient than conventional air source heat pumps. However, the high installation cost for both residential and commercial applications is a major obstacle to their market penetration. Sandia National Laboratories (SNL) through its sponsors, the Department of Energy (DOE), and the Department of Defense (DOD), has embarked on a research program to find ways to reduce GHP installation costs and improve performance, thereby increasing their market penetration. The major elements of the program are: data acquisition to quantify the performance of GHP`S, research and development (R&D) of the ground source heat exchanger aimed at reducing, installation costs, and support of DOE efforts to market the GHP concept. This paper describes the current status of our program, some experimental and analytical results, and plans for future activities.

Martinez, G.M.; Sullivan, W.N.

1994-08-01

240

Addressing environmental justice under the National Environment Policy Act at Sandia National Laboratories/New Mexico  

SciTech Connect

Under Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, the Department of Energy (DOE) and Sandia National Laboratories New Mexico (SNL) are required to identify and address, as appropriate, disproportionately high, adverse human health or environmental effects of their activities on minority and low-income populations. The National Environmental Policy Act (NEPA) also requires that environmental justice issues be identified and addressed. This presents a challenge for SNL because it is located in a culturally diverse area. Successfully addressing potential impacts is contingent upon accurately identifying them through objective analysis of demographic information. However, an effective public participation process, which is necessarily subjective, is also needed to understand the subtle nuances of diverse populations that can contribute to a potential impact, yet are not always accounted for in a strict demographic profile. Typically, there is little or no coordination between these two disparate processes. This report proposes a five-step method for reconciling these processes and uses a hypothetical case study to illustrate the method. A demographic analysis and community profile of the population within 50 miles of SNL were developed to support the environmental justice analysis process and enhance SNL`s NEPA and public involvement programs. This report focuses on developing a methodology for identifying potentially impacted populations. Environmental justice issues related to worker exposures associated with SNL activities will be addressed in a separate report.

Cohen, T.M.; Bleakly, D.R.

1997-04-01

241

1998 Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's mission, the Environment, Safety and Health (ES&H) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist SNL's line organizations in meeting all applicable local, State, and Federal environmental regulations and DOE requirements. This annual report for calendar year 1998 (CY98) summarizes the compliance status of environmental regulations applicable to SNL site operations. Environmental program activities include terrestrial surveillance; ambient air and meteorological monitoring hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental remediation; oil and chemical spill prevention; and National Environmental Policy Act (NEPA) activities. This report has been prepared in compliance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990).

Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

1999-09-01

242

High heat flux testing capabilities at Sandia National Laboratories - New Mexico  

SciTech Connect

High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories - New Mexico. This facility, which is owned by the United States Department of Energy, has been in operation for over 17 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion, tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton and the DIII-D tokamak at General Atomics, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux-burnout tests, braze reliability tests and safety related tests. The objective of this article is to provide a brief overview of the high heat flux testing capabilities at the PMTF and describe a few of the experiments performed over the last year.

Youchison, D.L.; McDonald, J.M.; Wold, L.S.

1994-12-31

243

Sandia National Laboratories' Z-Petawatt Laser Facility: A Progress Report  

NASA Astrophysics Data System (ADS)

Sandia National Laboratories' Z accelerator, which is currently being upgraded and will become operational again 2007, includes the Z-Beamlet Laser (ZBL) system [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)] for x-ray imaging support. ZBL is a long-pulse, multi-kJ, TW-class device. For higher energy x-ray requirements on Z, and possible fast ignition studies, an additional laser, the short-pulse, multi-kJ, PW-class Z-Petawatt Laser (ZPW), is presently under construction. In the first phase, 50 J, 0.5 ps pulses have been generated, with pulse compression via commercially-available gratings. In the second phase, with the main cavity slab amplifiers operated at higher gain, followed by beam expansion onto larger (94 cm) Nova gold gratings, an energy enhancement to several hundred J will be achieved. In the final phase, full aperture 4-pass amplification through the main amps, and compression via large multilayer dielectric gratings, will lead to 2 kJ in 1-10 ps.

Bennett, G. R.; Rambo, P. K.; Atherton, B. W.; Brambrink, E.; Edens, A. D.; Geissel, M.; Porter, J. L.; Schwarz, J.; Smith, I. C.

2007-11-01

244

Proximal potentially seismogenic sources for Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

Recent geologic and geophysical investigations within the Albuquerque Basin have shed light on the potentially seismogenic sources that might affect Sandia National Laboratories, New Mexico (SNL/NM), a multi-disciplinary research and engineering facility of the US Department of Energy (DOE). This paper presents a summary of potentially seismogenic sources for SNL/NM, emphasizing those sources within approximately 8 kilometers (km) of the site. Several significant faults of the central Rio Grande rift transect SNL/NM. Although progress has been made on understanding the geometry and interactions of these faults, little is known of the timing of most recent movement or on recurrent intervals for these faults. Therefore, whether particular faults or fault sections have been active during the Holocene or even the late Pleistocene is undocumented. Although the overall subdued surface expression of many of these faults suggests that they have low to moderate slip rates, the proximity of these faults to critical (e.g., nuclear) and non-critical (e.g., high-occupancy, multistory office/light lab) facilities at SNL/NM requires their careful examination for evaluation of potential seismic hazard.

Gibson, J.D.

1995-10-01

245

Initial evaluation of Sandia National Laboratory-prepared crystalline silico-titanates for cesium recovery  

SciTech Connect

Pacific Northwest Laboratory initiated a study of a new class of inorganic ion exchange materials that selectively extracts cesium (Cs), strontium (Sr), and plutonium (Pu) from alkaline radioactive waste solutions. These materials, identified as crystalline silico-titanates (CST), were developed by scientists at the Sandia National Laboratory (SNL) and Texas A&M. This report summarizes preliminary results for the measurement of batch distribution coefficient (K{sub d}) values for the powdered CST materials compared to previously tested ion exchange materials: IONSIV IE-96 (a zeolite produced by UOP), CS-100 (an organic resin produced by Rohm and Haas), and BIB-DJ (a new resorcinol-formaldehyde organic resin produced by Boulder Scientific). Excellent results were obtained for CST inorganic exchangers that could be significant in the development of processes for the near-term pretreatment of Hanford alkaline wastes. The following observations and conclusions resulted from this study: (1) Several CST samples prepared at SNL had a higher capacity to remove Cs from solution as compared to BIB-DJ, IE-96, and CS-100. (2) Cesium distribution results showed that CST samples TAM-40, -42, -43, -70, and -74 had {lambda} values of {approximately}2,200 ({lambda} = Cs K{sub d} {times} {rho}{sub b}; where {lambda} represents the number of exchanger bed volumes of feed that can be loaded on an ion exchange column) at a pH value >14. (3) Cesium distribution values for CST exchangers doubled as the aqueous temperature decreased from 40{degrees} to 10{degrees}C. (4) Crystalline silico-titanates have the capacity to remove Cs as well as Sr and Pu from alkaline wastes unless organic complexants are present. Experimental results indicated that complexed Sr was not removed, and Pu is not expected to be removed.

Bray, L.A.; Carson, K.J.; Elovich, R.J.

1993-10-01

246

Managing Transuranic wastes at Sandia National Laboratories/New Mexico - A Small Quantity Site  

SciTech Connect

Since 1949. Sandia National Laboratories/New Mexico (SNL/NM) has conducted research and development activities in support of the U.S. Department of Energy's (DOE's) National Nuclear Security Administration (NNSA) and other federal agencies in partnership with universities and industry (1). Several of these projects have generated transuranic (TRU) or suspect TRU wastes. Since the early 1990's the TRU waste has been accepted for storage by the Radioactive Waste/Nuclear Material Disposition Department. The majority of the waste is eligible for disposal at the Waste Isolation Pilot Plant (WIPP), but will require additional management activities to be initiated and completed at SNL/M before the waste is transported to Los Alamos National Laboratory (LANL) for characterization, certification, and final transport to WIPP. SNL/NM is working with the DOE Carlsbad Field Office (CBFO) to finalize work off-plans for this legacy waste. A joint project between SNL/NM and LANL at SNL/NM will also create newly-generated TRU waste over the next few years. The SNL./NM waste management personnel have been working with the legacy waste project staff to assemble the information required to prepare a TRAMPAC document for shipment of this waste to LANL. By meeting requirements and documenting processes, inputs, and packaging early, SNL/NM hopes to assemble all the necessary information for AK and transportation before the waste is ever generated. This paper will discuss the present and future inventory of TRU waste stored at SNL/NM and the path forward for transport to LANL. (authors)

Spoerner, M.T. [Sandia National Laboratories/New Mexico, P.O. Box 5800, Albuquerque, NM 87185 (United States); Humphrey, B.J. [Weston Solutions, Inc., 6565 Americas Parkway NE, Suite 200, Albuquerque, NM 87110 (United States)

2006-07-01

247

Resource conservation and pollution prevention through process optimization at Sandia National Laboratories` Steam Plant  

SciTech Connect

The Steam Plant at Sandia National Laboratories/New Mexico (SNL/NM) supplies on average 680,000 kg/day (1.5 x 10{sup 6} lb/day) of saturated steam for space heating and laboratory processes for SNL/NM, Technical Area 1, the eastern portion of Kirtland Air Force Base, the Department of Energy`s Albuquerque Office, and the KAFB Coronado Club. The primary fuel is natural gas (740 mscf/yr); the secondary fuel in the event of a natural gas interruption is diesel fuel. Two storage tanks provide a diesel fuel reserve of 1.5 million gallons. The Steam Plant has been in continuous operation since 1949, and some of the boilers are past their design life. Each of the boilers is controlled through a central Digital Control System (DCS). The DCS design is based on the stoichiometric equation, where the O{sub 2} stack concentration and load rate are set points and the combustion air and gas flow are adjusted based on the equation. The DCS was installed and programmed in 1992, but has not been updated since. Long range studies are being conducted to determine the fate of the steam plant, but implementation of any of these options is at least 5 years in the future. Because it is a major source of air emissions, water and chemical use, and waste water at SNL/NM, the steam plant pursued immediate solutions to reduce costs and pollutant releases, while still providing uninterrupted, quality service to its customers. This paper will summarize the ongoing efforts to conserve water, and reduce air and wastewater discharges at the SNL/NM Steam Plant. These improvements were identified through a Pollution Prevention Opportunity Assessment, an Emissions Reduction Study.

Evans, C.; Chavez, C.

1997-10-01

248

Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory  

SciTech Connect

This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and those of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These nonlinear resonances contributed to poor mass resolution and sensitivity and to erratic ion ejection behavior. To correct for these nonlinear effects, the geometry of the toroid ion trap analyzer has been modified to create an asymmetric torus, as first suggested by computer simulations that predicted significantly improved performance and unit mass resolution for this geometry. A reduced-sized version (one-fifth scale) has been fabricated but was not tested within the scope of this project. Chapter 3 describes groundbreaking progress toward the use of ion-ion chemistry to control the charge state of ions formed by the electrospray ionization process, which in turn enables precision analysis of whole proteins. In addition, this technique may offer the unique possibility of a priori identification of unknown biological material when employed with existing proteomics and genomic databases. Ion-ion chemistry within the ion trap was used to reduce the ions in highly charged states to states of +1 and +2 charges. Reduction in charge greatly simplifies identification of molecular weights of fragments from large biological molecules. This technique enables the analysis of whole proteins as biomarkers for the detection and identification of all three classes of biological weapons (bacteria, toxins, and viruses). In addition to methods development, tests were carried out with samples of tap water, local creek water, and soil (local red clay) spiked with melittin (bee venom), cholera toxin, and virus MS2. All three analytes were identified in tap water and soil; however, all three were problematic for detection in creek water at concentrations of 1 nM. More development of methods is needed.

Whitten, W.B.

2002-12-18

249

Sandia National Laboratories, Livermore Environmental Protection Implementation Plan for the period November 9, 1991--November 9, 1992  

SciTech Connect

Sandia National Laboratories, as part of the DOE complex, is committed to full compliance with all applicable environmental laws and regulations. This Environmental Protection Implementation Plan (EPIP) is intended to ensure that the environmental program objectives of DOE Order 5400.1 are achieved at SNL, Livermore. The EPIP will serve as an aid to management and staff to implement these new programs in a timely manner. 23 refs., 4 figs., 1 tab.

Not Available

1991-10-01

250

Time-resolved 1-10 keV crystal spectrometer for the Z machine at Sandia national laboratories  

Microsoft Academic Search

We have designed, fabricated, calibrated, and fielded a fast, time-resolved 1-10 keV crystal spectrometer to observe the evolution of wire pinch spectra at the Z machine at Sandia national laboratories. The instrument has two convex cylindrical crystals (PET and KAP). Both crystals Bragg reflect X-rays into an array of ten silicon diodes, providing continuous spectral coverage in twenty channels from

D. V. Morgan; S. Gardner; R. Lijiestrand; M. Madlener; S. Slavin; M. Wu; T. J. Nash; V. L. Kantsyrev; D. A. Fedin

2003-01-01

251

Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico  

Microsoft Academic Search

An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated

Gerald L. Peace; Timothy James Goering; Michael David McVey; David James Borns

2003-01-01

252

Shock physics code research at Sandia National Laboratories; massively parallel computers and advanced algorithms  

SciTech Connect

Shock physics researchers at Sandia are working in two areas: massively parallel computing and improved solution algorithms. Our goal is predictive modeling of large, three-dimensional problems. We will discuss the goals, rationale and status of this work.

McGlaun, J.M.; Peery, J.S.; Hertel, E.S.

1996-04-01

253

Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices  

SciTech Connect

Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

1993-10-01

254

The economic impact of Sandia National Laboratories on central New Mexico and the state of New Mexico fiscal year 1997  

SciTech Connect

Sandia National Laboratories (SNL) was established in 1949 to perform the engineering development and ordnance responsibilities associated with nuclear weapons. By the early 1960`s the facility had evolved into an engineering research and development laboratory and became a multiprogram laboratory during the 1970s. Sandia is operated for the US Department of Energy by the Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin, Incorporated. For several years, the US Department of Energy (DOE) Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained an inter-industry, input-output model with capabilities to assess the impacts of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy. This model will be used to assess economic, personal income and employment impacts of SNL on central New Mexico and the state of New Mexico. For this report, the reference period is FY 1997 (October 1, 1996, through September 30, 1997) and includes two major impact analyses: the impact of SNL activities on central New Mexico and the economic impacts of SNL on the state of New Mexico. For purposes of this report, the central New Mexico region includes Bernalillo, Sandoval, Valencia, and Torrance counties. Total impact represents both direct and indirect respending by business, including induced effects (respending by households). The standard multipliers used in determining impacts results from the inter-industry, input-output models developed for the four-county region and the state of New Mexico. 6 figs., 10 tabs.

Lansford, R.R.; Nielsen, T.G.; Schultz, J. [New Mexico State Univ., Las Cruces, NM (United States); Adcock, L.D.; Gentry, L.M. [Dept. of Energy, Albuquerque, NM (United States). Albuquerque Operations Office; Ben-David, S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Economics; Temple, J. [Temple (John), Albuquerque, NM (United States)

1998-05-29

255

1995 annual epidemiologic surveillance report for Sandia National Laboratory-Albuquerque  

SciTech Connect

The US Department of Energy`s (DOE`s) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and injuries that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Sandia National Laboratory-Albuquerque (SNL-AL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at SNL-AL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out. The annual report for 1995 has been redesigned from reports for previous years. Most of the information in the previous reports is also in this report, but some material now appears in the appendices instead of the main body of the report. The information presented in the main body of the report provides a descriptive analysis of the data collected from the site and the appendices provide more detail. A new section of the report presents trends in health over time. The Glossary and an Explanation of Diagnostic Categories have been expanded with more examples of diagnoses to illustrate the content of each category. The data presented here apply only to SNL-AL. The DOE sites are varied, so comparisons of SNL-AL with other DOE sites should be made with caution. It is important to keep in mind that many factors can affect the completeness and accuracy of health information collected at the sites as well as affect patterns of illness and injury observed.

NONE

1995-12-31

256

Absolute, soft x-ray calorimetry on the Z facility at Sandia National Laboratories  

SciTech Connect

Simple and reliable x-ray fluence measurements, in addition to time-resolved diagnostics, are needed to understand the physics of hot Z-pinch plasmas. A commercially available laser calorimeter has been modified for measuring soft x-ray fluence from the Z facility at Sandia National Laboratories. The x-ray absorber of this calorimeter is an aluminum disk, attached to a two-dimensional thermopile and surrounded by an isoperibol shroud. The time-integral and the maximum of the thermopile voltage signal are both proportional to the x-ray energy deposited. Data are collected for 90 seconds, and the instrument has, thus far, been used in the 1--25 mJ range. A wider dynamic measuring range for x-ray fluence (energy/area) can be achieved by varying the area of the defining aperture. The calorimeter is calibrated by an electrical substitution method. Calibrations are performed before and after each x-ray experiment on the Z facility. The calibration of the time-integral of the thermopile voltage vs. energy deposited (or the peak of thermopile voltage vs. energy deposited) is linear with zero offset at the 95% confidence level. The irreproducibility of the calibration is <2%, and the imprecision in the measurement of the incident x-ray energy (inferred from signal noise and the calibration) is estimated to be {approximately}0.9 mJ (95% confidence level). The inaccuracy is estimated at {+-}10%, due to correctable systematic errors (e.g., baseline shifts). Comparisons have been made of the calorimeter to time-resolved x-ray diagnostics, e.g., bolometers and XRD (x-ray diode) arrays, by integrating the flux measured by these instruments over time.

Fehl, D.L.; Muron, D.J.; Leeper, R.J.; Chandler, G.A.; Deeney, C.; Spielman, R.B.

