Science.gov

Sample records for satellite communications service

  1. Public service satellite communications

    NASA Technical Reports Server (NTRS)

    Wolff, E. A.

    1978-01-01

    It is suggested that the high effective isotropic radiated power provided by high-power satellite transmitters and high-gain antennas could be used in conjunction with economical ground receivers to furnish public services in remote areas of the U.S. Applications to health care, education and public safety are mentioned. A system concept involving a communications satellite operating in the Ku-band (12-GHz down, 14-GHz up) and either 100/30 watt stationary earth terminals with 1-1.8 m antennas or mobile terminals with omnidirectional antennas is presented.

  2. Public Service Communication Satellite Program

    NASA Technical Reports Server (NTRS)

    Brown, J. P.

    1977-01-01

    The proposed NASA Public Service Communication Satellite Program consists of four different activities designed to fulfill the needs of public service sector. These are: interaction with the users, experimentation with existing satellites, development of a limited capability satellite for the earliest possible launch, and initiation of an R&D program to develop the greatly increased capability that future systems will require. This paper will discuss NASA efforts in each of these areas.

  3. Satellite communication for public services

    NASA Technical Reports Server (NTRS)

    Cooper, R. S.; Redisch, W. N.

    1977-01-01

    Public service programs using NASA's ATS-6 and CTS satellites are discussed. Examples include the ATS-6 Health and Education Telecommunications experimental program and the use of CTS to enable students in one university to take courses presented at another distant university. Possible applications of satellite communication systems to several areas of public service are described, and economic and political obstacles hindering the implementation of these programs are considered. It is suggested that a federally sponsored program demonstrating the utility of satellites accomodating a large number of small terminals is needed to encourage commercial satellite operations.

  4. A public service communications satellite user brochure

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The capabilities of a proposed communications satellite that would be devoted to experiments and demonstrations of various public services is described. A Public Service Communications Satellite study was undertaken at the NASA Goddard Space Flight Center (GSFC) to define the problems and opportunities of a renewed NASA role and the form such NASA involvement should take. The concept that has evolved has resulted from careful consideration of experiments that were already undertaken on existing satellites.

  5. Communication Satellites: Experimental & Operational, Commercial & Public Service.

    ERIC Educational Resources Information Center

    Development Communication Report, 1979

    1979-01-01

    The title reflects the first and major article in an issue of this newsletter devoted entirely to communication satellites. This series of articles on the potential and applications of communication satellites in development projects is concerned with their development for commercial and public service, development in the Pacific region, SPACECOM…

  6. Communication Satellites: Experimental & Operational, Commercial & Public Service.

    ERIC Educational Resources Information Center

    Development Communication Report, 1979

    1979-01-01

    The title reflects the first and major article in an issue of this newsletter devoted entirely to communication satellites. This series of articles on the potential and applications of communication satellites in development projects is concerned with their development for commercial and public service, development in the Pacific region, SPACECOM…

  7. Public Service Communications Satellite User Requirements Workshop

    NASA Technical Reports Server (NTRS)

    Wolff, E. A.

    1977-01-01

    Information on user requirements for public service communications was acquired to provide the basis of a study to determine the optimum satellite system to satisfy user requirements. The concept for such a system is described: Topics discussed included requirements for data and message services, elementary and secondary education, extension and continuing education, environmental communications, library services, medical education, medical services, public broadcasting, public safety, religious applications, state and local communications, and voluntary services. Information was also obtained on procedures to follow to make the transfer to commercial services.

  8. Servicing communication satellites in geostationary orbit

    NASA Technical Reports Server (NTRS)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  9. Mobile satellite communications in the Forest Service

    NASA Technical Reports Server (NTRS)

    Warren, John R.

    1988-01-01

    There are usually some places within a forest that do not have adequate communication coverage due to line-of-sight or other reasons. These areas are generally known by the foresters and radio technicians and allowances are made for that when working or traveling in those areas. However, when wildfire or other emergencies occur, communications are vital because wildfires can require hundreds of firefighters and cover thousands of acres. During these emergency operations, the existing communications are not adequate and complete radio systems are moved into the area for the conduct of fire communications. Incident command posts (ICPs) and fire camps are set up in remote locations and there is constant need for communications in the fire area and to agency headquarters and dispatch offices. Mobile satellite communications would be an ideal supplement to the Forest Service's current communications system in aiding forest fire control activities.

  10. Communication satellite services for special purpose users

    NASA Technical Reports Server (NTRS)

    Wright, D. L.; Kiesling, J. D.

    1977-01-01

    The present study identifies potential satellite services, examines the technology necessary for efficient implementation of these services, and determines minimum service cost versus user network size. The generic satellite services evaluated comprise TV and radio distribution (for retransmission), video teleconferencing (interactive), audio/facsimile teleconferencing (interactive), multiplexed data/voice (point-to-point), and satellite-supported land mobile. Satellite costs are based on extrapolations from ongoing commercial satellite programs. Production methods, new technology, and effect of production quantities on present and future production costs are examined to provide information on earth station equipment cost versus the variable 'buy'. Six different launch vehicles from a Delta 2914 to a dedicated Shuttle and three frequency bands and both broadcast (no eclipse capability) and fixed service satellites are considered to assess the effect of satellite size on cost and performance. It is assumed that the user pays only for his prorata share of the space segment costs.

  11. USDA Forest Service mobile satellite communications applications

    NASA Technical Reports Server (NTRS)

    Warren, John R.

    1990-01-01

    The airborne IR signal processing system being developed will require the use of mobile satellite communications to achieve its full capability and improvement in delivery timeliness of processed IR data to the Fire Staff. There are numerous other beneficial uses, both during wildland fire management operations or in daily routine tasks, which will also benefit from the availability of reliable communications from remote areas.

  12. 14/12-GHz-band satellite communication services

    NASA Astrophysics Data System (ADS)

    Hayashi, Kunihiro; Nagaki, Kiyoaki; Mori, Yasuo

    1990-01-01

    Three new systems for integrated TV-relay services have been developed: Satellite Video Comunication Service (SVCS) and Satellite Digital Communication Service (SDCS), with Japan's 14/12-GHz-band commercial communication satellites. These systems have been in commercial use since May 1989. Usually SVCS and SDCS have been provided using Ka-band (30/20 GHz-band) of CS-2 and Cs-3. This paper provides an overview of the design, the performance, and the systems of the new 14/12-GHz-band satellite communication services.

  13. Mobile satellite service communications tests using a NASA satellite

    NASA Technical Reports Server (NTRS)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  14. Satellite communications for the next generation telecommunication services and networks

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  15. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  16. Emerging markets for satellite data communications in the public service

    NASA Technical Reports Server (NTRS)

    Potter, J. G.

    1978-01-01

    The paper discusses some of the current and potential markets for satellite data communications as projected by the Public Service Satellite Consortium (PSSC). Organizations in the public service sector are divided into three categories, depending on their expected benefits and organizational changes due to increased satellite telecommunications use: A - modest institutional adjustments are necessary and significant productivity gains are likely; B - institutional requirements picture is promising, but more information is needed to assess benefits and risk; and C - major institutional adjustments are needed, risks are high but possible benefits are high. These criteria are applied to the U.S. health care system, continuing education, equipment maintenance, libraries, environmental monitoring, and other potential markets. The potential revenues are seen to be significant, but what is needed is a cooperative effort by common carriers and major public service institutions to aggregate the market.

  17. Repeater in the sky. [public service communications satellite program

    NASA Technical Reports Server (NTRS)

    Cote, C. E.; Brown, J. P.

    1977-01-01

    The Public Service Communications Satellite (PSCS) program is intended to develop and demonstrate a space system aimed at stimulating future commercial markets in fixed and mobile applications. The services are envisioned for rural areas, regions beyond access to terrestrial systems, or for continuous cross-country applications. The system incorporates a UHF repeater for mobile voice and data experiments; 8 MHz of spectrum is specified for serving 70 channels. This paper describes the PSCS program and discusses some demonstration experiments. A future concept based on large structure multibeam antennas is also discussed.

  18. Developing satellite communications for public service: Prospects in four service areas

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Public Service Satellite Consortium evaluated prospects for satellite telecommunications in four areas of the public service: the U.S. health care system, elementary and secondary education, American libraries, and that sector of the public service which is concerned with the provision of continuing education to health professionals. Three important conclusions were reached. First, throughout the public service there are three recurring needs: improved access, cost containment, and maintenance of quality. Appropriate application of communication satellite systems could ameliorate each of these concerns. Second, there appears to be an enormous latent demand for data communication services throughout the public service. The potential demand in 1982 to support requirements in hospital administration, library services and other information-retrieval activities, equipment maintenance, and environmental monitoring may be in excess of $300 million a year. Third, administrative applications of data communication networks show particular promise, especially in rural areas.

  19. Satellite communications experiment for the Ontario air ambulance service

    NASA Technical Reports Server (NTRS)

    Butterworth, John S.

    1988-01-01

    A satellite communications experiment was conducted to develop a reliable voice communications system between paramedics and doctors at certain larger medical centers. The experiment used INMARSAT's Atlantic Ocean Region satellite which provides coverage to the western border of Ontario. Forward downlink power from the satellite is in great demand, so two highly power-efficient modulation schemes were chosen for evaluation during the experiment. These were amplitude-companded single-sideband (ACSSB) and linear predictive coding in conjunction with DMSK modulation. Good performance with a signal to noise ratio of about 10 dB was demonstrated from many parts of the province with the evevation angle to the satellite ranging from five to twenty degrees and with the aircraft both in-flight and on the runway.

  20. Satellite communications experiment for the Ontario air ambulance service

    NASA Astrophysics Data System (ADS)

    Butterworth, John S.

    1988-05-01

    A satellite communications experiment was conducted to develop a reliable voice communications system between paramedics and doctors at certain larger medical centers. The experiment used INMARSAT's Atlantic Ocean Region satellite which provides coverage to the western border of Ontario. Forward downlink power from the satellite is in great demand, so two highly power-efficient modulation schemes were chosen for evaluation during the experiment. These were amplitude-companded single-sideband (ACSSB) and linear predictive coding in conjunction with DMSK modulation. Good performance with a signal to noise ratio of about 10 dB was demonstrated from many parts of the province with the evevation angle to the satellite ranging from five to twenty degrees and with the aircraft both in-flight and on the runway.

  1. Estimation of the demand for public services communications. [market research and economic analysis for a communications satellite system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Market analyses and economic studies are presented to support NASA planning for a communications satellite system to provide public services in health, education, mobile communications, data transfer, and teleconferencing.

  2. The application of mobile satellite services to emergency response communications

    NASA Technical Reports Server (NTRS)

    Freibaum, J.

    1980-01-01

    The application of an integrated satellite/terrestrial emergency response communications system in disaster relief operations is discussed. Large area coverage communications capability, full-time availability, a high degree of mobility, plus reliability, are pointed out as criteria for an effective emergency communications system. Response time is seen as a major factor determining the possible survival and/or protection of property. These criteria, can not be met by existing communications systems and complete blackouts were experienced during the past decades caused by either interruption or destruction of existing power lines, and overload or inadequacy of remaining lines. Several emergency cases, caused by either hurricanes, tornados, or floods, during which communication via satellite was instrumental to inform rescue and relief teams, are described in detail. Seismic Risk Maps and charts of Major Tectonic Plates Earthquake Epicenters are given, and it is noted that, 35 percent of the U.S. population is living in critical areas. National and international agreements for the implementation of a satellite-aided global Search and Rescue Program is mentioned. Technological and economic breakthroughs are still needed in large multibeam antennas, switching circuits, and low cost mobile ground terminals. A pending plan of NASA to initiate a multiservice program in 1982/83, with a Land Mobile Satellite capability operating in the 806 - 890 MHz band as a major element, may help to accelerate the needed breakthroughs.

  3. Public service communications satellite. [health, education, safety and information transfer applications

    NASA Technical Reports Server (NTRS)

    Wolff, E. A.

    1978-01-01

    Health, education, public safety, and information transfer applications of public service communications satellites are discussed with particular attention to the use of communications satellites to improve rural health delivery. Health-care communications requirements are summarized. The communications system concept involves small inexpensive stationary, portable, and moving ground terminals which will provide communications between any two points in the U.S. with both fixed and moving terminals on a continuous 24-hour basis. User requirements, wavebands, and privacy techniques are surveyed.

  4. Satellite applications to electric-utility communications needs. [land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Horstein, M.; Barnett, R.

    1981-01-01

    Significant changes in the Nation's electric power systems are expected to result from the integration of new technology, possible during the next decade. Digital communications for monitor and control, exclusive of protective relaying, are expected to double or triple current traffic. A nationwide estimate of 13 Mb/s traffic is projected. Of this total, 8 Mb/s is attributed to the bulk-power system as it is now being operated (4 Mb/s). This traffic could be accommodated by current communications satellites using 3- to 4.5-m-diameter ground terminals costing $35,000 to $70,000 each. The remaining 5-Mb/s traffic is attributed to new technology concepts integrated into the distribution system. Such traffic is not compatible with current satellite technology because it requires small, low-cost ground terminals. Therefore, a high effective isotropic radiated power satellite, such as the one being planned by NASA for the Land Mobile Satellite Service, is required.

  5. Satellite provided fixed communications services: A forecast of potential domestic demand through the year 2000: Volume 2: Main text

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-01-01

    Potential satellite-provided fixed communications services, baseline forecasts, net long haul forecasts, cost analysis, net addressable forecasts, capacity requirements, and satellite system market development are considered.

  6. Laser Communication Demonstration System (LCDS) and future mobile satellite services

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Wilhelm, Michael D.; Lesh, James R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth orbit. For future global satellite communication systems using intersatellite links, laser communications technology can offer reduced mass and power requirements and higher channel bandwidths without regulatory constraints. As currently envisioned, LCDS will consist of one or two orbiting laser communications terminals capable of demonstrating high data rate (greater than 750Mbps) transmission in a dynamic space environment. Two study teams led by Motorola and Ball Aerospace are currently in the process of conducting a Phase A/B mission definition study of LCDS under contracts with JPL/NASA. The studies consist of future application survey, concept and requirements definition, and a point design of the laser communications flight demonstration. It is planned that a single demonstration system will be developed based on the study results. The Phase A/B study is expected to be completed by the coming June, and the current results of the study are presented in this paper.

  7. Use of communications. [satellite communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the field of satellite communications is reviewed, and useful services which may be provided by future satellite communications systems are considered. Recommendations are made with regard to mobile communications for use on land and at sea, position determination, mineral and energy exploration, the possibility of using electronic means to assist in main delivery, education and health-care experiments, and the use of satellite telecommunications to enhance the quality of life in rural areas by making available a full range of educational and entertainment programs. The needs of the amateur radio community are also considered.

  8. Preliminary benefits study for a public service communications satellite system: Task order 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The economic and social benefits to accrue from an operational public service communications satellite system are estimated for the following applications: teleradiology, emergency medical services, teleconferencing for both civilian and defense agencies, data transfer, remote cardiac monitoring, teleconsultation, continuing education for professionals, and severe storm warning. The potential impact of improved communication on the cost and quality of services are assessed for various agencies, professions, and industries.

  9. Remarks by Dr. James C. Fletcher at Conference on Satellite Communication and Public Service

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1976-01-01

    The present status of communications satellites, together with the future goals and technology developments in use of public service, is assessed. Improvements in design during the last decade considerably cut the cost of their development and launching, and the systems carry information to millions of people on earth. The space shuttles will change the rules in design and make it possible for communications satellites to have multiple frequencies operating at high power.

  10. Advanced communications satellite systems

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.

    1983-01-01

    There is a rapidly growing demand for satellite circuits, particularly for domestic service within the U.S. NASA's current program is aimed at developing the high risk, advanced satellite communications technologies required to significantly increase the capacity of future satellite communications systems. Attention is given to aspects of traffic distribution and service scenario, problems related to effects of rain attenuation, details regarding system configuration, a 30/20 GHz technology development approach, an experimental flight system, the communications payload for the experimental flight system, a typical experiment flight system coverage, and a typical three axis stabilized flight spacecraft.

  11. Optimization of orbital assignment and specification of service areas in satellite communications

    NASA Technical Reports Server (NTRS)

    Wang, Cou-Way; Levis, Curt A.; Buyukdura, O. Merih

    1987-01-01

    The mathematical nature of the orbital and frequency assignment problem for communications satellites is explored, and it is shown that choosing the correct permutations of the orbit locations and frequency assignments is an important step in arriving at values which satisfy the signal-quality requirements. Two methods are proposed to achieve better spectrum/orbit utilization. The first, called the delta S concept, leads to orbital assignment solutions via either mixed-integer or restricted basis entry linear programming techniques; the method guarantees good single-entry carrier-to-interference ratio results. In the second, a basis for specifying service areas is proposed for the Fixed Satellite Service. It is suggested that service areas should be specified according to the communications-demand density in conjunction with the delta S concept in order to enable the system planner to specify more satellites and provide more communications supply.

  12. Satellite/Terrestrial Networks: End-to-End Communication Interoperability Quality of Service Experiments

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1998-01-01

    Various issues associated with satellite/terrestrial end-to-end communication interoperability are presented in viewgraph form. Specific topics include: 1) Quality of service; 2) ATM performance characteristics; 3) MPEG-2 transport stream mapping to AAL-5; 4) Observation and discussion of compressed video tests over ATM; 5) Digital video over satellites status; 6) Satellite link configurations; 7) MPEG-2 over ATM with binomial errors; 8) MPEG-2 over ATM channel characteristics; 8) MPEG-2 over ATM over emulated satellites; 9) MPEG-2 transport stream with errors; and a 10) Dual decoder test.

  13. Communication satellite studies applicable to mobile telephone services

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Milton, R. T.; Brown, J. P.

    1979-01-01

    The potential use of satellites as extensions of existing terrestrial land mobile systems is discussed. Compatibility, particularly with cellular type systems, is considered. Sample technical and cost parameters and market assessments are also presented.

  14. Satellite Communications for ATM

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new applications that generally will enhance the standard services provided. All of those possibilities were investigated and comments, as well as descriptions of those analyses are put forward, as well as suggestions for future areas of study.

  15. Satellite communication services for Tibet autonomous region by domestic satellite in China

    NASA Astrophysics Data System (ADS)

    Wu, Bao-Kun

    This article describes the factors to be considered, the type-selecting principles and the refinement of the prototype in construction of the Tibet thin-route satellite telecommunication network. Western China is the cradle of the culture and economic development of the country. It has vast territory, abundant resources and great potential. The application of satellite communication technology in our country has been rather recent in the western area, and the system is being perfected and extended continuously. In order to solve the problems in country-country telephone communication in Tibet, the government began to build a thin-route voice VSAT (Voicesat) network which consists of 58 terminal stations in Tibet this year. Before long, this voicesat network will be extended into the territory of Xinjiang, Inner Mogolia, Sichuan and Qinghai, it will connect the important cities and counties located in the area of several million square kilometers.

  16. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Electronic Comment Filing System (ECFS). See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR... COMMISSION 47 CFR Part 2 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... of Earth Stations Aboard Aircraft (ESAA) in the 14.0-14.5 GHz band from secondary to primary...

  17. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., FR Doc. 2013-04429, on page 14952, column 1, correct the DATES section to read as follows: DATES... COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... proposed rule that appeared in the Federal Register of March 8, 2013. The document proposed rules for...

  18. An approach to effective UHF (S/L band) data communications for satellite Personal Communication Service (PCS)

    NASA Technical Reports Server (NTRS)

    Hayase, Joshua Y.

    1995-01-01

    Reliable signaling information transfer is fundamental in supporting the needs of data communication PCS via LMS (Land Mobile Service) SSs (satellite systems). The needs of the system designer can be satisfied only through the collection of media information that can be brought to bear on the pertinent design issues. We at ISI hope to continue our dialogue with fading media experts to address the unique data communications needs of PCS via LMS SSs.

  19. Public service satellites

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1977-01-01

    The development of the communications satellite system is discussed, taking into account a suggestion by Clarke in 1945 concerning the significance of geosynchronous satellites, the establishment of Intelsat, reductions in the cost of transatlantic telephone calls as a result of satellite communications service, questions of satellite cost, and the need for larger satellites. It is pointed out that the use of the Space Shuttle will reduce the cost of placing a satellite in orbit from more than half to less than a quarter of the total cost of design, construction, and launch. Attention is given to studies of a personal communications system which involves direct broadcast from a 'wrist watch radio' to a high-capacity, multibeam satellite for retransmission to ground communications centrals.

  20. Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    NASA Technical Reports Server (NTRS)

    Ha, Tri T.; Pratt, Timothy

    1989-01-01

    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel.

  1. The plan for the economic evaluation of the public service communication satellite system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A plan for the economic evaluation of the Public Service Communications Satellite (PSCS) within domestic markets is presented. It extends through the planning, performance and evaluation of economic experiments following the launch of the PSCS in 1982, and includes the consideration of how the results of these experiments impact the transfer from demonstration to operations. The implementation of this plan will provide information needed to understand and manage the economic and social impacts of the PSCS program.

  2. The plan for the economic evaluation of the Public Service Communication Satellite system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A total plan for the economic evaluation of the PSCS public service communication satellite program within domestic markets is presented. It extends from the present through the planning, performance and evaluation of economic experiments following the launch of the PSCS, and includes the consideration of how the results of these experiments impact the transfer from demonstration to operations. The implementation of this plan will provide NASA with information needed to understand and manage the economic and social impacts of the PSCS program.

  3. Wide-area technologies and services in the Trans-Pacific High Data Rate (HDR) satellite communications experiments

    NASA Technical Reports Server (NTRS)

    Hsu, E.; Hung, C.; Kadowaki, N.; Yoshimura, N.; Takahashi, T.; Shopbell, P.; Walker, G.; Wellnitz, D.; Gary, P.; Clark, G.; Yoshikawa, M.; desJardins, R.; Gill, M.; Tatsumi, H.

    2000-01-01

    This paper describes the technologies and services used in the experiments and demonstrations using the Trans-Pacific high data rate satellite communications infrastructure, and how the environment tasked protocol adaptability, scalability, efficiency, interoperability, and robustness.

  4. Satellite Communications for U.S. Schools; A Proposed Public Service Offering by Private Business.

    ERIC Educational Resources Information Center

    Krause, Lloyd I.

    The Federal Communications Commission has asked that companies seeking authorization to construct and operate communications satellite facilities for multi-purpose commercial uses in the United States give consideration to the communications needs of schools. In response to this request, MCI Lockheed Satellite Corporation proposes a low-cost…

  5. Communications satellites - The experimental years

    NASA Technical Reports Server (NTRS)

    Edelson, B. I.

    1983-01-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  6. Telelibrary: Library Services via Satellite.

    ERIC Educational Resources Information Center

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services

  7. Communications technology satellite

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A description of the Communications Technology Satellite (CTS), its planned orbit, its experiments, and associated ground facilities was given. The communication experiments, to be carried out by a variety of groups in both the United States and Canada, include tele-education, tele-medicine, community interaction, data communications and broadcasting. A historical summary of communications satellite development was also included.

  8. Communications satellite systems capacity analysis

    NASA Technical Reports Server (NTRS)

    Browne, L.; Hines, T.; Tunstall, B.

    1982-01-01

    Analog and digital modulation techniques are compared with regard to efficient use of the geostationary orbit by communications satellites. Included is the definition of the baseline systems (both space and ground segments), determination of interference susceptibility, calculation of orbit spacing, and evaluation of relative costs. It is assumed that voice or TV is communicated at 14/11 GHz using either FM or QPSK modulation. Both the Fixed-Satellite Service and the Broadcasting-Satellite Service are considered. For most of the cases examined the digital approach requires a satellite spacing less than or equal to that required by the analog approach.

  9. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  10. Mobile communications using satellite

    NASA Astrophysics Data System (ADS)

    Farrell, Jerald F.; Agnew, Carson E.

    The development of mobile satellite service (MSS) is examined. MSS is to provide two-way voice and data communications services to users in low population density areas and who require wide area coverage. The need for MSS is discussed and various examples of the services it would provide are presented. The allocation of frequencies (UHF frequencies) and international issues affecting the creation of MSS are analyzed. Consideration is given to the demand assignment multiple access network control, a digital system for mobile units, amplitude companded, single sideband modulation, and mobile unit antennas for the ground portions of MSS. The use of a scanning beam system to achieve high output over a wide coverage area for the space segment, the linearity and efficiency of the output power amplfiers, and antenna size are studied. The six steps for calling with the MSS are diagramatically given.

  11. Maritime satellite communications

    NASA Astrophysics Data System (ADS)

    Novik, Leonid I.; Morozov, Igor'd.; Solov'ev, Vladimir I.

    Principles underlying the design and operation of maritime satellite communications systems are reviewed, with reference to Inmarsat and Sarsat. Particular attention is given to the design of search and rescue systems, the development of the onboard equipment, and the characteristics of coastal and shipboard earth stations. Finally, the organization of maritime satellite communications systems is discussed, and questions of system efficiency are examined.

  12. Communication satellites in Canada

    NASA Astrophysics Data System (ADS)

    Palmer, J. D.

    A brief history of the Canadian involvement with domestic communications satellites is presented. Canada is the first country to deploy, through Telesat Canada, a geostationary domestic satellite system. This system, ANIK-A, operates within the 6/4 GHz band, and provides both telephony and television distribution. The limitations of the 6/4 GHz band prompted the Canadian government to join NASA and ESA in the design and construction of an experimental satellite operating in the 14/12 GHz band. The resulting spacecraft (CTS/HERMES) was used in 36 different Canadian Communications experiments. The experiments included were: telemedicine; teleeducation; community communications; administration; and satellite television broadcasting.

  13. Results of thin-route satellite communication system analyses including estimated service costs

    NASA Technical Reports Server (NTRS)

    Wright, D. L.

    1979-01-01

    A variety of cost and performance tradeoffs are addressed and the preliminary design of a communications satellite system capable of meeting isolated rural users' needs is presented. Small inexpensive rural earth stations are linked via the satellite to a nation wide network of large earth stations which are, in turn, interconnected to the switching exchanges of the conventional telephone network. Optimum earth station EIRP and G/T and satellite transponder power are defined as a function of a wide variety of system options.

  14. Domestic Communications Satellites.

    ERIC Educational Resources Information Center

    Network Project Notebook, 1972

    1972-01-01

    The June, 1972 Federal Communications Commission's (FCC) decision allowed an "open skies" policy in regard to domestic communication satellites and raised Liberal opposition to a situation where exclusive and unchecked communications power is now in the hands of private entrepreneurs, primarily the big Defense Department oriented aerospace…

  15. Odyssey personal communications satellite system

    NASA Technical Reports Server (NTRS)

    Spitzer, Christopher J.

    1993-01-01

    The spectacular growth of cellular telephone networks has proved the demand for personal communications. Large regions of the world are too sparsely populated to be economically served by terrestrial cellular communications. Since satellites are well suited to this application, TRW filed with the FCC on May 31, 1993 for the Odyssey construction permit. Odyssey will provide high quality wireless communication services worldwide from satellites. These services will include: voice, data, paging, and messaging. Odyssey will be an economical approach to providing communications. A constellation of 12 satellites will be orbited in three, 55 deg. inclined planes at an altitude of 10,354 km to provide continuous coverage of designated regions. Two satellites will be visible anywhere in the world at all times. This dual visibility leads to high line-of-sight elevation angles, minimizing obstructions by terrain, trees and buildings. Each satellite generates a multibeam antenna pattern that divides its coverage area into a set of contiguous cells. The communications system employs spread spectrum CDMA on both the uplinks and downlinks. This signaling method permits band sharing with other systems and applications. Signal processing is accomplished on the ground at the satellite's 'Gateway' stations. The 'bent pipe' transponders accommodates different regional standards, as well as signaling changes over time. The low power Odyssey handset will be cellular compatible. Multipath fade protection is provided in the handset.

  16. Domestic Communication Satellites

    ERIC Educational Resources Information Center

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  17. Experiment In Aeronautical-Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  18. System considerations, projected requirements and applications for aeronautical mobile satellite communications for air traffic services

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.; Miller, C. M.; Scales, W. C.; Dement, D. K.

    1990-01-01

    The projected application and requirements in the near term (to 1995) and far term (to 2010) for aeronautical mobile services supporting air traffic control operations are addressed. The implications of these requirements on spectrum needs, and the resulting effects on the satellite design and operation are discussed. The U.S. is working with international standards and regulatory organizations to develop the necessary aviation standards, signalling protocols, and implementation methods. In the provision of aeronautical safety services, a number of critical issues were identified, including system reliability and availability, access time, channel restoration time, interoperability, pre-emption techniques, and the system network interfaces. Means for accomplishing these critical services in the aeronautical mobile satellite service (AMSS), and the various activities relating to the future provision of aeronautical safety services are addressed.

  19. System considerations, projected requirements and applications for aeronautical mobile satellite communications for air traffic services

    NASA Astrophysics Data System (ADS)

    McDonald, K. D.; Miller, C. M.; Scales, W. C.; Dement, D. K.

    The projected application and requirements in the near term (to 1995) and far term (to 2010) for aeronautical mobile services supporting air traffic control operations are addressed. The implications of these requirements on spectrum needs, and the resulting effects on the satellite design and operation are discussed. The U.S. is working with international standards and regulatory organizations to develop the necessary aviation standards, signalling protocols, and implementation methods. In the provision of aeronautical safety services, a number of critical issues were identified, including system reliability and availability, access time, channel restoration time, interoperability, pre-emption techniques, and the system network interfaces. Means for accomplishing these critical services in the aeronautical mobile satellite service (AMSS), and the various activities relating to the future provision of aeronautical safety services are addressed.

  20. Communication satellite technology trends

    NASA Technical Reports Server (NTRS)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  1. Signals from Communications Satellites.

    ERIC Educational Resources Information Center

    Thomsen, Volker

    1996-01-01

    Discusses the Doppler effect for relative motion between a source of waves and an observer and the orbital dynamics of communications satellites. Presents preliminary calculations of the satellite's altitude and linear velocity using only the concepts of the Doppler shift and the mechanics of motion in a circular path. (JRH)

  2. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Plecity, Mark S.; Nall, Mark E.

    1991-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) provides high risk technologies having the potential to dramatically enhance the capabilities of the satellite communications industry. This experimental satellite, which will be launched by NASA in 1993, will furnish the technology necessary for providing a range of services. Utilizing the ACTS very-high-gain-hopping spot-beam antennas with on-board routing and processing, Very Small Aperture Terminal (VSAT) digital networks which provide on-demand, full-mesh-convectivity 1.544-MBPS services with only a single hop can be established. The high-gain spot-beam antenna at Ka-band permits wide area, flexible networks providing high data rate services between modest-size earth terminals.

  3. Remote Psychiatric and Psychological Services via the Communications Technology Satellite (CTS).

    ERIC Educational Resources Information Center

    Covvey, H. Dominic; And Others

    To provide remote psychiatric services to a population in Moose Factory, Ontario, via satellite, digital data links will be used to provide 24-hour access to the psychiatric medical file system and the psychiatric patient register at University Hospital, London, Ontario, and to permit scoring and interpretation of standard psychological tests. The…

  4. Demand for satellite-provided domestic communications services up to the year 2000

    NASA Technical Reports Server (NTRS)

    Stevenson, S.; Poley, W.; Lekan, J.; Salzman, J. A.

    1984-01-01

    Three fixed service telecommunications demand assessment studies were completed for NASA by The Western Union Telegraph Company and the U.S. Telephone and Telegraph Corporation. They provided forecasts of the total U.S. domestic demand, from 1980 to the year 2000, for voice, data, and video services. That portion that is technically and economically suitable for transmission by satellite systems, both large trunking systems and customer premises services (CPS) systems was also estimated. In order to provide a single set of forecasts a NASA synthesis of the above studies was conducted. The services, associated forecast techniques, and data bases employed by both contractors were examined, those elements of each judged to be the most appropriate were selected, and new forecasts were made. The demand for voice, data, and video services was first forecast in fundamental units of call-seconds, bits/year, and channels, respectively. Transmission technology characteristics and capabilities were then forecast, and the fundamental demand converted to an equivalent transmission capacity. The potential demand for satellite-provided services was found to grow by a factor of 6, from 400 to 2400 equivalent 36 MHz satellite transponders over the 20-year period. About 80 percent of this was found to be more appropriate for trunking systems and 20 percent CPS.

  5. Demand for satellite-provided domestic communications services up to the year 2000

    NASA Astrophysics Data System (ADS)

    Stevenson, S.; Poley, W.; Lekan, J.; Salzman, J. A.

    1984-11-01

    Three fixed service telecommunications demand assessment studies were completed for NASA by The Western Union Telegraph Company and the U.S. Telephone and Telegraph Corporation. They provided forecasts of the total U.S. domestic demand, from 1980 to the year 2000, for voice, data, and video services. That portion that is technically and economically suitable for transmission by satellite systems, both large trunking systems and customer premises services (CPS) systems was also estimated. In order to provide a single set of forecasts a NASA synthesis of the above studies was conducted. The services, associated forecast techniques, and data bases employed by both contractors were examined, those elements of each judged to be the most appropriate were selected, and new forecasts were made. The demand for voice, data, and video services was first forecast in fundamental units of call-seconds, bits/year, and channels, respectively. Transmission technology characteristics and capabilities were then forecast, and the fundamental demand converted to an equivalent transmission capacity. The potential demand for satellite-provided services was found to grow by a factor of 6, from 400 to 2400 equivalent 36 MHz satellite transponders over the 20-year period. About 80 percent of this was found to be more appropriate for trunking systems and 20 percent CPS.

