Science.gov

Sample records for satellite-based terrestrial communication

  1. Integration between terrestrial-based and satellite-based land mobile communications systems

    NASA Technical Reports Server (NTRS)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  2. Satellite-based terrestrial production efficiency modeling

    PubMed Central

    McCallum, Ian; Wagner, Wolfgang; Schmullius, Christiane; Shvidenko, Anatoly; Obersteiner, Michael; Fritz, Steffen; Nilsson, Sten

    2009-01-01

    Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research. This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling. Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT) or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra); there is an urgent need for satellite-based

  3. Satellite-Based Quantum Communications

    SciTech Connect

    Hughes, Richard J; Nordholt, Jane E; McCabe, Kevin P; Newell, Raymond T; Peterson, Charles G

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  4. Digital, Satellite-Based Aeronautical Communication

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  5. Trellis-coded CPM for satellite-based mobile communications

    NASA Technical Reports Server (NTRS)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  6. Using inflatable antennas for portable satellite-based personal communications systems

    NASA Astrophysics Data System (ADS)

    Mathers, Naomi; Thompson, Lachlan

    2007-10-01

    Satellite-based personal communications systems (SPCS) have the ability to connect mobile personnel with a central support network in both military and disaster management situations. These systems require lightweight equipment that is quickly and easily deployed and operated in a variety of environments. Parabolic dish antennas provide the high gain required for direct satellite communication but their size and weight severely limit portability. The use of inflatable structures in the space environment has been successful in reducing mass by at least 50% and stowed volume by up to 75%. For inflatable structures to be applied to portable land-based communication it must be demonstrated that the required shape and surface accuracy can be maintained whilst under terrestrial conditions. This is achieved through material selection, structural design and internal pressure. This paper examines the mechanisms used to achieve the structural and surface accuracy required. The radiation patterns used to assess the gossamer feed horn and parabolic dish are presented to demonstrate that it is possible to construct an inflatable structure that matches the performance of a rigid structure under terrestrial conditions.

  7. Potential markets for a satellite-based mobile communications system

    NASA Technical Reports Server (NTRS)

    Jamieson, W. M.; Peet, C. S.; Bengston, R. J.

    1976-01-01

    The objective of the study was to define the market needs for improved land mobile communications systems. Within the context of this objective, the following goals were set: (1) characterize the present mobile communications industry; (2) determine the market for an improved system for mobile communications; and (3) define the system requirements as seen from the potential customer's viewpoint. The scope of the study was defined by the following parameters: (1) markets were confined to U.S. and Canada; (2) range of operation generally exceeded 20 miles, but this was not restrictive; (3) the classes of potential users considered included all private sector users, and non-military public sector users; (4) the time span examined was 1975 to 1985; and (5) highly localized users were generally excluded - e.g., taxicabs, and local paging.

  8. Terrestrial mobile communications

    NASA Astrophysics Data System (ADS)

    Rogard, R.; Steciw, A.

    1986-11-01

    Current and future mobile communications services in Europe are described, along with the technologies for meeting the market needs. A 450 MHz cellular system began operations in Scandinavian countries in 1981, and two 900 MHz systems entered service in the United Kingdom in 1985. Similar systems are being implemented in most European countries. Coding and access schemes are being studied for a pan-European 900 MHz system. Satellites can complement the system by providing service in coastal waters, regions of economic importance to Europe, and sparsely-populated areas. Improvements in vocodors, receiver gain, and technologies for the less-congested 14/11 or 30/20 GHz voice and data links are necessary. ESA studies with the Marecs satellite, preparatory to launch of a prototype mobile communication link, are summarized.

  9. Network design consideration of a satellite-based mobile communications system

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  10. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  11. Air traffic management system design using satellite based geo-positioning and communications assets

    NASA Technical Reports Server (NTRS)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  12. A satellite-based personal communication system for the 21st century

    NASA Technical Reports Server (NTRS)

    Sue, Miles K.; Dessouky, Khaled; Levitt, Barry; Rafferty, William

    1990-01-01

    Interest in personal communications (PCOMM) has been stimulated by recent developments in satellite and terrestrial mobile communications. A personal access satellite system (PASS) concept was developed at the Jet Propulsion Laboratory (JPL) which has many attractive user features, including service diversity and a handheld terminal. Significant technical challenges addressed in formulating the PASS space and ground segments are discussed. PASS system concept and basic design features, high risk enabling technologies, an optimized multiple access scheme, alternative antenna coverage concepts, the use of non-geostationary orbits, user terminal radiation constraints, and user terminal frequency reference are covered.

  13. Evaluation of hydrological balance in the eastern Amazon using a terrestrial ecosystem model, and satellite-based evapotranspiration (MODIS) and terrestrial water storage (GRACE)

    NASA Astrophysics Data System (ADS)

    Panday, P. K.; Coe, M. T.; Macedo, M.; Beck, P.

    2013-12-01

    High historical deforestation rates and a rapidly changing agricultural landscape may dramatically alter the energy and water balance of the eastern Amazon basin. Understanding the surface water dynamics and hydrological balance of the region is critical for accurately assessing the historical and potential future impacts of deforestation, land-use change, and land management practices. We examine the water balance of the Xingu river basin by combining the IBIS (Integrated Biosphere Simulator) terrestrial ecosystem model with satellite-based models of evapotranspiration (MOD16) and terrestrial water storage (GRACE). IBIS simulations were forced with prescribed climate to produce modeled evapotranspiration and runoff, which were then compared with MODIS evapotranspiration and observed discharge at Altamira (PA, Brazil). Results from both satellite observations and model simulations support earlier studies demonstrating that dry-season evapotranspiration is higher than wet-season evapotranspiration in the wetter forests of the northern Xingu basin, while the contrary is true in the seasonally dry forests of the southern Xingu. Seasonal variation in modeled soil water storage agrees with the GRACE measurements in both timing and magnitude. Soil moisture anomalies averaged over the Xingu basin suggest that annual changes in soil water storage account for a large part of the interannual variation in observed discharge. Field measurements of discharge and soil moisture in the southern Xingu also support the findings that changes in soil water storage drive inter-annual variations in river discharge. Figure 1. Comparison of observed discharge at Altamira (Pará, Brazil) against MODIS- derived P-E (PCRU-MODISET), IBIS simulated discharge, IBIS (PCRU-ETIBIS), and IBIS (PCRU-ETIBIS- Δ Soil moisture IBIS). The bottom panel shows annual basin precipitation from Climatic Research Unit (CRU) climatological data for the 2000-2008 period

  14. Radio communications with extra-terrestrial civilizations

    NASA Technical Reports Server (NTRS)

    Kotelnikov, V. A.

    1974-01-01

    Communications between civilizations within our galaxy at the present level of radio engineering is possible, although civilizations must begin to search for each other to achieve this. If an extra-terrestrial civilization possessing a technology at our level wishes to make itself known and will transmit special radio signals to do this, then it can be picked up by us at a distance of several hundreds of light years using already existing radio telescopes and specially built radio receivers. If it wishes, this civilization can also send us information without awaiting our answer.

  15. Improved 3D density modelling of the Central Andes from combining terrestrial datasets with satellite based datasets

    NASA Astrophysics Data System (ADS)

    Schaller, Theresa; Sobiesiak, Monika; Götze, Hans-Jürgen; Ebbing, Jörg

    2015-04-01

    As horizontal gravity gradients are proxies for large stresses, the uniquely high gravity gradients of the South American continental margin seem to be indicative for the frequently occurring large earthquakes at this plate boundary. It has been observed that these earthquakes can break repeatedly the same respective segment but can also combine to form M>9 earthquakes at the end of longer seismic cycles. A large seismic gap left behind by the 1877 M~9 earthquake existed in the northernmost part of Chile. This gap has partially been ruptured in the Mw 7.7 2007 Tocopilla earthquake and the Mw 8.2 2014 Pisagua earthquake. The nature of this seismological segmentation and the distribution of energy release in an earthquake is part of ongoing research. It can be assumed that both features are related to thickness variations of high density bodies located in the continental crust of the coastal area. These batholiths produce a clear maximum in the gravity signal. Those maxima also show a good spatial correlation with seismic asperity structures and seismological segment boundaries. Understanding of the tectonic situation can be improved through 3D forward density modelling of the gravity field. Problems arise in areas with less ground measurements. Especially in the high Andes severe gaps exist due to the inaccessibility of some regions. Also the transition zone between on and offshore date data displays significant problems, particularly since this is the area that is most interesting in terms of seismic hazard. We modelled the continental and oceanic crust and upper mantle using different gravity datasets. The first one includes terrestrial data measured at a station spacing of 5 km or less along all passable roads combined with satellite altimetry data offshore. The second data set is the newly released EIGEN-6C4 which combines the latest satellite data with ground measurements. The spherical harmonics maximum degree of EIGEN-6C4 is 2190 which corresponds to a

  16. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  17. A satellite based telemetry link for a UAV application

    NASA Technical Reports Server (NTRS)

    Bloise, Anthony

    1995-01-01

    The requirements for a satellite based communication facility to service the needs of the Geographical Information System (GIS) data collection community are addressed in this paper. GIS data is supplied in the form of video imagery at sub-television rates in one or more spectral bands / polarizations laced with a position correlated data stream. The limitations and vicissitudes of using a terrestrial based telecommunications link to collect GIS data are illustrated from actual mission scenarios. The expectations from a satellite based communications link by the geophysical data collection community concerning satellite architecture, operating bands, bandwidth, footprint agility, up link and down link hardware configurations on the UAV, the Mobile Control Vehicle and at the Central Command and Data Collection Facility comprise the principle issues discussed in the first section of this paper. The final section of the paper discusses satellite based communication links would have an increased volume and scope of services the GIS data collection community could make available to the GIS user community, and the price the data collection community could afford to pay for access to the communication satellite described in the paper.

  18. Leo satellite-based telecommunication network concepts

    NASA Technical Reports Server (NTRS)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-01-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  19. Performance of Duplex Communication between a Leo Satellite and Terrestrial Location Using a Geo Constellation

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.; Konangi, Vijay K.; Wallett, Thomas M.

    1998-01-01

    A network comprised of a terrestrial site, a constellation of three GEO satellites and a LEO satellite is modeled and simulated. Continuous communication between the terrestrial site and the LEO satellite is facilitated by the GEO satellites. The LEO satellite has the orbital characteristics of the International Space Station. Communication in the network is based on TCP/IP over ATM, with the ABR service category providing the QoS, at OC-3 data rate. The OSPF protocol is used for routing. We simulate FTP file transfers, with the terrestrial site serving as the client and the LEO satellite being the server. The performance characteristics are presented.

  20. Wireless infrared communications for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Crimmins, James W.

    1993-01-01

    Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.

  1. Study of the integration of advanced communications satellite systems and terrestrial networks, executive summary

    NASA Astrophysics Data System (ADS)

    1988-04-01

    Two levels of integration of satellite and terrestrial communication networks were examined: level 1 where 1 earth station is installed at each of the existing or planned 48 international switching centers in Europe; and level 2 where earth stations are installed at the first significant hierarchical level (850 nodes) of the future network of the European countries. Both levels are technically feasible. The main source of economies lies in the ability of the satellite system to derive Erlang advantages by the aggregation of relatively low density international traffic streams, which would otherwise flow via numerous terrestrial routes, through a single transmission facility. An implementation plan based on EUTELSAT 2 and 3 is suggested.

  2. Hybrid terrestrial/satellite networks and interoperability among public safety communication systems

    NASA Astrophysics Data System (ADS)

    Deobald, Brian M.

    2005-06-01

    A recent FCC decision1 has validated a new architecture with the potential to provide all of North America with an unusually broad and powerful wireless communications system. This architecture permits an existing allocation of mobile satellite spectrum to power a hybrid network, comprised of both terrestrial and satellite components. A satellite provides ubiquitous coverage, switching to a terrestrial-based cellular technology when in urban areas. The terrestrial component also provides capacity in areas of high demand. This ultra wide-area hybrid network, in turn, can act as a hub in an interlocking system of networks, incorporating public safety LMRs. The applicability of this system to homeland security should be obvious. It works nearly everywhere. It continues working even when towers are down throughout a wide area. It works with a conventional mobile device in a functionally transparent manner, providing first responders with interoperability, coverage, and redundancy needed to execute both their day-to-day and exigent responsibilities.

  3. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  4. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  5. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  6. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  7. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  8. Satellite/Terrestrial Networks: End-to-End Communication Interoperability Quality of Service Experiments

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1998-01-01

    Various issues associated with satellite/terrestrial end-to-end communication interoperability are presented in viewgraph form. Specific topics include: 1) Quality of service; 2) ATM performance characteristics; 3) MPEG-2 transport stream mapping to AAL-5; 4) Observation and discussion of compressed video tests over ATM; 5) Digital video over satellites status; 6) Satellite link configurations; 7) MPEG-2 over ATM with binomial errors; 8) MPEG-2 over ATM channel characteristics; 8) MPEG-2 over ATM over emulated satellites; 9) MPEG-2 transport stream with errors; and a 10) Dual decoder test.

  9. A Real-Time Testbed for Satellite and Terrestrial Communications Experimentation and Development

    NASA Technical Reports Server (NTRS)

    Angkasa, K.; Hamkins, J.; Jao, J.; Lay, N.; Satorius, E.; Zevallos, A.

    1997-01-01

    This paper describes a programmable DSP-based testbed that is employed in the development and evaluation of blind demodulation algorithms to be used in wireless satellite or terrestrial communications systems. The testbed employs a graphical user interface (GUI) to provide independent, real-time control of modulator, channel and demodulator parameters and also affords realtime observation of various diagnostic signals such as carrier, timing recovery and decoder metrics. This interactive flexibility enables an operator to tailor the testbed parameters and environment to investigate the performance of any arbitrary communications system and channel model. Furthermore, a variety of digital and analog interfaces allow the testbed to be used either as a stand-alone digital modulator or receiver, thereby extending its experimental utility from the laboratory to the field.

  10. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases

    PubMed Central

    Collins, Kenneth G.; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R. Paul

    2016-01-01

    Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, including anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. Several Asian cultures have a strong tradition of using different varieties of seaweed extensively in cooking as well as in herbal medicines preparations. As such, seaweeds have been used to treat a wide variety of health conditions such as cancer, digestive problems, and renal disorders. Today, increasing numbers of people are adopting a “westernised lifestyle” characterised by low levels of physical exercise and excessive calorific and saturated fat intake. This has led to an increase in numbers of chronic Non-communicable diseases (NCDs) such as cancer, cardiovascular disease, and diabetes mellitus, being reported. Recently, NCDs have replaced communicable infectious diseases as the number one cause of human mortality. Current medical treatments for NCDs rely mainly on drugs that have been obtained from the terrestrial regions of the world, with the oceans and seas remaining largely an untapped reservoir for exploration. This review focuses on the potential of using seaweed derived bioactives including polysaccharides, antioxidants and fatty acids, amongst others, to treat chronic NCDs such as cancer, cardiovascular disease and diabetes mellitus. PMID:26999166

  11. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases.

    PubMed

    Collins, Kenneth G; Fitzgerald, Gerald F; Stanton, Catherine; Ross, R Paul

    2016-03-01

    Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, including anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. Several Asian cultures have a strong tradition of using different varieties of seaweed extensively in cooking as well as in herbal medicines preparations. As such, seaweeds have been used to treat a wide variety of health conditions such as cancer, digestive problems, and renal disorders. Today, increasing numbers of people are adopting a "westernised lifestyle" characterised by low levels of physical exercise and excessive calorific and saturated fat intake. This has led to an increase in numbers of chronic Non-communicable diseases (NCDs) such as cancer, cardiovascular disease, and diabetes mellitus, being reported. Recently, NCDs have replaced communicable infectious diseases as the number one cause of human mortality. Current medical treatments for NCDs rely mainly on drugs that have been obtained from the terrestrial regions of the world, with the oceans and seas remaining largely an untapped reservoir for exploration. This review focuses on the potential of using seaweed derived bioactives including polysaccharides, antioxidants and fatty acids, amongst others, to treat chronic NCDs such as cancer, cardiovascular disease and diabetes mellitus. PMID:26999166

  12. Communication

    NASA Technical Reports Server (NTRS)

    Griner, James

    2010-01-01

    NASA s communication work for the UAS Command and Control area will build upon work currently being conducted under NASA Recovery Act funds. Communication portions of UAS NextGen ConOps, Stateof- the-Art assessment, and Gap Analysis. Preliminary simulations for UAS CNPC link scalability assessment. Surrogate UAS aircraft upgrades. This work will also leverage FY10 in-guide funding for communication link model development. UAS are currently managed through exceptions and are operating using DoD frequencies for line-of-sight (LOS) and satellite-based communications links, low-power LOS links in amateur bands, or unlicensed Instrument/Scientific/Medical (ISM) frequencies. None of these frequency bands are designated for Safety and Regularity of Flight. No radio-frequency (RF) spectrum has been allocated by the International Telecommunications Union (ITU) specifically for UAS command and control links, for either LOS or Beyond LOS (BLOS) communication.

  13. Analysis of laser jamming to satellite-based detector

    NASA Astrophysics Data System (ADS)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100m

  14. Global root zone storage capacity from satellite-based evaporation

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  15. Impact of space weather events on satellite-based navigation

    NASA Astrophysics Data System (ADS)

    Roy, B.; DasGupta, A.; Paul, A.

    2013-12-01

    effects of the equatorial ionospheric irregularities on satellite-based communication and navigation systems have been studied over the past few decades as space weather events have the potential to seriously disturb the technological infrastructure of modern society. The present paper tries to understand operational compliance of Global Positioning System (GPS) receivers to International Civil Aviation Organization (ICAO) standards under scintillation conditions by recording the received phase of the L1(1575.42 MHz) signal from two stations, namely Calcutta situated near the northern crest of the Equatorial Ionization Anomaly and Siliguri, situated beyond the northern crest, at a subionospheric latitude separation of 4° along the same meridian. A causative approach is adopted whereby GPS phase scintillations have been monitored and receiver performance prior to loss of lock and cycle slips have been analyzed during August-October 2011 at Calcutta and September 2011 at Siliguri. The received phase at GPS-L1 frequency has often been found to fluctuate at kilohertz, often megahertz rates, thereby causing carrier-tracking loop malfunctions. It should be borne in mind that normal GPS receivers' carrier-tracking loops have a typical dynamic range of 14-18 Hz. Cycle slips have been observed with durations far exceeding ICAO specified levels for high dynamic platforms like aircrafts. Differences in cycle slips between Calcutta and Siliguri indicate possible evolution of irregularity structures even across small subionospheric swath. Significant improvement in present understanding of GPS phase scintillations should be developed and implemented in receiver designs prior to application of Satellite Based Augmentation System services for civil aviation, particularly in the geophysically sensitive equatorial region.

  16. A satellite-based radar wind sensor

    NASA Technical Reports Server (NTRS)

    Xin, Weizhuang

    1991-01-01

    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.

  17. Physics-based modeling of wave propagation for terrestrial and space communications

    NASA Astrophysics Data System (ADS)

    Wang, Feinian

    This dissertation investigates the solutions to two important and challenging problems of radio wave propagation in wireless communication. The first problem pertains to modeling of wave propagation in foliage. The second problem involves a comprehensive study in enhancing the radio uplink between a ground station and a spacecraft using an array of reflector antennas. Solutions are developed using physics-based modeling which allows for realistic simulations of physical environments and gives insight into wave propagation mechanisms. For the foliage problem, various models are developed for different applications. The foundation of these advanced models is an existing fractal-based coherent scattering model (FCSM). To extend the region of validity of FCSM, an enhanced version is developed by accounting for mutual coupling among leaves within leaf clusters. An outdoor path-loss measurement is conducted at Ka-band; comparison between measured and simulation results demonstrates a great improvement with the enhanced model. The difficulty of direct application of FCSM to estimate foliage path-loss over long distances is also resolved by analyzing a single block of forest and applying the wave propagation behavior to all forest blocks. This statistical wave propagation model (SWAP) is successfully validated. In order to develop a simple-to-use macro-model for foliage path-loss, sensitivity analysis is performed using a large number of SWAP model simulations. Then a physics-based parametric model is selected and its parameters are related to the foliage/system parameters. Examples of this Michigan foliage attenuation model (MIFAM) are presented for both deciduous and coniferous forests. For the ground array problem, an external uplink phase calibration is needed due to the insufficient accuracy of determining the phase centers of an array of antennas. Three schemes are proposed. The first one presents a radar calibration procedure based on phase conjugation, and uses low

  18. Delivery of satellite based broadband services

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, M. G.; Venugopal, D.

    2007-06-01

    Availability of speedy communication links to individuals and organizations is essential to keep pace with the business and social requirements of this modern age. While the PCs have been continuously growing in processing speed and memory capabilities, the availability of broadband communication links still has not been satisfactory in many parts of the world. Recognizing the need to give fillip to the growth of broadband services and improve the broadband penetration, the telecom policies of different counties have placed special emphasis on the same. While emphasis is on the use of fiber optic and copper in local loop, satellite communications systems will play an important role in quickly establishing these services in areas where fiber and other communication systems are not available and are not likely to be available for a long time to come. To make satellite communication systems attractive for the wide spread of these services in a cost effective way special emphasis has to be given on factors affecting the cost of the bandwidth and the equipment. As broadband services are bandwidth demanding, use of bandwidth efficient modulation technique and suitable system architecture are some of the important aspects that need to be examined. Further there is a need to re-look on how information services are provided keeping in view the user requirements and broadcast capability of satellite systems over wide areas. This paper addresses some of the aspects of delivering broadband services via satellite taking Indian requirement as an example.

  19. Satellite-Based Educational Services. Technical Memorandum.

    ERIC Educational Resources Information Center

    Operations Research, Inc., Silver Spring, MD.

    This memorandum contains engineering information relevant to the use of communication satellites for educational purposes. Information is provided for ground terminals as well as satellites. Satellite related issues addressed include: (1) expected life of service of various satellites, (2) constraints on the availability of the satellites, (3)…

  20. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    NASA Technical Reports Server (NTRS)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  1. Evaluation of quantitative satellite-based retrievals of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Pavolonis, M. J.; Bojinski, S.; Siddans, R.; Thomas, G.

    2015-12-01

    Volcanic ash clouds are a serious hazard to aviation, and mitigation requires a robust system of volcano monitoring, eruption detection, characterization of cloud properties, forecast of cloud movement, and communication of warnings. Several research groups have developed quantitative satellite-based volcanic ash products and some of these are in operational use by Volcanic Ash Advisory Centers around the world to aid in characterizing cloud properties and forecasting regions of ash hazard. The algorithms applied to the satellite data utilize a variety of techniques, and thus produce results that differ. The World Meteorological Organization has recently sponsored an intercomparison study of satellite-based retrievals with four goals: 1) to establish a validation protocol for satellite-based volcanic ash products, 2) to quantify and understand differences in products, 3) to develop best practices, and 4) to standardize volcanic cloud geophysical parameters. Six volcanic eruption cases were considered in the intercomparison: Eyjafallajökull, Grimsvötn, Kelut, Kirishimayama, Puyehue-Cordón Caulle, and Sarychev Peak. Twenty-four algorithms were utilized, which retrieved parameters including: ash cloud top height, ash column mass loading, ash effective radius, and ash optical depth at visible and thermal-infrared wavelengths. Results were compared to space-based, airborne, and ground-based lidars; complementary satellite retrievals; and manual "expert evaluation" of ash extent. The intercomparison results will feed into the International Civil Aviation Organization "Roadmap for International Airways Volcano Watch", which integrates volcanic meteorological information into decision support systems for aircraft operations.

  2. Changes in Hemispheric Snow Accumulation Based on CMIP5 Simulations and Satellite-Based Data

    NASA Astrophysics Data System (ADS)

    Luojus, Kari; Pulliainen, Jouni; Cohen, Juval; Ikonen, Jaakko; Takala, Matias; Lemmetyinen, Juha; Smolander, Tuomo; Derksen, Chris

    2015-04-01

    The European Space Agency (ESA) GlobSnow project has produced a daily hemisphere-scale satellite-based snow water equivalent (SWE) data record spanning more than 30-years. The GlobSnow SWE record, based on methodology by Pulliainen [1] utilizes a data-assimilation based approach for the estimation of SWE which was shown to be superior to the approaches depending solely on satellite-based data [2]. The GlobSnow SWE data record is based on the time-series of measurements by three different space-borne passive radiometers (SMMR, SSM/I and SSMIS) measuring in the microwave region, spanning from 1980 to present day at a spatial resolution of approximately 25 km. We briefly introduce the GlobSnow hemispherical dataset on SWE produced using a variational assimilation scheme combining satellite data with ground-based observations that has been used to construct a 30+ years daily time-series of terrestrial snow cover. We present the comparison of GlobSnow SWE dataset with climate model simulations from the CMIP5 archive. The objective of this work is to investigate the performance of the CMIP5 models in capturing the evolution of hemispheric scale snow conditions for the period of 1980 to 2013. The climate model simulations on snow cover extent, snow depth and snow water equivalent are assessed against an ensemble of GlobSnow SWE datasets compiled from different GlobSnow product versions. The future projections of the CMIP5 model simulations on snow cover are also investigated. The assessment indicates a decreasing trend in spring time hemispherical snow mass for the period of 1980 to 2013 in remote-sensing based data record. The inter-comparison of satellite-based record and climate model simulations show large differences in autumn, winter and spring time Hemispherical scale snow conditions. Similar trends of decreasing snow cover are also seen in the investigated CMIP5 models, although there is a notable variance between different models. Some of the models capture the

  3. Multi-spectral band selection for satellite-based systems

    SciTech Connect

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-09-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.

  4. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  5. Adaptive Sparse Signal Processing for Discrimination of Satellite-based Radiofrequency (RF) Recordings of Lightning Events

    NASA Astrophysics Data System (ADS)

    Moody, D. I.; Smith, D. A.; Heavner, M.; Hamlin, T.

    2014-12-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. The Fast On-orbit Recording of Transient Events (FORTE) satellite, launched in 1997, provided a rich RF lightning database. Application of modern pattern recognition techniques to this dataset may further lightning research in the scientific community, and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We extend sparse signal processing techniques to radiofrequency (RF) transient signals, and specifically focus on improved signature extraction using sparse representations in data-adaptive dictionaries. We present various processing options and classification results for on-board discharges, and discuss robustness and potential for capability development.

  6. Satellite based permafrost modeling in low land tundra landscapes

    NASA Astrophysics Data System (ADS)

    Langer, M.; Westermann, S.; Heikenfeld, M.; Boike, J.

    2012-12-01

    For most of the cryosphere components such as glaciers, ice sheets, sea ice, and snow satellite monitoring and change detection is well established since several decades. For permafrost, however, which represents the largest component of the Arctic cryosphere operational satellite monitoring schemes do not exist so far. Most of the processes which control the Arctic terrestrial ecosystems are related to the thermal state of permafrost and the freeze/thaw dynamics of the active layer. Hence, satellite based permafrost monitoring would be highly beneficial for the impact assessment of climate change in the Arctic. Permafrost monitoring could also be highly beneficial for the risk assessment of infrastructure in the Arctic such as roads, pipelines, and buildings which are directly affected by the thermal stability of permafrost. Increasing thaw depths and prolonged thaw periods can damage pipelines and interrupt the access to vast regions due to road damages. Sustained warming of permafrost can result in thermal erosion and landslides which threaten buildings and other infrastructural facilities. In this study we present a possible permafrost monitoring scheme based on a numerical heat flow model which is forced by multiple satellite products and initialized by weather reanalysis data. The used forcing and initialization dataset includes the land surface temperature (LST), the snow cover fraction (SCF), and the snow water equivalent (SWE). Previous studies demonstrated that MODIS LST products can deliver reasonable surface temperature measurements in tundra landscapes (Langer et al. 2010, Westermann et al. 2011). This study is based on the ten year record of the daily MOD11A1v5 and MYD11A1v5 land surface temperature products with a spatial resolution of 1km. The snow cover evolution is obtained from the daily GlobSnow SWE product with a spatial resolution of about 25km. In addition, the MODIS snow cover products MOD10A1v5 and MYD10v5 with a resolution of 1km are used

  7. Satellite Based Synchronous Tutorials vs. Satellite Based Asynchronous Videocassettes: Factors Affecting Students' Attitudes and Choices.

    ERIC Educational Resources Information Center

    Beyth-Marom, Ruth; Saporta, Kelly

    The Open University of Israel (OUI) is a distance learning university. Learning is based mainly on textbooks and meetings with tutors in learning centers throughout the country. However, these meetings sometimes do not materialize. Synchronous virtual tutorials, via satellite communication from a studio at the university to classrooms throughout…

  8. Global trends in satellite-based emergency mapping

    NASA Astrophysics Data System (ADS)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  9. Global trends in satellite-based emergency mapping

    USGS Publications Warehouse

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  10. Global trends in satellite-based emergency mapping.

    PubMed

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective. PMID:27418503

  11. Internetworking satellite and local exchange networks for personal communications applications

    NASA Technical Reports Server (NTRS)

    Wolff, Richard S.; Pinck, Deborah

    1993-01-01

    The demand for personal communications services has shown unprecedented growth, and the next decade and beyond promise an era in which the needs for ubiquitous, transparent and personalized access to information will continue to expand in both scale and scope. The exchange of personalized information is growing from two-way voice to include data communications, electronic messaging and information services, image transfer, video, and interactive multimedia. The emergence of new land-based and satellite-based wireless networks illustrates the expanding scale and trend toward globalization and the need to establish new local exchange and exchange access services to meet the communications needs of people on the move. An important issue is to identify the roles that satellite networking can play in meeting these new communications needs. The unique capabilities of satellites, in providing coverage to large geographic areas, reaching widely dispersed users, for position location determination, and in offering broadcast and multicast services, can complement and extend the capabilities of terrestrial networks. As an initial step in exploring the opportunities afforded by the merger of satellite-based and land-based networks, several experiments utilizing the NASA ACTS satellite and the public switched local exchange network were undertaken to demonstrate the use of satellites in the delivery of personal communications services.

  12. Communication.

    ERIC Educational Resources Information Center

    Strauss, Andre

    The following essays on communication are presented: communication as a condition of survival, communication for special purposes, the means of transmission of communication, communication within social and economic structures, the teaching of communication through the press, the teaching of modern languages, communication as a point of departure,…

  13. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  14. Performance study of terrestrial multi-hop OFDM FSO communication systems with pointing errors over turbulence channels

    NASA Astrophysics Data System (ADS)

    Nistazakis, H. E.; Ninos, M. P.; Tsigopoulos, A. D.; Zervos, D. A.; Tombras, G. S.

    2016-08-01

    The free-space optical communication systems attract significant research and commercial interest the last few years, due to their high performance and reliability characteristics along with their, relatively, low installation and operational cost. Moreover, due to the fact that these systems are using the atmosphere as propagation path, their performance is varying according to its characteristics. Here, we present the performance analysis of a serially relayed radio-on-free-space-optical (RoFSO) communication system which employs the orthogonal frequency division multiplexing technique, with a quadrature amplitude modulation scheme, over atmospheric turbulence channels modelled by either the Gamma-Gamma or the Gamma distribution model. For this RoFSO communication link, we derive closed-form mathematical expressions for the estimation of its average bit error rate and outage probability, taking into account the relays' number, the atmospheric turbulence and the pointing errors effect. Furthermore, for realistic parameter values, numerical results are presented using the derived mathematical expressions, which are verified through the corresponding numerical simulations.

  15. The Future of Satellite-based Lightning Detection

    NASA Technical Reports Server (NTRS)

    Bocippio, Dennis J.; Christian, Hugh J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The future of satellite-based optical lightning detection, beyond the end of the current TRMM mission, is discussed. Opportunities for new low-earth orbit missions are reviewed. The potential for geostationary observations is significant; such observations provide order-of-magnitude gains in sampling and data efficiency over existing satellite convective observations. The feasibility and performance (resolution, sensitivity) of geostationary measurements using current technology is discussed. In addition to direct and continuous hemispheric observation of lighting, geostationary measurements have the potential (through data assimilation) to dramatically improve short and medium range forecasts, offering benefits to prediction of NOx productions and/or vertical transport.

  16. Influence of relativistic effects on satellite-based clock synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2016-03-01

    Clock synchronization between the ground and satellites is a fundamental issue in future quantum telecommunication, navigation, and global positioning systems. Here, we propose a scheme of near-Earth orbit satellite-based quantum clock synchronization with atmospheric dispersion cancellation by taking into account the spacetime background of the Earth. Two frequency entangled pulses are employed to synchronize two clocks, one at a ground station and the other at a satellite. The time discrepancy of the two clocks is introduced into the pulses by moving mirrors and is extracted by measuring the coincidence rate of the pulses in the interferometer. We find that the pulses are distorted due to effects of gravity when they propagate between the Earth and the satellite, resulting in remarkably affected coincidence rates. We also find that the precision of the clock synchronization is sensitive to the source parameters and the altitude of the satellite. The scheme provides a solution for satellite-based quantum clock synchronization with high precision, which can be realized, in principle, with current technology.

  17. Application of Satellite Based Augmentation Systems to Altitude Separation

    NASA Astrophysics Data System (ADS)

    Magny, Jean Pierre

    This paper presents the application of GNSS1, or more precisely of Satellite Based Augmentation Systems (SBAS), to vertical separation for en-route, approach and landing operations. Potential improvements in terms of operational benefit and of safety are described for two main applications. First, vertical separation between en-route aircraft, which requires a system available across wide areas. SBAS (EGNOS, WAAS, and MSAS) are very well suited for this purpose before GNSS2 becomes available. And secondly, vertical separation from the ground during approach and landing, for which preliminary design principles of instrument approach procedures and safety issues are presented. Approach and landing phases are the subject of discussions within ICAO GNSS-P. En-route phases have been listed as GNSS-P future work and by RTCA for development of new equipments.

  18. Adaptive sparse signal processing of satellite-based radio frequency (RF) recordings of lightning events

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.

    2014-05-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radio frequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Such impulsive events are dispersed through the ionosphere and appear as broadband nonlinear chirps at a receiver on-orbit. They occur in the presence of additive noise and structured clutter, making their classification challenging. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lightning database. Application of modern pattern recognition techniques to this database may further lightning research in the scientific community, and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. Conventional feature extraction techniques using analytical dictionaries, such as a short-time Fourier basis or wavelets, are not comprehensively suitable for analyzing the broadband RF pulses under consideration here. We explore an alternative approach based on non-analytical dictionaries learned directly from data, and extend two dictionary learning algorithms, K-SVD and Hebbian, for use with satellite RF data. Both algorithms allow us to learn features without relying on analytical constraints or additional knowledge about the expected signal characteristics. We then use a pursuit search over the learned dictionaries to generate sparse classification features, and discuss their performance in terms of event classification. We also use principal component analysis to analyze and compare the respective learned dictionary spaces to the real data space.

  19. Classification of satellite-based radio frequency transient recordings using sparse approximations over learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.

    2014-01-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radio frequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Such impulsive events occur in the presence of additive noise and structured clutter and appear as broadband nonlinear chirps at a receiver on-orbit due to ionospheric dispersion. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lightning database. Application of modern pattern recognition techniques to this database may further lightning research and potentially improve event discrimination capabilities for future satellite payloads. We extend two established dictionary learning algorithms, K-SVD and Hebbian, for use in classification of satellite RF data. Both algorithms allow us to learn features without relying on analytical constraints or additional knowledge about the expected signal characteristics. We use a pursuit search over the learned dictionaries to generate sparse classification features and discuss performance in terms of event classification using a nearest subspace classifier. We show a use of the two dictionary types in a mixed implementation to showcase algorithm distinctions in extracting discriminative information. We use principal component analysis to analyze and compare the learned dictionary spaces to the real data space, and we discuss some aspects of computational complexity and implementation.

  20. Terrestrial sequestration

    SciTech Connect

    Charlie Byrer

    2008-03-10

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  1. Terrestrial sequestration

    ScienceCinema

    Charlie Byrer

    2010-01-08

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  2. Real-time adjustment of satellite-based rainfall estimates using the conditional mean: hydrological validation over French Guiana

    NASA Astrophysics Data System (ADS)

    Brochart, David; Andréassian, Vazken

    2015-04-01

    Satellite precipitation products are known to be plagued by large biases, which limit their use for operational applications. This communication presents a robust approach to adjust the satellite-based rainfall estimates using an intensity-dependent error correction curve, determined by taking the mean of historic ground measurements given the satellite estimates (conditional mean). We apply the procedure to seven satellite precipitation products over French Guiana and present a double validation, first at the raingage scale, and then at the catchment scale. Over the six catchments used here, the rainfall-runoff simulations are considerably improved when the correction is applied, outperforming the well-established quantile mapping technique.

  3. Validation of the Global NASA Satellite-based Flood Detection System in Bangladesh

    NASA Astrophysics Data System (ADS)

    Moffitt, C. B.

    2009-12-01

    Floods are one of the most destructive natural forces on earth, affecting millions of people annually. Nations lying in the downstream end of an international river basin often suffer the most damage during flooding and could benefit from the real-time communication of rainfall and stream flow data from countries upstream. This is less likely to happen among developing nations due to a lack of freshwater treaties (Balthrop and Hossain, Water Policy, 2009). A more viable option is for flood-prone developing nations to utilize the global satellite rainfall and modeled runoff data that is independently and freely available from the NASA Satellite-based Global Flood Detection System. Although the NASA Global Flood Detection System has been in operation in real-time since 2006, the ‘detection’ capability of flooding has only been validated against qualitative reports in news papers and other types of media. In this study, a more quantitative validation against in-situ measurements of the flood detection system over Bangladesh is presented. Using ground-measured stream flow data as well as satellite-based flood potential and rainfall data, the study looks into the relationship between rainfall and flood potential, rainfall and stream flow, and stream flow and flood potential for three very distinct river systems in Bangladesh - 1) Ganges- a snow-fed river regulated by upstream India 2) Brahmaputra - a snow-fed river that is also braided 3) Meghna - a rain-fed river. The quantitative assessment will show the effectiveness of the NASA Global Flood Detection System for a very humid and flood prone region like Bangladesh that is also faced with tremendous transboundary hurdles that can only be resolved from the vantage of space.

  4. Communications

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald D.

    1990-01-01

    Communication in its many forms is a critical component for an effective Space Grant Program. Good communication is needed within individual Space Grant College/Consortia, for example between consortium affiliates and the consortium program office. Effective communication between the several programs, NASA Headquarters, and NASA field centers also is required. Further, communication among the above program elements, industry, local and state government, and the public also are necessary for meeting program objectives.

  5. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  6. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  7. Interoperability of satellite-based augmentation systems for aircraft navigation

    NASA Astrophysics Data System (ADS)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  8. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  9. Satellite -Based Networks for U-Health & U-Learning

    NASA Astrophysics Data System (ADS)

    Graschew, G.; Roelofs, T. A.; Rakowsky, S.; Schlag, P. M.

    2008-08-01

    The use of modern Information and Communication Technologies (ICT) as enabling tools for healthcare services (eHealth) introduces new ways of creating ubiquitous access to high-level medical care for all, anytime and anywhere (uHealth). Satellite communication constitutes one of the most flexible methods of broadband communication offering high reliability and cost-effectiveness of connections meeting telemedicine communication requirements. Global networks and the use of computers for educational purposes stimulate and support the development of virtual universities for e-learning. Especially real-time interactive applications can play an important role in tailored and personalised services.

  10. Development and validation of satellite based estimates of surface visibility

    NASA Astrophysics Data System (ADS)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V < 30 km), Low (2 km ≤ V < 10 km) and Poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  11. Communication.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This theme issue on communication includes annotated listings of Web sites, CD-ROM and computer software, videos, books, and professional resources that deal with various methods of communication. Sidebars discuss mythology, photojournalism, sharing ideas on the Web, and songs of protest. Suggestions for class activities are also included. (LRW)

  12. Satellite-based monitoring of air quality within QUITSAT project

    NASA Astrophysics Data System (ADS)

    di Nicolantonio, W.

    2009-04-01

    Satellite remote sensing of both trace gas constituents and Particulate Matter (PM) can be profitably exploited in Air Quality (AQ) assessment. The actual potential role of satellite observations is here highlighted combined with regional meteorological and Chemical Transport Models (CTM) in the context of air quality monitoring as experienced in QUITSAT Project over Northern Italy (from 43:09 to 46:39 N, from 6:19 to 14:23 E). QUITSAT (2006-2009) is a pilot project funded by the Italian Space Agency (ASI) in the framework of its institutional priorities for the Natural and Technological disaster management programme. AQ monitoring is in general based on local ground measurements. In recent years, this issue has been inserted in a more extended frame, in which CTM have joined ground-based data and satellite observations to provide a better characterization of AQ monitoring, forecasting and planning on a regional scale. In particular, two satellite-based products arisen from analysis methodologies developed in QUITSAT and relative to significant pollutants as PM2.5 and NO2 are presented within this work. The MODIS sensors capability (Terra and Aqua/NASA platforms) to retrieve Aerosol Optical Properties (AOP) has been used in a semi-empirical approach to estimate PM2.5 content at the ground. At first, PM2.5 concentration sampled in several sites over Northern Italy are employed in order to infer AOP to PM conversion parameters. A spatial-temporal coincidence procedure has been performed amongst EO and non-EO data. To take into account the aerosol columnar dispersion and the AOP dependence on the relative humidity (RH) meteorological fields (Planetary Boundary Layer and RH) simulated by MM5 are considered. MODIS aerosol level 2 products (MOD04 and MYD04 collection 5, 10x10 km2 spatial resolution) and PM2.5 samplings performed by Regional Environmental Agencies (ARPA Emilia Romagna and ARPA Lombardia) and carried out over further 6 measurements sites (located in Milano

  13. Satellite-based Observation of Arctic River Dynamics

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Brakenridge, R.; Hudson, B.

    2015-12-01

    One of the indicators of a warming Arctic region is an intensification of the hydrological cycle, with increasing permafrost and glacial melt and possibly more precipitation resulting in higher river runoff. Indeed, a significant increase of nearly 10% in annual river flux has been observed in 13 major rivers throughout the entire Arctic region over the last 30 years. However, direct measurements are extremely sparse for 100's of smaller-scale tundra river systems, as well as for proglacial rivers around the Greenland Ice Sheet margin. Observations at in-situ gauging stations are hampered by seasonal ice coverage, break-up and freeze-up dynamics, unstable banks, and difficult access. To overcome such difficulties, we develop remote-sensing based river discharge measurement techniques using a variety of satellite sensors, including reflectance in the near-infrared band of MODIS, LANDSAT, and brightness temperature from the passive microwave sensors AMSR-E and AMSR-2. We use varying inundation of the river channel and floodplain throughout a season to quantify the changing Arctic river flux. A new approach to detect river ice break up in spring has been developed, and is now undergoing validation. To calibrate the remote sensing signal to daily river discharge, we employ either in-situ short observation records, or a numerical distributed hydrological model driven by daily reanalysis climate data. Quantitative reconstructions of meltwater fluxes in rivers along the Greenland Ice Sheet margin obtained so far show a dampened response of these rivers to Greenland Ice Sheet melt. Techniques are now deployed to map river dynamics along the Chukchi Sea and Beaufort Sea coasts, and show shifts in break-up dynamics and flooding patterns. Once calibrated, satellite-based reconstructions have the potential to lengthen short observational records to a ~15 year timespan.

  14. Dissemination of satellite-based river discharge and flood data

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  15. TERRESTRIAL ECOTOXICOLOGY

    EPA Science Inventory

    Terrestrial ecotoxicology is the study of how environmental pollutants affect land-dependent organisms and their environment. It requires three elements: (1) a source, (2) a receptor, and (3) an exposure pathway. This article reviews the basic principles of each of each element...

  16. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terrestrial broadcast content. 76.1909 Section 76.1909 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Redistribution control of unencrypted digital terrestrial broadcast content. (a) For the purposes of this section, the terms unencrypted digital terrestrial broadcast content, EIT, PMT, broadcast flag,...

  17. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terrestrial broadcast content. 76.1909 Section 76.1909 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Redistribution control of unencrypted digital terrestrial broadcast content. (a) For the purposes of this section, the terms unencrypted digital terrestrial broadcast content, EIT, PMT, broadcast flag,...

  18. Rainfall Estimation From The Persiann Satellite-based Algorithm

    NASA Astrophysics Data System (ADS)

    Hsu, K.; Sorooshian, S.; Gao, X.; Gupta, H.; Imam, B.

    Satellite-based rainfall estimates are important for many regions of the world where ground-based measurements are not well established and where continuous sensing is required. For years, many algorithms using geostationary satellite infrared imagery were developed. However, because cloud top temperatures are not corresponding well to the surface rainfall at pixel level, rainfall retrievals from algorithms developed us- ing pixel-by-pixel relationships are shown to be less accurate at high spatial-temporal scales. In this study, a rainfall estimation system, named PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks), is introduced. This system uses neural network function classification/approximation procedures to compute an estimate of rainfall rate at each 0.25 ` 0.25 pixel of the infrared brightness temperature image provided by geostationary satellites. More ef- fective features were included in the input system from scanning the infrared pixel array with a 5 ` 5 moving window surrounding an estimation pixel. Five statistics in- cluding the means and standard deviations of various window temperatures were ex- tracted. Further, a classification scheme, name self-organizing feature map, was used to classify those five features into a large number of rain/no-rain groups associated with different cloud characteristics. For each group, a multivariate linear function was provided to relate the values of the input features to the output rain rate at 30-minute time intervals. One additional feature of the PERISANN system is that the system pa- rameters are routinely adjustable from limited observation, such as passive microwave TRMM TMI and DMSP SSM/I rainfall rates and ground-based radar/gauge observa- tions. Therefore, updated rainfall estimates are continually provided. The PERSIANN system is currently in operation, and global six-hour rainfall products (50oS-50oN) are available through Hydrological Data and

  19. Operational Satellite-based Surface Oil Analyses (Invited)

    NASA Astrophysics Data System (ADS)

    Streett, D.; Warren, C.