1998-05-01

257

Overview of the joint US/Russia surety program in the Sandia National Laboratories Cooperative Measures Program  

SciTech Connect

Sandia National Laboratories has initiated many joint research and development projects with the two premier Russian nuclear laboratories, VNIIEF and VNIITF, (historically known as Arzamas-16 and Chelyabinsk-70) in a wide spectrum of areas. One of the areas in which critical dialogue and technical exchange is continuing to take place is in the realm of system surety. Activities primarily include either safety or security methodology development, processes, accident environment analyses and testing, accident data-bases, assessments, and product design. Furthermore, a continuing dialog has been established between the organizations with regard to developing a better understanding of how risk is perceived and analyzed in Russia versus that in the US. The result of such efforts could reduce the risk of systems to incur accidents or incidents resulting in high consequences to the public. The purpose of this paper is to provide a current overview of the Sandia surety program and its various initiatives with the Russian institutes, with an emphasis on the program scope and rationale. The historical scope of projects will be indicated. A few specific projects will be discussed, along with results to date. The extension of the joint surety initiatives to other government and industry organizations will be described. This will include the current status of a joint Sandia/VNIIEF initiative to establish an International Surety Center for Energy Intensive and High Consequence Systems and Infrastructures.

Smith, R.E. [Sandia National Labs., Albuquerque, NM (United States); Vorontsova, O.S. [Russian Federal Nuclear Center Inst. of Experimental Physics, Sarov (Russian Federation); Blinov, I.M. [Russian Federal Nuclear Center Inst. of Technical Physics, Snezhinsk (Russian Federation)

1998-02-01

258

Lessons Learned from Sandia National Laboratories' Operational Readiness Review of the Annular Core Research Reactor (ACRR)  

SciTech Connect

The Sandia ACRR (a Hazard Category 2 Nuclear Reactor Facility) was defueled in June 1997 to modify the reactor core and control system to produce medical radioisotopes for the Department of Energy (DOE) Isotope Production Program. The DOE determined that an Operational Readiness Review (ORR) was required to confirm readiness to begin operations within the revised safety basis. This paper addresses the ORR Process, lessons learned from the Sandia and DOE ORRS of the ACRR, and the use of the ORR to confirm authorization basis implementation.

Bendure, Albert O.; Bryson, James W.

1999-05-17

259

Laboratory and Astrophysical Radiation Hydrodynamics : An Introduction  

SciTech Connect

In this talk, the author discusses some aspects of radiation-material interactions that can produce radiation from a violently moving fluid, or, reciprocally, can result in macroscopic motion in fluids which are subject to intense radiation fields. The author also outlines some similarities and contrasts between 'laboratory' and astrophysical phenomena in which radiation hydrodynamics plays an important role.

Mihalas, Dimitri,

2002-01-01

260

U.S.S. IOWA Explosion: Sandia National Laboratories' Final Technical Report. Supplement.  

National Technical Information Service (NTIS)

As part of requests concerning the April 19, 1989, explosion aboard the U.S.S. Iowa and other battleship issues, we assessed the Navy's technical investigation of the explosion. The GAO discussed Sandia's preliminary findings in its report BATTLESHIPS: Is...

1991-01-01

261

Leadership development study :success profile competencies and high-performing leaders at Sandia National Laboratories.  

SciTech Connect

Sandia is undergoing tremendous change. Sandia's executive management recognized the need for leadership development. About ten years ago the Business, Leadership, and Management Development department in partnership with executive management developed and implemented the organizational leadership Success Profile Competencies to help address some of the changes on the horizon such as workforce losses and lack of a skill set in the area of interpersonal skills. This study addresses the need for the Business, Leadership, and Management Development department to provide statistically sound data in two areas. One is to demonstrate that the organizational 360-degree success profile assessment tool has made a difference for leaders. A second area is to demonstrate the presence of high performing leaders at the Labs. The study utilized two tools to address these two areas. Study participants were made up of individuals who have solid data on Sandia's 360-degree success profile assessment tool. The second assessment tool was comprised of those leaders who participated in the Lockheed Martin Corporation Employee Preferences Survey. Statistical data supports the connection between leader indicators and the 360-degree assessment tool. The study also indicates the presence of high performing leaders at Sandia.

Becker, Katherine M.; Mulligan, Deborah Rae; Szenasi, Gail L.; Crowder, Stephen Vernon

2005-04-01

262

Improved PV system reliability results from surge evaluations at Sandia National Laboratories  

SciTech Connect

Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia.

Russell H. Bonn; Sigifredo Gonzalez

2000-04-11

263

Bibliography: Sandia Laboratories Hybrid Microcircuits and Related Thin Film Technology (Revised).  

National Technical Information Service (NTIS)

Hybrid circuit applications for nuclear weapons have been considered at Sandia since the mid-60's. However a major commitment was made in 1970 to develop a limited but well understood set of technologies for weapon applications. Development of these techn...

J. A. Oswalt

1975-01-01

264

Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

Hathcock, Charles D. [Los Alamos National Laboratory

2012-08-27

265

Cryogenic capability for equation-of-state measurements on the Sandia Z pulsed radiation source  

SciTech Connect

Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. The authors are developing a general purpose cryogenic target system for precision radiation driven EOS and shock physics experiments at liquid helium temperatures on the Sandia Z pulsed radiation source. Cryogenic sample cooling in the range of 6--30 K is provided by a liquid helium cryostat and an active temperature control system. The cryogenic target assembly is capable of condensing liquid deuterium samples from the gas phase at about 20 K, as well as cooling solid samples such as beryllium and CH ablators for ICF. The target assembly will also include the capability to use various shock diagnostics, such as VISAR interferometry and fiber-optic-coupled shock breakout diagnostics. They are characterizing the thermal and optical performance of the system components in an off-line cryogenic test facility and have designed an interface to introduce the cryogenic transfer lines, gas lines, and sensor cables into the Z vacuum section. Survivability of high-value cryogenic components in the destructive post-implosion environment of Z is a major issue driving the design of this cryogenic target system.

Hanson, D.L.; Johnston, R.R.; Asay, J.R.

1998-02-01

266

Environmental Testing Philosophy for a Sandia National Laboratories' Small Satellite Project - A Retrospective  

SciTech Connect

Sandia has recently completed the flight certification test series for the Multi-Spectral Thermal Imaging satellite (MTI), which is a small satellite for which Sandia was the system integrator. A paper was presented at the 16th Aerospace Testing Seminar discussing plans for performing the structural dynamics certification program for that satellite. The testing philosophy was originally based on a combination of system level vibroacoustic tests and component level shock and vibration tests. However, the plans evolved to include computational analyses using both Finite Element Analysis and Statistical Energy Analysis techniques. This paper outlines the final certification process and discuss lessons learned including both things that went well and things that should/could have been done differently.

CAP,JEROME S.

2000-08-24

267

High current linear transformer driver (LTD) development at Sandia National Laboratories  

Microsoft Academic Search

Sandia is actively pursuing the development of new accelerators based on the new technology of the linear transformer driver (LTD). LTD based drivers are currently considered for many applications including X-ray radiography, very high current Z-pinch drivers, and Z-pinch IFE (inertial fusion energy). LTD is a new method for constructing high-current, high-voltage induction pulsed accelerators. The pulse forming capacitors and

M. G. Mazarakis; W. E. Fowler; K. R. LeChien; J. L. Porter; W. E. Stygar; A. A. Kim; R. Gilgenbach

2009-01-01

268

Chemical Microsensor and Micro-Instrument Technology at Sandia National Laboratories  

SciTech Connect

Important factors in the application of chemical sensing technology to space applications are low mass, small size, and low power. All of these attributes are enabled by the application of MEMS and micro-fabrication technology to chemical sensing. Several Sandia projects that apply these technologies to the development of new chemical sensing capabilities with the potential for space applications will be described. The Polychromator project is a joint project with Honeywell and MIT to develop an electrically programmable diffraction grating that can be programmed to synthesize the spectra of molecules. This grating will be used as the reference cell in a gas correlation radiometer to enable remote chemical detection of most chemical species. Another area of research where micro-fabrication is having a large impact is the development of a lab on a chip. Sandia's efforts to develop the {mu}ChemLab{trademark} will be described including the development of microfabricated pre-concentrators, chromatographic columns, and detectors. Chemical sensors are evolving in the direction of sensor arrays with pattern recognition methods applied to interpret the pattern of response. Sandia's development of micro-fabricated chemiresistor arrays and the VERI pattern recognition technology to interpret the sensor response will be described.

Butler, M.A.; Frye-Mason, G.C.; Hughes, R.C.; Osbourn, G.C.

1999-03-26

269

Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.  

SciTech Connect

A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

2004-11-01

270

UCD-LLNL-SNL TV link system proof-of-performance, year of 1990. [University of California at Davis, Lawrence Livermore National Laboratory, Sandia National Laboratory  

SciTech Connect

The proof-of-performance for the 1990--1991 school year took place on September 18--19, 1990. The proof-of-performance is coordinated by LLNL Electronics Engineering personnel and performed by the UCD--LLNL--SNL TV Link technical staff of Lawrence Livermore Laboratory, University of California, Davis, and Sandia National Laboratory. The objective of the proof-of-performance is to demonstrate proper system performance and operation on a regular basis. Any discrepancies in the performance of the system or variance in measurements from proof to proof will show problem areas which require attention. The proof-of-performance is designed to proof the entire transmission chain. Both subjective and objective measurements are performed on the entire system. Measurements of separate sections of the transmission path such as the microwave are performed independently. The proof-of-performance of the TV link from University of California at Davis (UCD) to Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) involves the measurement of a calibrated test signal that originates in the TV classrooms in Bainer Hall at the UCD campus and is received at various locations at LLNL and SNL. Proof of the TV link from LLNL to UCD involves the measurement of a calibrated test signal that originates at the University Monitoring (UM) racks in B131, Room 1282B, and is received at the Link 1B classroom, RM 1122, Bainer Hall, UCD.

Dirks, D.H.

1990-09-01

271

Update of the Z Refurbishment project (ZR) at Sandia National Laboratories.  

SciTech Connect

Sandia's Z Refurbishment (ZR) Project formally began in February 2002 to increase the Z Accelerator's utilization by providing the capability to perform more shots, improve precision and pulse shape variability, and increase delivered current. A project update was provided at the 15th International Pulsed Power Conference in 2005. The Z facility was shut down in July 2006 for structural/infrastructure modifications and installation of new pulsed power systems. The refurbishment will conclude in 2007. This paper provides a status update of the project covering the past 2 years of activities.

Moncayo, Carla; Bloomquist, Douglas D.; Weed, John Woodruff; Tabor, Debra Ann; Donovan, Guy Louis; McKee, G. Randall; Weinbrecht, Edward A.; Faturos, Thomas V.; McDaniel, Dillon Heirman

2007-08-01

272

Sandia microelectronics development  

SciTech Connect

An overview of the operations of Sandia`s Microelectronics Development Lab (MDL) is to develop radiation hardened IC, but techniques used for IC processing have been applied to a variety of related technologies such as micromechanics, smart sensors, and packaging.

Weaver, H.T.

1997-02-01

273

Laser Tracker III: Sandia National Laboratories' third generation laser tracking system  

NASA Astrophysics Data System (ADS)

At Sandia Labs' Coyote Canyon Test Complex, it became necessary to develop a precision single station solution to provide time space position information (tspi) when tracking airborne test vehicles. Sandia's first laser tracker came on line in 1968, replacing the fixed camera technique for producing trajectory data. This system shortened data reduction time from weeks to minutes. Laser Tracker II began operations in 1982, replacing the original tracker. It incorporated improved optics and electronics, with the addition of a microprocessor- based real-time control (rtc) system within the main servo loop. The rtc added trajectory prediction with the loss of adequate tracking signal and automatic control of laser beam divergence according to target range. Laser Tracker III, an even more advanced version of the systems, came on line in 1990. Unlike LTII, which is mounted in a trailer and must be moved by a tractor, LTIII is mounted on its own four-wheel drive carrier. This allows the system to be used at even the most remote locations. It also incorporated improved optics and electronics with the addition of absolute ranging, acquisition on the fly, and automatic transition from manual joystick tracking to laser tracking for aircraft tests.

Patrick, Duane L.

1995-05-01

274

Estimation of the carbon monoxide emissions due to Sandia National Laboratories commuter and on-base traffic for conformity determination  

SciTech Connect

This report describes the analysis and conclusion of an investigation of the carbon monoxide emissions resulting from Sandia National Laboratories and Department of Energy (DOE) commuter and on-base traffic for the Clean Air Act (CAA) Conformity Determination. Albuquerque/Bernalillo County was classified as a nonattainment area by the Environmental Protection Agency. Nonattainment area is an area which is shown by monitored data or which is calculated by air quality modeling to exceed any National Ambient Air Quality Standard (NAAQS) for the pollutant. Albuquerque/Bernalillo County exceeds the NAAQS for carbon monoxide and ozone. The Conformity Determination was needed to complete the CAA Title V Permitting process for SNL and the DOE. The analysis used the EPA approved MOBILE5a Carbon Monoxide (CO) emissions modeling program. This analysis will provide a baseline for mobile sources to allow Sandia to estimate any future activity and how that activity will impact CO emissions. The General Conformity Rule (AQCR 43) requires that operations which will increase CO emissions in nonattaimnent or maintenance areas such as Bernalillo County undergo conformity analyses to determine whether or not they will impact ambient air quality in the area.

McClellan, Y. [Sandia National Labs., Albuquerque, NM (United States); Royer, R. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Biochemistry

1996-09-01

275

Unified parallel C and the computing needs of Sandia National Laboratories.  

SciTech Connect

As Sandia looks toward petaflops computing and other advanced architectures, it is necessary to provide a programming environment that can exploit this additional computing power while supporting reasonable development time for applications. Thus, they evaluate the Partitioned Global Address Space (PGAS) programming model as implemented in Unified Parallel C (UPC) for its applicability. They report on their experiences in implementing sorting and minimum spanning tree algorithms on a test system, a Cray T3e, with UPC support. They describe several macros that could serve as language extensions and several building-block operations that could serve as a foundation for a PGAS programming library. They analyze the limitations of the UPC implementation available on the test system, and suggest improvements necessary before UPC can be used in a production environment.

Brown, Jonathan Leighton; Wen, Zhaofang

2004-09-01

276

Chemical analyses of soil samples collected from the Sandia National Laboratories, New Mexico environs, 1993-2005.  

SciTech Connect

From 1993 through 2005, the Environmental Management Department of Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM), has collected soil and sediment samples at numerous locations on-site, on the perimeter, and off-site for the purpose of determining potential impacts to the environs from operations at the Laboratories. These samples were submitted to an analytical laboratory for metal-in-soil analyses. Intercomparisons of these results were then made to determine if there was any statistical difference between on-site, perimeter, and off-site samples, or if there were year-to-year increasing or decreasing trends which indicated that further investigation may be warranted. This work provided the SNL Environmental Management Department with a sound baseline data reference against which to assess potential current operational impacts or to compare future operational impacts. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data is presented in graphical format with narrative commentaries on particular items of interest.

Deola, Regina Anne; Oldewage, Hans D.; Herrera, Heidi; Miller, Mark Laverne

2006-03-01

277

Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico  

SciTech Connect

The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

McVey, M.D.; Goering, T.J. [GRAM, Inc., Albuquerque, NM (United States); Peace, J.L. [Sandia National Labs., Albuquerque, NM (United States)

1996-02-01

278

The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI.  

SciTech Connect

Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores and other cavity components. Experimental results will be presented at the Conference and in future publications.

Ward, Kevin S. (Ketech Corporation, Albuquerque, NM); Long, Finis W.; Sinebryukhov, Vadim A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Kim, Alexandre A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Wakeland, Peter Eric (Ketech Corporation, Albuquerque, NM); McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Savage, Mark Edward; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

2010-09-01

279

A reevaluation of the National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) program at Sandia National Laboratories, New Mexico  

Microsoft Academic Search

The initial National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) Program at Sandia National Laboratories, New Mexico (SNL\\/NM) required: (1) continuous air monitoring of sources if the calculated effective dose equivalent (EDE) to the maximum exposed individual (MEI) was > 0.1 mrem\\/yr; (2) the determination of emissions based on measurements or measured parameters if

T. A. Culp; J. M. Hylko

1997-01-01

280

Review of Low-Flow Bladder Pump and High-Volume Air Piston Pump Groundwater Sampling Systems at Sandia National Laboratories, New Mexico.  

National Technical Information Service (NTIS)

Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are ni...

S. S. Collins G. A. Bailey T. O. Jackson

2003-01-01

281

Chemical analyses of soil samples collected from the Sandia National Laboratories, Kauai Test Facility, HI, 1999-2007.  

SciTech Connect

In 1999, 2002, and 2007, the Environmental Programs and Assurance Department of Sandia National Laboratories (SNL) at the Kauai Test Facility (KTF), HI, has collected soil samples at numerous locations on-site, on the perimeter, and off-site for determining potential impacts to the environs from operations at KTF. These samples were submitted to an analytical laboratory for metal-in-soil analyses. Intercomparisons of these results were then made to determine if there was any statistical difference between on-site, perimeter, and off-site samples, or if there were increasing or decreasing trends that indicated that further investigation might be warranted. This work provided the SNL Environmental Programs and Assurance Department with a sound baseline data reference against which to compare future operational impacts. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data is presented in graphical format with narrative commentaries on particular items of interest.

Miller, Mark Laverne

2007-11-01

282

Overview of the dynamic-hohlraum x-ray source at Sandia National Laboratories.  

SciTech Connect

Progress in understanding the physics of Dynamic-Hohlraums is reviewed for a system capable of generating 10 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions. 2D magneto-hydrodynamic simulation comparisons with data show the need to include wire initiation physics and subsequent discrete wire dynamics in the simulations if a predictive capability is to be achieved.

Sanford, Thomas W. L.

2007-04-01

283

Experiences with electronic laboratory notebook implementation in a materials R&D environment at Sandia National Laboratories.  

SciTech Connect

Changing paradigms from paper laboratory notebooks to electronic creates challenges. Meeting regulatory requirements in an R&D environment drives thorough documentation. Creating complete experimental records is easier using electronic laboratory notebooks. Supporting investigations through re-creating experimental conditions is greatly facilitated using an ELN.