  6. The 18 and 30 GHz fixed service communications satellite system study. [to determine the cost and performance characteristics

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1979-01-01

    The use of the 18 and 30 GHz bands for fixed service satellite communications is examined. The cost and performance expected of 18 and 30 GHz hardware is assessed, selected trunking and direct to user concepts are optimized, and the cost of these systems are estimated. The effect of rain attenuation on the technical and economic viability of the system and methods circumventing the problem are discussed. Technology developments are investigated and cost estimates of these developments are presented.

  7. Satellite communications system 'Tyulpan'

    NASA Astrophysics Data System (ADS)

    Tchuyan, R. K.; Tarasov, E. V.; Belousov, A. P.; Balyk, V. M.; Kovtunenko, V. M.; Morozov, V. A.; Andreev, V. A.; v'yunenko, K. A.

    1993-10-01

    A concept of the satellite communication system called 'Tyulpan' (because or its tulip-resembling shape) is considered. This conception envisages the use of six satellites-retranslators installed on high-latitude elliptic orbits. Such a system can provide the communication for mean- and high-latitude region of Europe, Asia, and America. For the communication, super small ground stations of 0.4 m in diameter can be used. In the development of system conception, the already existing technical solutions and possibility of conversion or existing installations of military destination were taken into account. Therefore, the system considered can be realized at the earliest possible date.

  8. Public service communications

    NASA Technical Reports Server (NTRS)

    Whalen, A. A.

    1979-01-01

    The purpose of the paper is to construct, for detailed analysis, satellite and terrestrial communications delivery system models. Attention is given to the Public Service Communications Delivery System Architectural Study, that takes advantage of the extensive experience which exists among the public service experimenters. The Application Test Pilot is examined, which is a program designed to help awareness, in a practical sense, of the technology available and by the users innovative talents, adapts the technology to solve their problems.

  9. Upcoming communications satellites

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A new series of international and business communications satellites will be launched by ‘workhorse’ rocket systems, including updated Delta and Atlas/Centaur rockets, over the next few years. There is, of course, a ‘long-shot’ option that the space shuttle, as originally conceived, will be used to place the satellites in orbit, but no one is willing to bet right now that the shuttle will be functional and operational in time. Instead, the U.S. will employ updated versions of 15-20-year-old rockets to launch a series of satellites with names like ‘INTELSAT,’ ‘INSAT,’ ‘Palapa,’ and ‘SBS’ into geosynchronous orbits.INTELSAT V is the first of a new generation of international telecommunications satellites sponsored by the 105-nation International Telecommunications Satellite Organization (INTELSAT), headquartered in Washington, D.C. The satellite, which weighs 1,928 kg at launch, has almost double the communications capability of early satellites in the INTELSAT series. It is positioned in geosynchronous orbit over the Atlantic Ocean so as to provide communications between North America and Europe.

  10. International communications via satellite

    NASA Astrophysics Data System (ADS)

    McLucas, J. L.

    The evolution of communications satellite systems is traced in terms of technical capabilities and technological advances. The Communications Act of 1962 led to the establishment of INTELSAT on an international basis in 1964. The original 19 signatory nations has grown to over 100, and over 800 ground relay stations have been built. The INTELSAT system comprises spacecraft over the Atlantic, Pacific, and Indian Oceans and handles 2/3 of the world's international electronic communications and all transoceanic television. The 1965 Early Bird satellite had a 240 two-way telephone link capacity and weighed 38 kg, while the Intelsat V satellites, of which there will be nine, have increased the capacity to 20,000 voice circuits and Intelsat VI will double the number by 1993. Increasing demand for satellite communications links is driving the design and development of space platforms for multiple missions of communications, meteorological studies, and on-board switching and data processing in excess of current multiple satellite systems.

  11. Satellite Communications Using Commercial Protocols

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  12. Satellite-Based Educational Services. Technical Memorandum.

    ERIC Educational Resources Information Center

    Operations Research, Inc., Silver Spring, MD.

    This memorandum contains engineering information relevant to the use of communication satellites for educational purposes. Information is provided for ground terminals as well as satellites. Satellite related issues addressed include: (1) expected life of service of various satellites, (2) constraints on the availability of the satellites, (3)…

  13. Future communications satellite applications

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  14. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  15. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  16. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  17. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  18. 47 CFR 25.279 - Inter-satellite service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other...

  19. Cost Consideration for Future Communications Satellite

    NASA Astrophysics Data System (ADS)

    Iida, Takashi

    2002-01-01

    This paper discusses the cost driving factors of the future communications satellite rather than discussing its cost itself directly, in terms of development period of time, services, and R&D by government. In the first, a period of time for development of a communications system is discussed in comparison of satellite communications system with a terrestrial communications system. Generally speaking, the terrestrial communications system is developed in a short period. Especially, the recent network related IT technology changes very rapidly, like so-called as "Dog Year". On the other hand, it takes a long time, more than several years, to develop a satellite communications system. This paper will discuss this time period of development is how to influence the system realization in various cases. In the second, the service related cost is discussed. First, a mobile communications satellite system is considered as an example. The tremendous penetration speed of the terrestrial cellular phones prevents from the success of the mobile satellite communications system. The success of the mobile satellite communications system depends on how early and user friendly to develop its user terminals. Second, the broadcasting service is described as a successful example. It is described that the satellite broadcasting has a very competitive advantage to the terrestrial broadcasting service from the cost point of view. Finally, the cost of the technology R&D for the future communication satellite by the government is discussed. A model of the future communications satellite for next 30 years has been proposed(1)(2). As an example, this paper estimates the satellite cost of the 60 Gbps range of capacity which is called as 1.5G satellite, where the capacity of the second generation Internet satellite (2G) is 50-500 Gbps per satellite. In the paper, the R&D plan of the future communications satellite will be discussed as a next R&D project to the first generation Internet satellite from a cost point of view. References (1)T.Iida and Y.Suzuki: "Satellite Communications R&D for Next 30 Years", 19th AIAA (2)T.Iida, Y.Suzuki and A.Akaishi: "Satellite Communications R&D for Next 30 Years:

  20. Business Use of Satellite Communications.

    ERIC Educational Resources Information Center

    Edelson, Burton I.; Cooper, Robert S.

    1982-01-01

    Reviews business communications development and discusses business applications of satellite communications, system technology, and prospects for future developments in digital transmission systems. (JN)

  1. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  2. Satellite services system overview

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  3. Odyssey, an optimized personal communications satellite system

    NASA Astrophysics Data System (ADS)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane. Deployment of the satellites permits phased introduction of service. After only three launches, in which two satellites are launched into each plane, continuous service can be provided to most of the world. After three more launches for a total of 12 satellites, service can be expanded to all populated regions of the Earth with path diversity to most regions. The Odyssey system is superior to both geostationary satellites and low earth orbiting satellites. Odyssey provides many benefits to the end user which are described in the paper. These include: low cost, convenience, high availability, reliability, and acceptable time delay. Odyssey exhibits benefits for telecommunications operators: simple operations, incremental, phased startup, long space segment life-time, high profitability, dynamic flexibility for adjustment and short time to market. Since submission of an FCC application in 1991, TRW has continued to explore ways to further improve the Odyssey approach by expanding coverage to the entire world and reducing the initial investment while maintaining high quality service.

  4. Land-mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee (Inventor); Rafferty, William (Inventor); Dessouky, Khaled I. (Inventor); Wang, Charles C. (Inventor); Cheng, Unjeng (Inventor)

    1993-01-01

    A satellite communications system includes an orbiting communications satellite for relaying communications to and from a plurality of ground stations, and a network management center for making connections via the satellite between the ground stations in response to connection requests received via the satellite from the ground stations, the network management center being configured to provide both open-end service and closed-end service. The network management center of one embodiment is configured to provides both types of service according to a predefined channel access protocol that enables the ground stations to request the type of service desired. The channel access protocol may be configured to adaptively allocate channels to open-end service and closed-end service according to changes in the traffic pattern and include a free-access tree algorithm that coordinates collision resolution among the ground stations.

  5. Experimental Satellite Quantum Communications.

    PubMed

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse ?_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers. PMID:26252672

  6. Experimental Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-01

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse ÎĽsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  7. Satellite Services Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Key issues associated with the orbital servicing of satellites are examined including servicing spacecraft and equipment, servicing operations, economics, satellite design, docking and berthing, and fluid management.

  8. AUSSAT mobile satellite services

    NASA Technical Reports Server (NTRS)

    Nowland, Wayne L.; Wagg, Michael; Simpson, Daniel

    1988-01-01

    An overview of AUSSAT's planned mobile satellite system is given. The development program which is being undertaken to achieve the 1992 service date is described. Both business and technical aspects of the development program are addressed.

  9. Satellite communications for disaster relief operations

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.

    1979-01-01

    The use of existing and planned communication satellite systems to provide assistance in the implementation of disaster relief operations on a global basis was discussed along with satellite communications system implications and their potential impact on field operations in disaster situations. Consideration are given to the utilization of both INTELSAT and MARISAT systems operating at frequencies ranging from 1.5 to 4 GHz and to the size and type of ground terminals necessary for satellite access. Estimates of communication requirements for a global system are given. Some discussion of cost estimates for satellite services to support operations are included. Studies of communication satellites for both pre and post disaster applications conducted for NOAA are included as well as recent experiments conducted in conjunction with the Office of Foreign Disaster Assistance of the Agency for International Development.

  10. DCS/FTS Commercial Satellite Communications System

    NASA Astrophysics Data System (ADS)

    Shimabukuro, T.; Rosner, R.; Pearsall, C.

    In order to control the rising costs of telephonic services and meeting the increasing demand for wideband video and data services within U.S. Federal Government agencies, the Defense Communications Agency and the General Services Administration have begun the implementation of a leased Commercial Satellite Communications System. Service volume demand, commonality of service requirements, and common geographic communities of interest facilitate economies of scale in the course of meeting DOD and other Federal agencies' objectives. The service, which incorporates the Federal Telecommunications Service and is therefore designated DCS/FTS, is presently studied with respect to military and national objectives.

  11. Potential Use of the Australian Satellite Communications System for School of the Air and Enhanced Educational Services. Report Prepared for the Commonwealth/State Advisory Committee on the Educational Use of Communications Technology.

    ERIC Educational Resources Information Center

    Davies, N. G.; Gillam, J. A.

    This report considers the potential for the use of the Australian Communications Satellite System (ACSS) for the Australian Schools of the Air (SOTAs) and the delivery of enhanced educational services, and develops the concept of all SOTAs operating through one transponder in a national beam. An evolutionary introduction of satellite transmission…

  12. Small satellites applications - A new perspective in satellite communications

    NASA Astrophysics Data System (ADS)

    Ananasso, F.; Rondinelli, G.; Palmucci, P.; Pavesi, B.

    1992-03-01

    The relative advantages of exploiting small satellites for communications systems is addressed with attention given to orbital problems and frequency-band management. Current small-satellite projects which propose the use of VHF and UHF bands from 137 MHz to the L-band are listed and examined including Iridium, Orbcomm, and Starsys. These projects are evaluated with emphasis given to launch strategies, service potential, the use of on-board processing, intersatellite links, and multibeam antennas. The long-term perspective on the use of small-satellite systems indicates good market penetration for low-rate data-transmission services, bearer services, and the transmission of educational programs. The costs of the developing programs are analyzed and shown to offer a lower cost per Kbit in terms of launch and deployment. The use of multiple satellites is shown to be of the most value to programs for global communications which require flexibility in terms of future traffic growth.

  13. The quad-service satellite transmitting and receiving system for medical supply support: A battlefield interoperability and communications system prototype, volume 1

    NASA Astrophysics Data System (ADS)

    Lycas, John; Miller, Roger E.

    1994-07-01

    This report documents the design and development of a prototype information communications system for quad-service use in a theater of operations. The prototype was designed to allow seamless integration of legacy information systems operated by each of the four services, and is based on a combination of software interfaces and commercial satellite communications hardware. The QSTARS-MS prototype has been tested in a variety of garrison and deployment settings, including extensive use in Somalia and the former Yugoslav republics. The prototype demonstrates the feasibility of achieving joint interoperability through rapidly designed interfaces between legacy information systems. The prototype also offers world-wide, portable, and affordable satellite communications capability through the use of the International Maritime Satellite network.

  14. The quad-service satellite transmitting and receiving system for medical supply support: A battlefield interoperability and communications system prototype, volume 2. User documentation

    NASA Astrophysics Data System (ADS)

    Lycas, John; Miller, Roger E.

    1994-08-01

    This report documents the design and development of a prototype information communications system for quad-service use in a theater of operations. The prototype was designed to allow seamless integration of legacy information systems operated by each of the four services, and is based on a combination of software interfaces and commercial satellite communications hardware. The QSTARS-MS prototype has been tested in a variety of garrison and deployment settings including extensive use in Somalia and the former Yugoslav republics. The prototype demonstrates the feasibility of achieving joint interoperability through rapidly designed interfaces between legacy information systems. The prototype also offers world-wide, portable, and affordable satellite communications capability through the use of the International Maritime Satellite network.

  15. Survey: National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The national Environmental Satellite Service (NESS) receives data at periodic intervals from satellites of the Synchronous Meteorological Satellite/Geostationary Operational Environmental Satellite series and from the Improved TIROS (Television Infrared Observational Satellite) Operational Satellite. Within the conterminous United States, direct readout and processed products are distributed to users over facsimile networks from a central processing and data distribution facility. In addition, the NESS Satellite Field Stations analyze, interpret, and distribute processed geostationary satellite products to regional weather service activities.

  16. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  17. Satellite personal communications system

    NASA Technical Reports Server (NTRS)

    Reilly, N. B.; Smith, J. G. (Inventor)

    1980-01-01

    Voice channel communication between low power mobile stations dispersed over a large area is provided by a system which includes a geostationary satellite utilizing a large UHF antenna that can receive a transmission from a caller and retransmit it over any one beam of a matrix of narrow beams, so the chosen beam covers an area in which a designated called party is located. A single up-link control channel occupying a narrow frequency band, can be utilized to receive dial up signals from a caller, and another single down link control channel can be utilized to ring up the called party located anywhere within the continental United States. The satellite antenna includes a matrix of feed horns that not only direct the beams in a controlled matrix onto the area of the continental United States, but also permit detection of the region from which the caller's signal is transmitted and the region from which the called party's answer is received, to enable the interconnection of signals received from these two regions. The system is particularly useful for rural areas.

  18. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  19. Satellite Applications for Public Service: Project Summaries.

    ERIC Educational Resources Information Center

    Lauffer, Sandra; And Others

    Summaries of 18 different projects involving the use of satellite communications are presented in this report, including PEACESAT Education and Communication Experiments, USP Network Satellite Communication Project, Project Satellite, Satellite Instructional Television Experiment (SITE), Appalachian Education Satellite Program, Alaska Education…

  20. Domestic satellite communications systems - Background and projections

    NASA Astrophysics Data System (ADS)

    Bargellini, P. L.

    Planned and existing national and international communications satellites are reviewed, along with comparative costs for leasing or owning a satellite and the basic capabilities of communications spacecraft. Eleven different satellite communications systems existed in 1982, including Intelsat, Marisat/Inmarsat, and Intersputnik as the international segments, and the Molniya, Telesat, Palapa, Westar, Satcom, Comstar, Amersat, and the SBS national systems. Seven of the twenty countries leasing Intelsat services are planning their own satellites. Leasing permits full capabilities withno development costs and ensures the lessor of full use of the satellite capacities. Developing countries can then gain hands-on experience with space technologies. Future demands are discussed, noting the broadening of the available bandwidths, better orbit utilization, and increases in transponder numbers to handle increased loads in future spacecraft.

  1. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    NASA Astrophysics Data System (ADS)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an operation time of up to 10 years. It also enables measurements of the libration point environment with the scientific payloads. This includes sensors for space dust, solar and cosmic radiation activity for satellite lifetime estimation and lunar crew protection by providing early-warning systems. The paper describes the mission concept and the pre-design of the demonstrator satellite according to the operational mission requirements, advantages and benefits of this service. The concept was awarded with the Space Generation Advisory Council and OHB Scholarship in 2011 and the concept study is conducted at the Institute of Space Systems (IRS) [1] of the University of Stuttgart and OHB-System, Bremen [2].

  2. A commercial communications satellite system for Japan

    NASA Astrophysics Data System (ADS)

    Berta, M. A.; Marumo, M.

    1986-03-01

    JC SAT will provide commercial Ku-band communications service to the Japanese islands commencing in early 1988. The satellite is a Hughes HS-393 with 32 transponders and a 27 MHz bandwidth. The communications payload has 40 for 32 redundancy with nominal 20 watt traveling wave tubes. Eighteen of the transponders contain linearizer-TWT combinations. This system will provide highly reliable service for the complete range of applications from TV broadcast to digital data dissemination using relatively small receiving antennas.

  3. Trends in mobile satellite communication

    NASA Technical Reports Server (NTRS)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  4. Antennas for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  5. Odyssey, an optimized personal communications satellite system

    NASA Astrophysics Data System (ADS)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry in developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, 'bent pipe' transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. satellites permits phased introduction of service. After only three launches, in which two satellites are launched into each plane, continuous service can be provided to most of the world. After three more launches for a total of 12 satellites, service can be expanded to all populated regions of the Earth with path diversity to most regions. *The Odyssey system is superior to both geostationary satellites and low earth orbiting satellites. -Odyssey provides many benefits to the end user which are described in the paper. These include: low cost, convenience, high availability, reliability, and acceptable time delay. Odyssey exhibits benefits for telecommunications operators: simple operations, incremental, phased startup, long space segment life-time, high profitability, dynamic flexibility for adjustment and short time to market. %Since submission of an FCC application in 1991, TRW has continued to explore ways to further improve the Odyssey approach by expanding coverage to the entire world and reducing the initial investment while maintaining high quality service.

  6. Satellite servicing economic study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Therefore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  7. Satellite servicing economic study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Threfore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  8. Mobile satellite service in the United States

    NASA Technical Reports Server (NTRS)

    Agnew, Carson E.; Bhagat, Jai; Hopper, Edwin A.; Kiesling, John D.; Exner, Michael L.; Melillo, Lawrence; Noreen, Gary K.; Parrott, Billy J.

    1988-01-01

    Mobile satellite service (MSS) has been under development in the United States for more than two decades. The service will soon be provided on a commercial basis by a consortium of eight U.S. companies called the American Mobile Satellite Consortium (AMSC). AMSC will build a three-satellite MSS system that will offer superior performance, reliability and cost effectiveness for organizations requiring mobile communications across the U.S. The development and operation of MSS in North America is being coordinated with Telesat Canada and Mexico. AMSC expects NASA to provide launch services in exchange for capacity on the first AMSC satellite for MSAT-X activities and for government demonstrations.

  9. A design of 30/20 GHz flight communications experiment for NASA. [satellite and earth segments for high data rate commercial service

    NASA Technical Reports Server (NTRS)

    Kawamoto, Y.

    1982-01-01

    The objective of the 30/20 GHz Flight Experiment System is to develop the required technology and to experiment with the communication technique for an operational communication satellite system. The system uses polarization, spatial, and frequency isolations to maximize the spectrum utilization. The key spacecraft technologies required for the concept are the scan beam antenna, the baseband processor, the IF switch matrix, TWTA, SSPA, and LNA. The spacecraft communication payload information will be telemetered and monitored closely so that these technologies and performances can be verified. Two types of services, a trunk service and a customer premise service, are demonstrated in the system. Many experiments associated with these services, such as synchronization, demand assignment, link control, and network control will be performed to provide important information on the operational aspect of the system.

  10. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  11. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  12. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  13. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  14. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  15. Modulation and coding used by a major satellite communications company

    NASA Technical Reports Server (NTRS)

    Renshaw, K. H.

    1992-01-01

    Hughes Communications Inc., is a major satellite communications company providing or planning to provide the full spectrum of services available on satellites. All of the current services use conventional modulation and coding techniques that were well known a decade or longer ago. However, the future mobile satellite service will use significantly more advanced techniques. JPL, under NASA sponsorship, has pioneered many of the techniques that will be used.

  16. ECS - The European Communication Satellite system

    NASA Astrophysics Data System (ADS)

    Wooster, C. B.

    1981-09-01

    The evolution of the European Communication Satellite system (ECS) is traced from feasibility studies in 1970 to the development and launch in 1978 of the Orbital Test Satellite (OTS) by the European Space Agency to prove the new satellite and radio transmission technology being used on ECS. This was followed by the establishment of 'Interim EUTELSAT' in 1979 as the organization to operate ECS. The satellite, which operates at 11/14 GHz, covers all the capitals in Europe via three spot beam antennas, supplemented by a 'Eurobeam' regional coverage antenna which extends the range to cover all of Europe and the Mediterranean basin. Telephony channels are transmitted digitally using time division multiple access (TDMA) with digital speech interpolation (DSI) to optimize satellite capacity. Television transmission is by analog FM over the Eurobeam antenna to North African as well as European capitals. System implications of TDMA operation are discussed, and the EUTELSAT policy for Special Services or satellite business systems is discussed.

  17. Power versus stabilization for laser satellite communication.

    PubMed

    Arnon, S

    1999-05-20

    To establish optical communication between any two satellites, the lines of sight of their optics must be aligned for the duration of the communication. The satellite pointing and tracking systems perform the alignment. The satellite pointing systems vibrate because of tracking noise and mechanical impacts (such as thruster operation, the antenna pointing mechanism, the solar array driver, navigation noise, tracking noise). These vibrations increase the bit error rate (BER) of the communication system. An expression is derived for adaptive transmitter power that compensates for vibration effects in heterodyne laser satellite links. This compensation makes it possible to keep the link BER performance constant for changes in vibration amplitudes. The motivation for constant BER is derived from the requirement for future satellite communication networks with high quality of service. A practical situation of a two-low-Earth-orbit satellite communication link is given. From the results of the example it is seen that the required power for a given BER increases almost exponentially for linear increase in vibration amplitude. PMID:18319913

  18. Technology requirements for post-1985 communications satellites

    NASA Technical Reports Server (NTRS)

    Burtt, J. E.; Moe, C. R.; Elms, R. V.; Delateur, L. A.; Sedlacek, W. C.; Younger, G. G.

    1973-01-01

    The technical and functional requirements for commercial communication satellites are discussed. The need for providing quality service at an acceptable cost is emphasized. Specialized services are postulated in a needs model which forecasts future demands. This needs model is based upon 322 separately identified needs for long distance communication. It is shown that the 1985 demand for satellite communication service for a domestic region such as the United States, and surrounding sea and air lanes, may require on the order of 100,000 MHz of bandwith. This level of demand can be met by means of the presently allocated bandwidths and developing some key technologies. Suggested improvements include: (1) improving antennas so that high speed switching will be possible; (2) development of solid state transponders for 12 GHz and possibly higher frequencies; (3) development of switched or steered beam antennas with 10 db or higher gain for aircraft; and (4) continued development of improved video channel compression techniques and hardware.

  19. Global trade in satellites and launch services

    NASA Astrophysics Data System (ADS)

    Hearing before the Subcommittee on Space of the Committee on Science, Space, and Technology of the House of Representatives is presented. Written testimony, submittals for the record, and responses to written questions are included. Topics concerning the global trade in satellites and launch services include foreign competition, the China and Russia trade agreements, Commerce licensing on international sales and export, trade control, technology transfer, satellite communications and the economy, satellites and the global information infrastructure, commercial space revenues, and enforcement of trade policies.

  20. Potential markets for advanced satellite communications

    NASA Technical Reports Server (NTRS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  1. NASA compendium of satellite communications programs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A comprehensive review of worldwide satellite communication programs is reported that ranges in time from the inception of satellite communications to mid-1971. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed.

  2. A series on optimizing satellite systems. I - Restoring interruptions of communications sattelite service: Logistical and cost comparisons of mature and newly operational systems

    NASA Astrophysics Data System (ADS)

    Snow, Marcellus S.

    1989-09-01

    A mathematical model is presented of costs and operational factors involved in provision for service interruptions of both a mature and typically large incumbent satellite system and of a smaller, more recently operational system. The equation expresses the required launch frequency for the new system as a function of the launch spacing of the mature system; the time disparity between the inauguration of the two systems; and the rate of capacity depreciation. In addition, a technique is presented to compare the relative extent to which the discounted costs of the new system exceed those of the mature system in furnishing the same effective capacity in orbit, and thus the same service liability, at a given point in time. It is determined that a mature incumbent communications satellite system, having more capacity in orbit, will on balance have a lower probability of service interruption than a newer, smaller system.

  3. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  4. Communications and media services

    NASA Technical Reports Server (NTRS)

    Mcculla, James W.; Kukowski, James F.

    1990-01-01

    NASA's internal and external communication methods are reviewed. NASA information services for the media, for the public, and for employees are discussed. Consideration is given to electron information distribution, the NASA TV-audio system, the NASA broadcast news service, astronaut appearances, technology and information exhibits, speaker services, and NASA news reports for internal communications. Also, the NASA worldwide electronic mail network is described and trends for future NASA communications and media services are outlined.

  5. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  6. Telemammography Using Satellite Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Telemammography, the electronic transmission of digitized mammograms, can connect patients with timely, critical medical expertise; howev er, an adequate terrestrial communications infrastructure does not exist in these areas. NASA Lewis Research Center's Advanced Space Commu nications Laboratory is now working with leading breast cancer resear ch hospitals, including the Cleveland Clinic and the University of Virginia, to perform the critical research necessary to allow new satell ite networks to support telemammography.

  7. Communications satellite systems operations with the space station, volume 2

    NASA Technical Reports Server (NTRS)

    Price, K.; Dixon, J.; Weyandt, C.

    1987-01-01

    A financial model was developed which described quantitatively the economics of the space segment of communication satellite systems. The model describes the economics of the space system throughout the lifetime of the satellite. The expected state-of-the-art status of communications satellite systems and operations beginning service in 1995 were assessed and described. New or enhanced space-based activities and associated satellite system designs that have the potential to achieve future communications satellite operations in geostationary orbit with improved economic performance were postulated and defined. Three scenarios using combinations of space-based activities were analyzed: a spin stabilized satellite, a three axis satellite, and assembly at the Space Station and GEO servicing. Functional and technical requirements placed on the Space Station by the scenarios were detailed. Requirements on the satellite were also listed.

  8. Satellite Communications: Hopes and Fears

    ERIC Educational Resources Information Center

    Sirkin, Abraham M.

    1978-01-01

    The potentials of space communication, including the prospects and problems of direct broadcast TV satellites, are examined. Considered are future visions, internal and international goals, economic factors, political constraints, prior consent, U.S. and U.N. positions, and free flow of information. (LBH)

  9. Spacecraft in switch matrix for wide band service applicatons in 30/20 GHz communications satellite systems

    NASA Technical Reports Server (NTRS)

    Cory, B. J.

    1982-01-01

    Bandwidth, switching speed, off-state isolation, and reliability over a ten-year mission were factors in determining the optimum available technology for satellite communications switching in 1982. A proof of concept model for a 20 x 20 coupled crossbar switch matrix designed with FET devices for microwave switching and with high speed CMOS LIS for switch crosspoint addressing was fabricated and tested. Results show the design is feasible for application in a multichannel SS-TDMA communications system. Expandibility can readily be achieved with this design. A conceptual design study for a 100 x 100 switch matrix utilizing a coupled crossbar architecture implemented with a monolithic microwave integrated circuits revealed technology needs for high capacity switch matrices.

  10. Managing a satellite communications program in a hospital library.

    PubMed Central

    Sutton, L S; Phillips, F M; Winfield, S R

    1987-01-01

    A satellite communications service used for the continuing education of hospital staff can be successfully managed by a hospital library. Organization of the service includes managing equipment and personnel, finding programming, marketing the service, arranging for teleconferences, and establishing videotape procedures. A satellite communications program gives the library the opportunity to establish new partnerships with other departments in the hospital as well as with other segments of the community. PMID:3594024

  11. Mobile satellite service for Canada

    NASA Technical Reports Server (NTRS)

    Sward, David

    1988-01-01

    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  12. Federal research and development for satellite communications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Committee on Satellite Communication (COSC) was formed under the auspices of the Space Applications Board (SAB) in order to study Federal research and development on satellite communications (SC). Discussion on whether to continue the research and development and the proper role of the Federal Government are addressed. Discussion focussed on six possible options for a Federal role in SC research and development: (1) the current NASA SC program; (2) an expanded NASA SC technology program; (3) a SC technology flight test support program; (4) an experimental SC technology flight program; (5) an experimental public service SC system program; and (6) an operational public service SC system program. Decision criteria and recommendations are presented.

  13. Research Supporting Satellite Communications Technology

    NASA Technical Reports Server (NTRS)

    Horan Stephen; Lyman, Raphael

    2005-01-01

    This report describes the second year of research effort under the grant Research Supporting Satellite Communications Technology. The research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver. The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight Center for integration with the GSFC testbed. The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.

  14. Lens Antenna For Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Bodnar, D. G.; Rainer, B. K.

    1988-01-01

    Flat, compact antenna made of stripline elements aimed at fixed elevation angle but steered electronically in azimuth. Design simplified by maintaining fixed elevation and relying on width of beam to cover desired elevation range. Need for phase shifter at each radiating element eliminated by arranging elements in circles and feeding through stripline disks called "R-KR lenses". Used in Mobile/Satellite Service, antenna mounted on top of vehicle on Earth and used to keep transmitted and received antenna beams aimed approximately toward communication satellite.

  15. Customer concerns regarding satellite servicing

    NASA Technical Reports Server (NTRS)

    Rysavy, Gordon

    1987-01-01

    The organization of orbital servicing of satellites is discussed. Provision of servicing equipment; design interfaces between the satellite and the servicing equipment; and the economic viability of the concept are discussed. The proposed solution for satisfying customer concerns is for the servicing organizations to baseline an adequate inventory of servicing equipment with standard interfaces and established servicing costs. With this knowledge, the customer can conduct tradeoff studies and make programmatic decisions regarding servicing options. A dialog procedure between customers and servicing specialists is outlined.

  16. Launch vehicles for communications satellites

    NASA Technical Reports Server (NTRS)

    Mahon, J. B.

    1982-01-01

    After giving brief development histories of the Delta and the Atlas Centaur launch vehicles, attention is given to the operational characteristics of the ascent, parking orbit, transfer orbit, and orbital insertion phases of the delivery of a communications satellite to a geostationary orbit by means of a Delta launch vehicle. NASA plans to employ Delta vehicles for as long as they are needed during the transition period to the Space Shuttle. NASA planning for Atlas Centaur includes launches through 1985 for INTELSAT-VA, and through 1986 for FLTSATCOM satellites.

  17. Trends in NASA communication satellites

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.; Robbins, W. H.; Stretchberry, D. M.

    1972-01-01

    Satellite telecommunications can help to satisfy several national needs such as education, health care, cultural opportunities, and data transfer. There are current experiments being conducted with NASA spacecraft ATS 1, 3, and 5 in an attempt to satisfy these national needs. Future experiments are planned for the ATS F/G and CTS spacecrafts. The next generation of communications satellites must provide multiple region coverage, multichannel capability, high quality TV pictures, and must allow low cost ground receivers to be used. The proposed NASA spacecrafts, ATS H/I, will satisfy these requirements. Other countries of the world can benefit from ATS H/I technology.

  18. Communications satellite no. 2 (CS-2)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.

  19. Satellite communications for the Pacific islands. Second year report

    NASA Technical Reports Server (NTRS)

    Young, E.; Hurd, J. N.

    1982-01-01

    Requirements, options and costs for use of communications satellites in underserved areas of the Pacific Basin are described with emphasis on extended utilization of INTELSAT. The economic structures within and among Pacific Basin entities are examined, particularly the relationship between the growth of regional trade and telecommunications potential for the region. Suitable satellite services are recommended and the financial implications for extended utilization of communications satellites in the Pacific Basin are considered.

  20. Trends in NASA communication satellites.

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.; Robbins, W. H.; Stretchberry, D. M.

    1972-01-01

    Discussion of the potential applications of satellite communications technology in meeting the national needs in education, health care, culture, and data transfer techniques. Experiments with the NASA ATS 1, 3 and 5 spacecraft, which are conducted in an attempt to satisfy such needs, are reviewed. The future needs are also considered, covering the requirements of multiple region coverage, communications between regions, large numbers of ground terminals, multichannel capability and high quality TV pictures. The ATS F and CTS spacecraft are expected to be available in the near future to expand experiments in this field.

  1. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  2. Satellite-Based Quantum Communications

    SciTech Connect

    Hughes, Richard J; Nordholt, Jane E; McCabe, Kevin P; Newell, Raymond T; Peterson, Charles G

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  3. Satellite communications systems and technology. Volume 1: Analytical chapters

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I. (editor); Pelton, Joseph N. (editor); Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert K.; Mahle, Christoph E.