    2010-12-01

    During the Deepwater Horizon spill, NOAA imagery analysts in the Satellite Analysis Branch (SAB) issued more than 300 near-real-time satellite-based oil spill analyses. These analyses were used by the oil spill response community for planning, issuing surface oil trajectories and tasking assets (e.g., oil containment booms, skimmers, overflights). SAB analysts used both Synthetic Aperture Radar (SAR) and high resolution visible/near IR multispectral satellite imagery as well as a variety of ancillary datasets. Satellite imagery used included ENVISAT ASAR (ESA), TerraSAR-X (DLR), Cosmo-Skymed (ASI), ALOS (JAXA), Radarsat (MDA), ENVISAT MERIS (ESA), SPOT (SPOT Image Corp.), Aster (NASA), MODIS (NASA), and AVHRR (NOAA). Ancillary datasets included ocean current information, wind information, location of natural oil seeps and a variety of in situ oil observations. The analyses were available as jpegs, pdfs, shapefiles and through Google, KML files and also available on a variety of websites including Geoplatform and ERMA. From the very first analysis issued just 5 hours after the rig sank through the final analysis issued in August, the complete archive is still publicly available on the NOAA/NESDIS website http://www.ssd.noaa.gov/PS/MPS/deepwater.html SAB personnel also served as the Deepwater Horizon International Disaster Charter Project Manager (at the official request of the USGS). The Project Manager’s primary responsibility was to acquire and oversee the processing and dissemination of satellite data generously donated by numerous private companies and nations in support of the oil spill response including some of the imagery described above. SAB has begun to address a number of goals that will improve our routine oil spill response as well as help assure that we are ready for the next spill of national significance. We hope to (1) secure a steady, abundant and timely stream of suitable satellite imagery even in the absence of large-scale emergencies such as

  20. Implementation of National Satellite Based Data Archive (NASABADA) in Turkey

    NASA Astrophysics Data System (ADS)

    Gökdemir, Orhan; Beşer, Özgür; Sürer, Serdar

    2010-05-01

    NASABADA is a unique platform aiming to develop main geographical information system and remote sensing layers that are often used in areas such as: agriculture, forest, climate, hydrology, transportation, meteorology, and energy. Its establishment has started at the second half of the year 2009 in Turkey by Beray Engineering Company, and focused on especially Turkey domain as an individual study area. In general, examples of the satellite-based data-oriented production are usually on global scale and and focuses on a specific satellite. However, the products in NASABADA are consistent with Turkey's geographical conditions, and they are supported by ground information and a time series evaluation as well. Moreover, while developing those algorithms priority is using the national resources and providing a know-how for national information infrastructure. Using different features of satellite data and blending them with ground data to develop and provide the results to the end users of these products is one of the main goals of NASABADA Project. In the first stage of NASABADA, development of 7 products is planned, but the number of products is aimed to be around 20 in the future. The explanation of the pioneering 7 products which their preliminary versions would be published in the near future are as follows: albedo, snow cover, snow water equivalent, cloud, surface temperature, vegetation indices, and daily sun radiation maps. Unique architectural design, algorithms including fuzzy logic and ANN methods have been used for image processing and automatic analysis of large amounts of data on a high-tec file and web servers hardware infrastructure. The final aim of NASABADA is developing a data infrastructure for optimal access to those huge amounts of observational data by end users with tools available to make online processing of data and only gathering required images other than raw data. We discuss the development of the NASABADA data infrastructure, its current

  1. UAS CNPC Satellite Link Performance - Sharing Spectrum with Terrestrial Systems

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    In order to provide for the safe integration of unmanned aircraft systems into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. The 2012 World Radiocommunication Conference (WRC-12) provided a potentially suitable allocation for radio line-of-sight (LOS), terrestrial based CNPC link at 5030-5091 MHz. For a beyond radio line-of-sight (BLOS), satellite-based CNPC link, aviation safety spectrum allocations are currently inadequate. Therefore, the 2015 WRC will consider the use of Fixed Satellite Service (FSS) bands to provide BLOS CNPC under Agenda Item 1.5. This agenda item requires studies to be conducted to allow for the consideration of how unmanned aircraft can employ FSS for BLOS CNPC while maintaining existing systems. Since there are terrestrial Fixed Service systems also using the same frequency bands under consideration in Agenda Item 1.5 one of the studies required considered spectrum sharing between earth stations on-board unmanned aircraft and Fixed Service station receivers. Studies carried out by NASA have concluded that such sharing is possible under parameters previously established by the International Telecommunications Union. As the preparation for WRC-15 has progressed, additional study parameters Agenda Item 1.5 have been proposed, and some studies using these parameters have been added. This paper examines the study results for the original parameters as well as results considering some of the more recently proposed parameters to provide insight into the complicated process of resolving WRC-15 Agenda Item 1.5 and achieving a solution for BLOS CNPC for unmanned aircraft.

  2. GIO-EMS and International Collaboration in Satellite based Emergency Mapping

    NASA Astrophysics Data System (ADS)

    Kucera, Jan; Lemoine, Guido; Broglia, Marco

    2013-04-01

    characteristics and quality can become confusing for users. The urgent need for a better coordination has led to establishment of the International Working Group on Satellite Based Emergency Mapping (IWG-SEM). Members of the IWG-SEM, which include JRC, USGS, DLR-ZKI, SERVIR, Sentinel Asia, UNOSAT, UN-SPIDER, GEO, ITHACA and SERTIT have recognized the need to establish the best practice between operational satellite-based emergency mapping programs. The group intends to: • work with the appropriate organizations on definition of professional standards for emergency mapping, guidelines for product generation and reviewing relevant technical standards and protocols • facilitate communication and collaboration during the major emergencies • stimulate coordination of expertise and capacities. The existence of the group and the cooperation among members already brought benefits during recent disasters in Africa and Europe in 2012 in terms of faster and effective satellite data provision and better product generation.

  3. Satellite-based estimates of groundwater depletion in India.

    PubMed

    Rodell, Matthew; Velicogna, Isabella; Famiglietti, James S

    2009-08-20

    Groundwater is a primary source of fresh water in many parts of the world. Some regions are becoming overly dependent on it, consuming groundwater faster than it is naturally replenished and causing water tables to decline unremittingly. Indirect evidence suggests that this is the case in northwest India, but there has been no regional assessment of the rate of groundwater depletion. Here we use terrestrial water storage-change observations from the NASA Gravity Recovery and Climate Experiment satellites and simulated soil-water variations from a data-integrating hydrological modelling system to show that groundwater is being depleted at a mean rate of 4.0 +/- 1.0 cm yr(-1) equivalent height of water (17.7 +/- 4.5 km(3) yr(-1)) over the Indian states of Rajasthan, Punjab and Haryana (including Delhi). During our study period of August 2002 to October 2008, groundwater depletion was equivalent to a net loss of 109 km(3) of water, which is double the capacity of India's largest surface-water reservoir. Annual rainfall was close to normal throughout the period and we demonstrate that the other terrestrial water storage components (soil moisture, surface waters, snow, glaciers and biomass) did not contribute significantly to the observed decline in total water levels. Although our observational record is brief, the available evidence suggests that unsustainable consumption of groundwater for irrigation and other anthropogenic uses is likely to be the cause. If measures are not taken soon to ensure sustainable groundwater usage, the consequences for the 114,000,000 residents of the region may include a reduction of agricultural output and shortages of potable water, leading to extensive socioeconomic stresses. PMID:19675570

  4. Satellite-based Wetland Mapping in High Latitudes

    NASA Astrophysics Data System (ADS)

    Shah, C. A.; Sheng, Y.; Smith, L. C.; Li, J.; Lyons, E.; Hinkel, K. M.; Winston, B.

    2008-12-01

    The flat terrain with poor drainage in high-latitude regions yields excessive wetlands characterized by saturated soil and riparian vegetation. These wetlands have long been recognized for their importance in the global carbon and hydrological cycles and continue to receive substantial attention. As a part of our NASA THP (Terrestrial Hydrology Program) project to assess recent terrestrial water storage change in Arctic lakes and wetlands, this paper addresses wetland mapping using remote sensing. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) have been widely used in wetland mapping to quantify vegetation and underlying surface water. However, the performance of such indices is limited by the "mixed pixel" effect due to the fact that a wetland pixel comprises of mixed spectral responses of water and vegetation. Hence, we propose to estimate the abundance of each of these surface materials within a pixel through a spectral unmixing approach. The general assumption in spectral unmixing is that the observed pixel spectrum is a linear combination of several endmembers denoting pure material spectra available in existing spectral libraries. The limited and poor availability of ground truth in regional-scale research however prohibits the use of library spectra, necessitating the use of unsupervised spectral unmixing techniques. The proposed research applies independent component analysis (ICA) to perform a non-orthogonal linear transformation of the multi-spectral Landsat images for an unsupervised spectral unmixing to obtain water and vegetation abundances, which are crucial to wetland mapping. The method is highly efficient with a high-level of replicability and automation. Performance of the proposed approach is evaluated quantitatively, and a high accuracy is achieved in high-latitude wetland mapping.

  5. Communications

    ERIC Educational Resources Information Center

    Bailenson, Jeremy; Buzzanell, Patrice; Deetz, Stanley; Tewksbury, David; Thompson, Robert J.; Turow, Joseph; Bichelmeyer, Barbara; Bishop, M. J.; Gayeski, Diane

    2013-01-01

    Scholars representing the field of communications were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Jeremy Bailenson, Patrice Buzzanell, Stanley Deetz, David Tewksbury, Robert J. Thompson, and…

  6. Communications

    NASA Technical Reports Server (NTRS)

    Hathorn, S.

    1985-01-01

    An overview of NASA's Thin Route satellite telecommunication project is presented. Thin Route employs applications technology satellites (ATS) in place of more costly commercial multi- transponder telecommunications satellites. This system allows remote and underdeveloped areas to communicate with the outside world for purposes of obtaining medical assistance among other things. The system represents a substantial cost saving over commercial systems.

  7. Protocol Support for a New Satellite-Based Airspace Communication Network

    NASA Technical Reports Server (NTRS)

    Shang, Yadong; Hadjitheodosiou, Michael; Baras, John

    2004-01-01

    We recommend suitable transport protocols for an aeronautical network supporting Internet and data services via satellite. We study the characteristics of an aeronautical satellite hybrid network and focus on the problems that cause dramatically degraded performance of the Transport Protocol. We discuss various extensions to standard TCP that alleviate some of these performance problems. Through simulation, we identify those TCP implementations that can be expected to perform well. Based on the observation that it is difficult for an end-to-end solution to solve these problems effectively, we propose a new TCP-splitting protocol, termed Aeronautical Transport Control Protocol (AeroTCP). The main idea of this protocol is to use a fixed window for flow control and one duplicated acknowledgement (ACK) for fast recovery. Our simulation results show that AeroTCP can maintain higher utilization for the satellite link than end-to-end TCP, especially in high BER environment.

  8. 14 CFR 121.99 - Communications facilities-domestic and flag operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... are not available or are of such poor quality that voice communication is not possible, another... Airports. Where immediate, satellite-based voice communications are not available, or are of such...

  9. Advancement of Satellite-based Rainfall Applications for Hydrologic Modeling in Topographically Complex Regions

    NASA Astrophysics Data System (ADS)

    Yilmaz, Koray; Derin, Yagmur

    2014-05-01

    Accuracy and reliability of hydrological modeling studies heavily depends on quality and availability of precipitation estimates. However hydrological studies in developing countries, especially over complex topography, are limited due to unavailability and scarcity of ground-based networks. In this study we evaluate three different satellite-based rainfall retrieval algorithms namely, Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA), NOAA/Climate Prediction Center Morphing Method (CMORPH) and EUMETSAT's Multi-Sensor Precipitation Estimate (MPE) over orographically complex Western Black Sea Basin in Turkey, using a relatively dense rain gauge network. Our results indicated that satellite-based products significantly underestimated the rainfall in regions characterized by orographic rainfall and overestimated the rainfall in the drier regions with seasonal dependency. Further, we devised a new bias adjustment algorithm for the satellite-based rainfall products based on the "physiographic similarity" concept. Our results showed that proposed bias adjustment algorithm is better suited to regions with complex topography and provided improved results compared to the baseline "inverse distance weighting" method. To evaluate the utility of satellite-based products in hydrologic modeling studies, we implemented the MIKE SHE-MIKE 11 integrated fully distributed physically based hydrological model in the study region driven by ground-based and satellite-based precipitation estimates. Model parameter estimation was performed using a constrained calibration approach guided by multiple "signature measures" to estimate model parameters in a hydrologically meaningful way rather than using the traditional "statistical" objective functions that largely mask valuable hydrologic information during calibration process. In this presentation we will provide a discussion of evaluation and bias correction of the satellite-based precipitation products and

  10. Communications technology

    NASA Astrophysics Data System (ADS)

    Cuccia, C. Louis; Sivo, Joseph

    The technologies for optimized, i.e., state of the art, operation of satellite-based communications systems are surveyed. Features of spaceborne active repeater systems, low-noise signal amplifiers, power amplifiers, and high frequency switches are described. Design features and capabilities of various satellite antenna systems are discussed, including multiple beam, shaped reflector shaped beam, offset reflector multiple beam, and mm-wave and laser antenna systems. Attitude control systems used with the antenna systems are explored, along with multiplexers, filters, and power generation, conditioning and amplification systems. The operational significance and techniques for exploiting channel bandwidth, baseband and modulation technologies are described. Finally, interconnectivity among communications satellites by means of RF and laser links is examined, as are the roles to be played by the Space Station and future large space antenna systems.

  11. Influence of coherent mesoscale structures on satellite-based Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    1985-01-01

    The influence of coherent mesoscale structures on satellite based Doppler lidar wind measurements was investigated. Range dependent weighting functions and the single shot SNR of scan angle are examined and a space shuttle lidar experiment which used a fixed beam and rotating shuttle is simulated.

  12. A National Satellite-Based System for Providing Continuing Education to Engineers.

    ERIC Educational Resources Information Center

    Georgia Inst. of Tech., Atlanta.

    This document proposes, and indicates initial reaction to, a multi-point satellite-based delivery system which will permit expansion of current programs and services of the Association for Media-based Continuing Education for Engineers, Inc. (AMCEE) consortium to a much larger aggregated audience of practicing engineers throughout the country. It…

  13. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    EPA Science Inventory

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  14. Strategies for satellite-based monitoring of CO2 from distributed area and point sources

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David

    2014-05-01

    and sensor provides the full range of temporal sampling needed to characterize distributed area and point source emissions. For instance, point source emission patterns will vary with source strength, wind speed and direction. Because wind speed, direction and other environmental factors change rapidly, short term variabilities should be sampled. For detailed target selection and pointing verification, important lessons have already been learned and strategies devised during JAXA's GOSAT mission (Schwandner et al, 2013). The fact that competing spatial and temporal requirements drive satellite remote sensing sampling strategies dictates a systematic, multi-factor consideration of potential solutions. Factors to consider include vista, revisit frequency, integration times, spatial resolution, and spatial coverage. No single satellite-based remote sensing solution can address this problem for all scales. It is therefore of paramount importance for the international community to develop and maintain a constellation of atmospheric CO2 monitoring satellites that complement each other in their temporal and spatial observation capabilities: Polar sun-synchronous orbits (fixed local solar time, no diurnal information) with agile pointing allow global sampling of known distributed area and point sources like megacities, power plants and volcanoes with daily to weekly temporal revisits and moderate to high spatial resolution. Extensive targeting of distributed area and point sources comes at the expense of reduced mapping or spatial coverage, and the important contextual information that comes with large-scale contiguous spatial sampling. Polar sun-synchronous orbits with push-broom swath-mapping but limited pointing agility may allow mapping of individual source plumes and their spatial variability, but will depend on fortuitous environmental conditions during the observing period. These solutions typically have longer times between revisits, limiting their ability to resolve

  15. Free-space, laser-based data transmission: satellite communication as a technology driver for the development of fast, reliable terrestrial data networks

    NASA Astrophysics Data System (ADS)

    Gerken, Martin; Luichtel, Georg

    2008-04-01

    High-resolution digital images with high refresh rates cause an enormous amount of data that must be forwarded from the source to the recipient. This is where wireless transmission as an RF technology quickly reaches its limits. With its high bandwidth, laser-based data transmission avoids this problem. An added benefit is a higher level of security against eavesdropping that can be further increased through the use of quantum optical encryption techniques. For military applications, several scenarios will be considered. Especially for the navy, communication between a ship and land for remote forces using free space air at the eye-safe laser wavelength of 1550 nm is necessary. Data transfer at this wavelength between ships is also important for an exchange of tactical images of the local situation. In the future, the direct communication between a ship and a submarine through water will be required. Bug-proof and broad bandwidth transmission of reconnaissance data will be necessary over distances of approx. several 100 m at the laser wavelength of 532 nm. This paper will show how experiences gained through the development of optical data links from satellites to ground stations can be used as an enabling technology for additional applications for the development of stable data connections under atmospheric conditions.

  16. Comparison of INMARSAT and ATS3 satellite communication

    SciTech Connect

    Not Available

    1993-03-29

    There exists a need to provide communication through a satellite- based network which allows a user to communicate from a remote site to a fixed site. This discussion provides a comparison, both technical and financial, between the existing ATS3 satellite system and the commercial INMARSAT system. This comparison identified the limitations of each system to provide various types of communication.

  17. Visualization of Surface Processes over Space and Time using a Long Series of Satellite Based Imagery

    NASA Astrophysics Data System (ADS)

    Harris, T.; Schafer, R.; Hulslander, D.; O'Connor, A. S.; Wolfe, J.

    2014-12-01

    With the increasing diversity and long temporal record of satellite-based Earth imagery, we have new opportunities to better understand and predict Earth surface processes and activities. Satellite-based imagery is an increasingly important resource for analyzing changes in vegetation and land use, as well as monitoring the evolution of hazards and environmental conditions. A key requirement for exploitation of this imagery is visualization and extraction of multimodal data over space and time. Analysis of this imagery requires four primary components: 1) Assignment of acquisition time, spatial reference, and parameter descriptions, 2) Preprocessing including radiometric calibration, generation of derived parameters such as NDVI, and normalization to a common spatial grid, 3) Cataloging and access for discovering and extracting data through space, parameter, and time, and 4) Visualization techniques including animation, parameter-time, space-time, and space-frequency plots. Using ENVI, we will demonstrate how Landsat, MODIS, and Suomi NPP VIIRS data products can be prepared and visualized for exploring the evolution of processes and activities. Visual animation through a temporal stack of imagery is used to quickly understand trends in urban growth, vegetation, and land use. After exploring the temporal stack of images, spatio-temporal and periodic relationships are visualized using space-time and space-frequency representations of the data. Satellite-based imagery is a primary source of data for understanding global changes over time. To understand processes and activities, it is now increasingly important for data exploitation tools such as ENVI to easily extract data from multiple satellite-based sensors and visualize this multimodal data in both space and time.

  18. Online tools for uncovering data quality issues in satellite-based global precipitation products

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Heo, G.

    2015-12-01

    Accurate and timely available global precipitation products are important to many applications such as flood forecasting, hydrological modeling, vector-borne disease research, crop yield estimates, etc. However, data quality issues such as biases and uncertainties are common in satellite-based precipitation products and it is important to understand these issues in applications. In recent years, algorithms using multi-satellites and multi-sensors for satellite-based precipitation estimates have become popular, such as the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA) and the latest Integrated Multi-satellitE Retrievals for GPM (IMERG). Studies show that data quality issues for multi-satellite and multi-sensor products can vary with space and time and can be difficult to summarize. Online tools can provide customized results for a given area of interest, allowing customized investigation or comparison on several precipitation products. Because downloading data and software is not required, online tools can facilitate precipitation product evaluation and comparison. In this presentation, we will present online tools to uncover data quality issues in satellite-based global precipitation products. Examples will be presented as well.

  19. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Gautam, D.K.; Tokar, S.A.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32000km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC-RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC-RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC-RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction. ?? 2011 The Authors. Journal of Flood Risk Management ?? 2011 The Chartered Institution of Water and Environmental Management.

  20. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Artan, Guleid A.; Tokar, S.A.; Gautam, D.K.; Bajracharya, S.R.; Shrestha, M.S.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32 000 km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC_RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC_RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC_RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction.

  1. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  2. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2015-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: International

  3. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2016-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  4. Hemispherical Snow Water Equivalent Records of Satellite-Based Data and CMIP5 Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Luojus, Kari; Pulliainen, Jouni; Takala, Matias; Lemmetyinen, Juha; Smolander, Tuomo; Ikonen, Jaakko; Cohen, Juval; Derksen, Chris

    2013-04-01

    The European Space Agency (ESA) GlobSnow project has produced a daily hemisphere-scale satellite-based snow water equivalent (SWE) data record spanning more than 30-years. The GlobSnow SWE record, based on methodology by Pulliainen [1] utilizes a data-assimilation based approach for the estimation of SWE which was shown to be superior to the approaches depending solely on satellite-based data [2]. The GlobSnow SWE data record is based on the time-series of measurements by two different space-borne passive radiometers (SMMR and SSM/I) measuring in the microwave region, spanning from 1980 to present day at a spatial resolution of approximately 25 km. We briefly present the on-going efforts taking place for further enhancement of the satellite-based SWE retrieval and the way this transfers to the reliability of the long-term SWE climate record. The development of SWE retrieval are focused on application of a new HUT multi-layer snow emission model and variational snow density scheme for SWE retrieval and efforts carried out to improve the homogeneity of the long-term record of weather station-based snow depth observations that are applied within the SWE retrieval scheme. In addition, the GlobSnow satellite-based dataset is inter-compared with climate model simulations from the CMIP5 archive. The objective of this work is to investigate the performance of the CMIP5 models in capturing the evolution of hemispheric scale snow conditions for the period of 1980 to 2010. The climate model simulations on snow cover extent, snow depth and snow water equivalent are evaluated against the GlobSnow SWE record. The goal is to assess the performance of the CMIP5 models to simulate snow conditions for the time-period that is covered by satellite-based observations. The results indicate a clear decreasing trend in total hemispherical snow mass for the period of 1980 to 2010 in the remote-sensing based data record. The inter-comparison of satellite-based record and climate model

  5. Satellite-based assessment of water requirement for biofuel feedstock production in Maui, Hawaii

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Anderson, R. G.; Wang, D.

    2012-12-01

    Water availability is one of the limiting factors for sustainable production of biofuel crops. A common method for determining crop water requirement is to multiply daily potential evapotranspiration (ETo) calculated from meteorological parameters by a crop coefficient (Kc) to obtain actual crop evapotranspiration (ETc). Remote sensing data can provide dynamic Kc values that better reflect plant water use. In this study, an algorithm is being developed to estimate sugarcane Kc using normalized difference vegetation index (NDVI) obtained from Landsat 7 satellite images. Crop canopy cover was measured with a handheld multispectral camera from two sugarcane fields at the Hawaiian Commercial & Sugar Company (HC&S) plantation during the Landsat 7 satellite overpass days. An Eddy Covariance (EC) tower system was set up within each of these two fields and gathered EC flux at a 30-minute interval. Reference evapotranspiration was calculated from the network of automated weather stations at HC&S plantation using a modified Penman equation. Crop canopy cover was highly correlated with satellite NDVI values. A linear relationship between NDVI and measured Kc was obtained. Satellite -based ETc maps of HC&S plantation were developed using the NDVI-based Kc values and reference ET from HC&S weather station network. The satellite-based ETc was compared and validated with field measurements of ET using Eddy Covariance tower. A series of satellite-based ETc maps were developed to indicate the water demand of sugarcane plants at HC&S plantation. These results validate the use of satellite imagery as a tool for estimation of ET of sugarcane plants in Maui, Hawaii.

  6. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    SciTech Connect

    Sengupta, M.; Gotseff, P.

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  7. Agreements between ground-based and satellite-based observations. [of earth magnetospheric currents

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Weimer, D.; Iijima, T.; Ahn, B.-H.; Kamide, Y.

    1990-01-01

    The polar ionospheric parameters obtained by the meridian chain of magnetometers are compared with those obtained by satellites, and a number of ionospheric quantities including the distribution of the electric potential, field-aligned currents, ionospheric currents and their equatorial counterparts, and the relationship between the AE index and the cross-polar cap potential is determined. It is noted that the agreement observed between the ground-based and satellite-based results allows to reduce the search for the driving mechanism of the ionospheric Pedersen current to identifying the driving mechanism of the Pedersen counterpart current in the equatorial plane.

  8. Analysis of Artificial Spacecraft Detecting Rate via Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Jiang, Hu; Yin, Zen-Shan; Wang, Xiao-Ya; Yu, Jin-Pei; Liang, Xu-Wen

    2007-12-01

    With increasing number of spacecrafts in space, collision probabilities of spacecrafts are correspondingly growing. In order to ensure the safety of both Chinese satellites and other satellites and reduce interference with other satellites, it is necessary to remotely sense information of orbiting spacecrafts, including the orbit elements and physical structures. In addition to the ground-based techniques for remotely sensing of spacecrafts, satellite-based detecting of spacecrafts is a useful complementary way for sensing of spacecrafts. Based on spacecraft databank at hand, the detecting rate is presented under the assumption thet the observing instruments are mounted on a low Earth orbiting satellite.

  9. Eliminating Obliquity Error from the Estimation of Ionospheric Delay in a Satellite-Based Augmentation System

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2013-01-01

    Current satellite-based augmentation systems estimate ionospheric delay using algorithms that assume the electron density of the ionosphere is non-negligible only in a thin shell located near the peak of the actual profile. In its initial operating capability, for example, the Wide Area Augmentation System incorporated the thin shell model into an estimation algorithm that calculates vertical delay using a planar fit. Under disturbed conditions or at low latitude where ionospheric structure is complex, however, the thin shell approximation can serve as a significant source of estimation error. A recent upgrade of the system replaced the planar fit algorithm with an algorithm based upon kriging. The upgrade owes its success, in part, to the ability of kriging to mitigate the error due to this approximation. Previously, alternative delay estimation algorithms have been proposed that eliminate the need for invoking the thin shell model altogether. Prior analyses have compared the accuracy achieved by these methods to the accuracy achieved by the planar fit algorithm. This paper extends these analyses to include a comparison with the accuracy achieved by kriging. It concludes by examining how a satellite-based augmentation system might be implemented without recourse to the thin shell approximation.

  10. Development of satellite-based drought monitoring and warning system in Asian Pacific countries

    NASA Astrophysics Data System (ADS)

    Takeuchi, W.; Oyoshi, K.; Muraki, Y.

    2013-12-01

    This research focuses on a development of satellite-based drought monitoring warning system in Asian Pacific countries. Drought condition of cropland is evaluated by using Keeth-Byram Drought Index (KBDI) computed from rainfall measurements with GSMaP product, land surface temperature by MTSAT product and vegetation phenology by MODIS NDVI product at daily basis. The derived information is disseminated as a system for an application of space based technology (SBT) in the implementation of the Core Agriculture Support Program. The benefit of this system are to develop satellite-based drought monitoring and early warning system (DMEWS) for Asian Pacific counties using freely available data, and to develop capacity of policy makers in those countries to apply the developed system in policy making. A series of training program has been carried out in 2013 to officers and researchers of ministry of agriculture and relevant agencies in Greater Mekong Subregion countries including Cambodia, China, Myanmar, Laos, Thailand and Vietnam. This system is running as fully operational and can be accessed at http://webgms.iis.u-tokyo.ac.jp/DMEWS/.

  11. Evaluation of a Satellite-based Near Real-time Global Flood Prediction System

    NASA Astrophysics Data System (ADS)

    Yilmaz, K. K.; Adler, R. F.; Hong, Y.; Pierce, H. F.

    2008-12-01

    Satellite-based rainfall and geospatial datasets are potentially useful for cost effective detection and early warning of natural hazards, such as floods, specifically for regions of the world where local data are sparse or non-existent. An initial satellite-based near real-time global flood prediction system is operationally available on our website (http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html). The key input to the current system is the near real-time rainfall estimates from the NASA-based Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; 3 hourly, 0.258 x 0.258 degree). A relatively simple hydrologic model, based on the runoff curve number (CN) and antecedent precipitation index (API) methods, transforms rainfall into runoff. In this study we will present an in-depth testing/evaluation of this current flood prediction system, discuss its strengths and limitations and point toward potential improvements necessary for increasing its near real-time global flood prediction reliability and accuracy. This evaluation study will focus on the severe flooding events and will include comparison of the current product with observed runoff/inundation data at global and watershed scale as well as with other available remotely sensed products (e.g., MODIS-based inundation maps from Dartmouth Flood Observatory).

  12. Satellite-based observations of unexpected coastal changes due to the Saemangeum Dyke construction, Korea.

    PubMed

    Lee, Yoon-Kyung; Ryu, Joo-Hyung; Choi, Jong-Kuk; Lee, Seok; Woo, Han-Jun

    2015-08-15

    Spatial and temporal changes around an area of conventional coastal engineering can be easily observed from field surveys because of the clear cause-and-effect observable in the before and after stages of the project. However, it is more difficult to determine environmental changes in the vicinity of tidal flats and coastal areas that are a considerable distance from the project. To identify any unexpected environmental impacts of the construction of Saemangeum Dyke in the area, we examined morphological changes identified by satellite-based observations through a field survey on Gomso Bay tidal flats (15km from Saemangeum Dyke), and changes in the suspended sediment distribution identified by satellite-based observations through a hydrodynamic analysis in the Saemangeum and Gomso coastal area. We argue that hydrodynamic changes due to conventional coastal engineering can affect the sedimentation pattern in the vicinity of tidal flats. We suggest that the environmental impact assessment conducted before a conventional coastal engineering project should include a larger area than is currently considered. PMID:26104827

  13. Evaluation of satellite-based and reanalysis soil moisture products using ground-based measurements

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Niesel, Jonathan; Loew, Alexander; Zhang, Shiqiang; Wang, Jie

    2016-04-01

    Long-term global satellite-based and reanalysis soil moisture products have been available for several years. Comprehensive evaluation of these products is significant before using them. In this study, in-situ soil moisture measurements from 2008 to 2012 over Southwest China are used to examine the reliability of four satellite-based and one reanalysis soil moisture products. This study evaluates satellite data products (AMSR-E, ASCAT, ESA-CCI, SMOS) and reanalysis data (ERA-Interim) over Southwest China using new in situ soil moisture data. Evaluation of soil moisture absolute values and anomalies shows that all the products except for AMSR-E and SMOS can capture well the temporal dynamics of in-situ soil moisture. The bias and noise in AMSR-E and SMOS are probably due to the severe effects of radio frequency interference (RFI) over this region. In general, the ERA-Interim and CCI SM perform the best compared to the in situ data. The accuracy levels are comparable to validations over other regions worldwide. Therefore, local hydrological applications and water resources managements are expected to benefit a lot from the long-term ERA-Interim and CCI SM soil moisture products.

  14. Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    SciTech Connect

    Suszcynsky, David M.; Borovsky, Joseph E.; Thomsen, Michelle F.; McComas, David J.; Belian, Richard D.

    1996-09-01

    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations.

  15. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  16. Solar/terrestrial physics

    NASA Astrophysics Data System (ADS)

    Ivanov-Kholodnyi, G. S.; Lotova, N. A.; Obridko, V. N.; Fel'Dshtein, Ia. I.; Fomichev, V. V.

    The history of the development of solar/terrestrial physics research at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) is reviewed, and the activity of the Institute in organizing international solar/terrestrial physics research is examined. Particular attention is given to investigations of solar corpuscular radiation and its effect on the ionosphere; and to studies of auroras and the interplanetary medium.

  17. Globalstar communications payload for global mobile communications

    NASA Astrophysics Data System (ADS)

    Louie, Ming; Monte, Paul; Tyner, Randy; Rouffet, Denis; Gilhousen, Klein S.

    1992-03-01

    The Globalstar LEO satellite-based mobile-communications system is evaluated with respect to its potential for global digital communications and for radio-determination satellite service. The significant novel attributes of the Globalsat payload are examined including code-division multiple-access technologies, beam-hopping and time-domain-duplexing (TDD) capabilities, and six elliptical spot-beam L/S-band antennas. The antennas are designed to address the 'near-far' problem associated with mobile systems through the use of the Isoflux design. The Isoflux beams provide gain contours that compensate for differences in the spacecraft/earth slant range and that provide low spillover illumination. Two candidate payloads are presented - one which incorporates TDD and beam hopping - and found to provide efficient global mobile-communications services for the Globalstar system. A single satellite can provide up to 2800 full-duplex voice channels, and TDD allows uplink and downlink signals to share the same frequency.

  18. Introduction to Satellite Communications Technology for NREN

    NASA Technical Reports Server (NTRS)

    Stone, Thom

    2004-01-01

    NREN requirements for development of seamless nomadic networks necessitates that NREN staff have a working knowledge of basic satellite technology. This paper addresses the components required for a satellite-based communications system, applications, technology trends, orbits, and spectrum, and hopefully will afford the reader an end-to-end picture of this important technology.

  19. Satellite Based Education and Training in Remote Sensing and Geo-Information AN E-Learning Approach to Meet the Growing Demands in India

    NASA Astrophysics Data System (ADS)

    Raju, P. L. N.; Gupta, P. K.

    2012-07-01

    One of the prime activities of Indian Space Research Organisation's (ISRO) Space Program is providing satellite communication services, viz., television broadcasting, mobile communication, cyclone disaster warning and rescue operations etc. so as to improve their economic conditions, disseminate technical / scientific knowledge to improve the agriculture production and education for rural people of India. ISRO, along with National Aeronautical and Space Administration (NASA) conducted experimental satellite communication project i.e. Satellite Instructional Television Experiment (SITE) using NASA's Advanced Telecommunication Satellite (i.e. ATS 6) with an objective to educate poor people of India via satellite broadcasting in 1975 and 1976, covering more than 2600 villages in six states of India and territories. Over the years India built communication satellites indigenously to meet the communication requirements of India. This has further lead to launch of an exclusive satellite from ISRO for educational purposes i.e. EDUSAT in 2004 through which rich audio-video content is transmitted / received, recreating virtual classes through interactivity. Indian Institute of Remote Sensing (IIRS) established in 1966, a premier institute in south East Asia in disseminating Remote Sensing (RS) and Geographical Information System (GIS), mainly focusing on contact based programs. But expanded the scope with satellite based Distance Learning Programs for Universities, utilizing the dedicated communication satellite i.e. EDUSAT in 2007. IIRS conducted successfully eight Distance Learning Programs in the last five years and training more than 6000 students mainly at postgraduate level from more than 60 universities /Institutions spread across India. IIRS obtained feedback and improved the programs on the continuous basis. Expanded the scope of IIRS outreach program to train user departments tailor made in any of the applications of Remote Sensing and Geoinformation, capacity

  20. 47 CFR 25.263 - Information sharing requirements for SDARS terrestrial repeater operators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terrestrial repeater operators. 25.263 Section 25.263 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... requirements for SDARS terrestrial repeater operators. This section requires SDARS licensees in the 2320-2345 MHz band to share information regarding the location and operation of terrestrial repeaters with...

  1. 47 CFR 25.263 - Information sharing requirements for SDARS terrestrial repeater operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terrestrial repeater operators. 25.263 Section 25.263 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... requirements for SDARS terrestrial repeater operators. This section requires SDARS licensees in the 2320-2345 MHz band to share information regarding the location and operation of terrestrial repeaters with...

  2. TERRESTRIAL ECOSYSTEM SIMULATOR

    EPA Science Inventory

    The Terrestrial Habitats Project at the Western Ecology Division (Corvallis, OR) is developing tools and databases to meet the needs of Program Office clients for assessing risks to wildlife and terrestrial ecosystems. Because habitat is a dynamic condition in real-world environm...

  3. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  4. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    USGS Publications Warehouse

    2014-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hs are examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  5. Bias reduction for Satellite Based Precipitation Estimates using statistical transformations in Guiana Shield

    NASA Astrophysics Data System (ADS)

    Ringard, Justine; Becker, Melanie; Seyler, Frederique; Linguet, Laurent

    2016-04-01

    Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. In Guiana Shield all products exhibited better performances during the dry season (August- December). All products greatly overestimate very low intensities (<4 mm) and underestimate very high intensities (>50 mm). Moreover the responses of each product are different according to hydro climatic regimes. The aim of this study is to correct spatially the bias of precipitation, and compare various correction methods to define the best methods depending on the rainfall characteristic correcting (intensity, frequency). Four satellites products are used: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (3B42V7) and real time product (3B42RT), the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN) and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH), for six hydro climatic regimes between 2001 and 2012. Several statistical transformations are used to correct the bias. Statistical transformations attempt to find a function h that maps a simulated variable Ps such that its new distribution equals the distribution of the observed variable Po. The first is the use of a distribution derived transformations which is a mixture of the Bernoulli and the Gamma distribution, where the Bernoulli distribution is used to model the probability of precipitation occurrence and the Gamma distribution used to model precipitation intensities. The second a quantile-quantile relation using parametric transformation, and the last one is a common approach using the empirical CDF of observed and modelled values instead of assuming parametric distributions. For each correction 30% of both, simulated and observed data sets, are used to calibrate and the other part used to

  6. Weather Information Communications (WINCOMM) Overview and Status

    NASA Technical Reports Server (NTRS)

    Martzaklis, K.

    2003-01-01

    The second annual project review of Weather Information Communications (WINCOMM) is presented. The topics of discussion include: 1) In-Flight Weather Information; 2) System Elements; 3) Technology Investment Areas; 4) NAS Information Exchange; 5) FIS Datalink Architecture Analyses; 6) Hybrid FIS Datalink Architecture; 7) FIS Datalink Architecture Analyses; 8) Air Transport: Ground and Satellite-based Datalinks; 9) General Aviation: Ground and Satellite-based Datalinks; 10) Low Altitude AutoMET Reporting; 11) AutoMET: Airborne-based Datalinks; 12) Network Protocols Development; and 13) FAA/NASA Collaboration. A summary of WINCOMM is also included. This paper is in viewgraph form.

  7. Version 2 Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2)

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)

    2002-01-01

    Information on the turbulent fluxes of momentum, moisture, and heat at the air-sea interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent fluxes over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.

  8. Model-based monitoring and diagnosis of a satellite-based instrument

    NASA Technical Reports Server (NTRS)

    Bos, Andre; Callies, Jorg; Lefebvre, Alain

    1995-01-01

    For about a decade model-based reasoning has been propounded by a number of researchers. Maybe one of the most convincing arguments in favor of this kind of reasoning has been given by Davis in his paper on diagnosis from first principles (Davis 1984). Following their guidelines we have developed a system to verify the behavior of a satellite-based instrument GOME (which will be measuring Ozone concentrations in the near future (1995)). We start by giving a description of model-based monitoring. Besides recognizing that something is wrong, we also like to find the cause for misbehaving automatically. Therefore, we show how the monitoring technique can be extended to model-based diagnosis.

  9. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2016-03-01

    Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.

  10. Solar Irradiance Variability: Validation of Satellite-Based Assessment and Prospective Enhancements

    NASA Astrophysics Data System (ADS)

    Nonnenmacher, L.; Coimbra, C.

    2013-12-01

    Based on the technological advances and recent growth rates in deployment, solar energy will contribute significantly in the prospective global energy system. However, the intermittent output characteristics of solar energy systems pose a major challenge for the integration of this renewable power resource into the existing power grid. The intra-day solar variability causing output ramps is primarily caused by clouds and aerosols interacting with solar radiation passing through the atmosphere. Recent advances proposed different methods to assess and quantify irradiance fluctuations at the earth's surface. While remote sensing models based on satellite imagery can provide variability data for a vast domain, the temporal resolution is low and show a dearth of validation. In contrast to that, the spatial resolution of ground based instrumentation is limited whereas temporal resolution, precision and accuracy is high. Our validation of satellite based assessment of solar variability with ground truth measurements shows that the satellite based methods provide an accurate picture of variability with half hourly temporal resolution. However, half hourly variability values disregard a large portion of amplitude and frequency of solar variability on shorter timescales. This contribution seeks to investigate the characteristics of different measures of solar irradiance variability, evaluates the accuracy of common variability assessment techniques and finally proposes methods to estimate solar variability in different microclimates under different atmospheric conditions with improved accuracy. Our work shows a novel hybrid approach based on a combination of satellite and sky imager observations to scale down variability values from a 30 minute resolution to a significantly shorter timescale. Current research investigates the applicability and universality of a scaling-law with multiple inputs to derive temporal variability characteristics.

  11. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    NASA Astrophysics Data System (ADS)

    Yang, Zhongwen; Hsu, Kuolin; Sorooshian, Soroosh; Xu, Xinyi; Braithwaite, Dan; Verbist, Koen M. J.

    2016-04-01

    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009-2014. The historical data (satellite and gauge) for 2009-2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide.

  12. Advancing Satellite-Based Flood Prediction in Complex Terrain Using High-Resolution Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anagnostou, E. N.; Nikolopoulos, E. I.; Bartsotas, N. S.

    2015-12-01

    Floods constitute one of the most significant and frequent natural hazard in mountainous regions. Satellite-based precipitation products offer in many cases the only available source of QPE. However, satellite-based QPE over complex terrain suffer from significant bias that limits their applicability for hydrologic modeling. In this work we investigate the potential of a new correction procedure, which involves the use of high-resolution numerical weather prediction (NWP) model simulations to adjust satellite QPE. Adjustment is based on the pdf matching of satellite and NWP (used as reference) precipitation distribution. The impact of correction procedure on simulating the hydrologic response is examined for 15 storm events that generated floods over the mountainous Upper Adige region of Northern Italy. Atmospheric simulations were performed at 1-km resolution from a state-of-the-art atmospheric model (RAMS/ICLAMS). The proposed error correction procedure was then applied on the widely used TRMM 3B42 satellite precipitation product and the evaluation of the correction was based on independent in situ precipitation measurements from a dense rain gauge network (1 gauge / 70 km2) available in the study area. Satellite QPE, before and after correction, are used to simulate flood response using ARFFS (Adige River Flood Forecasting System), a semi-distributed hydrologic model, which is used for operational flood forecasting in the region. Results showed that bias in satellite QPE before correction was significant and had a tremendous impact on the simulation of flood peak, however the correction procedure was able to reduce bias in QPE and therefore improve considerably the simulated flood hydrograph.

  13. Inter-comparison of spatial upscaling methods for evaluation of satellite-based soil moisture

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Zhao, Long; Chen, Yingying; Yang, Kun; Yang, Yaping; Chen, Zhuoqi; Lu, Hui

    2015-04-01

    Soil moisture is a key factor in energy and water cycles. Many satellite missions have been planned and implemented for retrieving soil moisture globally. Because the spatial representativeness of a point-scale soil moisture station is rather limited, a station network needs setting up for scale-matching validation of satellite-based soil moisture products. Even so, an upscaling procedure is needed to upscale these station soil moisture values into area-wide one. However, such a procedure itself introduces uncertainties into the upscaled soil moisture. In this study, four upscaling methods (simple average, block kriging, model-based, and apparent-thermal-inertia-based) are inter-compared according to their performance stability for evaluation of soil moisture estimated by assimilating microwave signals into a land surface model. It is found that the performance of the model-based upscaling approach is the most unstable because model simulations are full of uncertainties for representing spatial variability of soil moisture. The block kriging upscaling method performs not worse than the simple averaging approach; the former may generate more representative soil moisture if the range of the soil moisture semivariogram used in the block kriging is comparable to the extent of a satellite footprint. The apparent-thermal-inertia-based upscaling is the most stable one, which has been developed with the aid of high-resolution satellite thermal data. All analyses indicate that choosing a suitable upscaling approach is important for the effective evaluation of satellite-based soil moisture. Otherwise, uncertainties hiding in the upscaling method will be incorrectly attributed to errors in satellite products, undermining our confidence in implementing them into practice.

  14. Comparison of machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2015-04-01

    Machine learning (ML) algorithms have been successfully evaluated as valuable tools in satellite-based rainfall retrievals which shows the high potential of ML algorithms when faced with high dimensional and complex data. Moreover, the recent developments in parallel computing with ML offer new possibilities in terms of training and predicting speed and therefore makes their usage in real time systems feasible. The present study compares four ML algorithms for rainfall area detection and rainfall rate assignment during daytime, night-time and twilight using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path are applied as predictor variables. As machine learning algorithms, random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) are chosen. The comparison is realised in three steps. First, an extensive tuning study is carried out to customise each of the models. Secondly, the models are trained using the optimum values of model parameters found in the tuning study. Finally, the trained models are used to detect rainfall areas and to assign rainfall rates using an independent validation datasets which is compared against ground-based radar data. To train and validate the models, the radar-based RADOLAN RW product from the German Weather Service (DWD) is used which provides area-wide gauge-adjusted hourly precipitation information. Though the differences in the performance of the algorithms were rather small, NNET and AVNNET have been identified as the most suitable algorithms. On average, they showed the best performance in rainfall area delineation as well as in rainfall rate assignment. The fast computation time of NNET allows to work with large datasets as it is required in remote sensing based rainfall retrievals. However, since none of the algorithms performed considerably better that the others we conclude that research

  15. Current trends in satellite based emergency mapping - the need for harmonisation

    NASA Astrophysics Data System (ADS)

    Voigt, Stefan

    2013-04-01

    During the past years, the availability and use of satellite image data to support disaster management and humanitarian relief organisations has largely increased. The automation and data processing techniques are greatly improving as well as the capacity in accessing and processing satellite imagery in getting better globally. More and more global activities via the internet and through global organisations like the United Nations or the International Charter Space and Major Disaster engage in the topic, while at the same time, more and more national or local centres engage rapid mapping operations and activities. In order to make even more effective use of this very positive increase of capacity, for the sake of operational provision of analysis results, for fast validation of satellite derived damage assessments, for better cooperation in the joint inter agency generation of rapid mapping products and for general scientific use, rapid mapping results in general need to be better harmonized, if not even standardized. In this presentation, experiences from various years of rapid mapping gained by the DLR Center for satellite based Crisis Information (ZKI) within the context of the national activities, the International Charter Space and Major Disasters, GMES/Copernicus etc. are reported. Furthermore, an overview on how automation, quality assurance and optimization can be achieved through standard operation procedures within a rapid mapping workflow is given. Building on this long term rapid mapping experience, and building on the DLR initiative to set in pace an "International Working Group on Satellite Based Emergency Mapping" current trends in rapid mapping are discussed and thoughts on how the sharing of rapid mapping information can be optimized by harmonizing analysis results and data structures are presented. Such an harmonization of analysis procedures, nomenclatures and representations of data as well as meta data are the basis to better cooperate within

  16. Evaluation of satellite-based precipitation estimates in winter season using an object-based approach

    NASA Astrophysics Data System (ADS)

    Li, J.; Hsu, K.; AghaKouchak, A.; Sorooshian, S.

    2012-12-01

    Verification has become an integral component of satellite precipitation algorithms and products. A number of object-based verification methods have been proposed to provide diagnostic information regarding the precipitation products' ability to capture the spatial pattern, intensity, and placement of precipitation. However, most object-based methods are not capable of investigating precipitation objects at the storm-scale. In this study, an image processing approach known as watershed segmentation was adopted to detect the storm-scale rainfall objects. Then, a fuzzy logic-based technique was utilized to diagnose and analyze storm-scale object attributes, including centroid distance, area ratio, intersection area ratio and orientation angle difference. Three verification metrics (i.e., false alarm ratio, missing ratio and overall membership score) were generated for validation and verification. Three satellite-based precipitation products, including PERSIANN, CMORPH, 3B42RT, were evaluated against NOAA stage IV MPE multi-sensor composite rain analysis at 0.25° by 0.25° on a daily scale in the winter season of 2010 over the contiguous United States. Winter season is dominated by frontal systems which usually have larger area coverage. All three products and the stage IV observation tend to find large size storm objects. With respect to the evaluation attributes, PERSIANN tends to obtain larger area ratio and consequently has larger centroid distance to the stage IV observations, while 3B42RT are found to be closer to the stage IV for the object size. All evaluation products give small orientation angle differences but vary significantly for the missing ratio and false alarm ratio. This implies that satellite estimates can fail to detect storms in winter. The overall membership scores are close for all three different products which indicate that all three satellite-based precipitation products perform well for capturing the spatial and geometric characteristics of

  17. Satellite-based snow identification and its impact on monitoring photovoltaic systems

    SciTech Connect

    Wirth, Georg; Zehner, Mike; Becker, Gerd; Schroedter-Homscheidt, Marion

    2010-02-15

    Earth observation allows the separation of snow cover and cloudiness using multispectral measurements. Several satellite-based snow monitoring services are available, ranging from regional to world-wide scales. Using these data enables photovoltaic (PV) plant management to differentiate between failures due to snow coverage on a PV system and other error sources. Additionally, yield estimates for solar siting are improved. This paper presents a validation study from January to April 2006 comparing satellite-based datasets with ground measurements from German and Swiss meteorological stations. A false alarm rate, an error due to irradiance underestimation, the availability of daily data, and the classification accuracy are introduced as quality metrics. Compared to Switzerland, generally a higher accuracy is found in all datasets for Southern Germany. The most significant difference among the datasets is found in the error pattern shifting from too much snow (which results in an error due to underestimation of irradiance) to too little snow detection, causing a false alarm in PV monitoring. Overall, the data records of the Land Surface Analysis Satellite Application Facility (LSA SAF), the German Aerospace Center (DLR) and the Interactive Multisensor Snow and Ice Mapping System (IMS) are found to be most suitable for solar energy purposes. The IMS dataset has a low false alarm rate (4%) and a good data availability (100%) making it a good choice for power plant monitoring, but the error due to underestimation relevant in site auditing is large with 59%. If a cumulative snow cover algorithm is applied to achieve information every day as needed both for power plant monitoring and site auditing, both the DLR and the LSA SAF datasets are comparable with classification accuracies of 70%, false alarm rates of 37% and 34%, respectively, and errors due to irradiance underestimation in 26% and 27% of all coincidences. (author)

  18. Fade-Free Mobile Communication

    NASA Technical Reports Server (NTRS)

    Stevenson, C. R.