Thornberg, Steven Michael

2010-03-01

284

Laboratory source of synchrotron radiation: TROLL-2  

NASA Astrophysics Data System (ADS)

A laboratory synchrotron radiation (SR) source TROLL-2 is described. Its main parameters are as follows: the energy of the accelerated particles = 24 MeV; the orbit radius = 20 mm; the SR pulse half-width = 2 ms, the maximum spectral radiant power (at ? = 350 nm) = 1.2×106 W/m.

Anevsky, S. I.; Vernyi, A. E.; Panasjuk, V. S.; Khromchenko, V. B.

1987-11-01

285

Laboratory and Astrophysical Radiation Hydrodynamics: An Introduction  

NASA Astrophysics Data System (ADS)

The radiation received from stars provides the diagnostic tool to infer temperatures, densities, hydrodynamic motions, and chemical compositions in their atmospheres. For most stars it appears to be an adequate first approximation to assume that there are no large-scale hydrodynamic motions. However, in the most luminous stars the intense radiation field deposits sufficient photon momentum in the outermost layers to drive them off in a supersonic hydrodynamic flow. Likewise, in exploding stars such as novae and supernovae, the dominant form of energy and momentum content and transfer may reside not in the material flow, but in the radiation field. Further, pulsating stars are driven by an internal ``radiation engine'' in which the variation of the opacity of the material with temperature and density acts as a thermodynamic valve. In all these objects, and adequate analysis of the physics of the atmosphere requires application of the discipline of Radiation Hydrodynamics, where one considers the dynamics of a two-component (at least!) radiating fluid. This talk will illustrate some aspects of the radiation-material interaction that produce large-scale motions in stellar atmospheres and envelopes, and make some connections between stellar and laboratory radiation-driven phenomena.

Mihalas, D.

2003-01-01

286

Sandia`s photonic program and its changing national role  

SciTech Connect

Photonics activities at Sandia National Laboratories are founded on an extensive materials research program. In 1988, the Compound Semiconductor Research Laboratory (CSRL) was established at Sandia to bring together device and materials research and development, in support of Sandia`s role in weapons technologies. Recently, industrial competitiveness has been added as a major mission for the national laboratories. As a result, present photonics programs are not only directed towards internal applications-driven projects, but are increasingly tied to the Department Of Energy`s (DOE`s) Technology Transfer Initiatives (TTIs), Cooperative Research and Development Agreements (CRADAs), and participation in partnerships and consortia. This evolution yields a full range of photonics programs, ranging from materials synthesis and device fabrication to packaging, test, and subsystem development. This paper presents an overview of Sandia`s photonics-program directions, using three applications as examples.

Carson, R.F.; Meyer, W.J.

1994-03-01

287

Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico  

SciTech Connect

This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)

1994-05-25

288

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.  

SciTech Connect

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

2009-01-01

289

Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.  

SciTech Connect

The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

2007-10-01

290

An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico  

SciTech Connect

Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

Hallman, Anne K. [Sandia National Labs., Albuquerque, NM (United States); Meyer, Dann [IT Corporation, Albuquerque, NM (United States); Rellergert, Carla A. [Roy F. Weston, Inc., Albuquerque, NM (United States); Schriner, Joseph A. [Automated Solutions of Albuquerque, Albuquerque, NM (United States)

1998-06-01

291

An effective waste management process for segregation and disposal of legacy mixed waste at Sandia National Laboratories/New Mexico  

SciTech Connect

Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2,500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well-defined, properly characterized, and accurately inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this report is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

Hallman, A.K. [Sandia National Labs., Albuquerque, NM (United States); Meyer, D. [IT Corp., Albuquerque, NM (United States); Rellergert, C.A. [Roy F. Weston, Inc., Albuquerque, NM (United States); Schriner, J.A. [Automated Solutions of Albuquerque, Inc., NM (United States)

1998-04-01

292

A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission.  

SciTech Connect

In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

Tsao, Jeffrey Yeenien; Myers, Samuel Maxwell, Jr.; Simmons, Jerry Alvon; McIlroy, Andrew; Vook, Frederick L.; Collis, Samuel Scott; Picraux, Samuel Thomas

2011-08-01

293

The Sandia Lightning Simulator.  

SciTech Connect

The Sandia Lightning Simulator at Sandia National Laboratories can provide up to 200 kA for a simulated single lightning stroke, 100 kA for a subsequent stroke, and hundreds of Amperes of continuing current. It has recently been recommissioned after a decade of inactivity and the single-stroke capability demonstrated. The simulator capabilities, basic design components, upgrades, and diagnostic capabilities are discussed in this paper.

Martinez, Leonard E.; Caldwell, Michele

2005-01-01

294

Modeling and Laboratory Investigations of Radiative Shocks  

NASA Astrophysics Data System (ADS)

Supernova remnants are often inhomogeneous, with knots or clumps of material expanding in ambient plasma. This structure may be initiated by hydrodynamic instabilities occurring during the explosion, but it may plausibly be amplified by instabilities of the expanding shocks such as, for example, corrugation instabilities described by D’yakov in 1954, Vishniac in 1983, and observed in the laboratory by Grun et al. in 1991. Shock instability can occur when radiation lowers the effective adiabatic index of the gas. In view of the difficulty of modeling radiation in non-equilibrium plasmas, and the dependence of shock instabilities on such radiation, we are performing a laboratory experiment to study radiative shocks. The shocks are generated in a miniature, laser-driven shock tube. The gas density inside the tube at any instant in time is measured using time and space-resolved interferometry, and the emission spectrum of the gas is measured with time-resolved spectroscopy. We simulate the experiment with a 1D code that models time dependent post-shock ionization and non-equilibrium radiative cooling. S. P. D’yakov, Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki 27, 288 (1954); see also section 90 in L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann 1987); E.T. Vishniac, Astrophys. J. 236, 880 (1983); J. Grun, et al., Phys. Rev. Lett., 66, 2738 (1991)

Grun, Jacob; Laming, J. Martin; Manka, Charles; Moore, Christopher; Jones, Ted; Tam, Daniel

2001-10-01

295

Characteristics of Molybdenum Plasmas Created on the Z-Accelerator at Sandia National Laboratory  

NASA Astrophysics Data System (ADS)

Recent experiments on the Z Accelerator have used molybdenum wires in imploding arrays to create hot dense plasmas that efficiently radiate multi-keV energy x-rays. These molybdenum (Z=42) plasmas create a broad spectrum of x-rays ranging from 2.3 to 3.5 keV when stripped to the sodium-, neon- and fluorine-like states. Spectrscopic measurements of these x-rays will be presented, including measurements of a low energy continuum in the range of 1 to 2 keV, representative of 0.4 keV electron temperature. This data as well as other soft x-ray measurements will be used to generate synthetic spectra, from which determination of plasma temperatures and densities will be made. These analyses will be presented.

Lepell, P. David; Coverdale, Christine A.; Deeney, Christopher; Hansen, Stephanie; Shlyaptseva, Alla S.; Bell, David E.

2001-10-01

296

Review Of Low-Flow Bladder Pump And High-Volume Air Piston Pump Groundwater Sampling Systems At Sandia National Laboratories, New Mexico  

Microsoft Academic Search

Since 1996, Sandia National Laboratories, New Mexico (SNL\\/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL\\/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially

S. S. Collins; G. A. Bailey; T. O. Jackson

2003-01-01

297

Sandia Technology engineering and science accomplishments  

SciTech Connect

This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.

Not Available

1994-02-01

298

TIME-RESOLVED 1-10 keV CRYSTAL SPECTROMETER FOR THE Z MACHINE AT SANDIA NATIONAL LABORATORIES  

SciTech Connect

We have designed, fabricated, calibrated, and fielded a fast, time-resolved 1-10 keV crystal spectrometer to observe the evolution of wire pinch spectra at the Z machine at Sandia National Laboratories. The instrument has two convex cylindrical crystals (PET and KAP). Both crystals Bragg reflect x-rays into an array of ten silicon diodes, providing continuous spectral coverage in twenty channels from 1.0 to 10 keV. The spectral response of the instrument has been calibrated from 1.0 to 6.3 keV at beamline X8A at the National Synchrotron Light Source. The time response of the 1-mm2 silicon detectors was measured with the Pulsed X-ray Source at Bechtel Nevada's Los Alamos Operations, where 2-nanosecond full-width half-maximum (FWHM) waveforms with 700-picosecond rise times typically were observed. The spectrometer has been fielded recently on several experimental runs at the Z Machine. In this paper, we present the time-resolved spectra resulting from the implosions of double-nested tungsten wire arrays onto 5-mm diameter foam cylinders. We also show the results obtained for a double-nested stainless steel wire array with no target cylinder. The spectrometer was located at the end of a 7.1-meter beamline on line-of sight (LOS)21/22, at an angle 12{sup o} above the equatorial plane, and was protected from the debris field by a customized dual-slit fast valve. The soft detector channels below 2.0 keV recorded large signals at pinch time coinciding with signals recorded on vacuum x-ray diodes (XRDs). On experiment Z993, the spectrometer channels recorded a second pulse with a hard x-ray emission spectrum several nanoseconds after pinch time.

D. V. Morgan; S. Gardner; R. Liljestrand; M. Madlener; S. Slavin; M. Wu

2003-06-01

299

Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where direct measurement is not technically feasible, from accumulated PK of the excavated materials.

DOTSON,PATRICK WELLS; GALLOWAY,ROBERT B.; JOHNSON JR,CARL EDWARD

1999-11-03

300

Test plan for the data acquisition and management system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California  

SciTech Connect

This report describes the formal test plan that will be used for the data acquisition and management system developed to monitor a bioremediation study by Argonne National Laboratory in association with Sandia National Laboratories. The data acquisition and management system will record the site data during the bioremediation and assist experts in site analysis. The three major subsystems of this system are described in detail in this report. In addition, this report documents the component- and system-level test procedures that will be implemented at each phase of the project. Results of these test procedures are documented in this report.

Widing, M.A.; Dominiak, D.M.; Leser, C.C.; Peerenboom, J.P.; Manning, J.F.

1995-04-01

301

User`s manual for the data acquisition system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California  

SciTech Connect

This report describes the use of the data acquisition software developed by Argonne National Laboratory and installed at the fuel oil spill site at Sandia National Laboratories. This software provides various programs for interacting with the monitoring and logging system that collects electronic data from sensors installed downhole in the study area. This manual provides basic information on the design and use of these user interfaces, which assists the site coordinator in monitoring the status of the data collection process. Four software programs are included in the data acquisition software suite to provide the following capabilities: datalogger interaction, file management, and data security.

Widing, M.A.; Leser, C.C.

1995-04-01

302

User`s manual for the data analysis system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California  

SciTech Connect

This report describes the use of the data analysis software developed by Argonne National laboratory (ANL) and installed at the fuel oil spill site at Sandia National Laboratories. This software provides various programs for anlayzing the data from physical and chemical sensors. This manual provides basic information on the design and use of these user interfaces. Analysts use these interfaces to evaluate the site data. Four software programs included in the data analysis software suite provide the following capabilities; physical data analysis, chemical data entry, chemical data analysis, and data management.

Widing, M.A.; Leser, C.C.

1995-04-01

303

Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.  

SciTech Connect

Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.

Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory (Raytheon Ktech, Albuquerque, NM)

2011-11-01

304

Scoping evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Examples: Sandia National Laboratories and Los Alamos National Laboratory  

SciTech Connect

The disposal of mixed low-level waste has become an issue for the U.S. Department of Energy and the States since the inception of the Federal Facilities Compliance Act in 1992. Fifteen sites, including Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), have been evaluated to estimate their technical capabilities for disposal of this type of waste after it has been subjected to treatment processes. The analyses were designed to quantify the maximum permissible concentrations of radioactive and hazardous constituents in mixed low-level waste that could potentially be disposed of in a facility at one of the fifteen sites and meet regulatory requirements. The evaluations provided several major insights about the disposal of mixed low-level waste. All of the fifteen sites have the technical capability for disposal of some waste. Maximum permissible concentrations for the radioactive component of the waste at and sites such as SNL and LANL are almost exclusively determined by pathways other than through groundwater. In general, for the hazardous component of the waste, travel times through groundwater to a point 100 meters from the disposal facility are on the order of thousands of years. The results of the evaluations will be compared to actual treated waste that may be disposed of in a facility at one of these fifteen evaluated sites. These comparisons will indicate which waste streams may exceed the disposal limitations of a site and which component of the waste limits the technical acceptability for disposal. The technical analyses provide only partial input to the decision-making process for determining the disposal sites for mixed low-level waste. Other, less quantitative factors such as social and political issues will also be considered.

Gruebel, M.R. [Tech Reps, Inc., Albuquerque, NM (United States); Parsons, A.M.; Waters, R.D. [Sandia National Labs., Albuquerque, NM (United States)

1996-03-01

305

The creation of Sandia`s telecommunication cabling infrastructure  

SciTech Connect

Sandia National Laboratories in Albuquerque, New Mexico, has adopted strategic, standards-based telecommunication technologies to deliver high-speed communication services to its research and development community. The architecture to provide these services specifies a cabling system capable of carrying high-bandwidth signals to each desktop. While the facilities infrastructure of Sandia has been expanding and evolving over the past four decades to meet the needs of this premier research and development community, the communications infrastructure has remained essentially stagnant. The need to improve Sandia`s telecommunication cable infrastructure gave rise to the Intra-building Recabling Project (IRP). The IRP directed Sandia`s efforts to modernize and standardize the communications infrastructure throughout its New Mexico campus. This report focuses on the development and implementation of the project`s design considerations, concepts, and standards, as well as the adopted transmission media and supporting delivery subsystems.

Adams, R. [Sandia National Labs., Albuquerque, NM (United States); Francis, T. [Holmes and Narver, Inc. (United States)

1996-01-01

306

Sandia software guidelines: Volume 5, Tools, techniques, and methodologies  

SciTech Connect

This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. This volume describes software tools and methodologies available to Sandia personnel for the development of software, and outlines techniques that have proven useful within the Laboratories and elsewhere. References and evaluations by Sandia personnel are included. 6 figs.

Not Available

1989-07-01

307

Sandia technology  

NASA Astrophysics Data System (ADS)

Some of Sandia's activities and accomplishments in unclassified programs are described in this report. The role of Sandia in research and development for the Strategic Petroleum Reserve (SPR) is discussed. They are responsible for establishing testing, certification, and monitoring procedures for, and predicting the long-term behavior of, the stored petroleum. Studies in simulated Raman spectroscopy are also discussed. Its use in the study of combustion processes and chemical vapor deposition is described.

Willis, H. M.; Thornborough, A. D.; Cocklereas, C. E.; Trennel, A. J.; Hoenstreter, G. F.; Mead, P. L.

1982-05-01

308

Analysis of instantaneous profile test data from soils near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico  

SciTech Connect

This paper presents the results of an instantaneous profile test conducted near the Mixed Waste Landfill at Sandia National Laboratories/New Mexico. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill, including the relations between hydraulic conductivity, moisture content, and soil water tension. A 4.7 meter by 4.7 meter plot was saturated with water to a depth of 2 meters, and the wetting and drying responses of the vertical profile were observed. These data were analyzed to obtain in situ measurements of the unsaturated hydraulic properties.

Goering, T.J.; McVey, M.D. [GRAM, Inc., Albuquerque, NM (United States); Strong, W.R.; Peace, J.L. [Sandia National Labs., Albuquerque, NM (United States)

1996-02-01

309

A description of the SNL (Sandia National Laboratories) clutter model developed for the SRIM (Simulated Radar IMage) code version 2. 2s  

SciTech Connect

This report describes the clutter model developed at Sandia National Laboratories for the SRIM code version 2.2s. The SNL clutter model is a fully polarimetric model that includes both coherent and incoherent scattering effects. The input parameters to the SNL clutter model are chosen so that an acceptable match is obtained between the model predicted data and the appropriate experimental data. These input parameters are then used in the SRIM code to simulated the desired clutter type. 12 refs., 13 figs., 2 tabs.

Lee, C.E.

1990-10-01

310

Final report: survey and removal of radioactive surface contamination at environmental restoration sites, Sandia National Laboratories/New Mexico. Volume 1  

SciTech Connect

This report describes the survey and removal of radioactive surface contamination at Sandia`s Environmental Restoration (ER) sites. Radiological characterization was performed as a prerequisite to beginning the Resource Conservation and Recovery Act (RCRA) corrective action process. The removal of radioactive surface contamination was performed in order to reduce potential impacts to human health and the environment. The predominant radiological contaminant of concern was depleted uranium (DU). Between October 1993 and November 1996 scanning surface radiation surveys, using gamma scintillometers, were conducted at 65 sites covering approximately 908 acres. A total of 9,518 radiation anomalies were detected at 38 sites. Cleanup activities were conducted between October 1994 and November 1996. A total of 9,122 anomalies were removed and 2,072 waste drums were generated. The majority of anomalies not removed were associated with a site that has subsurface contamination beyond the scope of this project. Verification soil samples (1,008 total samples) were collected from anomalies during cleanup activities and confirm that the soil concentration achieved in the field were far below the target cleanup level of 230 pCi/g of U-238 (the primary constituent of DU) in the soil. Cleanup was completed at 21 sites and no further radiological action is required. Seventeen sites were not completed since cleanup activities wee precluded by ongoing site activity or were beyond the original project scope.