    1993-01-01

    This is Volume 1 (Analytical Chapters) of the final report of the NASA/NSF Panel Satellite Communications Systems and Technology. The panel surveyed advanced technology being developed for commercial use in the satellite communications field in Europe, Japan, and Russia. All aspects of satellite communications were considered, including fixed, broadcast, mobile, personal communications, navigation, low earth orbit, and small satellites. The focus was on experimental and advanced technology being developed in R&D and demonstration programs rather than on today's production capabilities. Focus was on commercial satellite technology, and does not review defense-related or other confidential satellite communications capabilities. The NASA/NSF panel concluded that the United States has lost its leading position in many critical satellite communications technologies. Although U.S. industry retains a leading position in today's marketplace for satellite communications systems and services, this position is largely founded on technologies and capabilities developed in the 1960's and 1970's. Because the United States is losing ground with respect to a wide range of technologies and systems that will be key to future communications markets, the market share of the U.S. satellite communications industry is at risk.

  4. Satellite communications systems and technology. Volume 1; Analytic Chapters

    NASA Technical Reports Server (NTRS)

    Jennings, Raymond D.; Mahle, Christoph E.; Miller, Edward F.; Riley, Lance; Pelton, Joseph N.; Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Edelson, Burton I.; Kwan, Robert K.; Helm, Neil R.

    1993-01-01

    Volume 1 (Analytical Chapters) of the final report of the NASA/NSF Panel Satellite Communications Systems and Technology is presented. The panel surveyed advanced technology being developed for commercial use in the satellite communications field in Europe, Japan, and Russia. All aspects of satellite communications were considered, including fixed, broadcast, mobile, personal communications, navigation, low earth orbit, and small satellites. The focus of the study was on experimental and advanced technology being developed in R&D and demonstration programs rather than on today's production capabilities. The report focuses on commercial satellite technology, and does not review defense-related or other confidential satellite communications capabilities. The NASA/NSF panel concluded that the United States has lost its leading position in many critical satellite communications technologies. Although U.S. industry retains a leading position in today's marketplace for satellite communications systems and services, this position is largely founded on technologies and capabilities developed in the 1960s and 1970s. Because the United States is losing ground with respect to a wide range of technologies and systems that will be key to future communications markets, the market share of the U.S. satellite communications industry is at risk.

  5. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  6. A demand assignment control in international business satellite communications network

    NASA Astrophysics Data System (ADS)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio; Hirata, Yasuo

    An experimental system is being developed for use in an international business satellite (IBS) communications network based on demand-assignment (DA) and TDMA techniques. This paper discusses its system design, in particular from the viewpoints of a network configuration, a DA control, and a satellite channel-assignment algorithm. A satellite channel configuration is also presented along with a tradeoff study on transmission rate, HPA output power, satellite resource efficiency, service quality, and so on.

  7. Satellite communications systems and technology. Executive Summary

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I.; Pelton, Joseph N.; Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert; Mahle, Christoph E.

    1993-01-01

    NASA and the National Science Foundation (NSF) commissioned a panel of US experts to study the international status of satellite communications systems and technology. The study covers emerging systems concepts, applications, services, and the attendant technologies. The panel members travelled to Europe, Japan, and Russia to gather information first-hand. They visited 17 sites in Europe, 20 sites in Japan, and four in Russia. These included major manufacturers, government organizations, service providers, and associated R&D facilities. The panel's report was reviewed by the sites visited, by the panel, and by representatives of US industry. The report details the information collected and compares it to US activities.

  8. An advanced domestic satellite communications system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.

  9. A native IP satellite communications system

    NASA Astrophysics Data System (ADS)

    Koudelka, O.; Schmidt, M.; Ebert, J.; Schlemmer, H.; Kastner-Puschl, S.; Riedler, W.

    2004-08-01

    ? In the framework of ESA's ARTES-5 program the Institute of Applied Systems Technology (Joanneum Research) in cooperation with the Department of Communications and Wave Propagation has developed a novel meshed satellite communications system which is optimised for Internet traffic and applications (L*IP—Local Network Interconnection via Satellite Systems Using the IP Protocol Suite). Both symmetrical and asymmetrical connections are supported. Bandwidth on demand and guaranteed quality of service are key features of the system. A novel multi-frequency TDMA access scheme utilises efficient methods of IP encapsulation. In contrast to other solutions it avoids legacy transport network techniques. While the DVB-RCS standard is based on ATM or MPEG transport cells, the solution of the L*IP system uses variable-length cells which reduces the overhead significantly. A flexible and programmable platform based on Linux machines was chosen to allow the easy implementation and adaptation to different standards. This offers the possibility to apply the system not only to satellite communications, but provides seamless integration with terrestrial fixed broadcast wireless access systems. The platform is also an ideal test-bed for a variety of interactive broadband communications systems. The paper describes the system architecture and the key features of the system.

  10. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  11. Dynamic Communication Networks using Satellite Constellations and Ground Stations

    NASA Astrophysics Data System (ADS)

    Ulybyshev, Yu. P.; Doniants, V. N.

    2002-01-01

    A geometric analysis of communication systems based on a satellite constellation and set of ground stations is considered. Routing algorithms for communication with "user - satellite - ground station - satellite -... ground station - satellite-user" dynamic networks are presented. Geometric connectivity conditions of such networks are described. The conditions are based on a presentation satellite constellation coverage statistics as covering functions versus geographical latitude (a geocentric angle of the smallest circle that encloses the subsatellite points no less than a number of satellites at anytime). Methods for definition of guaranteed geographical service areas are proposed. Placement problem of ground stations is also discussed. An iterative computation algorithm for coverage area of satellite in elliptic orbit with critical inclination and perigee in a hemisphere is described. Analysis examples of dynamic networks and service areas for the GLOBALSTAR (circular orbits) and MOLNIYA-ZOND (elliptic orbits) constellations are presented.

  12. Satellite-enhanced personal communications experiments

    NASA Technical Reports Server (NTRS)

    Pinck, Deborah S.; Tong, Loretta H.; McAuley, Anthony J.; Kramer, Michael

    1995-01-01

    As an initial step in exploring the opportunities afforded by the merging of satellite and terrestrial networks, Bellcore and JPL conducted several experiments utilizing Bellcore's experimental Personal Communications System, NASA's Advanced Communications Technology Satellite (ACTS) and JPL's ACTS Mobile Terminal. These experiments provided valuable information on the applications, interfaces, and protocols needed for seamless integration of satellite and terrestrial networks.

  13. Satellite communications and broadcasting; Proceedings of the International Conference, London, England, Dec. 2-4, 1986

    NASA Astrophysics Data System (ADS)

    Papers are presented on private satellite networks in the U.S.; the competitive market for international satellite services; private satellite networks in Europe; and various applications for satellites, in particular data broadcasting and business communications. Topics discussed include the worldwide regulation of satellite broadcasting and communications; the capabilities of Eutelsat II; trends in satellite technology; and the role of insurance in space industries. Consideration is given to the use of the ASTRA satellite for TV broadcasting; the services provided by Intelsat; the evolution of American television due to satellites; consumer satellite Television Receive Only marketing in Europe; and satellite programming.

  14. The role of technology in influencing future civil communications satellites

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.; Mahle, Christoph E.

    1990-01-01

    Technology, both as an enabler and as a driver of new and improved communication satellites, is discussed. A brief look at the beginnings and evolution of satellite communications is given to reveal the continuing influence of technology over the past 25 years. An assessment of the current state of the art which serves as a benchmark representing how far technology has come and as a basis for comparison for future possibilities is presented. A short tutorial on communications satellite basics is presented, followed by an assessment of technologies used for satellite antennas and signal amplification and routing. A discussion of future service requirements follows, and emerging technologies are identified along with possible improved communications capabilities that can result from them. The outlook for the role of technology for future communication satellites is summarized.

  15. Domestic satellite communications - The Canadian experience

    NASA Astrophysics Data System (ADS)

    Golden, D. A.

    1980-09-01

    The history of commercial satellite communications in Canada is surveyed. The benefits provided by the existing system are illustrated by focusing on the experience of a particular Arctic hamlet (Pangnirtung). Attention is given to the factors that have differentiated the Canadian system from the American one (smaller, less homogenous, and more widely dispersed population). The problem posed by 'pirate' earth stations in Canada is discussed. An account is given of the origin of the dual-band Anik B (6/4 GHz and 14/12 GHz channels) satellite series, and the experiments (telemedicine, tele-education, communication with remote communities) carried out with the Anik B are discussed. Attention is also given to the promising results obtained in the direct-to-home TV service delivered by Anik B. Plans for the Anik C (16 channels 14/12 GHz frequency band) and Anik D (24 channels 6/4 GHz frequency band) series are discussed. Canada's communications needs are such that the continued development of satellite systems seems assured.

  16. Application of the aeronautical mobile satellite service (AMSS) and the providers of the service

    NASA Astrophysics Data System (ADS)

    Brangier, Francis

    1991-07-01

    The paper describes the different potential users of the AMSS, their requirements, and foreseen applications. The AMSS will be provided by several satellite-communication organizations, including INMARSAT, ARINC, SITA, and various national companies. Consideration is given to air-traffic-control services, aircraft operations communication, administrative communication, passenger communication services, and the problem of compatibility among these components.

  17. Internetworking satellite and local exchange networks for personal communications applications

    NASA Technical Reports Server (NTRS)

    Wolff, Richard S.; Pinck, Deborah

    1993-01-01

    The demand for personal communications services has shown unprecedented growth, and the next decade and beyond promise an era in which the needs for ubiquitous, transparent and personalized access to information will continue to expand in both scale and scope. The exchange of personalized information is growing from two-way voice to include data communications, electronic messaging and information services, image transfer, video, and interactive multimedia. The emergence of new land-based and satellite-based wireless networks illustrates the expanding scale and trend toward globalization and the need to establish new local exchange and exchange access services to meet the communications needs of people on the move. An important issue is to identify the roles that satellite networking can play in meeting these new communications needs. The unique capabilities of satellites, in providing coverage to large geographic areas, reaching widely dispersed users, for position location determination, and in offering broadcast and multicast services, can complement and extend the capabilities of terrestrial networks. As an initial step in exploring the opportunities afforded by the merger of satellite-based and land-based networks, several experiments utilizing the NASA ACTS satellite and the public switched local exchange network were undertaken to demonstrate the use of satellites in the delivery of personal communications services.

  18. A new antenna concept for satellite communications

    NASA Technical Reports Server (NTRS)

    Skahill, G.; Ciccolella, D.

    1982-01-01

    A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.

  19. Design trade-offs in antijam military satellite communications

    NASA Astrophysics Data System (ADS)

    Brandon, W. T.

    1982-07-01

    Military satellite communications system technical parameters, boundary values and anti-jamming trade-offs among parameters are described and discussed. These systems, which have become essential elements of command, control and communication structures for the U.S., NATO and the Soviet Union, are characterized by such features as global connectivity of commanders and forces, and instant reconfiguration which allows a single system to support services as varied as broadcasting, point-to-point voice communication, and teletype data, for tactical, strategic or logistic users. Attention is given to the anti-jamming concept of satellite position uncertainty, in which a group of satellites functions as uplink receiver, and a single, larger satellite is used as a downlink transmitter. It is shown that, by constraining design to a finite number of satellite orbits, frequency bands and satellite and terminal designs, a practical number of about 5000 different system designs can be stipulated for further study.

  20. Technology requirements for communication satellites in the 1980's

    NASA Technical Reports Server (NTRS)

    Burtt, J. E.; Moe, C. R.; Elms, R. V.; Delateur, L. A.; Sedlacek, W. C.; Younger, G. G.

    1973-01-01

    The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era.

  1. Satellite communications systems and technology. Volume 2: Site reports

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I. (editor); Pelton, Joseph N. (editor); Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert K.; Mahle, Christoph E.

    1993-01-01

    This is volume 2 of the final report of the NASA/NSF Panel on Satellite Communications Systems and Technology. It consists of the site reports from the panel's visits to satellite communications facilities and laboratories in Europe, Japan, and Russia. The Executive Summary of the panel's final report is published separately. Volume 1, also published separately, consists of the panel's analytical chapters. Information on ordering the Executive Summary and Volume 1 from the National Technical Information Service is included.

  2. Educational Applications of Communications Satellites in Canada. New Technologies in Canadian Education Series. Paper 12.

    ERIC Educational Resources Information Center

    Richmond, J. Murray

    Canada has explored the use of satellites as a means to provide information and communications services to geographically isolated populations since 1962. Between 1972 and 1984, five series of satellites known as Anik A, B, C, and D and Hermes were launched. Each satellite provided expanded communications services, and each led to research and…

  3. Satellite services system analysis study. Volume 2: Satellite and services user model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Satellite services needs are analyzed. Topics include methodology: a satellite user model; representative servicing scenarios; potential service needs; manned, remote, and automated involvement; and inactive satellites/debris. Satellite and services user model development is considered. Groundrules and assumptions, servicing, events, and sensitivity analysis are included. Selection of references satellites is also discussed.

  4. Aeronautical mobile satellite service: An overview

    NASA Astrophysics Data System (ADS)

    Rigley, Jack

    Successful flight trials of Aeronautical Mobile Satellite Services (AMSS) were first carried out in the 1960's but it is only in the past few years that plans to implement such a system have achieved any degree of certainty. System architecture has been agreed upon by users, service providers, and manufacturers. Detailed avionic characteristics have been approved and the International Civil Aviation Organization is currently preparing AMSS standards which will ensure the safety and regularity of international air traffic. In this paper, a review is provided of the history of AMSS, especially of Canadian participation, and a description of the technical and operational features of the system are given. The system will use the 1545-1555 and 1646.5-1656.5 MHz bands for satellite to aircraft and aircraft to satellite communication. Different categories of communication including air traffic control, aeronautical operational control, aeronautical administrative communications, and aeronautical passenger communication, will be assigned different priorities. A set of radio frequency (RF) channels have been defined to accommodate all foreseen traffic types. Standards for the avionics required for large passenger planes have been developed by the Airlines Electronic Engineering Committee.

  5. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.

    1985-01-01

    Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.

  6. NASA Compendium of Satellite Communications Programs

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive review is presented of worldwide communication programs that range in time from the inception of satellite communications to August 1971. The programs included are: Echo, Courier, West Ford, Telstar, Relay, Syncom, Lincoln experimental satellites, Intelsat, Tacsat, Skynet, Nato system, and Telesat.

  7. Federal Research and Development for Satellite Communications.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report of the Committee on Satellite Communications (COSC) reviews a number of future communication needs which could be satisfied by satellite systems, including needs in fields such as education, health care delivery, hazard warning, navigation aids, search and rescue, electronic mail delivery, time and frequency dissemination, and…

  8. High temperature superconductivity for satellite communications applications

    SciTech Connect

    Jackson, C.M.; Bhasin, K.

    1994-12-31

    The low loss and novel electronic properties of high temperature superconductors can impact satellite communication systems in many ways. Low loss beamforming networks, low loss broadband delay lines, phased array antennas, low noise receivers, digital signal processors, and other HTS components can benefit the Data Distribution Satellite, the Geostationary Earth Observatory, and the Deep Space Relay Satellite.

  9. The Impact of Satellites on Cable Communications.

    ERIC Educational Resources Information Center

    Chayes, Abram

    Two recent developments in communications satellite technology may speed the coming of cable TV (CATV) networks. First, increases in satellite power are reducing the cost of ground stations. Second, a connection between one ground station, the satellite, and any other ground station is no longer necessarily fixed. Now one station can communicate…

  10. A practical system for regional mobile satellite services

    NASA Technical Reports Server (NTRS)

    Glein, Randall; Leverson, Denis; Olmstead, Dean

    1993-01-01

    The Regional Mobile Satellite (MSAT) concept proposes a worldwide, interconnected mobile satellite service (MSS) network in which MSAT-type satellites provide the space segment services to separate regions (i.e., one or a few countries). Using this concept, mobile communications users across entire continents can now be served by a handful of regionally controlled satellites in geostationary earth orbit (GEO). All requirements, including hand-held telephone capabilities, can be cost-effectively provided using proven technologies. While other concepts of regional or global mobile communications continue to be explored, the Hughes Regional MSAT system demonstrates the near-term viability of the GEO approach.

  11. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  12. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  13. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  14. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  15. Estimating Rain Attenuation In Satellite Communication Links

    NASA Technical Reports Server (NTRS)

    Manning, R. M.

    1991-01-01

    Attenuation computed with help of statistical model and meteorological data. NASA Lewis Research Center Satellite Link Attenuation Model (SLAM) program QuickBASIC computer program evaluating static and dynamic statistical assessment of impact of rain attenuation on communication link established between Earth terminal and geosynchronous satellite. Application in specification, design, and assessment of satellite communication links for any terminal location in continental United States. Written in Microsoft QuickBASIC.

  16. European small geostationary communications satellites

    NASA Astrophysics Data System (ADS)

    Sun, Wei, , Dr.; Ellmers, Frank; Winkler, Andreas; Schuff, Herbert; Sansegundo Chamarro, Manuel Julián

    2011-04-01

    Hispasat Advanced Generation 1 (HAG1) is the first satellite using the SGEO platform, which is under the development in the ESA Artes-11 program. Since the last presentation in the IAC 2007, a European industrial consortium led by OHB has completed the mission and spacecraft design. The platform Preliminary Design Review has been carried out in May 2008. The customer for the first mission is a commercial operator—Hispasat. The contract was signed in December 2008 and the satellite will be launched in 2012. To give confidence to the customer, SGEO platform will use up to date flight proven technologies. HAG1 carries 20/24 Ku-band and 3/5 Ka-band transponders to provide commercial services. Some innovative payload technologies will also be flown on board of HAG1 to gain in-orbit heritage. SGEO has also been selected as the baseline platform for the ESA Data Relay Satellite (EDRS). Phase-A study has just kicked off in January 2009. The targeted launch date is 2013. Heinrich Hertz will also use the SGEO platform. Heinrich Hertz is funded by the German Space Agency (DLR) and provides flight opportunities for technologies and components developed by the German Space Industry. With the HAG1 contract in hand, and EDRS and Heinrich Hertz in the line, OHB with its partners has the confidence that it will be able to speed up the product development of the SGEO platform for potential customers in the commercial market. This paper will first present the updated platform design and the status of the product development will be followed with the introduction of innovative payload technologies on board the first mission—HAG1 and ended with the mission concepts of EDRS and Heinrich Hertz missions.

  17. NASA compendium of satellite communications programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A comprehensive review is given of worldwide satellite communication programs that range in time from the inception of satellite communications to mid-1974. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed. The background for understanding these results is established through brief summaries of the program organization, system configuration, and satellite and ground terminal characteristics. Major consideration is given to the communications system aspects of each program, but general spacecraft technology and other experiments conducted as part of the same program are mentioned summarily.

  18. Commercialization of Advanced Communications Technology Satellite (ACTS) technology

    NASA Astrophysics Data System (ADS)

    Plecity, Mark S.; Strickler, Walter M.; Bauer, Robert A.

    1996-03-01

    In an on-going effort to maintain United States leadership in communication satellite technology, the National Aeronautics and Space Administration (NASA), led the development of the Advanced Communications Technology Satellite (ACTS). NASA's ACTS program provides industry, academia, and government agencies the opportunity to perform both technology and telecommunication service experiments with a leading-edge communication satellite system. Over 80 organizations are using ACTS as a multi server test bed to establish communication technologies and services of the future. ACTS was designed to provide demand assigned multiple access (DAMA) digital communications with a minimum switchable circuit bandwidth of 64 Kbps, and a maximum channel bandwidth of 900 MHZ. It can, therefore, provide service to thin routes as well as connect fiber backbones in supercomputer networks, across oceans, or restore full communications in the event of national or manmade disaster. Service can also be provided to terrestrial and airborne mobile users. Commercial applications of ACTS technologies include: telemedicine; distance education; Department of Defense operations; mobile communications, aeronautical applications, terrestrial applications, and disaster recovery. This paper briefly describes the ACTS system and the enabling technologies employed by ACTS including Ka-band hopping spot beams, on-board routing and switching, and rain fade compensation. When used in conjunction with a time division multiple access (TDMA) architecture, these technologies provide a higher capacity, lower cost satellite system. Furthermore, examples of completed user experiments, future experiments, and plans of organizations to commercialize ACTS technology in their own future offerings will be discussed.

  19. The systems background for satellite communication antennas

    NASA Astrophysics Data System (ADS)

    Arnbak, J. C.

    The major elements of the operational environment of satellite communication antennas are reviewed, including: perturbations and stationkeeping in the geostationary orbit; antenna tracking on earth-satellite links; earth-terminal off-axis limitations; satellite link budgets; multiple access and satellite antennas; and the specification of satellite antennas. Also given are definitions and formulas which are intended to provide general guidance and show major constraints relevant at all stages of antenna engineering for satellite systems. Two main trends in satellite communication antenna technology are noted: (1) an increasing impact of general system requirements on the specific design and operational exploitation of antennas in satellite systems; and (2) more emphasis on adaptive, flexible, or multipurpose antenna systems.

  20. Dimensioning of Aeronautical Satellite Services

    NASA Astrophysics Data System (ADS)

    Holzbock, M.; Jahn, A.; Werner, M.

    2002-01-01

    This paper will provide a generalised baseline for a systematic AirCom design process and address in particular the dimensioning of satellite systems for aeronautical services. These services will roll out soon in medium- and long-haul aircraft. The offered services will range from low rate telephony, internet access, and streaming applications for video and audio. The aggregate bit rates on up- and downlink will certainly be statistically time-dependent and asymmetric in forward and backward direction. A tool will be described that is able to model this traffic. Furthermore the dimensioning of satellite constellations can be done. Due to the stochastic nature of the traffic, multi-service models for the traffic generation of different services will be described. Furthermore, the traffic will be affected by the available bit rate and shaping or blocking will equalize the peak loads. If fleets with many aircraft are considered, aeronautical traffic models must be based on actual aircraft routes, flight schedules, location and time of day, as well as seats per aircraft and type of aircraft (charter, business etc.). The regionally distributed traffic has to be served by several satellites and appropriate sharing of the serving satellites may spread the traffic in hot zones and yield a better load distribution. When aeronautical services will spread out, the capacity demand will grow quickly and the capacity of existing Ku-band GEO satellites will soon be exceeded. Changing to higher frequency bands will provide large spectrum portions and smaller spotbeams will allow better frequency reuse. Even constellations with non-geostationary satellites could be re-advent to serve better the higher latitude regions. Then, another mobility component for the fast changing satellite topology need to be addressed, and routing issues of the traffic must be considered. The paper will describe solutions for the mapping of satellites and traffic demand as well as routing algorithms. Numerical values will show the capabilities of the developed tool by calculating the performance of some selected scenarios. The paper will also address wireless cabin services (cell phones and W-LAN access for laptops) of the WirelessCabin project.

  1. Space industrialization - Education. [via communication satellites

    NASA Technical Reports Server (NTRS)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  2. Emerging technologies for communication satellite payloads

    NASA Astrophysics Data System (ADS)

    YĂĽceer, Mehmet

    2012-04-01

    Recent developments in payload designs will allow more flexible and efficient use of telecommunication satellites. Important modifications in repeater designs, antenna structures and spectrum policies open up exciting opportunities for GEO satellites to support a variety of emerging applications, ranging from telemedicine to real-time data transfer between LEO satellite and ground station. This study gives information about the emerging technologies in the design of communication satellites' transceiver subsystem and demonstrates the feasibility of using fiber optic links for the local oscillator distribution in future satellite payloads together with the optical inter-satellite link.

  3. Satellite Communication Hardware Emulation System (SCHES)

    NASA Technical Reports Server (NTRS)

    Kaplan, Ted

    1993-01-01

    Satellite Communication Hardware Emulator System (SCHES) is a powerful simulator that emulates the hardware used in TDRSS links. SCHES is a true bit-by-bit simulator that models communications hardware accurately enough to be used as a verification mechanism for actual hardware tests on user spacecraft. As a credit to its modular design, SCHES is easily configurable to model any user satellite communication link, though some development may be required to tailor existing software to user specific hardware.

  4. Satellite services handbook. Interface guidelines

    NASA Astrophysics Data System (ADS)

    1983-12-01

    Satellite interfaces for on orbit servicing, both manned and unmanned are identified, and is intended to be used by designers of space vehicles, both foreign and domestic. A primary concern is for design of interfaces with the astronaut in the loop, especially extravehicular activity, but also intravehicular activity and operations that are remote but have man-in-the-loop. The main emphasis is on servicing in low earth orbits from the Space Shuttle and also from the Space Station or other platforms.

  5. Satellite services handbook. Interface guidelines

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Satellite interfaces for on orbit servicing, both manned and unmanned are identified, and is intended to be used by designers of space vehicles, both foreign and domestic. A primary concern is for design of interfaces with the astronaut in the loop, especially extravehicular activity, but also intravehicular activity and operations that are remote but have man-in-the-loop. The main emphasis is on servicing in low earth orbits from the Space Shuttle and also from the Space Station or other platforms.

  6. A new phase for NASA's communications satellite program

    NASA Technical Reports Server (NTRS)

    Dement, D. K.

    1980-01-01

    NASA's research in communications satellite technology is discussed, including orbit-efficient techniques and applications by the commercial sector. Attention is given to expanding the capacities of the C-band (6-4 GHz) and the Ku-band (14-11 GHz), opening the Ka-band (30/20 GHz), broadly applied 're-use' of the spectrum, and developing multibeam spacecraft antennas with on-board switching. Increasing wideband services in video, high-speed data, and voice trunking is considered, as are narrow-band systems that may be used for data collection or public safety, with possible expansion to a thin-route satellite system. In particular, communication for medical, disaster, or search-and-rescue emergencies may be met by the integration of a satellite service with land mobile communications via terrestrial radio links. Also considered is a large geostationary platform providing electrical power, thermal rejection, and orbital station-keeping for many communications payloads.

  7. Economics of satellite communications systems

    NASA Astrophysics Data System (ADS)

    Pritchard, Wilbur L.

    This paper is partly a tutorial, telling systematically how one goes about calculating the total annual costs of a satellite communications system, and partly the expression of some original ideas on the choice of parameters so as to minimize these costs. The calculation of costs can be divided into two broad categories. The first is technical and is concerned with estimating what particular equipment will cost and what will be the annual expense to maintain and operate it. One starts in the estimation of any new system by listing the principal items of equipment, such as satellites, earth stations of various sizes and functions, telemetry and tracking equipment and terrestrial interfaces, and then estimating how much each item will cost. Methods are presented for generating such estimates, based on a knowledge of the gross parameters, such as antenna size, coverage area, transmitter power and information rate. These parameters determine the system performance and it is usually possible, knowing them, to estimate the costs of the equipment rather well. Some formulae based on regression analyses are presented. Methods are then given for estimating closely related expenses, such as maintenance and operation, and then an approximate method is developed for estimating terrestrial interconnection costs. It is pointed out that in specific cases when tariff and geographical information are available, it is usually better to work with specific data, but nonetheless it is often desirable, especially in global system estimating, to approximate these interconnect costs without recourse to individual tariffs. The procedure results in a set of costs for the purchase of equipment and its maintenance, and a schedule of payments. Some payments will be incurred during the manufacture of the satellite and before any systems operation, but many will not be incurred until the system is no longer in use, e.g. incentives. In any case, with the methods presented in the first section, one arrives at a schedule of costs and payments for all the items and the years in which they will be incurred. The second category of costing problems is one of financing or engineering economics. All the costs are first "present valued" to some reference period using rates of return appropriate to the particular situation. One finally arrives at sets of annual costs which can be used as the basis for setting lease costs or revenue requirements and tariffs. The correspondence between methods using discounted rates of return and capital recovery formulae on one hand and those using various depreciation schedules, such as is typical of regulated industries on the other hand, is discussed. The remainder of the paper is devoted to discussing the relationship between critical parameters, such as replacement schedules, design lifetime, satellite power and Earth station antenna size, and the overall costs. It is shown that optima for these parameters may exist and can be calculated. In particular, the optimization of satellite replacement schedules to minimize the present value of total investment over a very long period is presented, along with simplified versions of the theory suitable for system planning. The choice of EIRP is also discussed and a procedure for choosing the value that minimizes the costs is shown.

  8. The Mobile Satellite Services Market.

    ERIC Educational Resources Information Center

    Anderson, Samuel

    Mobile satellite (MSAT) technology is the basis for a new component of the telecommunications industry capable of providing services to small inexpensive subscriber terminals located almost any place in the world. The market for MSAT space segment capacity (bandwidth and power) is a natural monopoly that can be logically and technically…

  9. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-01-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  10. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    NASA Astrophysics Data System (ADS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-09-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  11. Satellite communications of the future and their EMC problems

    NASA Astrophysics Data System (ADS)

    Stumpers, F. L. H. M.

    The satellite communications task of providing communication links to land mobile users is addressed. Frequency allocations for the mobile satellite service above 10 GHz offer possibilities for smaller antennas and no terrestrial interference. Rain attenuation and depolarization are disadvantages. Rainstorms passing through satellite links cause a high degree of fading, but usually a rain cell covers only a few square kilometers. A spatial diversity with two earth stations at a 10-km distance is a possible solution, yielding 10 dB gain at 30 GHz.

  12. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  13. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  14. An overview of the OmniTRACS: The first operational mobile Ku-band satellite communications

    NASA Technical Reports Server (NTRS)

    Salmasi, Allen

    1988-01-01

    The service features of the OmniTRACS system developed by Omninet Communications Services of Los Angeles, California are described. This system is the first operational mobile Ku-band satellite communications system that provides two-way messaging and position determination and reporting services to mobile users on a nationwide basis. The system uses existing Ku-band satellites under a secondary international allocation for mobile satellite services.

  15. Giant step for communication satellite technology

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.

    1984-01-01

    NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.

  16. Project 21: A new range of personal mobile satellite services

    NASA Astrophysics Data System (ADS)

    Singh, Jai

    Project 21 is Inmarsat's overall vision and strategy for the development of personal mobile satellite communications systems from now into the 21st Century. Using advances in mobile satellite services and technology, it is aimed at introducing a range of affordable, increasingly portable and convenient, global personal mobile satellite communication services throughout the decade. The culmination of Project 21 will be the introduction of Inmarsat-P service to a portable hand-held terminal by means of a new, more powerful, satellite generation dubbed P-Sats. This paper describes the four main service elements of the Project 21 program: Inmarsat-C, a portable mobile satellite data service introduced in 1991; Inmarsat-M, a briefcase-sized, digital, satellite phone being introduced in the coming months; global satellite paging scheduled for service introduction in 1994; and Inmarsat-P, in planning for introduction in 1998-2000 time-frame. The Inmarsat-P terminal is envisaged as a dual-mode satellite-cellular terminal that will work with a cellular system or from the satellite when out of home region cellular coverage, or operating from a region with a different cellular standard or without roaming arrangements. Inmarsat-P will offer line-of-sight satellite service, with a voice quality similar to that of digital cellular systems. To support Inmarsat-P services, a new generation of Inmarsat satellites would be required. A number of advanced satellite system and orbit configurations are potential candidates to provide the required coverage and capacity for global handheld satellite phone services. The paper describes some of the system considerations that need to be further addressed in order to select the most optimal P-Sat system design.

  17. Land Mobile Satellite Service (LMSS) channel simulator: An end-to-end hardware simulation and study of the LMSS communications links

    NASA Technical Reports Server (NTRS)

    Salmasi, A. B. (Editor); Springett, J. C.; Sumida, J. T.; Richter, P. H.

    1984-01-01

    The design and implementation of the Land Mobile Satellite Service (LMSS) channel simulator as a facility for an end to end hardware simulation of the LMSS communications links, primarily with the mobile terminal is described. A number of studies are reported which show the applications of the channel simulator as a facility for validation and assessment of the LMSS design requirements and capabilities by performing quantitative measurements and qualitative audio evaluations for various link design parameters and channel impairments under simulated LMSS operating conditions. As a first application, the LMSS channel simulator was used in the evaluation of a system based on the voice processing and modulation (e.g., NBFM with 30 kHz of channel spacing and a 2 kHz rms frequency deviation for average talkers) selected for the Bell System's Advanced Mobile Phone Service (AMPS). The various details of the hardware design, qualitative audio evaluation techniques, signal to channel impairment measurement techniques, the justifications for criteria of different parameter selection in regards to the voice processing and modulation methods, and the results of a number of parametric studies are further described.

  18. Satellite-aided mobile communications, experiments, applications and prospects

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Frey, R. L.; Lewis, J. R.; Milton, R. T.

    1980-01-01

    NASA's ATS-series of satellites were used in a series of communications and position fixing experiments with automotive vehicles, ships and aircraft. Applications of the communications were demonstrated and evaluated for public services including law enforcement, search and rescue, and medical emergency, and for commercial uses in the land and maritime transportation industries. The technical success of the experiments and the demonstrated potential value of the communications prompted a study that concluded an operational satellite-aided system would be a valuable augmentation of planned trunking or cellular type terrestrial mobile radio telephone systems.

  19. Broadcast satellite service: The international dimension

    NASA Technical Reports Server (NTRS)

    Samara, Noah

    1991-01-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  20. Study of spread spectrum multiple access systems for satellite communications with overlay on current services: Executive summary

    NASA Technical Reports Server (NTRS)

    Ha, Tri T.; Pratt, Timothy

    1987-01-01

    Two different methods of generating spread spectrum signals for an overlay service are discussed, and the data rate and efficiency which can be achieved while maintaining low interference with existing traffic are examined.