    1986-01-01

    Scheme for mobile communication reduces multipath fading and interference between adjacent channels. Proposed communication system lends itself to almost completely digital implementation, eliminating costly and bulky crystal filters. Scheme suitable for satellite-aided or terrestrial mobile communication, including cellular mobile telephony, at frequencies in 150-to-900-MHz range.

  19. Terrestrial photovoltaic measurements, 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following major topics are discussed; (1) Terrestrial solar irradiance; (2) Solar simulation and reference cell calibration; and (3) Cell and array measurement procedures. Numerous related subtopics are also discussed within each major topic area.

  20. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.; Romanovsky, V. E.; Cable, W.; Kholodov, A. L.

    2015-12-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  1. Are satellite based rainfall estimates accurate enough for crop modelling under Sahelian climate?

    NASA Astrophysics Data System (ADS)

    Ramarohetra, J.; Sultan, B.

    2012-04-01

    Agriculture is considered as the most climate dependant human activity. In West Africa and especially in the sudano-sahelian zone, rain-fed agriculture - that represents 93% of cultivated areas and is the means of support of 70% of the active population - is highly vulnerable to precipitation variability. To better understand and anticipate climate impacts on agriculture, crop models - that estimate crop yield from climate information (e.g rainfall, temperature, insolation, humidity) - have been developed. These crop models are useful (i) in ex ante analysis to quantify the impact of different strategies implementation - crop management (e.g. choice of varieties, sowing date), crop insurance or medium-range weather forecast - on yields, (ii) for early warning systems and to (iii) assess future food security. Yet, the successful application of these models depends on the accuracy of their climatic drivers. In the sudano-sahelian zone , the quality of precipitation estimations is then a key factor to understand and anticipate climate impacts on agriculture via crop modelling and yield estimations. Different kinds of precipitation estimations can be used. Ground measurements have long-time series but an insufficient network density, a large proportion of missing values, delay in reporting time, and they have limited availability. An answer to these shortcomings may lie in the field of remote sensing that provides satellite-based precipitation estimations. However, satellite-based rainfall estimates (SRFE) are not a direct measurement but rather an estimation of precipitation. Used as an input for crop models, it determines the performance of the simulated yield, hence SRFE require validation. The SARRAH crop model is used to model three different varieties of pearl millet (HKP, MTDO, Souna3) in a square degree centred on 13.5°N and 2.5°E, in Niger. Eight satellite-based rainfall daily products (PERSIANN, CMORPH, TRMM 3b42-RT, GSMAP MKV+, GPCP, TRMM 3b42v6, RFEv2 and

  2. Dietary characterization of terrestrial mammals.

    PubMed

    Pineda-Munoz, Silvia; Alroy, John

    2014-08-22

    Understanding the feeding behaviour of the species that make up any ecosystem is essential for designing further research. Mammals have been studied intensively, but the criteria used for classifying their diets are far from being standardized. We built a database summarizing the dietary preferences of terrestrial mammals using published data regarding their stomach contents. We performed multivariate analyses in order to set up a standardized classification scheme. Ideally, food consumption percentages should be used instead of qualitative classifications. However, when highly detailed information is not available we propose classifying animals based on their main feeding resources. They should be classified as generalists when none of the feeding resources constitute over 50% of the diet. The term 'omnivore' should be avoided because it does not communicate all the complexity inherent to food choice. Moreover, the so-called omnivore diets actually involve several distinctive adaptations. Our dataset shows that terrestrial mammals are generally highly specialized and that some degree of food mixing may even be required for most species. PMID:25009067

  3. Dietary characterization of terrestrial mammals

    PubMed Central

    Pineda-Munoz, Silvia; Alroy, John

    2014-01-01

    Understanding the feeding behaviour of the species that make up any ecosystem is essential for designing further research. Mammals have been studied intensively, but the criteria used for classifying their diets are far from being standardized. We built a database summarizing the dietary preferences of terrestrial mammals using published data regarding their stomach contents. We performed multivariate analyses in order to set up a standardized classification scheme. Ideally, food consumption percentages should be used instead of qualitative classifications. However, when highly detailed information is not available we propose classifying animals based on their main feeding resources. They should be classified as generalists when none of the feeding resources constitute over 50% of the diet. The term ‘omnivore’ should be avoided because it does not communicate all the complexity inherent to food choice. Moreover, the so-called omnivore diets actually involve several distinctive adaptations. Our dataset shows that terrestrial mammals are generally highly specialized and that some degree of food mixing may even be required for most species. PMID:25009067

  4. Correcting rainfall using satellite-based surfae soil moisture retrievals: The soil moisture analysis rainfall tool(SMART)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work in Crow et al. (2009) developed an algorithm for enhancing satellite-based land rainfall products via the assimilation of remotely-sensed surface soil moisture retrievals into a water balance model. As a follow-up, this paper describes the benefits of modifying their approach to incorpor...

  5. Evaluation of a Moderate Resolution, Satellite-Based Impervious Surface Map Using an Independent, High-Resolution Validation Dataset

    EPA Science Inventory

    Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data ...

  6. Satellite-Based Distance Courses for In-Service Training: The Case of HeadsUp! Reading

    ERIC Educational Resources Information Center

    Morrison, Johnetta Wade; Raya-Carlton, Pamela; Henk, Jennifer K.; Thornburg, Kathy R.

    2007-01-01

    This article discusses the use of distance courses as an in-service training mechanism for early childhood personnel. The authors evaluated the efficacy of the in-service, satellite based distance course HeadsUp! Reading (HU!R). The analysis of HU!R data revealed that there were no initial differences in the Language and Literacy Early Childhood:…

  7. A Satellite-based Assessment of Trans-Pacific Transport of Pollution Aerosol

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine; Chin, Mian; Bian, Huisheng; Kleidman, Richard; Diehl. Thomas

    2007-01-01

    It has been well documented that pollution aerosol and dust from East Asia can transport across the North Pacific basin, reaching North America and beyond. Such intercontinental transport extends the impact of aerosols for climate change, air quality, atmospheric chemistry, and ocean biology from local and regional scales to hemispheric and global scales. Long term, measurement-based studies are necessary to adequately assess the implications of these wider impacts. A satellite-based assessment can augment intensive field campaigns by expanding temporal and spatial scales and also serve as constraints for model simulations. Satellite imagers have been providing a wealth of evidence for the intercontinental transport of aerosols for more than two decades. Quantitative assessments, however, became feasible only recently as a result of the much improved measurement accuracy and enhanced new capabilities of satellite sensors. In this study, we generated a 4-year (2002 to 2005) climatology of optical depth for pollution aerosol (defined as a mixture of aerosols from urbanlindustrial pollution and biomass burning in this study) over the North Pacific from MODerate resolution Imaging Spectro-radiometer (MODIS) observations of fine- and coarse-mode aerosol optical depths. The pollution aerosol mass loading and fluxes were then calculated using measurements of the dependence of aerosol mass extinction efficiency on relative humidity and of aerosol vertical distributions from field campaigns and available satellite observations in the region. We estimated that about 18 Tg/year pollution aerosol is exported from East Asia to the northwestern Pacific Ocean, of which about 25% reaches the west coast of North America. The pollution fluxes are largest in spring and smallest in summer. For the period we have examined the strongest export and import of pollution particulates occurred in 2003, due largely to record intense Eurasia wildfires in spring and summer. The overall

  8. An improved procedure for the validation of satellite-based precipitation estimates

    NASA Astrophysics Data System (ADS)

    Tang, Ling; Tian, Yudong; Yan, Fang; Habib, Emad

    2015-09-01

    provides a clear and concise picture of the systematic and random errors, with both versions of 3B42RT have higher errors in varying degrees than their research (post-real-time) counterparts. The new V7 algorithm shows obvious improvements in reducing random errors in both winter and summer seasons, compared to its predecessors V6. Stage IV, as expected, surpasses the satellite-based datasets in all the metrics over CONUS. Based on the results, we recommend the new procedure be adopted for routine validation of satellite-based precipitation datasets, and we expect the procedure will work effectively for higher resolution data to be produced in the Global Precipitation Measurement (GPM) era.

  9. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    NASA Technical Reports Server (NTRS)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  10. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    NASA Astrophysics Data System (ADS)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  11. Global root zone storage capacity from satellite-based evaporation data

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel; van Dijk, Albert; Guerschman, Juan; Keys, Patrick; Gordon, Line; Savenije, Hubert

    2016-04-01

    We present an "earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale-independent. In contrast to traditional look-up table approaches, our method captures the variability in root zone storage capacity within land cover type, including in rainforests where direct measurements of root depth otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. We find that evergreen forests are able to create a large storage to buffer for extreme droughts (with a return period of up to 60 years), in contrast to short vegetation and crops (which seem to adapt to a drought return period of about 2 years). The presented method to estimate root zone storage capacity eliminates the need for soils and rooting depth information, which could be a game-changer in global land surface modelling.

  12. Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling

    NASA Astrophysics Data System (ADS)

    García-Pintado, Javier; Neal, Jeff C.; Mason, David C.; Dance, Sarah L.; Bates, Paul D.

    2013-07-01

    Satellite-based Synthetic Aperture Radar (SAR) has proved useful for obtaining information on flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain, provides water level observations that can be assimilated into a hydrodynamic model to decrease forecast uncertainty. With an increasing number of operational satellites with SAR capability, information on the relationship between satellite first visit and revisit time and forecast performance is required to optimise the operational scheduling of satellite imagery. By using an Ensemble Transform Kalman Filter (ETKF) and a synthetic analysis with the 2D hydrodynamic model LISFLOOD-FP based on a real flooding case affecting an urban area (summer 2007, Tewkesbury, Southwest UK), we evaluate the sensitivity of the forecast performance to visit parameters. We emulate a generic hydrologic-hydrodynamic modelling cascade by imposing a bias and spatiotemporal correlations to the inflow error ensemble into the hydrodynamic domain. First, in agreement with previous research, estimation and correction for this bias leads to a clear improvement in keeping the forecast on track. Second, imagery obtained early in the flood is shown to have a large influence on forecast statistics. Revisit interval is most influential for early observations. The results are promising for the future of remote sensing-based water level observations for real-time flood forecasting in complex scenarios.

  13. Interactive Web-Mapping System for Satellite Based Agricultural Applications in Bulgaria and Romania

    NASA Astrophysics Data System (ADS)

    Craciunescu, Vasile; Stancalie, Gheorghe; Roumenina, Eugenia; Kazandjiev, Valentin; Jelev, Georgi; Filchev, Lachezar; Savin, Elena; Catana, Simona; Mihailescu, Denis

    2012-06-01

    The interactive web-mapping system for satellite based agricultural application in Bulgaria and Romania was developed in the frame if the PROA GROB URO project. To achieve the project objectives a large amount of geospatial data was collected in the form of satellite images, maps and vector layers. Furthermore, the field measurements and descriptions were linked with the exact location where they have been made. There was a strong need to be able to analyse the data in an integrated way. Thus, a geodatabase was necessary with corresponding web-interface and applications providing data access to each of the partners. Using the newest Internet technologies a set of tools for creating and online publishing of geospatial data was successfully implemented The system components were developed entirely with standard compliant free and open source software like GDAL/OGR. GeoServer, OpenLayers and PostgreSQL+PostGIS. GMES recommendations and INSPIRE directive were taken into account when designing and implementing the system.

  14. Improved Satellite-based Photosysnthetically Active Radiation (PAR) for Air Quality Studies

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Cohan, D. S.; White, A.; Zhang, R.; Dornblaser, B.; Doty, K.; Wu, Y.; Estes, M. J.

    2015-12-01

    One of the challenges in understanding the air quality over forested regions has been the uncertainties in estimating the biogenic hydrocarbon emissions. Biogenic volatile organic compounds, BVOCs, play a critical role in atmospheric chemistry, particularly in ozone and particulate matter (PM) formation. In southeastern United States, BVOCs (mostly as isoprene) are the dominant summertime source of reactive hydrocarbon. Despite significant efforts in improving BVOC estimates, the errors in emission inventories remain a concern. Since BVOC emissions are particularly sensitive to the available photosynthetically active radiation (PAR), model errors in PAR result in large errors in emission estimates. Thus, utilization of satellite observations to estimate PAR can help in reducing emission uncertainties. Satellite-based PAR estimates rely on the technique used to derive insolation from satellite visible brightness measurements. In this study we evaluate several insolation products against surface pyranometer observations and offer a bias correction to generate a more accurate PAR product. The improved PAR product is then used in biogenic emission estimates. The improved biogenic emission estimates are compared to the emission inventories over Texas and used in air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). A series of sensitivity simulations will be performed and evaluated against Discover-AQ observations to test the impact of satellite-derived PAR on air quality simulations.

  15. Utilizing Satellite-based and Reanalysis Precipitation Data in Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Ignatius, A. R.; Grundstein, A.; Rasmussen, T. C.; Mote, T. L.; Shepherd, J. M.

    2010-12-01

    Precipitation is an essential input into surface hydrologic models. While rain gauges are the most common source for precipitation data, many regions suffer from a paucity of precipitation data at appropriate temporal and spatial resolutions. Satellite-based or gridded reanalysis data sources provide alternative rainfall inputs for hydrologic models. The University of Georgia and U.S. Dept. of Energy Savannah River National Laboratory are investigating complex hydrometeorological and source attribution problems using a combination of hydrologic observations and models. The project investigates the use several NASA products including TRMM 3B42, TRMM 3B42RT, and MERRA (Modern Era Retrospective-Analysis for Research and Applications) reanalysis data. These data are used as meteorological inputs for a hydrologic model of the Savannah River watershed, located in Georgia and South Carolina. Hydrologic simulations are performed using the BASINS 4.0 (Better Assessment Science Integrating Point and Non-Point Sources) environmental analysis system and the HSPF hydrologic model. Validation studies of the precipitation datasets along with comparisons of streamflow simulations using the alternative inputs will be presented. The work represents a synergy of scientific analysis and stakeholder applications that the forthcoming GPM era can leverage.

  16. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin

    USGS Publications Warehouse

    Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.

    2008-01-01

    In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.

  17. Satellite-based empirical models linking river plume dynamics with hypoxic area and volume

    NASA Astrophysics Data System (ADS)

    Le, Chengfeng; Lehrter, John C.; Hu, Chuanmin; Obenour, Daniel R.

    2016-03-01

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L-1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and volume were related to Moderate Resolution Imaging Spectroradiometer-derived monthly estimates of river plume area (km2) and average, inner shelf chlorophyll a concentration (Chl a, mg m-3). River plume area in June was negatively related with midsummer hypoxic area (km2) and volume (km3), while July inner shelf Chl a was positively related to hypoxic area and volume. Multiple regression models using river plume area and Chl a as independent variables accounted for most of the variability in hypoxic area (R2 = 0.92) or volume (R2 = 0.89). These models explain more variation in hypoxic area than models using Mississippi River nutrient loads as independent variables. The results here also support a hypothesis that confinement of the river plume to the inner shelf is an important mechanism controlling hypoxia area and volume in this region.

  18. New satellite-based maps of the growing season north of 50°N

    NASA Astrophysics Data System (ADS)

    Rune Karlsen, Stein; Arild Høgda, Kjell; Tolvanen, Anne; Johansen, Bernt; Elvebakk, Arve

    2009-09-01

    In this study we present new satellite-based maps of the growing season of northern areas. The maps show trends and mean date in onset and length of the growing season at different scales north of 50° N. For all the circumpolar area we use the GIMMS-NDVI satellite dataset for the 1982 to 2006 period, and for the Nordic countries we used the MODISNDVI satellite data for the 2000 to 2007 period. The circumpolar maps are not as accurate as the one covering the Nordic countries, this due to lack of ancillary environmental geo-data available that can be included in the mapping process. In particular this is a problem for the Russian part of the circumpolar north. The resulting growing season maps are useful in a broad range of ecological and climatic changes studies. Changes in the timing of the growing season are sensitive bio-indicators of climate change of northern areas, and these changes crucially affects primary industries, such as agriculture, animal husbandry and forestry, as well as the population dynamics of wild mammals and birds. The onset of growing season maps is also useful to improve pollen forecasts, and the maps can be used to improve the global change models.

  19. New satellite-based maps of the growing season north of 50°N

    NASA Astrophysics Data System (ADS)

    Rune Karlsen, Stein; Arild Høgda, Kjell; Tolvanen, Anne; Johansen, Bernt; Elvebakk, Arve

    2010-11-01

    In this study we present new satellite-based maps of the growing season of northern areas. The maps show trends and mean date in onset and length of the growing season at different scales north of 50° N. For all the circumpolar area we use the GIMMS-NDVI satellite dataset for the 1982 to 2006 period, and for the Nordic countries we used the MODISNDVI satellite data for the 2000 to 2007 period. The circumpolar maps are not as accurate as the one covering the Nordic countries, this due to lack of ancillary environmental geo-data available that can be included in the mapping process. In particular this is a problem for the Russian part of the circumpolar north. The resulting growing season maps are useful in a broad range of ecological and climatic changes studies. Changes in the timing of the growing season are sensitive bio-indicators of climate change of northern areas, and these changes crucially affects primary industries, such as agriculture, animal husbandry and forestry, as well as the population dynamics of wild mammals and birds. The onset of growing season maps is also useful to improve pollen forecasts, and the maps can be used to improve the global change models.

  20. Influence of Satellite-Based Heterogeneous Vegetation Momentum Roughness on Mesoscale Model Dynamics During IHOP 2002

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael; Eastman, Joseph; Borak, Jordan

    2010-01-01

    The sensitivity of mesoscale weather prediction model to a vegetation roughness initialization is investigated for the south central United States. Three different roughness databases are employed: i) a control or standard lookup table roughness that is a function only of land cover type, ii) a spatially heterogeneous roughness database previously derived using a physically based procedure and MODIS imagery, and iii) a MODIS climatologic roughness database that possesses the same spatial heterogeneity as (i) but with mean land class values from (ii). The model used is the Weather Research and Forecast Model (WRF) coupled to the Community Land Model within the Land Information System (LIS). For each simulation, a statistical comparison is made between modeled results and ground observations from meteorological stations within the Oklahoma mesonet and surrounding region during IHOP20O2. A sensitivity analysis on the impact the MODIS-based roughness fields is also made through a time-series intercomparison of temperature bias, probability of detection (POD), average wind speed, boundary layer height, and turbulent kinetic energy (TKE) the results that, for the current replacement of the standard land-cover type based roughness values with the satellite-derived fields statistically improves model performance for most of the observed variables. Further, the satellite-based roughness enhances the surface wind speed, PBL height and TKE production on the order of 3 to l0 percent, with a lesser effect over grassland and cropland domains, and the greater effect over mixed land cover domains

  1. Development concerns for satellite-based air traffic control surveillance systems

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.

    1985-01-01

    Preliminary results of an investigation directed toward the configuration of a practical system design which can form the baseline for assessing the applications and value of a satellite based air traffic surveillance system for future use in the National Airspace System (NAS) are described. This work initially studied the characteristics and capabilities of a satellite configuration which would operate compatibly with the signal structure and avionics of the next generation air traffic control secondary surveillance radar system, the Mode S system. A compatible satellite surveillance system concept is described and an analysis is presented of the link budgets for the various transmission paths. From this, the satellite characteristics are established involving a large multiple feed L band antenna of approximately 50 meter aperture dimension. Trade offs involved in several of the alternative large aperture antennas considered are presented as well as the influence of various antenna configurations on the performance capabilities of the surveillance system. The features and limitations of the use of large aperture antenna systems for air traffic surveillance are discussed. Tentative results of this continuing effort are summarized with a brief description of follow on investigations involving other space based antenna systems concepts.

  2. PlumeSat: A Micro-Satellite Based Plume Imagery Collection Experiment

    SciTech Connect

    Ledebuhr, A.G.; Ng, L.C.

    2002-06-30

    This paper describes a technical approach to cost-effectively collect plume imagery of boosting targets using a novel micro-satellite based platform operating in low earth orbit (LEO). The plume collection Micro-satellite or PlueSat for short, will be capable of carrying an array of multi-spectral (UV through LWIR) passive and active (Imaging LADAR) sensors and maneuvering with a lateral divert propulsion system to different observation altitudes (100 to 300 km) and different closing geometries to achieve a range of aspect angles (15 to 60 degrees) in order to simulate a variety of boost phase intercept missions. The PlumeSat will be a cost effective platform to collect boost phase plume imagery from within 1 to 10 km ranges, resulting in 0.1 to 1 meter resolution imagery of a variety of potential target missiles with a goal of demonstrating reliable plume-to-hardbody handover algorithms for future boost phase intercept missions. Once deployed on orbit, the PlumeSat would perform a series phenomenology collection experiments until expends its on-board propellants. The baseline PlumeSat concept is sized to provide from 5 to 7 separate fly by data collects of boosting targets. The total number of data collects will depend on the orbital basing altitude and the accuracy in delivering the boosting target vehicle to the nominal PlumeSat fly-by volume.

  3. Forecasting front displacements with a satellite based ocean forecasting (SOFT) system

    NASA Astrophysics Data System (ADS)

    Alvarez, A.; Orfila, A.; Basterretxea, G.; Tintoré, J.; Vizoso, G.; Fornes, A.

    2007-03-01

    Relatively long term time series of satellite data are nowadays available. These spatio-temporal time series of satellite observations can be employed to build empirical models, called satellite based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. The forecast skill of SOFT systems predicting the sea surface temperature (SST) at sub-basin spatial scale (from hundreds to thousand kilometres), has been extensively explored in previous works. Thus, these works were mostly focussed on predicting large scale patterns spatially stationary. At spatial scales smaller than sub-basin (from tens to hundred kilometres), spatio-temporal variability is more complex and propagating structures are frequently present. In this case, traditional SOFT systems based on Empirical Orthogonal Function (EOF) decompositions could not be optimal prediction systems. Instead, SOFT systems based on Complex Empirical Orthogonal Functions (CEOFs) are, a priori, better candidates to resolve these cases. In this work we study and compare the performance of an EOF and CEOF based SOFT systems forecasting the SST at weekly time scales of a propagating mesoscale structure. The SOFT system was implemented in an area of the Northern Balearic Sea (Western Mediterranean Sea) where a moving frontal structure is recurrently observed. Predictions from both SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the implemented SOFT systems are superior in terms of predictability to persistence. No substantial differences have been found between the EOF and CEOF-SOFT systems.

  4. Satellite-based detection of global urban heat-island temperature influence

    USGS Publications Warehouse

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  5. Satellite-based emission constraint for nitrogen oxides: Capability and uncertainty

    NASA Astrophysics Data System (ADS)

    Lin, J.; McElroy, M. B.; Boersma, F.; Nielsen, C.; Zhao, Y.; Lei, Y.; Liu, Y.; Zhang, Q.; Liu, Z.; Liu, H.; Mao, J.; Zhuang, G.; Roozendael, M.; Martin, R.; Wang, P.; Spurr, R. J.; Sneep, M.; Stammes, P.; Clemer, K.; Irie, H.

    2013-12-01

    Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from satellite remote sensing have been employed widely to constrain emissions of nitrogen oxides (NOx). A major strength of satellite-based emission constraint is analysis of emission trends and variability, while a crucial limitation is errors both in satellite NO2 data and in model simulations relating NOx emissions to NO2 columns. Through a series of studies, we have explored these aspects over China. We separate anthropogenic from natural sources of NOx by exploiting their different seasonality. We infer trends of NOx emissions in recent years and effects of a variety of socioeconomic events at different spatiotemporal scales including the general economic growth, global financial crisis, Chinese New Year, and Beijing Olympics. We further investigate the impact of growing NOx emissions on particulate matter (PM) pollution in China. As part of recent developments, we identify and correct errors in both satellite NO2 retrieval and model simulation that ultimately affect NOx emission constraint. We improve the treatments of aerosol optical effects, clouds and surface reflectance in the NO2 retrieval process, using as reference ground-based MAX-DOAS measurements to evaluate the improved retrieval results. We analyze the sensitivity of simulated NO2 to errors in the model representation of major meteorological and chemical processes with a subsequent correction of model bias. Future studies will implement these improvements to re-constrain NOx emissions.

  6. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  7. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Houborg, R.; Izaurralde, R. C.

    2014-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  8. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Izaurralde, R. C.; Sahajpal, R.; Houborg, R.; Milla, Z.

    2013-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  9. Satellite-based Hyperspectral Sounder Retrievals in Real-time Weather Applications

    NASA Astrophysics Data System (ADS)

    Weisz, E.; Smith, N.; Smith, W. L.

    2015-12-01

    Real-time weather monitoring and forecasting abilities have significantly improved by the new generation of weather satellites, which provide routine access to observations and atmospheric data. In addition of providing visual images, satellite-based instrumentation also provide spectral radiance data that allow the computation of atmospheric temperature, moisture and trace gas profiles and other geophysical variables including cloud parameters. Hyperspectral sounders, AIRS (Atmospheric Infrared Sounder), IASI (Infrared Atmospheric Sounding Interferometer) and CrIS (Cross-track Infrared Sounder) on low-Earth orbiting satellites, provide atmospheric profiles on a global scale with the spatial and temporal resolution needed to complement traditional profile data sources such as that obtained by radiosondes. The goal of this paper is to describe the information that hyperspectral sounders are capable of adding to weather monitoring and short-term forecasting systems. Retrievals derived from all four operational sounders are used in time-series to describe the pre-convective environment (including moisture advection and stability tendencies) antecedent to the initiation of severe weather. Temporal and spatial consistency and continuity is achieved among different instruments on different platforms through the use of a single atmospheric profile retrieval algorithm. Our results demonstrate the utility of using hyperspectral sounding products from multiple satellites for the real-time weather monitoring/prediction operation.

  10. Development and validation of satellite-based estimates of surface visibility

    NASA Astrophysics Data System (ADS)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V < 30 km), low (2 km ≤ V < 10 km), and poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  11. GWD-LR: a satellite-based global database of river channel width

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai; O'Loughlin, Fiachra; Trigg, Mark; Bates, Paul

    2015-04-01

    River width is a fundamental parameter of river hydrodynamic simulations, but no global-scale river width database based on observed water bodies has yet been developed. Here we present a new algorithm that automatically calculates river width from satellite-based water masks and flow direction maps. The Global Width Database for Large Rivers (GWD-LR) is developed by applying the algorithm to the SRTM Water Body Database and the HydroSHEDS flow direction map. Both bank-to-bank river width and effective river width excluding islands are calculated for river channels between 60S and 60N. The effective river width of GWD-LR is compared with existing river width databases for the Congo and Mississippi Rivers. The effective river width of the GWD-LR is slightly narrower compared to the existing databases, but the relative difference is within +/-20% for most river channels. As the river width of the GWD-LR is calculated along the river channels of the HydroSHEDS flow direction map, it is relatively straightforward to apply the GWD-LR to global- and continental-scale river modeling.

  12. Recent progress of quantum communication in China (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang

    2016-04-01

    Quantum communication, based on the quantum physics, can provide information theoretical security. Building a global quantum network is one ultimate goal for the research of quantum information. Here, this talk will review the progress for quantum communication in China, including quantum key distribution over metropolitan area with untrustful relay, field test of quantum entanglement swapping over metropolitan network, the 2000 km quantum key distribution main trunk line, and satellite based quantum communication.

  13. Interworking evolution of mobile satellite and terrestrial networks

    NASA Technical Reports Server (NTRS)

    Matyas, R.; Kelleher, P.; Moller, P.; Jones, T.

    1993-01-01

    There is considerable interest among mobile satellite service providers in interworking with terrestrial networks to provide a universal global network. With such interworking, subscribers may be provided a common set of services such as those planned for the Public Switched Telephone Network (PSTN), the Integrated Services Digital Network (ISDN), and future Intelligent Networks (IN's). This paper first reviews issues in satellite interworking. Next the status and interworking plans of terrestrial mobile communications service providers are examined with early examples of mobile satellite interworking including a discussion of the anticipated evolution towards full interworking between mobile satellite and both fixed and mobile terrestrial networks.

  14. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  15. Terrestrial-Imaging Spectroscopy

    NASA Technical Reports Server (NTRS)

    Vane, Gregg A.; Goetz, Alexander F. H.

    1990-01-01

    Report reviews history and state of art of terrestrial imaging spectroscopy. Discusses history, design, and performance of Airborne Imaging Spectrometer (AIS), which is pioneering sensor for terrestrial high-resolution remote sensing. Also discusses recent developments described in literature of imaging spectroscopy from three points of view: techniques for handling and analysis of spectral-image data, geological research, and botanical research. This field encompasses use of airborne and spaceborne imaging spectrometers to generate specialized maps for use in agriculture, geology, ecology, and related disciplines.

  16. Validation of satellite-based precipitation estimates over different African River Basins

    NASA Astrophysics Data System (ADS)

    Thiemig, V.; Rojas, R.; Levizzani, V.; De Roo, A.

    2012-04-01

    Satellite-based precipitation products have become increasingly available and accessible in near real-time, encouraging the scientific community increasingly to use these data to replace or supplement sparse ground observations. Six satellite-based rainfall estimates (SRFE), namely, CMORPH, RFE 2.0, TRMM 3B42, GPROF 6.0, PERSIANN, GSMaP-MKV, and one reanalysis product (ERA-interim) are validated against rain gauge data over four partly sparsely-gauged African river basins (Zambezi, Volta, Juba-Shabelle and Baro-Akobo). The objective is to provide the scientific community using SRFE as input data for hydro-meteorological applications an intercomparable validation study of these products over different hydro-climatological conditions in Africa. The validation focuses on the general ability of the SRFE products to reproduce daily and monthly rainfall and, particularly, on rainfall characteristics that are relevant to hydro-meteorological applications, such as, annual catchment totals, spatial distribution pattern within the river basin, seasonality of precipitation, number of rainy days per year, and timing and amount of heavy rainfall events. The accuracy of those products is assessed using a ground observation network, comprising of 203 stations with daily records between 2003 and 2006 (data coverage: <25, 25- 50, 50-75 and >75 % of data for 38, 13, 18 and 31 % of stations, respectively). Considering the time and space variability of the different rainfall characteristics as well as the conventional hydrological working units, the validation is done on three spatially-aggregated levels: point, subcatchment, and river basin. For the latter two the ground observations are interpolated using Kriging with External Drift, where the drift is defined as the terrain elevation. The performance is measured using standard statistical measures (MAE, RMSE, pBIAS, r, and NSeff) as well as visual inspection. The examined products showed depending on the spatially-aggregated level

  17. Adjusting thresholds of satellite-based convective initiation interest fields based on the cloud environment

    NASA Astrophysics Data System (ADS)

    Jewett, Christopher P.; Mecikalski, John R.

    2013-11-01

    The Time-Space Exchangeability (TSE) concept states that similar characteristics of a given property are closely related statistically for objects or features within close proximity. In this exercise, the objects considered are growing cumulus clouds, and the data sets to be considered in a statistical sense are geostationary satellite infrared (IR) fields that help describe cloud growth rates, cloud top heights, and whether cloud tops contain significant amounts of frozen hydrometeors. In this exercise, the TSE concept is applied to alter otherwise static thresholds of IR fields of interest used within a satellite-based convective initiation (CI) nowcasting algorithm. The convective environment in which the clouds develop dictate growth rate and precipitation processes, and cumuli growing within similar mesoscale environments should have similar growth characteristics. Using environmental information provided by regional statistics of the interest fields, the thresholds are examined for adjustment toward improving the accuracy of 0-1 h CI nowcasts. Growing cumulus clouds are observed within a CI algorithm through IR fields for many 1000 s of cumulus cloud objects, from which statistics are generated on mesoscales. Initial results show a reduction in the number of false alarms of ~50%, yet at the cost of eliminating approximately ~20% of the correct CI forecasts. For comparison, static thresholds (i.e., with the same threshold values applied across the entire satellite domain) within the CI algorithm often produce a relatively high probability of detection, with false alarms being a significant problem. In addition to increased algorithm performance, a benefit of using a method like TSE is that a variety of unknown variables that influence cumulus cloud growth can be accounted for without need for explicit near-cloud observations that can be difficult to obtain.

  18. Improving USGS National Hydrologic Model Parameterization with Satellite-Based Phenology Products

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Hogue, T. S.; Hay, L.; Markstrom, S. L.; Regan, R. S.

    2014-12-01

    Hydrologists and water resource engineers are simulating hydrologic processes at the continental scale assisted by the advancement of high-performance computing and the accessibility of large-scale climate and hydrologic datasets. The United States Geological Survey (USGS) is developing a National Hydrologic Model (NHM) that supports coordinated, comprehensive, and consistent hydrologic model development and simulations of the conterminous United States (CONUS). The goal of this project is to improve model parameterization and ultimately streamflow predictions across the CONUS using remotely sensed data products. The current work will specifically improve estimates of the growing season in the NHM through the integration of satellite-based phenology products developed at the USGS Earth Resources Observation and Science (EROS) Center. Currently, the NHM defines the growing season using one of three temperature-index methods: 1) first and last freezing air temperatures; 2) temperature threshold for a specified begin and end month; and 3) dynamic specification. The USGS/EROS RSP products are based on a timeseries analysis of the normalized difference vegetation index (NDVI) from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors. Using the phenological metrics derived from AVHRR, we define a new growing season parameter set for the CONUS from 1989 to 2013, which ultimately will enhance estimations of daily transpiration rates throughout the model domain. Using default temperature-index based estimates of growing season and RSP derived estimates, we provide statistical evaluation and comparison of the NHM simulations related to growing season. The RSP growing season dates may improve model hydrologic simulations especially in drought periods when water availability, demand, and usage are critical, or in areas where the temperature-index based growing season estimates lack skill, such as some

  19. Application of Airborne Sea Ice Observations Towards Improving Satellite-based Products

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Baldwin, D.; Liu, Y.; Dworak, R.; Key, J.

    2015-12-01

    Recent airborne and satellite observations suggest large decreases in Arctic sea ice thickness in recent years, but uncertainty remains in terms of overall loss of ice mass versus redistribution of mass within the Arctic Basin. In general though, the combination of airborne and satellite observations tend to agree that some thinning of the ice cover has occurred. In addition to changes in ice thickness and mass, other related changes in properties are likely if the ice pack is undergoing fundamental changes such as a shift to a largely seasonal sea-ice cover. Therefore, it is imperative to utilize airborne and surface-based observations to evaluate satellite-based sea ice products and to improve algorithms that estimate sea ice properties. Sea ice surface properties derived from NASA's Operation IceBridge (OIB) airborne measurements are currently being used to evaluate and update Suomi-NPP VIIRS sea ice products. Estimates of ice thickness derived from the OIB observations may be used to establish a relationship between sea ice thickness and the age of the ice. Drifting buoys serve to improve errors in tracking the movement of ice parcels through Arctic waters. Future airborne measurements of spectral reflectance during the melt season will improve algorithms that estimate melt pond fraction. We present examples of airborne validation of VIIRS sea ice products, relationships between sea ice thickness estimated from OIB measurements and sea ice age, and demonstrate the need for future airborne high-resolution estimates of surface reflectance, particularly in melt ponds. OIB thickness estimates over one sea ice age cell (12.5 km box) are shown in the attached figure.

  20. Satellite Based Analysis of Carbon Monoxide Levels Over Alberta Oil Sand

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J. C.

    2014-12-01

    The rapid expansion of oil sands activities and massive energy requirements to extract and upgrade the bitumen require a comprehensive understanding of their potential environmental impacts, particularly on air quality. In this study, satellite-based analysis of carbon monoxide (CO) levels was used to assess the magnitude and distribution of this pollutant throughout Alberta oil sands region. Measurements of Pollution in the Troposphere (MOPITT) V5 multispectral product that uses both near-infrared and the thermal-infrared radiances for CO retrieval were used. MOPITT-based climatology and inter-annual variations were examined for 12 years (2002-2013) on spatial and temporal scales. Seasonal climatological maps for CO total columns indicated conspicuous spatial variations in all seasons except in winter where the CO spatial variations are less prominent. High CO loadings are observed to extend from the North East to North West regions of Alberta, with highest values in spring. The CO mixing ratios at the surface level in winter and spring seasons exhibited dissimilar spatial distribution pattern where the enhancements are detected in south eastern rather than northern Alberta. Analyzing spatial distributions of Omega at 850 mb pressure level for four seasons implied that, conditions in northeastern Alberta are more favorable for up lofting while in southern Alberta, subsidence of CO emissions are more likely. Time altitude CO profile climatology as well as the inter-annual variability were investigated for the oil sands and main urban regions in Alberta to assess the impact of various sources on CO loading. Monthly variations over urban regions are consistent with the general seasonal cycle of CO in Northern Hemisphere which exhibits significant enhancement in winter and spring, and minimum mixing ratios in summer. The typical seasonal CO variations over the oil sands region are less prominent. This study has demonstrated the potential use of multispectral CO

  1. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lahoz, W. A.; van der A, R.

    2014-09-01

    Trends in tropospheric nitrogen dioxide (NO2) concentrations over 66 large urban agglomerations worldwide have been computed using data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the Envisat platform for the period August 2002 to March 2012. A seasonal model including a linear trend was fitted to the satellite-based time series over each site. The results indicate distinct spatial patterns in trends. While agglomerations in Europe, North America, and some locations in East Asia/Oceania show decreasing tropospheric NO2 levels on the order of -5 % yr-1, rapidly increasing levels of tropospheric NO2 are found for agglomerations in large parts of Asia, Africa, and South America. The site with the most rapidly increasing absolute levels of tropospheric NO2 was found to be Tianjin in China with a trend value of 3.04 (±0.47) × 1015 molecules cm-2 yr-1, whereas the site with the most rapidly increasing relative trend was Kabul in Afghanistan with 14.3 (±2.2) % yr-1. In total, 34 sites exhibited increasing trends of tropospheric NO2 throughout the study period, 24 of which were found to be statistically significant. A total of 32 sites showed decreasing levels of tropospheric NO2 during the study period, of which 20 sites did so at statistically significant magnitudes. Overall, going beyond the relatively small set of megacities investigated previously, this study provides the first consistent analysis of recent changes in tropospheric NO2 levels over most large urban agglomerations worldwide.

  2. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lahoz, W. A.; van der A, R.

    2015-02-01

    Trends in tropospheric nitrogen dioxide (NO2) columns over 66 large urban agglomerations worldwide have been computed using data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the Envisat platform for the period August 2002 to March 2012. A seasonal model including a~linear trend was fitted to the satellite-based time series over each site. The results indicate distinct spatial patterns in trends. While agglomerations in Europe, North America, and some locations in East Asia/Oceania show decreasing tropospheric NO2 levels on the order of -5% yr-1, rapidly increasing levels of tropospheric NO2 are found for agglomerations in large parts of Asia, Africa, and South America. The site with the most rapidly increasing absolute levels of tropospheric NO2 was found to be Tianjin in China with a trend of 3.04 (±0.47) × 1015 molecules cm-2yr-1, whereas the site with the most rapidly increasing relative trend was Kabul in Afghanistan with 14.3 (±2.2) % yr-1. In total, 34 sites exhibited increasing trends of tropospheric NO2 throughout the study period, 24 of which were found to be statistically significant. A total of 32 sites showed decreasing levels of tropospheric NO2 during the study period, of which 20 sites did so at statistically significant magnitudes. Overall, going beyond the relatively small set of megacities investigated previously, this study provides the first consistent analysis of recent changes in tropospheric NO2 levels over most large urban agglomerations worldwide, and indicates that changes in urban NO2 levels are subject to substantial regional differences as well as influenced by economic and demographic factors.

  3. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    PubMed Central

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  4. Evaluating Texas NOx emissions using satellite-based observations and model simulations

    NASA Astrophysics Data System (ADS)

    Frost, G. J.; Kim, S.; McKeen, S.; Cooper, O.; Hsie, E.; Trainer, M.; Heckel, A.; Richter, A.; Burrows, J.; Gleason, J.

    2008-12-01

    Anthropogenic NOx is produced primarily from fossil fuel combustion by motor vehicles, power generation, and industrial processes. Satellite-based measurements have been used to assess NOx emission trends on regional to global spatial scales and daily to annual temporal scales. The small horizontal footprints of current satellite-borne instruments, including SCIAMACHY and OMI, can be used to detect NO2 resulting from NOx emitted by isolated point sources and metropolitan areas in the western US. In this study we examine NOx emissions in the state of Texas by comparing NO2 vertical columns retrieved from these satellite instruments to those predicted by a regional chemical-transport model. Comparisons of satellite-derived and model- calculated NO2 columns over US power plants, where in-stack emission monitoring is carried out, enables a critical evaluation of the key parameters leading to uncertainties in the satellite and model data products. By using the satellite retrieval algorithms and model configurations that produce the best agreement in NO2 columns over power plants in northeastern Texas and elsewhere in the western US, satellite-model comparisons of NO2 columns over Texas cities in turn allow urban NOx emission inventories to be assessed. This work focuses on two large Texas metropolitan areas: Dallas/Fort Worth, where NOx is emitted predominantly by mobile and area-wide sources; and Houston, which, like Dallas, has typical urban sources, but also contains large industrial point sources emitting significant amounts of NOx. Year-to-year and day-of- week changes in the satellite data are used to infer NOx emission trends from point and mobile sources and to evaluate the effectiveness of NOx controls on some of these sources.

  5. Global investigations of the satellite-based Fugro OmniSTAR HP service

    NASA Astrophysics Data System (ADS)

    Pflugmacher, Andreas; Heister, Hansbert; Heunecke, Otto

    2009-12-01

    OmniSTAR is one of the world's leading suppliers of satellite-based augmentation services for onshore and offshore GNSS applications. OmniSTAR currently offers three services: VBS, HP and XP. OmniSTAR VBS is the code-based service, suitable for sub-metre positioning accuracy. The HP and XP services provide sub-decimetre accuracy, with the HP service based on a precise differential methodology and the XP service uses precise absolute positioning. The sub-decimetre HP and XP services both have distinctive convergence behaviour, and the positioning task is essentially a time-dependent process during which the accuracy of the estimated coordinates continuously improves over time. To validate the capabilities of the OmniSTAR services, and in particular the HP (High Performance) service, globally distributed measurement campaigns were performed. The results of these investigations confirm that the HP service satisfies its high accuracy specification, but only after a sufficient initialisation phase. Two kinds of disturbances can handicap HP operation: lack of GNSS observations and outages of the augmentation signal. The most serious kind of disturbance is the former. Within a few seconds the achieved convergence level is completely lost. Outages in the reception of augmentation data merely affect the relevant period of the outage - the accuracy during the outage is degraded. Only longer interruptions lead to a loss of the HP solution. When HP convergence is lost, the HP process has to be re-initialized. If there are known points (so-called “seed points”) available, a shortened “kick-start”-initialization is possible. With the aid of seed points it only takes a few minutes to restore convergence.

  6. Assessment of satellite-based aerosol optical depth using continuous lidar observation

    NASA Astrophysics Data System (ADS)

    Lin, C. Q.; Li, C. C.; Lau, A. K. H.; Yuan, Z. B.; Lu, X. C.; Tse, K. T.; Fung, J. C. H.; Li, Y.; Yao, T.; Su, L.; Li, Z. Y.; Zhang, Y. Q.

    2016-09-01

    Due to a reliance on solar radiation, the aerosol optical depth (AOD) is observed only during the day by passive satellite-based instruments such as the MODerate resolution Imaging Spectroradiometer (MODIS). Research on urban air quality, atmospheric turbidity, and evolution of aerosols in the atmospheric boundary layer, however, requires 24-h measurement of aerosols. A lidar system is capable of detecting the vertical distribution of the aerosol extinction coefficient and calculating the AOD throughout the day, but routinely lidar observation is still quite limited and the results from MODIS and lidar sometimes are contradictory in China. In this study, long-term lidar observations from 2005 to 2009 over Hong Kong were analyzed with a focus on identification of the reasons for different seasonal variation in the AOD data obtained from MODIS and lidar. The lidar-retrieved AOD shows the lowest average level, but has the most significant diurnal variation during the summer. When considering only a 5-h period between 10:00 a.m. and 3:00 p.m. local time to match satellite passages, the average of the lidar-retrieved AOD doubles during the summer and exceeds that during the winter. This finding is consistent with the MODIS observation of a higher AOD during the summer and a lower AOD during the winter. The increase in the aerosol extinction coefficient in the upper level of the mixing layer makes the greatest contribution to the increase in the AOD at midday during the summer. These assessments suggest that large over-estimation may occur when long-term averages of AOD are estimated from passive satellite observations.

  7. On the value of satellite-based river discharge and river flood data

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  8. Development of Satellite-based Climatology of Low-level Cloud and Fog in Mountain Terrain

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Barros, A. P.

    2014-12-01

    The presence of orographic clouds and fog has major environmental and economic implications that the potential shift in the space-time distribution can effectively redistribute freshwater resources and threaten the sustainability of the ecology, geomorphology and hydrology of mountainous regions and adjacent basins. This includes the Southern Appalachian Mountains, which rely closely on the moisture input from fog, cap clouds and light rainfall, as well as cloud forests in the Andes with frequent occurrence of dense fog. However, the applicability of fog forecasting models becomes limited in regions of complex terrain. The motivation of this project is to develop a satellite-based hydroclimatology and physical parameterization of orographic low-level clouds and fog regimes in the Southern Appalachians using a general methodology that can be applied to mountainous regions elsewhere. An algorithm for the detection and extraction of stratus clouds and fog was developed using changes in vertical gradients of CPR reflectivity and liquid water products from almost 5-years of CLOUDSAT and SRTM terrain data. This population of low-level clouds and fog will be analyzed with GOES infrared and visible imagery, MODIS and CALIPSO products, and with airport cloud height and visibility records to expand the spatial coverage beyond narrow satellite sensor swaths. The climatology will be further developed through integration with results from WRF simulations for selected periods since the bulk of the PMM network has been in place (2008-present) to aid in defining meteorological and time-of-day constraints in the interpretation of simulated satellite radar reflectivity profiles. The overarching goal is to infer a representation of the diurnal cycle, seasonal and inter-annual variations of the vertical distribution of LWC and hydrometeors in orographic clouds and fog that vary spatially with landform toward developing a more general parameterization of seeder-feeder interactions in

  9. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    PubMed

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  10. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  11. Satellite-based quantification of the bottom trawling induced sediment resuspension over an entire shelf

    NASA Astrophysics Data System (ADS)

    Oberle, F. J.; Cheriton, O. M.; Hanebuth, T. J. J.

    2014-12-01

    The effect of bottom trawling activities on continental shelves has been a topic of interest for both fishery resource studies and ecological impact studies for a while. However, the impact of demersal fishing gear was almost exclusively studied from a perspective of its effects on benthic fauna, but recently it has also attracted attention due to its profound impact on sediments. Here we present the first study to quantify the trawling-induced sediment resuspension effect by combining satellite-based spatial patterns of bottom trawling with quantitative measurements of induced sediment plumes. This study examined high-resolution GPS vessel monitoring data from one year (2011-2012) to quantify the sedimentary budget caused by bottom trawling activity for the entire NW Iberian shelf, an area that is widely affected by chronic (continuous and intensive) commercial bottom trawling and is exemplary for many other narrow shelves worldwide. By filtering the GPS data by vessel type, vessel speed, and geometry of the trawl path, we resolved geographically detailed bottom trawling activities with varying local trawling intensities depending both on legal restrictions and bedrock geomorphology. Initial results show that trawling-induced resuspended sediments mark a significant if not dominant factor for a source to sink sedimentary budget, as they are calculated to be approximately two times as large as fluvial sedimentary input to the shelf. Ultimately, these results not only allow for a trawling affected sediment budget but also significantly help with marine management decisions by allowing to predict the mobilization and transport of sediment caused by bottom trawling gear at the level of a specific fishing fleet or ecosystem.