Lambert, K.A.; Mitchell, M.M. [Brown and Root Environmental, Albuquerque, NM (United States); Jean, D. [MDM/Lamb, Inc., Albuquerque, NM (United States); Brown, C. [Environmental Dimensions, Inc., Albuquerque, NM 87109 (United States); Byrd, C.S. [Sandia National Labs., Albuquerque, NM (United States)

1997-09-01

311

All things White Dwarf: The State of Stellar Forensics at the University of Texas and Sandia National Laboratories  

NASA Astrophysics Data System (ADS)

Astronomy has always been considered an observational science, in contrast with other experimental sciences like physics, chemistry, biology, and geology. This is because it has not been possible to perform experiments on the objects we observe. This situation has changed in a way that is transformational. We are now able to make macroscopic bits of star stuff in the lab: plasmas created under conditions that are the same as the plasmas in stars. Although laboratory astrophysics has long been an important part of astronomical research, what has changed is the ability to produce large enough chunks of a star that we can make measurements and perform experiments. In this way, astronomy joins her sister sciences in becoming an experimental science as well as an observational one. I will describe how this came about, the technology behind it, and the results of recent laboratory experiments. Most importantly, we will discuss how this will change our understanding of the universe and its contents. This work will shed new light on our recent discoveries involving McDonald Observatory: planets around white dwarf stars, massive carbon/oxygen variable white dwarf stars, and white dwarf-white dwarf binaries -- including one detached double eclipsing system with an orbital period of 12 minutes. We should measure the rate of change of the orbital period in this system within a year and we expect it to be the highest S/N source of gravitational radiation, easily detectable with LISA or similar approaches.

Winget, Donald

2011-10-01

312

Quality assurance plan for the data acquisition and management system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California  

SciTech Connect

In February 1975, the accidental puncture of an underground transfer line buried about 4 ft below the ground surface at the SNL installation in Livermore, California, resulted in the release of approximately 225.5 m{sup 3} of No. 2 diesel fuel. This report describes the formal quality assurance plan that will be used for the data acquisition and management system developed to monitor a bioremediation pilot study by Argonne National Laboratory in association with Sandia National Laboratories. The data acquisition and management system will record the site data during the bioremediation effort and assist users in site analysis. The designs of the three major subsystems of this system are described in this report. Quality assurance criteria are defined for the management, performance, and assessment of the system. Finally, the roles and responsibilities for configuration management of this system are defined for the entire life cycle of the project.

Peerenboom, J.P.; Leser, C.C.; Ramsey, G.M.; Widing, M.A.

1995-04-01

313

Sandia technology engineering and science accomplishments  

NASA Astrophysics Data System (ADS)

This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics -- Sandia's unique facilities transform research advances into manufacturable products; Energy -- Sandia's energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety, efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia's success.

1994-02-01

314

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1  

SciTech Connect

In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01

315

Committee to evaluate Sandia`s risk expertise: Final report. Volume 1: Presentations  

SciTech Connect

On July 1--2, 1997, Sandia National Laboratories hosted the External Committee to Evaluate Sandia`s Risk Expertise. Under the auspices of SIISRS (Sandia`s International Institute for Systematic Risk Studies), Sandia assembled a blue-ribbon panel of experts in the field of risk management to assess their risk programs labs-wide. Panelists were chosen not only for their own expertise, but also for their ability to add balance to the panel as a whole. Presentations were made to the committee on the risk activities at Sandia. In addition, a tour of Sandia`s research and development programs in support of the US Nuclear Regulatory Commission was arranged. The panel attended a poster session featuring eight presentations and demonstrations for selected projects. Overviews and viewgraphs from the presentations are included in Volume 1 of this report. Presentations are related to weapons, nuclear power plants, transportation systems, architectural surety, environmental programs, and information systems.

Dudley, E.C.

1998-05-01

316

Overview of radiation protection at the Superconducting Super Collider Laboratory  

Microsoft Academic Search

The radiation protection program at the Superconducting Super Collider Laboratory is described. After establishing a set of stringent design guidelines for radiation protection, both normal and accidental beam losses for each accelerator were estimated. From these parameters, shielding requirements were specified using Monte-Carlo radiation transport codes. A groundwater activation model was developed to demonstrate compliance with federal drinking water standards.

S. Baker; G. Britvich; J. Bull; L. Coulson; J. Coyne; N. Mokhov; V. Romero; G. Stapleton

1994-01-01

317

Preliminary data from an instantaneous profile test conducted near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico  

SciTech Connect

This paper presents data from an instantaneous profile test conducted near the Sandia National Laboratories/New Mexico Mixed Waste Landfill in Technical Area 3. The test was performed from December 1993 through 1995 as part of the environmental Restoration Project`s Phase 2 RCRA Facility Investigation of the Mixed Waste Landfill. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill. The instantaneous profile test and instrumentation are described, and the pressure and moisture content data from the test are presented. These data may be useful for understanding the unsaturated hydraulic properties of soils in Technical Area 3 and for model validation, verification, and calibration.

Bayliss, S.C. [DanShar, Inc., Bosque Farms, NM (United States); Goering, T.J.; McVey, M.D. [GRAM, Inc., Albuquerque, NM (United States); Strong, W.R.; Peace, J.L. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Project

1996-04-01

318

Sandia National Laboratories (SNL) and Oak Ridge National Laboratories (ORNL) joint development of SNL`s sample tracking, analysis and reporting (STAR) information system  

SciTech Connect

A comprehensive environmental sample management program allocates much of its resources to collecting, managing, and manipulating information. A computerized system that collects information at the field sampling point, tracks the sample to analytical labs and loads electronic data deliverables from these labs, while maintaining chain of custody and data integrity, is efficient and cost effective for providing consistent and accurate, legally defensible sample data. In June 1993, a team was formed to gather Sample Management Office requirements and begin development of a sample tracking system. This paper is an overview of experiences encountered when Sandia transferred and implemented sample software from the Waste Area Group (WAG6) at ORNL.

Fish, J.; Campbell, D.; Jenkins, B. [and others

1995-05-01

319

Determining the Martian Radiation Environment — The Radiation Assessment Detector (RAD) on Mars Science Laboratory (MSL)  

NASA Astrophysics Data System (ADS)

The Radiation Assessment Detector (RAD) onboard the Mars Science Laboratory (MSL) is performing radiation measurements en route to Mars. On Mars it will measure the broad particle spectrum and determine the dose and dose rate on the martian surface.

Wimmer-Schweingruber, R. F.; Hassler, D. M.; Zeitlin, C.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Weigle, G.; Brinza, D.; Posner, A.; Burmeister, S.; Epperly, M.; Seimetz, L.; Reitz, G.; Kortmann, O.; Köhler, J.; Ehresmann, B.; Neal, K.; Rafkin, S.; Peterson, J.; Tyler, Y.; Smith, K.; Bullock, M.; Cucinotta, F.

2012-03-01

320

Radiation and Health Technology Laboratory Capabilities  

Microsoft Academic Search

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and

Donald E. Bihl; Timothy P. Lynch; Mark K. Murphy; Lynette E. Myers; Roman K. Piper; James T. Rolph

2005-01-01

321

Radiation and Health Technology Laboratory Capabilities  

Microsoft Academic Search

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and

Ronald W. Goles; Michelle Lynn Johnson; Roman K. Piper; Jerry D. Peters; Mark K. Murphy; Mike S. Mercado; Donald E. Bihl; Timothy P. Lynch

2003-01-01

322

Laboratory Astrophysics: Study of Radiative Shocks  

NASA Astrophysics Data System (ADS)

Radiative shocks are high Mach number shocks with a strong coupling between radiation and hydrodynamics which leads to a structure governed by a radiative precursor. They might be encountered in various astrophysical systems: stellar accretion shocks, pulsating stars, interaction of supernovae with the intestellar medium etc. A numerical one dimensional (1D) stationary study of the coupling between hydrodynamics and radiative transfer is being performed. An estimate of the error made by the 1D approach in the radiative transfer treatment is done by an approximate short characteristics approach. It shows, for exemple, how much of the radiation escapes from the medium in the configuration of the experiment. The experimental study of these shocks has been performed with the high energy density laser of the LULI, at the École Polytechnique (France). We have observed several shocks identified as radiative shocks. The shock waves propagate at about 50 km/s in a tiny 10 mm3 shock tube filled with gaz. From the measurements, it is possible to infer several features of the shock such as the speed and the electronic density.

Leygnac, S.; Lanz, T.; Stehlé, C.; Michaut, C.

2002-12-01

323

Technical Justification for Radiation Controls at an Environmental Laboratory  

SciTech Connect

This paper describes the technical approach used to establish radiation protection controls over incoming radioactive materials to an environmental measurements laboratory at the Hanford Site. Conditions that would trigger internal dosimetry, posting.

DUPAQUIER, J.C.

2000-07-01

324

Synchrotron Radiation Department, Daresbury Laboratory, Annual Report, 1996-97.  

National Technical Information Service (NTIS)

This annual report, covering work done at the Synchrotron Radiation Source at CLRC's Daresbury Laboratory from April 1996 to March 1997, clearly highlights the diversity of scientific output of the SRS, with articles ranging from basic research in the phy...

1998-01-01

325

Radiation and Health Technology Laboratory Capabilities  

SciTech Connect

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

2003-07-15

326

Radiation and Health Technology Laboratory Capabilities  

SciTech Connect

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.; Myers, Lynette E.; Piper, Roman K.; Rolph, James T.

2005-07-09

327

Modeling a 1-D bremsstrahlung and neutron imaging array for use on Sandia`s Z machine  

Microsoft Academic Search

Inertial confinement fusion is being studied on the Z facility at Sandia National Laboratories. Z is a large z-pinch machine which can provide 20 MA of current to z-pinch loads producing â¼1.8 MJ of soft x-rays in less than 10 ns. Within the pinch region, decelerated electrons produce a strong source of bremsstrahlung radiation which varies from shot to shot.

G. A. Rochau; M. S. Derzon; D. Fehl; G. E. Rochau; S. Lazier; D. Droemer

1998-01-01

328

Inside Sandia  

SciTech Connect

Articles in this issue include ``Molten salt corrosion testing,`` ``Pulsed ion beams for thermal surface treatment: Improved corrosion, wear, and hardness properties at low cost,`` ``Unmasking hidden armaments: Superconducting gravity sensor could find underground weapons, bunkers,`` ``Charbroiled burgers, heterocyclic amines, and cancer: Molecular modeling identifies dangerous mutagens,`` ``Revolutionary airbag offers increased safety options,`` ``EcoSys{sup TM}: an expert system for `Green Design` ``, ``Sandia, salt, and oil: Labs` diagnostics and analysis help maintain vital US oil reserve,`` and ``Automated fixture design speeds development for prototypes and production``.

NONE

1995-12-31

329

Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies  

Microsoft Academic Search

We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for

Bill Mckerley; Jacqueline M Bustamante; David A Costa; Anthony F Drypolcher; Joseph Hickey

2010-01-01

330

Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)  

SciTech Connect

This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work.

Garcia, T.B.; Gorman, T.P.

1996-12-01

331

Sandia`s network for Supercomputer `96: Linking supercomputers in a wide area Asynchronous Transfer Mode (ATM) network  

SciTech Connect

The advanced networking department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past several years as a forum to demonstrate and focus communication and networking developments. At Supercomputing 96, for the first time, Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory combined their Supercomputing 96 activities within a single research booth under the ASO banner. Sandia provided the network design and coordinated the networking activities within the booth. At Supercomputing 96, Sandia elected: to demonstrate wide area network connected Massively Parallel Processors, to demonstrate the functionality and capability of Sandia`s new edge architecture, to demonstrate inter-continental collaboration tools, and to demonstrate ATM video capabilities. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia`s overall strategies in ATM networking.

Pratt, T.J.; Martinez, L.G.; Vahle, M.O. [and others

1997-04-01

332

Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory  

SciTech Connect

This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

Wilcox, S. M.; Myers, D. R.

2008-12-01

333

Radiation safety program for the cardiac catheterization laboratory.  

PubMed

The Society of Cardiovascular Angiography and Interventions present a practical approach to assist cardiac catheterization laboratories in establishing a radiation safety program. The importance of this program is emphasized by the appropriate concerns for the increasing use of ionizing radiation in medical imaging, and its potential adverse effects. An overview of the assessment of radiation dose is provided with a review of basic terminology for dose management. The components of a radiation safety program include essential personnel, radiation monitoring, protective shielding, imaging equipment, and training/education. A procedure based review of radiation dose management is described including pre-procedure, procedure and post-procedure best practice recommendations. Specific radiation safety considerations are discussed including women and fluoroscopic procedures as well as patients with congenital and structural heart disease. PMID:21254324

Chambers, Charles E; Fetterly, Kenneth A; Holzer, Ralf; Lin, Pei-Jan Paul; Blankenship, James C; Balter, Stephen; Laskey, Warren K

2011-01-19

334

Lithium beam-driven target experiments at 10[sup 15] W/g on PBFA II at Sandia National Laboratories  

SciTech Connect

A lithium beam is focused to an intensity 1--2 TW/cm[sup 2]. The beam divergencies have been measured as low as 23 mrad. This lithium beam has the specific power deposition of [similar to]10 W/g, the beam-driven target experiments have achieved radiation temperature of 58 eV.(AIP) [copyright][ital American] [ital Institute] [ital of] [ital Physics] 1994

Mehlhorn, T.A.; Bailey, J.E.; Chandler, G.A.; Coats, R.S.; Cook, D.L.; Derzon, M.S.; Desjarlais, M.P.; Dukart, R.J.; Gerber, R.; Haill, T.A.; Johnson, D.J.; Leeper, R.J.; Lockner, T.R.; Mazarakis, M.G.; Mendel, C.W.; Mix, L.P.; Moats, A.R.; Renk, T.J.; Rochau, G.E.; Rosenthal, S.E.; Ruiz, C.L.; Tisone, G.C.; Olson, R.E.; Wenger, D.F. (Sandia National Laboratories, Albuquerque New Mexico (United States))

1994-10-05

335

Sandia software guidelines: Software quality planning  

SciTech Connect

This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standard for Software Quality Assurance Plans, this volume identifies procedures to follow in producing a Software Quality Assurance Plan for an organization or a project, and provides an example project SQA plan. 2 figs., 4 tabs.

Not Available

1987-08-01

336

Sandia software guidelines, Volume 4: Configuration management  

SciTech Connect

This volume is one in a series of Sandia Software Guidelines for use in producing quality software within Sandia National Laboratories. This volume is based on the IEEE standard and guide for software configuration management. The basic concepts and detailed guidance on implementation of these concepts are discussed for several software project types. Example planning documents for both projects and organizations are included.

Not Available

1992-06-01

337

Sandia`s network for supercomputing `95: Validating the progress of Asynchronous Transfer Mode (ATM) switching  

SciTech Connect

The Advanced Networking Integration Department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past three years as a forum to demonstrate and focus communication and networking developments. For Supercomputing `95, Sandia elected: to demonstrate the functionality and capability of an AT&T Globeview 20Gbps Asynchronous Transfer Mode (ATM) switch, which represents the core of Sandia`s corporate network, to build and utilize a three node 622 megabit per second Paragon network, and to extend the DOD`s ACTS ATM Internet from Sandia, New Mexico to the conference`s show floor in San Diego, California, for video demonstrations. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations supports Sandia`s overall strategies in ATM networking.

Pratt, T.J.; Vahle, O.; Gossage, S.A.

1996-04-01

338

Building business from technology: The Sandia experience  

SciTech Connect

This paper describes New Ventures, a new initiative at Sandia National Laboratories that encourages the creation of new businesses based on laboratory technology as a timely, efficient means of technology transfer. Sandia`s New Ventures program has shown that a dedicated effort can produce significant results. In the three years prior to this program`s launch, just two ventures per year on average were created based on laboratory technology. By comparison, the New Ventures program has enabled 20 new ventures in its first nine months of full operation.

Traylor, L.B.

1995-07-01

339

An integrated diagnostic package for intense proton and lithium-ion beam measurements on the sandia national laboratories' PBFA-II accelerator  

NASA Astrophysics Data System (ADS)

A review of the diagnostic packages used at Sandia National Laboratories to measure the parameters of intense proton and lithium beams generated on the PBFA-II accelerator will be presented. These diagnostics consist of several types, namely: K ? X-ray pinhole cameras, a multiframe dE/dx ion pinhole camera, a p-i-n diode array ion pinhole camera, Thomson parabola spectrographs, a Rutherford magnetic spectrograph, plasma visible spectroscopy and several nuclear activation diagnostics. These components, when taken together, provide a rather thorough description of the 5 MV, 10 TW ion beams presently being produced. Specifically, the beam parameters measured by the diagnostic array include spatial profile (off and on axis), absolute number, species, voltage, current density and focal power density. A unique feature of these diagnostics is that they are capable of operating in hard (several MeV) X-ray bremsstrahlung backgrounds of some 109-1011rad/s. The operating principles of each diagnostic will be summarized in the paper, along with a discussion of how the diagnostics are integrated together to form a complete system. The paper will close with a discussion of a new nuclear track counting system that has been developed for automatic counting of solid-state nuclear track detectors.

Leeper, R. J.; Stygar, W. A.; Maenchen, J.; Ruiz, C. L.; Kensek, R. P.; Bailey, J.; Cooper, G.; Johnson, D. J.; Lee, J. R.; Lockner, T. R.; Mehlhorn, T. A.; Mix, L. P.; Stinnett, R. W.

1989-04-01

340

A reevaluation of the National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) program at Sandia National Laboratories, New Mexico  

SciTech Connect

The initial National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) Program at Sandia National Laboratories, New Mexico (SNL/NM) required: (1) continuous air monitoring of sources if the calculated effective dose equivalent (EDE) to the maximum exposed individual (MEI) was > 0.1 mrem/yr; (2) the determination of emissions based on measurements or measured parameters if the EDE to the MEI was < 0.1 mrem/yr; and (3) the calculation of worst case releases when the expected air concentrations were below detection limits using standard monitoring equipment. This conservative interpretation of the regulation guided SNL/NM to model, track, and trend virtually all emission sources with the potential to include any radionuclides. The level of effort required to implement these activities was independent of the EDE contributing from individual sources. A recent programmatic review found the NESHAP program to be in excess of the legal requirements. A further review found that, in summation, 13 of 16 radionuclide sources had a negligible impact on the final calculated EDE to the MEI used to demonstrate compliance at 20 separate on-site receptor locations. A reevaluation was performed to meet the legal requirements of 40 CFR 61, Subpart H, and still be reasonable and appropriate under the existing circumstances.