  1. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  2. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  3. Spacecraft design project: High latitude communications satellite

    NASA Technical Reports Server (NTRS)

    Josefson, Carl; Myers, Jack; Cloutier, Mike; Paluszek, Steve; Michael, Gerry; Hunter, Dan; Sakoda, Dan; Walters, Wes; Johnson, Dennis; Bauer, Terry

    1989-01-01

    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage.

  4. Communication Capacity Optimization for Broadband Satellite Communication Systems

    NASA Astrophysics Data System (ADS)

    Nakasuga, Yoshinori; Mitsugi, Jin; Ueba, Masazumi; Mizuno, Hideki

    2002-01-01

    ground-based access systems, such as FTTH, ADSL and even terrestrial cellular systems, are only available within limited geographical areas, broadband satellite communication systems that can cover unlimited service area have attracted wide interest. However, the success of broadband satellite communication depends heavily on the cost of user terminals and satellite circuits. and frequency bandwidth, which involves design parameters. For such parameters, we must consider modulation, coding, the number of radiating beams and the number of areas in which frequency bandwidth can be reused. These parameters should be chosen such that maximum communication capacity can be provided with minimum system resources under a designated rain attenuation and interference environment. The difficulty in optimization stems from the number of design parameters and the interactions between them. The optimization also has to be done in a manner such that the service provider can determine the relation between the service cost and the service grade. The service grade can be expressed in terms of the available user information rate, return link as well as forward link, and the number of available communication channels, while the system cost can be expressed in terms of required satellite power and the bandwidth. power and bandwidth parameters. In the method, the number of spot beams, the number of repeated bandwidth areas and the type of modulation are separately determined for the return and forward link. From the selected design parameters, the relationship between bandwidth capacity and power capacity is derived assuming they are linear. The power and bandwidth required for the return and forward link are then integrated by applying a linear programming method. The constraints in linear programming are power and bandwidth. To denote the system resource management proficiency, we introduce an index called power-utilization efficiency, which is a ratio of the maximum capacity to the required power. systems that have 15 or 35 spot beams. Since circuit quality degradation in Ku band systems due to the propagation environments is less than that in Ka band systems, the power-utilization efficiency of the Ku band is 1.25 times more that of the Ka band. On the other hand, the total capacity of the Ka band is 3.5 times that of the Ku band since the allocated bandwidth in the Ku band is narrower than that of the Ka band. Bandwidth reuse is an effective way to increase total available bandwidth. For the same service area and the same number of reused bandwidths, increasing the number of spot beams can reduce the interference between different areas assigned the same frequency, since the distance between those areas widens. This enables total capacity and power-utilization efficiency for a 35-spot-beam system to be more than 2.2 and 2.75 times greater, respectively, than for a 15-spot-beam system. limited transmission power of the user terminal. Therefore, the return link transponder requires a higher transmission power level to compensate for this limitation. On the other hand, a high-quality downlink is also required for the forward link because of the small size of the user terminal antenna. However, the quality of the forward link can be maintained since it is possible to increase uplink quality by improving hub-station performance. This makes it possible to suppress the increase in the transmission power of the forward link transponder in comparison with that of the return link transponder. As an example, we compared two cases, in one of which the capacity ratio (forward link capacity divided by the return link capacity) was 2.0 and in the other of which it was 10.0. We found that the amount of capacity and power utilization efficiency were, respectively, 33% and 50% greater for the latter case than for the former case. applications.

  5. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Martin, C. H.; Reilly, C. H.; Gonsalvez, D. J.; Yamaura, Y.

    1985-01-01

    An extended gradient search code for broadcasting satellite service (BSS) spectrum/orbit assignment synthesis is discussed. Progress is also reported on both single-entry and full synthesis computational aids for fixed satellite service (FSS) spectrum/orbit assignment purposes.

  6. A personal communications network using a Ka-band satellite

    NASA Astrophysics Data System (ADS)

    Palmer, L. C.; Stern, A.; Sohn, P. Y.

    1991-09-01

    The feasibility of portable communications terminals that can provide 4.8-kbps voice communications to a hub station via a Ka-band geosynchronous satellite was investigated. Tradeoffs are examined so that the combined system of the hub and gateway earth stations, the satellite, and the personal terminals can provide a competitive service in terms of cost, availability, and quality. A baseline system is described using a spacecraft with approximately 140 spot beams that cover CONUS with 5-watt power amplifiers in each beam. Satellite access in both the forward and return directions uses Frequency Division Multiple Access/Code Division Multiple Access (FDMA/CDMA) with a chip rate of 2.5 Mchip/sec. An experiment is recommended using the Advanced Communications Technology Satellite (ACTS) to demonstrate some of the features of the portable terminal concept.

  7. A personal communications network using a Ka-band satellite

    NASA Technical Reports Server (NTRS)

    Palmer, L. C.; Stern, A.; Sohn, P. Y.

    1991-01-01

    The feasibility of portable communications terminals that can provide 4.8-kbps voice communications to a hub station via a Ka-band geosynchronous satellite was investigated. Tradeoffs are examined so that the combined system of the hub and gateway earth stations, the satellite, and the personal terminals can provide a competitive service in terms of cost, availability, and quality. A baseline system is described using a spacecraft with approximately 140 spot beams that cover CONUS with 5-watt power amplifiers in each beam. Satellite access in both the forward and return directions uses Frequency Division Multiple Access/Code Division Multiple Access (FDMA/CDMA) with a chip rate of 2.5 Mchip/sec. An experiment is recommended using the Advanced Communications Technology Satellite (ACTS) to demonstrate some of the features of the portable terminal concept.

  8. Inmarsat and personal mobile satellite services

    NASA Astrophysics Data System (ADS)

    McDougal, Patrick; Barendse, Victor

    Personal communications - mobile satellite services (PC-MSS) hold much promise as a profitable business opportunity for a number of interested operators and manufacturers. What will be their impact on the overall mobile communications landscape, and what role will they play in the drive towards the universal personal communicator? It is the thesis of this paper that PC-MSS can provide one of the critical enabling technologies to allow a more rapid, global assimilation of personal mobile communications. Terrestrial mobile communications are local by definition, both in terms of service reach and regulatory oversight. It is estimated that cellular, and other forms of terrestrial mobile communications, will cover over 50% of the world's population, but only 15% of the land mass area by the year 2000. PC-MSS will allow 'cellular extension' to interested users in the uncovered parts of the world. The market opportunity is established and technical solutions are available. However 'user cooperation' will be required and cross mapping of market needs to the technology solutions is the key to financially viable solutions. The potential political and regulatory hurdles are daunting. Inmarsat, as the existing global MSS partnership, is already introducing PC-MSS products and services in the 1990s. The widespread use of briefcase satphones (Inm-M), laptop-sized data terminals (Inm-C), and pocket satpagers (Inm-paging) will break new ground in reshaping the international regulatory context of mobile communications, and in initiating the optimal public switched network integration necessary for global interconnect. It is suggested that this evolutionary approach, by means of international consensus-building within a global partnership of operators, is an effective and proven method to ensure both a sufficient financial return for investors, and fair and equitable access of these services for all countries and users.

  9. Program on application of communications satellites to educational development

    NASA Technical Reports Server (NTRS)

    Morgan, R. P.; Singh, J. P.

    1971-01-01

    Interdisciplinary research in needs analysis, communications technology studies, and systems synthesis is reported. Existing and planned educational telecommunications services are studied and library utilization of telecommunications is described. Preliminary estimates are presented of ranges of utilization of educational telecommunications services for 1975 and 1985; instructional and public television, computer-aided instruction, computing resources, and information resource sharing for various educational levels and purposes. Communications technology studies include transmission schemes for still-picture television, use of Gunn effect devices, and TV receiver front ends for direct satellite reception at 12 GHz. Two major studies in the systems synthesis project concern (1) organizational and administrative aspects of a large-scale instructional satellite system to be used with schools and (2) an analysis of future development of instructional television, with emphasis on the use of video tape recorders and cable television. A communications satellite system synthesis program developed for NASA is now operational on the university IBM 360-50 computer.

  10. Communication satellites: Guidelines for a strategic plan

    NASA Technical Reports Server (NTRS)

    1987-01-01

    To maintain and augment the leadership that the United States has enjoyed and to ensure that the nation is investing sufficiently and wisely to this purpose, a strategic plan for satellite communications research and development was prepared by NASA. Guidelines and recommendations for a NASA plan to support this objective and for the conduct of communication satellite research and development program over the next 25 years were generated. The guidelines are briefly summarized.

  11. Recent Korean R&D in Satellite Communications

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish a collaborative R&D with Korea for mutual benefit of the future.

  12. Introduction to Satellite Communications Technology for NREN

    NASA Technical Reports Server (NTRS)

    Stone, Thom

    2004-01-01

    NREN requirements for development of seamless nomadic networks necessitates that NREN staff have a working knowledge of basic satellite technology. This paper addresses the components required for a satellite-based communications system, applications, technology trends, orbits, and spectrum, and hopefully will afford the reader an end-to-end picture of this important technology.

  13. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  14. Satellite Communication and Development: A Reassessment.

    ERIC Educational Resources Information Center

    Hudson, Heather E.

    The potential benefits of satellite communications development have been recognized since the notion of a geostationary "space platform" was proposed by Arthur C. Clarke in 1945. Although there have been examples of developmental applications of satellite technology, the promise has been slow in being fulfilled. The history of the application of…

  15. Large communications platforms versus smaller satellites

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communications systems using large platforms are compared with systems using conventional satellites. Systems models were generated and compared for U.S. domestic application and for 1 INTELSAT's international and domestic transponder lease application. Technology advances were assumed the platforms and the evolution of conventional satellites.

  16. The Arctic Regional Communications Small SATellite (ARCSAT)

    NASA Technical Reports Server (NTRS)

    Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon

    2013-01-01

    Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.

  17. Satellite servicing: A business opportunity?

    NASA Technical Reports Server (NTRS)

    Wong, R. E.; Medler, E. H.

    1984-01-01

    The possibilities of satellite servicing as a business opportunity are examined. The service rate which a user must be charged to yield a reasonable return is derived and then compared against the market's willingness to pay that rate. Steps taken to provide the basis from which the service rate could be derived include: (1) constructing a hypothetical on orbit servicing business offering both on orbit and associated ground services; (2) estimating the total on orbit service business potential by analyzing mission models to the year 2000; and (3) setting up ground rules to bound the conduct of the business. Using this basic information service demand (business volume) cost to set up the business, costs for operation and maintenance tax rates and desired rate of return are estimated to determine the user charge. Sensitivity of the service rate to various parameters are also assessed. The time span for the business venture runs from 1986 through 2000 with service to 1991 provided via the orbiter and by a space station beyond 1991. This point analysis shows about five years of negative cash flow, with steady profits thereafter.

  18. Soviet satellite communications science and technology

    SciTech Connect

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  19. Low Earth Orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, Ray E.; Gardiner, John G.

    1993-01-01

    Currently the geostationary type of satellite is the only one used to provide commercial mobile-satellite communication services. Low earth orbit (LEO) satellite systems are now being proposed as a future alternative. By the implementation of LEO satellite systems, predicted at between 5 and 8 years time, mobile space/terrestrial technology will have progressed to the third generation stage of development. This paper considers the system issues that will need to be addressed when developing a dual mode terminal, enabling access to both terrestrial and LEO satellite systems.

  20. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  1. Satellite multiple access systems for mobile communication

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1979-01-01

    This paper considers multiple access techniques for a mobile radio system which incorporates a geosynchronous orbiting satellite repeater through which mobile terminals communicate. The communication capacities of FDMA, TDMA and CDMA systems are examined for a 4 MHz bandwidth system to serve up to 10,000 users. An FDMA system with multibeam coverage is analyzed in detail. The system includes an order-wire network for demand-access control and reassignment of satellite channels. Satellite and terminal configurations are developed to a block diagram level and system costs and implementation requirements are discussed.

  2. A small terminal for satellite communication systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Wu, Dong; Jin, Min

    1994-01-01

    A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization.

  3. Explanatory information for news conference on satellite communications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The CS-2 communications satellite which has features such as frequencies of the 30/20GHz band, demand assign time division multiple access, improved ship-to-satellite communications methods, and multibeam satellite communications methods. Research is continuing towards the production of larger, more economical communication systems via satellite which have greater efficiency and capacity.

  4. Cultural Effects and Uses of Communication Satellites.

    ERIC Educational Resources Information Center

    Schramm, Wilbur

    The communication satellite already has developed a mature technology. It carries a substantial part of the world's long range communication, and is now useable for special cultural and educational purposes. Major cultural effects come from its contribution to increasing enormously the flow of information in the world. It will increase human…

  5. An Educator's Guide to Communication Satellite Technology.

    ERIC Educational Resources Information Center

    Polcyn, Kenneth A.

    Recent developments in the area of sophisticated communications technology present challenges to the imagination of every educator. This guide provides educational planners with an awareness and understanding of communication satellite technology, its current uses, and some of the tentative plans for educational experimentation. The first part…

  6. Repeated Transmissions In Mobile/Satellite Communications

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Clare, Loren P.

    1988-01-01

    Repetition increases throughput and decreases delay. Paper discusses theoretical performance of communication system for land-mobile stations with satellite relay using ALOHA random-access protocol modified for repeated transimssions. Methods and conclusions contribute to general understanding of packet communications in fading channels.

  7. Satellite Communications in the 1980's.

    ERIC Educational Resources Information Center

    Usunier, Pierre

    Space communications have developed tremendously since 1963 when the National Aeronautics and Space Administration (NASA) launched the synchronous communication satellite, Syncom II, into geostationary orbit. The capacity of that spacecraft was one two-circuit voice channel. Intelsat V, launched in 1980, has a capacity of 12,000 circuits plus two…

  8. Intelsat communications satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    To be placed into a highly elliptical transfer orbit by the Atlas Centaur (AC-61) launch vehicle, the INTELSAT V-F satellite has 12,000 voice circuits and 2 color television channels and incorporates a maritime communication system for ship to shore communications. The stages of the launch vehicle and the launch operations are described. A table shows the launch sequence.

  9. Satellite Communications in the 1980's.

    ERIC Educational Resources Information Center

    Usunier, Pierre

    Space communications have developed tremendously since 1963 when the National Aeronautics and Space Administration (NASA) launched the synchronous communication satellite, Syncom II, into geostationary orbit. The capacity of that spacecraft was one two-circuit voice channel. Intelsat V, launched in 1980, has a capacity of 12,000 circuits plus two…

  10. Low cost communications satellite for developing countries

    NASA Astrophysics Data System (ADS)

    Durling, G. W.; Pfund, E. T.

    A new low-cost dual-spin satellite, the HS 399, is described. The satellite's nominal payload capability is 100 pounds and 200 watts. A typical mission sequence for the HS 399 is outlined, and its mission-sequenced mass summary is presented. The satellite's major systems are described: the communications, telemetry, command, control, power, thermal, structure, and propulsion subsystems. Its Frisbee-style low-cost ejection system from the Space Shuttle makes it the most cost-efficient satellite ever designed for launch from that vehicle.

  11. Geostationary payload concepts for personal satellite communications

    NASA Astrophysics Data System (ADS)

    Benedicto, J.; Rinous, P.; Roberts, I.; Roederer, A.; Stojkovic, I.

    This paper reviews candidate satellite payload architectures for systems providing world-wide communication services to mobile users equipped with hand-held terminals based on large geostationary satellites. There are a number of problems related to the payload architecture, on-board routing and beamforming, and the design of the S-band Tx and L-band Rx antenna and front ends. A number of solutions are outlined, based on trade-offs with respect to the most significant performance parameters such as capacity, G/T, flexibility of routing traffic to beams and re-configuration of the spot-beam coverage, and payload mass and power. Candidate antenna and front-end configurations were studied, in particular direct radiating arrays, arrays magnified by a reflector and active focused reflectors with overlapping feed clusters for both transmit (multimax) and receive (beam synthesis). Regarding the on-board routing and beamforming sub-systems, analog techniques based on banks of SAW filters, FET or CMOS switches and cross-bar fixed and variable beamforming are compared with a hybrid analog/digital approach based on Chirp Fourier Transform (CFT) demultiplexer combined with digital beamforming or a fully digital processor implementation, also based on CFT demultiplexing.

  12. Geostationary payload concepts for personal satellite communications

    NASA Technical Reports Server (NTRS)

    Benedicto, J.; Rinous, P.; Roberts, I.; Roederer, A.; Stojkovic, I.

    1993-01-01

    This paper reviews candidate satellite payload architectures for systems providing world-wide communication services to mobile users equipped with hand-held terminals based on large geostationary satellites. There are a number of problems related to the payload architecture, on-board routing and beamforming, and the design of the S-band Tx and L-band Rx antenna and front ends. A number of solutions are outlined, based on trade-offs with respect to the most significant performance parameters such as capacity, G/T, flexibility of routing traffic to beams and re-configuration of the spot-beam coverage, and payload mass and power. Candidate antenna and front-end configurations were studied, in particular direct radiating arrays, arrays magnified by a reflector and active focused reflectors with overlapping feed clusters for both transmit (multimax) and receive (beam synthesis). Regarding the on-board routing and beamforming sub-systems, analog techniques based on banks of SAW filters, FET or CMOS switches and cross-bar fixed and variable beamforming are compared with a hybrid analog/digital approach based on Chirp Fourier Transform (CFT) demultiplexer combined with digital beamforming or a fully digital processor implementation, also based on CFT demultiplexing.

  13. The Advanced Communication Technology Satellite and ISDN

    NASA Technical Reports Server (NTRS)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  14. High-Latitude Communications Satellite (HILACS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Naval Postgraduate School in the AE 4871 Advanced Spacecraft Design course designed a communications satellite (HILACS) that will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specific coverage. The satellite orbit is elliptic with perigee at 1204 km in the Southern Hemisphere and an apogee at 14,930 km with 63.4 degrees inclination. Analysis and design of each of the subsystems was done to the extent possible within the constraints of an eleven week quarter and the design and analysis tools available. Work was completed in orbital analysis, the reaction control system, attitude control subsystem, electric power subsystem, telemetry, tracking, and control, thermal control subsystem, and the structures subsystem. The design team consisted of 12 students. Additional support was provided by the Jet Propulsion Laboratory and the Naval Research Laboratory.

  15. Satellite utilization for educational communications in the U.S.

    NASA Technical Reports Server (NTRS)

    Morgan, R. P.; Singh, J. P.

    1974-01-01

    This paper summarizes completed, continuing and planned satellite experiments in the U.S. related to the delivery of educational services and networking. It also describes some results of an on-going study at Washington University directed towards defining applications of fixed/broadcast communication satellites in the U.S. and alternative systems and strategies for large-scale telecommunication-based educational delivery systems utilizing satellites. An analysis is presented of recent actions which may influence future development of such systems.

  16. The use of satellites in non-goestationary orbits for unloading geostationary communication satellite traffic peaks. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-01-01

    The part of the geostationary (GEO) orbital arc used for United States domestic fixed, communications service is rapidly becoming filled with satellites. One of the factors currently limiting its utilization is that communications satellites must be designed to have sufficient capacity to handle peak traffic leads, and thus are under utilized most of the time. A solution is to use satellites in suitable non-geostationary orbits to unload the traffic peaks. Three different designs for a non-geostationary orbit communications satellite system are presented for the 1995 time frame. The economic performance is analyzed and compared with geostationary satellites for two classes of service, trunking and customer premise service. The result is that the larger payload of the non-geostationary satellite offsets the burdens of increased complexity and worse radiation environment to give improved economic performance. Depending on ground terminal configuration, the improved economic performance of the space segment may be offset by increased ground terminal expenses.

  17. Use of low orbital satellite communications systems for humanitarian programs

    NASA Technical Reports Server (NTRS)

    Vlasov, Vladimir N.; Gorkovoy, Vladimir

    1991-01-01

    Communication and information exchange play a decisive role in progress and social development. However, in many parts of the world the communication infrastructure is inadequate and the capacity for on-line exchange of information may not exist. This is true of underdeveloped countries, remote and relatively inaccessible regions, sites of natural disasters, and of all cases where the resources needed to create complex communication systems are limited. The creation of an inexpensive space communications system to service such areas is therefore a high priority task. In addition to a relatively low-cost space segment, an inexpensive space communications systems requires a large number of ground terminals, which must be relatively inexpensive, energy efficient (using power generated by storage batteries, or solar arrays, etc.), small in size, and must not require highly expert maintenance. The ground terminals must be portable, and readily deployable. Communications satellites in geostationary orbit at altitudes of about 36,000 km are very expensive and require complex and expensive ground stations and launch vehicles. Given current technology, it is categorically impossible to develop inexpensive satellite systems with portable ground terminals using such satellites. To solve the problem of developing an inexpensive satellite communications system that can operate with relatively small ground stations, including portable terminals, we propose to use a system with satellites in low Earth orbit, at an altitude of 900-1500 km. Because low orbital satellites are much closer to the Earth than geostationary ones and require vastly less energy expenditure by the satellite and ground terminals for transmission of messages, a system using them is relatively inexpensive. Such a system could use portable ground terminals no more complex than ordinary mobile police radios.

  18. The Globalstar mobile satellite system for worldwide personal communications

    NASA Technical Reports Server (NTRS)

    Wiedeman, Robert A.; Viterbi, Andrew J.

    1993-01-01

    Loral Aerospace Corporation along with Qualcomm Inc. have developed a satellite system which offers global mobile voice and data services to and from handheld and mobile user terminals with omni-directional antennas. By combining the use of low-earth orbit (LEO) satellites with existing terrestrial communications systems and innovative, highly efficient spread spectrum techniques, the Globalstar system provides users with low-cost, reliable communications throughout the world. The Globalstar space segment consists of a constellation of 48 LEO satellites in circular orbits with 750 NM (1389 km) altitude. Each satellite communicates with the mobile users via the satellite-user links and with gateway stations. The gateway stations handle the interface between the Globalstar network and the OSTN/PLMN systems. Globalstar transceivers are similar to currently proposed digital cellular telephones in size and have a serial number that will allow the end user to make and receive calls from or to that device anywhere in the world. The Globalstar system is designed to operate as a complement to existing local, long-distance, public, private and specialized telecommunications networks. Service is primarily designed to serve the rural and thin route communications needs of consumers, government users, and private networks.

  19. The Globalstar mobile satellite system for worldwide personal communications

    NASA Astrophysics Data System (ADS)

    Wiedeman, Robert A.; Viterbi, Andrew J.

    Loral Aerospace Corporation along with Qualcomm Inc. have developed a satellite system which offers global mobile voice and data services to and from handheld and mobile user terminals with omni-directional antennas. By combining the use of low-earth orbit (LEO) satellites with existing terrestrial communications systems and innovative, highly efficient spread spectrum techniques, the Globalstar system provides users with low-cost, reliable communications throughout the world. The Globalstar space segment consists of a constellation of 48 LEO satellites in circular orbits with 750 NM (1389 km) altitude. Each satellite communicates with the mobile users via the satellite-user links and with gateway stations. The gateway stations handle the interface between the Globalstar network and the OSTN/PLMN systems. Globalstar transceivers are similar to currently proposed digital cellular telephones in size and have a serial number that will allow the end user to make and receive calls from or to that device anywhere in the world. The Globalstar system is designed to operate as a complement to existing local, long-distance, public, private and specialized telecommunications networks. Service is primarily designed to serve the rural and thin route communications needs of consumers, government users, and private networks.

  20. The future for domestic communications satellites - Lease or buy

    NASA Astrophysics Data System (ADS)

    Rooney, K. J.

    1982-04-01

    The demand for leased satellite communications services is growing at such a rate that a dedicated leasing satellite system is envisioned to deal with the demand. The most economical solution would be three similarly designed 24-channel capacity satellites with on-orbit antenna beam reconfiguration offering regional C-band coverage and situated over America, Africa, and Asia. Spatial frequency reuse is not considered necessary until at least the next generation. A two-meter antenna projecting a three dB beamwidth nearly three degrees in diameter at 4 GHz can achieve global coverage with only 19 adjacent beams at the aforementioned locations. Circular polarization will be continued in leasing. It is proposed to operate dual orthogonal polarization frequency reuse for uplink and downlink to increase the available capacity. The communications repeater is discussed in detail together with a glossary of terms and an economic analysis of the competition from dedicated domestic satellites.

  1. Satellite services system analysis study. Volume 3: Service equipment requirements

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Service equipment mission requirements are discussed. On-orbit operations, satellite classes, and reference missions are included. Service equipment usage and requirements are considered. Equipment identification methodology is discussed. Service equipment usage is analyzed, including initial launch, revisit, Earth return, and orbital storage. A summary of service requirements and equipment is presented, including service equipment status, even interaction, satellite features, and observations.

  2. Domestic satellite services for rural areas

    NASA Astrophysics Data System (ADS)

    Briskman, R. D.

    1984-03-01

    It is pointed out that rural areas can be served by a domestic satellite communications system in an efficient and economical manner. To accomplish such efficiency and economy, the engineering parameters of the satellite communications system must be analyzed and selected with a view toward achieving the desired performance at minimum total cost. The equipment for an entire rural satellite communication system serving 1200 communities can be acquired for approximately $200 million (1983 dollars). An identical system, however, could also be implemented at much lower capital costs by leasing space segment capacity from existing satellite systems (Briskman and Savage, 1983).

  3. Engineers checkout Early Bird-Communication Satellite

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Engineers Stanley R. Peterson (left) and Ray Bowerman (right), checkout the Early Bird, the world's first communication satellite. NASA launched the satellite built by Hughes Aircraft Corporation on April 6, 1955 at 6:48pm E.S.T. from Complex 17a at Cape Kennedy, Florida. Early Bird was built for the Communications Satellite Corporation and weighed about 85 pounds after being placed in a synchronous orbit of 22,300 miles above the earth. It was positioned over the Atlantic to provide 240 two-way telephone channels or 2-way television between Europe and North America. The outer surface of Early Bird was covered with 6,000 silicon-coated solar cells, which absorbed the sun's rays to provide power to the satellite for its intricate transmitting and receiving equipment.

  4. Silicon-Germanium Fast Packet Switch Developed for Communications Satellites

    NASA Technical Reports Server (NTRS)

    Quintana, Jorge A.

    1999-01-01

    Emerging multimedia applications and future satellite systems will require high-speed switching networks to accommodate high data-rate traffic among thousands of potential users. This will require advanced switching devices to enable communication between satellites. The NASA Lewis Research Center has been working closely with industry to develop a state-of-the-art fast packet switch (FPS) to fulfill this requirement. Recently, the Satellite Industry Task Force identified the need for high-capacity onboard processing switching components as one of the "grand challenges" for the satellite industry in the 21st century. In response to this challenge, future generations of onboard processing satellites will require low power and low mass components to enable transmission of services in the 100 gigabit (1011 bits) per second (Gbps) range.

  5. Photogrammetric mobile satellite service prediction

    NASA Technical Reports Server (NTRS)

    Akturan, Riza; Vogel, Wolfhard J.

    1994-01-01

    Photographic images of the sky were taken with a camera through a fisheye lens with a 180 deg field-of-view. The images of rural, suburban, and urban scenes were analyzed on a computer to derive quantitative information about the elevation angles at which the sky becomes visible. Such knowledge is needed by designers of mobile and personal satellite communications systems and is desired by customers of these systems. The 90th percentile elevation angle of the skyline was found to be 10 deg, 17 deg, and 51 deg in the three environments. At 8 deg, 75 percent, 75 percent, and 35 percent of the sky was visible, respectively. The elevation autocorrelation fell to zero with a 72 deg lag in the rural and urban environment and a 40 deg lag in the suburb. Mean estimation errors are below 4 deg.

  6. Laser data links for communication satellites

    NASA Technical Reports Server (NTRS)

    Ohern, W. L.; Rodenberger, C. A.

    1974-01-01

    Laser data relays potentially offer continuous 1 Gb/sec bandwidths, drastically increasing low-altitude satellite data collection capacity over present store-and-dump techniques. Availability of the laser link as a reliable alternative, operating within conventional low-altitude communication subsystem weight and power allocations, will create customer pressure for adoption. Major communication relay system impacts are discussed including reliability, mechanical design, attitude control, on-board data handling, contamination control, and traffic-net management. Interface parameters which drive the fundamental relay satellite design concepts are discussed, and conditions requiring early quantitative analysis are identified.

  7. Handbook on satellite communications and broadcasting

    NASA Astrophysics Data System (ADS)

    Askinazi, G. B.; Bykov, V. L.; Vodopianov, G. V.; D'Iachkova, M. N.; Kantor, L. Ia.; Model, A. M.; Pokras, A. M.; Timofeev, V. V.; Tsirlin, V. M.; Tsirlin, I. S.

    Principles underlying the design and operation of satellite communications systems (SCSs) are reviewed with emphasis on multiple-access techniques. Particular consideration is given to the quality characteristics of CSCs, the frequency ranges assigned to SCSs, an energy analysis of satellite lines, EMC aspects, and the effective utilization of the geostationary orbit. Also examined are the design of earth-station equipment, waveguides and multiplexing equipment, satellite antennas, reliability issues, the Ekran receiving installation, and Gradient-N and Gruppa multiple-access equipment.

  8. Hardware development for future commercial communications satellites

    NASA Astrophysics Data System (ADS)

    Assal, Francois T.; Mahle, Christoph E.

    This paper presents the development at COMSAT Laboratories of the critical components and subsystems needed for future multibeam communications satellite payloads with on-board processing. The components and subsystems currently under development will provide the required technology base for optimizing design configurations, specifying the satellite hardware, and monitoring satellite fabrication. This technology includes active multibeam antennas, microwave switch matrices (MSMs), quarternary phase-shift keyed (QPSK) modems, flexible bulk demux-demods, waveguide multimode cavity filters, baseband digital processors and/or switches, and the overall executive monitor and controller processor.

  9. Satellite broadcasting - Capabilities for public service

    NASA Technical Reports Server (NTRS)

    Marsten, R. B.

    1975-01-01

    Satellite broadcast services to support health-care and educational transmissions must work with small, low-cost terminals in allocated radio-frequency bands. The ATS-6 spacecraft has successfully demonstrated such capability in the bands of non-technical users. It supports interactive television broadcasting to simple, low-cost terminals in a nationwide series of experiments in the delivery of health-care and educational services. ATS-6 achieves this capability with a very large antenna and moderate transmitter power. The coverage limitations inherent in this approach will be overcome by the joint U.S.-Canadian Communications Technology Satellite to be launched in December 1975. The CTS will demonstrate broadcast capability with new, high-power technology in a newly-allocated radio-frequency band. This will make it possible to use smaller antennas, greatly enlarging the area coverage available to the many nontechnical experimenters using CTS for their own needs. A practical application of these technologies is now in development for operational broadcasting services in Japan.

  10. Von Karman Lecture - The rocky road to communication satellites

    NASA Astrophysics Data System (ADS)

    Wheelon, A. D.

    1986-01-01

    The history of communications satellites traced in terms of the confluence of the forces of technology, economics and public policy is discussed. The idea of placing communications satellites in GEO was put forward by a science fiction writer in 1945. Syncom II was launched, with a TWT amplifier, into GEO in 1963. Telstar provided the first live transoceanic broadcasts in 1962, just before Comsat was chartered. Early Bird proved that telephony links through GEO satellites was feasible. The follow-up, Intelsat II, was partially spurred by the Apollo program with its worldwide communications demands. Intelsat began with three spacecraft that formed the foundation for the present system. The Intelsat monopoly on worldwide common carrier links is being challenged by ground-based links and entrepreneurial activities spurred by deregulation. An open-skies policy formulated in the U.S. in the late 1960s has led to the launch of various domestic satellite systems with narrow beam transmissions using C- and Ku-band frequencies. Satellite access costs have fallen because of the capabilities of renting or selling individual transponders. Mobile communications systems may soon be served through a joint U.S.-Canada project. Finally, the WARC 1977 set the ground rules for DBS television service, which is in the process of being implemented, mainly by cable operators.

  11. Satellite Servicing Capabilities Office Testing

    NASA Technical Reports Server (NTRS)

    Sanders, Sean

    2015-01-01

    While at the KSC, I was given the opportunity of assisting the Satellite Servicing Capabilities Office (SSCO) specifically the Propellant Transfer System (PTS) lead by my mentor, Brian Nufer. While waiting to test different components in the PTS, I was able to assist with testing for the Hose Management Assembly (HMA) and was able to work on a simulation in Labview. For the HMA, I was able to help with testing of a coating as well as to help test the durability of the pinch rollers in space. In Labview, I experimented with building a simulation for the PTS, to show where fluids and gases were flowing depending on which valves in the PTS were opened. Not all of the integrated parts required assembly level testing, which allowed me to test these parts individually by myself and document the results. I was also able to volunteer to assist project NEO, allowing me to gain some knowledge of cryogenic fluid systems.

  12. Global disaster satellite communications system for disaster assessment and relief coordination

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1979-01-01

    The global communication requirements for disaster assistance and examines operationally feasible satellite system concepts and the associated system parameters are analyzed. Some potential problems associated with the current method of providing disaster assistance and a scenario for disaster assistance relying on satellite communications are described. Historical statistics are used with the scenario to assess service requirements. Both present and planned commercially available systems are considered. The associated global disaster communication yearly service costs are estimated.