  12. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel.

    PubMed

    Brandt, Martin; Mbow, Cheikh; Diouf, Abdoul A; Verger, Aleixandre; Samimi, Cyrus; Fensholt, Rasmus

    2015-04-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%), which is highly controlled by precipitation (+40%). Whereas herb biomass shows large inter-annual fluctuations rather than a clear trend, leaf biomass of woody species has doubled within 27 years (+103%). This increase in woody biomass did not reflect on biodiversity with 11 of 16 woody species declining in abundance over the period. We conclude that the observed greening in the Senegalese Sahel is primarily related to an increasing tree cover that caused satellite-driven vegetation indices to increase with rainfall reversal. PMID:25400243

  13. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  14. A Remotely Sensed Global Terrestrial Drought Severity Index

    NASA Astrophysics Data System (ADS)

    Mu, Q.; Zhao, M.; Kimball, J. S.; McDowell, N. G.; Running, S. W.

    2012-12-01

    Regional drought and flooding from extreme climatic events are increasing in frequency and severity, with significant adverse eco-social impacts. Detecting and monitoring drought at regional to global scales remains challenging, despite the availability of various drought indices and widespread availability of potentially synergistic global satellite observational records. We developed a method to generate a near-real-time remotely sensed Drought Severity Index (DSI) to monitor and detect drought globally at 1-km spatial resolution and regular 8-day, monthly and annual frequencies. The new DSI integrates and exploits information from current operational satellite based terrestrial evapotranspiration (ET) and Vegetation greenness Index (NDVI) products, which are sensitive to vegetation water stress. Specifically, our approach determines the annual DSI departure from its normal (2000-2011) using the remotely sensed ratio of ET to potential ET (PET) and NDVI. The DSI results were derived globally and captured documented major regional droughts over the last decade, including severe events in Europe (2003), the Amazon (2005 and 2010), and Russia (2010). The DSI corresponded favorably (r=0.43) with the precipitation based Palmer Drought Severity Index (PDSI), while both indices captured similar wetting and drying patterns. The DSI was also correlated with satellite based vegetation net primary production (NPP) records, indicating that the combined use of these products may be useful for assessing water supply and ecosystem interactions, including drought impacts on crop yields and forest productivity. The remotely-sensed global terrestrial DSI enhances capabilities for near-real-time drought monitoring to assist decision makers in regional drought assessment and mitigation efforts, and without many of the constraints of more traditional drought monitoring methods.

  15. Satellite-Based Technologies in Use for Extreme Nocturnal Mountain Rescue Operations: a Synergetic Approach Applying Geophysical Principles

    NASA Astrophysics Data System (ADS)

    Buchroithner, Manfred F.; Ehlert, Guido; Hetze, Bernd; Kohlschmidt, Horst; Prechtel, Nikolas

    2014-06-01

    Mountain-rescue operations require rapid response whilst also ensuring the security of the rescue teams. Rescuing people in a big rock-face is even more difficult if night or fog prevent sight. The paper presents a technical solution to optimally support, under these aggravated conditions, the location of the casualties and the navigation of the rescue team(s) in a rock-face from a coordination station. In doing so, standard components like a smartphones with GPS functionality, a data communication on a client-server basis and VR visualisation software have been adapted to the specific requirements. Remote support of the navigation in steep rocky terrain requires a highly accurate wall model which permits the local experts of the coordination station to dependably estimate geometry and structure of the rock along the rescue route and to convey necessary directives to the retrieval team. Based on terrestrial laser-scans from different locations, such a model has been generated for the mighty Dachstein South Face (Austria) and texturised with digital photographs. Over a twelve-month period, a transdisciplinary team of the Dresden University of Technology (Informatics, Electrical Engineering, Cartography) developed and integrated the various technical modules of the mountain-rescue support-system (digital rock-face model, optimised GPS data transmission between mobile device, server and client, data filtering, and dynamic visualisation component). In summer 2011 the proper functioning of the prototype was demonstrated in a rescue exercise under foggy dusk conditions.

  16. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  17. Batteries for terrestrial applications

    SciTech Connect

    Kulin, T.M.

    1998-07-01

    Extensive research has been conducted in the design and manufacture of very long life vented and sealed maintenance free nickel-cadmium aircraft batteries. These batteries have also been used in a number of terrestrial applications with good success. This study presents an overview of the Ni-Cd chemistry and technology as well as detailed analysis of the advantages and disadvantages of the Ni-Cd couple for terrestrial applications. The performance characteristics of both sealed and vented Ni-Cd's are presented. Various charge algorithms are examined and evaluated for effectiveness and ease of implementation. Hardware requirements for charging are also presented and evaluated. The discharge characteristics of vented and sealed Ni-Cd's are presented and compared to other battery chemistries. The performance of Ni-Cd's under extreme environmental conditions is also compared to other battery chemistries. The history of various terrestrial applications is reviewed and some of the lessons learned are presented. Applications discussed include the NASA Middeck Payload Battery, Raytheon Aegis Missile System Battery, THAAD Launcher battery, and the Titan IV battery. The suitability of the Ni-Cd chemistry for other terrestrial applications such as electric vehicles and Uninterruptible Power Supply is discussed.

  18. Diterpenoids of terrestrial origin.

    PubMed

    Hanson, James R

    2015-12-19

    Covering January to December 2014. Previous review, Nat. Prod. Rep., 2015, 32, 76-87 This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes, labdanes, clerodanes, abietanes, pimaranes, kauranes, cembranes and their cyclization products. There are 200 references. PMID:26514379

  19. INTRODUCED TERRESTRIAL SPECIES (FUTURE)

    EPA Science Inventory

    These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are available for 8-digit HUCs. The data are a weighted proportion of appropriate habitat overlapped by the potential...

  20. The terrestrial silica pump.

    PubMed

    Carey, Joanna C; Fulweiler, Robinson W

    2012-01-01

    Silicon (Si) cycling controls atmospheric CO(2) concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C) to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1), accounting for 43% of the total oceanic net primary production (NPP). However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1)) is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2) levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump. PMID:23300825

  1. The Terrestrial Silica Pump

    PubMed Central

    Carey, Joanna C.; Fulweiler, Robinson W.

    2012-01-01

    Silicon (Si) cycling controls atmospheric CO2 concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C) to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr−1, accounting for 43% of the total oceanic net primary production (NPP). However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr−1) is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO2 levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump. PMID:23300825

  2. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  3. Comparison of ground and satellite based measurements of the fraction of photosynthetically active radiation intercepted by tall-grass prairie

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, T. H.; Kanemasu, E. T.; Flitcroft, I.; Su, H.

    1990-01-01

    The fraction, of photosynthetically active radiation absorbed by vegetation, F sub ipar, is an important requirement for estimating vegetation biomass productivity and related quantities. This was an integral part of a large international effort; the First ISLSCP Field Experiment (FIFE). The main objective of FIFE was to study the effects of vegetation on the land atmosphere interactions and to determine if these interactions can be assessed from satellite spectral measurements. The specific purpose of this experiment was to find out how well measurements of F sub ipar relate to ground, helicopter, and satellite based spectral reflectance measurements. Concurrent measurements of F sub ipar and ground, helicopter, and satellite based measurements were taken at 13 tall grass prairie sites in Kansas. The sites were subjected to various combinations of burning and grazing managements.

  4. A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case.

    NASA Astrophysics Data System (ADS)

    Lazzarotto, Francesco; Fabiani, Sergio; Costa, Enrico; di Persio, Giuseppe; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Pacciani, Luigi; Rubini, Alda; Soffitta, Paolo

    Modern satellite based experiments are often very complex real-time systems, composed by flight and ground segments that have challenging resource related constraints, in terms of size, weight, power, requirements for real-time response, fault tolerance, and specialized in-put/output hardware-software, and they must be certified to high levels of assurance. Hardware-software data processing systems have to be responsive to system degradation and to changes in the data acquisition modes, and actions have to be taken to change the organization of the mission operations. A big research & develop effort in a team composed by scientists and technologists can lead to produce software systems able to optimize the hardware to reach very high levels of performance or to pull degraded hardware to maintain satisfactory features. We'll show real-life examples describing a system, able to process the data of a X-Ray detecting satellite-based mission in spinning mode.

  5. Comparison of ground and satellite based measurements of the fraction of photosynthetically active radiation intercepted by tall-grass prairie

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, T. H.; Kanemasu, E. T.; Flitcroft, I. D.; Su, H.

    1992-01-01

    The fraction of photosynthetically active radiation intercepted by vegetation, F(sub ipar) is an important parameter for modeling the interactions between the land-surface and atmosphere and for estimating vegetation biomass productivity. This study was, therefore, an integral part of FIFE. The specific purpose of this experiment was to find out how well definitive measurements of F(sub ipar) on the ground relate to near-ground and satellite based spectral reflectance measurements. Concurrent measurements of F(sub ipar) and ground, helicopter, and satellite based reflectance measurements were taken at thirteen tall-grass prairie sites within the FIFE experimental area. The sites were subjected to various combinations of burning and grazing managements. The ground and helicopter based reflectance measurements were taken on the same day or few days from the time of the overpass of LANDSAT and SPOT satellites. Ground-based reflectance measurements and sun photometer readings taken at the times of the satellite overpasses were used to correct for atmospheric attenuation. Hand-held radiometer spectral indices were strongly correlated with helicopter and satellite based values (r = 0.94 for helicopter, 0.93 for LANDSAT Thematic Mapper, and 0.86 for SPOT). However, the ground, helicopter, and satellite based normalized difference spectral vegetation indices showed low sensitivity to changes in F(sub ipar). Reflectance measurements were only moderately well correlated with measurements of F(sub ipar) (r = 0.82 for hand-held radiometer, 0.84 for helicopter measurements, and 0.75 for the LANDSAT Thematic Mapper and SPOT). Improved spectral indices which can compensate for site differences are needed in order to monitor F(sub ipar) more reliably.

  6. Comparison of ground and satellite based measurements of the fraction of photosynthetically active radiation intercepted by tall-grass prairie

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, T. H.; Kanemasu, E. T.; Flitcroft, I.; Su, H.

    1991-01-01

    The fraction, of photosynthetically active radiation intercepted by vegetation, F(sub ipar) is an important parameter for modeling the interactions between the land-surface and atmosphere and for estimating vegetation biomass productivity. This study was; therefore, an integral part of FIFE. The specific purpose of this experiment was to find out how well definitive measurements of F(sub ipar) on the ground relate to near-ground and satellite based spectral reflectance measurements. Concurrent measurements of F(sub ipar) and ground, helicopter, and satellite based reflectance measurements were taken at thirteen tall-grass prairie sites within the FIFE experimental area. The sites were subjected to various combinations of burning and grazing managements. The ground and helicopter based reflectance measurements were taken on the same day or few days from the time of the overpass of LANDSAT and SPOT satellites. Ground-based reflectance measurements and sun photometer readings taken at the times of the satellite overpasses were used to correct for atmospheric attenuation. Hand-held radiometer spectral indices were strongly correlated with helicopter and satellite based values (r=0.94 for helicopter, 0.93 for LANDSAT Thematic Mapper, and 0.86 for SPOT). However, the ground, helicopter, and satellite based normalized difference spectral vegetation indices showed low sensitivity to changes in F(sub ipar). Reflectance measurements were only moderately well correlated with measurements of F(sub ipar) (r=0.82 for hand-held radiometer, 0.84 for helicopter measurements, and 0.75 for the LANDSAT Thematic Mapper and SPOT). Improved spectral indices which can compensate for site differences are needed in order to monitor F(sub ipar) more reliably.

  7. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  8. Assessing the utility of satellite-based whitecap fraction to estimate sea spray production and CO2 transfer velocity

    NASA Astrophysics Data System (ADS)

    Anguelova, M. D.

    2016-05-01

    The utility of a satellite-based whitecap database for estimates of surface sea spray production and bubble-mediated gas transfer on a global scale is presented. Existing formulations of sea spray production and bubble-mediated CO2 transfer velocity involve whitecap fraction parametrization as a function of wind speed at 10 m reference height W(U 10) based on photographic measurements of whitecaps. Microwave radiometric measurements of whitecaps from satellites provide whitecap fraction data over the world oceans for all seasons. Parametrizations W(U 10) based on such radiometric data are thus applicable for a wide range of conditions and can account for influences secondary to the primary forcing factor, the wind speed. Radiometric satellite-based W(U 10) relationship was used as input to: (i) the Coupled Ocean-Atmosphere Response Experiment Gas transfer (COAREG) algorithm to obtain CO2 transfer velocity and total CO2 flux; and (ii) the sea spray source function (SSSF) recommended by Andreas in 2002 to obtain fluxes of sea spray number and mass. The outputs of COAREG and SSSF obtained with satellite-based W(U 10) are compared with respective outputs obtained with the nominal W(U 10) relationship based on photographic data. Good comparisons of the gas and sea spray fluxes with direct measurements and previous estimates imply that the satellite- based whitecap database can be useful to obtain surface fluxes of particles and gases in regions and conditions difficult to access and sample in situ. Satellite and in situ estimates of surface sea spray production and bubble-mediated gas transfer thus complement each other: accurate in situ observations can constrain radiometric whitecap fraction and mass flux estimates, while satellite observations can provide global coverage of whitecap fraction and mass flux estimates.

  9. Site-adaptation of satellite-based DNI and GHI time series: Overview and SolarGIS approach

    NASA Astrophysics Data System (ADS)

    Cebecauer, Tomas; Suri, Marcel

    2016-05-01

    Site adaptation is an approach of reducing uncertainty in the satellite-based longterm estimates of solar radiation by combining them with short-term high-accuracy measurements at a project site. We inventory the existing approaches and introduce the SolarGIS method that is optimized for providing bankable data for energy simulation in Concentrating Solar Power. We also indicate the achievable uncertainty of SolarGIS model outputs based on site-adaptation of projects executed in various geographical conditions.

  10. Satellite-Terrestrial Network Interoperability

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.

    1998-01-01

    The developing national and global information infrastructures (NII/GII) are being built upon the asynchronous transfer mode (ATM) telecommunications protocol and associated protocol standards. These protocols are themselves under development through the telecommunications standards process defined by the International Telecommunications Union (ITU), which as a body is sanctioned by the United Nations. All telecommunications manufacturers use these standards to create products that can interoperate. The ITU has recognized the ATM Forum as the instrument for the development of ATM protocols. This forum is a consortium of industry, academia, and government entities formed to quickly develop standards for the ATM infrastructure. However, because the participants represent a predominately terrestrial network viewpoint, the use of satellites in the national and global information infrastructures could be severely compromised. Consequently, through an ongoing task order, the NASA Lewis Research Center asked Sterling Software, Inc., to communicate with the ATM Forum in support of the interoperability of satellite-terrestrial networks. This year, Dr. Raj Jain of the Ohio State University, under contract to Sterling, authored or coauthored 32 explanatory documents delivered to the ATM Forum in the areas of Guaranteed Frame Rate for Transmission Control Protocol/Internet Protocol (TCP/IP), Available Bit Rate, performance testing, Variable Bit Rate voice over ATM, TCP over Unspecified Bit Rate+, Virtual Source/Virtual Destination, and network management. These contributions have had a significant impact on the content of the standards that the ATM Forum is developing. Some of the more significant accomplishments have been: (1) The adoption by the ATM Forum of a new definition for Message-In, Message-Out latency; and (2) Improved text (clearer wording and newly defined terms) for measurement procedures, foreground and background traffic, and scalable configuration in the

  11. NASA'S communications programs - 1985

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.; Cuccia, C. L.

    1985-01-01

    NASA's communications program was restructured in 1979 to develop selective high risk technology forced on relief of the orbit and frequency congestion and on developing new and affordable service. The central theme of the current technology thrust is one of developing interconnectivity technology and architecture to convert the present era of bent pipe satellite utilization to one using nodal points in space for both space and earth based information gateways and interfaces to terrestrial communication systems.

  12. Public service communications

    NASA Technical Reports Server (NTRS)

    Whalen, A. A.

    1979-01-01

    The purpose of the paper is to construct, for detailed analysis, satellite and terrestrial communications delivery system models. Attention is given to the Public Service Communications Delivery System Architectural Study, that takes advantage of the extensive experience which exists among the public service experimenters. The Application Test Pilot is examined, which is a program designed to help awareness, in a practical sense, of the technology available and by the users innovative talents, adapts the technology to solve their problems.

  13. Optical satellite communications in Europe

    NASA Astrophysics Data System (ADS)

    Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf

    2010-02-01

    This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.

  14. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  15. Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region

    NASA Astrophysics Data System (ADS)

    Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.

    2013-12-01

    Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output

  16. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013

    PubMed Central

    Ma, Zongwei; Hu, Xuefei; Sayer, Andrew M.; Levy, Robert; Zhang, Qiang; Xue, Yingang; Tong, Shilu; Bi, Jun; Huang, Lei; Liu, Yang

    2015-01-01

    L, Liu Y. 2016. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ Health Perspect 124:184–192; http://dx.doi.org/10.1289/ehp.1409481 PMID:26220256

  17. Comparison of Satellite-based Basal and Adjusted Evapotranspiration for Several California Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Lund, C.; Melton, F. S.

    2013-12-01

    _adj throughout each monitoring period was lower than cumulative ETb for most crops, indicating that effect of water stress tended to exceed that of soil evaporation relative to basal conditions. We present results from the analysis and discuss implications for operational use of satellite-based Kcb and ETcb estimates for agricultural water resource management.

  18. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  19. Development of a satellite-based nowcasting system for surface solar radiation

    NASA Astrophysics Data System (ADS)

    Limbach, Sebastian; Hungershoefer, Katja; Müller, Richard; Trentmann, Jörg; Asmus, Jörg; Schömer, Elmar; Groß, André

    2014-05-01

    The goal of the RadNowCast project was the development of a tool-chain for a satellite-based nowcasting of the all sky global and direct surface solar radiation. One important application of such short-term forecasts is the computation of the expected energy yield of photovoltaic systems. This information is of great importance for an efficient balancing of power generation and consumption in large, decentralized power grids. Our nowcasting approach is based on an optical-flow analysis of a series of Meteosat SEVIRI satellite images. For this, we extended and combined several existing software tools and set up a series of benchmarks for determining the optimal forecasting parameters. The first step in our processing-chain is the determination of the cloud albedo from the HRV (High Resolution Visible)-satellite images using a Heliosat-type method. The actual nowcasting is then performed by a commercial software system in two steps: First, vector fields characterizing the movement of the clouds are derived from the cloud albedo data from the previous 15 min to 2 hours. Next, these vector fields are combined with the most recent cloud albedo data in order to extrapolate the cloud albedo in the near future. In the last step of the processing, the Gnu-Magic software is used to calculate the global and direct solar radiation based on the forecasted cloud albedo data. For an evaluation of the strengths and weaknesses of our nowcastig system, we analyzed four different benchmarks, each of which covered different weather conditions. We compared the forecasted data with radiation data derived from the real satellite images of the corresponding time steps. The impact of different parameters on the cloud albedo nowcasting and the surface radiation computation has been analysed. Additionally, we could show that our cloud-albedo-based forecasts outperform forecasts based on the original HRV images. Possible future extension are the incorporation of additional data sources, for

  20. Hydrological Evaluation of Satellite-Based Precipitation Products over the Volta and Baro-Akobo Basin

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Zambrano, Mauricio; Rojas, Rodrigo; De Roo, Ad

    2013-04-01

    How useful are satellite-based rainfall estimates (SRFE) as forcing data for hydrological applications? Which SRFE should be favoured for hydrological modelling? What could researchers do to increase the performance of SRFE-driven hydrological simulations? To address these three research questions, four SRFE (CMORPH, RFE 2.0, TRMM-3B42 and PERSIANN) and one reanalysis product (ERA-Interim) are evaluated within a hydrological application for the time period 2003-2008, over two river basins (Volta and Baro-Akobo) which hold distinct physiographic, climatologic and hydrologic conditions. The focus was on the assessment of: a) the individual and combined effect of SRFE-specific calibration and bias-correction on the hydrological performance, b) the level of complexity required regarding bias-correction and interpolation to achieve a good hydrological performance, and c) the hydrological performance of SRFE during high- and low-flow conditions. Results show that 1) the hydrological performance is always higher if the model is calibrated to the respective SRFE rather than to interpolated ground observations; 2) for SRFE that are afflicted with bias, a bias-correction step prior to SRFE-specific calibration is essential, while for SRFE with good intrinsic data quality applying a SRFE-specific model calibration is sufficient; 3) the more sophisticated bias-correction method used in this work (histogram equalization) results generally in a superior hydrological performance, while a more sophisticated interpolation method (Kriging with External Drift) seems to be of added value only over mountainous regions; 4) the bias-correction is not over-proportionally important over mountainous catchments, as it solely depends on where the SRFE show high biases (e.g. for PERSIANN and CMORPH over lowland areas); and 5) the hydrological performance during high-flow conditions is superior thus promoting the use of SRFE for applications focusing on the high-end flow spectrum. These results

  1. Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Rojas, Rodrigo; Zambrano-Bigiarini, Mauricio; De Roo, Ad

    2013-08-01

    How useful are satellite-based rainfall estimates (SRFE) as forcing data for hydrological applications? Which SRFE should be favoured for hydrological modelling? What could researchers do to increase the performance of SRFE-driven hydrological simulations? To address these three research questions, four SRFE (CMORPH, RFE 2.0, TRMM-3B42 and PERSIANN) and one re-analysis product (ERA-Interim) are evaluated within a hydrological application for the time period 2003-2008, over two river basins (Volta and Baro-Akobo) which hold distinct physiographic, climatologic and hydrologic conditions. The focus was on the assessment of: (a) the individual and combined effect of SRFE-specific calibration and bias correction on the hydrological performance, (b) the level of complexity required regarding bias correction and interpolation to achieve a good hydrological performance, and (c) the hydrological performance of SRFE during high- and low-flow conditions. Results show that (1) the hydrological performance is always higher if the model is calibrated to the respective SRFE rather than to interpolated ground observations; (2) for SRFE that are afflicted with bias, a bias-correction step prior to SRFE-specific calibration is essential, while for SRFE with good intrinsic data quality applying only a SRFE-specific model calibration is sufficient; (3) the more sophisticated bias-correction method used in this work (histogram equalization) results generally in a superior hydrological performance, while a more sophisticated spatial interpolation method (Kriging with External Drift) seems to be of added value only over mountainous regions; (4) the bias correction is not over-proportionally important over mountainous catchments, as it solely depends on where the SRFE show high biases (e.g. for PERSIANN and CMORPH over lowland areas); and (5) the hydrological performance during high-flow conditions is superior thus promoting the use of SRFE for applications focusing on the high-end flow

  2. Evaluation of Satellite Based Rainfall Estimation over Major River Basins in Africa

    NASA Astrophysics Data System (ADS)

    Bitew, M. M.; Gebremichael, M.

    2012-12-01

    Accuracy of satellite rainfall estimates are poorly known over Africa because of sparse ground based observations. We examined four widely used high resolution satellite products: the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) which is near-real-time (TMPA 3B42RT), the TMPA method post-real-time research version seven (TMPA 3B42v7), the Climate Prediction Center's morphing technique (CMORPH) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The main objective of the evaluation was to assess the performance of the satellite based estimates in capturing the overall climatological blueprints of rainfall over Africa at various spatio-temporal scale, and inter-comparison of the estimates across the various climatological regimes in Africa. In the tropical, complex terrain region of East Africa, the results show poor skills of satellite rainfall in capturing elevation dependent rainfall structure; microwave based CMORPH and 3B42RT estimates provide relatively accurate estimate of rainfall in high elevation areas but showed excessive overestimation in low elevation, and merging GTS-based rain gauges with the Satellite-Only products deteriorated the accuracy of rainfall estimation in high elevation areas of the Blue Nile. In this study we present the findings over seven other large and sparsely gauged river basins: Sengal (419,659 km2), Jubba (497,655 km2), Volta (407,093 km2), Ogooue (223,656 km2), Ubangi (613,202 km2) Okavango (721,277 km2) and Kasai (925,172 km2) river basins representing different topography and climate system between 250 N and 250 S. The accuracy of those products is assessed using a ground based GPCC datasets and through inter-comparision among the products between 2003 -2011 at a resolution of 25 km by 25-km and 3 hr data. Based on these datasets we present annual, seasonal and monthly spatial structure of rainfall in terms of depth, rainy days

  3. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    SciTech Connect

    Feng, Fei; Chen, Jiquan; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Liu, Meng; Zhang, Nannan; Guo, Yang; Yu, Jian; Sun, Minmin

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolution imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating

  4. Satellite-based Assessment of Climate Controls on US Burned Area

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2012-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and

  5. Phenology model from weather station meteorology does not predict satellite-based onset

    NASA Astrophysics Data System (ADS)

    Fisher, J. I.; Richardson, A. D.; Mustard, J. F.

    2006-12-01

    Seasonal temperature changes in temperate forests are known to trigger the start of spring growth, and both interannual and spatial variations in spring growth have been tied to climatic variability. Satellite data are finding increased use in regional and global phenological studies, but to date there have been few efforts to rigorously tie remotely sensed phenology to surface climate records. Where satellite records have been compared to broad-scale climate patterns, broadleaf deciduous forests have typically been characterized as a single functional type and differences between communities ignored. We used a simple two-parameter spring warming model to explore the relationship between interannual climate variability and satellite-based phenology in New England broadleaf temperate forests. We employed daily air temperature records between 2000 and 2005 from 171 NOAA meteorological stations to parameterize a simple spring warming model predicting the date of MODIS half-maximum greenness (spring onset). We find that the best model starts accumulating heating degree days (HDD) after March 20th and when average daily temperatures exceed 5°C. Critical heat sums to reach onset range from 150 to 300 degree-days, with increasing requirements southward and in coastal regions. In our findings, the spring warming model offers little improvement on the photoperiod null model (i.e. the average date of onset). However, differences between the relative goodness-of-fit of the spring warming model compared to the null (coined the 'climate sensitivity ratio', or CSR) displayed unexpected spatial coherency. The spatial variation in CSR appears to be related to differences in forest composition, with clear differences between northern (beech-maple-birch) and central (oak-hickory) hardwood forests. The two forest types may respond to climate differently, with disparate sensitivities to the minimum temperature initiating spring growth (3 and 6°C, respectively). We conclude that

  6. Towards a protocol for validating satellite-based Land Surface Temperature: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Ghent, Darren J.; Corlett, Gary C.; Prata, Fred; Remedios, John J.

    2013-04-01

    Land Surface Temperature (LST) and emissivity are important parameters for environmental monitoring and earth system modelling. LST has been observed from space for several decades using a wide variety of satellite instruments with different characteristics, including both platforms in low-earth orbit and in geostationary orbit. This includes for example the series of Advanced Very High Resolution Radiometers (AVHRR) delivering a continuous thermal infrared (TIR) data stream since the early 1980s, the series of Along-Track Scanning Radiometers (ATSR) providing TIR data since 1991, and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard NASA's Terra and Aqua platforms, providing data since the year 2000. In addition, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard of the geostationary Meteosat satellites is now providing LST at unprecedented sub-hour frequency. The data record provided by such instruments is extremely valuable for a wide variety of applications, including climate change, land/atmosphere feedbacks, fire monitoring, modelling, land cover change, geology, crop- and water management. All of these applications, however, require a rigorous validation of the data in order to assess the product quality and the associated uncertainty. Here we report on recent work towards developing a protocol for validation of satellite-based Land Surface Temperature products. Four main validation categories are distinguished within the protocol: A) Comparison with in situ observations, B) Radiance-based validation, C) Inter-comparison with similar LST products, and D) Time-series analysis. Each category is further subdivided into several quality classes, which approximately reflect the validation accuracy that can be achieved by the different approaches, as well as the complexity involved with each method. Advice on best practices is given for methodology common to all categories. For each validation category, recommendations

  7. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    SciTech Connect

    Cherry, H B.B.

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  8. The Satellite Based Hydrological Model (SHM): Routing Scheme and its Evaluation

    NASA Astrophysics Data System (ADS)

    kumari, Nikul; Paul, Pranesh Kumar; Singh, Rajendra; Panigrahy, Niranjan; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2016-04-01

    The collection of spatially extensive data by using the traditional methods of data acquisition is a challenging task for a large territory like India. To overcome such problems, the Satellite based Hydrological Model (SHM), a large scale conceptual hydrological model for the Indian Territory, is being developed under the PRACRITI-2 program of the Space Applications Centre (SAC), Ahmedabad. The model aims at preparing sustainable water management scenarios using remote sensing data from Indian satellites to handle the fresh water crisis in India. There are five modules namely, Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU) in the SHM. The SW, F and S modules convert rainfall into surface runoff and generate input (infiltration and percolation) for the GW module, and GW generates baseflow using that input. In this study, a cell-to-cell routing (ROU) module has been developed for SHM. It is based on the principle of Time Variant Spatially Distributed Direct Hydrograph (SDDH) to route the generated runoff and baseflow generated by various modules upto the outlet. The entire India is divided into 5km x 5km grid cells and properties at the center of the cell are assumed to represent the property of the cell. In the routing scheme, for each cell a single downstream cell is defined in the direction of steepest descent, to create the flow network. These grid cells are classified into overland cells and channel cells based on the threshold value taken into consideration. The overland flow travel time of each overland cell is estimated by combining a steady state kinematic wave approximation with Manning's equation and the channel flow travel time of each channel cell is estimated using Manning's equation and the steady state continuity equation. The travel time for each cell is computed by dividing the travel distance through that cell with cell velocity. The cumulative travel time from each grid cell to the watershed outlet is the sum of

  9. Satellite-based assessment of climate controls on US burned area

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2012-06-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997-2010) and Monitoring Trends in Burn Severity (MTBS, 1984-2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE} and fire activity in the Alaska, while water deficit (precipitation - PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6-12 months). Fire season PE increased from the 1980s-2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s-2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of fire types, ecosystems

  10. Satellite-based assessment of climate controls on US burned area

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2013-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997-2010) and Monitoring Trends in Burn Severity (MTBS, 1984-2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for the entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in Alaska, while water deficit (precipitation - PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6-12 months). Fire season PE increased from the 1980's-2000's, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990's-2000's highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of fire types

  11. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    DOE PAGESBeta

    Feng, Fei; Chen, Jiquan; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Liu, Meng; Zhang, Nannan; Guo, Yang; Yu, Jian; Sun, Minmin

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolutionmore » imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables

  12. Systematic Differences between Satellite-Based Presipitation Climatologies over the Tropical Oceans

    NASA Technical Reports Server (NTRS)

    Robertson, Frankin R.; Fitzjarrald, Dan; McCaul, Eugene W.

    1999-01-01

    Since the beginning of the World Climate Research Program's Global Precipitation Climatology Project (GPCP) satellite remote sensing of precipitation has made dramatic improvements, particularly for tropical regions. Data from microwave and infrared sensors now form the most critical input to precipitation data sets and can be calibrated with surface gauges to so that the strengths of each data source can be maximized in some statistically optimal sense. It is clear however that there still remain significant uncertainties with satellite precipitation retrievals which limit their usefulness for many purposes. Systematic differences i'A tropical precipitation estimates have been brought to light in comparison activities such as the GPCP Algorithm Intercomparison Project and more recent Wetnet Precipitation Intercomparison Project 3. These uncertainties are assuming more importance because of the demands for validation associated with global climate modeling and data assimilation methodologies. The objective of the present study is to determine the physical basis for systematic differences in spatial structure of tropical precipitation as portrayed by several different satellite-based data sets. The study is limited to oceanic regions only and deals primarily with aspects of spatial variability. We are specifically interested in why MSU channel 1 and GPI precipitation differences are so striking over the Eastern Pacific ITCZ and why they both differ from other microwave emission-based precipitation estimates from SSM/I and a scattering-based deep convective ice index from MSU channel 2. Our results to date have shown that MSU channel I precipitation estimates are biased high over the Eastern Pacific ITCZ because of two factors: (1) the hypersensitivity of this frequency to cloud water in contrast to falling rain drops, and (2) unaccounted for scattering effects by precipitation-size ice which depresses the signal of the liquid water emission. Likewise, cold cloud top

  13. Satellite-based monitoring of particulate matter pollution at very high resolution: the HOTBAR method

    NASA Astrophysics Data System (ADS)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Particulate matter air pollution is a major health risk, and is responsible for millions of premature deaths each year. Concentrations tend to be highest in urban areas - particularly in the mega-cities of rapidly industrialising countries, where there are limited ground monitoring networks. Satellite-based monitoring has been used for many years to assess regional-scale trends in air quality, but currently available satellite products produce data at 1-10km resolution: too coarse to discern the small-scale patterns of sources and sinks seen in urban areas. Higher-resolution satellite products are required to provide accurate assessments of particulate matter concentrations in these areas, and to allow analysis of localised air quality effects on health. The Haze Optimized Transform-based Aerosol Retrieval (HOTBAR) method is a novel method which provides estimates of PM2.5 concentrations from high-resolution (approximately 30m) satellite imagery. This method is designed to work over a wide range of land covers and performs well over the complex land-cover mosaic found in urban areas. It requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT), which was originally designed for assessing areas of thick haze in satellite imagery. This was done by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to estimate Aerosol Optical Thickness (a measure of the column-integrated haziness of the atmosphere) instead, from which PM2.5 concentrations can then be estimated. Significant extensions to the original HOT method include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values

  14. High-Performance Satellite/Terrestrial-Network Gateway

    NASA Technical Reports Server (NTRS)

    Beering, David R.

    2005-01-01

    A gateway has been developed to enable digital communication between (1) the high-rate receiving equipment at NASA's White Sands complex and (2) a standard terrestrial digital communication network at data rates up to 622 Mb/s. The design of this gateway can also be adapted for use in commercial Earth/satellite and digital communication networks, and in terrestrial digital communication networks that include wireless subnetworks. Gateway as used here signifies an electronic circuit that serves as an interface between two electronic communication networks so that a computer (or other terminal) on one network can communicate with a terminal on the other network. The connection between this gateway and the high-rate receiving equipment is made via a synchronous serial data interface at the emitter-coupled-logic (ECL) level. The connection between this gateway and a standard asynchronous transfer mode (ATM) terrestrial communication network is made via a standard user network interface with a synchronous optical network (SONET) connector. The gateway contains circuitry that performs the conversion between the ECL and SONET interfaces. The data rate of the SONET interface can be either 155.52 or 622.08 Mb/s. The gateway derives its clock signal from a satellite modem in the high-rate receiving equipment and, hence, is agile in the sense that it adapts to the data rate of the serial interface.

  15. Impact of geospace on terrestrial technology

    SciTech Connect

    Paulikas, G.A.; Lanzerotti, L.J.

    1982-07-01

    Solar-terrestrial research is examined and its effects on terrestrial and space technologies are assessed. Geomagnetic activity and solar proton showers have been demonstrated to have potentially serious effects on pipeline corrosion, transpolar flights, and communications systems' performance. Predictive abilities are noted to be necessary for continued and expanded exploitation of space and near-space regions, such as radio transmissions using an ionospheric bounce and Shuttle flights in polar orbits. Mechanisms of low-latitude scintillation are discussed, including the model of the growth of a bubble of instability in the ionosphere, with the subsequent break-up into smaller bubbles leading to meter-scale irregularities in the ionospheric plasma structure. Additional attention is given to induced voltages in power lines, conductors, and transformers during magnetic storms.

  16. Space and terrestrial systems in the digital network evolution

    NASA Astrophysics Data System (ADS)

    Carassa, Francesco

    An account is given of the development history and state-of-the-art in digital communications systems in use or planned by advanced countries, encompassing satellite networks, cellular mobile radio-based networks, and fiber-optic terrestrial systems. The general trend in communications technologies is noted to have for some time been toward the digital representation of signals and their TDMA processing for transmission. Attention is given to the prospects for satellite communications at frequencies above 10 GHz, the expansion of cellular radio networks, and the impact that optical digital data processing may have on fiber-optic communications.

  17. Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

    2010-05-01

    Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 μm measurements [Winker et al., 2009

  18. Time Scales: Terrestrial

    NASA Astrophysics Data System (ADS)

    Petit, G.; Murdin, P.

    2000-11-01

    Terrestrial time is at present derived from atomic clocks. The SI second, the unit of time of the international system of units, has been defined since 1967 in terms of a hyperfine transition of the cesium atom and the best primary frequency standards now realize it with a relative uncertainty of a few parts in 1015, which makes it the most accurately measurable physical quantity. INTERNATIONAL A...

  19. Development and Comparison of Ground and Satellite-based Retrievals of Cirrus Cloud Physical Properties

    SciTech Connect

    Mitchell, David L

    2009-10-14

    This report is the final update on ARM research conducted at DRI through May of 2006. A relatively minor amount of work was done after May, and last month (November), two journal papers partially funded by this project were published. The other investigator on this project, Dr. Bob d'Entremont, will be submitting his report in February 2007 when his no-cost extension expires. The main developments for this period, which concludes most of the DRI research on this project, are as follows: (1) Further development of a retrieval method for cirrus cloud ice particle effective diameter (De) and ice water path (IWP) using terrestrial radiances measured from satellites; (2) Revision and publication of the journal article 'Testing and Comparing the Modified Anomalous Diffraction Approximation'; and (3) Revision and publication of our radar retrieval method for IWC and snowfall rate.

  20. Adaptive sparse signal processing for discrimination of satellite-based radiofrequency (RF) recordings of lightning events

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.

    2015-05-01

    For over two decades, Los Alamos National Laboratory programs have included an active research effort utilizing satellite observations of terrestrial lightning to learn more about the Earth's RF background. The FORTE satellite provided a rich satellite lightning database, which has been previously used for some event classification, and remains relevant for advancing lightning research. Lightning impulses are dispersed as they travel through the ionosphere, appearing as nonlinear chirps at the receiver on orbit. The data processing challenge arises from the combined complexity of the lightning source model, the propagation medium nonlinearities, and the sensor artifacts. We continue to develop modern event classification capability on the FORTE database using adaptive signal processing combined with compressive sensing techniques. The focus of our work is improved feature extraction using sparse representations in overcomplete analytical dictionaries. We explore two possible techniques for detecting lightning events, and showcase the algorithms on few representative data examples. We present preliminary results of our work and discuss future development.

  1. Multi-Platform Satellite Based Estimates of Runoff in Ungauged Areas

    NASA Astrophysics Data System (ADS)

    Seo, J. Y.; Lee, S.-I.

    2015-10-01

    Over the past decades, extreme weather events such as floods and droughts have been on a steady increase. Especially, ungauged or hard-to-reach areas turn out to be the most affected areas by the unexpected water-related disasters. It is usually due to insufficient observation data, and deterioration of infra-structures as well as inadequate water management system. For such reasons, reliable estimation of runoff is important for the planning and the implementation of water projects in ungauged areas. North Korea, whose terrain is mostly hilly and mountainous, has become vulnerable to floods and droughts due to poor watershed management based on unreliable hydrological information along with rapid deforestation. Runoff estimation using data from multi-platform satellites having broad spatio-temporal coverage could be of a valuable substitute for ground-observed measurements. In this study, monthly runoff in North Korea (38°N - 43°N, 124°E - 131°E) was estimated by combining space-borne data from multi-platform satellites with ground observations. Period of analysis is from January 2003 to December 2013. Data sets used for this study are as in the following: {1} Terrestrial Water Storage Anomaly (TWSA) from Gravity Recovery and Climate Experiment (GRACE), (2) Evapotranspiration from Moderate Resolution Imaging Spectroradiometer (MODIS), (3) Satellite-observed precipitation from Tropical Rainfall Measurement Mission (TRMM), and (4) Ground-observed precipitation from World Meterological Organization (WMO) (see Figure 1 and Table 1). These components are balanced with the terrestrial water storage change, and runoff can be estimated from eq. (1).

  2. Global Communications Infrastructure: CTBT Treaty monitoring using space communications

    NASA Astrophysics Data System (ADS)

    Kebeasy, R.; Abaya, E.; Ricker, R.; Demeules, G.

    first global integrated satellite communications network based on VSAT technology. Space segment has been leased to carry more than 9 gigabytes/day of data to the IDC with a designed annual availability of 99.5%. This paper explains the topology of this satellite-based network, and practical limitations encountered in organizing a single network with 250 links that span the majority of countries in the world, plus the Antarctic regions and the earth's oceans. Having now installed about half of the satellite links in 67 countries, CTBTO has had to hurdle regulatory challenges to install VSAT equipment, and operational challenges to keep the earth stations running in unmanned remote locations. Despite the challenges, the GCI has proven its worth in reliably collecting monitoring data and making such available to authorized users. It has also been useful to give scientists real-time access for controlling their remote monitoring stations.

  3. Simulation of large-scale soil water systems using groundwater data and satellite based soil moisture

    NASA Astrophysics Data System (ADS)

    Kreye, Phillip; Meon, Günter

    2016-04-01

    Complex concepts for the physically correct depiction of dominant processes in the hydrosphere are increasingly at the forefront of hydrological modelling. Many scientific issues in hydrological modelling demand for additional system variables besides a simulation of runoff only, such as groundwater recharge or soil moisture conditions. Models that include soil water simulations are either very simplified or require a high number of parameters. Against this backdrop there is a heightened demand of observations to be used to calibrate the model. A reasonable integration of groundwater data or remote sensing data in calibration procedures as well as the identifiability of physically plausible sets of parameters is subject to research in the field of hydrology. Since this data is often combined with conceptual models, the given interfaces are not suitable for such demands. Furthermore, the application of automated optimisation procedures is generally associated with conceptual models, whose (fast) computing times allow many iterations of the optimisation in an acceptable time frame. One of the main aims of this study is to reduce the discrepancy between scientific and practical applications in the field of hydrological modelling. Therefore, the soil model DYVESOM (DYnamic VEgetation SOil Model) was developed as one of the primary components of the hydrological modelling system PANTA RHEI. DYVESOMs structure provides the required interfaces for the calibrations made at runoff, satellite based soil moisture and groundwater level. The model considers spatial and temporal differentiated feedback of the development of the vegetation on the soil system. In addition, small scale heterogeneities of soil properties (subgrid-variability) are parameterized by variation of van Genuchten parameters depending on distribution functions. Different sets of parameters are operated simultaneously while interacting with each other. The developed soil model is innovative regarding concept

  4. Source mass eruption rate retrieved from satellite-based data using statistical modelling

    NASA Astrophysics Data System (ADS)

    Gouhier, Mathieu; Guillin, Arnaud; Azzaoui, Nourddine; Eychenne, Julia; Valade, Sébastien

    2015-04-01

    Ash clouds emitted during volcanic eruptions have long been recognized as a major hazard likely to have dramatic consequences on aircrafts, environment and people. Thus, the International Civil Aviation Organization (ICAO) established nine Volcanic Ash Advisory Centers (VAACs) around the world, whose mission is to forecast the location and concentration of ash clouds over hours to days, using volcanic ash transport and dispersion models (VATDs). Those models use input parameters such as plume height (PH), particle size distribution (PSD), and mass eruption rate (MER), the latter being a key parameter as it directly controls the amount of ash injected into the atmosphere. The MER can be obtained rather accurately from detailed ground deposit studies, but this method does not match the operational requirements in case of a volcanic crisis. Thus, VAACs use empirical laws to determine the MER from the estimation of the plume height. In some cases, this method can be difficult to apply, either because plume height data are not available or because uncertainties related to this method are too large. We propose here an alternative method based on the utilization of satellite data to assess the MER at the source, during explosive eruptions. Satellite-based techniques allow fine ash cloud loading to be quantitatively retrieved far from the source vent. Those measurements can be carried out in a systematic and real-time fashion using geostationary satellite, in particular. We tested here the relationship likely to exist between the amount of fine ash dispersed in the atmosphere and of coarser tephra deposited on the ground. The sum of both contributions yielding an estimate of the MER. For this purpose we examined 19 eruptions (of known duration) in detail for which both (i) the amount of fine ash dispersed in the atmosphere, and (ii) the mass of tephra deposited on the ground have been estimated and published. We combined these data with contextual information that may

  5. Satellite-based solar radiation mapping over complex terrain: Validation in the Alps and possible improvements

    NASA Astrophysics Data System (ADS)

    Castelli, Mariapina; Stoeckli, Reto; Tetzlaff, Anke; Ernst Wagner, Jochen; Zardi, Dino; Petitta, Marcello

    2013-04-01

    . Consequently it is recommended to include in the clear-sky model more accurate input than the currently used monthly climatologies of aerosol and the operational 1 day forecast of column water vapor amount from the ECMWF model ouptut. References [1] K. V. Khlopenkov And A. P. Trishchenko, "SPARC: New Cloud, Snow, and Cloud Shadow Detection Scheme for Historical 1-km AVHHR Data over Canada", Journal of Atmospheric and Oceanic Technology, 24, pp. 322-343, 2007. [2] R.W. Müller, C. Matsoukas, A. Gratzki, H.D. Behr, R. Hollmann. "The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance - A LUT based eigenvector hybrid approach", Remote Sensing of Environment, 113, pp.1012-1024, 2009. [3] R. Stöckli (in prep.). "Supplementing Heliosat for physically-based surface radiation retrieval in complex terrain."

  6. Assimilation of Satellite Based Soil Moisture Data in the National Weather Service's Flash Flood Guidance System

    NASA Astrophysics Data System (ADS)

    Seo, D.; Lakhankar, T.; Cosgrove, B.; Khanbilvardi, R.

    2012-12-01

    potential sources of remotely sensed soil moisture data. SMOS measures the microwave radiation emitted from the Earth's surface operating at L-band (1.20-1.41 GHz) to measure surface soil moisture directly. Microwave radiation at this wavelength offers relatively deeper penetration and has lower sensitivity to vegetation impacts. The main objective of this research is to evaluate the contribution of remote sensing technology to quantifiable improvements in flash flood applications as well as adding a remote sensing component to the NWS FFG Algorithm. The challenge of this study is employing the direct soil moisture data from SMOS to replace the model-calculated soil moisture state which is based on the soil water balance in 4 km x 4 km Hydrologic Rainfall Analysis Project (HRAP) grid cells. In order to determine the value of the satellite data to NWS operations, the streamflow generated by HL-RDHM with and without soil moisture assimilation will be compared to USGS gauge data. Furthermore, we will apply the satellite-based soil moisture data with the FFG algorithm to evaluate how many hits, misses and false alarms are generated. This study will evaluate the value of remote sensing data in constraining the state of the system for main-stem and flash flood forecasting.

  7. Asia-MIP: Multi Model-data Synthesis of Terrestrial Carbon Cycles in Asia

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Kondo, M.; Ito, A.; Kang, M.; Sasai, T.; SATO, H.; Ueyama, M.; Kobayashi, H.; Saigusa, N.; Kim, J.