Culp, T.A. [Sandia National Labs., Albuquerque, NM (United States); Hylko, J.M. [Roy F. Weston, Inc., Albuquerque, NM (United States)

1997-10-01

341

Metrology laboratory requirements for third-generation synchrotron radiation sources  

SciTech Connect

New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.

Takacs, P.Z.; Quian, Shinan

1997-11-01

342

Radiation Testing of PICA at the Solar Power Tower.  

National Technical Information Service (NTIS)

Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative hea...

S. M. White

2010-01-01

343

Supersonic Radiatively Cooled Rotating Flows and Jets in the Laboratory  

Microsoft Academic Search

The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal

D. J. Ampleford; C. A. Jennings; S. V. Lebedev; S. N. Bland; S. C. Bott; G. N. Hall; N. Naz; J. P. Chittenden; J. B. A. Palmer; A. Ciardi; M. Sherlock; A. Frank; E. Blackman

2008-01-01

344

Sandia programs relevant to microelectronics fabrication  

SciTech Connect

This report was prepared for the Semiconductor Industry and the National Laboratories Workshop held at the National Academy of Sciences, Washington, DC, February 24, 1987. It details the current Sandia program activities relevant to microelectronics fabrication.

Picraux, S.T.; Vook, F.L.; Gregory, B.L.

1987-04-01

345

Sandia Solar Dryer: Preliminary Performance Evaluation.  

National Technical Information Service (NTIS)

Preliminary performance evaluations were conducted with the prototype modular solar dryer for wastewater sludge at Sandia National Laboratories. Operational parameters which appeared to influence sludge drying efficiency included condensation system capac...

J. S. Glass T. Holm-Hansen J. Tills J. D. Pierce

1986-01-01

346

Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)  

SciTech Connect

The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project.

Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States). Site Restoration Technology Program Office; Valdez, J.M.; Khan, M.A. [IT Corp., Albuquerque, NM (United States)

1995-06-01

347

Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill  

SciTech Connect

Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

Studer, J.E. [INTERA Inc., Albuquerque, NM (United States); Mariner, P.; Jin, M. [INTERA Inc., Austin, TX (United States)] [and others

1996-05-01

348

A Radiation Laboratory Curriculum Development at Western Kentucky University  

SciTech Connect

We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C. [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, 11077, Bowling Green KY 42101 (United States)

2009-03-10

349

Review Of Low-Flow Bladder Pump And High-Volume Air Piston Pump Groundwater Sampling Systems At Sandia National Laboratories, New Mexico  

SciTech Connect

Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using dedicated the lowflow system, and review data for sample system affects on nitrate concentrations.

Collins, S. S.; Bailey, G. A.; Jackson, T. O.

2003-02-25

350

Review of low-flow bladder pump and high-volume air piston pump groundwater sampling systems at Sandia National Laboratories, New Mexico.  

SciTech Connect

Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using dedicated the lowflow system, and review data for sample system affects on nitrate concentrations.

Collins, Sue S.; Jackson, Timmie Okchumpulla (Weston Solutions, Inc., Albuquerque, NM); Bailey, Glenn A.

2003-01-01

351

The Sandia Laboratories Acoustic Facility.  

National Technical Information Service (NTIS)

The manual is intended to serve as a general purpose 'handbook' for an acoustic test facility and contains: (1) information which can aid test personnel in determining test specifications, (2) basic theory and terminology used in acoustic testing, and (3)...

D. O. Smallwood

1968-01-01

352

A Brief History of the Lawrence Radiation Laboratory Criticality Facility  

SciTech Connect

Thousands of critical and high-multiplication subcritical experiments were performed at the Lawrence Radiation Laboratory (LRL) Critical Facility throughout the 1950s and 1960s. This paper presents a brief history of the origins of the LRL and the critical facility with a synopsis of those experiments that have been evaluated and published or will soon appear in the International Handbook of Evaluated Criticality Safety Benchmark Experiments.

Heinrichs, David P.; Wofford, Stephen C. [University of California (United States)

2003-10-15

353

Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program  

SciTech Connect

Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

1998-05-01

354

Importance of energy efficiency in the design of the Process and Environmental Technology Laboratory (PETL) at Sandia National Laboratories, New Mexico (NM)  

SciTech Connect

As part of the design of the Process and Environmental Technology Laboratory (PETL) in FY97, an energy conservation report (ECR) was completed. The original energy baseline for the building, established in Title 1 design, was 595,000 BTU/sq. ft./yr, site energy use. Following the input of several reviewers and the incorporation of the various recommendations into the Title 2 design, the projected energy consumption was reduced to 341,000 BTU/sq. ft./yr. Of this reduction, it is estimated that about 150,000 BTU/sq. ft./yr resulted from inclusion of more energy efficient options into the design. The remaining reductions resulted from better accounting of energy consumption between Title 1 ECR and the final ECR. The energy efficient features selected by the outcome of the ECR were: (1) Energy Recovery system, with evaporative cooling assist, for the Exhaust/Make-up Air System; (2) Chilled Water Thermal Storage system; (3) Premium efficiency motors for large, year-round applications; (4) Variable frequency drives for all air handling fan motors; (4) Premium efficiency multiple boiler system; and (5) Lighting control system. The annual energy cost savings due to these measures will be about $165,000. The estimated annual energy savings are two million kWhrs electric, and 168,000 therms natural gas, the total of which is equivalent to 23,000 million BTUs per year. Put into the perspective of a typical office/light lab at SNL/NM, the annual energy savings is equal the consumption of a 125,000 square foot building. The reduced air emissions are approximately 2,500 tons annually.

Wrons, R.

1998-06-01

355

Sandia software guidelines. Volume 3. Standards, practices, and conventions  

SciTech Connect

This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standard for Software Quality Assurance Plans, this volume identifies software standards, conventions, and practices. These guidelines are the result of a collective effort within Sandia National Laboratories to define recommended deliverables and to document standards, practices, and conventions which will help ensure quality software. 66 refs., 5 figs., 6 tabs.

Not Available

1986-07-01

356

Space Radiation Dosimetry with the The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL)  

Microsoft Academic Search

The Radiation Assessment Detector (RAD) is a compact, lightweight energetic particle an-alyzer that will fly on the NASA 2011 Mars Science Laboratory (MSL) Mission. RAD will detect and analyze energetic particle species (p, n, He, 2¡Z¡26) relevant for dosimetry on the Martian surface. The Galactic Cosmic Rays and Solar Energetic Particles produce both pri-mary and secondary radiation, with secondaries being

Donald M. Hassler; Cary Zeitlin; Robert F. Wimmer-Schweingruber; Eckhardt Boehm; Stephan Boettcher; Soenke Burmeister; Francis A. Cucinotta; Onno Kortmann; Cesar Martin; Arik Posner; Scot Rafkin; Guenther Reitz

2010-01-01

357

Hydrogeothermal studies on the southern part of Sandia National Laboratories/Kirtland Air Force Base-data regarding ground-water flow across the boundary of an intermontane basin  

NASA Astrophysics Data System (ADS)

Subsurface temperature measurements made in drill holes on the Albuquerque bench provide data concerning ground-water flow from the eastern mountains toward the Albuquerque basin. The study area on the southern part of Sandia National Laboratories/Kirtland Air Force Base is traversed by a number of faults parallel to the Rio Grande rift as well as cross-cutting faults. At one or more of the rift-parallel faults very steep gradients are noted in the ground-water table elevation. The temperature data lie along three profiles traversing these faults and the sediments on either side. As with most geothermal studies the present data are taken in drill holes completed for other purposes and are therefore limited both in location and depth. Along the southern profile the temperature data suggest that the Sandia fault is acting as an effective seal at shallow depths. Along the middle profile the data suggest that the Sandia-Tijeras fault complex is transmissive and that the ground-water flow in the sediments occurs along thin depth zones or nearly horizontal channels. These data are used to hypothesize that flow across the fault occurs near or below the water table on the downthrown block. Data along a northern profile are inconclusive as to whether or not the Sandia and Tijeras faults are transmissive; however, a low linear temperature gradient at one site suggests channel flow associated with the Tijeras arroyo. Although the data are limited, they appear to indicate that ground water flows across the faults preferentially at select locations and along thin horizontal zones in the sediments bordering the faults. Models of ground-water flow in such areas should incorporate the probable large vertical differences in hydraulic conductivity, in both the sediments and the faults, in order to provide accurate flow characteristics.

Reiter, Marshall

358

The Sandia Lightning Simulator Recommissioning and upgrades.  

SciTech Connect

The Sandia lightning simulator at Sandia National Laboratories can provide up to 200 kA for a simulated single lightning stroke, 100 kA for a subsequent stroke, and hundreds of Amperes of continuing current. It has recently been recommissioned after a decade of inactivity and the single-stroke capability demonstrated. The simulator capabilities, basic design components, upgrades, and diagnostic capabilities are discussed in this paper.

Martinez, Leonard E.; Caldwell, Michele

2005-08-01

359

Bibliography of reports by the Sandia photovoltaic projects  

Microsoft Academic Search

Sandia Laboratories manages the Systems Definition and Development and the Photovoltaic Concentrator Technology Development projects of the US Department of Energy's Photovoltaics Program. Technical information developed by these projects is disseminated through technical publications workshops, presentations at technical meetings, and contractor reports. This document, which is a compilation of photovoltaic reports and publications by Sandia Laboratories and its contractors, is

1979-01-01

360

Monochromatic x-ray backlighting of tungsten wire arrays on the Sandia Z-machine  

Microsoft Academic Search

Z pinches on the Sandia Z-machine are the world's most powerful laboratory x-ray source, capable of producing >200 TW and 1.8 MJ of soft x rays. This is done by passing 15-20 MA of current through an annular wire array, which forms plasma and is compressed by the resulting magnetic forces to the z-axis, where it thermalizes and radiates. Many

Daniel Sinars; Michael Cuneo; David Wenger; Patrick Rambo; Ian Smith; John Porter

2003-01-01

361

Modeling a one-dimensional bremsstrahlung and neutron imaging array for use on Sandia's Z machine  

Microsoft Academic Search

Inertial confinement fusion is being studied on the Z facility at Sandia National Laboratories. Z is a large z-pinch machine which can provide 20 MA of current to z-pinch loads producing ~1.8 MJ of soft x rays in less than 10 ns. Within the pinch region, decelerated electrons produce a strong source of bremsstrahlung radiation which varies from shot to

G. A. Rochau; M. S. Derzon; D. Fehl; G. E. Rochau; S. Lazier; D. Droemer

1999-01-01

362

Comparative 2D Radiation MHD Simulations of Argon Gas Puff Z-pinch Plasma Experiments on the Sandia Z Machine Using the Radiative Diffusion and CRE Transport Models  

Microsoft Academic Search

The recent development of the computationally efficient tabulated collisional radiative equilibrium (TCRE) radiation transport model(J.W. Thornhill, J.P. Apruzese, J. Davis, R.W. Clark, A.L. Velikovich, J.L. Giuliani, Jr., Y.K. Chong, K.G. Whitney, C. Deeney, C.A. Coverdale and F.L. Cochran, Phys. Plasmas 7, 3480 (2001).) has made possible full multidimensional radiation MHD simulations of hot dense Z-pinch plasmas with a realistic description

Y. K. Chong; J. W. Thornhill Giuliani Jr.; J. P. Apruzese; R. E. Terry; J. Davis

2001-01-01

363

Stanford Synchrotron Radiation Laboratory activity report for 1987  

SciTech Connect

During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

Robinson, S.; Cantwell, K. [eds.

1988-12-31

364

1992 DOE/Sandia crystalline photovoltaic technology project review meeting  

SciTech Connect

This document serves as the proceedings for the annual project review meeting held by Sandia National Laboratories` Photovoltaic Technology and Photovoltaic Evaluation Departments. It contains information supplied by organizations making presentations at the meeting, which was held July 14--15, 1992 at the Sheraton Old Town Hotel in Albuquerque, New Mexico. Overview sessions covered the Department of Energy (DOE) program, including those at Sandia and the National Renewable Energy Laboratory (NREL), and non-DOE programs, including the EPRI concentrator collector program, The Japanese crystalline silicon program, and some concentrating photovoltaic activities in Europe. Additional sessions included papers on Sandia`s Photovoltaic Device Fabrication Laboratory`s collaborative research, cell processing research, the activities of the participants in the Concentrator Initiative Program, and photovoltaic technology evaluation at Sandia and NREL.

Maish, A. [ed.

1992-07-01

365

Detection of neutral particle radiation with the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD)  

NASA Astrophysics Data System (ADS)

RAD, the Radiation Assessment Detector on NASA's Mars Science Laboratory (MSL) rover mission is designed to detect a wide range of different particle species at energies up to 100 MeV/nuc. We present the beam testing results for the flight units of the RAD Sensor Head unit (RSH). Neutral particle response, anti-coincidence efficiency as well as behaviour for relativistic high-Z (up to iron) particles will be shown. Additionally, we present the response of our RSH GEANT4 model for the expected (simulated) Mars surface radiation environment.

Kortmann, O.; Martin, C.; Boehm, E.; Boettcher, S.; Wimmer-Schweingruber, R. F.; Burmeister, S.; Ehresmann, B.; Hassler, D. M.; Zeitlin, C.; Posner, A.; Rafkin, S.; Weigle, E.; Neal, K.; Reitz, G.

2008-12-01

366

Manufacturing Technology: A Sandia Technology Bulletin, Volume 1, No. 1  

NASA Astrophysics Data System (ADS)

Welcome to this first issue of Manufacturing Technology, one of three new technology bulletins published at Sandia National Laboratories in which we seek to share information with U.S. industry about applications of technology. Inside this issue: industry/DOE/Sandia agreement to strengthen specialty metals competitiveness; silicon micromachining produces microscopic parts; Sandia develops state-of-the-art capacitor winding machine; new robotic system spells finis to manual edge finishing; and milling assistant speeds numerically controlled machine programming.

Maydew, R. C.; Leonard, J. A.; Hey, N. S.

1990-08-01

367

Manufacturing technology: A Sandia Technology Bulletin, Volume 1, No. 1  

SciTech Connect

Welcome to this first issue of Manufacturing Technology, one of three new technology bulletins published at Sandia National Laboratories in which we seek to share information with US industry about applications of technology. Inside this issue: industry/DOE/Sandia agreement to strengthen specialty metals competitiveness; silicon micromachining produces microscopic parts; Sandia develops state-of-the-art capacitor winding machine; new robotic system spells finis to manual edge finishing; and milling assistant speeds numerically controlled machine programming.

Maydew, R.C.; Leonard, J.A.; Hey, N.S. (eds.)

1990-08-01

368

Turning a liability into an asset at Sandia California: The Tritium Research Facility transition  

Microsoft Academic Search

With an investment of $20.9 million, Sandia National Laboratories\\/California (Sandia\\/CA) saved the Department of Energy (DOE) an estimated $106.3 million--a 500% return on investment. In cooperation with DOE, Sandia\\/CA decontaminated and transitioned (D and T) the Tritium Research Laboratory (TRL), a DOE non-reactor Category 2 nuclear facility. In support of the DOE`s Office of Defense Programs, Sandia\\/CA had conducted advanced

T. B. Garcia; S. J. Raubfogel

1997-01-01

369

Pulsed Power: Sandia's Plans for the New Millenium  

SciTech Connect

Pulsed power science and engineering activities at Sandia National Laboratories grew out of a programmatic need for intense radiation sources to advance capabilities in radiographic imaging and to create environments for testing and certifying the hardness of components and systems to radiation in hostile environments. By the early 1970s, scientists in laboratories around the world began utilizing pulsed power drivers with very short (10s of nanoseconds) pulse lengths for Inertial Confinement Fusion (ICF) experiments. In the United States, Defense Programs within the Department of Energy has sponsored this research. Recent progress in pulsed power, specifically fast-pulsed-power-driven z pinches, in creating temperatures relevant to ICF has been remarkable. Worldwide developments in pulsed power technologies and increased applications in both defense and industry are contrasted with ever increasing stress on research and development tiding. The current environment has prompted us at Sandia to evaluate our role in the continued development of pulsed power science and to consider options for the future. This presentation will highlight our recent progress and provide an overview of our plans as we begin the new millennium.

QUINTENZ,JEFFREY P.

2000-07-20

370

Simulation and off-line programming at Sandia`s Intelligent Systems and Robotics Center  

SciTech Connect

One role of the Intelligent Robotics and System Center (ISRC) at Sandia National Laboratories is to address certain aspects of Sandia`s mission to design, manufacture, maintain, and dismantle nuclear weapon components. Hazardous materials, devices, and environments are often involved. Because of shrinking resources, these tasks must be accomplished with a minimum of prototyping, while maintaining high reliability. In this paper, the authors describe simulation, off-line programming/planning, and related tools which are in use, under development, and being researched to solve these problems at the ISRC.

Xavier, P.G.; Fahrenholtz, J.C.; McDonald, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center] [and others

1997-11-01

371

A user`s guide to LHS: Sandia`s Latin Hypercube Sampling Software  

SciTech Connect

This document is a reference guide for LHS, Sandia`s Latin Hypercube Sampling Software. This software has been developed to generate either Latin hypercube or random multivariate samples. The Latin hypercube technique employs a constrained sampling scheme, whereas random sampling corresponds to a simple Monte Carlo technique. The present program replaces the previous Latin hypercube sampling program developed at Sandia National Laboratories (SAND83-2365). This manual covers the theory behind stratified sampling as well as use of the LHS code both with the Windows graphical user interface and in the stand-alone mode.

Wyss, G.D.; Jorgensen, K.H. [Sandia National Labs., Albuquerque, NM (United States). Risk Assessment and Systems Modeling Dept.