  13. Assessment of Commercial Satellite Communications Initiative (CSCI) studies

    NASA Astrophysics Data System (ADS)

    Smith, N.; Kearns, W.; Chapell, P.

    1994-01-01

    This report summarizes the fixed and mobile satellite services (FSS, MSS) as studied by three contractors: COMSAT, Hughes, and Space Systems/LORAL. Each contractor developed a commercial satellite communications initiative (CSCI) architecture based on the requirements provided them from DOD's Integrated Communications Data Base (ICDB). An implementation plan, recommending an acquisition, transition, logistics, and host nation approval plan, was developed according to each contractor's recommended architecture. In addition, this report summarizes the demonstrations conducted by each contractor and the vulnerabilities inherent in using commercial satellites. This summary information is provided as the foundation for the section on the government's assessment and critique of the CSCI study which emphasizes the highlights and remaining uncertainties from this program.

  14. 20/30 GHz satellite personal communications networks

    NASA Technical Reports Server (NTRS)

    Palmer, L. C.; Stern, A.; Sohn, P. Y.

    1992-01-01

    The feasibility of personal communications networks that can provide 4.8-kbps voice communications between portable terminals and a hub station via a Ka-band geosynchronous satellite has been investigated. Tradeoffs are examined so that the combined system of hub and gateway earth stations, the satellite, and the personal terminals can provide a competitive service in terms of cost, availability, and quality. A baseline system is described using a spacecraft with approximately 140 spot beams that cover CONUS with 5-watt power amplifiers in each beam. Satellite access in both the forward and return directions uses frequency division multiple access/code division multiple access with a chip rate of 2.5 Mchip/sec.

  15. 20/30 GHz satellite personal communications networks

    NASA Astrophysics Data System (ADS)

    Palmer, L. C.; Stern, A.; Sohn, P. Y.

    1992-03-01

    The feasibility of personal communications networks that can provide 4.8-kbps voice communications between portable terminals and a hub station via a Ka-band geosynchronous satellite has been investigated. Tradeoffs are examined so that the combined system of hub and gateway earth stations, the satellite, and the personal terminals can provide a competitive service in terms of cost, availability, and quality. A baseline system is described using a spacecraft with approximately 140 spot beams that cover CONUS with 5-watt power amplifiers in each beam. Satellite access in both the forward and return directions uses frequency division multiple access/code division multiple access with a chip rate of 2.5 Mchip/sec.

  16. A personal communications network using a Ka-band satellite

    NASA Astrophysics Data System (ADS)

    Palmer, Larry C.; Laborde, Enrique; Stern, Alan; Sohn, Philip Y.

    1992-02-01

    The feasibility of a personal communications network using portable terminals that can provide 4.8-kb/s voice communications to a hub station via a Ka-band geosynchronous satellite has been investigated. Tradeoffs are examined so that the combined system of hub and gateway earth stations, the satellite, and the personal terminals can provide a competitive service in terms of cost, availability, and quality. A baseline system that uses a spacecraft with approximately 140 spot beams to cover the contiguous US (CONUS) and 5-W power amplifiers in each beam is described. Satellite access in both the forward and return directions uses frequency-division multiple-access/code-division multiple-access (FDMA/CDMA) with a chip rate of 2.5 Mchip/s.

  17. A personal communications network using a Ka-band satellite

    NASA Technical Reports Server (NTRS)

    Palmer, Larry C.; Laborde, Enrique; Stern, Alan; Sohn, Philip Y.

    1992-01-01

    The feasibility of a personal communications network using portable terminals that can provide 4.8-kb/s voice communications to a hub station via a Ka-band geosynchronous satellite has been investigated. Tradeoffs are examined so that the combined system of hub and gateway earth stations, the satellite, and the personal terminals can provide a competitive service in terms of cost, availability, and quality. A baseline system that uses a spacecraft with approximately 140 spot beams to cover the contiguous US (CONUS) and 5-W power amplifiers in each beam is described. Satellite access in both the forward and return directions uses frequency-division multiple-access/code-division multiple-access (FDMA/CDMA) with a chip rate of 2.5 Mchip/s.

  18. Performance of Duplex Communication between a Leo Satellite and Terrestrial Location Using a Geo Constellation

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.; Konangi, Vijay K.; Wallett, Thomas M.

    1998-01-01

    A network comprised of a terrestrial site, a constellation of three GEO satellites and a LEO satellite is modeled and simulated. Continuous communication between the terrestrial site and the LEO satellite is facilitated by the GEO satellites. The LEO satellite has the orbital characteristics of the International Space Station. Communication in the network is based on TCP/IP over ATM, with the ABR service category providing the QoS, at OC-3 data rate. The OSPF protocol is used for routing. We simulate FTP file transfers, with the terrestrial site serving as the client and the LEO satellite being the server. The performance characteristics are presented.

  19. Method for scrambling satellite communications

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A secure communications system multiplexes segments of the information signal for keyed encoding and modulation onto a plurality of different carrier frequencies and/or polarizations, and transmits the encoded carriers to multi-channel signal summing receivers that decode the segments from all channels, to reassemble the information signal for use by authorized stations with a key. The use of the multi-channel link and the summing receiver allows the greatest number of different coding algorithms for accommodating the greatest number of discrete secure channels.

  20. A baseline maritime satellite communication system

    NASA Technical Reports Server (NTRS)

    Durrani, S. H.; Mcgregor, D. N.

    1974-01-01

    This paper describes a baseline system for maritime communications via satellite during the 1980s. The system model employs three geostationary satellites with global coverage antennas. Access to the system is controlled by a master station; user access is based on time-ordered polling or random access. Each Thor-Delta launched satellite has an RF power of 100 W (spinner) or 250 W (three-axis stabilized), and provides 10 equivalent duplex voice channels for up to 1500 ships with average waiting times of approximately 2.5 minutes. The satellite capacity is bounded by the available bandwidth to 50 such channels, which can serve up to 10,000 ships with an average waiting time of 5 minutes. The ships must have peak antenna gains of approximately 15.5 dB or 22.5 dB for the two cases (10 or 50 voice channels) when a spinner satellite is used; the required gains are 4 dB lower if a three-axis stabilized satellite is used. The ship antenna requirements can be reduced by 8 to 10 dB by employing a high-gain multi-beam phased array antenna on the satellite.

  1. Satellite Antenna Pointing Procedure Driven by the Ground Service Quality

    NASA Astrophysics Data System (ADS)

    Yasui, Yoshitsugu

    A satellite antenna alignment technique is proposed to ensure terrestrial service quality for users. The antenna bore sight orientation is calculated directly from measured data acquired from general ground receivers, which intercept the communication radio waves from any position on the earth's surface. The method coordinates the satellite pointing parameters with signal strength at the receivers while considering location-specific geographical and antenna radiation characteristics and control accuracy. The theoretical development and its validity are examined in the course of equation derivation. Actual measured data of an existing satellite at the maneuver was applied to the method, and the capability was demonstrated and verified. With the wide diversity of satellite usage, such as for mobile communications, temporary network deployment or post-launch positioning accommodations, the proposed method provides a direct evaluation of satellite communication performance at the service level, in conjunction with using high frequency spot beam antennas, which are highly susceptible to pointing gain. This can facilitate swift and flexible satellite service planning and deployment for operators.

  2. Characteristics of a future aeronautical satellite communications system

    NASA Technical Reports Server (NTRS)

    Sohn, Philip Y.; Stern, Alan; Schmidt, Fred

    1991-01-01

    A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes multibeam antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.

  3. Characteristics of a future aeronautical satellite communications system

    NASA Technical Reports Server (NTRS)

    Sohn, Philip Y.; Stern, Alan; Schmidt, Fred

    1991-01-01

    A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes Multibeam Antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.

  4. Communications technology satellite - United States experiments and disaster communications applications

    NASA Technical Reports Server (NTRS)

    Donoughe, P. L.; Hunczak, H. R.; Gurski, G. S.

    1978-01-01

    The experimental Communications Technology Satellite (CTS), also called Hermes, uses a high-power transmitter and 12- and 14-GHz frequencies for wideband (two- and one-way television) and narrowband (voice, data) communications. In the joint program, both Canada and the United States have conducted a variety of communications experiments. This report concentrates on U.S. CTS experiments and miniexperiments that use ground antennas from 0.6 to 5 meters in diameter. The U.S. CTS experiments program is synopsized in this report. The use of CTS for simulated and actual disasters is summarized.

  5. System issues related to satellite communications in a nuclear environment

    SciTech Connect

    Kullstam, P.A.

    1990-05-03

    Nuclear induced signal scintillation effects are of great importance in design and deployment of military satellite systems that must provide survivable and enduring communications service. The induced scintillation will result in Rayleigh signal fading with limited signal decorrelation time and coherent bandwidth of the transmission channel as well as reduced signal power due to terminal antenna scattering loss. In this environment the coherent bandwidth and signal decorrelation time are most important design parameters for modulation subsystem design. The antenna scattering loss is important for link power budgets and satellite network loading.

  6. A network architecture for International Business Satellite communications

    NASA Astrophysics Data System (ADS)

    Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio

    Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.

  7. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  8. Plan of advanced satellite communication experiments using ETS-6

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi

    1989-01-01

    In 1992, an Engineering Test Satellite 6 is scheduled to be launched by an H-2 rocket. The missions of ETS-6 are to establish basic technologies of inter-satellite communications using S-band, millimeter waves and optical beams and of fixed and mobile satellite communications using multibeam antenna on board the satellite. A plan of the experiments is introduced.

  9. Propulsion requirements for communications satellites.

    NASA Technical Reports Server (NTRS)

    Isley, W. C.; Duck, K. I.

    1972-01-01

    The concept of characteristics thrust is introduced herein as a means of classifying propulsion system tasks related particularly to geosynchronous communications spacecraft. Approximate analytical models are developed to permit estimation of characteristic thrust for injection error corrections, orbit angle re-location, north-south station keeping, east-west station keeping, spin axis precession control, attitude rate damping, and orbit raising applications. Performance assessment factors are then outlined in terms of characteristic power, characteristic weight, and characteristic volume envelope, which are related to the characteristic thrust. Finally, selected performance curves are shown for power as a function of spacecraft weight, including the influence of duty cycle on north-south station keeping, a 90 degree orbit angle re-location in 14 days, and finally comparison of orbit raising tasks from low and intermediate orbits to a final geosynchronous station. Power requirements range from less than 75 watts for north-south station keeping on small payloads up to greater than 15 KW for a 180 day orbit raising mission including a 28.5 degree plane change.

  10. Adaptive antenna arrays for satellite communication

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.

    1989-01-01

    The feasibility of using adaptive antenna arrays to provide interference protection in satellite communications was studied. The feedback loops as well as the sample matric inversion (SMI) algorithm for weight control were studied. Appropriate modifications in the two were made to achieve the required interference suppression. An experimental system was built to test the modified feedback loops and the modified SMI algorithm. The performance of the experimental system was evaluated using bench generated signals and signals received from TVRO geosynchronous satellites. A summary of results is given. Some suggestions for future work are also presented.

  11. Ku-band SSPA for communications satellites

    NASA Astrophysics Data System (ADS)

    Laprade, N.; Zelen, H.; Caporossi, P.; Dolan, L.

    The paper describes the design of a Ku-band solid-state power amplifier (SSPA) for a communications satellite transponder. Details of the measured performance in the output device configuration, and of two engineering model amplifiers, are provided. The amplifier design provides a power output capability greater than 40 watts in the 11.7- to 12.2-GHz satellite downlink band, with an associated dc-to-RF efficiency greater than 30 percent. The SSPA has about 60 dB gain, temperature-compensated from 0 to 50 C. Measured performance data for two engineering model SSPAs and a 10-watt output module are given.

  12. Satellite mobile data service for Canada

    NASA Technical Reports Server (NTRS)

    Egan, Glenn R.; Sward, David J.

    1990-01-01

    A commercial mobile satellite system which is to be constructed and operated in Canada is examined. This is done in two phases. First, mobile data services was introduced. Hub equipment and 3000 mobile data terminals were supplied. Over the satellite tests were performed. The mobile data service provides full two way digital messaging automatic vehicle location and fleet management services. The second phase is to construct, launch and make operational the MSAT satellite and associated network control facilities. The implementation is examined of the mobile data service in Canada, including the technical description. Marketing and applications are also examined.

  13. A generalized transmultiplexer and its application to mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ichiyoshi, Osamu

    1990-01-01

    A generalization of digital transmultiplexer technology is presented. The proposed method can realize transmultiplexer (TMUX) and transdemultiplexer (TDUX) filter banks whose element filters have bandwidths greater than the channel spacing frequency. This feature is useful in many communications applications. As an example, a satellite switched (SS) Frequency Division Multiple Access (FDMA) system is proposed for spot beam satellite communications, particularly for mobile satellite communications.

  14. Data communications service by VSAT network in the Philippines

    NASA Astrophysics Data System (ADS)

    Duque, Roberto L.

    Satellite communications is of particular importance to an archipelago like the Philippines. With over 7,100 islands, rugged forests, and mountainous terrain, satellite communications technology offers the opportunity to leapfrog over the existing difficulties associated with terrestrial-based microwave networks. If harnessed correctly, it has the potential to significantly contribute to the provisions of a wide array of services ranging from voice to facsimile and data to video. The continuous evolution of satellite and earth station technology, since its inception more than 30 years ago, has placed within reach technologies which are reliable as well as easily deployed, used, and maintained. The Philippine government's recognition of the vital role of wireless communications was never more evident than during and after the series of natural calamities that hit the country and disrupted existing microwave infrastructure. Aside from obvious technological advantages over conventional communications technologies, satellite communications provides cost-effective solutions and fortifies the country's unstable communications infrastructure.

  15. 47 CFR 25.213 - Inter-Service coordination requirements for the 1.6/2.4 GHz mobile-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Inter-Service coordination requirements for the 1.6/2.4 GHz mobile-satellite service. 25.213 Section 25.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.213 Inter-Service coordination requirements for...

  16. Autosophy: an alternative vision for satellite communication, compression, and archiving

    NASA Astrophysics Data System (ADS)

    Holtz, Klaus; Holtz, Eric; Kalienky, Diana

    2006-08-01

    Satellite communication and archiving systems are now designed according to an outdated Shannon information theory where all data is transmitted in meaningless bit streams. Video bit rates, for example, are determined by screen size, color resolution, and scanning rates. The video "content" is irrelevant so that totally random images require the same bit rates as blank images. An alternative system design, based on the newer Autosophy information theory, is now evolving, which transmits data "contend" or "meaning" in a universally compatible 64bit format. This would allow mixing all multimedia transmissions in the Internet's packet stream. The new systems design uses self-assembling data structures, which grow like data crystals or data trees in electronic memories, for both communication and archiving. The advantages for satellite communication and archiving may include: very high lossless image and video compression, unbreakable encryption, resistance to transmission errors, universally compatible data formats, self-organizing error-proof mass memories, immunity to the Internet's Quality of Service problems, and error-proof secure communication protocols. Legacy data transmission formats can be converted by simple software patches or integrated chipsets to be forwarded through any media - satellites, radio, Internet, cable - without needing to be reformatted. This may result in orders of magnitude improvements for all communication and archiving systems.

  17. Satellite switched FDMA advanced communication technology satellite program

    NASA Astrophysics Data System (ADS)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-12-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  18. Satellite switched FDMA advanced communication technology satellite program

    NASA Technical Reports Server (NTRS)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  19. The Communications Technology Satellite /CTS/ Program

    NASA Technical Reports Server (NTRS)

    Evans, W. M.; Davies, N. G.; Hawersaat, W. H.

    1976-01-01

    The purposes of the joint Canadian-U.S. Communications Technology Satellite (CTS) Program are (1) to conduct satellite communication systems experiments using the 12- and 14-GHz bands and low-cost transportable ground terminals, (2) to develop and flight test a power amplifier tube having a greater than 50% efficiency with a saturated power output of 200 W at 12 GHz, (3) to develop and flight test a lightweight extendible solar array with an initial power output greater than 1 kW, and (4) to develop and flight test a 3-axis stabilization system to maintain accurate antenna boresight positioning on a spacecraft with flexible appendages. Brief descriptions of these experiments and of the ground facilities are provided.

  20. Ku-band satellite communication via TDRSS

    NASA Astrophysics Data System (ADS)

    Landon, R. B.; Raymond, H. G.

    Development of the Tracking and Data Relay Satellite System (TDRSS) has opened a new high capacity transmission media for orbiting satellites to communicate with CONUS-based ground systems. TRW is pioneering the application of this capability with the development of a Ku-Band Wideband Communication Subsystem (WCS) for Landsat-D spacecraft. Using technology developed for this initial program, a family of Ku-Band user configurations has evolved which are capable of providing data links that range in capacity from 10 to 300 Mbps. This paper outlines the characteristics and performance of the Landsat-D subsystem and details several derived configurations. It also provides a current assessment of the availability and performance of the K-Band technology needed to support the TDRSS mission.

  1. World-wide aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter; Smith, Keith

    1988-01-01

    INMARSAT decided to expand the spectrum covered by its new generation of satellites, INMARSAT-2, to include 1 MHz (subsequently increased to 3 MHz) of the spectrum designed for aeronautical use. It began a design study that led to the specifications for the system that is now being implemented. Subsequently, INMARSAT awarded contracts for the design of avionics and high gain antennas to a number of manufactures, while several of the signatories that provide ground equipment for communicating with the INMARSAT satellites are modifying their earth stations to work with the avionic equipment. As a resullt of these activities, a world-wide aeronautical satellite system supporting both voice and data will become operational in 1989.

  2. Intersatellite link application to commercial communications satellites

    NASA Technical Reports Server (NTRS)

    Lee, Young S.; Atia, Ali E.; Ponchak, Denise S.

    1988-01-01

    The fundamental characteristics of intersatellite link (ISL) systems, and their application to domestic, regional, and global satellite communications, are described. The quantitative advantages of using ISLs to improve orbit utilization, spectrum occupancy, transmission delay (compared to multi-hop links), coverage, and connectivity, and to reduce the number of earth station antennas, are also presented. Cost-effectiveness and other systems benefits of using ISLs are identified, and the technical and systems planning aspects of ISL systems implementation are addressed.

  3. Need for, and financial feasibility of, satellite-aided land mobile communications

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Marantz, C. S.; Freibaum, J.

    1982-01-01

    Questions regarding the role of a mobile-satellite system in augmenting the terrestrial communications system are considered, and a market assessment study is discussed. Aspects of an investment analysis are examined, taking into account a three phase financial study of four postulated land Mobile Satellite Service (LMSS) systems, project profitability evaluation methods, risk analysis methods, financial projections, potential investor acceptance standards, and a risk analysis. It is concluded that a satellite augmented terrestrial mobile service appears to be economically and technically superior to a service depending exclusively on terrestrial systems. The interest in the Mobile Satellite Service is found to be worldwide, and the ground equipment market is potentially large.

  4. Military satellite communications. Milstar program issues and cost-saving opportunities

    NASA Astrophysics Data System (ADS)

    1992-06-01

    In 1981, DOD initiated the Milstar program to provide the President and military services with a survivable worldwide communications capability. The Milstar system consists of satellites, ground-based control stations, and various Army, Navy, and Air Force terminals.

  5. United States societal experiments via the Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Donoughe, P. L.

    1976-01-01

    After a brief description of the Communication Technology Satellite and its U.S. coverage, the U.S. societal experiments via the CTS are discussed. These include education (college curriculum sharing, and project interchange), health care (biomedical communications, health communications, and communication support for decentralized education), and community and special experiments (satellite library information network, and transportable earth terminal).

  6. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Martin, C. H.; Gonsalvez, D. J.; Levis, C. A.; Wang, C. W.

    1983-01-01

    Progress is reported on a computer code to improve the efficiency of spectrum and orbit utilization for the Broadcasting Satellite Service in the 12 GHz band for Region 2. It implements a constrained gradient search procedure using an exponential objective function based on aggregate signal to noise ratio and an extended line search in the gradient direction. The procedure is tested against a manually generated initial scenario and appears to work satisfactorily. In this test it was assumed that alternate channels use orthogonal polarizations at any one satellite location.

  7. Development of a demand assignment/TDMA system for international business satellite communications

    NASA Astrophysics Data System (ADS)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio; Hirata, Yasuo; Yamazaki, Yoshiharu

    An experimental IBS (international business satellite) communications system based on a demand assignment and TDMA (time-division multiple-access) operation has been developed. The system utilizes a limited satellite resource efficiently and provides various kinds of ISDN services totally. A discussion is presented of the IBS network configurations suitable to international communications and describes the developed communications system from the viewpoint of the hardware and software implementation. The performance in terms of the transmission quality and call processing is also demonstrated.

  8. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  9. Project SCS (Special Communication Services).

    ERIC Educational Resources Information Center

    Curtis, John A.

    This extensive report describes and provides documentation on Special Communications Services for the Sensory Impaired (SCS), a Virginia-based telecommunications delivery system developed by the Center for Excellence, Inc. (CenTex), to provide information and entertainment broadcasting services to the visually handicapped, the hearing impaired,…

  10. Land mobile communications satellite mission (LAMOCOSAMIS) Task 1: Market study

    NASA Astrophysics Data System (ADS)

    1985-12-01

    Land mobile communication service demand in Europe and the Mediterranean basin in the years 1995-2005 was estimated. A traffic model was derived. There is an exploding demand for land mobile communications in Europe, with overwhelming preference for two way telephone services. The users survey shows a surprising lack of sensitivity to prices and tariffs, which widely contributed to the preeminence of the needs for telephone services. This demand justifies that every effort be made to develop as fast as possible a compatible pan-European terrestrial mobile system. If a large proportion of the needs may be satisfied by terrestrial mobile system solutions, the potential remaining needs for telephony, outside of the presently planned terrestrial mobile, which can be served only by satellite, even under the pessimistic economic scenario and high cost/tariff assumptions, requires a number of equivalent telephone circuits which cannot be achieved with available state of the art technology.

  11. FEC decoder design optimization for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Roy, Ashim; Lewi, Leng

    1990-01-01

    A new telecommunications service for location determination via satellite is being proposed for the continental USA and Europe, which provides users with the capability to find the location of, and communicate from, a moving vehicle to a central hub and vice versa. This communications system is expected to operate in an extremely noisy channel in the presence of fading. In order to achieve high levels of data integrity, it is essential to employ forward error correcting (FEC) encoding and decoding techniques in such mobile satellite systems. A constraint length k = 7 FEC decoder has been implemented in a single chip for such systems. The single chip implementation of the maximum likelihood decoder helps to minimize the cost, size, and power consumption, and improves the bit error rate (BER) performance of the mobile earth terminal (MET).

  12. A digitally implemented communications experiment utilizing the Hermes (CTS) satellite

    NASA Technical Reports Server (NTRS)

    Jackson, H. D.; Fiala, J. L.

    1977-01-01

    The Hermes (CTS) experiment program made possible a significant effort directed toward new developments which will reduce the costs associated with the distribution of satellite services. Advanced satellite transponder technology and small inexpensive earth terminals were demonstrated as part of the Hermes program. Another system element that holds promise for reduced transmission cost is associated with the communication link implementation. An experiment is described which uses CTS to demonstrate digital link implementation and its advantages over conventional analog systems. A Digitally Implemented Communications experiment which demonstrates the flexibility and efficiency of digital transmission of television video and audio, telephone voice and high-bit-rate data is also described. Presentation of the experiment concept which concentrates on the evaluation of full-duplex digital television in the teleconferencing environment is followed by a description of unique equipment that was developed.

  13. Channel simulation to facilitate mobile-satellite communications research

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1987-01-01

    The mobile-satellite-service channel simulator, which is a facility for an end-to-end hardware simulation of mobile satellite communications links is discussed. Propagation effects, Doppler, interference, band limiting, satellite nonlinearity, and thermal noise have been incorporated into the simulator. The propagation environment in which the simulator needs to operate and the architecture of the simulator are described. The simulator is composed of: a mobile/fixed transmitter, interference transmitters, a propagation path simulator, a spacecraft, and a fixed/mobile receiver. Data from application experiments conducted with the channel simulator are presented; the noise converison technique to evaluate interference effects, the error floor phenomenon of digital multipath fading links, and the fade margin associated with a noncoherent receiver are examined. Diagrams of the simulator are provided.

  14. CTS /Hermes/ - United States experiments and operations summary. [Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Donoughe, P. L.; Hunczak, H. R.

    1977-01-01

    The U.S. experiments conducted with the Communications Technology Satellite, a joint Canadian-U.S. venture launched in 1976, are discussed. The 14/12 GHz frequencies employed by the 200-W transmitter on board the satellite provide two-way television and voice communications. Applications of the satellite in the categories of health care, community services and education are considered; experiments have also made use of the special properties of the super-high frequency band (e.g. link characterization and digital communications). Time-sharing of the 14/12 GHz communication between the U.S. and Canada has functioned well.

  15. Leveraging Commercial Communication Satellites to support the Space Situational

    NASA Astrophysics Data System (ADS)

    Deaver, T.

    The majority of USSTRATCOM detect and track requirements in the geosynchronous regime could be met via strategic placement of medium grade optical sensors on select geosynchronous satellites at relatively low cost in less than 48 months. An architecture which includes hosting SSA sensors on eight to ten commercial communication satellites could provide for highly accurate, timely and relatively inexpensive detect and track capabilities. The major factors considered when hosting any sensor on a commercial communications satellite are size, weight (mass) and power or SWAP. Additional sensor specific items must also be considered to form a complete feasibility analysis. These include data rate, mounting constraints, thermal balance, timing accuracy, and attitude stability requirements. All of these factors directly impact the cost and flexibility of hosting such a sensor on a geosynchronous communication satellite. By choosing a relatively light weight, low power consumption sensor which requires a small amount of bandwidth to transmit its data, the cost of hosting the sensor is kept to a minimum. Once the type of sensor or sensors is identified, the next step is to identify idea geosynchronous locations for the "hosted" sensors. Once these locations are identified, then one would identify a potential host which needs to be replaced within the desired timeframe. Once the host is identified, then the satellite owner / operator should be approached about hosting a "neighborhood" watch sensor aboard their spacecraft. Commercial satellites are routinely replaced based on age, lack of available station keeping fuel or to allow a service provider to upgrade its capabilities. Each commercial communication satellite operator maintains a plan of replacing spacecraft. Between the two largest commercial SATCOM providers, INTELSAT and SES, six to eight spacecraft will be replaced each year (100 plus spacecraft with 15 year average lifetimes). The satellites are usually procured, designed, built, launched and operational within 36 months. In order for the US Government to adapt to this timeline, a sensor specification would need to be established as well as a sensor procurement pipeline. The sensors would then be provided to the satellite bus manufacturer for integration onto the bus. The spacecraft would then be launched and operated by the commercial SATCOM operator for the life of the spacecraft. Based on this approach, it is highly conceivable that a complete geosynchronous "neighborhood" watch program could be completed within 48 months of initiation.

  16. Global services systems - Space communication

    NASA Technical Reports Server (NTRS)

    Shepphird, F. H.; Wolbers, H. L.

    1979-01-01

    The requirements projected to the year 2000 for space-based global service systems, including both personal communications and innovative services, are developed based on historic trends and anticipated worldwide demographic and economic growth patterns. The growing demands appear to be best satisfied by developing larger, more sophisticated space systems in order to reduce the size, complexity, and expense of ground terminals. The availability of low-cost ground terminals will, in turn, further stimulate the generation of new services and new customers.

  17. CTS United States experiments - A progress report. [Communications Technology Satellite for high power broadcasting

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Donoughe, P. L.

    1976-01-01

    The Communications Technology Satellite (CTS) is a high-power broadcast satellite launched by NASA on January 17, 1976. CTS is the first satellite to operate at a frequency of 12 gigahertz and incorporates technology making possible new satellite telecommunications services. CTS is a cooperative program of the United States and Canada. This paper presents the results of the United States experimental activity to date. Wide segments of the population are involved in the Experiments Program, including the scientific community, other government agencies, industry, and the education and health entities. The experiments are associated with both technological objectives and the demonstration of new community and social services via satellite.

  18. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The market analysis of voice, video, and data 18/30 GHz communications systems services and satellite transmission services is discussed. Detail calculations, computer displays of traffic, survey questionnaires, and detailed service forecasts are presented.

  19. Network design consideration of a satellite-based mobile communications system

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  20. Network design consideration of a satellite-based mobile communications system

    NASA Astrophysics Data System (ADS)

    Yan, T.-Y.

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  1. Polarization Tracking Study of Earth Station in Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ma, Lihua; Hu, Chao; Pei, Jun

    2016-01-01

    Satellite communications, in telecommunications, the use of satellite can provide communications links between various points on the earth. Typical satellite communication is composed of a communication satellite, a signal transmitter and a signal receiver. As the signal transmitter or the signal receiver, an earth station plays a vital role in the satellite communications. Accurately adjustment of antenna azimuth, elevation and polarization angles on the earth station is the key to satellite communications. In the present paper, a study of polarization tracking of earth station is presented, and a detailed adjustment procession of the polarization angle is given. Combing with observation series of MEASAT-2 satellite in geostationary orbit, the polarization tracking accuracy is verified. The method can be embeded into computer program of antenna polarization adjustment in earth station.

  2. Discussion on the progress and future of satellite communication (Japan)

    NASA Technical Reports Server (NTRS)

    Ogata, M.; Mizusawa, H.; Irie, K.

    1985-01-01

    The current status of communications satellite development in Japan is presented. It is shown that beginning with research on satellite communucations in the late 1950's, progress was made in the areas of communications, remote sensing, and technology experimentation. The current status of communication satellites is presented, stressing development in the areas of CFRP construction elements, the use of LSI and MIC circuits, advanced multibeam antenna systems, Ku and Ka band transmission systems, and the shift to small-scale earth stations. Methods for reducing costs and increasing transmission efficiency are shown. The technical specifications of all satellite projects currently under development are given. Users of Japanese communications satellite are presented.

  3. An experiment to enable commercial mobile satellite service

    NASA Astrophysics Data System (ADS)

    Lovell, R. R.; Knouse, G. H.; Weber, W. J.

    A Mobile Satellite Experiment (MSAT-X) is described, based on a planned cooperative U.S./Canadian program. The experiment would establish network architecture, develop system and ground-segment technology, and define the technical characteristics needed to help structure the regulatory/institutional framework needed to enable a first-generation commercial satellite service. A satellite of this type would augment terrestrial systems, both cellular and noncellular, in the thin-route/rural areas of the country where service is either unavailable or inadequate. Applications range from wide-area radio/dispatch (e.g., oil exploration and interstate trucking) to extension of the public mobile telephone service. Market estimates are provided and experiment objectives and requirements are delineated. The requirements are being developed in close coordination with the Department of Communications (DOC) of Canada and with industry and potential-user organizations. The paper closes with a development plan and milestone chart.

  4. An experiment to enable commercial mobile satellite service

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.; Knouse, G. H.; Weber, W. J.

    1982-01-01

    A Mobile Satellite Experiment (MSAT-X) is described, based on a planned cooperative U.S./Canadian program. The experiment would establish network architecture, develop system and ground-segment technology, and define the technical characteristics needed to help structure the regulatory/institutional framework needed to enable a first-generation commercial satellite service. A satellite of this type would augment terrestrial systems, both cellular and noncellular, in the thin-route/rural areas of the country where service is either unavailable or inadequate. Applications range from wide-area radio/dispatch (e.g., oil exploration and interstate trucking) to extension of the public mobile telephone service. Market estimates are provided and experiment objectives and requirements are delineated. The requirements are being developed in close coordination with the Department of Communications (DOC) of Canada and with industry and potential-user organizations. The paper closes with a development plan and milestone chart.

  5. The future of European Communications Satellites

    NASA Astrophysics Data System (ADS)

    Morris, R.

    1984-02-01

    The paper, which is based on the work of a Eurospace Study Group on future prospects, reviews the problems arising from the introduction of new technologies in the industrial process of developing and manufacturing communications satellites, covering the topics of engineering, manufacturing, integration and test, and in-space management. It continues by considering the commerical and industrial problems encountered by European manufacturers, and the contractual and legal problems arising from the change of customer base, from ESA to user organizations, and from the political problems which stem from cross-border transmission of TV broadcasting and data transfer. It then considers the marketing problems of the spacecraft manufacturer - his remoteness from the end-user of telecommunications circuits, the competition from new technology in conventional communications, and the intense competition from U.S. competitors, who have the advantage of both military and domestic and international civil programs on which to develop technology. It concludes with a brief review of current and future spacecraft developments by British Aerospace, and some possible communications satellite configurations for the 1990's.

  6. A New Era Begins: Satellite Communications and Development.

    ERIC Educational Resources Information Center

    Pelton, Joseph N.