    2013-12-01

    Asia, which is characterized by monsoon climate and intense human activities, is one of the prominent understudied regions in terms of terrestrial carbon budgets and mechanisms of carbon exchange. To better understand terrestrial carbon cycle in Asia, we initiated multi-model and data intercomparison project in Asia (Asia-MIP). We analyzed outputs from multiple approaches: satellite-based observations (AVHRR and MODIS) and related products, empirically upscaled estimations (Support Vector Regression) using eddy-covariance observation network in Asia (AsiaFlux, CarboEastAsia, FLUXNET), ~10 terrestrial biosphere models (e.g. BEAMS, Biome-BGC, LPJ, SEIB-DGVM, TRIFFID, VISIT models), and atmospheric inversion analysis (e.g. TransCom models). We focused on the two difference temporal coverage: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2010; data intensive period) scales. The regions of covering Siberia, Far East Asia, East Asia, Southeast Asia and South Asia (60-80E, 10S-80N), was analyzed in this study for assessing the magnitudes, interannual variability, and key driving factors of carbon cycles. We will report the progress of synthesis effort to quantify terrestrial carbon budget in Asia. First, we analyzed the recent trends in Gross Primary Productivities (GPP) using satellite-based observation (AVHRR) and multiple terrestrial biosphere models. We found both model outputs and satellite-based observation consistently show an increasing trend in GPP in most of the regions in Asia. Mechanisms of the GPP increase were analyzed using models, and changes in temperature and precipitation play dominant roles in GPP increase in boreal and temperate regions, whereas changes in atmospheric CO2 and precipitation are important in tropical regions. However, their relative contributions were different. Second, in the decadal analysis (2001-2010), we found that the negative GPP and carbon uptake anomalies in 2003 summer in Far East Asia is one of the largest

  8. Antarctic terrestrial ecosystems

    SciTech Connect

    Walton, D.W.H.

    1987-01-01

    The Maritime and Continental Antarctic terrestrial ecosystems are considered in the context of environmental impacts - habitat destruction, alien introductions, and pollution. Four types of pollution are considered: nutrients, radionuclides, inert materials, and noxious chemicals. Their ability to recover from perturbation is discussed in the light of present scientific knowledge, and the methods used to control impacts are reviewed. It is concluded that techniques of waste disposal are still inadequate, adequate training in environmental and conservation principles for Antarctic personnel in many countries is lacking, and scientific investigations may be a much more serious threat than tourism to the integrity of these ecosystems. Some priorities crucial to future management are suggested.

  9. The terrestrial ionosphere

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.

    1983-01-01

    The theory relating to the basic physics governing the behavior of the terrestrial ionosphere is reviewed. The review covers the coupling of the ionosphere to both the neutral atmosphere and magnetosphere, the creation and transport of ionization in the ionosphere, and the ionospheric thermal structure. The review also covers the variation of the ionosphere with altitude, latitude, longitude, universal time, season, solar cycle, and geomagnetic activity. In addition, some unique ionospheric features are discussed, such as the polar ionization hole, the main electron density trough, the ion temperature hot spots, the high-latitude ionization tongue, the equatorial fountain, Appleton's peaks, and the polar wind.

  10. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  11. Large-scale atmospheric carbon and surface water dynamics inferred from satellite-based observations

    NASA Astrophysics Data System (ADS)

    Jensen, K.; McDonald, K. C.; Krakauer, N.; Schroeder, R.

    2013-12-01

    The sensitivity of Earth's wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of climate-active gases are key global change questions. Surface inundation is a crucial state variable that affects the rate of land-atmosphere carbon exchange and the partitioning of carbon between CO2 and CH4. Ground observation networks of large-scale inundation patterns are sparse because they require large fiscal, technological and human resources. Thus, satellite remote sensing products for global inundation dynamics, as well as total water storage and atmospheric carbon, can provide a complete synoptic view of past and current carbon - surface water dynamics over large areas that otherwise could not be assessed. We present results from a correlative analysis between spaceborne measurements of CO2 and CH4 as observed by SCIAMACHY and AIRS, water storage (derived from gravity anomalies provided by NASA's GRACE mission), and inundated water fraction derived from a combination of active and passive microwave remote sensing datasets. A general assessment is conducted globally, and further time-series analysis is focused on four regions of interest: North Amazon, Congo, Ob, and Ganges-Brahmaputra river basins. This analysis was supported by a grant from the NASA Terrestrial Ecology Program and the development of the inundation datasets was supported by the NASA MEaSUREs program.

  12. Integrating ground-based EO data in satellite-based systems

    SciTech Connect

    Jennings, S.V.; Daugherty, P.; Yow, T.G.

    1997-02-01

    Earth observation (EO) and other forms of geo-referenced data are typically thought of as being ``satellite data.`` It is true that the majority of EO data are satellite oriented; thus, most on-line EO data systems are designed primarily for satellite image data. However, there is A small but significant minority of EO data that is not satellite image data; i.e., it is ground-based or terrestrial data Unfortunately, many on-line systems designed for satellite data do not take into account the somewhat different nature of associated ground-based data, Data queries that work most of the time but fail because the system has not taken into account less common data are not robust enough for today`s users. In order to avoid embarrassing problems, EO system designers must be aware of the nature of ground- based data. In this paper we describe some of our insights on this subject in the hope that the designers of other systems may learn from our experience.

  13. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  14. Satellites Based Annual Carbon Dynamics of Africa Tropical Vegetation During the 2003-2014 Period

    NASA Astrophysics Data System (ADS)

    Baccini, A.

    2015-12-01

    Tracking terrestrial carbon fluxes and predicting how tropical forests will respond to continuous global change requires accurate estimates of annual changes in the density and distribution of carbon stocks at local to global scales. Existing evidence for tropical forests as a carbon sink is based on a limited number of repeated field measurements (Phillips et al. 1998,Lewis et al. 2009, Brienen et al. 2015), while spatially explicit estimates over large areas are limited to emissions derived from deforestation without being able to account for degradation and gain (Harris et al. 2012, Hansen et al. 2013). Here we use 12 years (2003-2014) of satellite data to quantify wall-to-wall annual net changes in aboveground carbon density, showing that Africa tropical forests are a net carbon source on the order of 72.1 ± 32.9 Tg C yr-1. This net release of carbon consists of losses of 205.0 ± 24.7 Tg C yr1 and gains of -132.9 ± 19.3 Tg C yr1. The net gains result from forest growth; net losses result from both reductions in forest area due to deforestation and in biomass density within forests due to degradation; this last accounting overall for 68.9 % of the losses. We anticipate several advantages over the traditional estimates. It measures carbon lost from forest degradation as well as from deforestation. It measures the gains of carbon in forest growth. Data are available to determine annual changes with associated uncertainty. The approach focuses directly on changes in carbon. While global emissions from fossil fuel stabilized in 2014 for the first time in the past 40 years, results from this study indicate that the annual rate of emissions from tropical forests has tended upward over the latest years of the 2003-2014 period.

  15. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  16. Land Data Assimilation of Satellite-Based Soil Moisture Products Using the Land Information System Over the NLDAS Domain

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Kumar, S. V.; Peters-Lidard, C. D.; Tian, Y.

    2011-01-01

    This presentation will include results from data assimilation simulations using the NASA-developed Land Information System (LIS). Using the ensemble Kalman filter in LIS, two satellite-based soil moisture products from the AMSR-E instrument were assimilated, one a NASA-based product and the other from the Land Parameter Retrieval Model (LPRM). The domain and land-surface forcing data from these simulations were from the North American Land Data Assimilation System Phase-2, over the period 2002-2008. The Noah land-surface model, version 3.2, was used during the simulations. Changes to estimates of land surface states, such as soil moisture, as well as changes to simulated runoff/streamflow will be presented. Comparisons over the NLDAS domain will also be made to two global reference evapotranspiration (ET) products, one an interpolated product based on FLUXNET tower data and the other a satellite- based algorithm from the MODIS instrument. Results of an improvement metric show that assimilating the LPRM product improved simulated ET estimates while the NASA-based soil moisture product did not.

  17. The Feasibility of Tropospheric and Total Ozone Determination Using a Fabry-perot Interferometer as a Satellite-based Nadir-viewing Atmospheric Sensor. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Larar, Allen Maurice

    1993-01-01

    Monitoring of the global distribution of tropospheric ozone (O3) is desirable for enhanced scientific understanding as well as to potentially lessen the ill-health impacts associated with exposure to elevated concentrations in the lower atmosphere. Such a capability can be achieved using a satellite-based device making high spectral resolution measurements with high signal-to-noise ratios; this would enable observation in the pressure-broadened wings of strong O3 lines while minimizing the impact of undesirable signal contributions associated with, for example, the terrestrial surface, interfering species, and clouds. The Fabry-Perot Interferometer (FPI) provides high spectral resolution and high throughput capabilities that are essential for this measurement task. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance. Decreasing stratospheric O3 concentrations may lead to an increase in biologically harmful solar ultraviolet radiation reaching the earth's surface, which is detrimental to health. In this research, a conceptual instrument design to achieve the desired measurement has been formulated. This involves a double-etalon fixed-gap series configuration FPI along with an ultra-narrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately .068 cm(exp -1). A spectral region of about 1 cm(exp -1) wide centered at 1054.73 cm(exp -1) within the strong 9.6 micron ozone infrared band is sampled with 24 spectral channels. Other design characteristics include operation from a nadir-viewing satellite configuration utilizing a 9 inch (diameter) telescope and achieving horizontal spatial resolution with a 50 km nadir footprint. A retrieval technique has been implemented and is demonstrated for a tropical atmosphere possessing enhanced tropospheric ozone amounts. An error analysis

  18. Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems

    NASA Technical Reports Server (NTRS)

    Bernhard, Jennifer T.; Michielssen, Eric

    2005-01-01

    High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.

  19. Reaping the space investment. [Shuttle era geosynchronous satellite based technological trends

    NASA Technical Reports Server (NTRS)

    Calio, A. J.

    1979-01-01

    By 1999 operational space systems will be implemented routinely on a worldwide scale in many areas vital to human survival and life quality. Geosynchronous-based monitoring and observation will be extensively used. The Shuttle era will bring in the capability to allow monitoring and identifying pollution sources which fail to stay within required limits. Remotely sensed data over land masses will provide needed facts on renewable and nonrenewable earth resources. New instruments and techniques will have been developed to provide geologists with clues to the declining number of deposits of fuels and minerals. Also, practical methods for predicting earthquakes will have been elaborated by 1999. Communications will see implementation of many of the technological goals of 1978.

  20. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  1. Terrestrial Coordinate Systems and Frames

    NASA Astrophysics Data System (ADS)

    Boucher, C.; Murdin, P.

    2000-11-01

    A terrestrial reference system (TRS) is a spatial reference system corotating with the Earth in its DIURNAL MOTION in space. In such a system, the positions of points anchored on the Earth's solid surface have coordinates which have only small variations with time, as a result of geophysical effects (tectonic or tidal deformations; see TECTONICS, EARTH'S INTERIOR, TIDES). A terrestrial reference ...

  2. Low Earth Orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, Ray E.; Gardiner, John G.

    1993-01-01

    Currently the geostationary type of satellite is the only one used to provide commercial mobile-satellite communication services. Low earth orbit (LEO) satellite systems are now being proposed as a future alternative. By the implementation of LEO satellite systems, predicted at between 5 and 8 years time, mobile space/terrestrial technology will have progressed to the third generation stage of development. This paper considers the system issues that will need to be addressed when developing a dual mode terminal, enabling access to both terrestrial and LEO satellite systems.

  3. Moderation of ensemble covariances for data assimilation of satellite-based water level observations into flood modelling

    NASA Astrophysics Data System (ADS)

    García-Pintado, Javier; Mason, David Cecil; Dance, Sarah Louise

    2014-05-01

    Satellite imagery has proved useful for obtaining information on water levels in flood events. Microwave frequencies are generally more useful for flood detection than visible-band sensors because of their all-weather day-night capability. Specifically, the future SWOT mission, with Ka-band interferometry, will be able to provide direct Water Level Observations (WLOs), and current and future Synthetic Aperture Radar (SAR) sensors can provide information of flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain, provides indirect WLOs. By either means, satellite-based WLOs can be assimilated into a hydrodynamic model to decrease forecast uncertainty and further to estimate river discharge into the flooded domain and model parameters. However, studies on assimilation of real satellite-based WLOs into flood models are still sparse. For 2D high resolution flood modelling, the data assimilation (DA) techniques based on Monte Carlo implementations of the Kalman filter (Ensemble Kalman Filters; EKFs) provide a minimum variance estimator. The performance of ensemble techniques depends on the quality of both the observations to be assimilated and the correctness of the several covariance matrices involved, which serve to convey the observation information (innovations) to elsewhere in the studied domain. Here we evaluate how some of the particularities of flood models may hamper the straightforward implementation of EKFs for operational assimilation of satellite-based WLOs. Specifically, the filter may become hyper-sensitive to observations in minor tributaries, and the specific network connectivity of braided flooded domains (e.g. converging tributaries or urban domains) indicate that straightforward spatial localization (Euclidean distance-based covariance moderation) is just not sound. Here we discuss these problems by assimilating real WLOs obtained from a 7-image sequence from the COSMO-Skymed (CSK) constellation X-band SAR, in a

  4. Satellite Based Live and Interactive Distance Learning Program in the Field of Geoinformatics - a Perspective of Indian Institute of Remote Sensing, India

    NASA Astrophysics Data System (ADS)

    Raju, P. L. N.; Gupta, P. K.; Roy, P. S.

    2011-09-01

    Geoinformatics is a highly specialized discipline that deals with Remote Sensing, Geographical Information System (GIS), Global Positioning System (GPS) and field surveys for assessing, quantification, development and management of resources, planning and infrastructure development, utility services etc. Indian Institute of Remote Sensing (IIRS), a premier institute and one of its kinds has played a key role for capacity Building in this specialized area since its inception in 1966. Realizing the large demand, IIRS has started outreach program in basics of Remote Sensing, GIS and GPS for universities and institutions. EDUSAT (Educational Satellite) is the communication satellite built and launched by ISRO in 2004 exclusively for serving the educational sector to meet the demand for an interactive satellite based distance education system for the country. IIRS has used EDUSAT (shifted to INSAT 4 CR recently due to termination of services from EDUSAT) for its distance learning program to impart basic training in Remote Sensing, GIS and GPS, catering to the universities spread across India. The EDUSAT based training is following similar to e-learning method but has advantage of live interaction sessions between teacher and the students when the lecture is delivered using EDUSAT satellite communication. Because of its good quality reception the interactions are not constrained due to bandwidth problems of Internet. National Natural Resource Management System, Department of Space, Government of India, under Standing Committee in Training and Technology funded this unique program to conduct the basic training in Geoinformatics. IIRS conducts 6 weeks basic training course on "Remote Sensing, GIS and GPS" regularly since the year 2007. The course duration is spread over the period of 3 months beginning with the start of the academic year (1st semester) i.e., July to December every year, for university students. IIRS has utilized EDUSAT satellite for conducting 4 six weeks

  5. Adaptive PD Tracking Control of Gimbal on Satellite Based on Parameter Revision

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Min; Zhao, Guo-Wei; Bai, Jun-Qing; Wang, Hao-Yu

    As key component of pointing and tracking mission of satellite, gimbal with two or more degree of freedom is usually mounted on the satellite in order to fulfill certain space mission, such as optical communication between satellites, target recognition, antenna with certain pointing direction and so on. In these missions, gimbal is mostly used to point to and track a space target or a given track. However, for most control method, because of their constant feedback parameter, the gimbal still track target with constant speed when the target is in high-speed or the satellite mounted with gimbal is suddenly undertaken shock. In fact, the gimbal could track target with different speed to improve pointing accuracy under particular circumstance. In order to solve the problem, an algorithm to revise feedback parameter is designed to be different functions of pointing angle error of gimbal. At last a simulation is carried out to verify the improvement of joint angle error using this algorithm under particular circumstance. The results proved that the joint angle error is efficiently decreased with feedback parameter revision.

  6. Tidally Heated Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  7. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-based Earth Science Data in the Classroom

    NASA Technical Reports Server (NTRS)

    Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.

    2008-01-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.

  8. Applicability of the Satellite Based Soil Moisture Data Assimilated into the Land Surface Model in Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyeon; Kim, Dongkyun; Kim, Soohyun

    2016-04-01

    The objective of this study is to assess the applicability of the satellite based soil moisture data assimilated into the land surface model (LSM). The AMSR-2 soil moisture data was assimilated into the land surface model developed for the Soyang river basin located in Korean Peninsula using the ensemble Kalman filter (EnKF) method. The satellite soil moisture data was assimilated every seven days of the modeling period. The result indicates that the LSM that incorporates the satellite-soil moisture data using the EnKF method produces the hydrograph more similar to the observed hydrograph compared to the one that does not incorporate the satellite data. The merit of the LSM-EnKF method over the simple LSM was more pronounced for the rainy season with greater runoff.

  9. Estimating the global oceanic net freshwater flux from Argo and comparing it with satellite-based freshwater flux products

    NASA Astrophysics Data System (ADS)

    Ren, Li; Hackert, Eric; Arkin, Phillip; Busalacchi, Antonio J.

    2014-11-01

    Following the idea that analysis of in situ information in the salt budget could be used as a surrogate for global "ocean rain gauge," the annual mean oceanic net freshwater flux (E-P) was estimated from the Argo profiles and the wind stress data on a global scale. The comparison between the independent E-P estimation from Argo and the E-P product sets, including the combination of precipitation from TRMM, GPCP, CMAP and evaporation from OAFlux, GSSTF3 and IFREMER and E-P set from NEWS formed from satellite, generally show similar spatial patterns, particularly on the large scale. However, there are differences among the different satellite-based E-P estimates and between satellite estimates and independent in situ estimates. Based on the pattern correlation and the RMSD, the evaporation and precipitation from OAFlux and TRMM agrees best with the E-P estimated from the independent Argo-based estimates.

  10. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    SciTech Connect

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  11. A satellite-based climatology of European alpine lake surface water temperature for the period 1989-2013

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Lieberherr, G.; Wunderle, S.

    2014-12-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. At some European lakes LWT has been observed over several decades, but the majority of lakes is not monitored, or only on a non-regular basis, which is insufficient to track a climate signal. Satellite observations might be utilized to fill these gaps, however, only few satellite sensors offer the possibility to analyze time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. We present a satellite-based lake surface water temperature (LSWT) data set for European (pre-alpine) water bodies based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern, Switzerland. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and Metop-A) day and night time data. We will discuss the processing steps (e.g. geolocation, calibration, LSWT algorithm, etc.) which are necessary to obtain the accuracy needed for climate related studies. The resulting climatology covers pre-alpine and alpine lakes with sizes between 14 and 580 km2. We will present and discuss the analysis of trends for some sample lakes in various regions of the Alps.

  12. Evaluation of a moderate resolution, satellite-based impervious surface map using an independent, high-resolution validation data set

    USGS Publications Warehouse

    Jones, J.W.; Jarnagin, T.

    2009-01-01

    Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.

  13. Effects of the partitioning of diffuse and direct solar radiation on satellite-based modeling of crop gross primary production

    NASA Astrophysics Data System (ADS)

    Xin, Qinchuan; Gong, Peng; Suyker, Andrew E.; Si, Yali

    2016-08-01

    Modeling crop gross primary production (GPP) is critical to understanding the carbon dynamics of agro-ecosystems. Satellite-based studies have widely used production efficiency models (PEM) to estimate cropland GPP, wherein light use efficiency (LUE) is a key model parameter. One factor that has not been well considered in many PEMs is that canopy LUE could vary with illumination conditions. This study investigates how the partitioning of diffuse and direct solar radiation influences cropland GPP using both flux tower and satellite data. The field-measured hourly LUE under cloudy conditions was 1.50 and 1.70 times higher than that under near clear-sky conditions for irrigated corn and soybean, respectively. We applied a two-leaf model to simulate the canopy radiative transfer process, where modeled photosynthetically active radiation (PAR) absorbed by canopy agreed with tower measurements (R2 = 0.959 and 0.914 for corn and soybean, respectively). Derived canopy LUE became similar after accounting for the impact of light saturation on leaf photosynthetic capacity under varied illumination conditions. The impacts of solar radiation partitioning on satellite-based modeling of crop GPP was examined using vegetation indices (VI) derived from MODIS data. Consistent with the field modeling results, the relationship between daily GPP and PAR × VI under varied illumination conditions showed different patterns in terms of regression slope and intercept. We proposed a function to correct the influences of direct and diffuse radiation partitioning and the explained variance of flux tower GPP increased in all experiments. Our results suggest that the non-linear response of leaf photosynthesis to light absorption contributes to higher canopy LUE on cloudy days than on clear days. We conclude that accounting for the impacts of solar radiation partitioning is necessary for modeling crop GPP on a daily or shorter basis.

  14. Evaluating Land-Atmosphere Coupling Strength Over CONUS Using Satellite-based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Ferguson, C.

    2008-12-01

    Understanding the coupling strength between land and its overlying boundary layer is important to establishing the role of the surface state in boundary layer development and related processes. Much of our current understanding has resulted from model diagnostics carried out by Alan K. Betts using the European Center's (ECMWF) forecast and reanalysis model outputs. Other model based analysis under the GEWEX Land Atmospheric Coupling Experiments (GLACE), lead by Randy Koster, has suggested that models with strong coupling have inferred "hot spots" that imply enhanced predictability of seasonal precipitation. Other analysis (Mitchell, personal communication) suggests that models with strong coupling fail to represent the observed diurnal cycle of precipitation across the central U.S. Dirmeyer et al. in 2006 compared the coupling strength (using Betts" measure that relates surface soil moisture to the lifting condensation level (LCL) pressure) for a number of models from the GLACE experiment, which showed a wide range of strength. This presentation utilizes space-based remote sensing (RS) observations to estimate the strength of warm season land-atmosphere coupling over the continental US. The remote sensing products are derived from the suite of sensors on-board NASA Aqua, including AMSR-E (soil moisture), AIRS (relative humidity, air temperature, skin temperature), MODIS (LAI, NDVI), and CERES (radiation). The relative strength of coupling is quantified in terms of observational diagnostics set forth by the work of Alan Betts, based on his work with the ERA40 model output data set, and Fendall and Eltahir, based on radiosonde data. While the analysis covers the continental US (CONUS), emphasis is placed on the southern Great Plains where dense in-situ measurements enable direct comparison between coupling strengths obtained from ground observations and those from remote sensing, and a region that previous studies by Koster et al. have inferred to be a coupling "hot

  15. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    PubMed

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy. PMID:27480452

  16. Telemammography Using Satellite Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Telemammography, the electronic transmission of digitized mammograms, can connect patients with timely, critical medical expertise; howev er, an adequate terrestrial communications infrastructure does not exist in these areas. NASA Lewis Research Center's Advanced Space Commu nications Laboratory is now working with leading breast cancer resear ch hospitals, including the Cleveland Clinic and the University of Virginia, to perform the critical research necessary to allow new satell ite networks to support telemammography.

  17. Utility terrestrial biodiversity issues

    SciTech Connect

    Breece, G.A.; Ward, B.J.

    1996-11-01

    Results from a survey of power utility biologists indicate that terrestrial biodiversity is considered a major issued by only a few utilities; however, a majority believe it may be a future issue. Over half of the respondents indicated that their company is involved in some management for biodiversity, and nearly all feel that it should be a goal for resource management. Only a few utilities are funding biodiversity research, but a majority felt more research was needed. Generally, larger utilities with extensive land holdings had greater opportunities and resources for biodiversity management. Biodiversity will most likely be a concern with transmission rights-of-way construction and maintenance, endangered species issues and general land resource management, including mining reclamation and hydro relicensing commitments. Over half of the companies surveyed have established voluntary partnerships with management groups, and biodiversity is a goal in nearly all the joint projects. Endangered species management and protection, prevention of forest fragmentation, wetland protection, and habitat creation and protection are the most common partnerships involving utility companies. Common management practices and unique approaches are presented, along with details of the survey. 4 refs.

  18. Terrestrial locomotion in arachnids.

    PubMed

    Spagna, Joseph C; Peattie, Anne M

    2012-05-01

    In this review, we assess the current state of knowledge on terrestrial locomotion in Arachnida. Arachnids represent a single diverse (>100,000 species) clade containing well-defined subgroups (at both the order and subordinal levels) that vary morphologically around a basic body plan, yet exhibit highly disparate limb usage, running performance, and tarsal attachment mechanisms. Spiders (Araneae), scorpions (Scorpiones), and harvestmen (Opiliones) have received the most attention in the literature, while some orders have never been subject to rigorous mechanical characterization. Most well-characterized taxa move with gaits analogous to the alternating tripod gaits that characterize fast-moving Insecta - alternating tetrapods or alternating tripods (when one pair of legs is lifted from the ground for some other function). However, between taxa, there is considerable variation in the regularity of phasing between legs. Both large and small spiders appear to show a large amount of variation in the distribution of foot-ground contact, even between consecutive step-cycles of a single run. Mechanisms for attachment to vertical surfaces also vary, and may depend on tufts of adhesive hairs, fluid adhesives, silks, or a combination of these. We conclude that Arachnida, particularly with improvements in microelectronic force sensing technology, can serve as a powerful study system for understanding the kinematics, dynamics, and ecological correlates of sprawled-posture locomotion. PMID:22326455

  19. Space or terrestrial energy?

    NASA Astrophysics Data System (ADS)

    Boulet, L.

    Consideration is given to the possibility of generating sufficient energy at acceptable costs on earth to offset the need to build solar power satellite systems (SPS). Electricity usage, one of the basic driving forces of developed nations, grows with the population. Currently comprising 33 pct of the total world energy used, electricity is projected to grow to a 50-55 pct share in the 21st century. Future terrestrial electrical energy sources include carbon-based fuels, nuclear (fusion or fission), and the renewable solar technologies. Carbon-based fuel supplies can last until 2030 AD, about the same as fission plants with recycled fuel. Breeder reactors would stretch the nuclear fuels to the year 3000. Solar technologies offer more immediate solutions than fusion reactors and can produce 50 pct of the power available from the construction of the maximum number of nuclear power plants. The addition of SPS would further augment the total. Combinations of all the technologies are recommended, with local research for the most appropriate technology for each nation.

  20. Contaminant Exposure in Terrestrial Vertebrates

    EPA Science Inventory

    Manuscript is a critical review of the state of the science for quantifying exposures of terrestrial wildlife species to chemical contamination. It describes the unique aspects of birds, mammals, reptiles, amphibians and threatened and endangered species. Fate and transport of ...

  1. USING TERRESTRIAL PLANTS IN BIOMONITORING

    EPA Science Inventory

    Terrestrial plants have been used as monitors of environmental pollutants since at least the beginning of this century & have recently received attention in response to the need for ecological assessments at hazardous waste sites & monitoring pesticide damage to nontarget plants....

  2. Radiocarbon dating of terrestrial carbonates

    USGS Publications Warehouse

    Pigati, Jeffrey S.

    2014-01-01

    Terrestrial carbonates encompass a wide range of materials that potentially could be used for radiocarbon (14C) dating. Biogenic carbonates, including shells and tests of terrestrial and aquatic gastropods, bivalves, ostracodes, and foraminifera, are preserved in a variety of late Quaternary deposits and may be suitable for 14C dating. Primary calcareous deposits (marls, tufa, speleothems) and secondary carbonates (rhizoliths, fracture fill, soil carbonate) may also be targeted for dating when conditions are favorable. This chapter discusses issues that are commonly encountered in 14C dating of terrestrial carbonates, including isotopic disequilibrium and open-system behavior, as well as methods used to determine the reliability of ages derived from these materials. Recent methodological advancements that may improve the accuracy and precision of 14C ages of terrestrial carbonates are also highlighted.

  3. A Validation of Automated and Quality Controlled Satellite Based Fire Detection

    NASA Astrophysics Data System (ADS)

    Ruminski, M. G.; Hanna, J.

    2010-12-01

    The Satellite Analysis Branch (SAB) of NOAA/NESDIS performs a daily fire analysis for North America utilizing GOES, NOAA POES and MODIS satellite data. Automated fire detection algorithms are employed for each of the sensors. The automated detections are evaluated against the underlying satellite imagery by analysts, with detections that are believed to be false positives removed and missed fires added to the analysis. Previous validation of automated detections has typically utilized very high resolution satellite data, such as ASTER (30m), coincident in space and time with the sensor being validated. While this approach is useful for evaluating algorithm detection capability at a specific time for fires that are not obscured there is a high likelihood that it does not provide a comprehensive evaluation based on all fire occurrences for the day. Fires that occur before or after the satellite overpass would not be included and those that are obscured by clouds would also not be accounted for. These are important considerations in assessing climatology and for emission estimates. This study utilizes ground based reports from Florida, Montana, Idaho and South Carolina which have well established reporting and permitting procedures. These ground reports are primarily agricultural and prescribe burns for which permits are required. While it is possible that permits are obtained but the burn is not performed it is felt that this represents a small fraction of the number reported based on communication with permitting officials. Only the Probability Of Detection (POD) is computed. A positive detection occurs for satellite detections within 8km of a reported fire. This buffer is employed to allow for known satellite navigation errors. Determining false positive detects would not be reliable since there is no way of knowing with certainty that a detected fire did not actually occur at a location. It could easily be an unreported fire. Results for Florida based on daily

  4. Integrating TWES and Satellite-based remote sensing: Lessons learned from the Honshu 2011 Tsunami

    NASA Astrophysics Data System (ADS)

    Löwe, Peter; Wächter, Joachim

    2013-04-01

    The Boxing Day Tsunami killed 240,000 people and inundated the affected shorelines with waves reaching heights up to 30m. Tsunami Early Warning Capabilities have improved in the meantime by continuing development of modular Tsunami Early Warning Systems (TEWS). However, recent tsunami events, like the Chile 2010 and the Honshu 2011 tsunami demonstrate that the key challenge for TEWS research still lies in the timely issuing of reliable early warning messages to areas at risk, but also to other stakeholders professionally involved in the unfolding event. Until now remote sensing products for Tsunami events, including crisis maps and change detection products, are exclusively linked to those phases of the disaster life cycle, which follow after the early warning stage: Response, recovery and mitigation. The International Charter for Space and Major Disasters has been initiated by the European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES) in 1999. It coordinates a voluntary group of governmental space agencies and industry partners, to provide rapid crisis imaging and mapping to disaster and relief organisations to mitigate the effects of disasters on human life, property and the environment. The efficiency of this approach has been demonstrated in the field of Tsunami early warning by Charter activations following the Boxing Day Tsunami 2004, the Chile Tsunami 2010 and the Honshu Tsunami 2011. Traditional single-satellite operations allow at best bimonthly repeat rates over a given Area of Interest (AOI). This allows a lot of time for image acquisition campaign planning between imaging windows for the same AOI. The advent of constellations of identical remote sensing satellites in the early 21st century resulted both in daily AOI revisit capabilities and drastically reduced time frames for acquisition planning. However, the image acquisition planning for optical remote sensing satellite constellations is constrained by orbital and communication

  5. The terrestrial impact cratering record.

    NASA Astrophysics Data System (ADS)

    Grieve, R. A. F.; Pesonen, L. J.

    1992-12-01

    Approximately 130 terrestrial hypervelocity impact craters are currently known. The rate of discovery of new craters is 3 - 5 craters per year. Although modified by erosion, terrestrial impact craters exhibit the range of morphologies observed for craters on other terrestrial planetary bodies. Due to erosion and its effects on form, terrestrial craters are recognized primarily by the occurrence of shock metamorphic effects. Terrestrial craters have a set of geophysical characteristics which are largely the result of the passage of a shock wave and impact-induced fracturing. Much current work is focused on the effects of impact on Earth evolution. Previous work on shock metamorphism and the contamination of impact melt rocks by meteoritic siderophile elements provides a basis for the interpretation of the physical and chemical evidence from Cretaceous-Tertiary boundary sites as resulting from a major impact. By analogy with the lunar record and modelling of the effects of very large impacts, it has been proposed that biological and atmospheric evolution of the Earth could not stabilize before the end of the late heavy bombardment ≡3.8 Ga ago. The present terrestrial cratering rate is 5.4±2.7×10-15 km-2a-1 for a diameter ≥20 km. On a gobal scale, a major impact sufficient to cripple human civilization severely will occur on time scales of ≡106a.

  6. Mobile radio alternative systems study. Volume 2: Terrestrial. [rural areas

    NASA Technical Reports Server (NTRS)

    Cromwell, N.; Lester, H. L.; Anderson, R. E.

    1983-01-01

    Terrestrial systems for satisfying the markets for mobile radio services in non-urban areas of the United States in the years from 185 to 2000 were investigated. Present day mobile communication technologies, systems and equipment are described for background in evaluating the concepts generated. Average propagation ranges are calculated for terrestrial installations in each of seven physiographic areas of the contiguous states to determine the number of installations that would be required for nationwide coverage. Four system concepts are defined and analyzed to determine how well terrestrial systems can fulfill the requirements at acceptable costs. Nationwide dispatch, telephone and data services would require terrestrial installations in many locations where they would be used infrequently and would not recover their investment. Access to a roaming vehicle requires that the vehicle location be known within the range limit of the terrestrial installation in which the vehicle is present at the time of the call. Access to that installation must be made through the public switched telephone network, usually involving a long-distance toll charge, and requiring costly means to track or locate the vehicle as it moved through the network of installations.

  7. Mobile radio alternative systems study terrestrial systems concepts

    NASA Astrophysics Data System (ADS)

    Cromwell, N.; Lester, H. L.; Anderson, R. E.

    1983-06-01

    Terrestrial systems for satisfying the markets for mobile radio services in non-urban areas of the United States in the years from 185 to 2000 were investigated. Present day mobile communication technologies, systems and equipment are described for background in evaluating the concepts generated. Average propagation ranges are calculated for terrestrial installations in each of seven physiographic areas of the contiguous states to determine the number of installations that would be required for nationwide coverage. Four system concepts are defined and analyzed to determine how well terrestrial systems can fulfill the requirements at acceptable costs. Nationwide dispatch, telephone and data services would require terrestrial installations in many locations where they would be used infrequently and would not recover their investment. Access to a roaming vehicle requires that the vehicle location be known within the range limit of the terrestrial installation in which the vehicle is present at the time of the call. Access to that installation must be made through the public switched telephone network, usually involving a long-distance toll charge, and requiring costly means to track or locate the vehicle as it moved through the network of installations.

  8. A satellite system for land-mobile communications in Europe

    NASA Technical Reports Server (NTRS)

    Bartholome, P.; Rogard, R.

    1988-01-01

    There exists a great unsatisified demand for land mobile communications in Europe, particularly in sectors of business activity such as the road transport industry. This demand could best be satisfied by means of satellite-based private networks providing voice and data communications in a hub configuration. The potential market is estimated to encompass several hundred thousand road vehicles and the transmission capacity required would be several thousand channels. ESA is currently demonstrating the potential of satellite communications for this type of application, using a system called PRODAT. System studies are being performed with the aim of defining the architecture of a regional satellite system for Europe.

  9. Guntersville Workshop on Solar-Terrestrial Studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The separation of purely solar physics from magnetospheric physics, and the effects of solar activity on geomagnetic activity are investigations which can be accomplished using the shuttle orbiter in an extended sortie mode, or an unmanned solar terrestrial observatory powered by the power module in an extended duration mode. When the power module is used with the shuttle in a sortie support mode, both the instrument capacity and the time in orbit of the orbiter can be increased several fold. In the free-flyer mode, the power module would be capable of providing power, basic attitude control, basic thermal control and housekeeping communications for unmanned, large, independent mission payloads in low earth orbit for periods of 6 months or longer. Instrument requirements for interdisciplinary joint observational programs are discussed for studies of the magnetosphere, the atmosphere, sun-weather relationships. Description summary charts of the power module are included.

  10. NASA's Commercial Communication Technology Program

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.

    1998-01-01

    Various issues associated with "NASA's Commercial Communication Technology Program" are presented in viewgraph form. Specific topics include: 1) Coordination/Integration of government program; 2) Achievement of seamless interoperable satellite and terrestrial networks; 3) Establishment of program to enhance Satcom professional and technical workforce; 4) Precompetitive technology development; and 5) Effective utilization of spectrum and orbit assets.

  11. Optimal Estimates of Global Terrestrial GPP from Fluorescence and DGVMs

    NASA Astrophysics Data System (ADS)

    Parazoo, Nicholas; Bowman, Kevin; Fisher, Joshua; Frankenberg, Christian; Jones, Dylan; Cescatti, Alessandro; Perez-Priego, Oscar; Wohlfahrt, Georg; Montagnani, Leonardo

    2014-05-01

    Changes in the processes that control terrestrial carbon uptake are highly uncertain but likely to have a significant influence on future atmospheric CO2 levels. RECCAP aims to improve process understanding by reconciling fluxes from top-down CO2 inversions and bottom-up estimates from an ensemble of DGVMs. As these models are typically used in projections of climate change a key part of this effort is benchmarking models and evaluating drivers of net carbon exchange within the current climate. Of particular importance are the spatial distribution and time rate of change of GPP. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence opens up a new possibility to directly measure planetary photosynthesis on spatially resolved scales. Here, we discuss a new methodology for estimating GPP and uncertainty from an optimal combination of an ensemble of DGVMs from the TRENDY project with satellite-based fluorescence observations from GOSAT. Prior uncertainty is estimated from the spread of DGVMs and updated through assimilation of fluorescence. We evaluate optimized fluxes against flux tower data in N. America, Europe, and S. America, benchmark TRENDY models using updated uncertainty estimates, and examine changes in the structure of the seasonal cycle. We find this methodology provides a novel way to evaluate models used in climate projections.

  12. Assessing satellite-based rainfall estimates in semi-arid watersheds using the USDA-ARS Walnut Gulch gauge network and TRMM-PR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rain gauge network associated with the U.S. Department of Agriculture, Agricultural Research Service Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona provides a unique opportunity for direct comparisons of in-situ measurements and satellite-based instantaneous rain-rate estimat...

  13. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  14. Relation between Ocean SST Dipoles and Downwind Continental Croplands Assessed for Early Management Using Satellite-based Photosynthesis Models

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro

    2015-04-01

    Crop-monitoring systems with the unit of carbon-dioxide sequestration for environmental issues related to climate adaptation to global warming have been improved using satellite-based photosynthesis and meteorological conditions. Early management of crop status is desirable for grain production, stockbreeding, and bio-energy providing that the seasonal climate forecasting is sufficiently accurate. Incorrect seasonal forecasting of crop production can damage global social activities if the recognized conditions are unsatisfied. One cause of poor forecasting related to the atmospheric dynamics at the Earth surface, which reflect the energy budget through land surface, especially the oceans and atmosphere. Recognition of the relation between SST anomalies (e.g. ENSO, Atlantic Niño, Indian dipoles, and Ningaloo Niño) and crop production, as expressed precisely by photosynthesis or the sequestrated-carbon rate, is necessary to elucidate the mechanisms related to poor production. Solar radiation, surface air temperature, and water stress all directly affect grain vegetation photosynthesis. All affect stomata opening, which is related to the water balance or definition by the ratio of the Penman potential evaporation and actual transpiration. Regarding stomata, present data and reanalysis data give overestimated values of stomata opening because they are extended from wet models in forests rather than semi-arid regions commonly associated with wheat, maize, and soybean. This study applies a complementary model based on energy conservation for semi-arid zones instead of the conventional Penman-Monteith method. Partitioning of the integrated Net PSN enables precise estimation of crop yields by modifying the semi-closed stomata opening. Partitioning predicts production more accurately using the cropland distribution already classified using satellite data. Seasonal crop forecasting should include near-real-time monitoring using satellite-based process crop models to avoid

  15. Understanding tree growth in response to moisture variability: Linking 32 years of satellite based soil moisture observations with tree rings

    NASA Astrophysics Data System (ADS)

    Albrecht, Franziska; Dorigo, Wouter; Gruber, Alexander; Wagner, Wolfgang; Kainz, Wolfgang

    2014-05-01

    Climate change induced drought variability impacts global forest ecosystems and forest carbon cycle dynamics. Physiological drought stress might even become an issue in regions generally not considered water-limited. The water balance at the soil surface is essential for forest growth. Soil moisture is a key driver linking precipitation and tree development. Tree ring based analyses are a potential approach to study the driving role of hydrological parameters for tree growth. However, at present two major research gaps are apparent: i) soil moisture records are hardly considered and ii) only a few studies are linking tree ring chronologies and satellite observations. Here we used tree ring chronologies obtained from the International Tree ring Data Bank (ITRDB) and remotely sensed soil moisture observations (ECV_SM) to analyze the moisture-tree growth relationship. The ECV_SM dataset, which is being distributed through ESA's Climate Change Initiative for soil moisture covers the period 1979 to 2010 at a spatial resolution of 0.25°. First analyses were performed for Mongolia, a country characterized by a continental arid climate. We extracted 13 tree ring chronologies suitable for our analysis from the ITRDB. Using monthly satellite based soil moisture observations we confirmed previous studies on the seasonality of soil moisture in Mongolia. Further, we investigated the relationship between tree growth (as reflected by tree ring width index) and remotely sensed soil moisture records by applying correlation analysis. In terms of correlation coefficient a strong response of tree growth to soil moisture conditions of current April to August was observed, confirming a strong linkage between tree growth and soil water storage. The highest correlation was found for current April (R=0.44), indicating that sufficient water supply is vital for trees at the beginning of the growing season. To verify these results, we related the chronologies to reanalysis precipitation and

  16. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data

  17. Economic-Analysis Program for a Communication System

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1986-01-01

    Prices and profits of alternative designs compared. Objective of Land Mobile Satellite Service Finance Report (LMSS) program is to provide means for comparing alternative designs of LMSS systems. Program is Multiplan worksheet program. Labels used in worksheet chosen for satellite-based cellular communication service, but analysis not restricted to such cases. LMSS written for interactive execution with Multiplan (version 1.2) and implemented on IBM PC series computer operating under DOS (version 2.11).

  18. Satellite-aided land mobile communications system implementation considerations

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1982-01-01

    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint.

  19. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  20. Dynamic and chemical controls on new particle formation occurrence and characteristics from in situ and satellite-based measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Pryor, S. C.

    2016-02-01

    We analyze the association between satellite-based measurements of chemical conditions (sulfur dioxide (SO2), nitrogen dioxide (NO2), and formaldehyde (HCHO) concentrations), insolation (UV), and aerosol particle properties (aerosol optical depth (AOD) and Ångström exponent (AE)); and the occurrence of new particle formation (NPF), formation rates (J6), growth rates (GR), and survival probabilities (SP) using particle size distribution measurements taken during two extended field campaigns at a forested location in southern Indiana. When conditionally sampled by event occurrence and non-occurrence the satellite-derived parameters exhibit significant differences and also show some degree of skill in predicting NPF though logistic regression analysis. During leaf-on measurement periods, NPF occurrence exhibits strong seasonality (NPF is more frequent in spring vs. summer) and is associated with a low condensational sink, while leaf-off NPF occurrence is associated with high near-surface UV receipt. Multiple linear regression equations of J6, GR, and SP using the chemical conditions as predictors exhibit some significant r2 values (p < 0.1), but are relatively unstable and many of the regression coefficients do not differ significantly from zero.

  1. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    NASA Technical Reports Server (NTRS)

    Chertock, Beth; Sud, Y. C.

    1993-01-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54 deg N and 54 deg S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W/sq m and more. The discrepancies are particularly large in the July case off the western coast of North America. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  2. Comparison of in-situ, aircraft, and satellite based land surface temperature measurements over a mixed agricultural region

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Baker, B.; Kochendorfer, J.; Dumas, E.; Meyers, T. P.; Guillevic, P. C.; Corda, S.; Muratore, J. F.; Simmons, D.

    2013-12-01

    Land surface temperature (LST) is a key variable in the study of the exchange of energy and water between the land surface and the atmosphere, and it influences land surface physical processes at regional and global scales. With the objective of quantifying the spatial variability and overall representativeness of single-point surface temperature measurements and to improve the accuracy of satellite LST measurements, airborne campaigns were conducted over a mixed agricultural area near Bondville, Illinois during 2012 and 2013. During the campaigns, multiple measurements of surface temperature were made using infra-red temperature sensors at micrometeorological tower sites, which include NOAA's Climate Reference Network (CRN) and nearby flux tower sites, and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, daily LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite-based LST measurements were compared with the in situ, tower-based LST measurements. Observations indicate large spatial and temporal variability of land surface temperature over the Bondville area. Our results show good agreement between in situ, aircraft and satellite measurements. The agreement was better with the LST data from the flux tower than those from CRN tower.

  3. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  4. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin

    NASA Astrophysics Data System (ADS)

    Li, Xianghu; Zhang, Qi; Xu, Chong-Yu

    2014-02-01

    Satellite-based precipitation products (SPPs) have greatly improved their applicability and are expected to offer an alternative to ground-based precipitation estimates in the present and the foreseeable future. There is a strong need for a quantitative evaluation of the usefulness and limitations of SPPs in operational meteorology and hydrology. This study compared two widely used high-resolution SPPs, the Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) in Poyang Lake basin which is located in the middle reach of the Yangtze River in China. The bias of rainfall amount and occurrence frequency under different rainfall intensities and the dependence of SPPs performance on elevation and slope were investigated using different statistical indices. The results revealed that (1) TRMM 3B42 usually underestimates the rainy days and overestimates the average rainfall as well as annual rainfall, while the PERSIANN data were markedly lower than rain gauge data; (2) the rainfall contribution rates were underestimated by TRMM 3B42 in the middle rainfall class but overestimated in the heavy rainfall class, while the opposite trend was observed for PERSIANN; (3) although the temporal distribution characteristics of monthly rainfall were correctly described by both SPPs, PERSIANN tended to suffer a systematic underestimation of rainfall in every month; and (4) the performances of both SPPs had clear dependence on elevation and slope, and their relationships can be fitted using quadratic equations.

  5. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    SciTech Connect

    Chertock, B. ); Sud, Y.C. )

    1993-03-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54[degrees]N and 54[degrees]S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W m[sup [minus]2] and more. The discrepancies are particularly large in the July case off the western coast of North America. In this region of persistent marine stratus, the GCM climatological values exceed the satellite climatological values by as much as 131 W m[sup [minus]2]. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  6. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  7. How does clear-sky terrestrial irradiance vary with solar activity?

    NASA Astrophysics Data System (ADS)

    Feulner, Georg

    2013-04-01

    I investigate recent claims for a strong variation of clear-sky terrestrial solar irradiance with solar activity (on the level of O(1%) over the 11-year cycle) derived from ground-based observations of the Sun. As it turns out, these erroneous results arise because important effects like the dimming by volcanic aerosols and long-term changes in atmospheric transmission independent of solar activity have to be corrected for. After taking these into account, clear-sky terrestrial solar irradiance can be shown to vary by O(0.1%) as expected from satellite-based measurements of the changes in Total Solar Irradiance over the solar cycle. On the one hand this example illustrates the usefulness of ground-based monitoring of solar irradiance data, but on the other hand it highlights the difficulties which can hamper an unbiased analysis of such datasets. References Feulner, G., 2011: The Smithsonian solar constant data revisited: no evidence for a strong effect of solar activity in ground-based insolation data, Atmos. Chem. Phys., 11, 3291-3301, doi:10.5194/acp-11-3291-2011 Feulner, G., 2013: On the relation between solar activity and clear-sky terrestrial irradiance, Solar Phys., 282, 615-627, doi:10.1007/s11207-012-0129-z

  8. Convergence of Phenological and Physiological Control on Annual Terrestrial Carbon Dioxide Uptake

    NASA Astrophysics Data System (ADS)

    Xia, J.; Luo, Y.; Niu, S.; Hui, D.; Dong, J.; Chen, J.; Weng, E.; Li, J.