1998-02-01

372

Radiative transfer theory verified by controlled laboratory experiments.  

PubMed

We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2% to 10%. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to ?2%. VRTE results for packing densities of the order of 5% should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination. PMID:24104804

Mishchenko, Michael I; Goldstein, Dennis H; Chowdhary, Jacek; Lompado, Arthur

2013-09-15

373

The {open_quotes}ASR{close_quotes} story where we are and how we got there: A history of Sandia National Laboratories maintenance employee safety committee  

SciTech Connect

The Area Safety Representative (ASR) Team is an employee based safety committee that was originated in the latter part of 1994. It was introduced by the Operations and Engineering Center ES&H Coordinator who had heard about an employee based safety program implemented at the EG&G Corporation. This information was the first step in creating Sandia`s Maintenance `Area Safety Representative` (ASR) Program. An advertisement went out from the ES&H Coordinator to all the Maintenance Organizations asking for individuals who would be interested in performing as a volunteer safety representative for their section. The interest was moderate but effective. The committee consisted of one volunteer from each of the working sections within the Maintenance Organization, e.e., HVAC Mechanics, Electricians, Millwrights, Plumbers, Sheetmetal Workers, High-Voltage Technicians, a Union Representative, and representatives from the Operations Group that manage sub-contracted personnel. During the past year, organizational changes have brought about the addition of representatives to include the Planners and the Custodians. The original committee members were enrolled in a 30-hour OSHA Voluntary Compliance Outreach Course. This information provided the members with a broad overview of the Safety Guidelines set forth by OSHA for themselves and their coworkers. It is to be noted that this is an employee based safety team. There are no supervisors or managers on the committee but their attendance is always welcomed at the ASR meetings.

NONE

1997-08-01

374

Space Radiation Dosimetry with the The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL)  

NASA Astrophysics Data System (ADS)

The Radiation Assessment Detector (RAD) is a compact, lightweight energetic particle an-alyzer that will fly on the NASA 2011 Mars Science Laboratory (MSL) Mission. RAD will detect and analyze energetic particle species (p, n, He, 2¡Z¡26) relevant for dosimetry on the Martian surface. The Galactic Cosmic Rays and Solar Energetic Particles produce both pri-mary and secondary radiation, with secondaries being created in both the atmosphere and the Martian regolith. Fully characterizing and understanding the surface radiation environment is fundamental to quantitatively assessing the habitability of Mars, and is an essential precursor measurement for future manned Mars missions. An extensive database to be used for calibration has been obtained for a wide range of energetic charged particle beams at the NASA Space Radiation Laboratory (NSRL) and the Heavy Ion Medical Accelerator in Chiba (HIMAC). Neutron calibration data at 5, 15, and 19 MeV were obtained at the Physikalisch-Technische Bundesanstalt. This talk will discuss the highlights of the RAD calibration campaigns and talk about what we have learned from these campaigns with respect to operating RAD on the Martian surface. We will also discuss other mission applications for RAD where dosimetry in mixed fields of energetic charged and neutral particles is needed.

Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Boehm, Eckhardt; Boettcher, Stephan; Burmeister, Soenke; Cucinotta, Francis A.; Kortmann, Onno; Martin, Cesar; Posner, Arik; Rafkin, Scot; Reitz, Guenther

375

Overview of Sandia`s Electric Vehicle Battery Program  

SciTech Connect

Sandia National Laboratories is actively involved several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

Clark, R.P.

1993-12-31

376

Criteria for the Operation of Federally-Owned Secondary Calibration Laboratories (Ionizing Radiation).  

National Technical Information Service (NTIS)

The document contains standards of performance for laboratories that calibrate instrumentation used to measure ionizing radiation. Such standards are useful for the development of a secondary level of calibration laboratories that can provide a high-quali...

E. H. Eisenhower

1991-01-01

377

University of Notre Dame Radiation Laboratory quarterly report, July 1--September 30, 1991  

SciTech Connect

Research carried out at the Notre Dame Radiation Laboratory is briefly described. Research involves areas of electron transfer photoprocesses, photochemistry, pulse radiolysis, and charge transfer reactions. 13 refs.

Not Available

1991-10-15

378

Sandia SCADA Program -- High Surety SCADA LDRD Final Report  

Microsoft Academic Search

Supervisory Control and Data Acquisition (SCADA) systems are a part of the nation's critical infrastructure that is especially vulnerable to attack or disruption. Sandia National Laboratories is developing a high-security SCADA specification to increase the national security posture of the U.S. Because SCADA security is an international problem and is shaped by foreign and multinational interests, Sandia is working to

ROLF E

2002-01-01

379

Architectural Ergonomics of Sandia's RHIC-II Gowning Facility.  

National Technical Information Service (NTIS)

Sandia National Laboratories is beginning to occupy the 5853 sq. meter (63,000 sq.ft.) light lab and office wing of a new complex. Sandia and its contractors will occupy the heavy-lab wing, approximately 2973 sq. meters (32,000 sq.ft.), of which 1161 sq. ...

D. P. Miller

1988-01-01

380

Bibliography of reports by the Sandia Photovoltaic Projects. Revision 3  

Microsoft Academic Search

Sandia National Laborabories manages the Systems Development, Technology Evaluation, and the Photovoltaic Concentrator Research projects of the US Department of Energy's Photovoltaics Program. Technical information developed by these projects is disseminated through technical publications, workshops, presentations at technical meetings, and contractor reports. This document, which is a compilation of photovoltaic reports and publications by Sandia National Laboratories and its contractors,

Boes

1985-01-01

381

Inside Sandia, April 1996  

SciTech Connect

Brief articles in this issue are entitled: New testing techniques, textiles on the information superhighway, and knowledge preservation; Structural health monitoring techniques and robust analysis tools assess aging and damaged structures; Sandia`s VCSELs (Vertical-Cavity Surface-Emitting Lasers): sparking a laser diode revolution; Fiber-optic instrumentation trims weeks off the wait for cervical cancer test results; DAMA (Demand Activated Manufacturing Architecture) project boosts competitiveness of US textile industry; SEAMIST (Science and Engineering Associates Membrane Instrumentation and Sampling Technique) cuts contamination cleanup costs; RePAVing the roads to the past (Relevant Point of Access Video); and Sandia receives DOE basic energy sciences award for sol-gel achievements.

Locke, T. [ed.

1996-04-01

382

Overview of Sandia's fiber laser program  

NASA Astrophysics Data System (ADS)

Sandia National Laboratories' program in high-power fiber lasers has emphasized development of enabling technologies for power scaling and gaining a quantitative understanding of fundamental limits, particularly for high-peak-power, pulsed fiber sources. This paper provides an overview of the program, which includes: (1) power scaling of diffraction-limited fiber amplifiers by bend-loss-induced mode filtering to produce >1 MW peak power and >1 mJ pulse energy with a practical system architecture; (2) demonstration of a widely tunable repetition rate (7.1-27 kHz) while maintaining constant pulse duration and pulse energy, linear output polarization, diffraction-limited beam quality, and <1% pulse-energy fluctuations; (3) development of microlaser seed sources optimized for efficient energy extraction; (4) high-fidelity, three-dimensional, time-dependent modeling of fiber amplifiers, including nonlinear processes; (5) quantitative assessment of the limiting effects of four-wave mixing and self-focusing on fiber-amplifier performance; (6) nonlinear frequency conversion to efficiently generate mid-infrared through deep-ultraviolet radiation; (7) direct diode-bar pumping of a fiber laser using embedded-mirror side pumping, which provides 2.0x higher efficiency and much more compact packaging than traditional approaches employing formatted, fiber-coupled diode bars; and (8) fundamental studies of materials properties, including optical damage, photodarkening, and gamma-radiation-induced darkening.

Kliner, Dahv A. V.; Bambha, Ray P.; Do, Binh T.; Farrow, Roger L.; Fève, Jean-Philippe; Fox, Brian P.; Hadley, G. Ronald; Hansen, Andrea; Hoffman, Hanna J.; Hotoleanu, Mircea; Hoops, Alexandra A.; Hsu, Wen L.; Koplow, Jeffrey P.; Koponen, Joona; Moore, Sean W.; Schmitt, Randal L.; Schrader, Paul E.; Simmons, Joseph H.; Simmons-Potter, Kelly; Smith, Arlee V.; Söderlund, Mikko; Thomes, W. Joseph; Wien, Georg

2008-05-01

383

Sandia Energy Titles.  

National Technical Information Service (NTIS)

The bibliography of energy-related publications produced by Sandia authors is arranged in broad subject category order. Subjects included are conservation, drilling technology, energy (general), environment and safety, fossil energy, geothermal energy, nu...

J. L. Gardner

1978-01-01

384

Laboratory Studies of Supersonic Magnetized Plasma Jets and Radiative Shocks  

NASA Astrophysics Data System (ADS)

In this talk I will focus on laboratory plasma experiments producing magnetically driven supersonic plasma jets and on the interaction of these jets with ambient media. The experiments are scalable to astrophysical flows in that the critical dimensionless numbers such as the plasma collisionality, the plasma beta, the Reynolds number and the magnetic Reynolds number are all in the astrophysically appropriate ranges. The experimental results will be compared with computer simulations performed with laboratory plasma codes and with astrophysical codes. In the experiments the jets are driven and collimated by the toroidal magnetic fields and it is found that the level of MHD instabilities in the jets strongly depends on the strength of the field represented by the ratio of the thermal to magnetic field pressures (plasma beta). The experiments show the possibility of formation of episodic outflows, with periodic ejections of magnetic bubbles naturally evolving into a heterogeneous jet propagating inside a channel made of self-collimated magnetic cavities [1,2]. We also found that it is possible to form quasi-laminar jets which are “indirectly” collimated by the toroidal magnetic fields, but this requires the presence of the lower density halo plasma surrounding the central jet [3]. Studies of the radiative shocks formed in the interaction of the supersonic magnetized plasma flows with ambient plasma will be also presented, and the development of cooling instabilities in the post-shock plasma will be discussed. This research was sponsored by EPSRC Grant No. EP/G001324/1 and by the OFES DOE under DOE Cooperative Agreement No. DE-SC-0001063. References 1. A. Ciardi, S.V. Lebedev, A. Frank et al., The Astrophysical Journal, 691: L147-L150 (2009) 2. F.A. Suzuki-Vidal, S.V. Lebedev, S.N. Bland et al., Physics of Plasmas, 17, 112708 (2010). 3. F.A. Suzuki-Vidal, M. Bocchi, S.V. Lebedev et al., Physics of Plasmas, 19, 022708 (2012).

Lebedev, Sergey

2013-06-01

385

Booster main magnet power supply improvements for NASA Space Radiation Laboratory at BNL  

Microsoft Academic Search

The NASA Space Radiation Laboratory (NSRL), constructed at Brookhaven National Laboratory, under contract from NASA, is a new experimental facility, taking advantage of heavy-ion beams from the Brookhaven Alternating Gradient Synchrotron (AGS) Booster accelerator, to study radiation effect on humans, for prolonged space missions beyond the protective terrestrial magnetosphere. This paper describes the modifications and operation of the Booster Main

I. Marneris; K. A. Brown; J. W. Glenn; A. McNerney; J. Morris; J. Sandberg; S. Savatteri

2003-01-01

386

Sandia Software Guidelines, Volume 2. Documentation  

SciTech Connect

This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standards for software documentation, this volume provides guidance in the selection of an adequate document set for a software project and example formats for many types of software documentation. A tutorial on life cycle documentation is also provided. Extended document thematic outlines and working examples of software documents are available on electronic media as an extension of this volume.

NONE

1995-09-01

387

Modeling a one-dimensional bremsstrahlung and neutron imaging array for use on Sandia{close_quote}s Z machine  

Microsoft Academic Search

Inertial confinement fusion is being studied on the Z facility at Sandia National Laboratories. Z is a large {ital z}-pinch machine which can provide 20 MA of current to {ital z}-pinch loads producing â¼1.8 MJ of soft x rays in less than 10 ns. Within the pinch region, decelerated electrons produce a strong source of bremsstrahlung radiation which varies from

G. A. Rochau; M. S. Derzon; D. Fehl; G. E. Rochau; S. Lazier; D. Droemer

1999-01-01

388

Bibliography of Reports by the Sandia Photovoltaic Projects.  

National Technical Information Service (NTIS)

Sandia Laboratories manages the Systems Definition and Development and the Photovoltaic Concentrator Technology Development projects of the US Department of Energy's Photovoltaics Program. Technical information developed by these projects is disseminated ...

D. G. Schueler

1979-01-01

389

Sandia Technology: Engineering and science accomplishments, February 1995  

SciTech Connect

Sandia National Laboratories is one of the Department of Energy`s primary research and development laboratories. Our essential mission is to support the national interests of the US in defense, energy, and the environment. Managed by Martin Marietta Corporation for DOE, Sandia focuses its resources on problems of national interest that require the integration of science and technology for their solution. We all hope that this period of sweeping alterations in international affairs will result in a successful transition from the Cold War to a period of sustainable global security and prosperity. In the meantime, our nation`s interests are best served by continued commitment to Sandia`s traditional responsibilities. Nonetheless, as momentous developments are reshaping the world, Sandia is also changing from its beginning as a closed operation concentrating on classified defense programs, Sandia has become a more accessible resource that focuses on research and development partnerships with industry and universities as a way to ensure continued success in DOE`s evolving core mission area of nuclear weapons, energy, environment, and the basis sciences. Through these collaborative efforts, Sandia and its partners are also benefiting the economic competitiveness of our nation. Sandia places a special emphasis on working with small businesses as both technology transfer partners and suppliers of goods and services. We are also reaching out the the larger community surrounding Sandia, striving to provide technological solution and accurate information to meet community needs. We believe that the dialogue we are creating will benefit Sandia, the community, and the nation. Our goal is to render `` exceptional service in the national interest`` by returning maximum value on the investment in the labs. As you review this document, look for new ways in which Sandia can contribute to the solution of problems facing our nation.

NONE

1995-02-01

390

Overview of Sandia's storage battery program  

NASA Astrophysics Data System (ADS)

The primary mission of Sandia National Laboratories is the design and development of the non-nuclear components and systems for nuclear weapons. To a lesser degree, Sandia is also involved in a variety of other programs; such as, energy projects with the Department of Energy, conventional military projects with the Department of Defense, and nuclear waste management and reactor safety with the Nuclear Regulatory Commission. Over the years, Sandia has evolved a considerable expertise in the areas of specialty primary, reserve, and more recently, secondary battery systems. This paper focuses on the status of the storage or secondary battery programs. These programs are divided into those battery systems being developed for energy applications and those being developed for military applications.

Clark, R. P.; Grothaus, K. R.

391

Environmental Remediation Sciences Program at the Stanford Synchrotron Radiation Laboratory  

SciTech Connect

Synchrotron radiation (SR)-based techniques provide unique capabilities to address scientific issues underpinning environmental remediation science and have emerged as major research tools in this field. The high intensity of SR sources and x-ray photon-in/photon-out detection allow noninvasive in-situ analysis of dilute, hydrated, and chemically/structurally complex natural samples. SR x-rays can be focused to beams of micron and sub-micron dimension, which allows the study of microstructures, chemical microgradients, and microenvironments such as in biofilms, pore spaces, and around plant roots, that may control the transformation of contaminants in the environment. The utilization of SR techniques in environmental remediation sciences is often frustrated, however, by an ''activation energy barrier'', which is associated with the need to become familiar with an array of data acquisition and analysis techniques, a new technical vocabulary, beam lines, experimental instrumentation, and user facility administrative procedures. Many investigators find it challenging to become sufficiently expert in all of these areas or to maintain their training as techniques evolve. Another challenge is the dearth of facilities for hard x-ray micro-spectroscopy, particularly in the 15 to 23 KeV range, which includes x-ray absorption edges of the priority DOE contaminants Sr, U, Np, Pu, and Tc. Prior to the current program, there were only two (heavily oversubscribed) microprobe facilities in the U.S. that could fully address this energy range (one at each of APS and NSLS); none existed in the Western U.S., in spite of the relatively large number of DOE laboratories in this region.

Bargar, John R.

2006-11-15

392

Hydrogen Combustion Results from the Sandia Intermediate-Scale (VGES) Tank and the Sandia Critical-Tube-Diameter Test Facility.  

National Technical Information Service (NTIS)

Sandia National Laboratories is currently involved in several experimental projects to provide data that will help quantify the threat of hydrogen combustion during LWR accidents. One project, which employs several experimental facilities, is the Variable...

J. C. Cummings W. B. Benedick P. G. Prassinos

1983-01-01

393

Radiation control program at the Donald W. Douglas Laboratories  

Microsoft Academic Search

From third Health Physics Society midyear topical symposium; Los ; Angeles, California, USA (29 Jan 1969). See CONF-690103P1. The McDonnell ; Douglas Astronautics Company built and operates the Donald W. Douglas ; Laboratories at Richland, Washington. The 57,600 ft² facility is located ; on a 112 acre site. One wing of this multipurpose laboratory houses a ; radioisotope laboratory and

M. L. Smith; C. A. Willis

1972-01-01

394

Optimum laboratory radiation source for hardness assurance testing  

Microsoft Academic Search

Silicon-on-insulator (SOI) and bulk-silicon transistors were irradiated using X-ray, Co-60 gamma, and proton radiation sources. Co-60 gamma irradiation generates larger radiation-induced threshold voltage shifts (by a factor of two) in SOI buried oxides and in parasitic field oxides under low-field conditions than X-ray or proton irradiation. For all devices examined, the radiation-induced threshold voltage shifts generated by X-ray irradiation were

J. R. Schwank; M. R. Shaneyfelt; P. Paillet; D. E. Beutler; V. Ferlet-Cavrois; B. L. Draper; R. A. Loemaker; P. E. Dodd; F. W. Sexton

2001-01-01

395

The Sandia nuclear microprobe  

Microsoft Academic Search

A nuclear microprobe analysis system attached to Sandia's EN tandem Van de Graaff accelerator is described. A magnetic quadrupole doublet lens is used for the final focus and 2-(SIGMA)m beam diameters have been obtained. Several illustrative applications of the microprobe, including the first three dimensional concentration profiles using Rutherford backscattering and elastic recoil detection ever measured, are given.