    This overview of changes in the field of telecommunications development produced by satellite communications over the last 15 years focuses on applications of satellite systems for educational and health purposes in developing countries. Satellite communications development from 1974 to 1986 is identified as the first stage of telecommunications…

  7. Feasibility of NASA TT&C via Commercial Satellite Services

    NASA Technical Reports Server (NTRS)

    Mitchell, Carl W.; Weiss, Roland

    1997-01-01

    This report presents the results of a study to identify impact and driving requirements by implementing commercial satellite communications service into traditional National Aeronautics and Space Administration (NASA) space-ground communications. The NASA communication system is used to relay spacecraft and instrument commands, telemetry and science data. NASA's goal is to lower the cost of operation and increase the flexibility of spacecraft operations. Use of a commercial network offers the opportunity to contact a spacecraft on a nearly "on-demand" basis with ordinary phone calls to enable real time interaction with science events.

  8. Personal communications via hybrid Ka- and L-band satellites

    NASA Astrophysics Data System (ADS)

    Fang, R. J. F.; Haschart, D.

    1992-03-01

    For satellites with very small footprint coverages, satellite antenna pointing accuracy for stationkeeping is small and difficult to realize in GEO satellite design. In the case of personal (hand-held) or mobile communications, traffic handoff can be used to obviate the satellite-pointing requirement whenever the hand-held units are covered by other beams despite satellite antenna-pointing inaccuracies of a beamwidth or more. By these means, satellite stationkeeping can be rendered simpler and less fuel-consuming.

  9. Traffic model for advanced satellite designs and experiments for ISDN services

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The data base structure and fields for categorizing and storing Integrated Services Digital Network (ISDN) user characteristics is outlined. This traffic model data base will be used to exercise models of the ISDN Advanced Communication Satellite to determine design parameters and performance for the NASA Satellite Communications Applications Research (SCAR) Program.

  10. Satellite Communications with NRAO Green Bank Antennas

    NASA Astrophysics Data System (ADS)

    Ford, John M.; Ford, H. Alyson; Watts, Galen

    2014-11-01

    The National Radio Astronomy Observatory's Green Bank facility has several medium and large antennas that are available for satellite communications. The 100 meter Robert C. Byrd Green Bank Telescope (GBT), the largest and most sensitive antenna on site, is capable of receiving signals at frequencies as high as 86 GHz. In addition to the GBT are the fully operational 43 meter, 20 meter, and 13.7 meter antennas, and three mothballed 26 meter antennas. A transmitter could be fitted to any of these antennas for spacecraft uplinks. We discuss the characteristics of these antennas and possible operational models for future planetary science mission support.

  11. An Earth Orbiting Satellite Service and Repair Facility

    NASA Technical Reports Server (NTRS)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  12. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-geostationary mobile-satellite service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS... Stations § 25.142 Licensing provisions for the non-voice, non-geostationary mobile-satellite service. (a... the non-voice, non-geostationary mobile-satellite service shall describe in detail the proposed...

  13. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-geostationary mobile-satellite service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS... Stations § 25.142 Licensing provisions for the non-voice, non-geostationary mobile-satellite service. (a... the non-voice, non-geostationary mobile-satellite service shall describe in detail the proposed...

  14. Apple - Indian experimental geostationary communication satellite

    NASA Astrophysics Data System (ADS)

    Rao, U. R.; Vasagam, R. M.

    Developmental steps, responsibilities, design goals, performance characteristics, and support systems for the ISRO Ariane Passenger Payload Experiment (APPLE) experimental GEO communication satellite are described. The spacecraft underwent structural, thermal, engineering, prototype, and flight qualification tests in India before being shipped to Guyana for launch on the third Ariane test flight. APPLE carries a redundant C-band communication transponder fed by a 900 mm diam parabolic reflector. A 6 GHz uplink and 4 GHz downlink are processed through a diplexer, with the receiver employing a low noise GaAs FET amplifier. In-orbit telemetry is provided by a 4095 MHz beacon with a data rate of 64 bits/sec. Two solar panels supply 210 W of power, while an on-board Ni-Cd storage battery stores 240 Wh for the ascent and during eclipse. Teleconferencing has been successfully performed using the spacecraft link.

  15. The 'INMARSAT' international maritime satellite communication system

    NASA Astrophysics Data System (ADS)

    Atserov, Iu. S.

    1982-12-01

    The history, design, operating characteristics, achievements, and prospects of INMARSAT are discussed. More than 1300 ships are presently equipped to operate within the system, and this number is expected to rise to about 5000 by 1986. The principle of operation involves single coordinating earth stations allocating telephone channels in their zones between other earth stations. The messages reach a common signalling channel with which all ship stations keep in touch. The ship stations are connected to the international telex network. The INMARSAT system enables ships in the automated mode of operation to establish telephone and telegraph comunication with any subscriber on the shore of any country. The quality of the communication is practically independent of the distance between ship and shore at any time of year and under any meteorological conditions. Estimates indicate that the use of satellite communication with ships reduces losses from accidents by 10 percent per year.

  16. Comparison of INMARSAT and ATS3 satellite communication

    SciTech Connect

    Not Available

    1993-03-29

    There exists a need to provide communication through a satellite- based network which allows a user to communicate from a remote site to a fixed site. This discussion provides a comparison, both technical and financial, between the existing ATS3 satellite system and the commercial INMARSAT system. This comparison identified the limitations of each system to provide various types of communication.

  17. The communication-satellite market to the year 2000

    NASA Astrophysics Data System (ADS)

    van Duinen, R. J.

    1984-10-01

    The developmental history of communication satellites (CSs) is traced; the demands placed on industry by the increasing sophistication of CS payloads, the need to adapt the CS to different launchers (STS or Ariane), and the requirement of longer service life are reviewed; and the evolution of the markets for fixed (telephone, telex, and facsimile), video, business, and broadcasting service is projected over the period 1980-2000 and illustrated with tables and graphs. It is predicted that the worldwide market, expressed in terms of the demand for 36-Mhz transponders, will increase from 426 in 1980 to 1410 in 1985, 3100 in 1990, 5580 in 1995, and 9870 in 2000, with the main increase in transponders for voice communications. The potential for Netherlands participation in the growth of the CS market is evaluated, and the need for government leadership and for active promotion efforts is stressed.

  18. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  19. Domestic satellite communication system to be established in China

    NASA Astrophysics Data System (ADS)

    Ruhou, Z.; Yucheng, B.

    1984-01-01

    The establishment of a domestic satellite communication system for China is discussed. To experiment, China built miniaturized ground stations and used the idle transponders of two INTELSAT satellites. The experiment was divided into three phases: verification and test of ground facilities; test of channel operations; and functional test of the Chinese built ground facilities. From a technical and economic point of view, developing China's domestic satellite communication system by leasing foreign satellites and building China's own ground stations is both efficient and effective.

  20. The northern Utah satellite (NUSAT) communications link

    NASA Technical Reports Server (NTRS)

    Barrett, L.

    1986-01-01

    During the planning stages of the NUSAT satellite, an obvious issue to be discussed was the method of communications to be used. The frequencies would have to be high enough to pass through the atmosphere relatively unattenuated but low enough that antennas and transmission lines would not be so critical in length and properties that unexperienced students would have difficulty with handling them. The frequencies of 450.000 MHz and 137.900 MHz were decided upon and applied for licensing. Representatives of the amateur radio satellite organization, AMSAT, were contacted for ideas. This organization seems to favor AM types of emissions such as CW to control their OSCAR series of satellites and also the current Phase 3 unit. NUSAT personnel felt, however, that there would be merit in the improved signal to noise ratio usually obtained in an FM mode. Doppler shift of the transmitted information on the NUSAT also had to be considered. The final decision was to use Audio Frequency Shift Keying (ASKF) modulated on an FM carrier. In this mode audio tones used would not shift frequency with Doppler.

  1. Communications technology satellite: United States experiments and disaster communications applications

    NASA Technical Reports Server (NTRS)

    Donoughe, P.; Hunczak, H. R.; Gurski, G. S.

    1978-01-01

    Ground antennas from 0.6 to 5.0 meters in diameter were used as remote earth terminals by the United States for both wideband (television) and narrowband (voice, data) communication in conjunction with the Canadian Hermes satellite's high power transmitter. Experiments summarized cover teleconferencing and duplex videoconferencing for medical, educational, and civic purposes, as well as the remote interpretation of multilingual broadcasts from the United Nations. The capabilities of the system during real and simulated disasters at airports are assessed. Particular attention is given to miniexperiments for flood control in the Mississippi River basin and in Johnstown, Pennsylvania during the 1977 flood.

  2. Customer Service/Telephone Communications.

    ERIC Educational Resources Information Center

    Fletcher, Karen

    This document is the facilitator's edition of a curriculum designed to be presented as a four-session workshop for customer service and credit department employees of a manufacturing company. It was developed by educators from the Emily Griffith Opportunity School. The workshop is designed around a basic communication model incorporating the three…

  3. Presentations of the Ninth Advanced Communications Technology Satellite Propagation Studies Workshop (APSW IX)

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The Advanced Communications Technology Satellite Propagation Studies Workshop (APSW) is convened each year to present the results of the ACTS Propagation Campaign. Representatives from the satellite communications (satcom) industry, academia, and government are invited to APSW for discussions and exchange of information. The ACTS Propagation campaign is completing three years of Ka-Band data collection at seven sites in North America. Through this effort, NASA is making a major contribution to growth of satcom services by providing timely propagation data and models for predicting the performance of Ka-Band satellite communications systems.

  4. NASA to launch second business communications satellite

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  5. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Buyukdura, O. M.; Mount-Campbell, C. A.

    1986-01-01

    Observed solution times were analyzed for the extended gradient and cyclic coordinate search procedures. The times used in the analysis come from computer runs made during a previously-reported experiment conducted to assess the quality of the solutions to a BSS synthesis problem found by the two search methods. The results of a second experiment with a Fixed Satellite Service (FSS) test problem are also presented. Computational results are summarized for mixed integer programming approaches for solving FSS synthesis problems. A promising heuristic algorithm is described. A synthesis model is discussed for orbital arc allotment optimization. Research plans for the near future are also presented.

  6. Payload system tradeoffs for mobile communications satellites

    NASA Technical Reports Server (NTRS)

    Moody, H. J.

    1990-01-01

    System level trade-offs carried out during Mobile Satellite (M-SAT) design activities are described. These trade-offs relate to the use of low level beam forming, flexible power and spectrum distribution, and selection of the number of beams to cover the service area. It is shown that antenna performance can be improved by sharing horns between beams using a low level beam forming network (BFN). Additionally, greatly increased power utilization is possible using a hybrid matrix concept to share power between beams.

  7. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    NASA Technical Reports Server (NTRS)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  8. On-board processing concepts for future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Brandon, W. T. (editor); White, B. E. (editor)

    1980-01-01

    The initial definition of on-board processing for an advanced satellite communications system to service domestic markets in the 1990's is discussed. An exemplar system with both RF on-board switching and demodulation/remodulation baseband processing is used to identify important issues related to system implementation, cost, and technology development. Analyses of spectrum-efficient modulation, coding, and system control techniques are summarized. Implementations for an RF switch and baseband processor are described. Among the major conclusions listed is the need for high gain satellites capable of handling tens of simultaneous beams for the efficient reuse of the 2.5 GHz 30/20 frequency band. Several scanning beams are recommended in addition to the fixed beams. Low power solid state 20 GHz GaAs FET power amplifiers in the 5W range and a general purpose digital baseband processor with gigahertz logic speeds and megabits of memory are also recommended.

  9. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in Mobile-Satellite Service...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25... signals from MSS space-stations. (b) Applicants for an ancillary terrestrial component shall demonstrate... organized efforts of international coordination. (c) Equipment certification. (1) Each ATC mobile...

  10. Communications satellite systems operations with the space station. Volume 3: Supplementary technical report

    NASA Technical Reports Server (NTRS)

    Price, K. M.; Russell, P.; Weyandt, C.

    1988-01-01

    The NASA space station has the potential to provide significant economic benefits to commercial communications satellite operators. The initial reports qunatified the benefits of space-based activities and assessed the impacts on the satellite design and the space station. Results are given for the following additional tasks: quantify the value of satellite retrievability operations and define its operational aspects; evaluate the use of expendable launch vehicles for transportation of satellites from the Earth to the space station; and quantify the economic value of modular satellites that are assembled and serviced in space.

  11. Satellite Communications Technology Database. Part 2

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Satellite Communications Technology Database is a compilation of data on state-of-the-art Ka-band technologies current as of January 2000. Most U.S. organizations have not published much of their Ka-band technology data, and so the great majority of this data is drawn largely from Japanese, European, and Canadian publications and Web sites. The data covers antennas, high power amplifiers, low noise amplifiers, MMIC devices, microwave/IF switch matrices, SAW devices, ASIC devices, power and data storage. The data herein is raw, and is often presented simply as the download of a table or figure from a site, showing specified technical characteristics, with no further explanation.

  12. ECS maritime communications satellite - The Marecs spacecraft

    NASA Astrophysics Data System (ADS)

    Morris, R.

    1981-05-01

    Consideration is given to the Marecs spacecraft, noting that the communications system operates to and from ships on the L-band at 1500 MHz and to earth stations in the 4/6 GHz frequency range. The payload includes microwave integrated circuits using thin-film technology for units operating over 500 MHz. To increase antenna gain towards the edge of coverage, passive phase-shaping is used by the L-band antenna. The three ocean regions are thus covered with three satellites. The platform is a modular construction and is three-axis stabilized, employing data from IR earth-sensors to manipulate a one degree of freedom system. The solar array has two 3-panel wings and requires 760 watts of dc power.

  13. SAW based systems for mobile communications satellites

    NASA Technical Reports Server (NTRS)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  14. Mass and power modeling of communication satellites

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Pidgeon, David; Tsao, Alex

    1991-01-01

    Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices.

  15. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... InfraRed Observational Satellite) series of experimental spacecraft; much of the imagery gathered by... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  16. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... InfraRed Observational Satellite) series of experimental spacecraft; much of the imagery gathered by... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  17. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... InfraRed Observational Satellite) series of experimental spacecraft; much of the imagery gathered by... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  18. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... InfraRed Observational Satellite) series of experimental spacecraft; much of the imagery gathered by... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  19. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... InfraRed Observational Satellite) series of experimental spacecraft; much of the imagery gathered by... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  20. A digital simulation of message traffic for natural disaster warning communications satellite

    NASA Technical Reports Server (NTRS)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  1. Satellite communications systems and technology. Volume 2; Site Reports

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I.; Pelton, Joseph N.; Bostian, Carles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert K.; Mahle, Christoph E.; Miller, Edward F.; Riley, Lance

    1993-01-01

    Volume 2 of the final report of the NASA/NSF Panel on Satellite Communications Systems and Technology is presented. It consists of the site reports from the panel's visits to satellite communications facilities and laboratories in Europe, Japan, and Russia.

  2. Man-Made Moons: Satellite Communications for Schools.

    ERIC Educational Resources Information Center

    Grayson, Lawrence P.; And Others

    In an effort to prepare teachers for the coming changes in education caused by the rapidly developing communication satellite technology, this monograph offers a non-technical background to this new development. It begins by explaining the importance of such satellites and offers a layman's guide to the technology of satellite systems. It reviews…

  3. Beyond ATS-6: Social Uses of Communications Satellites.

    ERIC Educational Resources Information Center

    Cater, Douglass

    A panel discussion was held to examine the efficacy of the Applications Technology Satellites, powerful communication satellites designed to send quality signals to low-cost ground terminals. The satellites have been used on an experimental basis in rural America, Canada, and India. While the panel generally agreed on the great potential of the…

  4. Improving MILSATCOM (Military Satellite Communication) acquisition outcomes: Lease versus buy

    NASA Astrophysics Data System (ADS)

    Dinneen, P. M.; Quinn, T. H.

    1985-01-01

    This study was requested by the Director of Space Systems and Command, Control, and Communications, Office of the Deputy Chief of Staff (Research, Development, and Acquisition), Headquarters United States Air Force, to assist in improving the outcomes of military satellite communication (MILSATCOM) programs. In view of rapidly rising costs of military space systems, leasing has been suggested as one way of controlling these costs. The purpose of this study, therefore, was to identify and analyze the central considerations relevant to determining whether to lease or by MILSATCOM services. The results of this report should be of interest to members of MILSATCOM acquisition community and others concerned with making lease versus buy decisions in the public sector. The work was conducted under the MILSATCOM Acquisition Policy project of the Project Air Force Resource Management Program.

  5. ICDSC-7; Proceedings of the Seventh International Conference on Digital Satellite Communications, Munich, West Germany, May 12-16, 1986

    NASA Astrophysics Data System (ADS)

    Werner, Roland

    Recent advances in satellite-communication technology are discussed in reviews and reports, with an emphasis on European developments. Topics examined include digital sound broadcasting, LRE/DSI systems, the DFS Kopernikus system, onboard systems, 120-Mb/s TDMA hardware, network control, and satellites for integrated-service digital networks. Consideration is given to video and speech coding, modulation and coding, packet communication protocols, error correction and coding, cost-benefit analysis and economic tradeoffs, mobile satellite communication, modulation and transmission, modem technology, and the implementation of digital satellite service.

  6. Personal communications via ACTS satellite HBR transponders

    NASA Technical Reports Server (NTRS)

    Fang, Russell J. F.

    1991-01-01

    The concept of a fully meshed network of briefcase-sized terminals is presented for personal communications over Ka-band satellite transponders. In this concept, undesirable double-hop delays are avoided for voice communications. The bandwidth and power resources of the transponder are efficiently shared by users in a simple demand-assigned manner via code-division multiple access (CDMA). Voice, data, and facsimile are statistically multiplexed at each terminal. In order to minimize terminal costs, frequency-precorrected, and level-preadjusted continuous-wave tones are sent from the central network control station in each beam so that the terminals in each down-link beam can use these pilots as references for antenna acquisition and tracking, as reliable frequency sources, and as indicators of signal fade for up-link power control (ULPC). The potential CDMA 'near-far' problem due to up-link fades is mitigated by using ULPC. Quasi-burst mode transmission is employed to minimize the potential clock and pseudorandom number code synchronization.

  7. A framework for implementing data services in multi-service mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Ali, Mohammed O.; Leung, Victor C. M.; Spolsky, Andrew I.

    1988-01-01

    Mobile satellite systems being planned for introduction in the early 1990s are expected to be invariably of the multi-service type. Mobile Telephone Service (MTS), Mobile Radio Service (MRS), and Mobile Data Service (MDS) are the major classifications used to categorize the many user applications to be supported. The MTS and MRS services encompass circuit-switched voice communication applications, and may be efficiently implemented using a centralized Demand-Assigned Multiple Access (DAMA) scheme. Applications under the MDS category are, on the other hand, message-oriented and expected to vary widely in characteristics; from simplex mode short messaging applications to long duration, full-duplex interactive data communication and large file transfer applications. For some applications under this service category, the conventional circuit-based DAMA scheme may prove highly inefficient due to the long time required to set up and establish communication links relative to the actual message transmission time. It is proposed that by defining a set of basic bearer services to be supported in MDS and optimizing their transmission and access schemes independent of the MTS and MRS services, the MDS applications can be more efficiently integrated into the multi-service design of mobile satellite systems.

  8. Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.

    1992-01-01

    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.

  9. Suitability of ANSI standards for quantifying communication satellite system performance

    NASA Technical Reports Server (NTRS)

    Cass, Robert D.

    1988-01-01

    A study on the application of American National Standards X3.102 and X3.141 to various classes of communication satellite systems from the simple analog bent-pipe to NASA's Advanced Communications Technology Satellite (ACTS) is discussed. These standards are proposed as means for quantifying the end-to-end communication system performance of communication satellite systems. An introductory overview of the two standards are given followed by a review of the characteristics, applications, and advantages of using X3.102 and X3.141 to quantify with a description of the application of these standards to ACTS.

  10. DOC's role in the development of social service satellite delivery systems

    NASA Astrophysics Data System (ADS)

    Jelly, D. H.

    Over the past decade, the Department of Communications (DOC) has been actively involved in fostering the development of telecommunications services for the benefit of the people of Canada through the Hermes and ANIK-B satellite programs. Hermes, an experimental satellite, had been designed to test new spacecraft technology and to function in the 14/12 GHz band. The satellite was developed under a joint program with U.S. NASA. The satellite was launched in January 1976, and performed satisfactorily until late 1979. ANIK-B, primarily a 6/4 GHz satellite for carrying regular Canadian domestic satellite services, was launched in December 1978. Four 14/12 GHz transponders on ANIK-B were leased by DOC to continue programs initiated on Hermes. These programs included service development projects related to broadcasting, education, health-care community communications, and administration.

  11. Emerging commercial opportunities based on combined communication navigation services

    NASA Astrophysics Data System (ADS)

    Gill, Eberhard; Fox, Brian M.; Kreisel, Joerg

    2006-07-01

    Cost reduction pressure on companies and increasing regulatory and legislative demand together with rapid technological progress in space-based communication and navigation are opening up new and exciting commercial opportunities. In this framework, a novel service for maritime applications is presented using a two-way messaging system and the global navigation satellite system (GNSS). The system implements an end-to-end solution for asset tracking and fleet management, positioning and tracing, messaging and security for all types of sea-going vessels. The service applies a vessel-based terminal hosting a GNSS receiver which transmits the navigation status together with messages to a Service Center with a flexible return-link capability. A hybrid space segment is considered comprising the Inmarsat constellation of geostationary communications satellites augmented by two highly inclined low earth orbit satellites for truly global services. Services will be offered to commercial enterprises such as fishing companies as well as public entities such as National Coast Guards. A detailed market analysis has been performed to assess these markets and to determine their penetration. Commercial viability has been proven for business models purely based on Inmarsat and a hybrid space segment using Inmarsat and dedicated micro-satellites. Both cases represent viable businesses in the range of MEUR 100 p.a. Although tailored to a specific market, the approach can be extended to other commercial opportunities requiring space-based communication-navigation services.

  12. Satellite Communications for Aeronautical Applications: Recent research and Development Results

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2001-01-01

    Communications systems have always been a critical element in aviation. Until recently, nearly all communications between the ground and aircraft have been based on analog voice technology. But the future of global aviation requires a more sophisticated "information infrastructure" which not only provides more and better communications, but integrates the key information functions (communications, navigation, and surveillance) into a modern, network-based infrastructure. Satellite communications will play an increasing role in providing information infrastructure solutions for aviation. Developing and adapting satellite communications technologies for aviation use is now receiving increased attention as the urgency to develop information infrastructure solutions grows. The NASA Glenn Research Center is actively involved in research and development activities for aeronautical satellite communications, with a key emphasis on air traffic management communications needs. This paper describes the recent results and status of NASA Glenn's research program.

  13. Rain Fade Compensation Alternatives for Ka Band Communication Satellites

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1997-01-01

    Future satellite communications systems operating in Ka-band frequency band are subject to degradation produced by the troposphere which is much more severe than those found at lower frequency bands. These impairments include signal absorption by rain, clouds and gases, and amplitude scintillation's arising from refractive index irregularities. For example, rain attenuation at 20 GHz is almost three times that at 11 GHz. Although some of these impairments can be overcome by oversizing the ground station antennas and high power amplifiers, the current trend is using small (less than 20 inches apertures), low-cost ground stations (less than $1000) that can be easily deployed at user premises. As a consequence, most Ka-band systems are expected to employ different forms of fade mitigation that can be implemented relatively easily and at modest cost. The rain fade mitigation approaches are defined by three types of Ka-band communications systems - a low service rate (less than 1.5 Mb/s), a moderate service rate (1.5 to 6 Mb/s) system and a high service rate (greater than 43 Mb/s) system. The ACTS VSAT network, which includes an adaptive rain fade technique, is an example of a moderate service rate.

  14. A robust signalling system for land mobile satellite services

    NASA Technical Reports Server (NTRS)

    Irish, Dale; Shmith, Gary; Hart, Nick; Wines, Marie

    1989-01-01

    Presented here is a signalling system optimized to ensure expedient call set-up for satellite telephony services in a land mobile environment. In a land mobile environment, the satellite to mobile link is subject to impairments from multipath and shadowing phenomena, which result in signal amplitude and phase variations. Multipath, caused by signal scattering and reflections, results in sufficient link margin to compensate for these variations. Direct signal attenuation caused by shadowing due to buildings and vegetation may result in attenuation values in excess of 10 dB and commonly up to 20 dB. It is not practical to provide a link with sufficient margin to enable communication when the signal is blocked. When a moving vehicle passes these obstacles, the link will experience rapid changes in signal strength due to shadowing. Using statistical models of attenuation as a function of distance travelled, a communication strategy has been defined for the land mobile environment.

  15. Towards an empirical measure of spacecraft innovation: The case of communication satellites

    NASA Astrophysics Data System (ADS)

    Szajnfarber, Zoe; Weigel, Annalisa L.

    2010-04-01

    This paper seeks to frame the discussion of innovation in the space sector and creates a platform for future analysis. To accomplish this, it addressed three aspects of the task of measurement. First, it surveys several distinct literatures to establish precedence for defining a spacecraft innovation metric. Second, the conceptual trade-offs associated with adopting this principle in the context of communication satellites are elucidated and treated. By defining product boundaries along the dimensions of product scope and market transactions, three paradigms for measurement are proposed; namely: (1) the communication satellite enterprise; (2) the physical satellite; and (3) communication service. Third, under the constraints of historical data collection realities, next-best estimators are put forward as proxies for the parameters required to implement the proposed metrics. Based on these proxies, the relative merits of each measurement paradigm are illustrated through an analysis of the innovation history of communication satellites.

  16. On-board processing for future satellite communications systems: Satellite-Routed FDMA

    NASA Technical Reports Server (NTRS)

    Berk, G.; Christopher, P. F.; Hoffman, M.; Jean, P. N.; Rotholz, E.; White, B. E.

    1981-01-01

    A frequency division multiple access (FDMA) 30/20 GHz satellite communications architecture without on-board baseband processing is investigated. Conceptual system designs are suggested for domestic traffic models totaling 4 Gb/s of customer premises service (CPS) traffic and 6 Gb/s of trunking traffic. Emphasis is given to the CPS portion of the system which includes thousands of earth terminals with digital traffic ranging from a single 64 kb/s voice channel to hundreds of channels of voice, data, and video with an aggregate data rate of 33 Mb/s. A unique regional design concept that effectively smooths the non-uniform traffic distribution and greatly simplifies the satellite design is employed. The satellite antenna system forms thirty-two 0.33 deg beam on both the uplinks and the downlinks in one design. In another design matched to a traffic model with more dispersed users, there are twenty-four 0.33 deg beams and twenty-one 0.7 deg beams. Detailed system design techniques show that a single satellite producing approximately 5 kW of dc power is capable of handling at least 75% of the postulated traffic. A detailed cost model of the ground segment and estimated system costs based on current information from manufacturers are presented.

  17. On-board processing for future satellite communications systems: Satellite-Routed FDMA

    NASA Astrophysics Data System (ADS)

    Berk, G.; Christopher, P. F.; Hoffman, M.; Jean, P. N.; Rotholz, E.; White, B. E.

    1981-05-01

    A frequency division multiple access (FDMA) 30/20 GHz satellite communications architecture without on-board baseband processing is investigated. Conceptual system designs are suggested for domestic traffic models totaling 4 Gb/s of customer premises service (CPS) traffic and 6 Gb/s of trunking traffic. Emphasis is given to the CPS portion of the system which includes thousands of earth terminals with digital traffic ranging from a single 64 kb/s voice channel to hundreds of channels of voice, data, and video with an aggregate data rate of 33 Mb/s. A unique regional design concept that effectively smooths the non-uniform traffic distribution and greatly simplifies the satellite design is employed. The satellite antenna system forms thirty-two 0.33 deg beam on both the uplinks and the downlinks in one design. In another design matched to a traffic model with more dispersed users, there are twenty-four 0.33 deg beams and twenty-one 0.7 deg beams. Detailed system design techniques show that a single satellite producing approximately 5 kW of dc power is capable of handling at least 75% of the postulated traffic. A detailed cost model of the ground segment and estimated system costs based on current information from manufacturers are presented.

  18. Low cost satellite land mobile service for nationwide applications

    NASA Technical Reports Server (NTRS)

    Weiss, J. A.

    1978-01-01

    A satellite land mobile system using mobile radios in the UHF band, and Ku-band Communications Routing Terminals (earth stations) for a nationwide connection from any mobile location to any fixed or mobile location, and from any fixed location to any mobile location is proposed. The proposed nationwide satellite land mobile service provides: telephone network quality (1 out of 100 blockage) service, complete privacy for all the users, operation similar to the telephone network, alternatives for data services up to 32 Kbps data rates, and a cost effective and practical mobile radio compatible with system sizes ranging from 10,000 to 1,000,000 users. Seven satellite alternatives (ranging from 30 ft diameter dual beam antenna to 210 ft diameter 77 beam antenna) along with mobile radios having a sensitivity figure of merit (G/T) of -15 dB/deg K are considered. Optimized mobile radio user costs are presented as a function of the number of users with the satellite and mobile radio alternatives as system parameters.

  19. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations in the maritime mobile-satellite service. 80.333 Section 80.333 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures...

  20. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations in the maritime mobile-satellite service. 80.333 Section 80.333 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures...

  1. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations in the maritime mobile-satellite service. 80.333 Section 80.333 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures...

  2. Cockpit weather graphics using mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  3. An electro-optical communications satellite transponder

    NASA Astrophysics Data System (ADS)

    Goldman, A. M., Jr.

    The design concept of an electrooptical transponder for communications satellites operating in C-band or Ku-band is presented. A system comprising 12 single-polarization transponders 36-MHz wide is illustrated with a block diagram. The RF carrier uplink signal passes through a low-noise GaAs FET amplifier and is translated to the downlink RF frequency by a mixer and local oscillator; this signal then serves as a subcarrier to intensity modulate an 850-nm GaAlAs semiconductor laser, and the optical signal is optically switched via fiber, demodulated by pin diode or avalanche photodiode, and passed through a GaAs FET preamplifier and amplifier for downlink transmission. Both prefiber and postfiber component groups can be integrated onto monolithic electrooptical chips operating at very low power. Additional features and design options are discussed; the frequency variation involved (12 decades) is illustrated; and the optical switching speed is shown to be noncritical in present TDMA, SS/TDMA, or FDMA configurations.

  4. Cockpit weather graphics using mobile satellite communications

    NASA Astrophysics Data System (ADS)

    Seth, Shashi

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  5. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  6. Design and analysis of the satellite laser communications network

    NASA Astrophysics Data System (ADS)

    Ren, Pei-an; Qian, Fengchen; Liu, Qiang; Jin, Linlin

    2015-02-01

    A satellite laser communications network structure with two layers and multiple domains has been proposed, which performance has been simulated by OPENT. To simulation, we design several OPNET models of the network's components based on a satellite constellation with two layers and multiple domains, as network model, node model, MAC layer protocol and optical antenna model. The network model consists of core layer and access layer. The core network consists of four geostationary orbit (GEO) satellites which are uniformly distributed in the geostationary orbit. The access network consists of 6 low Earth orbit (LEO) satellites which is the walker delta (walk-?) constellation with three orbit planes. In access layer, each plane has two satellites, and the constellation is stably. The satellite constellation presented for space laser network can meet the demand of coverage in the middle and low latitude by a few satellites. Also several terminal device models such as the space laser transmitter, receiver, protocol layer module and optical antenna have been designed according to the inter-satellite links in different orbits t from GEO to LEO or GEO to ground. The influence to network of different transmitting throughput, receiving throughput, network protocol and average time delay are simulated. Simulation results of network coverage, connectivity and traffic load performance in different scenes show that the satellite laser network presented by the paper can be fit for high-speed satellite communications. Such analysis can provide effective reference for the research of satellite laser networking and communication protocol.

  7. 622 Mbps High-speed satellite communication system for WINDS

    NASA Astrophysics Data System (ADS)

    Ogawa, Yasuo; Hashimoto, Yukio; Yoshimura, Naoko; Suzuki, Ryutaro; Gedney, Richard T.; Dollard, Mike

    2006-07-01

    WINDS is the experimental communications satellite currently under joint development by Japanese Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). The high-speed satellite communication system is very effective for quick deployment of high-speed networks economically. The WINDS will realize ultra high-speed networking and demonstrate operability of satellite communication systems in high-speed internet. NICT is now developing high-speed satellite communication system for WINDS. High-speed TDMA burst modem with high performance TPC error correction is underdevelopment. Up to the DAC on the transmitter and from the ADC on the receiver, all modem functions are performed in the digital processing technology. Burst modem has been designed for a user data rate up to 1244 Mbps. NICT is developing the digital terminal as a user interface and a network controller for this earth station. High compatibility with the Internet will be provided.

  8. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Walton, Eric K.; Kohnhorst, Paul

    1987-01-01

    A procedure is described that was used to calculate minimum required satellite separations based on total link carrier to interference requirements. Also summarized are recent results with a switching algorithm for satellite synthesis problems. Analytic solution value bounds for two of the satellite synthesis models studied are described. Preliminary results from an empirical study of alternate mixed integer programming models for satellite synthesis are presented. Research plans for the near future are discussed.

  9. Spacecraft IF switch matrix for wideband service applications in 30/20 GHz communications satellite systems: Proof-of-concept model, executive summary

    NASA Technical Reports Server (NTRS)

    Ho, P. T.; Coban, E.; Pelose, J.

    1983-01-01

    The design and development of a unique coupler crossbar 20 x 20 microwave switch matrix are described. The test results of the proof of concept model that meets the requirements for a high speed satellite switched, time division multiple access (SS-TDMA) system are presented.

  10. Ultra high frequency follow-on communications satellite system

    NASA Astrophysics Data System (ADS)

    Hassien, Michael J.

    1992-03-01

    The existing constellation of UHF communications satellites (LEASAT and FLTSAT) provide key command and control links for mobile forces of the DoD and other government agencies. The UHF Follow-On satellite program will provide for a new generation of communications satellites to replace the existing ones as they reach the end of their life cycle beginning in 1992. Continued coverage is required for both peacetime and crisis environments, and must be maintained indefinitely. An eight-satellite UFO constellation (two per coverage area) will replenish the existing FLTSATCOM constellation.

  11. Satellite communications application to Pacific countries above Ku band

    NASA Technical Reports Server (NTRS)

    Iida, Takashi

    1992-01-01

    An application of satellite communications above the Ku band to the Pacific region is described, focusing on: (1) Lightsat system and (2) a high capacity satellite system. A small geostationary satellite system using Ku band for the Federated States of Micronesia is shown as an example. A concept of multi-gigabits/second high capacity communications system using two satellites in the Ka band is described. The onboard bit-by-bit processing is very useful in the low link margin environment due to rain attenuation. These topics were obtained by the Asia Pacific Telecommunications Study granted by NASA conducted by the University of Colorado at Boulder.

  12. A satellite system for land-mobile communications in Europe

    NASA Technical Reports Server (NTRS)

    Bartholome, P.; Rogard, R.

    1988-01-01

    There exists a great unsatisified demand for land mobile communications in Europe, particularly in sectors of business activity such as the road transport industry. This demand could best be satisfied by means of satellite-based private networks providing voice and data communications in a hub configuration. The potential market is estimated to encompass several hundred thousand road vehicles and the transmission capacity required would be several thousand channels. ESA is currently demonstrating the potential of satellite communications for this type of application, using a system called PRODAT. System studies are being performed with the aim of defining the architecture of a regional satellite system for Europe.

  13. Personal communications services: Improving theater deployable communications for the 21st century

    NASA Astrophysics Data System (ADS)

    Cournoyer, Ronald C., Jr.

    1994-06-01

    Personal Communications Services (PCS) may be the key ingredient for vastly improved military communications capabilities at the turn of the century. The Federal Communications Commission (FCC) defines PCS as a family of mobile or portable radio communications services which could provide services to individuals and businesses and be integrated with a variety of competing networks ... the primary focus of PCS will be to meet communications requirements of people on the move. Today's generation of Theater Deployable Communications, which provides joint tactical communications to deployed forces, is the Tri-Service Tactical Communications (TRI-TAC) system. A description of TRITAC's family of equipment, network topology, typical employment, and critical limitations is presented in this thesis. Five commercial Mobile Satellite Services (MSS) are described as viable candidates for augmenting existing communications systems. Cellular design principles such as frequency reuse, cell splitting, channel access methods, and propagation factors are also addressed. Finally, a framework for comparison of the candidate MSS systems is proposed as a baseline for further studies into the most beneficial implementation of PCS into theater deployable communications systems for the future.

  14. Beyond the Ionosphere: Fifty Years of Satellite Communication

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J. (Editor)

    1997-01-01

    The three overlapping stages of satellite communications development outlined provide the three-part framework for the organization of the papers contained in this book. Part 1, 'Passive Origins,' treats the first stage of satellite communications development, extending from the 1940s into the early 1960s, when passive artificial and natural satellites funded by the military and private enterprise established the field. Part 2, 'Creating the Global, Regional, and National Systems,' addresses events that constituted the second stage of development. Early in this stage, which stretched from the 1960s into the 1970s, satellite systems began to make their appearance in the United States, while domestic and international efforts sought to bring order to this new but chaotic, field in the form of Comsat and Intelsat. Part 3, 'The Unfolding of the World System,' explores the development of satellite communications in the remainder of the world, with a strong emphasis on Asia.

  15. Communication satellites to enter a new age of flexibility

    NASA Astrophysics Data System (ADS)

    Balty, Cédric; Gayrard, Jean-Didier; Agnieray, Patrick

    2009-07-01

    To cope with the economical and technical evolutions of the communication market and to better compete with or complement terrestrial networks, satellite operators are requiring more flexible satellites. It allows a better fleet planning potential and back-up policy, a more standardized and efficient procurement process, mission adaptation to market evolution and the possibility of early entry in new markets. New technologies that are developed either for terrestrial networks or for space defense applications would become soon available to satellite and equipment manufacturers. A skilful mix of these new technologies with the older and more mature ones should boost satellite performances and bring flexibility to the new generation of communication satellites. This paper reviews the economical and technical environment of the space communication business for the next decade. It identifies the needs and levels of flexibility that are required by the market but also allowed by technologies, in both a top-down and bottom-up approach.

  16. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Walton, E.; Aebker, E.; Mata, F.; Reilly, C.

    1991-01-01

    The final phase of a satellite synthesis project is described. Several methods for generating satellite positionings with improved aggregate carrier to interference characteristics were studied. Two general methods for modifying required separation values are presented. Also, two methods for improving aggregate carrier to interference (C/I) performance of given satellite synthesis solutions are presented. A perturbation of the World Administrative Radio Conference (WARC) synthesis is presented.

  17. Palapa-B communications satellite launched from the Shuttle Challenger

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Indonesian Palapa-B communications satellite is just about to clear the vertical stabilizer of the shuttle Challenger as it moves into its orbit. Also visible are the shuttle pallet satellite, the experiment package for NASA's Office of Space and Terrestrial Applications (OSTA-2), the now vacated cradles for Palapa and Telsat Canada's Anik C2 satellites, some getaway special (GAS) canisters and the Canadian-built remote manipulator system (RMS) arm.

  18. Estimation Of Interference In Satellite/Ground Communications

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    Relative strengths of desired and interfering signals computed for known orbits. Satellite Interference Analysis and Simulation Using Personal Computers (AKSATINT) computer program calculates interference experienced by generic satellite communications receiving station from interfering satellite. Also computes interference-to-signal-power ratio, taking into account losses suffered by links. Of general use to designers of systems and managers of frequencies in selecting proper frequencies under interference scenarios. Written in BASIC.

  19. The Globalstar satellite cellular communication system design and status

    NASA Astrophysics Data System (ADS)

    Dietrich, Fred J.

    1998-01-01

    The Globalstar cellular communication satellite system is described, including its use of Code Division Multiple Access (CDMA) as the basic modulation scheme. Use of diversity for signal quality, as well as power control, is described. Complex phased arrays on the satellite are also described.

  20. Advanced maritime communications technology ship-to-shore satellite link

    NASA Astrophysics Data System (ADS)

    Drissel, R. J.; Miller, J. T.

    1983-01-01

    This report documents the Satellite Link activities of the Advanced Maritime Communications Technology (AMCT) Joint Research and Development Project. The activities are sponsored by the U.S. Maritime Administration and the Military Sealift Command as part of the Fleet Management Technology Program. The successful design, implementation, and testing of a satellite data link are described in detail.

  1. Estimating Effects Of Rain On Ground/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Manning, R. M.

    1992-01-01

    LeRC-SLAM provides static and dynamic statistical assessment of impact of attenuation by rain on communication link established between Earth terminal and geosynchronous satellite. Program designed for use in specification, design, and assessment of satellite link for any terminal location in continental United States. IBM PC version written in Microsoft QuickBASIC, and Macintosh version written in Microsoft Basic.

  2. Computer-Aided Communication Satellite System Analysis and Optimization.

    ERIC Educational Resources Information Center

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  3. Technology programs and related policies - Impacts on communications satellite business ventures

    NASA Technical Reports Server (NTRS)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  4. A satellite system for multimedia personal communications at Ka-band and beyond

    NASA Technical Reports Server (NTRS)

    Vatalaro, F.; Losquadro, G.

    1995-01-01

    The main characteristics of the satellite extremely high frequency (EHF) communication of multimedia mobile services (SECOMS) system are given and the results of the preliminary analysis are included. The SECOMS provides a first generation Ka band system with coverage over Western Europe, in order to satisfy business user needs of very large bandwidths and terminal mobility. The satellite system also provides a second generation EHF enhanced system with increased capacity and enlarged coverage, to serve all of Europe and the nearby countries.

  5. The optical communication link outage probability in satellite formation flying

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi; Gill, Eberhard

    2014-02-01

    In recent years, several space systems consisting of multiple satellites flying in close formation have been proposed for various purposes such as interferometric synthetic aperture radar measurement (TerraSAR-X and the TanDEM-X), detecting extra-solar earth-like planets (Terrestrial Planet Finder-TPF and Darwin), and demonstrating distributed space systems (DARPA F6 project). Another important purpose, which is the concern of this paper, is for improving radio frequency communication to mobile terrestrial and maritime subscribers. In this case, radio frequency signals from several satellites coherently combine such that the received/transmit signal strength is increased proportionally with the number of satellites in the formation. This increase in signal strength allows to enhance the communication data rate and/or to reduce energy consumption and the antenna size of terrestrial mobile users' equipment. However, a coherent combination of signals without aligning the phases of the individual communication signals interrupts the communication and outage link between the satellites and the user. The accuracy of the phase estimation is a function of the inter-satellite laser ranging system performance. This paper derives an outage probability model of a coherent combination communication system as a function of the pointing vibration and jitter statistics of an inter-satellite laser ranging system tool. The coherent combination probability model, which could be used to improve the communication to mobile subscribers in air, sea and ground is the main importance of this work.

  6. Design and Implementation of a Lunar Communications Satellite and Server for the 2012 SISO Smackdown

    NASA Technical Reports Server (NTRS)

    Bulgatz, Dennis; Heater, Daniel; O'Neal, Daniel A.; Norris, Bryan; Schricker, Bradley C.

    2012-01-01

    Last year, the Simulation Interoperability Standards Organization (SISO) inaugurated the now annual High Level Architecture (HLA) Smackdown at the Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in the High Level Architecture (HLA). The University of Alabama in Huntsville (UAHuntsville) fielded teams in 2011 and 2012. Both the 2011 and 2012 smackdown scenarios were a lunar resupply mission. The 2012 UAHuntsville fielded four federates: a communications network Federate called Lunar Communications and Navigation Satellite Service (LCANServ) for sending and receiving messages, a Lunar Satellite Constellation (LCANSat) to put in place radios needed by the communications network for Line-Of-Sight communication calculations, and 3D graphical displays of the orbiting satellites and a 3D visualization of the lunar surface activities. This paper concentrates on the first two federates by describing the functions, algorithms, the modular FOM, experiences, lessons learned and recommendations for future Smackdown events.

  7. The 18/30 GHz fixed communications system service demand assessment. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for voice, video, and data communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is discussed. Major study objectives, overall methodology, results, and general observations about a satellite systems market characteristics and trends are summarized.

  8. Satellite servicing mission preliminary cost estimation model

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The cost model presented is a preliminary methodology for determining a rough order-of-magnitude cost for implementing a satellite servicing mission. Mission implementation, in this context, encompassess all activities associated with mission design and planning, including both flight and ground crew training and systems integration (payload processing) of servicing hardward with the Shuttle. A basic assumption made in developing this cost model is that a generic set of servicing hardware was developed and flight tested, is inventoried, and is maintained by NASA. This implies that all hardware physical and functional interfaces are well known and therefore recurring CITE testing is not required. The development of the cost model algorithms and examples of their use are discussed.

  9. COMMUNICATION SATELLITES FOR EDUCATION, SCIENCE AND CULTURE. REPORTS AND PAPERS ON MASS COMMUNICATION, NO. 53.

    ERIC Educational Resources Information Center

    SCHRAMM, WILBUR

    THE TECHNOLOGY OF COMMUNICATION SATELLITES IS SUFFICIENTLY ADVANCED THAT CONCERNED AGENCIES, SUCH AS UNESCO, SHOULD BEGIN TO PLAN FOR THEIR USE IN EXCHANGE OF DATA, NEWS TRANSMISSION, CULTURAL EXCHANGE, AND EDUCATION. GROUNDWORK IN TECHNOLOGY, IN THE DESIGN OF A SATELLITE COMMUNICATION SYSTEM, IN VALUE JUDGMENTS, IN AGREEMENTS OF COOPERATION AND…

  10. President's Task Force on Communications Policy. Domestic Applications of Communication Satellite Technology. Staff Paper Four.

    ERIC Educational Resources Information Center

    President's Task Force on Communications Policy, Washington, DC.

    A staff paper to the President's Task Force on Communications Policy examines the feasibility of a domestic communications satellite system. Although, with expected technological advancement, satellites may play a significant role in domestic transmission and are economically feasible right now, a number of remaining questions make the…

  11. A Guide to Satellite Communication. Reports and Papers on Mass Communication Number 66.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    Basic information about the characteristics, uses, and implications of communication satellites is presented. Characteristics covered include the various types of systems--such as point-to-point, distribution, and broadcasting satellites--and the flexibility, capacity, geographical coverage, cost and disadvantages of satellites. The section on…

  12. Satellite services system analysis study. Volume 2, part 2: Study results

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of an effective satellite services system was investigated. Satek Satellite user market, design reference missions, satellite service functions, service equipment, and cost estimates are discussed. Extensive program plans for a satellite service system implementation are included.

  13. Communication satellite technology: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Woodford, J. B. (Compiler)

    1978-01-01

    Opportunities in communication satellite technology are identified and defined. Factors that tend to limit the ready availability of satellite communication to an increasingly wide group of users are evaluated. Current primary limitations on this wide utilization are the availability of frequency and/or synchronous equatorial satellite positions and the cost of individual user Earth terminals. The former could be ameliorated through the reuse of frequencies, the use of higher frequency bands, and the reduction of antenna side lobes. The latter limitation requires innovative hardware, design, careful system design, and large scale production.

  14. Continuation of the compendium of applications technology satellite and communications technology satellite user experiments 1967-1977, volume 2. [bibliography

    NASA Technical Reports Server (NTRS)

    Engler, N. A.; Nash, J. F.; Strange, J. D.

    1978-01-01

    Approximately 453 reports, papers, and articles catalogued into an information retrieval system, covering communications experiments and demonstrations conducted, utilizing the Communications Technology Satellite and the Applications Technology Satellites 1, 3, 5, and 6 are listed.

  15. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  16. Global maritime mobile service via satellite - The INMARSAT system now and in the future

    NASA Astrophysics Data System (ADS)

    Snowball, A. E.

    1986-06-01

    The business and technical aspects of the INMARSAT (International Maritime Satellite Organization) system are reviewed along with its present capabilities and services and future developments now being considered. The initial phase of maritime mobile satellite communications began with the introduction by the U.S. of the Marisat system in 1976, satisfying a commitment made by COMSAT (Communications Satellite Corp.) in 1973 to provide a maritime satellite service. The Marisat Consortium, spun off by COMSAT, launched three satellites in 1973 - one to serve shipping in the Atlantic, one for the Pacific, and the third as a spare; the spare was subsequently positioned over the Indian Ocean so that the three provided almost global coverage. Each satellite was served by a coast earth station with a 13-m antenna; satellite-earth station links operated in the 6 and 4-GHz bands and the ship-satellite links were at 1.5 and 1.6 GHz. Superceding the limited Marisat system, the INMARSAT Organization, established in July 1979 and first in service on Feb. 1, 1982, now provides communications through a system of Marecs, Intelsat-V, and Marisat satellites. With 41 Signatories by mid-1985, the organization consists of an Assembly, a Council, and a Directorate. Services provided include: telephone; facsimile; low-speed data; high-speed data; telex; telegram; distress, urgency and safety communications; shore-to-ship group calls; various information and assistance services. Coast earth stations, ship earth stations, network coordination stations, and the London headquarters and operations control center are described. Future developments will include an expanded capacity network, digital services, and a role in the Future Global Maritime Distress and Safety System that will use radio beacons that will automatically transmit distress messages to land-based emergency centers in the event of a disaster at sea.

  17. Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.

    1997-01-01

    The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.

  18. Mobile satellite communications from highly inclined elliptic orbits

    NASA Astrophysics Data System (ADS)

    Stuart, J. R.; Norbury, J. A.; Barton, S. K.

    This paper is concerned with the feasibility of developing a commercially profitable land mobile satellite system capable of providing two way voice communications throughout Europe. The traditional Geostationary orbit configuration is compared with two highly inclined elliptical non-GEO orbits; the 12 hour Molniya and 24 hour Tundra. Potentials advantages of elliptical orbits, including resistance to signal fade and blockage and simplicity of a zenith pointing antenna, are assessed against the cost and risks of supporting the two or three satellite constellation necessary to provide continuous 24 hour coverage. Other considerations such as AOCS philosophy, injection strategy, radiation environment and satellite handover strategy are also discussed. The relative merits of the different orbit options are compared in terms of technical performance and overall system cost. The paper concludes that customer needs for low cost reliable mobile voice communications in Europe can best be achieved using a set of communications satellites placed in a highly inclined elliptical orbit.

  19. Application of advanced on-board processing concepts to future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.

    1979-01-01

    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.

  20. Future large broadband switched satellite communications networks

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Harvey, R. R.

    1979-01-01

    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.

  1. Global disaster satellite communications system for disaster assessment and relief coordination

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1979-01-01

    Global communication requirements for disaster assistance are analyzed in the light of operationally feasible satellite system concepts and associated system parameters. Present and planned commercially available systems are considered, together with an assessment of the associated global disaster communication yearly service costs. It is concluded that a likely number of transportable terminals required for long distance relief communications activities would be less than 10, with the transportation costs not expected to exceed 25% of the annual systems' cost. Consequently, no sound economic justification is seen for ground terminal development for the global disaster communications system.

  2. EHF (28/19 GHz) personal communications satellite terminal development

    NASA Technical Reports Server (NTRS)

    Pike, Corey

    1991-01-01

    The concept of communicating on a personal basis using a small terminal has been investigated globally from many different applications and technology perspectives. Applications range from terrestrial handheld communicators for paging, cellular, zone voice/data networks, etc., to satellite terminals of pocket dimensions for voice/low speed data or similar terminals using larger antennas for VSAT, news gathering (30 cm), and video (1.2 m). A brief status of some developments in the satellite personal communications at CRC will be presented.

  3. Secure satellite communication using multi-photon tolerant quantum communication protocol

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Punekar, Nikhil; Verma, Pramode K.

    2015-09-01

    This paper proposes and analyzes the potential of a multi-photon tolerant quantum communication protocol to secure satellite communication. For securing satellite communication, quantum cryptography is the only known unconditionally secure method. A number of recent experiments have shown feasibility of satellite-aided global quantum key distribution (QKD) using different methods such as: Use of entangled photon pairs, decoy state methods, and entanglement swapping. The use of single photon in these methods restricts the distance and speed over which quantum cryptography can be applied. Contemporary quantum cryptography protocols like the BB84 and its variants suffer from the limitation of reaching the distances of only Low Earth Orbit (LEO) at the data rates of few kilobits per second. This makes it impossible to develop a general satellite-based secure global communication network using the existing protocols. The method proposed in this paper allows secure communication at the heights of the Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites. The benefits of the proposed method are two-fold: First it enables the realization of a secure global communication network based on satellites and second it provides unconditional security for satellite networks at GEO heights. The multi-photon approach discussed in this paper ameliorates the distance and speed issues associated with quantum cryptography through the use of contemporary laser communication (lasercom) devices. This approach can be seen as a step ahead towards global quantum communication.

  4. Advanced Technologies and Satellite Services for Enhancing Space Surveillance

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Space-based systems are becoming part of our infrastructure and our dependency on space-based services has grown. Therefore, the assured availability and operational readiness of space-based services is essential, undoubtedly. However, satellites are subject to a variety of damaging effects and potential threats. These are mostly caused by an increasingly crowded region of outer space, by space weather including solar events and, unfortunately, even attacks on space systems which are no longer sience fiction as impressively demonstrated in 2007 with the Chinese anti-satellite test and the intercept of USA-193 in 2008. Today, German armed forces use several space services primarily for reconnaissance, communications and navigation. As a matter of fact, Germany`s sovereignty and national security depend on the availability of multiple space services. This led the Federal Ministry of Defence to set up a dedicated military Space Situational Awareness Centre at Kalkar/Uedem, Germany, as a significant contribution to a national preventive security. This paper provides information on a range of technical issues related to space assets that are important for anyone involved in the debate over space security and gives a brief survey of the German SSA program. The paper deals with a subset of feasible man-made threats and its fatal effects on space assets. Furthermore, the preliminary conceptual design of an onboard sensor suitable for the instant detection of the previously described types of threats is presented. Finally, advanced technologies for the near real-time transfer of data are highlighted.

  5. Aeronautical mobile satellite service: Air traffic control applications

    NASA Astrophysics Data System (ADS)

    Sim, Dave

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  6. Aeronautical mobile satellite service: Air traffic control applications

    NASA Technical Reports Server (NTRS)

    Sim, Dave

    1990-01-01

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  7. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  8. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    NASA Technical Reports Server (NTRS)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  9. A satellite-based personal communication system for the 21st century

    NASA Technical Reports Server (NTRS)

    Sue, Miles K.; Dessouky, Khaled; Levitt, Barry; Rafferty, William

    1990-01-01

    Interest in personal communications (PCOMM) has been stimulated by recent developments in satellite and terrestrial mobile communications. A personal access satellite system (PASS) concept was developed at the Jet Propulsion Laboratory (JPL) which has many attractive user features, including service diversity and a handheld terminal. Significant technical challenges addressed in formulating the PASS space and ground segments are discussed. PASS system concept and basic design features, high risk enabling technologies, an optimized multiple access scheme, alternative antenna coverage concepts, the use of non-geostationary orbits, user terminal radiation constraints, and user terminal frequency reference are covered.

  10. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  11. 76 FR 50425 - Service Rules and Policies for the Broadcasting Satellite Service (BSS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... COMMISSION 47 CFR Part 25 Service Rules and Policies for the Broadcasting Satellite Service (BSS) AGENCY...-Satellite Service (BSS) space-to-Earth transmissions and the feeder link receiving antennas of Direct Broadcast Satellite Service (DBS) space stations that operate in the same frequency band. We adopt an...

  12. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS... Stations § 25.149 Application requirements for ancillary terrestrial components in the...

  13. Service Learning's Foothold in Communication Scholarship.

    ERIC Educational Resources Information Center

    Panici, Daniel; Lasky, Kathryn

    2002-01-01

    Considers how much of an impact service learning pedagogies have had among those who teach journalism and mass communication. Attempts to fill the research void by assessing the current state of this pedagogical movement within the journalism/mass communication discipline, and suggests that a formal process for incorporating service learning into…

  14. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    NASA Technical Reports Server (NTRS)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  15. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    NASA Astrophysics Data System (ADS)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-09-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  16. Communications Satellite Receiver Systems for Public Schools: A Technical Primer.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Designed to aid school districts contemplating use of some of the telecommunications services now available by satellite, this document contains information on home satellite receiving dishes (Television Receive-Only--TVROs), which can receive radio signals carrying television, sound, and data. This information includes: some factors involved in…

  17. Development of a mobile satellite communication unit

    NASA Technical Reports Server (NTRS)

    Suzuki, Ryutaro; Ikegami, Tetsushi; Hamamoto, Naokazu; Taguchi, Tetsu; Endo, Nobuhiro; Yamamoto, Osamu; Ichiyoshi, Osamu

    1988-01-01

    A compact 210(W) x 280(H) x 330(D) mm mobile terminal capable of transmitting voice and data through L-band mobile satellites is described. The Voice Codec can convert an analog voice to or from digital codes at rates of 9.6, 8 and 4.8 kb/s by an MPC algorithm. The terminal functions with a single 12 V power supplied vehicle battery. The equipment can operate at any L-band frequency allocated for mobile uses in a full duplex mode and will soon be put into a field test via Japans's ETS-V satellite.

  18. The principle of a navigation constellation composed of SIGSO communication satellites

    NASA Astrophysics Data System (ADS)

    Ji, Hai-Fu; Ma, Li-Hua; Ai, Guo-Xiang; Shi, Hu-Li

    2013-04-01

    The Chinese Area Positioning System (CAPS), a navigation system based on geostationary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites. SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance. A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42. With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies, the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS). When the new method of code-carrier phase combinations is adopted, the system has the potential to possess commensurate accuracy with the precise code in GPS. Additionally, the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication.

  19. Satellite services system analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Service requirements are considered. Topics include development of on-orbit operations scenarios, service equipment summary, crew interaction, and satellite features facilitating servicing. Service equipment concepts are considered. Topics include payload deployment, close proximity retrieval, on-orbit servicing, backup/contingency, delivery/retrieval of high energy payloads, Earth return, optional service, and advanced capabilities. Program requirements are assessed.

  20. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  1. Teleradiology and telemedicine using the advanced communications technology satellite and international maritime satellite at varying bandwidths

    NASA Astrophysics Data System (ADS)

    de Treville, Robert E.; Scotti, Stephen D.; Williamson, Morgan P.; Olson, Eric J.; Brink, Linda; Isle, Ken; Kafaro, Peter

    1995-05-01

    The United States military gained experience with a deployed telemedicine team and unit during the deployment of United States military troops to Haiti as part of `Operation Uphold Democracy.' Consults were conducted primarily between the 28th combat support hospital in Haiti and Walter Reed Army Medical Center in Washington, D.C. The Advanced Communications Technology Satellite and International Maritime Satellite services were used for telecommunications during the deployment. A total of 30 telemedicine consultations were performed during the deployment. All consultations were conducted prospectively, and data was entered in a database for later review. Treatment plans and plans for patient disposition were recorded prior to consultation. Following completion of the telemedicine consultations, each case was reviewed to determine the impact of the telemedicine consult upon the treatment plan or disposition. Fifty percent of the consultations resulted in a significant modification in the patient's treatment plan. Seventeen percent resulted in a significant or possible change in evacuation planning. The most frequently used consultants were the dermatologists, radiologists, and hand surgeons. This experience demonstrates that telemedicine can be used effectively in a deployed military environment. In addition, the ability to obtain remote consultations does impact upon medical treatment and upon medical evacuation. Having support personnel in the field was found to be an important factor in utilization of the system.

  2. Spread spectrum mobile communication experiment using ETS-V satellite

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Suzuki, Ryutaro; Kadowaki, Naoto; Taira, Shinichi; Sato, Nobuyasu

    1990-01-01

    The spread spectrum technique is attractive for application to mobile satellite communications, because of its random access capability, immunity to inter-system interference, and robustness to overloading. A novel direct sequence spread spectrum communication equipment is developed for land mobile satellite applications. The equipment is developed based on a matched filter technique to improve the initial acquisition performance. The data rate is 2.4 kilobits per sec. and the PN clock rate is 2.4552 mega-Hz. This equipment also has a function of measuring the multipath delay profile of land mobile satellite channel, making use of a correlation property of a PN code. This paper gives an outline of the equipment and the field test results with ETS-V satellite.

  3. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  4. Caribbean Regional Communications Service Study. Report.

    ERIC Educational Resources Information Center

    Lalor, Gerald C.

    A follow-up to a limited experiment with the use of satellites in education and public service conducted by the University of the West Indies (UWI) in 1978, this study explores the feasibility of providing a number of services, which would include an extension system based on the use of the UWI telecommunications network. The study was designed to…

  5. Computer-aided communication satellite system analysis and optimization

    NASA Technical Reports Server (NTRS)

    Stagl, T. W.; Morgan, N. H.; Morley, R. E.; Singh, J. P.

    1973-01-01

    The capabilities and limitations of the various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. A satellite Telecommunication analysis and Modeling Program (STAMP) for costing and sensitivity analysis work in application of communication satellites to educational development is given. The modifications made to STAMP include: extension of the six beam capability to eight; addition of generation of multiple beams from a single reflector system with an array of feeds; an improved system costing to reflect the time value of money, growth in earth terminal population with time, and to account for various measures of system reliability; inclusion of a model for scintillation at microwave frequencies in the communication link loss model; and, an updated technological environment.

  6. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the Mobile-Satellite Service...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... frequencies for ATC base station operations would exclude otherwise available signals from MSS space-stations... organized efforts of international coordination. (c) Equipment certification. (1) Each ATC mobile station... COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  7. An adaptive array antenna for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Milne, Robert

    1990-01-01

    The design of an adaptive array antenna for land vehicle operation and its performance in an operational satellite system is described. Linear and circularly polarized antenna designs are presented. The acquisition and tracking operation of a satellite is described and the effect on the communications signal is discussed. A number of system requirements are examined that have a major impact on the antenna design. The results of environmental, power handling, and RFI testing are presented and potential problems are identified.

  8. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    NASA Technical Reports Server (NTRS)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  9. Two-way communication promote value-added services

    SciTech Connect

    1996-06-01

    This article reviews a number of developments in the efforts of electric utilities to establish two-way communications with their customers in order to develop products and services to fit each customer`s needs. In their efforts, utilities are facing an array of technology, including broadband, radio frequency, cellular, satellite, dial inbound, and power line carrier current. Individual efforts with each technology are noted. In many cases, the utilities are finding that existing cable and telephone companies are powerful allies in their efforts. Finding that their technology is marketable, the electric utilities are also diversifying horizontally and marketing their communications tools to other, both inside and outside of the utility industry.

  10. Modeling of NASA's 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Maples, B. W.; Stevens, G. A.

    1984-01-01

    NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.

  11. College curriculum-sharing via CTS. [Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hudson, H. E.; Guild, P. D.; Coll, D. C.; Lumb, D. R.

    1975-01-01

    Domestic communication satellites and video compression techniques will increase communication channel capacity and reduce cost of video transmission. NASA Ames Research Center, Stanford University and Carleton University are participants in an experiment to develop, demonstrate, and evaluate college course sharing techniques via satellite using video compression. The universities will exchange televised seminar and lecture courses via CTS. The experiment features real-time video compression with channel coding and quadra-phase modulation for reducing transmission bandwidth and power requirements. Evaluation plans and preliminary results of Carleton surveys on student attitudes to televised teaching are presented. Policy implications for the U.S. and Canada are outlined.

  12. Determination of the Required Number of Randomly Spaced Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Coleman, Thomas L.; Houbolt, John C.

    1961-01-01

    An investigation has been made f o r determining the minimum number of passive satellites i n near-earth orbits required t o provide given percentages of communication time between two selected ground stations. The study is limited to the geometrical and probability aspects of the problem. An application of the analysis i s made f o r an assumed transatlantic communication system. The satellites are considered t o be i n circular, randomly spaced orbits with fixed inclination and altitude considered range from 1,000 t o 3,000 statute miles.

  13. End-to-end availability of satellite communication networks

    NASA Astrophysics Data System (ADS)

    Cheng, Jing-Shiang; Kim, Young K.; Jo, Kyung Y.

    This paper introduces a unified approach to evaluate the end-to-end availability of satellite communication networks. The analysis is done by considering the availabilities of both equipments and transmission links in a typical TDMA network. The equipment availability, associated with the reliabilities of components with repairs, is computed by using Markovian processes. The transmission link availability is derived by studying the links of propagation channels. Finally, the global end-to-end availability of the network system is computed by combining the availabilities of all subsystems. The resultant availability can be effectively used in evaluating the performance of satellite communication networks.

  14. Design and evaluation of control systems for large communications satellites

    NASA Technical Reports Server (NTRS)

    Steiber, M. E.

    1985-01-01

    Control techniques for future large flexible spacecraft are developed. Control design and analysis are supported by a comprehensive CAD system. The proposed operational mobile communications satellite (OMSAT) featuring a 44 m offset fed antenna is used as target application. Requirements for satellite attitude control and communications beam pointing are defined. The following control methods are applied to the system: standard linear optimal regulator (LOR) with Luenberger observer, LOR/observer with selective spill-over suppression, frequency shaped LOR, LOR with closed-loop order reduction by cost decoupling, and robust servomechanism.

  15. Interference susceptibility measurements for an MSK satellite communication link

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Fujikawa, Gene

    1992-01-01

    The results are presented of measurements of the degradation of an MSK satellite link due to modulated and CW (unmodulated) interference. These measurements were made using a hardware based satellite communication link simulator at NASA-Lewis. The results indicate the amount of bit error rate degradation caused by CW interference as a function of frequency and power level, and the degradation caused by adjacent channel and cochannel modulated interference as a function of interference power level. Results were obtained for both the uplink case (including satellite nonlinearity) and the downlink case (linear channel).

  16. Experimental millimeter-wave personal satellite communications system

    NASA Technical Reports Server (NTRS)

    Suzuki, Yoshiaki; Kimura, Shigeru; Shimada, Masaaki; Tanaka, Masato; Takahashi, Yasuhiro

    1991-01-01

    Communications Research Laboratory (CRL) has investigated an advanced millimeter (mm)-wave satellite communications system for personal use. Experiments in mm-wave personal satellite communication are to be conducted for 3 years using Japan's Engineering Test Satellite VI (ETS-VI). This paper describes an experimental mm-wave (43/38 GHz) personal satellite communication system, including an onboard transponder and an earth terminal. The on-board transponder is almost completed, and the ground experiment system is still in the design stage. The transponder employs advanced mm-wave solid state technology. It uses 38 GHz high power solid state amplifiers to accelerate the development of mm-wave solid state devices which are indispensable to personal earth terminals. The transponder consists of a 43 GHz receiver with a built-in low noise amplifier, an IF filter section with very narrow bandwidth to improve the carrier-to-noise power ratio of the weak personal communication signal, and two high power amplifiers using newly developed high power Gallium Arsenide (GaAs) metal-semiconductor field effect transistors (MESFETs).

  17. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  18. 75 FR 43088 - Personal Communications Services and Miscellaneous Wireless Communications Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 24 and 27 Personal Communications Services and Miscellaneous Wireless Communications Services CFR Correction In Title 47 of the Code of Federal Regulations, Parts 20 to 39, revised as...

  19. Modulation/demodulation techniques for satellite communications. Part 1: Background

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  20. Management in Ambulance Services: Communicative Challenges.

    PubMed

    Nordby, Halvor

    2015-01-01

    Managers in ambulance services face many communicative challenges in their interaction with employees working as paramedics in prehospital medical practices. This series of three articles will focus on some of these challenges. This first article clarifies the context of manager-employee communication in ambulance work. The second article will present a study of how supervising ambulance managers and paramedics communicate, and the third will discuss how this communication can be improved. All the articles accentuate the same general point: organizational performance in prehospital medical practice depends on successful communication between managers and paramedics. PMID:26223104

  1. The 30/20 GHz fixed communications systems service demand assessment. Volume 2: Main report

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.

    1979-01-01

    A forecast of demand for telecommunications services through the year 2000 is presented with particular reference to demand for satellite communications. Estimates of demand are provided for voice, video, and data services and for various subcategories of these services. The results are converted to a common digital measure in terms of terabits per year and aggregated to obtain total demand projections.

  2. The Army's Use of the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Ilse, Kenneth

    1996-01-01

    Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.

  3. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    NASA Technical Reports Server (NTRS)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  4. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    The use of individual Global Navigation Satellite Services (GPS, GLONASS, Galileo, and Beidou/COMPASS) for the position, navigation, and timing in the Space Service Volume at altitudes of 300 km, 3000 km, 8000 km, 15000 km, 25000 km, 36500km and 70000 km is examined and the percent availability of at least one and at least four satellites is presented.

  5. Technology Development on ISS for Satellite Servicing and Exploration

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.

    2015-01-01

    NASA's Satellite Servicing Capabilities Office is utilizing the International Space Station to demonstrate technologies essential to satellite servicing endeavors in support of human exploration and science. Within this presentation, we will discuss the status and implications of three of these technology payloads: Restore-L, Asteroid Redirect Robotic Mission (ARRM), Raven, Robotic Refueling Mission (RRM) Phase 2, and RRM Phase 3.

  6. Within compound, looking southeast, Satellite Communications Terminal Building (Building 5771) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, looking southeast, Satellite Communications Terminal Building (Building 5771) to left, Gate House (Building 5764) to right of center - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  7. Toward a Communications Satellite Network for Humanitarian Relief

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.; Birrane, Edward J.

    2011-01-01

    Since the introduction in 2008 of the "Ring Road" concept, proposing a communications satellite network designed to support disadvantaged populations, there have been a number of advances in the underlying technologies, CubeSat picosatellites and Delay-Tolerant Networking. We review the original Ring Road proposal, discuss relevant recent technological progress, and offer some tentative notes on projected cost and performance.

  8. An overview of the Communications Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Rapp, W.; Ogden, D.; Wright, D.

    1982-01-01

    The Communications Technology Satellite (CTS) project is reviewed. A technical description of the CTS spacecraft and its cognate hardware and operations is included. A historical treatise of the CTS project is provided. Also presented is an overview of the CTS experiments and demonstrations conducted during the course of the project.

  9. Communications technology satellite output-tube design and development

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Forman, R.; Jones, C. L.; Kosmahl, H.; Sharp, G. R.

    1977-01-01

    The design and development of a 200-watt-output, traveling-wave tube (TWT) for the Communications Technology Satellite (CTS) is discussed, with emphasis on the design evolution during the manufacturing phase of the development program. Possible further improvements to the tube design are identified.

  10. Uplink Power Control For Earth/Satellite/Earth Communication

    NASA Technical Reports Server (NTRS)

    Chakraborty, Dayamoy

    1994-01-01

    Proposed control subsystem adjusts power radiated by uplink transmitter in Earth station/satellite relay station/ Earth station communication system. Adjustments made to compensate for anticipated changes in attenuation by rain. Raw input is a received downlink beacon singal, amplitude of which affected not only by rain fade but also by scintillation, attenuation in atmospheric gases, and diurnal effects.

  11. A digitally implemented communications experiment utilizing the Hermes /CTS/ satellite

    NASA Technical Reports Server (NTRS)

    Jackson, H. D.; Fiala, J.

    1977-01-01

    Attention is given to an investigation being conducted by NASA-Lewis and Comsat Laboratories which uses the Hermes (CTS) satellite to explain digital link implementation and the advantages it provides over conventional analog systems. The experiment concentrates on developing several video, audio, and data digital communications techniques.

  12. Applications of Multi Port Amplifier to personal satellite communications

    NASA Technical Reports Server (NTRS)

    Egami, Shunichiro

    1995-01-01

    In personal satellite communications, satellite antenna beam becomes narrow, and number of beams will be thirty to more than one hundred. This paper shows that Multi Port Amplifier is most suitable to multiple beam transmitter for personal communications satellite. It was shown that the single beam coverage area(cell) diameter is determined by personal earth station(PES) eirp, uplink C/No and uplink frequency band. Required number of cells for European or North American regional coverage at FPLMTS uplink frequency band is shown as around 32. It was shown that 32 beams systems will be easily implemented by using 2 set of 16-port MPA. Redundancy to SSPA failure is considered by increasing number of SSPAs. Actual configuration for 16-port MPA are briefly shown. The presented configuration will be easy to implement and the most economical solution.

  13. Application of adaptive antenna techniques to future commercial satellite communication

    NASA Technical Reports Server (NTRS)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  14. Utilization of photovoltaic for broadband satellite communications in rural area of Thailand

    NASA Astrophysics Data System (ADS)

    Jinayim, Theerawut; Mungkung, Narong; Kasayapanand, Nat

    2013-06-01

    Electricity, Information and Communication Technologies (ICTs) are very important not only in urban areas but also in rural areas. To provide ICTs service in rural areas, sources of electricity and communication infrastructures must be implemented. Electricity is a major condition due to the fact that all electronic devices needed it in order to power on, so that it is impossible to operate any forms of ICTs in areas where the main national grid line is unavailable. Almost rural areas of Thailand where the main national grid line is unavailable have very good sunlight intensity. Photovoltaic is the most effective renewable energy technologies in those areas for meeting electricity needed in areas that are not connected to the main national grid line. In this paper, the efficiency utilization of photovoltaic as source of electricity for broadband satellite communication systems as well as social and economic impact and quality of life of people in rural areas of Thailand are presented. The results show that most rural communities would be able to universally access to the basic telecommunications services such as internet access and public telephone via satellite communication systems. However, in some field case study, broadband internet access via satellite communication may be unnecessary for some rural communities and the most exactly rural communities needed are electricity for household usage and battery charger.

  15. Fault-tolerant onboard digital information switching and routing for communications satellites

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.; Kim, Heechul

    1993-01-01

    The NASA Lewis Research Center is developing an information-switching processor for future meshed very-small-aperture terminal (VSAT) communications satellites. The information-switching processor will switch and route baseband user data onboard the VSAT satellite to connect thousands of Earth terminals. Fault tolerance is a critical issue in developing information-switching processor circuitry that will provide and maintain reliable communications services. In parallel with the conceptual development of the meshed VSAT satellite network architecture, NASA designed and built a simple test bed for developing and demonstrating baseband switch architectures and fault-tolerance techniques. The meshed VSAT architecture and the switching demonstration test bed are described, and the initial switching architecture and the fault-tolerance techniques that were developed and tested are discussed.

  16. Fixed satellite service frequency allocations and orbit assignment procedures for commercial satellite systems

    NASA Astrophysics Data System (ADS)

    Tycz, Thomas S.

    1990-07-01

    The international regulatory framework which resulted from the 1988 International Telecommunication Union (ITU) Conference on Space Services (ORB-88) and its potential effect on the implementation of US satellite systems are discussed. The impact of several significant results of ORB-88 on the ability of the FCC to assign geostationary satellite orbital positions within the US and to secure international protection for these assignments is reviewed. A table of fixed satellite service frequency allocations in North, Central, and South America is given.

  17. Communications Satellites: A New Channel for International Communications, A New Source of International Tension.

    ERIC Educational Resources Information Center

    Mickelson, Sig

    Communications satellites could be the subject of bitter and potentially dangerous international controversy. They threaten to upset the comfortable monopoly of internal national communications systems which have enrolled national governments to screen intrusions of unwanted information or ideas. The United Nations Working Committee on Direct…

  18. Communication Media and Educational Technology: An Overview and Assessment with Reference to Communication Satellites.

    ERIC Educational Resources Information Center

    Ohlman, Herbert

    In this survey and analysis of the present state and future trends of communication media and educational technology, particular emphasis is placed on the potential uses of communication satellites and the substitution of electronic transmission for physical distribution of educational materials. The author analyzes in detail the characteristics…

  19. Achieving QoS for TCP Traffic in Satellite Networks with Differentiated Services

    NASA Technical Reports Server (NTRS)

    Durresi, Arjan; Kota, Sastri; Goyal, Mukul; Jain, Raj; Bharani, Venkata

    2001-01-01

    Satellite networks play an indispensable role in providing global Internet access and electronic connectivity. To achieve such a global communications, provisioning of quality of service (QoS) within the advanced satellite systems is the main requirement. One of the key mechanisms of implementing the quality of service is traffic management. Traffic management becomes a crucial factor in the case of satellite network because of the limited availability of their resources. Currently, Internet Protocol (IP) only has minimal traffic management capabilities and provides best effort services. In this paper, we presented a broadband satellite network QoS model and simulated performance results. In particular, we discussed the TCP flow aggregates performance for their good behavior in the presence of competing UDP flow aggregates in the same assured forwarding. We identified several factors that affect the performance in the mixed environments and quantified their effects using a full factorial design of experiment methodology.

  20. Satellite Technologies and Services: Implications for International Distance Education.

    ERIC Educational Resources Information Center

    Stahmer, Anna

    1987-01-01

    This examination of international distance education and open university applications of communication satellites at the postsecondary level notes activities in less developed countries (LDCs); presents potential models for cooperation; and describes technical systems for distance education, emphasizing satellite technology and possible problems…

  1. Satellite Point-to-Multipoint Services for Information Dissemination: Opportunities and Economics.

    ERIC Educational Resources Information Center

    Casewell, I. E.

    1992-01-01

    Outlines the current status of satellite-delivered narrowcasting services in Europe; identifies potential applications, including electronic publishing and corporate data communications; compares various transmission technologies; and explores economic issues with the aid of a spreadsheet model for the cases of a facsimile broadcast and a weather…

  2. Improving Library Services to Satellite Campuses: The Case of the University of Lethbridge

    ERIC Educational Resources Information Center

    Eva, Nicole C.

    2012-01-01

    A survey was done of instructors at two satellite campuses located at a distance from the main campus of the University of Lethbridge in order to ascertain both utilization and awareness of library resources and services. Results were enlightening, indicating that lack of awareness and communication is one of the biggest obstacles for these…

  3. Concepts for 18/30 GHz satellite communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Jorasch, R.; Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.

    1979-01-01

    Concepts for 18/30 GHz satellite communication systems are presented. Major terminal trunking as well as direct-to-user configurations were evaluated. Critical technologies in support of millimeter wave satellite communications were determined.

  4. Communications satellites in the national and global health care information infrastructure: their role, impact, and issues

    NASA Technical Reports Server (NTRS)

    Zuzek, J. E.; Bhasin, K. B.

    1996-01-01

    Health care services delivered from a distance, known collectively as telemedicine, are being increasingly demonstrated on various transmission media. Telemedicine activities have included diagnosis by a doctor at a remote location, emergency and disaster medical assistance, medical education, and medical informatics. The ability of communications satellites to offer communication channels and bandwidth on demand, connectivity to mobile, remote and under served regions, and global access will afford them a critical role for telemedicine applications within the National and Global Information Infrastructure (NII/GII). The importance that communications satellites will have in telemedicine applications within the NII/GII the differences in requirements for NII vs. GII, the major issues such as interoperability, confidentiality, quality, availability, and costs, and preliminary conclusions for future usability based on the review of several recent trails at national and global levels are presented.

  5. Switchboard in the sky. [antenna platform for domestic satellite communications systems

    NASA Technical Reports Server (NTRS)

    Fordyce, S. W.; Jaffe, L.; Hamilton, E. C.

    1978-01-01

    Geostationary parking orbits for the present generation of communications satellites, e.g., Intelsat, Westar, Molniya, Navsat, etc., are becoming crowded. It is noted that the C-band over North America will in future be subject to still less attenuation with the introduction of smaller (4.5 m) antennas for earth-bound receive-only applications. It is suggested, at least for the present, that more bands be added, e.g., K-, Ku-, and S-bands. To handle the potential market for communications satellite services during the years after 1985, much larger facilities will be needed. The fabrication of large platforms using the STS is discussed as the most practical solution, stressing that virtually every geosynchronous communications antenna for U.S. domestic use can be assembled on one platform positioned at an especially favorable location.

  6. United States societal experiments via the Communications Technology Satellite. [antenna coverage

    NASA Technical Reports Server (NTRS)

    Donoughe, P. L.

    1976-01-01

    The Communications Technology Satellite (CTS) is a cooperative experimental program of the United States and Canadian governments. The CTS uses a high-power transponder at the frequencies of 14/12 GHz for two-way television and voice communication. The United States and Canada have agreed to share equally in the use of CTS. The U.S. program includes a variety of societal experiments. The ground stations for these experiments are located from the Atlantic to the Pacific. The satellite communications capabilities and the antenna coverage for the U.S. are summarized. Emphasis is placed on the U.S. societal experiments in the areas of education, health care, and community and special services; nine separate experiments are discussed.

  7. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... digital audio radio service. 25.144 Section 25.144 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....144 Licensing provisions for the 2.3 GHz satellite digital audio radio service. (a) Qualification... digital audio radio service in the 2310-2360 MHz band shall describe in detail the proposed...

  8. Space station automation study-satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1984-01-01

    Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.

  9. A study and experiment plan for digital mobile communication via satellite

    NASA Technical Reports Server (NTRS)

    Jones, J. J.; Craighill, E. J.; Evans, R. G.; Vincze, A. D.; Tom, N. N.

    1978-01-01

    The viability of mobile communications is examined within the context of a frequency division multiple access, single channel per carrier satellite system emphasizing digital techniques to serve a large population of users. The intent is to provide the mobile users with a grade of service consistant with the requirements for remote, rural (perhaps emergency) voice communications, but which approaches toll quality speech. A traffic model is derived on which to base the determination of the required maximum number of satellite channels to provide the anticipated level of service. Various voice digitalization and digital modulation schemes are reviewed along with a general link analysis of the mobile system. Demand assignment multiple access considerations and analysis tradeoffs are presented. Finally, a completed configuration is described.

  10. Vibration-induced jitter control in satellite optical communication

    NASA Astrophysics Data System (ADS)

    Xue, Zheng-yan; Qi, Bo; Ren, Ge

    2013-08-01

    Laser satellite communication has become especially attractive in recent years. However, because the laser beam is very narrow and there is a long distance between satellites, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause optical jitter, leading to the reduction of received signals and bit-error rate degradation. Consequently, optical jitter control with PAT (pointing acquisition and tracking) subsystems is a critical problem in laser satellite communication. To compensate for the platform vibration effectively in realtime, in this paper, an adaptive feedback control technique based on Youla-parameterization is presented, which can adapt to the current disturbance acting on the laser beam by adjusting its parameters in realtime to maintain optimal performance. The main idea is to use the well-known Youla parameterization formula to construct a feedback control scheme with the guaranteed closed loop stability, and the feedback controller is a function of plant coprime factors and a free parameter Q. For adaptive disturbance estimation, the free parameter Q is set to an adaptive finite impulse response (FIR) filter, the coefficients of which are updated by a recursive least-squares (RLS) algorithm in realtime. It is shown in experiment that the adaptive feedback control technique based on Youla-parameterization can reject the optical jitter caused by satellite platform vibration effectively and improve the performance of the system.

  11. Causal relationships between solar proton events and single event upsets for communication satellites

    NASA Astrophysics Data System (ADS)

    Lohmeyer, W. Q.; Cahoy, K.; Liu, Shiyang

    In this work, we analyze a historical archive of single event upsets (SEUs) maintained by Inmarsat, one of the world's leading providers of global mobile satellite communications services. Inmarsat has operated its geostationary communication satellites and collected extensive satellite anomaly and telemetry data since 1990. Over the course of the past twenty years, the satellites have experienced more than 226 single event upsets (SEUs), a catch-all term for anomalies that occur in a satellite's electronics such as bit-flips, trips in power supplies, and memory changes in attitude control systems. While SEUs are seemingly random and difficult to predict, we correlate their occurrences to space weather phenomena, and specifically show correlations between SEUs and solar proton events (SPEs). SPEs are highly energetic protons that originate from solar coronal mass ejections (CMEs). It is thought that when these particles impact geostationary (GEO) satellites they can cause SEUs as well as solar array degradation. We calculate the associated statistical correlations that each SEU occurs within one day, one week, two weeks, and one month of 10 MeV SPEs between 10 - 10,000 particle flux units (pfu). However, we find that SPEs are most prevalent at solar maximum and that the SEUs on Inmarsat's satellites occur out of phase with the solar maximum. Ultimately, this suggests that SPEs are not the primary cause of the Inmarsat SEUs. A better understanding of the causal relationship between SPEs and SEUs will help the satellite communications industry develop component and operational space weather mitigation techniques as well as help the space weather community to refine radiation models.

  12. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  13. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  14. Intelligent fault isolation and diagnosis for communication satellite systems

    NASA Technical Reports Server (NTRS)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  15. A Low Earth Orbit satellite marine communication system demonstration

    NASA Technical Reports Server (NTRS)

    Elms, T. Keith; Butt, Kenneth A.; Asmus, Ken W.

    1995-01-01

    An application of Low Earth Orbit (LEO) satellite communications technology was investigated during a joint Canadian/American scientific expedition to the north pole in the summer of 1994. The Canadian ice breaker involved, was equipped with a store-and-forward LEO satellite terminal which was linked to a ground station in St. John's, Newfoundland, via the near-polar-orbiting satellite, HealthSat-l. The objective was to evaluate the performance of such a system while providing an alternate means of communications in the far north. The system performed well, given its inherent limitations. All 151 attempts to send data files to the ship were successful. Only two (2) of the 35 attempts to send files from the ship were unsuccessful. The files ranged in size from 0.1 to 60 Kbytes. In the high arctic, above 80 deg north, this system often provided the only practical means of data communications. This experiment demonstrated the potential of such a system for not-real-time communications with remote and/or mobile stations, and highlighted the many issues involved. This paper describes the project objectives, system configuration and experimental procedure used, related technical issues, trial results, future work, and conclusions.

  16. US development and commercialization of a North American mobile satellite service

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    1990-01-01

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  17. 77 FR 58579 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... COMMISSION Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Institution...-way global satellite communication devices, system and components thereof by reason of infringement of... after importation of certain two-way global satellite communication devices, system and...

  18. NASA's mobile satellite communications program; ground and space segment technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  19. Multimedia group communications: towards new services

    NASA Astrophysics Data System (ADS)

    Mauthe, A.; Hutchison, D.; Coulson, G.; Namuye, S.

    1996-09-01

    Interpersonal communication among a group of users employing different media types is becoming more and more widespread in computing and telecommunications. Group communication places a variety of new requirements onto the underlying communications architecture and although many existing protocols and services do offer some limited support for multicast group communication, these new requirements make it difficult to find efficient and comprehensive solutions. The impact of multimedia group communication on the communication system and the way in which existing systems, international standardization bodies and researchers cope with these challenges is the subject of this paper. First the characteristics and requirements of multimedia group applications are discussed and illustrated by examples of existing group applications. Subsequently a survey of the kind of support available in today's communication system is presented. In addition the ongoing discussion about the standardization of group communication within ISO and ITU and the direction these efforts take is briefly summarized. Further, some selected examples of research projects which deal with different communication and protocol related aspects of multimedia group communication are presented which give an indication of the trends in this area.

  20. The advent of land mobile satellite service systems

    NASA Astrophysics Data System (ADS)

    Pattan, Bruno

    1987-09-01

    The FCC has allocated the L-band spectrum to geostationary satellite-based mobile radio, mobile telephone, and other similar services, which will then become available for large numbers of rural and suburban users. An expedient means of increasing capacity involves the use of single channel per carrier, demand-assignment multiple access with voice and frequency reuse via multiple beams, and orbital reuse by means of multiple satellites. Attention is given to several of the operational, systematic, and technological considerations of the first generation of land mobile satellite services furnishing thin-route services throughout North America.

  1. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    NASA Technical Reports Server (NTRS)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  2. Design and performance of a repeater for optical satellite communication

    NASA Astrophysics Data System (ADS)

    Ohm, G.; Wiesmann, Th.; Hieber, E.

    General design aspects of optical inter-satellite and inter-orbit links and the choice of technology for data relay applications are described. A first step toward optical links is the ESA in-orbit experiment SILEX which is briefly reviewed with emphasis on the communication subsystem. All relevant equipments of the communication subsystem, which is based on 0.85-micron laser diodes, QPPM data format, and direct detection, have been developed and tested. Using the equipment developed, an experimental repeater was assembled and investigated. Measured and simulated results are in close agreement, and no major critical events occurred during the development and test activities.

  3. Choice of an ion engine for the Communications Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Payne, W. F.; Bens, A. R.; Bassett, D. A.; Lovell, R. R.

    1972-01-01

    The purpose of the spacecraft is to space qualify a number of components for the next generation of communications satellites. The state of development of ion thrusters has reached a point where at least three types of engine may be considered for integration on spacecraft. The proposed methods of stationkeeping require that the thruster operate with a duty cycle of somewhat less than 12 hours in a 24 hour period. Several possible mounting positions for the thrusters were considered during the conceptual design phase. It is concluded that an experimental ion thruster subsystem may be incorporated in the communication satellite and used to demonstrate, at a minimum, north-south stationkeeping of the spacecraft in synchronous orbit.

  4. Coherent versus noncoherent signaling for satellite-aided mobile communications

    NASA Technical Reports Server (NTRS)

    Davarian, F.; Sumida, J.

    1986-01-01

    The use of coherent versus noncoherent communications is an unresolved issue for the mobile satellite community. Should one select the more robust but less efficient noncoherent strategy for communications over satellite-aided mobile channels, or does the introduction of a space platform in the mobile link improve signal stability (both amplitude and phase) such that conventional coherent schemes become attractive? This publication tries to answer some of the questions by discussing the results from experiments using a coherent QPSK receiver. The issues discussed include items such as the measured performance in Rician fading, the link error floor in a fading environment, etc. The results are compared and contrasted with that of a noncoherent limiter/discriminator FM receiver.

  5. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  6. The 30/20 GHz communications satellite trunking network study

    NASA Technical Reports Server (NTRS)

    Kolb, W.

    1981-01-01

    Alternative transmission media for a CONUS-wide trunking network in the years 1990 and 2000 are examined. The alternative technologies comprised fiber optic cable, conventional C- and Ku-band satellites, and 30/20 GHz satellites. Three levels of implementation were considered - a 10-city network, a 20-city network, and a 40-city network. The cities selected were the major metropolitan areas with the greatest communications demand. All intercity voice, data, and video traffic carried more than 40 miles was included in the analysis. In the optimized network, traffic transmitted less than 500 miles was found to be better served by fiber optic cable in 1990. By the year 2000, the crossover point would be down to 200 miles, assuming availability of 30/20 GHz satellites.

  7. Demand Assignment Multiple Access /DAMA/ techniques for satellite communications

    NASA Astrophysics Data System (ADS)

    Kota, S. L.

    A wide spectrum of Demand Assignment Multiple Access (DAMA) techniques exist, varying from completely centralized to fully distributed control for military and commercial applications. This paper presents a comparative evaluation of the extant DAMA circuit-switched and packet-switched techniques and proposes an efficient, multiple access scheme for processing satellite systems. A two-level hierarchical multiple access configuration is suggested for future satellite communications systems of many low duty factor terminals. At the first level, disjoint subnets of relatively few prioritized users employ a minislotted alternating priorities (MSAP) protocol. At the second level, a TDMA or FDMA uplink and a TDM or FDM downlink protocol with a regenerating satellite is assumed. For a military network of hundreds of terminals, analysis results show that a hierarchical scheme provides superior throughput-delay performance over the single-level TDMA, Polling or Slotted ALOHA.

  8. First satellite mobile communication trials using BLQS-CDMA

    NASA Technical Reports Server (NTRS)

    Luzdemateo, Maria; Johns, Simon; Dothey, Michel; Vanhimbeeck, Carl; Deman, Ivan; Wery, Bruno

    1993-01-01

    In this paper, technical results obtained in the first MSBN Land mobile technical trial are reported. MSBN (Mobile Satellite Business Network) is a new program undertaken by the European Space Agency (ESA) to promote mobile satellite communication in Europe, in particular voice capability. The first phase of the MSBN system implementation plan is an experimental phase. Its purpose is to evaluate through field experiments the performance of the MSBN system prior to finalization of its specifications. Particularly, the objective is to verify in the field and possibly improve the performance of the novel satellite access technique BLQS-CDMA (Band Limited Quasi-Synchronous-Code Division Multiple Access), which is proposed as baseline for the MSBN.

  9. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies: Part 2: Technical report

    NASA Technical Reports Server (NTRS)

    Naderi, F. (Editor)

    1982-01-01

    A conceptual system design for a satellite-aided land mobile service is described. A geostationary satellite which employs a large (55-m) UHF reflector to communicate with small inexpensive user antennas on mobile vehicles is discussed. It is shown that such a satellite system through multiple beam antennas and frequency reuse can provide thousands of radiotelephone and dispatch channels serving hundreds of thousands of users throughout the U.S.

  10. IRECIN Nano-satellite communication system and ground segment

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Povia, M.; Di Ciolo, L.; Ortenzi, A.; Petrozzi, M.

    2005-01-01

    On board resources necessary to perform the mission tasks are very limited in nano-satellites. This paper proposes a real-time multi-processing system for the communication system between ground segment and IRECIN nano-satellite. The first microprocessor is devoted to interface to the rice-transceiver subsystem decoding packet information and the second one is in charge to communicate with the other subsystems through I 2C bus. It uses UHF band and less than 1 W in RF. All electronic components are SMD technology in order to reduce weight and size. The realized electronic boards are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group. This multi-processor system even allows managing the tasks of the microprocessor eventually damaged, the microprocessor still working takes the functionalities of the first one using simpler algorithms. This choice assures an increasing nano-satellite life time. Moreover, the depicted method allows to free the on-board main microprocessor from the control functions of the communication data, increasing its communication capabilities with the other subsystems. The proposed system is implemented on the IRECIN, a modular nano-satellite weighing less than 1.5 kg, constituted by 16 external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ion batteries are added for eclipse operations. Attitude is determined by two three-axis magnetometers and the solar panel data. Control is provided by an active magnetic control system. The spacecraft will be spin-stabilized with the spin-axis normal to the orbit.

  11. Adaptive antenna arrays for weak interfering signals. [in satellite communication

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Ksienski, A. A.

    1986-01-01

    It is shown that conventional adaptive arrays are unable to suppress weak interfering signals. To overcome this problem, the feedback loops controlling the array weights were modified, reducing the noise level by reducing the correlation between the noise components of the two inputs to the loop correlator. Various techniques to decorrelate these noise components are discussed. An expression is derived for the amount of noise decorrelation required to achieve a specified interference suppression. The results are of interest in connection with satellite communications.

  12. Very long baseline interferometry using a communication satellite

    NASA Technical Reports Server (NTRS)

    Swenson, G. W., Jr.

    1975-01-01

    A planned experiment is discussed in long-baseline interferometry, using the Communications Technology Satellite to transmit the base-band signal from one telescope to another for real-time correlation. A 20 megabit data rate is planned, calling for a delay-line of 10 MHz bandwidth and controllable delay up to 275 milliseconds. A number of sources will be studied on baselines from Ontario to West Virginia and California.

  13. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  14. Communications technology satellite - A variable conductance heat pipe application

    NASA Technical Reports Server (NTRS)

    Mock, P. R.; Marcus, B. D.; Edelman, E. A.

    1974-01-01

    A variable-conductance heat pipe system (VCHPS) has been designed to provide thermal control for a transmitter experiment package (TEP) to be flown on the Communications Technology Satellite. The VCHPS provides for heat rejection during TEP operation and minimizes the heat leak during power down operations. The VCHPS described features a unique method of aiding priming of arterial heat pipes and a novel approach to balancing heat pipe loads by staggering their control ranges.

  15. Proceedings of the Advanced Communications Technology Satellite (ACTS) Conference 2000

    NASA Technical Reports Server (NTRS)

    Bauer, Robert (Editor); Derwae, Robert (Editor)

    2000-01-01

    The ACTS experiments program, which began in December 1993 and consisted of 103 different experiments, has made significant contributions to minimizing the risk of advanced satellite communications technology. The ACTS Conference 2000 (AC2000) was held to report the results of the program since the last ACTS conference was held in 1995 and to celebrate the end of a very successful satellite program. The conference was held on May 31, 2000, as part of the 6th Ka-band Utilization Conference in Cleveland, Ohio. Approximately 280 representatives of industry, academia, and government attended. The conference was organized into two parts: a technical session during the day and an evening reception. During the day, a series of five technical sessions included presentations of 17 papers covering the results of the experiment activity and technical performance of the satellite. In the evening, a reception was held to celebrate the end of the ACTS Experiments Program on one of NASA's most successful experimental communications satellite. These proceedings were developed to capture the entire event, including the evening reception.

  16. Satellite services system analysis study. Volume 3A: Service equipment requirements, appendix

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Spacecraft descriptions and mission sequences, mission and servicing operations functional analyses, servicing requirements, and servicing equipment are discussed for five reference satellites: the X-ray Timing Explorer, the Upper Atmospheric Research Satellite, the Advanced X-ray Astrophysics Facility, the Earth Gravity Field Survey Mission, and the Orbiting Astronomical Observatory.

  17. Round table on the future of satellite communications and broadcasting in Europe

    NASA Astrophysics Data System (ADS)

    Bartholome, P.; Burke, W. R.

    1987-08-01

    Organizations that operate or intend to operate satellite systems for telecommunications or broadcasting in Europe (Eutelsat, Telecom 1, ASTRA, Italsat, DFS/Kopernikus, Tele-X, TV-Sat, TDF 1, Olympus/SARIT) explained the reasons that motivated them to set up a network, the services provided, and gave their views on the future of satellites in Europe. Apart from ASTRA, whose motivations were clearly market oriented right from the start, all projects were launched for reasons other than the desire to satisfy a definite requirement in term of new service offerings. However, all organizations are now focusing on distribution of television programs to the public, either directly or via cable networks. The exceptions are TELE-X, which places higher expectations on the success of business services, and Italsat concentrates on advanced-technology and hopes to make a breakthrough in conventional communications.

  18. Extravehicular Crewman Work System (ECWS) study program. Volume 3: Satellite service

    NASA Technical Reports Server (NTRS)

    Wilde, R. C.

    1980-01-01

    The satellite service portion of the Extravehicular Crewman Work System Study defines requirements and service equipment concepts for performing satellite service from the space shuttle orbiter. Both normal and contingency orbital satellite service is required. Service oriented satellite design practices are required to provide on orbit satellite service capability for the wide variety of satellites at the subsystem level. Development of additional satellite service equipment is required. The existing space transportation system provides a limited capability for performing satellite service tasks in the shuttle payload bay area.

  19. The current status of Russian/CIS communication satellites

    NASA Astrophysics Data System (ADS)

    Ninas, Larry E.

    1994-09-01

    As part of a Memorandum of Understanding (MOU) signed by U.S. President George Bush and Russian President Mikhail Gorbackev during a July 1991 summit meeting, the U.S. agreed to expand civil space cooperation with the Russian Federation and the Commonwealth of Independent States (CIS). The goal of the MOU was to increase the technical capabilities of both sides to respond to both natural and man-made disasters and top benefit from the capabilities and involvement of international and non-government organizations. This summit agreement has allowed the Russian Federation to offer unprecedented commercial and emergency relief access to their on-orbit communications satellites. This thesis presents a brief history of the Soviet/Russian communication satellite program, and an examination of current systems as well as future and on-order systems. Simulations were conducted to determine the useability of the major systems (Gorizont, Ekran, Molniya, and Raduga) from 17 geographic locations. This is concluded with an introduction to the Telemedicine Space-bridge Project that is a direct result of the Bush-Gorbachev summit, and a shining example of Russian/U.S. cooperation in the satellite communication arena.

  20. 76 FR 18759 - Improving Communications Services for Native Nations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Improving Communications Services for Native Nations AGENCY: Federal Communications Commission..., communication adoption opportunities, and incentives for Native Nations. The Commission also seeks...