    2013-12-01

    Despite enormous variations in vegetation type, climate, and soil from tropics to tundra, we found terrestrial gross primary production (GPP) is fundamentally under a joint control of the length of CO2 uptake period (CUP) and seasonal physiological maximal capacity of CO2 uptake (GPPmax). Across 213 globally distributed sites of eddy covariance, the ratio (ɛ) of terrestrial annual GPP to the product of CUP and GPPmax converges to a quite narrow range (90% values in 0.61-0.83). In North America, the satellite-based ɛ converges to 0.60-0.70 in most regions ranging from the Arctic down to the middle of the U.S., and gradually increases toward 1.0 in the tropical regions in the west coast of Mexico and the Caribbean region. The changes in averaged annual GPP across North America from 2000 to 2010 cannot be explained by either GPPmax or CUP alone, but is well interpreted by their combination. We further detected the recent increasing trends in annual GPP in North America is more contributed by CUP in northwestern Canada but by GPPmax in most other regions. In most biomes and regions, GPPmax is more important than CUP in regulating the spatiotemporal variability of terrestrial annual GPP. Although the causes for the converged ɛ remain unclear, it may be largely determined by the co-variation between the lengths of CUP and the stable phase of GPPmax. Our findings provide significant insights into the underlying mechanism of variations in terrestrial annual GPP, which can improve our understanding of the intricate GPP responses to the ongoing multiple-factor environmental changes and the large uncertainty in predicted future land CO2 uptake among different terrestrial biosphere models.

  9. Changes in terrestrial CO2 budget in Siberia in the past three decades

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Kondo, M.; Ueyama, M.; Ito, A.; Kobayashi, H.; Maksyutov, S. S.; Maki, T.; Nakamura, T.; Niwa, Y.; Patra, P. K.; Saeki, T.; Sato, H.; Sasai, T.; Saigusa, N.; Tian, H.; Yanagi, Y.; Zhang, B.

    2015-12-01

    Siberia is one of the regions where significant warming is proceeding, and the warming might cause changes in terrestrial carbon cycle. We analyzed interannual and decadal changes in terrestrial CO2 fluxes in the regions using multiple data sets, such as empirically estimated carbon fluxes based on multiple eddy-covariance sites (empirical upscaling; Support Vector Regression with AsiaFlux data), satellite-based vegetation index data, multiple terrestrial carbon cycle models from Asia-MIP (e.g. BEAMS, Biome-BGC, SEIB-DGVM, and VISIT), and atmospheric inverse models (e.g. ACTM, JMA, NICAM-TM) for the past 3 decades (1980s, 1990s, and 2000s). First, we checked the consistency in interannual variation of net carbon exchange between empirical upscaling and Asia-MIP model for 2001-2011 period, and found these two estimations show overall consistent interannual variation. Second, we analyzed net carbon exchange form Asia-MIP models and atmospheric inversions for the past three decades, and found persistent increases in terrestrial CO2 sink from two estimates. Magnitudes of estimated terrestrial CO2 sinks are also consistent (e.g. Asia-MIP: 0.2 PgC yr-1 in 1980s and 0.3 PgC yr-1 in 2000s and Inversions: 0.2 PgC yr-1 in 1980s and 0.5 PgC/yr in 2000s). We further analyzed the cause of persistent increases in CO2 uptake in the region using Asia-MIP model outputs, and climate changes (both warming and increases in water availability) and CO2 fertilization plays almost equivalent roles in sink increases. In addition, both gross primary productivity (GPP) and ecosystem respiration (RE) were increased, but increase in GPP was larger than that in RE.

  10. Terrestrial ecosystems and climatic change

    SciTech Connect

    Emanuel, W.R. ); Schimel, D.S. . Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  11. Utilization of the terrestrial cyanobacteria

    NASA Astrophysics Data System (ADS)

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yokoshima, Mika; Yamaguchi, Yuji; Takenaka, Hiroyuki

    The terrestrial, N _{2}-fixing cyanobacterium, Nostoc commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. Previously, the first author indicated that desiccation related genes were analyzed and the suggested that the genes were related to nitrogen fixation and metabolisms. In this report, we suggest possibility of agriculture, using the cyanobacterium. Further, we also found radioactive compounds accumulated N. commune (cyanobacterium) in Fukushima, Japan after nuclear accident. Thus, it is investigated to decontaminate radioactive compounds from the surface soil by the cyanobacterium and showed to accumulate radioactive compounds using the cyanobacterium. We will discuss utilization of terrestrial cyanobacteria under closed environment. Keyword: Desiccation, terrestrial cyanobacteria, bioremediation, agriculture

  12. Priapism caused by 'Tribulus terrestris'.

    PubMed

    Campanelli, M; De Thomasis, R; Tenaglia, R L

    2016-01-01

    A 36-year-old Caucasian man was diagnosed with a 72-h-lasting priapism that occurred after the assumption of a Herbal supplement based on Tribulus terrestris, which is becoming increasingly popular for the treatment of sexual dysfunction. The patient underwent a cavernoglandular shunt (Ebbehoj shunt) in order to obtain complete detumescence, from which derived negative post-episode outcomes on sexual function. All patients consuming non-FDA-approved alternative supplements such as Tribulus terrestris should be warned about the possible serious side effects. PMID:26631925

  13. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  14. Benchmarking terrestrial biospheric models against CO2 observations from GOSAT

    NASA Astrophysics Data System (ADS)

    Swetish, J. B.; Huntzinger, D. N.; Michalak, A. M.; Schwalm, C. R.; Fisher, J. B.; Liu, J.; Bowman, K. W.

    2013-12-01

    There is a large degree of uncertainty in terrestrial biospheric model (TBM) representation of both the magnitude and spatial distribution of carbon sources and sinks on the land surface. The lack of direct observations of land-atmosphere carbon exchange at the resolution of model estimates makes it difficult to assess the strengths and weaknesses of various modeling approaches in terms of their ability to represent the terrestrial carbon cycle. Atmospheric CO2 observations, however, provide an integrated view of surface sources and sinks of carbon, thus providing a potential powerful observational constraint for TBMs. Using the model results from the North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and the framework of NASA's Carbon Monitoring System (CMS) we assess the consistency of TBMs with satellite-based observations of atmospheric CO2. The MsTMIP TBM surface flux estimates, together with fossil fuel, air-sea fluxes, and biomass burning inventories, are coupled with the GEOS-Chem atmospheric transport model within CMS to generate the corresponding atmospheric CO2 signals. These signals are then pressure-averaged and directly compared with dry air column-averaged mole fractions of CO2 (ΧCO2) from the Greenhouse Gases Observing Satellite (GOSAT). Using model selection and multi-linear regression, we assess which model, or ensemble of models, best explain the ΧCO2 observations. By weighting each model based on its consistency with GOSAT ΧCO2 we identify the optimal weight for each individual model in a weighted multi-model ensemble. The inferred weights derived from the regression can help inform understanding of the relationship between surface flux representations and atmospheric CO2 measurements and can be linked back to process representation within the models themselves. Thus, comparing TBM estimates to atmospheric CO2 observations not only serves as an additional benchmark of model

  15. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model

    SciTech Connect

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-03-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50°N–50°S at relatively high spatial (~12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30°S–30°N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. Finally, there were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  16. A satellite-based analysis of temporal dynamics in tropospheric nitrogen dioxide levels over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; van der A, Ronald; Valdebenito, Alvaro

    2014-05-01

    Satellite observations allow for a consistent perspective on tropospheric nitrogen dioxide at a global scale and their operational status facilitates studies on multi-annual to decadal temporal dynamics. Utilizing close to a decade of data from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Ozone Monitoring Instrument (OMI) sensors, we present in this contribution a global analysis of the temporal dynamics in tropospheric nitrogen dioxide over the worlds' major urban agglomerations during the last 10 years. The results indicate that while levels of nitrogen dioxide have been slowly declining in most areas of the United States and Europe over the last decade, very rapid increases in tropospheric nitrogen dioxide can be observed over many megacities and other large urban agglomerations throughout most of Asia, often with highly significant trends. Particularly in Eastern China, increases of 10 to 20 percent per year are quite widespread. Some of the large urban agglomerations with the most rapid increase in nitrogen dioxide pollution are Dhaka in Bangladesh, Kabul in Afghanistan, and Tianjin in China, and these are investigated in more detail. An inter-comparison of trends derived separately from SCIAMACHY and OMI shows that in terms of spatial patterns the resulting trends agree quite well between the two instruments, particularly in the more polluted areas. However, at the individual grid cell level substantial differences can be found. In addition, the satellite-based trends in tropospheric nitrogen dioxide levels were compared to those obtained from the European Monitoring and Evaluation Programme (EMEP) chemical transport model over the same time period, and furthermore sampling the model at the same time of day as the satellite overpass, thus eliminating the impact of the distinct diurnal cycle of nitrogen dioxide. While generally a good correspondence in the trends has been found between the two data sources

  17. Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique

    NASA Astrophysics Data System (ADS)

    Goyal, Suman; Kumar, Ashish; Sangar, Ghansham; Mohapatra, M.

    2016-05-01

    Satellite based Nowcasting technique is customized version of Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC), it uses the extrapolation technique that allows for the tracking of Mesoscale convective systems (MCS) radiative and morphological properties and forecasts the evolution of these properties (based on cloud-top brightness temperature and area of the cloud cluster) up to 360 minutes, using infrared satellite imagery. The Thermal Infrared (TIR) channel of the weather satellite has been broadly used to study the behaviour of the cloud systems associated with deep convection. The main advantage of this approach is that for most of the globe the best statistics can only be obtained from satellite observations. Such a satellite survey would provide the statistics of MCSs covering the range of meteorological conditions needed to generalize the result and on the other hand only satellite observations can cover the very large range of space and time scale. The algorithm script is taken from Brazilian Scientist Dr. Danial Vila and implemented it into the Indian environment and made compatible with INSAT-3D hdf5 data format. For Indian region it utilizes the INSAT-3D satellite data of TIR1 (10.8 μm) channel and creates nowcast. The output is made compatible with GUI based software MIAS by generating the output in hdf5 format for better understanding and analysis of forecast. The main features of this algorithm are detection of Cloud Cluster based on Cloud Top Brightness Temperature (CTBT) and area i.e. ≤235 ºK and ≥2400 km2 respectively. The tracking technique based on MCS overlapping areas in successive images. The script has been automized in Auxiliary Data Processing System (ADPS) and generating the forecast file in every half an hour and convert the output file in geotiff format. The geotiff file is easily converted into KMZ file format using ArcGIS software to overlay it on google map and hosted on the web server.

  18. Satellite-based estimates of light-use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    NASA Astrophysics Data System (ADS)

    Barr, J. G.; Engel, V.; Fuentes, J. D.; Fuller, D. O.; Kwon, H.

    2012-11-01

    Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based carbon dioxide eddy covariance (EC) systems are installed in only a few mangrove forests worldwide and the longest EC record from the Florida Everglades contains less than 9 yr of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger-scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE) and we present the first-ever tower-based estimates of mangrove forest RE derived from night-time CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increases in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information

  19. Satellite-based climatology of low-level continental clouds in southern West Africa during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Linden, Roderick; Fink, Andreas H.; Redl, Robert

    2015-02-01

    Synoptic observations and various satellite products have been utilized for computing climatologies of low-level stratus over southern West Africa for the wet monsoon seasons July-September of 2006-2011. Previous studies found inconsistencies between satellite cloud products; climate models often fail to reproduce the extensive stratus decks. Therefore, a better observational reference and an understanding of its limitations are urgently needed to better validate models. Most detailed information of the spatiotemporal characteristics of low-level clouds was obtained from two Meteosat Second Generation (MSG) satellite-based data sets. However, CALIPSO and CloudSat cross sections of cloud occurrence frequency suggest that both MSG products underestimate the low-level cloudiness over Nigeria due to shielding by abundant upper level and midlevel clouds and reveal that the stratus is lower over the continent than over the ocean. The Terra Multiangle Imaging Spectroradiometer product appears to overestimate the morning extent of low-level clouds. The climatology presented here shows that the zone of abundant low-level stratiform clouds is at its diurnal minimum south of 6-7°N around sunset (~1800 UTC). Thereafter, it starts to spread inland and reaches its maximum northward extent of 10-11°N between 0900 and 1000 UTC. The maximum affected area is approximately 800,000 km2. After about 1000 UTC, the northern boundary gets fragmented due to the breakup of stratus decks into fair-weather cumuli. The stratus is most frequent around Cape Palmas, over Ivory Coast, and at the windward sides of the Mampong Range (Ghana) and Oshogbo Hills (Nigeria).

  20. AQA-PM: Extension of the Air-Quality model for Austria with satellite based Particulate Matter estimates

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Mantovani, S.; Krüger, B. C.; Triebnig, G.

    2012-04-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The Air Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) by order of the regional governments since 2005. AQA conducts daily forecasts of gaseous and particulate (PM10) air pollutants over Austria. In the frame of the project AQA-PM (funded by FFG), satellite measurements of the Aerosol Optical Thickness (AOT) and ground-based PM10-measurements are combined to highly-resolved initial fields using assimilation techniques. It is expected that the assimilation of satellite measurements will significantly improve the quality of AQA. Currently no observations are considered in the modeling system. At the current stage of the project, different datasets have been collected (ground measurements, satellite measurements, fine resolved regional emission inventories) and are analyzed and prepared for further processing. This contribution gives an overview of the project working plan and the upcoming developments. The goal of this project is to improve the PM10-forecasts for Austria with the integration of satellite based measurements and to provide a comprehensive product-platform.

  1. AQA-PM: Extension of the Air-Quality Model For Austria with Satellite based Particulate Matter Estimates

    NASA Astrophysics Data System (ADS)

    Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Triebnig, Gerhard; Flandorfer, Claudia

    2013-04-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The Air Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences in Vienna (BOKU) by order of the regional governments since 2005. AQA conducts daily forecasts of gaseous and particulate (PM10) air pollutants over Austria. In the frame of the project AQA-PM (funded by FFG), satellite measurements of the Aerosol Optical Thickness (AOT) and ground-based PM10-measurements are combined to highly-resolved initial fields using regression- and assimilation techniques. For the model simulations WRF/Chem is used with a resolution of 3 km over the alpine region. Interfaces have been developed to account for the different measurements as input data. The available local emission inventories provided by the different Austrian regional governments were harmonized and used for the model simulations. An episode in February 2010 is chosen for the model evaluation. During that month exceedances of PM10-thresholds occurred at many measurement stations of the Austrian network. Different model runs (only model/only ground stations assimilated/satellite and ground stations assimilated) are compared to the respective measurements. The goal of this project is to improve the PM10-forecasts for Austria with the integration of satellite based measurements and to provide a comprehensive product-platform.

  2. Assimilation of Tower and Satellite-Based Observations for Improved Estimation of Methane Fluxes over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Schroeder, R.; Podest, E.; McDonald, K. C.; Maksyutov, S.; Lettenmaier, D. P.

    2011-12-01

    Changes in greenhouse gas emissions such as methane and carbon dioxide from high-latitude wetlands in a warming climate have important implications for global warming, due to the large amounts of carbon stored in high-latitude soils and the high greenhouse warming potential of methane. As much as 1/3 of global natural methane emissions come from high latitudes. Efforts to monitor high-latitude greenhouse gas emissions are hampered by the sparseness of in situ observations at high latitudes, especially in Northern Eurasia. One promising approach is to assimilate spatially sparse tower- and satellite-based observations into large-scale process-based models. In addition, because methane fluxes are sensitive to hydrologic variables such as inundation, passive microwave satellite observations of surface water can also be assimilated. Here we apply an ensemble Kalman smoother to assimilate in situ and satellite observations into our modeling framework, which consists of the Variable Infiltration Capacity (VIC) model, extended to include carbon cycling and coupled to a methane emissions model. This framework is, in turn, coupled to the atmospheric tracer model of Japan's National Institute for Environmental Studies (NIES) to estimate methane concentrations over the West Siberian Lowlands. Observations assimilated include methane concentrations at towers operated by NIES, total column methane concentrations observed by the JAXA GOSAT satellite, and the surface water product of NASA's Jet Propulsion Laboratory derived from AMSR-E and QuickScat observations. We compare the performance of assimilations using these different types of observations and explore how these observations constrain model parameters such as soil moisture content, water table depth distribution, and soil carbon content.

  3. Real-Time Global Flood Estimation Using Satellite-Based Precipitation and a Coupled Land Surface and Routing Model

    NASA Technical Reports Server (NTRS)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-01-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50 deg. N - 50 deg. S at relatively high spatial (approximately 12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is approximately 0.9 and the false alarm ratio is approximately 0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30 deg. S - 30 deg. N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  4. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2015-09-01

    The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. We estimate that in the United States, exposure to PM2.5 accounts for approximately 4 % of total deaths compared to 22 % in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 9 % for the US and 4 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  5. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    NASA Astrophysics Data System (ADS)

    Ford, Bonne; Heald, Colette L.

    2016-03-01

    The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the data sets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and data sets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2 % of total deaths compared to 14 % in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14 % for the US and 2 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  6. Solar Variability and Terrestrial Climate

    NASA Astrophysics Data System (ADS)

    Mörner, N.-A.

    The thermal conditions on Planet Earth are primarily the function of the energy in- put from the Sun. The variations in climate on Planet Earth is, however, primarily the function of the redistribution and reorganisation of the internal terrestrial heat balance. Solar variability may affect terrestrial climate (1) by direct changes in irradiance, a fac- tor, however, which is known to be very small, (2) by the solar wind interaction with the geomagnetic field increasing and decreasing the shielding capacity to infalling cosmic-ray, which is known to affect the formation of clouds thereby also affecting global terrestrial climat, and (3) by the solar wind interaction with the geomagnetic field leading to changes in the EarthSs rate of rotation which affect ocean and atmo- sphere circulation thereby also affecting global climate (and sea level). INTAS Project 97-301008 concerns the interaction between geomagnetic field changes and global climatic changes. No doubts, we see important links between externally and internally driven changes in the EarthSs geomagnetic field and changes in terrestrial climate.

  7. Wolbachia in Neotropical terrestrial isopods.

    PubMed

    Zimmermann, Bianca L; Bouchon, Didier; Almerão, Maurício P; Araujo, Paula B

    2015-04-01

    Despite Wolbachia being widespread among terrestrial isopods, studies on this symbiotic relationship are still incipient in the Neotropical region. The aims of the present study were to investigate the presence and prevalence of Wolbachia in natural populations of terrestrial isopod species in South America, and to analyze the diversity and phylogenetic relationships of Wolbachia strains. A total of 1172 individuals representing 11 families and 35 species were analyzed. We observed distinct evolutionary scenarios according to the geographical origins of the species: strains harbored by most of the introduced species belong to the Oniclade in supergroup B and are identical to those found in their original ecozone (i.e. Palearctic). On the other hand, the strains found in native Neotropical terrestrial isopods showed low prevalence, high diversity and none of them belonged to the Oniclade, although most belonged to supergroup B. The dynamics of infection in Neotropical species seems to be the result of several events of loss and acquisition of the bacteria, which refutes the hypothesis of an ancestral acquisition of Wolbachia in Oniscidea. The presence of strains from supergroups A and F was also detected for the first time in terrestrial isopods, revealing a Wolbachia diversity previously unknown for this group of host. PMID:25764472

  8. Climate change (Communication arising): Terrestrial export of organic carbon

    NASA Astrophysics Data System (ADS)

    Evans, C. D.; Freeman, C.; Monteith, D. T.; Reynolds, B.; Fenner, N.

    2002-02-01

    Tranvik and Jansson question our proposed link between temperature and DOC export, on the basis of spatial patterns of DOC concentration, confounding effects of hydrology, and apparently conflicting observations from other regions.

  9. Signalling characteristics in satellite-aided land mobile communications

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.

    1982-01-01

    The feasibility of land mobile radio communications has been demonstrated by a large number of experiments with NASA's ATS satellites. Significant differences in the propagation characteristics of satellite and terrestrial mobile signal paths were observed in the experiments. Terrestrial paths are best in cities where they can provide frequency reuse and assure communication by bouncing signals around obstructions. Satellites may be best in thinly populated areas because they eliminate the need for many tower mounted relays. The satellite paths do not have the severe Rayleigh fading that limits the range and signal quality of terrestrial paths if the satellite is above approximately ten degrees elevation, a value easily achieved for the United States. The experiments verified that high quality voice communications and other functions, such as data transmission and vehicle position surveillance, are easily accomplished through geostationary satellites with vehicle transmitter power and antenna gain no different than those of terrestrial mobile communications.

  10. Signalling characteristics in satellite-aided land mobile communications

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.

    The feasibility of land mobile radio communications has been demonstrated by a large number of experiments with NASA's ATS satellites. Significant differences in the propagation characteristics of satellite and terrestrial mobile signal paths were observed in the experiments. Terrestrial paths are best in cities where they can provide frequency reuse and assure communication by bouncing signals around obstructions. Satellites may be best in thinly populated areas because they eliminate the need for many tower mounted relays. The satellite paths do not have the severe Rayleigh fading that limits the range and signal quality of terrestrial paths if the satellite is above approximately ten degrees elevation, a value easily achieved for the United States. The experiments verified that high quality voice communications and other functions, such as data transmission and vehicle position surveillance, are easily accomplished through geostationary satellites with vehicle transmitter power and antenna gain no different than those of terrestrial mobile communications.

  11. Long-term solar-terrestrial observations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of an 18-month study of the requirements for long-term monitoring and archiving of solar-terrestrial data is presented. The value of long-term solar-terrestrial observations is discussed together with parameters, associated measurements, and observational problem areas in each of the solar-terrestrial links (the sun, the interplanetary medium, the magnetosphere, and the thermosphere-ionosphere). Some recommendations are offered for coordinated planning for long-term solar-terrestrial observations.

  12. Terrestrial Analogs for Planetary Wrinkle Ridges

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Golombek, M. P.

    1985-01-01

    Wrinkle ridges are common physiographic features on the terrestrial planets. Their origin has remained enigmatic, although two different types of models, volcanic and tectonic, have been proposed. The major impediment to deciphering the origin of wrinkle ridges has been the lack of a terrestrial analog. Seven terrestrial analogs were discussed, two in detail. Their implications for the origin for planetary wrinkle ridges were considered. All of the terrestrial analogs were formed in compressional environments and are the surface breaks of thrust faults.

  13. Intersatellite quantum communication feasibility study

    NASA Astrophysics Data System (ADS)

    Tomaello, Andrea; Dall'Arche, Alberto; Naletto, Giampiero; Villoresi, Paolo

    2011-08-01

    The shift in the Communication paradigm from the bit to the qubit is increasingly exploited in terrestrial long range links and networks, with strong potentials in secure communications, quantum computing and metrology. The space-to-ground quantum key distribution was also considered as feasible. A new different scenario for the quantum communications is that of the intersatellite link. In this study we focus on the extension of intersatellite communications into the quantum domain. The long distances involved and the fast relative motion are severe constraints, partially compensated by the absence of beam degradation due to the propagation in the atmosphere as well as the relatively low background noise level. We address the conception of the optical terminal and the predicted performances in the case of constellations of LEO and MEO satellite including the quantum communications and quantum teleportation.

  14. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  15. Study terrestrial applications of solar cell powered systems

    NASA Technical Reports Server (NTRS)

    Ravin, J. W.

    1973-01-01

    Terrestrial applications of solar cells and design systems are considered for those applications that show the most promise for becoming practical and accepted by users within the next five years. The study includes the definition, categorization, evaluation and screening of the most attractive potential terrestrial applications for solar cells. Potential markets are initially grouped and categorized in a general sense and are weighted in priority by their business volume, present and future. From a categorized list including marine, transportation, security, communication, meteorological and others, 66 potential solar cell applications have been cataloged. A methodology was formulated to include the criteria for evaluation and screening. The evaluation process covers all parts and components of the complete system required for each application and gives consideration to all factors, such as engineering, economic, production, marketing and other factors that may have an influence on the acceptance of the system.

  16. Internal errors of ground-based terrestrial earthshine measurements in 5 colour bands.

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Gleisner, Hans; Flynn, Chris

    2015-04-01

    Measurements of earthshine intensity could be an important complement to satellite-based observations of terrestrial visual and near-IR radiative budgets because they are independent and relatively inexpensive to obtain and also offer different potentials for long-term bias stability. Using ground-based photometric instruments, the Moon is imaged several times a night through a range of photometric filters, and the ratio of the intensities of the dark (Earth-lit) and bright (Sun-lit) sides is calculated - this ratio is proportional to terrestrial albedo. Using forward modelling of the expected ratio, given assumptions about reflectance, single-scattering albedo, and light-scattering processes it is possible to deduce the terrestrial albedo. In this poster we present multicolour photometric results from observations on 10 nights, obtained at the NOAA observatory on Mauna Loa, Hawaii, in 2011. The Moon had different phases on these nights and we discuss in detail the behaviour of internal errors as a function of phase. The internal error is dependent on the photon-statistics of the images obtained and its magnitude is investigated by use of bootstrapping with replacement of observations. Results indicate that standard Johnson B and V band equivalent Lambert albedos can be obtained with precisions (1 standard deviation) in the 0.1 to 1% range for phases between 40 and 90 degrees. For longer wavelengths, corresponding to broader bands on either side of the 'Vegetation edge' at 750nm, we see larger variability in the albedo determinations and discuss whether these are due to atmospheric conditions or represent fast, intrinsic terrestrial albedo variations. The accuracy of these results, however, appear to depend on method choices, in particular the choice of lunar reflectance model -- this 'external error' will be investigated in future analyses.

  17. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations.

    PubMed

    Lee, Hyung Joo; Coull, Brent A; Bell, Michelle L; Koutrakis, Petros

    2012-10-01

    Satellite-based PM(2.5) monitoring has the potential to complement ground PM(2.5) monitoring networks, especially for regions with sparsely distributed monitors. Satellite remote sensing provides data on aerosol optical depth (AOD), which reflects particle abundance in the atmospheric column. Thus AOD has been used in statistical models to predict ground-level PM(2.5) concentrations. However, previous studies have shown that AOD may not be a strong predictor of PM(2.5) ground levels. Another shortcoming of remote sensing is the large number of non-retrieval days (i.e., days without satellite data available) due to clouds and snow- and ice-cover. In this paper we propose statistical approaches to overcome these two shortcomings, thereby making satellite imagery a viable method to estimate PM(2.5) concentrations. First, we render AOD a robust predictor of PM(2.5) mass concentration by introducing an AOD daily calibration approach through the use of mixed effects model. Second, we develop models that combine AOD and ground monitoring data to predict PM(2.5) concentrations during non-retrieval days. A key feature of this approach is that we develop these prediction models separately for groups of days defined by the observed amount of spatial heterogeneity in concentrations across the study region. Subsequently, these methodologies were applied to examine the spatial and temporal patterns of daily PM(2.5) concentrations for both retrieval days (i.e., days with satellite data available) and non-retrieval days in the New England region of the United States during the period 2000-2008. Overall, for the years 2000-2008, our statistical models predicted surface PM(2.5) concentrations with reasonably high R(2) (0.83) and low percent mean relative error (3.5%). Also the spatial distribution of the estimated PM(2.5) levels in the study domain clearly exhibited densely populated and high traffic areas. The method we have developed demonstrates that remote sensing can have a

  18. Long-Term Historical Rainfall-Runoff Modeling Using High-Resolution Satellite-based Precipitation Products

    NASA Astrophysics Data System (ADS)

    Ashouri, H.; Nguyen, P.; Thorstensen, A. R.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    This study evaluates the performance of a newly developed long-term high-resolution satellite-based precipitation products, named Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Climate Data Record (PERSIANN-CDR), in hydrological modeling. PERSIANN-CDR estimations are biased corrected using GPCP monthly climatology data. PERSIANN-CDR provides daily rainfall estimates at 0.25° x 0.25° grid boxes for 1983-2014 (delayed present). This newly released product makes it feasible to model the streamflow over the past 30 years. Three test basins from the Distributed Hydrologic Model Intercomparison Project - Phase 2 (DMIP 2) are chosen. Comparing with other satellite products, the Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA) product is used. Stage IV radar data is used as a reference data for evaluating the PERSIANN-CDR and TMPA precipitation data. All products are scaled to 0.25° and daily spatiotemporal resolution. The study is performed in two phases. In the first phase, the 2003-2011 period where all the products are available is chosen. Precipitation evaluation results, presented on Taylor Diagrams, show that TMPA and PERSIANN-CDR have close performances. The National Weather Service (NWS) Office of Hydrologic Development (OHD) Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) is then forced with the PERSIANN-CDR and the TMPA precipitation products, as well as the stage IV radar data. USGS Streamflow observations at the outlet of the basins are used as the reference streamflow data. The results show that in general, in all the three DMIP 2 basins the simulated hydrographs forced with PERSIANN-CDR and TMPA show good agreement, as the statistical measures such as root mean square error, bias, and correlation coefficient are close. In addition, with respect to the streamflow peaks, PERSIANN-CDR shows better performance than Stage IV radar data in capturing the extreme streamflow magnitudes

  19. AIM satellite-based research bridges the unique scientific aspects of the mission to informal education programs globally

    NASA Astrophysics Data System (ADS)

    Robinson, D.; Maggi, B.

    2003-04-01

    The Education and Public Outreach (EPO) component of the satellite-based research mission "Aeronomy of Ice In the Mesosphere" (AIM) will bridge the unique scientific aspects of the mission to informal education organizations. The informal education materials developed by the EPO will utilize AIM data and educate the public about the environmental implications associated with the data. This will assist with creating a scientifically literate workforce and in developing a citizenry capable of making educated decisions related to environmental policies and laws. The objective of the AIM mission is to understand the mechanisms that cause Polar Mesospheric Clouds (PMCs) to form, how their presence affects the atmosphere, and how change in the atmosphere affects them. PMCs are sometimes known as Noctilucent Clouds (NLCs) because of their visibility during the night from appropriate locations. The phenomenon of PMCs is an observable indicator of global change, a concern to all citizens. Recent sightings of these clouds over populated regions have compelled AIM educators to expand informal education opportunities to communities worldwide. Collaborations with informal organizations include: Museums/Science Centers; NASA Sun-Earth Connection Forum; Alaska Native Ways of Knowing Project; Amateur Noctilucent Cloud Observers Organization; National Parks Education Programs; After School Science Clubs; Public Broadcasting Associations; and National Public Radio. The Native Ways of Knowing Project is an excellent example of informal collaboration with the AIM EPO. This Alaska based project will assist native peoples of the state with photographing NLCs for the EPO website. It will also aid the EPO with developing materials for informal organizations that incorporate traditional native knowledge and science, related to the sky. Another AIM collaboration that will offer citizens lasting informal education opportunities is the one established with the United States National Parks

  20. Assessing regional crop water demand using a satellite-based combination equation with a land surface temperature component

    NASA Astrophysics Data System (ADS)

    Moyano, Maria Carmen; Garcia, Monica; Tornos, Lucia; Recuero, Laura; Palacios-Orueta, Alicia; Juana, Luis

    2015-04-01

    radiation apart from standard satellites-products freely available. Our results show that in comparison with the hydrological model conceptual rainfall-runoff model, requiring several meteorological and in-situ data to quantify irrigation, the satellite-based model presents a great advantage for regionalization of ET.

  1. Terrestrial photovoltaic collector technology trend

    SciTech Connect

    Shimada, K.; Costogue, E.

    1984-08-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe/sub 2/ and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.

  2. NASA's Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    2004-01-01

    NASA has decided to move forward with two complementary Terrestrial Planet Finder (TPF) missions, a visible coronagraph and an infrared formation flying interferometer. These missions are major missions in the NASA Office of Space Science Origins Theme. The primary science objectives of the TPF missions are to search for, detect, and characterize planets and planetary systems beyond our own Solar System, including specifically Earth-like planets.

  3. Spatial Vision in Bombus terrestris

    PubMed Central

    Chakravarthi, Aravin; Baird, Emily; Dacke, Marie; Kelber, Almut

    2016-01-01

    Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg−1 of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana) and another bumblebee species (B. impatiens). We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.090 cycles deg−1 and 1.26 for 0.18 cycles deg−1. PMID:26912998

  4. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  5. Spatial Vision in Bombus terrestris.

    PubMed

    Chakravarthi, Aravin; Baird, Emily; Dacke, Marie; Kelber, Almut

    2016-01-01

    Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg(-1) of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana) and another bumblebee species (B. impatiens). We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.090 cycles deg(-1) and 1.26 for 0.18 cycles deg(-1). PMID:26912998

  6. Natural organobromine in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Myneni, Satish C. B.

    2012-01-01

    Recent studies have shown that bromine undergoes biogeochemical cycling involving natural formation and degradation of organobromine compounds in marine systems. In the terrestrial environment, where background bromine levels tend to be low, the biogeochemistry of this element remains largely unexamined. We traced the path of bromine through plant growth, senescence, and decay of leaf litter on the forest floor. Using sensitive X-ray spectroscopic techniques, we show that all bromine in humified plant material, organic-rich surface soils, and isolated humic substances is bonded to carbon. Analysis of bromide-enriched plants suggests that bromide absorbed by the growing plants ultimately converts to organobromine when the plant litter decays. Application of isolated chloroperoxidase, a halogenating enzyme, to healthy plant material results in extensive bromination, with organobromine formed preferentially over organochlorine. The relative ease of bromide oxidation appears to promote biogeochemical transformations of Br from inorganic to organic forms, leading to its incorporation into soil organic matter through enzymatic processes related to plant litter decomposition. In combination with low concentration and susceptibility to leaching and plant uptake, natural bromination processes lead to the exhaustion of inorganic bromide in surface soils, making organic matter a reservoir of bromine in the terrestrial environment. This study provides the first detailed look into the terrestrial bromine cycle and lays the foundation for future studies of natural organobromine degradation, which may shed light on the fate of anthropogenic organobromine pollutants in the soil environment.

  7. ESA's satellite communications programme

    NASA Astrophysics Data System (ADS)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  8. Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; McWilliams, Eric B.; Famiglietti, James S.; Beaudoing, Hiroko K.; Nigro, Joseph

    2011-01-01

    Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization.

  9. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  10. Terrestrial sources and sinks of carbon inferred from terrestrial data

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    1996-09-01

    Two approaches have been used to calculate changes in terrestrial carbon storage with data obtained from terrestrial ecosystems, rather than with atmospheric or oceanographic data. One approach is based on the changes in carbon that result from changes in land use (conversion of forest to agricultural land, abandonment of agricultural land, harvest and regrowth). The other approach uses measurements of forest biomass obtained through forests inventories to determine change directly. These latter studies may also calculate changes in the amount of carbon stored in wood products and soil, but in this respect the two approaches are similar. If a significant fraction of the missing carbon sink is to be found in mid-latitude forests, one would expect direct measurement of biomass to show greater accumulations of carbon than analyses in which calculated accumulations result only from regrowth following previous harvests or abandonment of agricultural land. Data from Canada, the conterminous US, Europe, and the former USSR show this circumstance to be correct. Accumulations of carbon in biomass and soil are 0.8 PgC yr-1 greater than expected from past management practices (land-use change). In the tropics (where forest inventories are rare), the total net flux of carbon from changes in land use (1.6 PgC yr-1) is consistent with recent estimates of flux based on atmospheric data, but the geographic distribution of the flux is not the same. Globally, terrestrial ecosystems are calculated to have been a net source of 0.8±0.6 PgC yr-1 during the 1980s.

  11. 47 CFR 25.254 - Special requirements for ancillary terrestrial components operating in the 1610-1626.5 MHz/2483.5...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....C. 552(a) and 1 CFR part 51. Copies of this standard can be inspected at the Federal Communications... MHz/2483.5-2500 MHz bands. (a) An applicant for an ancillary terrestrial component in these bands must... resolution bandwidth of one kilohertz or equivalent. (b) An applicant for an ancillary terrestrial...

  12. Secure satellite communication using multi-photon tolerant quantum communication protocol

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Punekar, Nikhil; Verma, Pramode K.

    2015-09-01

    This paper proposes and analyzes the potential of a multi-photon tolerant quantum communication protocol to secure satellite communication. For securing satellite communication, quantum cryptography is the only known unconditionally secure method. A number of recent experiments have shown feasibility of satellite-aided global quantum key distribution (QKD) using different methods such as: Use of entangled photon pairs, decoy state methods, and entanglement swapping. The use of single photon in these methods restricts the distance and speed over which quantum cryptography can be applied. Contemporary quantum cryptography protocols like the BB84 and its variants suffer from the limitation of reaching the distances of only Low Earth Orbit (LEO) at the data rates of few kilobits per second. This makes it impossible to develop a general satellite-based secure global communication network using the existing protocols. The method proposed in this paper allows secure communication at the heights of the Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites. The benefits of the proposed method are two-fold: First it enables the realization of a secure global communication network based on satellites and second it provides unconditional security for satellite networks at GEO heights. The multi-photon approach discussed in this paper ameliorates the distance and speed issues associated with quantum cryptography through the use of contemporary laser communication (lasercom) devices. This approach can be seen as a step ahead towards global quantum communication.

  13. Interannual variability of terrestrial evapotranspiration in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Jang, K.; Kang, S.; Hong, S. Y.

    2014-12-01

    Terrestrial evapotranspiration (ET) is a major component for the land surface water cycle and the energy interaction between land surface and atmosphere, and for the improvement of understandings such as the terrestrial water management as well as vegetation growth. Satellite remote sensing provides a promising opportunity to quantify the magnitude and variability of ET at the regional scale. This study investigated the interannual variability of ET in Northeast Asian regions containing Korea Peninsula, China, Mongolia, and Japan. The regional daily ET was estimated using various satellite remote sensing data from 2003 to 2010. Satellite-based daily ET calculations showed generally favorable agreement (RMSE < 1.06 mm day-1) with eight flux tower measurements. Annual ET showed large range in study domain from 466 in 2006 to 498 mm yr-1 in 2008. The mean annual ET for study period was 481.1±224.6 mm yr-1 over the Northeast Asia. ET rates were generally higher at the cropland in China, while it was lower at the grassland in Mongolia. In general, large variability of annual ET was detected in central and northern China and eastern parts of Mongolia and Russia, which are dominated by Grassland, Savanna and Shrubland classifications as well as complex terrain. The range of coefficient of variation (CV) on annual ET was from 15 to 30% at those regions. The spatial pattern of CV was similar to the ratio of ET to TRMM precipitation (ET2PRCP) for the arid and semi-arid regions represented to grassland in this domain. CV on ET was generally high when the ET2PRCP was within the range from 0.7 to 1.5. It indicates that precipitation may affect to variation of annual ET at for the arid and semi-arid regions. The results generated by this study indicated that the satellite remote sensing provides the potentials to estimate and monitor ET at the regional scale, and offers a good chance to improve our knowledge on the land surface water balance.

  14. Estimation of snowpack matching ground-truth data and MODIS satellite-based observations by using regression kriging

    NASA Astrophysics Data System (ADS)

    Juan Collados-Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David

    2016-04-01

    The estimation of Snow Water Equivalent (SWE) is essential for an appropriate assessment of the available water resources in Alpine catchment. The hydrologic regime in these areas is dominated by the storage of water in the snowpack, which is discharged to rivers throughout the melt season. An accurate estimation of the resources will be necessary for an appropriate analysis of the system operation alternatives using basin scale management models. In order to obtain an appropriate estimation of the SWE we need to know the spatial distribution snowpack and snow density within the Snow Cover Area (SCA). Data for these snow variables can be extracted from in-situ point measurements and air-borne/space-borne remote sensing observations. Different interpolation and simulation techniques have been employed for the estimation of the cited variables. In this paper we propose to estimate snowpack from a reduced number of ground-truth data (1 or 2 campaigns per year with 23 observation point from 2000-2014) and MODIS satellite-based observations in the Sierra Nevada Mountain (Southern Spain). Regression based methodologies has been used to study snowpack distribution using different kind of explicative variables: geographic, topographic, climatic. 40 explicative variables were considered: the longitude, latitude, altitude, slope, eastness, northness, radiation, maximum upwind slope and some mathematical transformation of each of them [Ln(v), (v)^-1; (v)^2; (v)^0.5). Eight different structure of regression models have been tested (combining 1, 2, 3 or 4 explicative variables). Y=B0+B1Xi (1); Y=B0+B1XiXj (2); Y=B0+B1Xi+B2Xj (3); Y=B0+B1Xi+B2XjXl (4); Y=B0+B1XiXk+B2XjXl (5); Y=B0+B1Xi+B2Xj+B3Xl (6); Y=B0+B1Xi+B2Xj+B3XlXk (7); Y=B0+B1Xi+B2Xj+B3Xl+B4Xk (8). Where: Y is the snow depth; (Xi, Xj, Xl, Xk) are the prediction variables (any of the 40 variables); (B0, B1, B2, B3) are the coefficients to be estimated. The ground data are employed to calibrate the multiple regressions. In

  15. Satellite-based VIS/IR multispectral screening of precipitating clouds: A case study during summer at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Cattani, Elsa; Acquistapace, Claudia; Laviola, Sante; Levizzani, Vincenzo

    2013-04-01

    Precipitation is a fundamental component of the water cycle and essential to the biosphere as a primary source of fresh water. It regulates very diverse phenomena as floods and droughts, soil moisture, ocean salinity and atmospheric circulation associated to the release of latent heat. For these reasons in recent years many studies have focused on the detection of precipitating clouds, in particular by exploiting the VIS/IR spectral channels of the geostationary satellite sensors, in order to provide a characterization of precipitating cloud systems on time scales consistent with their nature and development and oriented to potential operational applications. A precipitating cloud (PC) detection methodology based on Thies et al. (2008) was implemented, by exploiting MSG spectral channels and rain rates from the NIMROD radar network, and its performances were evaluated against NIMROD data and other satellite based PC detection techniques. The methodology is based on a statistical approach. Probability Index (PI) Look Up Tables are calculated as a function of combinations of MSG VIS/NIR/IR channels, selected on the basis of the analysis of coincident MSG and rain radar data, and by taking into account the different illumination conditions (daytime, nighttime, and twilight). The PI represents the probability to detect a pixel covered by a PC. PI threshold values to discriminate between precipitating and non-precipitating clouds are determined using radar data and statistical analysis. A three month dataset from summer 2009 over the NIMROD radar network area (North-West Europe) is employed, composed by spatially and temporally collocated, parallax-corrected MSG data and radar rain rates. The algorithm set up is done for the months of July and August. The algorithm outputs are then compared for the month of June with the Precipitating Clouds PGE04 product from the Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting and the rainfall

  16. Satellite communications

    NASA Astrophysics Data System (ADS)

    Rubin, Philip A.

    A review of the economic and technological status of the satellite communications industry is presented. The history of satellite communications is outlined, focusing on the launching of Syncom III in 1963. The basic operation of communication satellites is explained. The differences between C and Ku frequency bands are examined. Economic issues related to satellite communications are discussed in detail.

  17. Satellite communications

    NASA Astrophysics Data System (ADS)

    Saha, M. K.

    1982-11-01

    The paper describes the basic principles and the historial development of satellite communications. Various satellite systems for global communications are discused and compared. Some typical operational communication satellite systems summary including geostationary systems are presented. Considerations leading to the system design including the link design for various multiple access techniques and the future trends in satellite communications systems are also discussed.

  18. Transracial Communication.

    ERIC Educational Resources Information Center

    Smith, Arthur L.

    This book explores and explains communication among different racial groups within the scope of existing communication theory. Following a brief introduction, chapters cover "Directions in Transracial Communication" (definitions, process, structurization, and purpose); "Culture and Transracial Communication" (a viewpoint on culture, time, family,…

  19. Recent geographic variations in terrestrial carbon cycle based on new production efficiency model

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Ichii, K.; Yamaguchi, Y.

    2003-12-01

    The terrestrial carbon budget must be understood more accurately for the prediction of future changes in climate and carbon cycle. The goal of this study is to estimate spatial and temporal patterns of the carbon fluxes more accurately using the newly developed terrestrial biosphere model and satellite data. Our model consists of terrestrial carbon cycle and hydrology submodels. An advantage is a new approach in the LUE (Light Use Efficiency) concept, which calculates temperature and water stress factor in LUE model from a photosynthetic model and stomatal conductance formulation. In carbon cycle model, GPP is calculated from the LUE concept and satellite-based fPAR dataset. The soil carbon cycle model is based on CENTURY model with optimized water and temperature factor. Hydrological submodel is based on BIOME3, calculating ET is used by Penman-Monteith method. The model was run for 18 years (1982-1999) on a global scale, and we simulated the geographic distributions of the terrestrial carbon fluxes. We have checked simulated vegetation growth limiting factor with stress factor of MODIS NPP algorithm. Large differences were found in the northern mid and high latitude forests because soil moisture stress is not incorporated into MODIS NPP algorithm. Although responses of stress factors in MODIS NPP algorithm are mostly similar to our theoretically based one, our model works well in the soil moisture limited regions. Global total NPP was estimated at 61.7GtC/yr, and total NEP variations are strongly related with ENSO. Validation using measured values from the GPPDI database showed that our NPP estimation was within a reasonable range. The temporal patterns of the terrestrial carbon flux showed that NPP increased in the northern middle/high latitudes, central Africa, and India. In contrast, NPP decreased in the south Amazon region, the middle latitudes of the southern hemisphere, a part of North America, and Southeast Asia. Sensitivity analysis indicated that NPP

  20. Warmer paleotemperatures for terrestrial ecosystems.

    PubMed

    Kowalski, Elizabeth A; Dilcher, David L

    2003-01-01

    Floras of predominantly wet-soil environments show a greater than expected proportion of toothed leaves, affecting the outcome of leaf physiognomically based temperature estimates. New analyses of foliar physiognomy of plants growing in predominantly wet soils in modern forests suggest that current methods of inferring paleotemperatures from fossil floras yield underestimates of 2.5-10 degrees C. The changes we propose bring terrestrial paleotemperature estimates into agreement with temperatures inferred from other biological and geological proxies and strengthen the use of leaf physiognomy as a method for climate reconstruction. PMID:12493844

  1. Consumer Control of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Frank, D.

    2012-12-01

    More than half of the earth's terrestrial surface is grazed by large herbivores and their effects on plant and soil carbon and nitrogen processes are large and widespread. Yet the large effects of these animals on terrestrial processes have largely been ignored in global change models. This presentation will explore the many pathways that consumers affect short and long time-scale terrestrial nitrogen and carbon processes. Large herbivores influence the quality of soil organic matter and the size of the active (i.e., labile) pool of soil carbon and nitrogen in several ways. Herbivory leads to greater abundance of species producing low quality material in forest and dry grassland, via feeding preferentially on high quality forage, and high quality material in mesic grassland habitat, via the high quality of material that regrows after a plant is grazed. Defoliation stimulates the rate of root exudation that enhances rhizospheric processes and the availability of nitrogen in the plant rhizosphere. Herbivores also change the species composition of mycorrhizae fungal associates that influence plant growth and affect soil structure and the turnover rate of soil carbon. Recent radiocarbon measurements have revealed that herbivores also markedly affect the turnover dynamics of the large pool of old soil carbon. In Yellowstone Park, ungulates slow the mean turnover of the relatively old (i.e., slow and passive) 0 - 20 cm deep soil organic carbon by 350 years in upland, dry grassland and speed up that rate in slope-bottom, mesic grassland by 300 years. This represents a 650 year swing in the turnover period of old soil carbon across the Yellowstone landscape. By comparison, mean turnover time for the old pool of 0 - 10 cm deep soil organic carbon shifts by about 300 years across the steep climatic gradient that includes tropical, temperate, and northern hardwood forest, and tallgrass, shortgrass and desert grassland. This large body of evidence suggests consumers play a

  2. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  3. Features of terrestrial plasma transport

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Chappell, C. R.; Pollock, C. J.; Waite, J. H., Jr.

    1989-01-01

    Research concerning the transport and distribution of ionospheric plasma in the magnetosphere are reviewed, stressing the dichotomy in explanations given for the low plasma densities outside the plasmasphere. The convection/hot solar plasma model and the convection/loss model are considered. Observations of global ionospheric outflows are compared with theoretical studies. It is suggested that there is a need for a hybrid model of magnetospheric plasma in which terrestrial plasma is both lost into the solar wind and energized and trapped within the magnetosphere, inflating the geomagnetic field and excluding cold plasma from conjugate regions.