B. L. Doyle; N. D. Wing

1982-01-01

396

Sandia nuclear microprobe  

SciTech Connect

A nuclear microprobe analysis system attached to Sandia's EN tandem Van de Graaff accelerator is described. A magnetic quadrupole doublet lens is used for the final focus and 2-..mu..m beam diameters have been obtained. Several illustrative applications of the microprobe, including the first three-dimensional concentration profiles using Rutherford backscattering and elastic recoil detection ever measured, are given.

Doyle, B.L.; Wing, N.D.

1982-11-01

397

Radiation effects in optoelectronic devices. [Review  

SciTech Connect

Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given.

Barnes, C.E.; Wiczer, J.J.

1984-05-01

398

National Voluntary Laboratory Accreditation Program. Homeland Security Applications: Radiation Detection Instruments, April 2010.  

National Technical Information Service (NTIS)

The laboratory accreditation program for Radiation Detection Instruments used in homeland security applications was established in 2006 in response to a request from the United States Department of Homeland Security (DHS), Science and Technology Directora...

B. A. Sandoval C. Brannon G. Gillerman L. Pibida M. Unterweger

2010-01-01

399

Summary information and data sets for NREL`s Solar Radiation Research Laboratory, 1981--1991  

SciTech Connect

This report summarizes the solar radiation and meteorological data collected at the Solar Radiation Research Laboratory in Golden, Colorado, from 1981 through 1991. The data collection was part of the National Renewable Energy Laboratory`s Solar Radiation Resource Assessment Project. The report includes long-term averages and monthly and annual variability for key solar radiation elements and describes the hourly data sets for 1981 through 1991. Described in the report are how the elements were measured and how the data were collected and processed into hourly values. Procedures used for quality assessment of the hourly data values are presented, and the position of the solar radiation and meteorological elements in the data sets are defined; samples of read statements are provided.

Marion, W.

1993-01-01

400

Laboratory investigation of bow shocks in radiatively cooled plasmas  

Microsoft Academic Search

Magnetized and radiatively cooled shocks are present in many astrophysical systems. The early stage of a wire array z-pinch implosion consists of the steady ablation of material from fine metallic wires. Ablated material is accelerated toward the array axis by the JxB force. This flow is highly supersonic (M>5) and becomes super-Afvenic (MA>2). Radiative cooling is significant in this flow,

D. J. Ampleford; C. A. Jennings; S. V. Lebedev; G. N. Hall; S. N. Bland; S. C. Bott; F. Suzuki-Vidal; J. B. A. Palmer; J. P. Chittenden; A. Ciardi

2008-01-01

401

Z Machine at Sandia Labs  

ScienceCinema

Sandia Labs' Z machine is the largest laboratory source of x-rays in the world. For the few nanoseconds of a Z Machine test, its electrical output equals the output of 50x the electrical generating stations of all the power plants on earth. The Z Machine complex encompasses an area roughly the size of a major college basketball arena. Originally created to validate nuclear weapons models, the Z Machine is also considered a "dark horse" in the race for viable fusion energy production. After the famous "arcs and sparks" photo of Z (a photo no longer possible after its refurbishment), this is a fast-motion video of workers completing Z's recent refurbishment.

402

Pacific Northwest Laboratory plan to maintain radiation exposure as low as reasonably achievable (ALARA)  

SciTech Connect

This document describes the radiation safety program at the Pacific Northwest Laboratory (PNL). The practices and administrative policies of this program support the principles of ALARA (to maintain radiation exposure as low as reasonably achievable). This document also describes a program to establish safety goals at PNL to help ensure that operations are conducted according to ALARA principles.

Higby, D.P.; Denovan, J.T.

1982-12-01

403

Laboratory Training Manual on the Use of Isotopes and Radiation in Entomology.  

ERIC Educational Resources Information Center

|This publication should be useful for those who are interested in the theory and application of isotopes and radiation in agriculture and entomology. There are two main parts in the publication. Part I, entitled Basic Part, includes topics which an individual should know about radioisotopes and radiation. There are laboratory exercises included…

International Atomic Energy Agency, Vienna (Austria).

404

Laboratory Study of Radiation Pressure Forces on Isolated Dust Particles  

NASA Astrophysics Data System (ADS)

Forces due to radiation pressure can play a crucial role in the dynamical evolution of dust grains in optically thin circumstellar disks or the Solar System. Depending on the properties of the dust particles and the radiation field of the central star the radiation pressure in radial direction can exceed the gravitational attraction and force the dust grains on an unbound trajectory. For non-spherical particles, like e.g. fluffy dust aggregates, there are also transversal components of radiation pressure that have an impact on the particle motion perpendicular to the direction of incident light. This can lead to a deceleration or acceleration of the particle's orbital motion or to an alteration of its inclination. Although the net effect of these forces cancels out when the particle revolves on a randomly oriented axis, it can still add a random walk component to the particle motion. However, if the rotation axis is oriented e.g. by a magnetic field the transversal radiation pressure forces can also have a directed influence on the dust grain motion. The experimental setup that we have developed allows for measuring the radiation pressure forces exerted on an individual micron-size dust particle in directions parallel and perpendicular to the incident light. This is done by observing the momentum transfer of a high-power laser pulse to the sample particle that is levitated in an electrodynamic quadrupole trap. Due to the intrinsic motion of the particle in the trap the orientation of the particle with respect to the incident laser beam changes from one measurement to the other, so that the radiation pressure can be determined for various orientations. The wide tuning range of the applied laser system from the UV to the NIR part of the electromagnetic spectrum enables us to perform radiation pressure spectroscopy as a function of the size parameter over more than one order of magnitude with a single dust particle. Other parameters that can be varied are the sample particle composition and morphology, polarization of the incident light and the pressure of the surrounding gas. One of the first samples investigated with this measurement technique were micron-size graphite grains of highly irregular shape. These particles are aggregates consisting of flake-like elements of different sizes and serve as analog particles for carbonaceous dust grains in various astrophysical environments. Our observations reveal very high ratios of the perpendicular to the parallel component of the radiation pressure cross section and a strong dependence on the orientation for this kind of particles.

Krauss, O.; Wurm, G.

405

Programmable SAW development :Sandia/NASA project final report.  

SciTech Connect

This report describes a project to develop both fixed and programmable surface acoustic wave (SAW) correlators for use in a low power space communication network. This work was funded by NASA at Sandia National Laboratories for fiscal years 2004, 2003, and the final part of 2002. The role of Sandia was to develop the SAW correlator component, although additional work pertaining to use of the component in a system and system optimization was also done at Sandia. The potential of SAW correlator-based communication systems, the design and fabrication of SAW correlators, and general system utilization of those correlators are discussed here.

Brocato, Robert Wesley

2004-10-01

406

Results of the radiological survey at the Space Radiation Effects Laboratory, Newport News, Virginia  

Microsoft Academic Search

The Space Radiation Effects Laboratory located in Newport News, Virginia, was operated by the College of William and Mary for the National Aeronautics and Space Administration (NASA). A synchrocyclotron was formerly in operation in this laboratory and a primary beam of 600 MeV protons and secondary beams of 400 MeV pions and muons were produced for the purpose of studying

M. G. Yalcintas

1986-01-01

407

Criteria for the operation of federally-owned secondary calibration laboratories (ionizing radiation). Special pub. (Final)  

Microsoft Academic Search

The document contains standards of performance for laboratories that calibrate instrumentation used to measure ionizing radiation. Such standards are useful for the development of a secondary level of calibration laboratories that can provide a high-quality link between the National Institute of Standards and Technology and those who make routine measurements at the field level. The standards may also be used

Eisenhower

1991-01-01

408

Diurnal Variations of Energetic Particle Radiation Dose Measured by the Mars Science Laboratory Radiation Assessment Detector  

NASA Astrophysics Data System (ADS)

The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) rover Curiosity has collected data on the interplanetary radiation environment during cruise from Earth to Mars and at the surface of Mars since its landing in August 2012. RAD's particle detection capabilities are achieved with a solid-state detector (SSD) stack (A, B, C), a CsI(Tl) scintillator (D), and a plastic scintillator (E) for neutron detection. The D and E detectors are surrounded by an anticoincidence shield (F), also made of plastic scintillator. All scintillators are optically coupled to silicon diodes which convert scintillation light to electrons. RAD is capable of measuring both Galactic Cosmic Rays (GCRs) thought to be produced by supernovae outside the heliosphere and Solar Energetic Particles (SEPs). GCRs are relativistic particles (100 MeV/nuc to >10 GeV/nuc) composed of roughly 89% protons, 10% alpha particles (He), and 1% heavier nuclei [1]. Because of their high energies and continuous nature, GCRs are the dominant source of background radiation at the Martian surface, and are responsible for the production of secondary particles (notably neutrons) via complex interactions in the atmosphere and regolith. SEPs are produced by coronal mass ejections. These intermittent storms are most likely to occur near solar maximum and typical fluxes are dominated by protons with energies lower than 100 MeV/nuc. Unlike the GCR flux, the SEP flux can vary by five or more orders of magnitude over timescales of a day. Even under a constant flux of energetic particle radiation at the top of the atmosphere, the radiation dose at the surface should vary as a function of surface elevation [2]. This variation is directly related to the change in the shielding provided by the total atmospheric mass column, which is to a very good approximation directly related to surface pressure. Thus, the flux of primary energetic particles should increase with altitude, all other things being equal. At present, MSL has been at a nearly constant altitude of ~-4.4 km MOLA so that no elevation-induced changes are expected and none have been observed. However, any process that changes the column mass of atmosphere should change the dose at the surface. On Mars there are two major processes that substantially change column atmospheric mass. The first is the seasonal condensation cycle during which ~25% of the dominant atmospheric constituent (CO2) condenses onto the winter pole. This seasonal signal is very strong and has been observed by surface pressure measurements from the Viking Landers up through MSL [3,4]. The second major process is related to the thermal tide. The direct heating of the Martian atmosphere by the Sun produces global scale waves that redistribute mass [5]. The two most dominant tidal modes are the diurnal and semidiurnal tide. Together, the thermal tide can produce a variation of 10-15% over a Martian day (sol). Here, we report on the dose measured by the RAD E detector and the variation of this dose over the diurnal cycle. Further, we show that the variation in the E dose rate is very likely due to the variation of column mass, as measured by the pressure sensor on the Rover Environmental Monitoring Station (REMS), driven by the thermal tide. While changes in dose were expected from changes in altitude or season, the discovery of a diurnal variation was not anticipated, although it should have been reasonably expected in hindsight.

Rafkin, Scot; Zeitlin, Cary; Ehresmann, Bent; Köhler, Jan; Guo, Jingnan; Kahanpää, Henrik; Hassler, Don; -Gomez, Javier E.; Wimmer-Schweingruber, Robert; Brinza, David; Böttcher, Stephan; Böhm, Eckhard; Burmeister, Sonka; Martin, Cesar; Müller-Mellin, Robert; Appel, Jan; Posner, Arik; Reitz, Gunter; Kharytonov, Aliksandr; Cucinotta, Francis

2013-04-01

409

Review of flow battery testing at Sandia  

SciTech Connect

Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

1984-01-01

410

SAPLE: Sandia Advanced Personnel Locator Engine.  

SciTech Connect

We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

Procopio, Michael J.

2010-04-01

411

Precursor Measurements of the Mars Surface Radiation Environment with the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL)  

NASA Astrophysics Data System (ADS)

The Radiation Assessment Detector RAD is a compact lightweight energetic particle analyzer to fly as part of the NASA 2009 Mars Science Laboratory MSL Mission RAD will detect and analyze relevant energetic particle species p n He 2 Z 26 incident on the Martian surface including direct and indirect radiation created both in the atmosphere and the regolith Fully characterizing and understanding the radiation environment is fundamental to quantitatively assessing the habitability of Mars and an essential precursor measurement for future manned Mars missions This talk will provide an overview of the RAD instrument and its scientific objectives for the MSL mission

Hassler, D. M.; Wimmer-Schweingruber, R. F.; Beaujean, R.; Bottcher, S.; Burmeister, S.; Cucinotta, F.; Muller-Mellin, R.; Posner, A.; Rafkin, S.; Reitz, G.; Rad Team

412

Summary information and data sets for NREL's Solar Radiation Research Laboratory, 1981--1991  

SciTech Connect

This report summarizes the solar radiation and meteorological data collected at the Solar Radiation Research Laboratory in Golden, Colorado, from 1981 through 1991. The data collection was part of the National Renewable Energy Laboratory's Solar Radiation Resource Assessment Project. The report includes long-term averages and monthly and annual variability for key solar radiation elements and describes the hourly data sets for 1981 through 1991. Described in the report are how the elements were measured and how the data were collected and processed into hourly values. Procedures used for quality assessment of the hourly data values are presented, and the position of the solar radiation and meteorological elements in the data sets are defined; samples of read statements are provided.

Marion, W.

1993-01-01

413

Channeling-radiation measurements at Lawrence Livermore National Laboratory  

SciTech Connect

In the last few years, the amount and quality of channeling-radiation data have increased enormously, owing largely to much improved experimental capabilities. Current results include improved interplanar potentials for diamond, the description of the effect of platelets in diamond as an average thermal vibration, an improved determination of the Debye temperature of silicon, an improved determination of the thermal-vibration amplitude of LiD, and the demonstration that LiF crystal structures can survive intense electron bombardment.

Berman, B.L.; Dahling, B.A.; Datz, S.; Kephart, J.O.; Klein, R.K.; Pantell, R.H.; Park, H.

1984-10-01

414

Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.  

PubMed

The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert. PMID:23723233

Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

2013-05-31

415

Laboratory investigation of the radiative energy transfer during rupture nucleation  

NASA Astrophysics Data System (ADS)

Triaxial compression experiments were performed on several materials (Glass, Granite, Basalt, Sandstone, Marble and Gypsum) at confining pressures ranging from 10 to 100MPa, and from room temperature to 70 degrees C. During each of these experiments, acoustic waves radiated from damage accumulation and fast crack propagation were continuously monitored thanks to a fast acoustic recorder, which enables to obtain continuous acoustogram of rupture nucleation and propagation, without the limitations of former trigger systems. In our experiments, rupture does not need to be slowed down, and the transition from quasi-static nucleation to dynamic propagation has now been systematically investigated.Comparing each material, three main observation can be drawn : - First, the amount of damage accumulation before the dynamic rupture propagation varies from material to material, and also depends on the pressure and temperature conditions. For instance, glass, granites and sandstones are typically materials where the nucleation involves a large amount of cracking prior to rupture. In contrast, rupture in basalt at low confinement is not preceded by any damage accumulation. Finally, pre-rupture damage accumulation can also be purely aseismic, which is the case of marble for instance. - Second, the brittle-ductile transition does not exactly overlaps the aseismic-seismic transition, at least in the conditions at which we performed our experiments. For example, marble deforms plastically beyond 50MPa, and although the deformation is ductile, a large amount of crack accumulates in the rock, which tends to make it unstable. In the same way, acoustic emissions decrease in gypsum with increasing pressure and temperatures. - Finally, the time during which rupture propagates depends largely on the rheology. For instance, and in the case of ductile failures such as in marble, dislocation and twin accumulation is such that cracks propagation steps are small and/or slow, and thus the radiated energy release rate remains small at early stages of rupture and increases with rupture speed. Put together, our observations clearly highlight the dependence of the radiated acoustic (and microseismic?) energy during rupture nucleation and early stages of crack propagation not only on the rupture propagation speed and the slip velocity but most importantly on the rock’s lithology and rheology.

Schubnel, A. J.; Brantut, N.; Ougier-Simonin, A.; Adelinet, M.; Fortin, J.; Gueguen, Y.

2009-12-01

416

Stanford Synchrotron Radiation Laboratory activity report for 1986  

SciTech Connect

1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

Cantwell, K. [ed.

1987-12-31

417

The first x-ray diffraction station at Beijing Synchrotron Radiation Laboratory, BEPC  

Microsoft Academic Search

The first x-ray diffraction experimental station at Beijing Synchrotron Radiation Laboratory has been available for synchrotron radiation users in research. The station is located on the back-end of 4B9A, a beamline from a bending magnet. When the storage ring of BEPC operates in a dedicated mode (2.2 GeV), 4B9A provides a focused monochromatic x ray in between 4 and 12

D. W. Wang; J. F. Liu; Y. C. Zhao; Y. L. Yang; D. S. Liu; D. C. Xian

1992-01-01

418

A shallow underground laboratory for low-background radiation measurements and materials development.  

PubMed

Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities. PMID:23206058

Aalseth, C E; Bonicalzi, R M; Cantaloub, M G; Day, A R; Erikson, L E; Fast, J; Forrester, J B; Fuller, E S; Glasgow, B D; Greenwood, L R; Hoppe, E W; Hossbach, T W; Hyronimus, B J; Keillor, M E; Mace, E K; McIntyre, J I; Merriman, J H; Myers, A W; Overman, C T; Overman, N R; Panisko, M E; Seifert, A; Warren, G A; Runkle, R C

2012-11-01

419

A shallow underground laboratory for low-background radiation measurements and materials development  

NASA Astrophysics Data System (ADS)

Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

Aalseth, C. E.; Bonicalzi, R. M.; Cantaloub, M. G.; Day, A. R.; Erikson, L. E.; Fast, J.; Forrester, J. B.; Fuller, E. S.; Glasgow, B. D.; Greenwood, L. R.; Hoppe, E. W.; Hossbach, T. W.; Hyronimus, B. J.; Keillor, M. E.; Mace, E. K.; McIntyre, J. I.; Merriman, J. H.; Myers, A. W.; Overman, C. T.; Overman, N. R.; Panisko, M. E.; Seifert, A.; Warren, G. A.; Runkle, R. C.