  4. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  5. Satellite and terrestrial integrated services digital networks in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Heiichi; Kato, Shuzo

    1991-10-01

    Satellite and terrestrial Integrated Services Digital Networks (ISDN) to provide cost effective ISDN services and to enhance installation of ISDN services all over the nation are proposed. The proposed networks are based on the traffic sharing between satellite and terrestrial networks for traffic transmission among telephone offices and provide satellite subscriber lines for ISDN customers in rural areas. The former DYANET (dynamic channel assigning routing satellite aided digital networks) (1) takes the advantage of high transmission efficiency of terrestrial networks for steady traffic and the advantage of high transmission efficiency of satellite communications for light and dynamically varying traffic. By employing demand assignment and transponder hopping (for both transmission and reception) techniques, effective satellite transmission capacity is encreased to five to six times higher than that of preassignment systems. Moreover, earth station cost was significantly reduced by Large Scale Integrated Circuits (LSIC) and Monolithic Integrated Circuit (MIC) implementation and by the development of dual beam antennas. DYANET 1 has been in perfect operation employing 64 Time Division Multiple Access (TDMA) earth stations since 1988 and the latter (DYANET 2) will be put into commercial use from mid 1991.

  6. Satellite-Based Analysis of Evapotranspiration and Water Balance in the Grassland Ecosystems of Dryland East Asia

    PubMed Central

    Xia, Jiangzhou; Liang, Shunlin; Chen, Jiquan; Yuan, Wenping; Liu, Shuguang; Li, Linghao; Cai, Wenwen; Zhang, Li; Fu, Yang; Zhao, Tianbao; Feng, Jinming; Ma, Zhuguo; Ma, Mingguo; Liu, Shaomin; Zhou, Guangsheng; Asanuma, Jun; Chen, Shiping; Du, Mingyuan; Davaa, Gombo; Kato, Tomomichi; Liu, Qiang; Liu, Suhong; Li, Shenggong; Shao, Changliang; Tang, Yanhong; Zhao, Xiang

    2014-01-01

    The regression tree method is used to upscale evapotranspiration (ET) measurements at eddy-covariance (EC) towers to the grassland ecosystems over the Dryland East Asia (DEA). The regression tree model was driven by satellite and meteorology datasets, and explained 82% and 76% of the variations of ET observations in the calibration and validation datasets, respectively. The annual ET estimates ranged from 222.6 to 269.1 mm yr−1 over the DEA region with an average of 245.8 mm yr−1 from 1982 through 2009. Ecosystem ET showed decreased trends over 61% of the DEA region during this period, especially in most regions of Mongolia and eastern Inner Mongolia due to decreased precipitation. The increased ET occurred primarily in the western and southern DEA region. Over the entire study area, water balance (the difference between precipitation and ecosystem ET) decreased substantially during the summer and growing season. Precipitation reduction was an important cause for the severe water deficits. The drying trend occurring in the grassland ecosystems of the DEA region can exert profound impacts on a variety of terrestrial ecosystem processes and functions. PMID:24845063

  7. A Satellite Based Assessment of the Impact of Urban Sprawl on Carbon Balance (NPP) of the United States

    NASA Astrophysics Data System (ADS)

    Imhoff, M. L.; Lawrence, W.; Bounoua, L.; Stutzer, D.; Tucker, C. J.; Ricketts, T.; Drob, K. M.

    2001-12-01

    For the first time, diurnal observations from two Earth imaging satellites were used to measure the extent of urban sprawl and estimate the photosynthetic capacity of the land surface inside and outside urbanized areas and assess the impact of urbanization on the terrestrial carbon cycle. Night-time data from the Defense Meteorological Satellite Program's Operational Linescan System were used to map urban areas and monthly maximum NDVI values from1-km AVHRR data were used with the Carnegie Ames Stanford Approach biophysical model to estimate net primary production (NPP). Seasonal profiles of NPP for urban and non-urban areas describe a variable effect on production depending upon the prevailing local climate and a strong urban "warming" signal can be seen. A comparison between a simulated "pre-urban" landscape and current conditions indicates that urbanization has reduced the productivity of the US land surface by about 0.012 PgC per year - about 0.5% of the estimated annual total. In terms of human requirements, this loss translates to enough energy to feed 105 million persons per year. The impact on biological systems therefore may be significant.

  8. Cadaver decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carter, David O.; Yellowlees, David; Tibbett, Mark

    2007-01-01

    A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

  9. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  10. Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals

    EPA Science Inventory

    Protocols for terrestrial bioaccumulation assessments are far less-developed than for aquatic systems. This manuscript reviews modeling approaches that can be used to assess the terrestrial bioaccumulation potential of commercial organic chemicals. Models exist for plant, inver...

  11. Satellite-based monitoring of decadal soil salinization and climate effects in a semi-arid region of China

    NASA Astrophysics Data System (ADS)

    Wang, Hesong; Jia, Gensuo

    2012-09-01

    Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally, the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year). In contrast, the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period. Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface, and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile, land-use practices also played a crucial role in accelerating soil salinization. The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization. Furthermore, there are potential feedbacks of soil salinization to regional climate. The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore, it reduces the amount of carbon sequestrated by terrestrial ecosystem. Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo. Such conversions of land cover significantly change the energy and water balance between land and atmosphere.

  12. Collisional Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Agnor, C.; Asphaug, E.

    2004-12-01

    The terrestrial planets are generally thought to have formed via the collisional accumulation of rocky bodies. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably prohibitively large spin angular momentum acquired as a planet grows. To date, studies of the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001, Canup 2004). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision but by all of the major collisional encounters in a planet's history (Agnor, Canup & Levison 1999). As demonstrated by our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for the subsequent collision. We are studying collisional dynamics and outcomes common to the late stage of terrestrial planet formation. We use smooth particle hydrodynamics model collisions in an effort to identify the range of impact dynamics that allow for accretion (i.e. mass growth instead of mass loss). In our initial study we found that for dynamical environments typical of most late stage accretion models, about half of all collisions between equal mass planetary embryos do not result in accumulation into a larger embryo (Agnor & Asphaug 2004). We will

  13. Collisional Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Agnor, C. B.; Asphaug, E. I.

    2003-05-01

    The currently accepted model for the formation of terrestrial planets describes their growth as the collisional accumulation of rocky or sometimes molten planetesimals. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably rotationally unstable spin rates acquired as a planet grows. Do planets really accrete in this manner? On the other hand, most of the work studying the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision (Agnor, Canup & Levison 1999) but by all of the major collisional encounters in a planet's history. As demonstrated in our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for subsequent collisions. We have commenced a detailed study of collision dynamics and outcomes common to the late stage of terrestrial planet accretion. We are modeling collisions using smooth particle hydrodynamics to examine, primarily, the regimes of impact that truly allow for accretion (i.e. mass accumulation instead of mass loss). We are also studying the cumulative affect of giant impacts on major planetary characteristics (such as composition and spin) and

  14. Validation of modeled daily erythemal exposure along tropical and subtropical shipping routes by ship-based and satellite-based measurements

    NASA Astrophysics Data System (ADS)

    Feister, Uwe; Meyer, Gabriele; Laschewski, Gudrun; Boettcher, Christopher

    2015-05-01

    The Personal ERythemal EXposure (PEREX) model for seafarers working on decks of vessels has been developed to be used for retrospective estimates of personal occupational erythemal exposure in dependence of work profile, time period, and sea route. Extremely high UV index values up to 22 and daily erythemal exposure up to 89 standard erythemal dose have been derived from ship-based measurements in tropical oceans. Worldwide climatological maps of daily solar erythemal exposure derived from 10 year (2004-2013) hourly grid point radiative transfer model calculations for both cloudless sky and cloudy sky serve as the database of PEREX. The PEREX database is compared with ship-based measurements taken along four routes of merchant vessels, continuous UV radiation measurements taken on the research vessel Meteor on its mainly tropical and subtropical routes for 2 years, daily cloudless-sky erythemal exposure derived from 10 min LibRadtran radiative transfer model calculations, and 2 years of satellite-based erythemal exposure data of the Ozone Monitoring Instrument on the Aura satellite along the ship routes. Systematic differences between PEREX model data, ship-based data, and satellite-based daily erythemal exposure for all-sky conditions are only 1 to 3%, while short-term variations of cloudiness result in standard deviations of differences around 30%. Measured ratios between cloudless-sky erythemal radiation at vertical to horizontal incidence decrease with decreasing solar zenith angle, while clouds flatten their diurnal course.

  15. On the use of satellite-based estimates of rainfall temporal distribution to simulate the potential for malaria transmission in rural Africa

    NASA Astrophysics Data System (ADS)

    Yamana, Teresa K.; Eltahir, Elfatih A. B.

    2011-02-01

    This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.

  16. Influence of the Qinghai-Tibetan railway on the habitat selection of wild animals, using satellite data and satellite-based ARGOS system data

    NASA Astrophysics Data System (ADS)

    Buhe, Aosier

    The Qinghai-Tibet Railway (QTR) was in trial operation since 1 July 2006, is the world's highest-elevation railway and the longest highland railway, extending over 1956 km from Xining (Qinghai's capital in northwestern China) to Lhasa, the capital city of the Tibet Autonomous Region. This QTR railway was crosses five nature reserves along the route Hoh Xil (COCOX- ILI), Qinghai Sanjiangyuan, Chang Tang, Lin-chou Pengbo, and La-lu, and Hoh xil nature reserve is the important breeding sites of Tibetan Antelope (Pantholops hodgsoni). In order to clearly the habitat use and habitat selection of the Tibetan Antelope was divided in the north and south by the QTR railway, we planned the capture of ten Tibetan Antelopes and attach a satellite-based ARGOS system platform transmitter terminal (PTT) to the Tibetan Antelopes. And we succeeded in the capture of two Tibetan Antelopes for the first time in the world in 2007a summer and attached an ARGOS PTT. In this study, we estimate RASTER model of habitat change, using satellite-based ARGOS PTT tracking analyst data and satellite (Terra/MODIS, Terra/ASTER, ALOS and SPOT/vegetation instrument data) land cover change data, order to clearly the spatial and temporal characteristics of wide area habitat selection of Tibetan Antelope.

  17. Line following terrestrial insect biobots.

    PubMed

    Latif, Tahmid; Bozkurt, Alper

    2012-01-01

    The present day technology falls short in offering centimeter scale mobile robots that can function effectively under unknown and dynamic environmental conditions. Insects, on the other hand, exhibit an unmatched ability to navigate through a wide variety of environments and overcome perturbations by successfully maintaining control and stability. In this study, we use neural stimulation systems to wirelessly navigate cockroaches to follow lines to enable terrestrial insect biobots. We also propose a system-on-chip based ZigBee enabled wireless neurostimulation backpack system with on-board tissue-electrode bioelectrical coupling verification. Such a capability ensures an electrochemically safe stimulation and avoids irreversible damage to the interface which is often misinterpreted as habituation of the insect to the applied stimulation. PMID:23366056

  18. Traumatic insemination in terrestrial arthropods.

    PubMed

    Tatarnic, Nikolai J; Cassis, Gerasimos; Siva-Jothy, Michael T

    2014-01-01

    Traumatic insemination is a bizarre form of mating practiced by some invertebrates in which males use hypodermic genitalia to penetrate their partner's body wall during copulation, frequently bypassing the female genital tract and ejaculating into their blood system. The requirements for traumatic insemination to evolve are stringent, yet surprisingly it has arisen multiple times within invertebrates. In terrestrial arthropods traumatic insemination is most prevalent in the true bug infraorder Cimicomorpha, where it has evolved independently at least three times. Traumatic insemination is thought to occur in the Strepsiptera and has recently been recorded in fruit fly and spider lineages. We review the putative selective pressures that may have led to the evolution of traumatic insemination across these lineages, as well as the pressures that continue to drive divergence in male and female reproductive morphology and behavior. Traumatic insemination mechanisms and attributes are compared across independent lineages. PMID:24160423

  19. Ionospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Nagy, A. F.

    1980-11-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  20. Phytopharmacological overview of Tribulus terrestris.

    PubMed

    Chhatre, Saurabh; Nesari, Tanuja; Somani, Gauresh; Kanchan, Divya; Sathaye, Sadhana

    2014-01-01

    Tribulus terrestris (family Zygophyllaceae), commonly known as Gokshur or Gokharu or puncture vine, has been used for a long time in both the Indian and Chinese systems of medicine for treatment of various kinds of diseases. Its various parts contain a variety of chemical constituents which are medicinally important, such as flavonoids, flavonol glycosides, steroidal saponins, and alkaloids. It has diuretic, aphrodisiac, antiurolithic, immunomodulatory, antidiabetic, absorption enhancing, hypolipidemic, cardiotonic, central nervous system, hepatoprotective, anti-inflammatory, analgesic, antispasmodic, anticancer, antibacterial, anthelmintic, larvicidal, and anticariogenic activities. For the last few decades or so, extensive research work has been done to prove its biological activities and the pharmacology of its extracts. The aim of this review is to create a database for further investigations of the discovered phytochemical and pharmacological properties of this plant to promote research. This will help in confirmation of its traditional use along with its value-added utility, eventually leading to higher revenues from the plant. PMID:24600195

  1. Methane production in terrestrial arthropods.

    PubMed Central

    Hackstein, J H; Stumm, C K

    1994-01-01

    We have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. We show that arthropod symbionts can contribute substantially to atmospheric methane. Images PMID:8202505

  2. Solar-Terrestrial Ontology Development

    NASA Astrophysics Data System (ADS)

    McGuinness, D.; Fox, P.; Middleton, D.; Garcia, J.; Cinquni, L.; West, P.; Darnell, J. A.; Benedict, J.

    2005-12-01

    The development of an interdisciplinary virtual observatory (the Virtual Solar-Terrestrial Observatory; VSTO) as a scalable environment for searching, integrating, and analyzing databases distributed over the Internet requires a higher level of semantic interoperability than here-to-fore required by most (if not all) distributed data systems or discipline specific virtual observatories. The formalization of semantics using ontologies and their encodings for the internet (e.g. OWL - the Web Ontology Language), as well as the use of accompanying tools, such as reasoning, inference and explanation, open up both a substantial leap in options for interoperability and in the need for formal development principles to guide ontology development and use within modern, multi-tiered network data environments. In this presentation, we outline the formal methodologies we utilize in the VSTO project, the currently developed use-cases, ontologies and their relation to existing ontologies (such as SWEET).

  3. Contrasting coloration in terrestrial mammals

    PubMed Central

    Caro, Tim

    2008-01-01

    Here I survey, collate and synthesize contrasting coloration in 5000 species of terrestrial mammals focusing on black and white pelage. After briefly reviewing alternative functional hypotheses for coloration in mammals, I examine nine colour patterns and combinations on different areas of the body and for each mammalian taxon to try to identify the most likely evolutionary drivers of contrasting coloration. Aposematism and perhaps conspecific signalling are the most consistent explanations for black and white pelage in mammals; background matching may explain white pelage. Evidence for contrasting coloration is being involved in crypsis through pattern blending, disruptive coloration or serving other functions, such as signalling dominance, lures, reducing eye glare or in temperature regulation has barely moved beyond anecdotal stages of investigation. Sexual dichromatism is limited in this taxon and its basis is unclear. Astonishingly, the functional significance of pelage coloration in most large charismatic black and white mammals that were new to science 150 years ago still remains a mystery. PMID:18990666

  4. Ionospheres of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Nagy, A. F.

    1980-01-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  5. Phytopharmacological overview of Tribulus terrestris

    PubMed Central

    Chhatre, Saurabh; Nesari, Tanuja; Somani, Gauresh; Kanchan, Divya; Sathaye, Sadhana

    2014-01-01

    Tribulus terrestris (family Zygophyllaceae), commonly known as Gokshur or Gokharu or puncture vine, has been used for a long time in both the Indian and Chinese systems of medicine for treatment of various kinds of diseases. Its various parts contain a variety of chemical constituents which are medicinally important, such as flavonoids, flavonol glycosides, steroidal saponins, and alkaloids. It has diuretic, aphrodisiac, antiurolithic, immunomodulatory, antidiabetic, absorption enhancing, hypolipidemic, cardiotonic, central nervous system, hepatoprotective, anti-inflammatory, analgesic, antispasmodic, anticancer, antibacterial, anthelmintic, larvicidal, and anticariogenic activities. For the last few decades or so, extensive research work has been done to prove its biological activities and the pharmacology of its extracts. The aim of this review is to create a database for further investigations of the discovered phytochemical and pharmacological properties of this plant to promote research. This will help in confirmation of its traditional use along with its value-added utility, eventually leading to higher revenues from the plant. PMID:24600195

  6. Methane production in terrestrial arthropods

    SciTech Connect

    Hackstein, J.H.P.; Stumm, C.K. )

    1994-06-07

    The authors have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. The authors show that arthropod symbionts can contribute substantially to atmospheric methane.

  7. Data communications

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining computer communication systems used in nuclear power plants. The recommendations cover three areas important to these communications systems: system design, communication protocols, and communication media. The first area, system design, considers three aspects of system design--questions about architecture, specific risky design elements or omissions to look for in designs being reviewed, and recommendations for multiplexed data communication systems used in safety systems. The second area reviews pertinent aspects of communication protocol design and makes recommendations for newly designed protocols or the selection of existing protocols for safety system, information display, and non-safety control system use. The third area covers communication media selection, which differs significantly from traditional wire and cable. The recommendations for communication media extend or enhance the concerns of published IEEE standards about three subjects: data rate, imported hazards and maintainability.

  8. Clear communication.

    PubMed

    Gurden, Dean

    2016-02-10

    In health care, effective communication can directly affect positive outcomes. Ineffective or poor communication can cost lives, be it by a missed diagnosis, a medication error or treatment delay. PMID:26860179

  9. Communicating Science

    USGS Publications Warehouse

    Farris, Gaye S.

    2005-01-01

    For science to have an impact, it must be communicated and easily accessible. The USGS National Wetlands Research Center communicates its research findings through several ways: publishing, the Web, the library, and education and outreach.

  10. Lightwave Communications.

    ERIC Educational Resources Information Center

    Rheam, Harry

    1993-01-01

    Describes simple and inexpensive labs for introducing students to fiber optic communications. Students investigate light as a carrier wave; look into the difficulties associated with "light" communication; and learn about modulation, optical fibers, and critical angles. (PR)

  11. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  12. Communication, Communication, Communication! Growth through Laboratory Instructing

    ERIC Educational Resources Information Center

    Peterson, Jamie J.; DeAngelo, Samantha; Mack, Nancy; Thompson, Claudia; Cooper, Jennifer; Sesma, Arturo, Jr.

    2014-01-01

    This study examined gains undergraduate students made in their communication and collaboration skills when they served as peer teachers, i.e., laboratory instructors (LIs), for a General Psychology laboratory. Self-ratings of communication and collaboration skills were completed before and after teaching the laboratory. When compared to before the…

  13. Communication (action with communicative content).

    PubMed

    Russo, M T

    2010-01-01

    The term Communication generally designate the transmission of a message of concepts, feelings or needs from a speaker to a receiver by means of verbal or no verbal language. The pragmatic approach to human communication has put in evidence a further implication of this concept: every behaviour therefore has a value even when it is not intentional. Recently, a more dynamic concept of communication has been elaborated where communication means communicative action. This interpretation is the starting point for the theory of the "communicative acting" and subsequently of the so called discourse ethic elaborated by J. Habermas. PMID:20499038

  14. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  15. Terrestrial ecosystems in a changing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transpiration—the movement of water from the soil, through plants, and into the atmosphere—is the dominant water flux from the earth’s terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alteration...

  16. Cultural Communications.

    ERIC Educational Resources Information Center

    Armas, Jose

    It is too often taken for granted that the communication process with culturally different children takes place as readily as it might with children from Anglo cultures. Most teachers receive training in verbal and formal communication skills; children come to school with nonverbal and informal communication skills. This initially can create…

  17. Communicating Effectively

    Cancer.gov

    The seventh module of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study: Cultural Considerations When Caring for African Americans explores communication issues pertinent to African Americans with cancer and their health care providers, discusses strategies for culturally sensitive communication, and presents the SPIKES protocol, a practical framework for effective communication.

  18. Stereotypes Communication

    ERIC Educational Resources Information Center

    Zhang, Shuli; Deng, Dongyuan

    2009-01-01

    We live in a world, which is becoming a Global Village in which information and communication attract people's attention more than ever before. Our desire to communicate with strangers and our relationships with them depend on the degree to which we are effective in communicating with them. There are so many factors restricting or improving…

  19. Existential Communication.

    ERIC Educational Resources Information Center

    Self, Charles C.

    Focusing on the seminal work "Being and Nothingness," this paper explores the implications of the ideas of Jean-Paul Sartre for the study of communication in society. The paper redefines communication from an existential point of view, explores some implications of this redefinition for the study of communication within the social setting, and…

  20. Terrestrial Ages of Antarctic Meteorites- Update 1999

    NASA Technical Reports Server (NTRS)

    Nishiizumi, Kunihiko; Welten, K. C.; Caffee, Marc W.

    1999-01-01

    We are continuing our ongoing study of cosmogenic nuclides in Antarctic meteorites. In addition to the studies of exposure histories of meteorites, we study terrestrial ages and pairing of Antarctic meteorites and desert meteorites. Terrestrial ages of Antarctic meteorites provide information on meteorite accumulation mechanisms, mean weathering lifetimes, and influx rates. The determination of Cl-36(half-life=3.01 x 10(exp 5) y) terrestrial ages is one of our long-term on-going projects, however, in many instances neither Cl-36 or C-14 (5,730 y) yields an accurate terrestrial age. Using Ca-14 (1.04 x 10(exp 5) y) for terrestrial age determinations solves this problem by filling the c,ap in half-life between 14-C and Cl-36 ages. We are now applying the new Ca-41- Cl-36 terrestrial age method as well as the Cl-36-Be-10 method to Antarctic meteorites. Our measurements and C-14 terrestrial age determinations by the University of Arizona group are always complementary. We have measured Cl-36 in over 270 Antarctic meteorites since our previous compilation of terrestrial ages. Since a large number of meteorites have been recovered from many different icefields in Antarctica, we continue to survey the trends of terrestrial ages for different icefields. We have also measured detailed terrestrial ages vs. sample locations for Allan Hills, Elephant Moraine, and Lewis Cliff Icefields, where meteorites have been found with very long ages. The updated histograms of terrestrial ages of meteorites from the Allan Hills Main Icefield and Lewis Cliff Icefield are shown. These figures include C-14 ages obtained by the University of Arizona group. Pairs of meteorites are shown as one object for which the age is the average of all members of the same fall. The width of the bars represents 70,000 years, which was a typical uncertainty for Cl-36 ages. We reduced the uncertainty of terrestrial age determinations to approx. 40,000 years by using pairs of nuclides such as Ca-41-Cl-36 or Cl

  1. Improvement of satellite-based gross primary production through incorporation of high resolution input data over east asia

    NASA Astrophysics Data System (ADS)

    Park, Haemi; Im, Jungho; Kim, Miae

    2016-04-01

    Photosynthesis of plants is the main mechanism of carbon absorption from the atmosphere into the terrestrial ecosystem and it contributes to remove greenhouse gases such as carbon dioxide. Annually, 120 Gt of C is supposed to be assimilated through photosynthetic activity of plants as the gross primary production (GPP) over global land area. In terms of climate change, GPP modelling is essential to understand carbon cycle and the balance of carbon budget over various ecosystems. One of the GPP modelling approaches uses light use efficiency that each vegetation type has a specific efficiency for consuming solar radiation related with temperature and humidity. Satellite data can be used to measure various meteorological and biophysical factors over vast areas, which can be used to quantify GPP. NASA Earth Observing System (EOS) program provides Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global GPP product, namely MOD17A2H, on a daily basis. However, significant underestimation of MOD17A2H has been reported in Eastern Asia due to its dense forest distribution and humid condition during monsoon rainy season in summer. The objective of this study was to improve underestimation of MODIS GPP (MOD17A2H) by incorporating meteorological data-temperature, relative humidity, and solar radiation-of higher spatial resolution than data used in MOD17A2H. Landsat-based land cover maps of finer resolution observation and monitoring - global land cover (FROM-GLC) at 30m resolution were used for selection of light use efficiency (LUE). GPP (eq1. GPP = APAR×LUE) is computed by multiplication of APAR (IPAR×fPAR) and LUE (ɛ= ɛmax×T(°C)scalar×VPD(Pa)scalar, where, T is temperature, VPD is vapour pressure deficit) in this study. Meteorological data of Japanese 55-year Reanalysis (JRA-55, 0.56° grid, 3hr) were used for calculation of GPP in East Asia, including Eastern part of China, Korean peninsula, and Japan. Results were validated using flux tower-observed GPP

  2. Insignificant solar-terrestrial triggering of earthquakes

    USGS Publications Warehouse

    Love, Jeffrey J.; Thomas, Jeremy N.

    2013-01-01

    We examine the claim that solar-terrestrial interaction, as measured by sunspots, solar wind velocity, and geomagnetic activity, might play a role in triggering earthquakes. We count the number of earthquakes having magnitudes that exceed chosen thresholds in calendar years, months, and days, and we order these counts by the corresponding rank of annual, monthly, and daily averages of the solar-terrestrial variables. We measure the statistical significance of the difference between the earthquake-number distributions below and above the median of the solar-terrestrial averages by χ2 and Student's t tests. Across a range of earthquake magnitude thresholds, we find no consistent and statistically significant distributional differences. We also introduce time lags between the solar-terrestrial variables and the number of earthquakes, but again no statistically significant distributional difference is found. We cannot reject the null hypothesis of no solar-terrestrial triggering of earthquakes.

  3. Mass Communication as Public Communication.

    ERIC Educational Resources Information Center

    Stappers, James G.

    1983-01-01

    Discusses problems with the term "mass communication." Contends that mass communication research must include the study of public communication in the sense of finding out what people do with media and what are the problems of diffusing information or public knowledge. (PD)

  4. A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Sahoo, Bhabagrahi; Beria, Harsh; Chatterjee, Chandranath

    2016-08-01

    Although flood forecasting and warning system is a very important non-structural measure in flood-prone river basins, poor raingauge network as well as unavailability of rainfall data in real-time could hinder its accuracy at different lead times. Conversely, since the real-time satellite-based rainfall products are now becoming available for the data-scarce regions, their integration with the data-driven models could be effectively used for real-time flood forecasting. To address these issues in operational streamflow forecasting, a new data-driven model, namely, the wavelet-based non-linear autoregressive with exogenous inputs (WNARX) is proposed and evaluated in comparison with four other data-driven models, viz., the linear autoregressive moving average with exogenous inputs (ARMAX), static artificial neural network (ANN), wavelet-based ANN (WANN), and dynamic nonlinear autoregressive with exogenous inputs (NARX) models. First, the quality of input rainfall products of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA), viz., TRMM and TRMM-real-time (RT) rainfall products is assessed through statistical evaluation. The results reveal that the satellite rainfall products moderately correlate with the observed rainfall, with the gauge-adjusted TRMM product outperforming the real-time TRMM-RT product. The TRMM rainfall product better captures the ground observations up to 95 percentile range (30.11 mm/day), although the hit rate decreases for high rainfall intensity. The effect of antecedent rainfall (AR) and climate forecast system reanalysis (CFSR) temperature product on the catchment response is tested in all the developed models. The results reveal that, during real-time flow simulation, the satellite-based rainfall products generally perform worse than the gauge-based rainfall. Moreover, as compared to the existing models, the flow forecasting by the WNARX model is way better than the other four models studied herein with the

  5. The NASA communications R & D program

    NASA Technical Reports Server (NTRS)

    Durrani, S. H.

    1980-01-01

    About two years ago, NASA decided to reactivate its communications R&D Program, which had been phased down in 1973. The new program focuses on three major areas: (1) technology development in the 30 and 20 GHz bands for wideband communications; (2) system definition for an integrated terrestrial and satellite-aided system for land mobile communications in the 860 MHz band; and (3) development of system concepts and pilot networks for applications data services. The paper summarizes the new activities in the three areas and describes their status and plans.

  6. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.

    1979-01-01

    A review of studies forecasting the communication market in the United States is given. The applicability of these forecasts to assessment of demand for the 30/20 GHz fixed communications system is analyzed. Costs for the 30/20 satellite trunking systems are presented and compared with the cost of terrestrial communications.

  7. Combining Satellite-Based Precipitation and Vegetation Indices to Achieve a Mid-Summer Agricultural Forecast in Jamaica

    NASA Astrophysics Data System (ADS)

    Curtis, S.; Allen, T. L.; Gamble, D.

    2009-12-01

    In this study global Earth observations of precipitation and Normalized Difference Vegetation Indices (NDVI) are used to assess the mid-summer dry spell’s (MSD) strength and subsequent impact on agriculture in the St. Elizabeth parish of Jamaica. St. Elizabeth is known as the ‘bread basket’ of Jamaica and has been the top or second highest producer of domestic food crops in the last twenty years. Yet, St. Elizabeth sits in the Jamaican rain shadow and is highly affected by drought. In addition, the summer rainy season is regularly interrupted by an MSD, which often occurs in July, has strong interannual variability, and greatly affects cropping strategies and yields. The steps undertaken to achieve a mid-summer agricultural forecast are: 1) use relationships between Global Precipitation Climatology Project v2.1 data over western Jamaica and predictive climate modes from 1979 to present to develop a forecast of July rainfall 2) downscale the rainfall variability in time to sub-monthly and space to the St. Elizabeth parish using the Tropical Rainfall Measuring Mission 3) link rainfall variability to vegetation vigor with the MODIS NDVI data 4) communicate with St. Elizabeth farmers via the University of West Indies, Mona. An important finding from this study is a decrease in vegetative vigor follows the MSD by two to four weeks in St. Elizabeth and the vegetation in the southern portion of the parish appears to be more sensitive to the MSD than vegetation elsewhere in the country.

  8. A molecular palaeobiological exploration of arthropod terrestrialization.

    PubMed

    Lozano-Fernandez, Jesus; Carton, Robert; Tanner, Alastair R; Puttick, Mark N; Blaxter, Mark; Vinther, Jakob; Olesen, Jørgen; Giribet, Gonzalo; Edgecombe, Gregory D; Pisani, Davide

    2016-07-19

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325830

  9. Integrated Estimates of Global Terrestrial Carbon Sequestration

    SciTech Connect

    Thomson, Allison M.; Izaurralde, R Cesar; Smith, Steven J.; Clarke, Leon E.

    2008-02-01

    Assessing the contribution of terrestrial carbon sequestration to international climate change mitigation requires integration across scientific and disciplinary boundaries. As part of a scenario analysis for the US Climate Change Technology Program, measurements and geographic data were used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were then applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric CO2 stabilization by 2100. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. Terrestrial sequestration reach a peak combined rate of 0.5 to 0.7 Gt carbon yr-1 in mid-century with contributions from agricultural soil (0.21 Gt carbon yr-1), reforestation (0.31 Gt carbon yr-1) and pasture (0.15 Gt carbon yr-1). Sequestration rates vary over time period and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 31 to 41 GtC. The contribution of terrestrial sequestration to mitigation is highest early in the century, reaching up to 20% of total carbon mitigation. This analysis provides insight into the behavior of terrestrial carbon mitigation options in the presence and absence of climate change mitigation policies.

  10. A molecular palaeobiological exploration of arthropod terrestrialization

    PubMed Central

    Carton, Robert; Edgecombe, Gregory D.

    2016-01-01

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830

  11. Complete experimental toolbox for alignment-free quantum communication

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Vincenzo; Nagali, Eleonora; Walborn, Stephen P.; Aolita, Leandro; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio

    2012-07-01

    Quantum communication employs the counter-intuitive features of quantum physics for tasks that are impossible in the classical world. It is crucial for testing the foundations of quantum theory and promises to revolutionize information and communication technologies. However, to execute even the simplest quantum transmission, one must establish, and maintain, a shared reference frame. This introduces a considerable overhead in resources, particularly if the parties are in motion or rotating relative to each other. Here we experimentally show how to circumvent this problem with the transmission of quantum information encoded in rotationally invariant states of single photons. By developing a complete toolbox for the efficient encoding and decoding of quantum information in such photonic qubits, we demonstrate the feasibility of alignment-free quantum key-distribution, and perform proof-of-principle demonstrations of alignment-free entanglement distribution and Bell-inequality violation. The scheme should find applications in fundamental tests of quantum mechanics and satellite-based quantum communication.

  12. Bibliography of terrestrial impact structures

    NASA Technical Reports Server (NTRS)

    Grolier, M. J.

    1985-01-01

    This bibliography lists 105 terrestrial impact structures, of which 12 are proven structures, that is, structures associated with meteorites, and 93 are probable. Of the 93 probable structures, 18 are known to contain rocks with meteoritic components or to be enriched in meteoritic signature-elements, both of which enhance their probability of having originated by impact. Many of the structures investigated in the USSR to date are subsurface features that are completely or partly buried by sedimentary rocks. At least 16 buried impact structures have already been identified in North America and Europe. No proven nor probable submarine impact structure rising above the ocean floor is presently known; none has been found in Antarctica or Greenland. An attempt has been made to cite for each impact structure all literature published prior to mid-1983. The structures are presented in alphabetical order by continent, and their geographic distribution is indicated on a sketch map of each continent in which they occur. They are also listed tables in: (1) alphabetical order, (2) order of increasing latitude, (3) order of decreasing diameter, and (4) order of increasing geologic age.

  13. Terrestrial Planet Finder: science overview

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.; Beichman, C. A.

    2004-01-01

    The Terrestrial Planet Finder (TPF) seeks to revolutionize our understanding of humanity's place in the universe - by searching for Earth-like planets using reflected light, or thermal emission in the mid-infrared. Direct detection implies that TPF must separate planet light from glare of the nearby star, a technical challenge which has only in recent years been recognized as surmountable. TPF will obtain a low-resolution spectra of each planets it detects, providing some of its basic physical characteristics and its main atmospheric constituents, thereby allowing us to assess the likelihood that habitable conditions exist there. NASA has decided the scientific importance of this research is so high that TPF will be pursued as two complementary space observatories: a visible-light coronagraph and a mid-infrared formation flying interferometer. The combination of spectra from both wavebands is much more valuable than either taken separately, and it will allow a much fuller understanding of the wide diversity of planetary atmospheres that may be expected to exist. Measurements across a broad wavelength range will yield not only physical properties such as size and albedo, but will also serve as the foundations of a reliable and robust assessment of habitability and the presence of life.

  14. Steroidal saponins from Tribulus terrestris.

    PubMed

    Kang, Li-Ping; Wu, Ke-Lei; Yu, He-Shui; Pang, Xu; Liu, Jie; Han, Li-Feng; Zhang, Jie; Zhao, Yang; Xiong, Cheng-Qi; Song, Xin-Bo; Liu, Chao; Cong, Yu-Wen; Ma, Bai-Ping

    2014-11-01

    Sixteen steroidal saponins, including seven previously unreported compounds, were isolated from Tribulus terrestris. The structures of the saponins were established using 1D and 2D NMR spectroscopy, mass spectrometry, and chemical methods. They were identified as: 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-2α,3β,22α,26-tetrol-12-one (terrestrinin C), 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-22α,26-diol-3,12-dione (terrestrinin D), 26-O-β-d-glucopyranosyl-(25S)-furost-4-en-22α,26-diol-3,6,12-trione (terrestrinin E), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-3β,22α,26-triol-12-one (terrestrinin F), 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-12β,22α,26-triol-3-one (terrestrinin G), 26-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl-(25R)-furost-4-en-22α,26-diol-3,12-dione (terrestrinin H), and 24-O-β-d-glucopyranosyl-(25S)-5α-spirostan-3β,24β-diol-12-one-3-O-β-d-glucopyranosyl-(1→4)-β-d-galactopyranoside (terrestrinin I). The isolated compounds were evaluated for their platelet aggregation activities. Three of the known saponins exhibited strong effects on the induction of platelet aggregation. PMID:25172515

  15. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  16. Terrestrial cooling and solar variability

    NASA Technical Reports Server (NTRS)

    Agee, E. M.

    1982-01-01

    Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.

  17. Solar-terrestrial models and application software

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1990-01-01

    The empirical models related to solar-terrestrial sciences are listed and described which are available in the form of computer programs. Also included are programs that use one or more of these models for application specific purposes. The entries are grouped according to the region of the solar-terrestrial environment to which they belong and according to the parameter which they describe. Regions considered include the ionosphere, atmosphere, magnetosphere, planets, interplanetary space, and heliosphere. Also provided is the information on the accessibility for solar-terrestrial models to specify the magnetic and solar activity conditions.

  18. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out. PMID:24066565

  19. Solar-terrestrial models and application software

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    1992-01-01

    The empirical models related to solar-terrestrial sciences are listed and described which are available in the form of computer programs. Also included are programs that use one or more of these models for application specific purposes. The entries are grouped according to the region of their solar-terrestrial environment to which they belong and according to the parameter which they describe. Regions considered include the ionosphere, atmosphere, magnetosphere, planets, interplanetary space, and heliosphere. Also provided is the information on the accessibility for solar-terrestrial models to specify the magnetic and solar activity conditions.

  20. Solar Terrestrial Physics: Present and Future

    NASA Technical Reports Server (NTRS)

    Butler, D. M. (Editor); Papadopoulos, K. (Editor)

    1984-01-01

    The following topics relating to solar-terrestrial interactions are considered: (1) reconnection of magnetic fields; (2) particle acceleration; (3) solar magnetic flux; (4) magnetohydrodynamic waves and turbulence in the Sun and interplanetary medium; (5) coupling of the solar wind to the magnetosphere; (6) coronal transients; (7) the connection between the magnetosphere and ionosphere; (8) substorms in the magnetosphere; (9) solar flares and the solar terrestrial environment; (10) shock waves in the solar terrestrial environment; (11) plasma transport and convection at high latitudes; and (12) high latitude ionospheric structure.

  1. NCA-LDAS: An Integrated Terrestrial Water Analysis System for Development, Evaluation, and Dissemination of Climate Indicators

    NASA Astrophysics Data System (ADS)

    Jasinski, M. F.; Arsenault, K. R.; Beaudoing, H. K.; Bolten, J. D.; Borak, J.; Kumar, S.; Peters-Lidard, C. D.; Li, B.; Liu, Y.; Mocko, D. M.; Rodell, M.

    2014-12-01

    An Integrated Terrestrial Water Analysis System, or NCA-LDAS, has been created to enable development, evaluation, and dissemination of terrestrial hydrologic climate indicators focusing on the continental U.S. The purpose is to provide quantifiable indicators of states and estimated trends in our nation's water stores and fluxes over a wide range of scales and locations, to support improved understanding and management of water resources and numerous related sectors such as agriculture and energy. NCA-LDAS relies on improved modeling of terrestrial hydrology through assimilation of satellite imagery, building upon the legacy of the Land Information System modeling framework (Kumar et al, 2006; Peters-Lidard et al, 2007). It currently employs the Noah or Catchment Land Surface Model, run with a number of satellite data assimilation scenarios. The domain for NCA-LDAS is the continental U.S. at 1/8 degree grid for the period 1979 to present. Satellite-based variables that are assimilated are soil moisture and snow water equivalent from principally microwave sensors such as SMMR, SSM/I and AMSR, snow covered area from multispectral sensors such as AVHRR, and MODIS, and terrestrial water storage from GRACE. Once simulated, output are evaluated in comparison to independent datasets using a variety of metrics using the Land Surface Verification Toolkit (LVT). LVT schemes within NCA-LDAS also include routines for computing standard statistics of time series such means, max, and linear trends, at various scales. The dissemination of the NCA-LDAS, including model descriptions, forcings, parameters, daily output, indicator results and LVT tools, have been made available to the public through dissemination on NASA GES-DISC.

  2. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    SciTech Connect

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, N.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen

    2014-05-06

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m-2 yr-1 and total NPP in the range of 318–490 Tg C yr-1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m-2 yr-1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m-2 yr-1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. Finally, we suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.

  3. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A. K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C.

    2015-07-01

    In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000-2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF) showing that the model simulates adequately the SSR patterns over the region. The bias between RegCM4 and CM SAF is +1.54 % for MFG (Meteosat First Generation) and +3.34 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single scattering albedo (SSA), as well as other parameters including surface broadband albedo (ALB) and water vapor amount (WV) using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The contribution of each parameter to the RegCM4-CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations; however, the other parameters also play an important role for specific regions and seasons.

  4. INMARSAT's personal communicator system

    NASA Technical Reports Server (NTRS)

    Hart, Nick; Haugli, HANS-C.; Poskett, Peter; Smith, K.

    1993-01-01

    Inmarsat has been providing near global mobile satellite communications since 1982 and Inmarsat terminals are currently being used in more than 130 countries. The terminals have been reduced in size and cost over the years and new technology has enabled the recent introduction of briefcase sized personal telephony terminals (Inmarsat-M). This trend continues and we are likely to see Inmarsat handheld terminals by the end of the decade. These terminals are called Inmarsat-P and this paper focuses on the various elements required to support a high quality service to handheld terminals. The main system elements are: the handheld terminals; the space segment with the associated orbits; and the gateways to terrestrial networks. It is both likely and desirable that personal handheld satellite communications will be offered by more than one system provider and this competition will ensure strong emphasis on service quality and cost of ownership. The handheld terminals also have to be attractive to a large number of potential users, and this means that the terminals must be small enough to fit in a pocket. Battery lifetime is another important consideration, and this coupled with radiation safety requirements limits the maximum radiated EIRP. The terminal G/T is mainly constrained by the gain of the omnidirectional antenna and the noise figure of the RF front end (including input losses). Inmarsat has examined, with the support of industry, a number of Geosynchronous (GSO), Medium Earth Orbit (MEO) and Low Earth Orbit (LEO) satellite options for the provision of a handheld mobile satellite service. This paper describes the key satellite and orbit parameters and tradeoffs which affect the overall quality of service and the space segment costing. The paper also stresses not only the importance of using and sharing the available mobile frequency band allocations efficiently, but also the key considerations affecting the choice of feeder link bands. The design of the gateways

  5. Terrestrial isopods -- a good choice for toxicity testing of pollutants in the terrestrial environment

    SciTech Connect

    Drobne, D.

    1997-06-01

    Terrestrial isopods are suitable invertebrates for testing the relative toxicities of chemicals present in the terrestrial environment. Terrestrial isopods respond in numerous ways to elevated concentrations of chemicals in their food, but only a few of these responses can be used as toxicological endpoints. The most suitable are changes in reproduction, food consumption, moult cycle duration, and structure of the digestive glands. These responses are able to provide accurate indications of sublethal toxicity. Toxicity tests with terrestrial isopods could be much more reliable through the use of positive controls. A positive control with a reference toxicant could also be supplemented by a reference endpoint. The most suitable reference endpoint is change of food consumption rate. Toxicity testing with terrestrial isopods is a very promising method for fast, routine, and inexpensive laboratory determination of the relative toxicities of chemicals in the terrestrial environment.

  6. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  7. Carbon dioxide sequestration in terrestrial ecosystems

    SciTech Connect

    Wisniewski, J.; Dixon, R.K.; Kinsman, J.D.; Sampson, R.N.; Lugo, A.E.

    1993-01-01

    The terrestrial biosphere plays a prominent role in the global carbon (C) cycle. Terrestrial ecosystems are currently accumulating C and it appears feasible to manage existing terrestrial (forest, agronomic, desert) ecosystems to maintain or increase C storage. Forest ecosystems can be managed to sequester and store globally significant amounts of C. Agroecosystems and arid lands could be managed to conserve existing terrestrial C but CO2 sequestration rates by vegetation in these systems is relatively low. Biomass from forest agroecosystems has the potential to be used as an energy source and trees could be used to conserve energy in urban environments. Some ecosystem management practices that result in C sequestration and conservation provide ancillary benefits.

  8. Transfer of terrestrial technology for lunar mining

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Green, Patricia A.

    1992-01-01

    The functions, operational procedures, and major items of equipment that comprise the terrestrial mining process are characterized. These data are used to synthesize a similar activity on the lunar surface. Functions, operations, and types of equipment that can be suitably transferred to lunar operation are identified. Shortfalls, enhancements, and technology development needs are described. The lunar mining process and what is required to adapt terrestrial equipment are highlighted. It is concluded that translation of terrestrial mining equipment and operational processes to perform similar functions on the lunar surface is practical. Adequate attention must be given to the harsh environment and logistical constraints of the lunar setting. By using earth-based equipment as a forcing function, near- and long-term benefits are derived (i.e., improved terrestrial mining in the near term vis-a-vis commercial production of helium-3 in the long term.

  9. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  10. Thermoluminescence of meteorites and their terrestrial ages

    NASA Astrophysics Data System (ADS)

    Melcher, C. L.

    1981-05-01

    A technique for determining chondritic meteorite terrestrial ages based on the measurement of a normalized thermoluminescence (TL) is presented and applied to samples of 11 recently discovered Antarctic meteorites. Measurements of TL levels normalized to individual meteorite TL sensitivities are presented for 45 chondrites of known terrestrial ages and shown to increase with decreasing terrestrial age. Differences in TL levels in meteorites of the same terrestrial ages are attributed to differences in orbital temperatures. TL levels determined in initial rise experiments for the Antarctic meteorites are found to indicate ages which show a rough correlation with those deduced from C-14, Al-26 and Cl-36 studies. Due to the rapidity and low material requirements of TL measurements, it is proposed that TL determinations be used as screening process to select the most interesting samples for further study by other, more exact, techniques.

  11. Possible climates on terrestrial exoplanets.

    PubMed

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect. PMID:24664919

  12. Satellite-aided land mobile communications system implementation considerations

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1982-01-01

    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint. Previously announced in STAR as N82-25290

  13. Grene-Terrestrial Model Intercomparison Project in Arctic (GTMIP)

    NASA Astrophysics Data System (ADS)

    Saito, K.; Miyazaki, S.; Mori, J.; Ise, T.; Yamazaki, T.; Arakida, H.

    2014-12-01

    The GTMIP, a part of the terrestrial branch on Japan-funded Arctic Climate Change Research (GRENE-TEA), aims to 1) enhance communications and understanding of the "mind and hands" between the modeling and field scientists, and 2) assess the uncertainty and variations stemmed from the model implementation/designation, and the variability due to climatic and historical conditions among the Arctic terrestrial regions. The target metrics cover both physics and biogeochemistry such as snow, permafrost, hydrology, and carbon budget. The MIP consists of two stages: one-dimensional, historical GRENE-TEA site evaluations (stage 1) and circumpolar evaluations using projected climate change data from GCM outputs (stage 2). At the current stage 1, forcing and validation data are prepared, taking maximum advantage of the observation data taken at GRENE-TEA sites (e.g., Fairbanks in Alaska, Yakutsk and Tiksi in Russia, and Kevo in Finland), to evaluate the inter-model and inter-site variations. Since the observation data are prone to missing or lack of the consistency, and not ready to drive the numerical model directly, we create continuous forcing data (called version 0) derived from the reanalysis product (i.e. ERA-interim) with monthly bias corrections using the CRU (for temperature) and GPCP (for precipitation) datasets taken from the respectively nearest grid to the GRENE-TEA sites. Then, it is modified to reflect the local characteristics (version 1), and, in addition, replaced with the observed data (version 1 with obs). These data are partly open at Arctic Data Archive System. The project is open to any modelers who are interested, and welcomes participation of wide range of the terrestrial models possibly with different levels of complexity and philosophy.

  14. The solar photon thruster as a terrestrial pole sitter.

    PubMed

    Matloff, Gregory L

    2004-05-01

    Geosynchronous satellites are invisible at high latitudes. A pole-sitting spacecraft would have communication, climate-studies, and near-polar Earth observation applications. We present a pole-sitter based on the solar photon thruster (SPT), a two-sail variant of the solar sail using a large curved collector sail (always normal to the Sun) to direct sunlight against a much smaller thruster. Thrust decreases slower for an SPT than for a conventional sail arrangement as the angle between sunlight and the collector normal increases. An SPT pole-sitter is offset from the terrestrial pole so that a component of Earth gravity balances the solar radiation-pressure component pushing the SPT off station. The component of gravitational attraction of the Earth pulling the spacecraft towards Earth is also balanced by a solar radiation-pressure component. Results are presented for 80-100% collector/thruster reflectivities. For a spacecraft areal mass thickness of 0.002 kg/m(2), collector and thruster reflectivities of 0.9, the SPT can be situated above latitude 45 degrees at a distance of approximately 60 Earth radii. An SPT pole sitter would be affected by lunar perturbation, which can be compensated for by an on-board rocket thruster producing 2 x 10(-6) g acceleration, a second SPT thruster sail thrusting against the influence of the Moon, or by directing a microwave beam against the spacecraft. Since an SPT pole sitter is in a position rather than an orbit, the effect of terrestrial gravitation limits the size and design of the payload package, which limits terrestrial target resolution. PMID:15220163

  15. Global Change and the Terrestrial Biosphere

    SciTech Connect

    Rogers, Alistair

    2009-04-22

    Terrestrial ecosystems sustain life on Earth through the production of food, fuel, fiber, clean air, and naturally purified water. But how will agriculture and ecosystems be affected by global change? Rogers describes the impact of projected climate change on the terrestrial biosphere and explains why plants are not just passive respondents to global change, but play an important role in determining the rate of change.

  16. The NASA-Lewis terrestrial photovoltaics program

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1974-01-01

    Those parts of the present NASA-Lewis research and technology effort on solar cells and arrays having relevance to terrestrial uses are outlined. These include raising cell efficiency, developing the FEP-covered module concept, and exploring low-cost cell concepts. Solar cell-battery power systems for remote weather stations have been built to demonstrate the capabilities of solar cells for terrestrial applications.

  17. Utilization of the terrestrial cyanobacterial sheet

    NASA Astrophysics Data System (ADS)

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yamaguchi, Yuji; Takenaka, Hiroyuki; Kohno, Nobuyuki

    2016-07-01

    The terrestrial nitrogen-fixing cyanobacterium, Nostoc commune, is living ranging from polar to desert. N. commune makes visible colonies composed extracellular polymeric substances. N. commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. To exhibit the potential abilities, the N. commune sheet is made to use convenient and evaluated by plant growth and radioactive accumulation. We will discuss utilization of terrestrial cyanobacteria under closed environment.

  18. Terrestrial analogs for space exploration habitation systems

    NASA Technical Reports Server (NTRS)

    Campbell, Paul D.; Brown, Jeri W.

    1992-01-01

    The Space Exploration Initiative (SEI) can use early earth-based analogs to simulate many aspects of space flight missions and system operation. These analogs can thus provide information supporting future missions to the moon and to Mars. A study was performed to investigate the potential of terrestrial analogs in simulating human space exploration missions. The study resulted in preliminary requirements and concepts for analog habitation systems, and further study in this area is necessary for SEI terrestrial analog development.

  19. Anthropogenic transformation of the terrestrial biosphere.

    PubMed

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve. PMID:21282158

  20. Update on terrestrial ages of Antarctic meteorites

    SciTech Connect

    Welten, K C; Nishiizumi, K; Caffee, M W

    2000-01-14

    Terrestrial ages of Antarctic meteorites are one of the few parameters that will help us to understand the meteorite concentration mechanism on blue-ice fields. Traditionally, terrestrial ages were determined on the basis of {sup 36}Cl in the metal phase, which has an uncertainty of about 70 ky. For young meteorites (< 40 ky), the terrestrial age is usually and most accurately determined using {sup 14}C in the stone phase. In recent years two methods have been developed which are independent of shielding effects, the {sup 10}Be-{sup 36}Cl/{sup 10}Be method and the {sup 41}Ca/{sup 36}Cl method. These methods have reduced the typical uncertainties in terrestrial ages by a factor of 2, to about 30 ky. The {sup 10}Be-{sup 36}Cl/{sup 10}Be method is quite dependent on the exposure age, which is unknown for most Antarctic meteorites. The authors therefore also attempt to use the relation between {sup 26}Al and {sup 36}Cl/{sup 26}Al to derive a terrestrial age less dependent on the exposure age. The authors have measured the concentrations of cosmogenic {sup 10}Be, {sup 26}Al and {sup 36}Cl in the metal phase of {approximately} 70 Antarctic meteorites, from more than 10 different ice-fields, including many new ones. They then discuss the trends in terrestrial ages of meteorites from different ice-fields.

  1. Speech Communication.

    ERIC Educational Resources Information Center

    Anderson, Betty

    The communications approach to teaching speech to high school students views speech as the study of the communication process in order to develop an awareness of and a sensitivity to the variables that affect human interaction. In using this approach the student is encouraged to try out as many types of messages using as many techniques and…

  2. Communicator, 1997.

    ERIC Educational Resources Information Center

    Bortolussi, Vicki, Ed.

    1997-01-01

    The CAG "Communicator" focus is on serving gifted students in California. This document consists of the four issues of "communicator" issued during 1997. Featured articles include: (1) "The Gifted Student At Risk. It Can't Be True" (Judy Roseberry); (2) "Tech Net-Technology and At-Risk Students" (Judy Lieb); (3) "Reviving Ophelia: Saving the…

  3. Communicating up

    ERIC Educational Resources Information Center

    Lum, Lydia

    2013-01-01

    Chief communicators at many U.S. institutions are interested in forging closer ties with governing boards. Proponents say such relationships can increase board trust and confidence in communicators before a crisis occurs, making it easier to manage the institution's reputation and limit negative publicity when one does. At some institutions, such…

  4. Communications spacecraft

    NASA Astrophysics Data System (ADS)

    Fordyce, Samuel W.

    Progress in the designs and performance capabilities of communications satellites is traced from the Echo 1 Al-coated mylar balloon in 1960 to systems planned for the 1990s and beyond. The services allowed with the passive balloon concept were too limited and led to Telstar spacecraft, with 600 voice channels, being placed in elliptical orbits. Geosynchronous communications began in 1963 with the Syncom satellite, which also carried television signals. The evolution of subsequent Intelsat and ANIK satellites is described, as are features of the Marisat, Marecs, and the DBS systems. The near-term capabilities for DBS, advanced communications satellites using TDMA techniques, and mobile communications systems are summarized, along with the NASA ACTS and MSAT-X satellites for exploring the necessary technologies. The roles the Space Station and unmanned GEO platforms will play in future satellite communications are discussed.

  5. Architectures and protocols for an integrated satellite-terrestrial mobile system

    NASA Technical Reports Server (NTRS)

    Delre, E.; Dellipriscoli, F.; Iannucci, P.; Menolascino, R.; Settimo, F.

    1993-01-01

    This paper aims to depict some basic concepts related to the definition of an integrated system for mobile communications, consisting of a satellite network and a terrestrial cellular network. In particular three aspects are discussed: (1) architecture definition for the satellite network; (2) assignment strategy of the satellite channels; and (3) definition of 'internetworking procedures' between cellular and satellite network, according to the selected architecture and the satellite channel assignment strategy.

  6. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems.

    PubMed

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-01-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle. PMID:27091439

  7. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-04-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle.

  8. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    PubMed Central

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-01-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle. PMID:27091439

  9. Early Formation of Terrestrial Crust

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; Schmitt, A. K.; McCulloch, M. T.; Lovera, O. M.

    2007-12-01

    Early (≥4.5 Ga) Formation of Terrestrial Crust T.M. Harrison1, A.K. Schmitt1, M.T. McCulloch2, and O.M. Lovera1 1Department of Earth and Space Sciences and IGPP, UCLA, Los Angeles, CA 90095, USA; 2Research School of Earth Sciences, Australian National University, Canberra, A.C.T. 2601 AUSTRALIA Large deviations in ǎrepsilonHf(T) from bulk silicate Earth seen in >4 Ga detrital zircons from Jack Hills, Western Australia, have been interpreted as reflecting a major differentiation of the silicate Earth at ca. 4.4 to 4.5 Ga. We have expanded the characterization of 176Hf/177Hf (Hf) in Hadean zircons by acquiring a further 116 laser ablation Lu-Hf measurements on 87 grains with ion microprobe 207Pb/206Pb ages up to 4.36 Ga. Most measurements employed concurrent Lu-Hf and 207Pb/206Pb analyses, permitting assessment of the use of ion microprobe data to characterize the age of the volumetrically larger domain sampled by laser drilling. Our new results confirm and extend the earlier observation of significant negative deviations in ǎrepsilonHf(T) throughout the Hadean, although no positive ǎrepsilonHf(T) values were documented in this study. These data yields an essentially uniform spectrum of single-stage model ages between 4.54 and 4.20 Ga for extraction of the zircons' protoliths from a chondritic reservoir. We derived the full error propagation expression for a parameter, ǎrepsilono, which measures the difference of a sample from solar system initial (Hf) (Hfo), and from this conclude that data plotting close to (Hfo), are statistically meaningful and consistent with silicate differentiation at 4.540±0.006 Ga. δ18O and Ti thermometry for these Hadean zircons show little obvious correlation with initial (Hf), consistent with their derivation through fusion of a broad suite of crustal rock types under near water-saturated conditions. Together with the inclusion assemblage and other isotopic and trace element data obtained from these ancient zircons, our results

  10. Solar Terrestrial Relations Observatory (STEREO)

    NASA Astrophysics Data System (ADS)

    Davila, Joseph M.; Rust, David M.; Pizzo, Victor J.; Liewer, Paulett C.

    1996-11-01

    The solar output changes on a variety of timescales, from minutes, to years, to tens of years and even to hundreds of years. The dominant timescale of variation is, of course, the 11-year solar cycle. Observational evidence shows that the physics of solar output variation is strongly tied to changes in the magnetic field, and perhaps the most dramatic manifestation of a constantly changing magnetic field is the Coronal Mass Ejection (CME). On August 5 - 6, 1996 the Second Workshop to discuss missions to observe these phenomena from new vantage points, organized by the authors, was held in Boulder, Colorado at the NOAA Space Environmental Center. The workshop was attended by approximately 20 scientists representing 13 institutions from the United States and Europe. The purpose of the Workshop was to discuss the different concepts for multi- spacecraft observation of the Sun which have been proposed, to develop a list of scientific objectives, and to arrive at a consensus description of a mission to observe the Sun from new vantage points. The fundamental goal of STEREO is to discover how coronal mass ejections start at the Sun and propagate in interplanetary space. The workshop started with the propositions that coronal mass ejections are fundamental manifestations of rapid large-scale change in the global magnetic structure of the Sun, that CME's are a major driver of coronal evolution, and that they may play a major role in the solar dynamo. Workshop participants developed a mission concept that will lead to a comprehensive characterization of CME disturbances through build-up, initiation, launch, and propagation to Earth. It will also build a clear picture of long-term evolution of the corona. Participants in the workshop recommended that STEREO be a joint mission with the European scientific community and that it consist of four spacecraft: `East' at 1 AU near L4, 60 deg from EArth to detect active regions 5 days before they can be seen by terrestrial telescopes

  11. Terrestrial teleconnections link global rivers

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Howden, N. J.; Woods, R. A.; Bates, P. D.

    2013-12-01

    across different regions of the world. For the former, this may enable more efficient management of global liabilities, for the latter it may enable better logistical planning of disaster relief requirements. Aside from these practical applications, the results also suggest teleconnections exist between terrestrial, as well as ocean and atmospheric water systems.

  12. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  13. Evaluation of terrestrial primary production using biosphere models and space-based measurements of fluorescence

    NASA Astrophysics Data System (ADS)

    Parazoo, N.; Bowman, K. W.; Frankenberg, C.; Sitch, S.; Fisher, J. B.; Jones, D. B.; Friedlingstein, P.; Poulter, B.

    2013-12-01

    Changes in the processes that control terrestrial carbon uptake are highly uncertain but likely to have a significant influence on future atmospheric CO2 levels. RECCAP aims to improve process understanding by reconciling fluxes from top-down CO2 inversions and bottom-up estimates from an ensemble of dynamical global vegetation models (DGVMs). As these models are typically used in projections of climate change a key part of this effort is evaluating drivers of net carbon exchange within the current climate. Of particular importance are the spatial distribution and time rate of change of gross primary productivity (GPP). Recent advances in the remote sensing of solar-induced chlorophyll fluorescence opens up a new possibility to directly measure planetary photosynthesis on spatially resolved scales. Here, we discuss a new methodology for estimating GPP from an optimal combination of an ensemble of DGVMs from the TRENDY project with satellite-based observations of chlorophyll fluorescence from GOSAT. We evaluate optimized fluxes against flux tower and semi-empirical data in N. America, Europe, and S. America, then examine the period 2009-2010 to identify critical regions (i.e., regions with high annual GPP) where optimized and model fluxes diverge.

  14. Hyperspectral-LIDAR system and data product integration for terrestrial applications

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cheng, Yen-Ben; Middleton, Elizabeth M.; Parker, Geoffrey G.; Huemmrich, K. Fred; Campbell, Petya K. E.

    2009-08-01

    This manuscript details the development and validation of a unique forward thinking instrument and methodology for monitoring terrestrial carbon dynamics through synthesis of existing hyperspectal sensing and Light Detection and Ranging (LIDAR) technologies. This technology demonstration is directly applicable to linking target mission concepts identified as scientific priorities in the National Research Council (NRC, 2007) Earth Science Decadal Survey; namely, DESDynI and HyspIRI. The primary components of the Hyperspec-LIDAR system are the ruggedized imaging spectrometer and a small footprint LIDAR system. The system is mounted on a heavy duty motorized pan-tilt unit programmed to support both push-broom style hyperspectral imaging and 3-D canopy LIDAR structural profiling. The integrated Hyperspec-LIDAR sensor system yields a hypserspectral data cube with up to 800 bands covering the spectral range of 400 to 1000 nm and a 3-D scanning LIDAR system accurately measuring the vertical distribution of intercepted surfaces within a range of 150 m with an accuracy of 15 mm. Preliminary field tests of the Hyperspec-LIDAR sensor system were conducted at a mature deciduous mixed forest tower site located at the Smithsonian Environmental Research Center in Edgewater, MD. The goal of this research is to produce integrated science and data products from ground observations that will support satellite-based hybrid spectral/structural profile linked through appropriate models to monitor Net Ecosystem Exchange and related parameters such as ecosystem Light Use Efficiency.

  15. MODIS-Derived Terrestrial Primary Production

    NASA Astrophysics Data System (ADS)

    Zhao, Maosheng; Running, Steven; Heinsch, Faith Ann; Nemani, Ramakrishna

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of all the acronyms is available in the appendix at the end of the chapter) by the human population accounts for about 14-26% of global NPP (Imhoff et al. 2004). Rapid global climate change is induced by increased atmospheric greenhouse gas concentration, especially CO2, which results from human activities such as fossil fuel combustion and deforestation. This directly impacts terrestrial NPP, which continues to change in both space and time (Melillo et al. 1993; Prentice et al. 2001; Nemani et al. 2003), and ultimately impacts the well-being of human society (Milesi et al. 2005). Additionally, substantial evidence show that the oceans and the biosphere, especially terrestrial ecosystems, currently play a major role in reducing the rate of the atmospheric CO2 increase (Prentice et al. 2001; Schimel et al. 2001). NPP is the first step needed to quantify the amount of atmospheric carbon fixed by plants and accumulated as biomass. Continuous and accurate measurements of terrestrial NPP at the global scale are possible using satellite data. Since early 2000, for the first time, the MODIS sensors onboard the Terra and Aqua satellites, have operationally provided scientists with near real-time global terrestrial gross primary production (GPP) and net photosynthesis (PsnNet) data. These data are provided at 1 km spatial resolution and an 8-day interval, and annual NPP covers 109,782,756 km2 of vegetated land. These GPP, PsnNet and NPP products are collectively known as MOD17 and are part of a larger suite of MODIS land products (Justice et al. 2002), one of the core Earth System or Climate Data Records (ESDR or

  16. Science communication as political communication.

    PubMed

    Scheufele, Dietram A

    2014-09-16

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389

  17. Science communication as political communication

    PubMed Central

    Scheufele, Dietram A.

    2014-01-01

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389

  18. The ORBCOMM data communications system

    NASA Technical Reports Server (NTRS)

    Schoen, David C.; Locke, Paul A.

    1993-01-01

    The ORBCOMM system is designed to provide low-cost, two-way data communications for mobile and remote users. The communications system is ideally configured for low data rate applications where communicating devices are geographically dispersed and two-way communications through terrestrial means is cumbersome and not cost effective. The remote terminals use VHF frequencies which allow for the use of very small, low-cost terminals. ORBCOMM has entered into joint development agreements with several large manufacturers of both consumer and industrial electronics to design and build the remote terminals. Based on prototype work, the estimated retail cost of these units will range from $50 to $400 depending on the complexity of the design. Starting in the fall of 1993, ORBCOMM will begin service with a demonstration network consisting of two operating satellites. By the end of 1994, a full operating network of 26 satellites, four Gateway Earth Stations, and a Network Control Center will be in place. The full constellation will provide full coverage of the entire world with greater than 94 percent communications availability for the continental U.S. This paper describes the ORBCOMM system, the technology used in its implementation, and its applications.

  19. Odyssey personal communications satellite system

    NASA Technical Reports Server (NTRS)

    Spitzer, Christopher J.

    1993-01-01

    The spectacular growth of cellular telephone networks has proved the demand for personal communications. Large regions of the world are too sparsely populated to be economically served by terrestrial cellular communications. Since satellites are well suited to this application, TRW filed with the FCC on May 31, 1993 for the Odyssey construction permit. Odyssey will provide high quality wireless communication services worldwide from satellites. These services will include: voice, data, paging, and messaging. Odyssey will be an economical approach to providing communications. A constellation of 12 satellites will be orbited in three, 55 deg. inclined planes at an altitude of 10,354 km to provide continuous coverage of designated regions. Two satellites will be visible anywhere in the world at all times. This dual visibility leads to high line-of-sight elevation angles, minimizing obstructions by terrain, trees and buildings. Each satellite generates a multibeam antenna pattern that divides its coverage area into a set of contiguous cells. The communications system employs spread spectrum CDMA on both the uplinks and downlinks. This signaling method permits band sharing with other systems and applications. Signal processing is accomplished on the ground at the satellite's 'Gateway' stations. The 'bent pipe' transponders accommodates different regional standards, as well as signaling changes over time. The low power Odyssey handset will be cellular compatible. Multipath fade protection is provided in the handset.

  20. Wireless Communications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  1. THE EFFECT OF CLOUD FRACTION ON THE RADIATIVE ENERGY BUDGET: The Satellite-Based GEWEX-SRB Data vs. the Ground-Based BSRN Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Nasa Gewex Srb

    2011-12-01

    The NASA GEWEX-SRB (Global Energy and Water cycle Experiment - Surface Radiation Budget) project produces and archives shortwave and longwave atmospheric radiation data at the top of the atmosphere (TOA) and the Earth's surface. The archive holds uninterrupted records of shortwave/longwave downward/upward radiative fluxes at 1 degree by 1 degree resolution for the entire globe. The latest version in the archive, Release 3.0, is available as 3-hourly, daily and monthly means, spanning 24.5 years from July 1983 to December 2007. Primary inputs to the models used to produce the data include: shortwave and longwave radiances from International Satellite Cloud Climatology Project (ISCCP) pixel-level (DX) data, cloud and surface properties derived therefrom, temperature and moisture profiles from GEOS-4 reanalysis product obtained from the NASA Global Modeling and Assimilation Office (GMAO), and column ozone amounts constituted from Total Ozone Mapping Spectrometer (TOMS), TIROS Operational Vertical Sounder (TOVS) archives, and Stratospheric Monitoring-group's Ozone Blended Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. The data in the archive have been validated systemically against ground-based measurements which include the Baseline Surface Radiation Network (BSRN) data, the World Radiation Data Centre (WRDC) data, and the Global Energy Balance Archive (GEBA) data, and generally good agreement has been achieved. In addition to all-sky radiative fluxes, the output data include clear-sky fluxes, cloud optical depth, cloud fraction and so on. The BSRN archive also includes observations that can be used to derive the cloud fraction, which provides a means for analyzing and explaining the SRB-BSRN flux differences. In this paper, we focus on the effect of cloud fraction on the surface shortwave flux and the level of agreement between the satellite-based SRB data and the ground-based BSRN data. The satellite and BSRN employ different

  2. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A. K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C.

    2015-11-01

    In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000-2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF), showing that the model simulates adequately the SSR patterns over the region. The SSR bias between RegCM4 and CM SAF is +1.5 % for MFG (Meteosat First Generation) and +3.3 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. Generally, RegCM4 underestimates CFC by 24.3 % and Re for liquid/ice clouds by 36.1 %/28.3 % and overestimates COT by 4.3 %. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single-scattering albedo (SSA), as well as other parameters, including surface broadband albedo (ALB) and water vapor amount (WV), using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The potential contribution of each parameter to the RegCM4-CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a~radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations on a monthly basis; however, the other parameters also play an important role for specific regions and seasons. Overall, for the European domain, CFC, COT and

  3. Army Space Systems For Terrestrial Applications

    NASA Astrophysics Data System (ADS)

    Dickerman, Ronald L.; Gomez, Richard B.

    1988-04-01

    Army combat forces involved in global military operations require knowledge of the terrain and accurate positioning and navigation capability to effectively perform their missions. Combat critical data from satellite-based systems to augment ground and airborne data collection, processing, and dissemination systems are crucial for the delivery and use of the needed information and intelligence in near-real time. The Army is developing ground-based testbed systems to utilize terrain and weather data collected from space-based platforms to enhance Army commanders' battlefield capabilities, and is researching new applications for the NAVSAT Global Positioning System and the Defense Advanced Research Projects Agency-sponsored (DARPA) LIGHTSAT program that are unique to the Army. In addition, the Army is designing experiments to be conducted on the Space Shuttle.

  4. Quantum Communication

    NASA Astrophysics Data System (ADS)

    Jackson, Judy; Calder, Neil

    2007-11-01

    Few would dispute that the science of particle physics in the United States has reached a crossroads. Policies, decisions, and events of the coming decade will be critical in determining whether the United States continues to carry out a competitive program of leadership in this field of fundamental science. The field of particle physics has responded to this reality by fundamentally changing its model of communication from “business as usual” to a strategic and collaborative method that is clearly focused on achieving a healthy future for the science. Over the past half-dozen years, the particle physics community has gone from being an oft-cited example of how not to communicate effectively, to a frequently cited—and emulated—model for science communication. This review outlines the new approach toward communication in particle physics and then goes into detail about three case studies.

  5. Communication fail?

    NASA Astrophysics Data System (ADS)

    Jones, Matthew

    2016-06-01

    In response to Matin Durrani's editorial “Conference thoughts” (April p15), which bemoaned poor communication and limited social media use by physicists at the March meeting of the American Physical Society (APS).

  6. Optical Communications

    ERIC Educational Resources Information Center

    Young, Matt

    1973-01-01

    Describes the characteristics and operational problems of optical waveguides, and concludes that the wide use of optical communications can be expected if difficulties in commercial production of components can be eliminated. (CC)

  7. The Intelsat digital communication systems

    NASA Astrophysics Data System (ADS)

    Phiel, John F., Jr.

    1990-08-01

    Intelsat international communication services resulting from the application of digital technology are summarized. Approximately 40 percent of the 140,000 terrestrial channels from the Public Switched Telephone Networks (PSTN) provided by the Intelsat network are now handled by digital systems. Digital technology for the interconnection of the PSTNs is discussed. Particular attention is paid to modulation and access techniques including the intermediate data rate (IDR) system, and the fixed and satellite switched TDMA systems. Digital compression techniques used with TDMA and IDR, such as digital speech interpolation and digital circuit multiplication, are also discussed. The Intelsat Business Service and the Intelnet Service are described in the framework of digital technology for private networks and business users. Communications for remote areas, international television services, and future opportunities through digital technologies are briefly presented.

  8. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  9. Predictability of the terrestrial carbon cycle.

    PubMed

    Luo, Yiqi; Keenan, Trevor F; Smith, Matthew

    2015-05-01

    Terrestrial ecosystems sequester roughly 30% of anthropogenic carbon emission. However this estimate has not been directly deduced from studies of terrestrial ecosystems themselves, but inferred from atmospheric and oceanic data. This raises a question: to what extent is the terrestrial carbon cycle intrinsically predictable? In this paper, we investigated fundamental properties of the terrestrial carbon cycle, examined its intrinsic predictability, and proposed a suite of future research directions to improve empirical understanding and model predictive ability. Specifically, we isolated endogenous internal processes of the terrestrial carbon cycle from exogenous forcing variables. The internal processes share five fundamental properties (i.e., compartmentalization, carbon input through photosynthesis, partitioning among pools, donor pool-dominant transfers, and the first-order decay) among all types of ecosystems on the Earth. The five properties together result in an emergent constraint on predictability of various carbon cycle components in response to five classes of exogenous forcing. Future observational and experimental research should be focused on those less predictive components while modeling research needs to improve model predictive ability for those highly predictive components. We argue that an understanding of predictability should provide guidance on future observational, experimental and modeling research. PMID:25327167

  10. Terrestrial biogeochemical feedbacks in the climate system

    NASA Astrophysics Data System (ADS)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K.; Menon, S.; Bartlein, P. J.; Feichter, J.; Korhola, A.; Kulmala, M.; O'Donnell, D.; Schurgers, G.; Sorvari, S.; Vesala, T.

    2010-08-01

    The terrestrial biosphere is a key regulator of atmospheric chemistry and climate. During past periods of climate change, vegetation cover and interactions between the terrestrial biosphere and atmosphere changed within decades. Modern observations show a similar responsiveness of terrestrial biogeochemistry to anthropogenically forced climate change and air pollution. Although interactions between the carbon cycle and climate have been a central focus, other biogeochemical feedbacks could be as important in modulating future climate change. Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to reach up to 0.9 or 1.5 W m-2 K-1 towards the end of the twenty-first century, depending on the extent to which interactions with the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling effect owing to carbon dioxide fertilization of the terrestrial biota. The overall magnitude of the biogeochemical feedbacks could potentially be similar to that of feedbacks in the physical climate system, but there are large uncertainties in the magnitude of individual estimates and in accounting for synergies between these effects.

  11. Supporting tools of solar-terrestrial science

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Solar-terrestrial science is pursued by individuals and teams of workers situated in academia, research institutes, industry, and government laboratories. Progress in the field is made in various ways, but publication of results in scientific journals is the principal means of assuring that the knowledge gained from research is available to the public, now and in the future. In general, much of the research in the field is made via careful evaluation of data viewed in the context of fundamental physical principles as set forth in theoretical and analytical models, and computer simulations of physical processes. In addition, there is accumulation of knowledge expressed in the development of empirical or phenomenological models. Experience gained over the past three decades of solar-terrestrial research indicated that advances in the field require a diversity of resources and that the health of the entire discipline depends upon a balance among these. To maintain the health of the discipline, NASA and other federal funding agencies concerned with solar-terrestrial research must work together to insure that the following resources are available in reasonable measure to support solar-terrestrial research endeavors: ground-based facilities; balloons and rockets; spaceborne experiments; information networks; computational resources; models of solar terrestrial processes; data bases and archives; and research students.

  12. Police Communications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oklahoma City Police Department developed a computerized communications system, based on Johnson Space Center's (JSC's) 1960-mission control knowledge. JSC furnished information on lighting and other fatigue reducing measures, and provided specifications for equipment and design layouts. JSC also advised OCPD how to avoid communications bottlenecks associated with simultaneous handling of telephone, radio and inner-office transmissions. Oklahoma City saved money in reduced design and engineering costs by utilizing the already developed NASA technology.

  13. Communicating Astronomy

    NASA Astrophysics Data System (ADS)

    Russo, P.; Barrosa, Mariana

    2007-08-01

    Science Communication plays a crucial role in education and in the public understanding of science. It shortens the distance between scientific research, the school and the general public. Astronomy has a privileged position in the process of science communication since it embraces different areas of knowledge such as mathematics, physics, chemistry, geology and biology. It is capable of attracting a vast audience and is a powerful tool for science popularization. Nowadays, science must compete with many other subjects for a place in the media and in the public's attention. This paradigm has raised the standards and demands for science communication and pushed it into professionalism. The International Year of Astronomy 2009 (IYA2009) is one of the biggest challenges for astronomy communication. There are two key elements in the communication strategy that are often forgotten: detailed description of objectives and goals and evaluation of the results. They are in opposite poles of the communication strategy, but must both be taken into account from the beginning of any activity. In this paper we will present some guidelines that can be helpful in the initial planning of outreach activities, as well as the evaluation of its results.

  14. Briefcase Communicator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo at bottom right, a U.S. Park Police officer is demonstrating a battery-powered communications system, sufficiently compact to be packed in a briefcase-size container, which can send and receive signals over great distances by means of satellite relay. Key to the system's efficacy is the high-powered transmitting and receiving equipment aboard such NASA satellites as the Applications Technology Satellite6 (ATS-6) and the joint U.S.-Canadian Communications Technology Satellite (CTS); this enables the briefcase communicator to pick up satellite-relayed signals by means of the small hook-on antenna shown instead of the more elaborate-ground equipment customarily needed. Developed by NASA's Goddard Space Flight Center, the communicator is intended for use in emergency situations. It has utility, for example, in disasters, such as floods and hurricanes, where power failure disrupts conventional communications; for on-the-spot transmissions from major accident sites; or in remote areas where no other means of communication exists

  15. Use of communications. [satellite communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the field of satellite communications is reviewed, and useful services which may be provided by future satellite communications systems are considered. Recommendations are made with regard to mobile communications for use on land and at sea, position determination, mineral and energy exploration, the possibility of using electronic means to assist in main delivery, education and health-care experiments, and the use of satellite telecommunications to enhance the quality of life in rural areas by making available a full range of educational and entertainment programs. The needs of the amateur radio community are also considered.

  16. What is the Safest Way to Cross the Valley of Death: Wisdom gained from Making a Satellite based Flood Forecasting System Operational and Owned by Stakeholders

    NASA Astrophysics Data System (ADS)

    Hossain, F.

    2013-12-01

    More than a decade ago, the National Research Council report popularized the term 'Valley of Death' to describe the region where research on Weather Satellites had struggled to survive before reaching maturity for societal applications. For example, the space vantage of earth observing satellites can solve some of the world's otherwise fundamentally intractable operational problems on water resources. However, recent experiences show that many of the potential beneficiaries, who are not as familiar with water cycle remote sensing missions or anthropogenic climate studies, referred here as the ';non-traditional consumers,' may have a more skeptical view based on their current practices. This talk will focus on one such non-traditional consumer group: the water resources managers/staff in developing nations of South Asia. Using real-world examples on applications and hands-on-training to make a satellite based flood forecasting system operational, the talk will dissect the view that is shared by many water managers of Bangladesh on satellite remote sensing for day to day decision making. The talk will share the experience and wisdom generated in the successful capacity building of emerging satellite technology for water management. It will end with an overview of initiatives for more effective promotion of the value of planned water cycle satellite missions for water resources management community in the developing world.

  17. A Satellite-Based Estimation of Evapotranspiration Using Vegetation Index-Temperature Trapezoid Concept: A Case Study in Southern Florida, U.S.A.

    NASA Astrophysics Data System (ADS)

    Yagci, A. L.; Santanello, J. A., Jr.; Jones, J. W.

    2015-12-01

    One of the key surface variables for hydrological applications, monitoring of natural and anthropogenic water consumption, closing energy balance and water budgets and drought identification is evapotranspiration (ET). There is currently a strong need for high temporal and spatial resolution ET products for climate and hydrological modelers. A satellite-based retrieval method based on vegetation index-temperature trapezoid (VITT) concept has been developed. This model has the ability to generate accurate ET estimates at high temporal and spatial resolutions by taking advantage of key remotely sensed parameters such as vegetation indices (VIs) and land surface temperature (LST) acquired by satellites as well as routinely-measured meteorological variables such as air temperature (Ta) and net radiation. For local-scale applications, the model has been successfully implemented in Python programming language and tested using Landsat satellite products at an eddy covariance flux tower in Florida. It is fully functional and automated such that there is no need of user intervention to run the model. The model development for continental-scale applications using VI and LST products from NASA satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) is currently in progress. The results for local-scale application and early results for continental-scale (US) will be presented and discussed.

  18. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  19. On the ionospheric impact of recent storm events on satellite-based augmentation systems in middle and low-latitude sectors

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Sparks, Lawrence; Mannucci, Anthony J.; Pi, Xiaoqing

    2003-01-01

    The Ionospheric correction algorithms have been characterized extensively for the mid-latitude region of the ionosphere where benign conditions usually exist. The United States Federal Aviation Administration's (FAA) Wide Area Augmentation System (WAAS) for civil aircraft navigation is focused primarily on the Conterminous United States (CONUS). Other Satellite-based Augmentation Systems (SBAS) include the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Global Navigation Satellite System (MSAS). Researchers are facing a more serious challenge in addressing the ionospheric impact on navigation using SBAS in other parts of the world such as the South American region on India. At equatorial latitudes, geophysical conditions lead to the so-called Appleton-Hartree (equatorial) anomaly phenomenon, which results in significantly larger ionospheric range delays and range delay spatial gradients than is observed in the CONUS or European sectors. In this paper, we use GPS measurements of geomagnetic storm days to perform a quantitative assessment of WAAS-type ionospheric correction algorithms in other parts of the world such as the low-latitude Brazil and mid-latitude Europe. For the study, we access a world-wide network of 400+ dual frequency GPS receivers.

  20. Comparative planetology: Significance for terrestrial geology

    NASA Technical Reports Server (NTRS)

    Frey, H. V.; Lowman, P. D., R.

    1978-01-01

    The crustal evolution of the terrestrial planets increase in complexity and duration with increasing size and mass of the planet. The lunar and mercurian surfaces are largely the result of intense, post-differentiation impact bombardment and subsequent volcanic filling of major impact basins. Mars, being larger, has evolved further: crustal uplifts, rifting, and shield volcanoes have begun to modify its largely Moon-like surface. The Earth is the large end-number of this sequence, where modern plate tectonic processes have erased the earlier lunar and martian type of surfaces. Fundamental problems of the origin of terrestrial continents, ocean basins, and plate tectonics are now addressed within the context of the evolutionary pattern of the terrestrial planets.

  1. Climate science communication from researchers to diverse audiences

    NASA Astrophysics Data System (ADS)

    Rogers, M. A.

    2011-12-01

    Climate science is a topic that engenders a public response that is very different than the response to many other scientific fields. Communicating climate research results, therefore, presents a unique challenge to the researcher who wishes to put their results on a broader stage. Techniques of communicating climate science in a meaningful manner include understanding the audience in question, and presenting the scientific results in a way that engages the target audience in a manner that precludes cultural and political bias, both on the part of the presenter and in the elicited response from the audience. We hope to present experiences and lessons learned from presenting satellite-based climate research on behalf of NASA and NOAA projects, with respect to target audiences including K-12, higher education, citizen scientists, and the general public.

  2. Magnetic fields of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1993-01-01

    The four terrestrial planets, together with the Earth's Moon, provide a significant range of conditions under which dynamo action could occur. All five bodies have been visited by spacecraft, and from three of the five bodies (Earth, Moon and Mars) we have samples of planetary material upon which paleomagnetic studies have been undertaken. At the present time, only the Earth and Mercury appear to have a significant dipole magnetic field. However, the Moon, and possibly Mars, appear to have had ancient planetary dynamos. Venus does not now have a significant planetary magnetic field, and the high surface temperatures should have prevented the recording of evidence of any ancient magnetic field. Since the solidification of the solid inner core is thought to be the energy source for the terrestrial magnetic field, and since smaller bodies evolve thermally more rapidly than larger bodies, we conjecture that the terrestrial planets are today in three different phases of magnetic activity. Venus is in a predynamo phase, not having cooled to the point of core solidification. Mercury and the Earth are in the middle of their dynamo phase, with Mercury perhaps near the end of its activity. Mars and the Moon seem to be well past their dynamo phase. Much needs to be done in the study of the magnetism of the terrestrial planets. We need to characterize the multipole harmonic structure of the Mercury magnetic field plus its secular variation, and we need to analyze returned samples to attempt to unfold the long-term history of Mercury's dynamo. We need to more thoroughly map the magnetism of the lunar surface and to analyze samples obtained from a wider area of the lunar surface. We need a more complete survey of the present Martian magnetic field and samples from a range of different ages of Martian surface material. Finally, a better characterization of the secular variation of the terrestrial magnetic field is needed in order to unfold the workings of the terrestrial dynamo.

  3. A forecast of broadcast satellite communications

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.

    1977-01-01

    This paper presents forecasts of likely changes in broadcast satellite technology, the technology of ground terminals, and the technology of terrestrial communications competitive with satellites. The impacts of these changes in technology are then assessed, using a cross-impact model of U.S. domestic telecommunications, to determine the consequences of various possible changes in communications satellite technology. These consequences are discussed in terms of various possible services, for households, businesses, and specialized customers, which might become economically viable as a result of improvements in satellite technology.

  4. Terrestrial and exposure histories of Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.

    1986-01-01

    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40.

  5. Solar-Terrestrial Science Strategy Workshop

    NASA Technical Reports Server (NTRS)

    Banks, Peter M. (Editor); Roberts, William T. (Editor); Kropp, Jack (Editor)

    1989-01-01

    The conclusions and recommendations reached at the Solar Terrestrial Science Strategy Workshop are summarized. The charter given to this diverse group was: (1) to establish the level of scientific understanding to be accomplished with the completion of the current and near term worldwide programs; (2) identify the significant scientific questions to be answered by future solar terrestrial programs, and the programs required to answer these questions; and (3) map out a program strategy, taking into consideration currently perceived space capabilities and constraints, to accomplish the identified program.

  6. Tectonic Evolution of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Senski, David G. (Technical Monitor)

    2002-01-01

    The NASA Planetary Geology and Geophysics Program supported a wide range of work on the geophysical evolution of the terrestrial planets during the period 1 April 1997 - 30 September 2001. We here provide highlights of the research carried out under this grant over the final year of the award, and we include a full listing of publications and scientific meeting presentations supported by this project. Throughout the grant period, our group consisted of the Principal Investigator and several Postdoctoral Associates, all at the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington.

  7. Were early pterosaurs inept terrestrial locomotors?

    PubMed Central

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual

  8. Solar and Terrestrial Neutrino Results from Borexino

    NASA Astrophysics Data System (ADS)

    Calaprice, Frank; Borexino Collaboration

    2012-08-01

    Borexino is a low background liquid scintillation detector currently acquiring solar and terrestrial neutrino data at the LNGS underground laboratory in Italy. In the three years since the start of operations in 2007, Borexino has produced measurements of 7Be and 8B solar neutrinos, as well as measurements of terrestrial and long-baseline reactor anti-neutrinos. The measurements of sub-MeV neutrinos were possible owing to a breakthrough in low background methods. Current results and prospects for future measurements with lower background and higher accuracy are discussed in the context of exploring the transition from vacuum to matter enhanced neutrino oscillations.

  9. Why Plants Were Terrestrial from the Beginning.

    PubMed

    Harholt, Jesper; Moestrup, Øjvind; Ulvskov, Peter

    2016-02-01

    The current hypothesis is that land plants originated from a charophycean green alga and that a prominent feature for adaptation to land was their development of alternating life cycles. Our work on cell wall evolution and morphological and physiological observations in the charophycean green algae challenged us to reassess how land plants became terrestrial. Our hypothesis is simple in that the charophycean green algae ancestors were already living on land and had been doing so for some time before the emergence of land plants. The evolution of alternate life cycles merely made the ancestral land plants evolutionary successful and had nothing to do with terrestrialization per se. PMID:26706443

  10. Monogenetic volcanoes of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1979-01-01

    Monogenetic volcanic activity has produced cinder cones and small shield volcanoes on the earth, moon, and Mars. Extraterrestrial cinder cones have median volumes only 25% as large as average terrestrial cinder cones, implying that their magma chambers are smaller and shallower (1 km depth vs 3 km). Ejection velocities for lunar and Martian cinder cones range from 20 to 70 m/sec, only 1/3 to 1/10 as high as for equal volume terrestrial eruptions. These low velocities imply low volatile contents for both Martian and lunar magmas.

  11. Communicating Science

    NASA Astrophysics Data System (ADS)

    Holland, G. J.; McCaffrey, M. S.; Kiehl, J. T.; Schmidt, C.

    2010-12-01

    We are in an era of rapidly changing communication media, which is driving a major evolution in the modes of communicating science. In the past, a mainstay of scientific communication in popular media was through science “translators”; science journalists and presenters. These have now nearly disappeared and are being replaced by widespread dissemination through, e.g., the internet, blogs, YouTube and journalists who often have little scientific background and sharp deadlines. Thus, scientists are required to assume increasing responsibility for translating their scientific findings and calibrating their communications to non-technical audiences, a task for which they are often ill prepared, especially when it comes to controversial societal issues such as tobacco, evolution, and most recently climate change (Oreskes and Conway 2010). Such issues have been politicized and hi-jacked by ideological belief systems to such an extent that constructive dialogue is often impossible. Many scientists are excellent communicators, to their peers. But this requires careful attention to detail and logical explanation, open acknowledgement of uncertainties, and dispassionate delivery. These qualities become liabilities when communicating to a non-scientific audience where entertainment, attention grabbing, 15 second sound bites, and self assuredness reign (e.g. Olson 2009). Here we report on a program initiated by NCAR and UCAR to develop new approaches to science communication and to equip present and future scientists with the requisite skills. If we start from a sound scientific finding with general scientific consensus, such as the warming of the planet by greenhouse gases, then the primary emphasis moves from the “science” to the “art” of communication. The art cannot have free reign, however, as there remains a strong requirement for objectivity, honesty, consistency, and above all a resistance to advocating particular policy positions. Targeting audience

  12. Why Communicate

    NASA Astrophysics Data System (ADS)

    Illingworth, Samuel

    2015-04-01

    "Half the world is composed of people who have something to say and can't, and the other half who have nothing to say and keep on saying it." - Robert Frost In this age of digital soap boxes and half-truths, the importance of geoscientists as communicators cannot be underestimated, nor has there been a more important time for researchers to stand up and demand to be heard. So why is there still such an overwhelming public perception that scientists are poor communicators, and what can we do to change this? In this work I will present an overview of a number of successful initiatives that have been developed at Manchester Metropolitan University, and beyond, to ensure that science is communicated to a large variety of people, from policy makers to members of the local community. I will also present an overview of the emerging field of Science Communication, how it has changed in the past few decades from a one-way diatribe to a two-way discussion, and how this represents a possible new direction and career path for geoscientists. Anne Roe, the noted American psychologist, told us, "nothing in science has any value to society if it is not communicated." As geoscientists, we have a professional and moral obligation to ensure that we not only research the facts, but that we also present them in an informative and engaging manner, so that the rest of humanity can benefit from the fruits of our labour.

  13. Comparison of high resolution terrestrial laser scanning and terrestrial photogrammetry for modeling applications

    NASA Astrophysics Data System (ADS)

    Özdemir, Samed; Bayrak, Temel

    2016-04-01

    3D documentation of cultural heritage and engineering projects is an important matter. These documentation applications, requires highest possible accuracy and detail to represent the actual surface correctly. Terrestrial photogrammetric method which is employed to produce 3D models to day, now can obtain dense point clouds thanks to advancements in computer technology. Terrestrial laser scanners gained popularity in the last decade because of their high capacity and today they are being widely used in many applications. However every application has its own requirements that depend on the type of application, modeling environment, accuracy and budget limitations. This means, for every application highest accuracy instruments are not always best, considering the facts that mentioned before. In this study, laser scanner and terrestrial photogrammetric methods' spatial and model accuracies investigated under various conditions which include measuring targets at different instrument to object distances then investigating the accuracy of these measurements, modeling an irregular shaped surface to compare two surfaces volume and surface areas, at last comparing dimensions of known geometrical shaped small objects. Also terrestrial laser scanners and terrestrial photogrammetric methods most suitable application conditions investigated in terms of cost, time, mobility and accuracy. Terrestrial laser scanner has the ability to, measure distances under cm accuracy and directly measuring 3D world but there is also some drawbacks like sensitive, bulky and expensive equipment. When it comes to terrestrial photogrammetry, it has above cm accuracy, comparatively fast (considering the image acquisition stage), inexpensive but it can be affected by the coarse geometry, surface texture and the environmental lighting. Key Words: Accuracy, Comparison, Model, Terrestrial Photogrammetry, Terrestrial Laser Scanning,.

  14. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  15. The role of satellite communications in the future DCS

    NASA Astrophysics Data System (ADS)

    McKee, W. P., Jr.

    The Defense Communications System (DCS) has the function to provide strategic telecommunications for the U.S. Department of Defense (DOD). In addition, the DCS supports also other U.S. Government communications requirements, such as those of the Department of State. The DCS makes use of military and commercial satellite communications, and of terrestrial transmission media. The role of satellite communications (Satcom) in the current DCS is considered. Military and commercial Satcom used by the DCS employ geostationary satellites in synchronous orbit, generally for continuous point-to-point communications. As a result of recent studies, it was recommended that the DCS adopt the 'mix of media' philosophy to increase its survivability. One of the media which will receive continually expanded employment will be satellite communications. Attention is given to requirements for military communications, and the effectiveness of Satcom. It is concluded that Satcom, which is important in the DCS today, will become even more important in the future.

  16. Communications Network

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Multi-Compatible Network Interface Unit (MCNIU) is intended to connect the space station's communications and tracking, guidance and navigation, life support, electric power, payload data, hand controls, display consoles and other systems, and also communicate with diverse processors. Honeywell is now marketing MCNIU commercially. It has applicability in certain military operations or civil control centers. It has nongovernment utility among large companies, universities and research organizations that transfer large amounts of data among workstations and computers. *This product is no longer commercially available.

  17. Communicating Transactions

    NASA Astrophysics Data System (ADS)

    de Vries, Edsko; Koutavas, Vasileios; Hennessy, Matthew

    We propose a novel language construct called communicating transactions, obtained by dropping the isolation requirement from classical transactions, which can be used to model automatic error recovery in distributed systems. We extend CCS with this construct and give a simple semantics for the extended calculus, called TransCCS. We develop a behavioural theory which is sound and complete with respect to the may-testing preorder, and use it to prove interesting laws and reason compositionally about example systems. Finally, we prove that communicating transactions do not increase the observational power of processes; thus CCS equivalences are preserved in the extended language.

  18. Time concurrency/phase-time synchronization in digital communications networks

    NASA Technical Reports Server (NTRS)

    Kihara, Masami; Imaoka, Atsushi

    1990-01-01

    Digital communications networks have the intrinsic capability of time synchronization which makes it possible for networks to supply time signals to some applications and services. A practical estimation method for the time concurrency on terrestrial networks is presented. By using this method, time concurrency capability of the Nippon Telegraph and Telephone Corporation (NTT) digital communications network is estimated to be better than 300 ns rms at an advanced level, and 20 ns rms at final level.

  19. High efficiency, long life terrestrial solar panel

    NASA Technical Reports Server (NTRS)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  20. UV-B EFFECTS ON TERRESTRIAL ECOSYSTEMS

    EPA Science Inventory

    Dpeletion of stratospheric O3 layer should result in enhanced levels of ultraviolet-B (UV-B) radiation at the earth's surface compared to present, with potentially damaging effects on biological systems. his paper briefly summarizes some key findings for UV-B effects on terrestri...