2012-11-01

420

Technical qualification requirements and training programs for radiation protection personnel at Oak Ridge National Laboratory  

SciTech Connect

This document deals with the policies and practices of the Environmental and Occupational Safety Division (EOSD) at the Oak Ridge National Laboratory (ORNL) in regard to the selection, training, qualification, and requalification of radiation protection staff assigned to reactor and nonreactor nuclear facilities. Included are personnel at facilities that: (1) operate reactors or particle accelerators; (2) produce, process, or store radioactive liquid or solid waste; (3) conduct separations operations; (4) engage in research with radioactive materials and radiation sources; and (5) conduct irradiated materials inspection, fuel fabrication, deconamination, or recovery operations. The EOSD personnel also have environmental surveillance and operational and industrial safety responsibilities related to the total Laboratory.

Copenhaver, E.D.; Houser, B.S.; Butler, H.M. Jr.; Bogard, J.S.; Fair, M.F.; Haynes, C.E.; Parzyck, D.C.

1986-04-01

421

Measuring Neutrons and Gamma Rays on Mars — The Mars Science Laboratory Radiation Assessment Detector MSL/RAD  

NASA Astrophysics Data System (ADS)

The Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) will measure the radiation environment including the neutral component on the martian surface. We present initial studies on the inversion of neutron calibration results.

Wimmer-Schweingruber, R. F.; Martin, C.; Kortmann, O.; Boehm, E.; Boettcher, S.; Kharytonov, A.; Ehresmann, B.; Hassler, D. M.; Zeitlin, C.

2010-03-01

422

A case for Sandia investment in complex adaptive systems science and technology  

Microsoft Academic Search

This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these

Richard Colbaugh; Jeffrey Yeenien Tsao; Curtis Martin Johnson; George A. Backus; Theresa Jean Brown; Katherine A. Jones

2012-01-01

423

The LBL 55-meter spherical grating monochromator at SSRL (Stanford Synchrotron Radiation Laboratory)  

Microsoft Academic Search

The Lawrence Berkeley Laboratory 55-m spherical grating monochromator (SGM) beamline is located as a branch line of the 54-pole wiggler\\/undulator at the Stanford Synchrotron Radiation Laboratory (SSRL). It was designed and constructed by LBL's Center for X-Ray Optics and the engineering staff of LBL's Advanced Light Source with the cooperation and assistance of the research group of David Shirley at

W. R. McKinney; M. R. Howells; T. Lauritzen; J. Chin; R. DiGennaro; E. Fong; W. Gath; J. Guigli; H. Hogrefe; J. Meneghetti; D. Plate; P. A. Heimann; L. Terminello; Z. Ji; D. Shirley; S. Senf

1989-01-01

424

The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL)  

NASA Astrophysics Data System (ADS)

The Radiation Assessment Detector RAD is a compact lightweight energetic particle analyzer to fly as part of the NASA 2009 Mars Science Laboratory MSL Mission RAD will detect and analyze relevant energetic particle species p n He 2 Z 27 incident on the Martian surface including direct and indirect radiation created both in the atmosphere and the regolith Fully characterizing and understanding the radiation environment is fundamental to quantitatively assessing the habitability of Mars and an essential precursor measurement for future manned Mars missions This talk will provide an overview of the RAD instrument and its scientific objectives for the MSL mission

Hassler, D. M.; Wimmer-Schweingruber, R. F.; Beaujean, R.; Bottcher, S.; Burmeister, S.; Cucinotta, F.; Muller-Mellin, R.; Posner, A.; Rafkin, S.; Reitz, G.; Rad Team

425

Laboratory experiments of radiative shocks in the context of stellar accretion.  

NASA Astrophysics Data System (ADS)

High-energy lasers are used to simulate astrophysical phenomena in the laboratory. The PALS laser facility, with a typical irradiance of 10^{14} W.cm^{-2}, allows in particular to produce radiative shocks in high atomic number gases. The system is optimized for reaching conditions where the shock is radiative, i.e. it presents a "radiative precursor". This kind of shock is expected to occur during various astrophysical accretion processes. We present preliminary experimental results with emphasis on two diagnostics, namely the study of the laser impact on the target and an instantaneous imaging using an X - ray laser.

Chaulagain, U.; Stehlé, C.; de Sá Lionel; Larour, J.; Auvray, P.; Kozlova, M.; Krus, M.; Dostal, J.; Propupek, J.; Suzuki-Vidal, F.; Barroso, P.; Reix, F.; Acef, O.; Ciardi, A.

2012-12-01

426

Similarity Properties and Scaling Laws of Radiation Hydrodynamic Flows in Laboratory Astrophysics  

NASA Astrophysics Data System (ADS)

The spectacular recent development of modern high-energy density laboratory facilities which concentrate more and more energy in millimetric volumes allows the astrophysical community to reproduce and to explore, in millimeter-scale targets and during very short times, astrophysical phenomena where radiation and matter are strongly coupled. The astrophysical relevance of these experiments can be checked from the similarity properties and especially scaling law establishment, which constitutes the keystone of laboratory astrophysics. From the radiating optically thin regime to the so-called optically thick radiative pressure regime, we present in this paper, for the first time, a complete analysis of the main radiating regimes that we encountered in laboratory astrophysics with the same formalism based on Lie group theory. The use of the Lie group method appears to be a systematic method which allows us to construct easily and systematically the scaling laws of a given problem. This powerful tool permits us to unify the recent major advances on scaling laws and to identify new similarity concepts that we discuss in this paper, and suggests important applications for present and future laboratory astrophysics experiments. All these results enable us to demonstrate theoretically that astrophysical phenomena in such radiating regimes can be explored experimentally thanks to powerful facilities. Consequently, the results presented here are a fundamental tool for the high-energy density laboratory astrophysics community in order to quantify the astrophysics relevance and justify laser experiments. Moreover, relying on Lie group theory, this paper constitutes the starting point of any analysis of the self-similar dynamics of radiating fluids.

Falize, É.; Michaut, C.; Bouquet, S.

2011-04-01

427

Sandia laboratories energy system simulation computer program  

Microsoft Academic Search

A computer program (SOLSYS) was developed to simulate the transient performance of solar energy systems. The program consists of a component subroutine library, an information subroutine library, a control component subroutine library and an executive program. Component subroutines model the performance of fluid handling components which can be connected to construct nearly any desired energy system. Information subroutines supply time-dependent

M. W. Edenburn

1975-01-01

428

Radiation Sources on the Energy Recovery Linac Prototype at Daresbury Laboratory  

NASA Astrophysics Data System (ADS)

The Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory primarily to gain understanding of accelerator physics issues for the proposed Fourth Generation Light Source (4GLS). The radiation from two sources on ERLP, THz radiation from the last bending magnet in the bunch compressor, and the IR FEL radiation, will be used for machine diagnostics. Radiation from these sources will be transported into a `diagnostic room' for power and spectral analysis. The THz radiation will also be used for end user experiments. The layout of the optical transport and detection systems will be presented. Results will also be given for the predicted performance of the optical beamline obtained using wavefront propagation.

Bowler, M. A.; Surman, M.; Quinn, F. M.; Higgins, S. P.; Smith, A. D.

2007-01-01

429

Sample Tracking in an Automated Cytogenetic Biodosimetry Laboratory for Radiation Mass Casualties  

PubMed Central

Chromosome aberration-based dicentric assay is expected to be used after mass casualty life-threatening radiation exposures to assess radiation dose to individuals. This will require processing of a large number of samples for individual dose assessment and clinical triage to aid treatment decisions. We have established an automated, high-throughput, cytogenetic biodosimetry laboratory to process a large number of samples for conducting the dicentric assay using peripheral blood from exposed individuals according to internationally accepted laboratory protocols (i.e., within days following radiation exposures). The components of an automated cytogenetic biodosimetry laboratory include blood collection kits for sample shipment, a cell viability analyzer, a robotic liquid handler, an automated metaphase harvester, a metaphase spreader, high-throughput slide stainer and coverslipper, a high-throughput metaphase finder, multiple satellite chromosome-aberration analysis systems, and a computerized sample tracking system. Laboratory automation using commercially available, off-the-shelf technologies, customized technology integration, and implementation of a laboratory information management system (LIMS) for cytogenetic analysis will significantly increase throughput. This paper focuses on our efforts to eliminate data transcription errors, increase efficiency, and maintain samples’ positive chain-of-custody by sample tracking during sample processing and data analysis. This sample tracking system represents a “beta” version, which can be modeled elsewhere in a cytogenetic biodosimetry laboratory, and includes a customized LIMS with a central server, personal computer workstations, barcode printers, fixed station and wireless hand-held devices to scan barcodes at various critical steps, and data transmission over a private intra-laboratory computer network. Our studies will improve diagnostic biodosimetry response, aid confirmation of clinical triage, and medical management of radiation exposed individuals.

Martin, P.R.; Berdychevski, R.E.; Subramanian, U.; Blakely, W.F.; Prasanna, P.G.S.

2007-01-01

430

Development of a NdFe-Steel Hybrid Wiggler for SSRL (Stanford Synchrotron Radiation Laboratory).  

National Technical Information Service (NTIS)

A NdFe-steel hybrid configured permanent magnet wiggler, is being developed for insertion in the SPEAR ring at the Stanford Synchrotron Radiation Laboratory, SSRL. Featuring 15 complete periods, a 12.9-cm magnetic period length, and a peak magnetic field ...

K. G. Tirsell T. C. Brown P. J. Ebert W. C. Dickinson E. M. Lent

1985-01-01

431

Estimating Attenuation of Ultraviolet Radiation in Streams: Field and Laboratory Methods  

Microsoft Academic Search

We adapted and tested a laboratory quantitative filter pad method and field-based microcosm method for estimating diffuse attenuation coefficients (Kd) of ultraviolet radiation (UVR) for a wide range of stream optical environments (Kd320 = 3-44 m )1 ). Logistical difficulties of direct measurements of UVR attenu- ation have inhibited widespread monitoring of this important parameter in streams. Suspended sediment concentrations

Patrick Belmont; Bruce R. Hargreaves; Donald P. Morris; Craig E. Williamson

2007-01-01

432

MULTIPLE FUNCTIONS LONG TRACE PROFILER (LTP-MF) FOR NATIONAL SYNCHROTRON RADIATION LABORATORY OF CHINA.  

SciTech Connect

The Long Trace Profiler (LTP) is a useful optical metrology instrument for measuring the figure and slope error of cylindrical aspheres commonly used as synchrotron radiation (SR) optics. It is used extensively at a number of synchrotron radiation laboratories around the world. In order to improve SR beam line quality and resolution, the National Synchrotron Radiation Laboratory (NSRL) of China is developing a versatile LTP that can be used to measure both SR optics and more conventional ''normal'' optical surfaces. The optical metrology laboratories at Brookhaven National Laboratory (BNL) and NSRL are collaborating in developing a multiple functions LTP (LTP-MF). Characteristics of the LTP-MF are: a very compact and lightweight optical head, a large angular test range ({+-} 16 mad) and high accuracy. The LTP-MF can be used in various configurations: as a laboratory-based LTP, an in-situ LTP or penta-prism LTP, as an angle monitor, a portable LTP, and a small radius of curvature test instrument. The schematic design of the compact optical head and a new compact slide are introduced. Analysis of different measurements modes and systematic error correction methods are introduced.

QIAN, S.; WANG, Q.; HONG, Y.; TAKACS, P.

2005-07-31

433

Missing dose from mortality studies of radiation effects among workers at Oak Ridge National Laboratory  

SciTech Connect

Missing dose is a problem that has not been adequately addressed in the mortality studies of radiation effects among workers at Oak Ridge National Laboratory. The missing dose is a result of recording a zero for below-detectable doses, especially for frequent (weekly) film badge readings. To make the thorough dosimetry assessment needed in the current Oak Ridge National Laboratory worker studies, it will probably be necessary to consider all data at hand including personnel dose records, daily pocket meter readings used to supplement weekly and quarterly readings from other dosimeters, and monitoring results from both building surveys and fixed stations. The fixed-station data should be extremely useful in developing a better understanding of the unusual temporal variation of the external radiation doses to Oak Ridge National Laboratory workers during the high exposure-rate periods of the 1950s and early 1960s. 13 refs., 2 figs.

Kerr, G.D. [Oak Ridge National Laboratory, TN (United States)

1994-02-01

434

NIF Laboratory Astrophysics Experiments Investigating The Effects Of A Radiative Shock On Hydrodynamic Instabilities  

NASA Astrophysics Data System (ADS)

This paper will describe ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the complex radiation hydrodynamics that occurs in red supergiant, and core-collapse supernovae. Experiments on NIF can deliver 300 eV radiative heating that can be utilized uniquely access the regime in which radiation affects the development of hydrodynamic instabilities within an evolving object. This is relevant to the dynamics that occur during the core-collapse explosions of red supergiant stars. These stars have dense circumstellar plasma, producing a strongly radiative shock whose radiation interacts with the hydrodynamic structures produced by instabilities during the explosion. While published astrophysical simulations have not included complex, multidimensional radiation hydrodynamics, such effects are very physical and expected to affect the evolution of early stages of astrophysical objects described above. This presentation will include a summary of the two test shots that we have performed on NIF, including a 0.7 scale, gas-filled hohlraum test shot, and a description of the integrated physics shots scheduled at the facility. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under grant number DE-FG52-09NA29548 , the Lawrence Livermore National Security, LLC, under Contract No. DE-AC52-07NA27344 and Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616.

Kuranz, Carolyn C.; Drake, R. P.; Huntington, C. M.; Klein, S. R.; Trantham, M. R.; Park, H. S.; Remington, B. A.; Miles, A. R.; Raman, K.; Kline, J. L.; Plewa, T.

2012-05-01

435

Peer Review Process for the Sandia ASCI V and V Program: Version 1.0  

SciTech Connect

This report describes the initial definition of the Verification and Validation (V and V) Plan Peer Review Process at Sandia National Laboratories. V and V peer review at Sandia is intended to assess the ASCI code team V and V planning process and execution. Our peer review definition is designed to assess the V and V planning process in terms of the content specified by the Sandia Guidelines for V and V plans. Therefore, the peer review process and process for improving the Guidelines are necessarily synchronized, and form parts of a larger quality improvement process supporting the ASCI V and V program at Sandia.

Pilch, M.; Trucano, T.G.; Peercy, D.E.; Hodges, A.L.; Young, E.R.; Moya, J.L.

2001-01-01

436

Recent operational history of the new Sandia Pulsed Reactor III (SPR III)  

Microsoft Academic Search

The Sandia Pulsed Reactor III (SPR III) is a fast-pulse research reactor which was designed and built at Sandia Laboratories and achieved criticality in August 1975. The reactor is now characterized and is in an operational configuration. The core consists of 18 fuel plates (258 kg fuel mass) of fully enriched uranium alloyed with 10 wt.% molybdenum. It is arranged

T. R. Schmidt; B. F. Estes; J. A. Reuscher

1977-01-01

437

Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed  

Microsoft Academic Search

Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to

Herbert J. Sutherland

1988-01-01

438

Design and Initial Performance of the Sandia Pulsed Reactor-III.  

National Technical Information Service (NTIS)

The Sandia Pulsed Reactor-III (SPR-III) is a new fast pulsed reactor which has recently undergone initial testing at Sandia Laboratories. SPR-III is a uranium-10 weight percent molybdenum fuel assembly with a 17.78 cm irradiation cavity similar in design ...

J. A. Reuscher B. F. Estes

1976-01-01

439

Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation  

SciTech Connect

Auroral Kilometric Radiation is emitted from regions of depleted plasma density in the Earth's polar magnetosphere. The radiation frequency is close to the local electron cyclotron frequency, polarized in the X-mode with an efficiency of {approx}1%, with power up to 1 GW. Kinetic analysis of the instability in the descending auroral flux indicated that the phenomena scaled with the cyclotron frequency. Therefore, an experimental reproduction of the auroral geometry has been created scaled to laboratory dimensions by raising the radiation frequency to the microwave range. The experiment transports a 75-85 keV electron beam through a region of increasing magnetic flux density, with a mirror ratio of up to 30. The experiments measured the mode, spectrum, power, and conversion efficiency of the emitted radiation as a function of the mirror ratio in two resonance regimes, with frequencies of 4.42 and 11.7 GHz. The microwave diagnostics and measurements will be presented in this paper.

Ronald, K.; Speirs, D. C.; McConville, S. L.; Phelps, A. D. R.; Robertson, C. W.; Whyte, C. G.; He, W.; Gillespie, K. M.; Cross, A. W. [Scottish Universities Physics Alliance and Department of Physics, John Anderson Building, 107 Rottenrow, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Bingham, R. [Scottish Universities Physics Alliance and Department of Physics, John Anderson Building, 107 Rottenrow, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Space Science and Technology Department, Science and Technology Facility Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

2008-05-15

440

Experiences and Management of Pregnant Radiation Workers at the Pacific Northwest National Laboratory  

SciTech Connect

Radiation workers at the Pacific Northwest National Laboratory are divided into two classes based on whether or not they can encounter radioactive contamination in the normal course of their work. Level I workers primarily handle sealed radioactive materials such as those used to calibrate detectors. Level II workers perform benchtop chemistry. The U.S. Department of Energy has strict guidelines on the management of pregnant radiation workers. Staff members may voluntarily notify their line managers of a pregnancy and be subjected to stringent radiation exposure limits for the developing fetus. The staff member and manager develop a plan to limit and monitor radiation dose for the remainder of the pregnancy. Several examples of dose management plans and case examples of the impact of pregnancy on staff member?s technical work and projects will be presented.

Bliss, Mary; Bowyer, Sonya M.; Bryant, Janet L.; Lipton, Mary S.; Wahl, Karen L.

2001-03-06

441

Sandia Multispectral Airborne Lidar for UAV Deployment  

SciTech Connect

Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

1998-10-23

442

Sandia technology engineering and science accomplishments  

SciTech Connect

Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile