Science.gov

Sample records for saturation vapor pressure

  1. Improved Magnus` form approximation of saturation vapor pressure

    SciTech Connect

    Alduchov, O.A.; Eskridge, R.E.

    1997-11-01

    Relative humidity is usually measured in aerological observations and dew point depression is usually reported in upper-air reports. These variables must frequently be converted to other moisture variables in meteorological analysis. If relative humidity is converted to vapor pressure, most humidity variables can then be determined. Elliott and Gaffen reviewed the practices and procedures of the US radiosonde system. In their paper, a comparison of the relative errors was made between the saturation vapor pressure formulations of Tetens (1930), Goff-Gratch (1946), Wexler (1976), and Buck (1981). In this paper, the authors will expand the analysis of Elliott and Gaffen by deriving several new saturation vapor pressure formulas, and reviewing the various errors in these formulations. They will show that two of the new formulations of vapor pressure over water and ice are superior to existing formulas. Upper air temperature data are found to vary from about +50 C to {minus}80 C. This large variation requires a saturation vapor pressure equation to be accurate over a large temperature range. While the errors introduced by the use of relatively inaccurate conversion equations are smaller than the errors due to the instruments, dewpoint coding errors, and dewpoint conversion algorithms (Elliott and Gaffen, 1993); they introduce additional systematic errors in humidity data. The most precise formulation of vapor pressure over a plane surface of water was given by Wexler (1976). The relative errors of Tetens` (1930) formula and one due to Buck (1981) (Buck`s equation is recommended in the Federal Meteorological Handbook No. 3, 1991) are shown. The relative errors in this table are the predicted value minus the Wexler value divided by the Wexler value.

  2. Evaporation Rate and Saturated Vapor Pressure of Functional Organic Materials

    NASA Astrophysics Data System (ADS)

    Yase, Kiyoshi; Takahashi, Yoshikazu; Ara-kato, Norihiko; Kawazu, Akira

    1995-02-01

    The evaporation rate and saturated vapor pressure (p) for functional organic materials have been evaluated by thermogravimetry in vacuum. A series of metal phthalocyanines (M-Pc) such as Cu-Pc, Ni-Pc, Pb-Pc and TiO-Pc, Tris(8-hydroxy-quinoline) aluminum complex ( Alq3), fullerene (C60) and tetrathiafulvalene (TTF), tetracyanoquinodimethane (TCNQ) and TTF-TCNQ are examined, together with the relationship between p and the enthalpy of evaporation.

  3. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    NASA Astrophysics Data System (ADS)

    Bilde, M.; Zardini, A. A.; Hong, J.; Tschiskale, M.; Emanuelsson, E.

    2014-12-01

    The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using thermodynamic modeling. Results are presented and discussed in context of atmospheric gas to particle partitioning.

  4. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  5. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    NASA Astrophysics Data System (ADS)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  6. Indoor/outdoor connections exemplified by processes that depend on an organic compound's saturation vapor pressure

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.

    Outdoor and indoor environments are profitably viewed as parts of a whole connected through various physical and chemical interactions. This paper examines four phenomena that share a dependence on vapor pressure—the extent to which an organic compound in the gas phase sorbs on airborne particles, sorbs on surfaces, sorbs on particles collected on a filter or activates trigeminal nerve receptors. It also defines a new equilibrium coefficient for the partitioning of organic compounds between an airstream and particles collected by a filter in that airstream. Gas/particle partitioning has been studied extensively outdoors, but sparingly indoors. Gas/surface partitioning occurs primarily indoors while gas/filter partitioning occurs at the interface between outdoors and indoors. Activation of trigeminal nerve receptors occurs at the human interface. The logarithm of an organic compound's saturation vapor pressure correlates in a linear fashion with the logarithms of equilibrium coefficients characteristic of each of these four phenomena. Since, to a rough approximation, the log of an organic compound's vapor pressure scales with its molecular weight, molecular weight can be used to make first estimates of the above processes. For typical indoor conditions, only larger compounds with lower-saturation vapor pressures (e.g., tetracosane, pentacosane, or di-2-ethylhexyl phthalate) have airborne particle concentrations comparable to or larger than gas phase concentrations. Regardless of a compound's vapor pressure, the total mass sorbed on indoor airborne particles is quite small compared to the total sorbed on indoor surfaces, reflecting the large difference in surface areas between particles within a room and surfaces within a room. If the actual surface areas are considered, accounting for roughness and porosity, the surface concentration of organics sorbed on typical airborne particles appears to be comparable to the surface concentration of organics sorbed on indoor

  7. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    EPA Science Inventory

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  8. α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios.

    PubMed

    Kurtén, Theo; Tiusanen, Kirsi; Roldin, Pontus; Rissanen, Matti; Luy, Jan-Niclas; Boy, Michael; Ehn, Mikael; Donahue, Neil

    2016-04-28

    COSMO-RS (conductor-like screening model for real solvents) and three different group-contribution methods were used to compute saturation (subcooled) liquid vapor pressures for 16 possible products of ozone-initiated α-pinene autoxidation, with elemental compositions C10H16O4-10 and C20H30O10-12. The saturation vapor pressures predicted by the different methods varied widely. COSMO-RS predicted relatively high saturation vapor pressures values in the range of 10(-6) to 10(-10) bar for the C10H16O4-10 "monomers", and 10(-11) to 10(-16) bar for the C20H30O10-12 "dimers". The group-contribution methods predicted significantly (up to 8 order of magnitude) lower saturation vapor pressures for most of the more highly oxidized monomers. For the dimers, the COSMO-RS predictions were within the (wide) range spanned by the three group-contribution methods. The main reason for the discrepancies between the methods is likely that the group-contribution methods do not contain the necessary parameters to accurately treat autoxidation products containing multiple hydroperoxide, peroxy acid or peroxide functional groups, which form intramolecular hydrogen bonds with each other. While the COSMO-RS saturation vapor pressures for these systems may be overestimated, the results strongly indicate that despite their high O:C ratios, the volatilities of the autoxidation products of α-pinene (and possibly other atmospherically relevant alkenes) are not necessarily extremely low. In other words, while autoxidation products are able to adsorb onto aerosol particles, their evaporation back into the gas phase cannot be assumed to be negligible, especially from the smallest nanometer-scale particles. Their observed effective contribution to aerosol particle growth may therefore involve rapid heterogeneous reactions (reactive uptake) rather than effectively irreversible physical absorption. PMID:27049168

  9. Water vapor pressure calculation.

    PubMed

    Hall, J R; Brouillard, R G

    1985-06-01

    Accurate calculation of water vapor pressure for systems saturated with water vapor can be performed using the Goff-Gratch equation. A form of the equation that can be adapted for computer programming and for use in electronic databases is provided. PMID:4008425

  10. Evaluation of saturation vapor pressure over hypersaline water bodies at the southern edge of the Dead Sea, Jordan

    SciTech Connect

    Oroud, I.M. )

    1994-12-01

    The activity coefficient and saturation vapor pressure for hypersaline solutions located at the southern edge of the Dead Sea are computed analytically. The collected data consist of temperature and evaporation rates measured for a freshwater pan and three other hypersaline solutions with specific gravities of 1.26, 1.31, and 1.34, respectively. The activity coefficients of the three saline pans were computed after accounting for the effect of buoyancy, which was included in the computations because of consistently large, positive virtual temperature differences between the saline pans and the ambient air. The ratios of saline to fresh pan evaporation (Es/Ef: the [alpha] ratio) of the present study are also compared to data reported for the Bonneville Salt Brines, Utah. It is found that the a ratios of the present study, although conducted over an extended period of time, are larger than those reported for the Bonneville Brines. Results of the present study imply that evaporation from the various brine-concentrated, shallow lakes at the southern edge of the Dead Sea is likely to proceed during the entire year, and water vapor deposition from the atmosphere, due to an inverted vapor pressure, is less likely to occur particularly for brines with specific gravities of less than 1.3.

  11. Persistent Water-Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice.

    PubMed

    Gao, Ru-Shan; Gierczak, Tomasz; Thornberry, Troy D; Rollins, Andrew W; Burkholder, James B; Telg, Hagen; Voigt, Christiane; Peter, Thomas; Fahey, David W

    2016-03-10

    A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K. In steady-state operation, a CMH maintains a condensate of constant optical diffusivity on a mirror through control of only the mirror temperature. Maintaining the persistent condensate on the mirror required that the mirror temperature be below the H2O saturation temperature with respect to Ih by as much as 3 K, corresponding to up to 63% H2O supersaturation with respect to Ih. The condensate was observed to persist in steady state for up to 16 h. Compositional analysis of the condensate confirmed the co-condensation of H2O and HNO3 and thereby strongly supports the conclusion that the Ih supersaturation is due to residual HNO3 in the condensate. Although the exact structure or stoichiometry of the condensate could not be determined, other known stable phases of HNO3 and H2O are excluded as possible condensates. This persistent condensate, if it also forms in the upper tropical troposphere, might explain some of the high Ih supersaturations in cirrus and contrails that have been reported in the tropical tropopause region. PMID:26447682

  12. Electrical conductivity measurements of aqueous boric acid at 25--350{degree}C at saturation vapor pressure. Final report

    SciTech Connect

    Ho, P.C.; Palmer, D.A.

    1995-09-01

    Electrical conductance measurements of aqueous boric acid solutions (15-110 g/kg-H{sub 2}O {equivalent_to} 0.251--1.815 mol/kg-H{sub 2}O) were measured over the temperature range 25 to 75 C at saturation vapor pressures in glass cells with parallel platinum electrodes. Sixteen series of measurements were made involving three samples of boric acid from different sources. Conductance measurements were also made at 15.5 and 30.5 g/kg-H{sub 2}O over the temperature range 100 to 350 C at 50 C intervals with a metallic cell fitted with concentric platinum electrodes. The specific conductances of H{sub 3}BO{sub 3} (aq)were calculated after correction for the conductance of the solvent (water) and are tabulated in this report. At the specific conditions requested in the project description, namely a concentration of 110 g/kg-H{sub 2}O and 65 C, the specific conductance of boric acid is 293.2 {+-} 1.8 microSiemens/cm based on duplicate measurements of four independent solutions. The results from these tests will be utilized by the Tokamak Physics Experimental Project (TPX).

  13. Progress of serpentinization in olivine-H2O system at 250 °C and vapor-saturated pressure

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Ogasawara, Y.; Tsuchiya, N.

    2011-12-01

    Fluids play a crucial role in global-scale mass transfer, metamorphism, volcanism, and seismic processes in subduction zones. Serpentine minerals, which are produced by interaction between ultramafic rocks and fluids, contain about 13% water and are the greatest carrier of H2O into the deep interior of Earth. Therefore, the volume and distribution of hydrated oceanic mantle are of special interest in evaluating the effects of fluids on subduction zone processes. We conducted hydrothermal experiments in olivine (Ol; Fo91)-H2O and orthopyroxenite (Opx; composed of 95% of orthopyroxene, En66)-H2O systems under conditions of 250 °C and vapor-saturated pressure (Psat) to examine the temporal evolution of the solution chemistry and products in runs of up to 1008 h in duration. The maximal degree of hydration (i.e., H2O content in the solid sample) in the Ol-H2O experiments (3.6 wt.%) was much higher than that in the Opx-H2O experiments (0.4 wt.%). In the Ol-H2O experiments, Mg and Si in solution showed an initial increase (stage 1) before decreasing (stage 2) and finally attaining a steady state after 504 h (stage 3). Following a drop in silica activity toward the level of brucite stability filed, the products also changed from serpentine + magnetite (stages 1 and 2) to serpentine + brucite + magnetite (stage 3). Serpentine minerals also changed from lizardite (stages 1 and 2) to lizardite + chrysotile (stage 3). The textures observed in this study were similar to those observed in partly serpentinized dunites. In the Opx-H2O experiments, chlorite formed after orthopyroxene grains, which differs from the formation of talc and serpentine after orthopyroxene (bastite), as observed in natural hydrated harzburgites. The Opx-H2O system maintained 10-103 times higher silica activity than Ol-H2O system, suggesting that brucite does not form after olivine during hydration of peridotites when the Ol-H2O system is linked to the Opx-H2O system. The progress of hydration reactions

  14. Mass spectrometric determination of partial pressures of ions in the saturated vapor over the NaF-Na3AlF6 system

    NASA Astrophysics Data System (ADS)

    Abramov, S. V.; Chilingarov, N. S.; Borshchevsky, A. Ya; Sidorov, L. N.

    2004-01-01

    Mass spectrometric determination of absolute partial pressures of basic charged species Na2F+ and AlF4- in the saturated vapor over the NaF-Na3AlF6 system (1:1 molar ratio) was carried out in the 974-1090 K temperature range. The ion pressures were 5-8 orders of magnitude lower than the pressures of basic molecular components NaAlF4 and NaF. Particular attention was given to the equality of device sensitivity constants for positive and negative ions. Absolute device calibration was carried out using the measured ion currents Na2F+ and AlF4- and the equilibrium constant of heterolytic dissociation available in the literature.

  15. Vapor Saturation as The Cause of Volcanic Eruptions at the Lassen Volcanic Center, California, as Inferred from Crystallization Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    De Los Reyes, A. M. A.; Putirka, K. D.; Clynne, M. A.; Scruggs, M. A.

    2015-12-01

    The last three silicic eruptions at the Lassen Volcanic Center occurred at Lassen Peak (27 ka and 1915-17) and Chaos Crags (1103 yrs BP). Klemetti and Clynne (2014) showed that felsic eruptions at Lassen reflect remobilization of resident rhyodacitic crystal mush by intrusion of mafic magma. To better understand the rejuvenation and eruption triggering process, we calculate crystallization temperatures and pressures from clinopyroxene-liquid equilibria on mafic enclaves that provide our closest approach to the composition of mafic magmas delivered to the shallow system. Our goal is to examine whether and to what extent cooling and crystallization occur after recharge, which bears on whether recharge, mixing, or partial crystallization (and consequent vapor saturation) provide the trigger for eruption. We use results from the cpx-liq barometer (1.7 kbar) as input to calculate T for other phases (plagioclase, olivine and amphibole) found in mafic enclave samples. Cpx crystallizes at 1100-1150 oC and olivine precipitates at similar to slightly higher temperatures. Cpx and ol are followed by plagioclase (1000-1050 oC), amphibole (875-1000 oC), and Fe-Ti oxides (1030-1050 oC). These temperatures indicate that recharge magmas are incompletely crystallized as they enter the shallow reservoir of cooler (~725-750 oC, Quinn et al., 2013) felsic crystal mush, and that significant cooling of the mafic magma occurs during mixing and prior to eruption. Such cooling intervals indicate that recharge is not the proximal cause of eruption, but rather that vapor saturation, following a period of mixing and cooling, leads to increased magma overpressure that causes eruption. Interestingly, the Lassen Peak 27 ka volcanics (at 2.09 km3), have a greater volume than either of Chaos Crags (1.2 km3) and the 1915 (0.03 km3) eruption, but our results indicate that their thermal histories are similar. This suggests that while volumes of mafic recharge may control the degree of interaction with

  16. The vapor pressures of explosives

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  17. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  18. Measurements on the flow of vapors near saturation through porous Vycor glass membranes

    NASA Astrophysics Data System (ADS)

    Loimer, Thomas; Reznickova, Jirina; Uchytil, Petr; Setnickova, Katerina

    2012-05-01

    We present experimental data of the flow of butane and isobutane vapors through porous Vycor glass membranes. The pressure driven flow of vapors near and far from saturation through membranes with pore diameters of 20 and 33 nm is investigated. The upstream pressures lie between the saturation pressure at the upstream temperature to approximately half that value. The pressure differences are between a few kPa to about 100 kPa. From an adiabatic description of the flow process, we expect condensation of a vapor close enough to saturation and hence, due to the action of capillary forces, an increase in mass flux with respect to the mass flux of a vapor that remains in a gaseous state. According to the adiabatic description, a vapor that flows through a porous membrane may condense for two reason: One reason is capillary condensation in the pores of the membrane, the second reason is heat conduction from the upstream to the downstream side of the membrane due to the Joule-Thomson effect. If the flux of heat in downstream direction is large enough, a vapor near saturation at the upstream side of the membrane may only release sufficient heat by condensation. Describing the flow in terms of dimensionless groups recovered from an adiabatic description of the flow process, we find that a vapor condenses and the mass flux is increased if (i) a dimensionless permeability of the membrane is larger than one and (ii) if the vapor at the upstream side is close enough to saturation such that a dimensionless group involving the upstream pressure and the pressure difference is also larger than one. Experimental data corroborates condition (i) above and indicates that condition (ii) might be valid.

  19. Vapor pressure measured with inflatable plastic bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  20. Vapor pressures of new fluorocarbons

    SciTech Connect

    Kubota, H.; Yamashita, T.; Tanaka, Y.; Makita, T. )

    1989-05-01

    The vapor pressures of four fluorocarbons have been measured at the following temperature ranges: R123 (2,2-dichloro-1,1,1-trifluoroethane), 273-457 K; R123a (1,2-dichloro-1,1,2-trifluoroethane), 303-458 K; R134a (1,1,1,2-tetrafluoroethane), 253-373 K; and R132b (1,2-dichloro-1,1-difluoroethane), 273-398 K. Determinations of the vapor pressure were carried out by a constant-volume apparatus with an uncertainty of less than 1.0%. The vapor pressures of R123 and R123a are very similar to those of R11 over the whole experimental temperature range, but the vapor pressures of R134a and R132b differ somewhat from those of R12 and R113, respectively, as the temperature increases. The numerical vapor pressure data can be fitted by an empirical equation using the Chebyshev polynomial with a mean deviation of less than 0.3%.

  1. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  2. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  3. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  4. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  5. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  6. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  7. Saturated Vapour Pressure and Refrigeration - Part I

    ERIC Educational Resources Information Center

    Bunker, C. A.

    1973-01-01

    The first part of a two-part article describes an experimental approach that can be used in teaching the concept of saturated vapour pressure. This leads to a discussion of refrigeration cycles in the second part of the article. (JR)

  8. Acoustics and precondensation phenomena in gas-vapor saturated mixtures.

    PubMed

    Guianvarc'h, C; Bruneau, M; Gavioso, R M

    2014-02-01

    Starting from fundamental hydrodynamics and thermodynamics equations for thermoviscous fluids, a new modeling procedure, which is suitable to describe acoustic propagation in gas mixtures, is presented. The model revises the boundary conditions which are appropriate to describe the condensation-evaporation processes taking place on a solid wall when one component of the mixture approaches saturation conditions. The general analytical solutions of these basic equations now give a unified description of acoustic propagation in an infinite, semi-infinite, or finite medium, throughout and beyond the boundary layers. The solutions account for the coupling between acoustic propagation and heat and concentration diffusion processes, including precondensation on the walls. The validity of the model and its predictive capability have been tested by a comparison with the description available in the literature of two particular systems (precondensation of propane and acoustic attenuation in a duct filled with an air-water vapor saturated mixture). The results of this comparison are discussed to clarify the relevance of the various physical phenomena that are involved in these processes. The model proposed here might be useful to develop methods for the acoustic determination of the thermodynamic and transport properties of gas mixtures as well as for practical applications involving gas and gas-vapor mixtures like thermoacoustics and acoustics in wet granular or porous media. PMID:25353596

  9. Acoustics and precondensation phenomena in gas-vapor saturated mixtures

    NASA Astrophysics Data System (ADS)

    Guianvarc'h, C.; Bruneau, M.; Gavioso, R. M.

    2014-02-01

    Starting from fundamental hydrodynamics and thermodynamics equations for thermoviscous fluids, a new modeling procedure, which is suitable to describe acoustic propagation in gas mixtures, is presented. The model revises the boundary conditions which are appropriate to describe the condensation-evaporation processes taking place on a solid wall when one component of the mixture approaches saturation conditions. The general analytical solutions of these basic equations now give a unified description of acoustic propagation in an infinite, semi-infinite, or finite medium, throughout and beyond the boundary layers. The solutions account for the coupling between acoustic propagation and heat and concentration diffusion processes, including precondensation on the walls. The validity of the model and its predictive capability have been tested by a comparison with the description available in the literature of two particular systems (precondensation of propane and acoustic attenuation in a duct filled with an air-water vapor saturated mixture). The results of this comparison are discussed to clarify the relevance of the various physical phenomena that are involved in these processes. The model proposed here might be useful to develop methods for the acoustic determination of the thermodynamic and transport properties of gas mixtures as well as for practical applications involving gas and gas-vapor mixtures like thermoacoustics and acoustics in wet granular or porous media.

  10. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Vapor pressure. 796.1950 Section 796.1950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a) Introduction—(1) Background and...

  11. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Vapor pressure. 796.1950 Section 796.1950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a) Introduction—(1) Background...

  12. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2004-01-01

    The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to generate property tables from existing property packages and a method to facilitate the accurate interpretation of fluid thermodynamic property data from those tables. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package. The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  13. Multicomponent fuel vaporization at high pressures.

    SciTech Connect

    Torres, D. J.; O'Rourke, P. J.

    2002-01-01

    We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

  14. The vapor pressure of iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Gilbert, A. G.; Sulzmann, K. G. P.

    1974-01-01

    Vapor pressure measurements have been made on pure iron pentacarbonyl between +31 and -19 C. The experimental results may be expressed by the logarithm of pressure (mm Hg) to the base 10 equals -(2096.7 K/T) + 8.4959, which corresponds to a heat of vaporization for the liquid carbonyl of delta H ? (9.588 plus or minus 0.12) kcal/mole. This result confirms and extends the earlier measurements made by Trautz and Badstuebner between 0 and 140 C. The need for careful purification of commercially available iron pentacarbonyl is emphasized, particularly for establishing the correct vapor pressure below 45 C.

  15. Melt-vapor phase transition in the lead-selenium system at atmospheric and low pressure

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.

    2016-03-01

    The boiling temperature and the corresponding vapor phase composition in the existence domain of liquid solutions were calculated from the partial pressures of saturated vapor of the components and lead selenide over liquid melts in the lead-selenium system. The phase diagram was complemented with the liquid-vapor phase transition at atmospheric pressure and in vacuum of 100 Pa, which allowed us to judge the behavior of the components during the distillation separation.

  16. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2003-01-01

    The availability and proper utilization of fluid properties is of fundamental importance in the process of mathematical modeling of propulsion systems. Real fluid properties provide the bridge between the realm of pure analytiis and empirical reality. The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described, for example, in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to be used to facilitate the accurate interpretation of fluid thermodynamic property data generated by existing property packages. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package (based on fundamental equations of state approach). The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  17. Clausius-Clapeyron Equation and Saturation Vapour Pressure: Simple Theory Reconciled with Practice

    ERIC Educational Resources Information Center

    Koutsoyiannis, Demetris

    2012-01-01

    While the Clausius-Clapeyron equation is very important as it determines the saturation vapour pressure, in practice it is replaced by empirical, typically Magnus-type, equations which are more accurate. It is shown that the reduced accuracy reflects an inconsistent assumption that the latent heat of vaporization is constant. Not only is this…

  18. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  19. Vapor pressures of the aqueous desiccants

    SciTech Connect

    Chung, T.W.; Luo, C.M.

    1999-09-01

    The vapor pressures of the aqueous desiccants lithium chloride, lithium bromide, calcium chloride, ethylene glycol, propylene glycol, and their mixtures were measured at their typical operating concentrations and at temperatures from 298 K to 313 K. The experimental data were fitted to an Antoine type of equation, ln[P(kPa)] = A {minus} B/[T(K) + C], where A, B, and C are constants and are concentration dependent. Vapor pressure data were further used to predict the effectiveness of dehumidification in liquid desiccant dehumidifiers.

  20. Low-pressure, chemical vapor deposition polysilicon

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.; Crotty, G. C.

    1986-01-01

    The low-pressure chemical vapor deposition (LPCVD) of polycrystalline silicon was investigted. The physical system was described, as was the controlling process parameters and requirements for producing films for use as an integral portion of the solar cell contact system.

  1. MISTING OF LOW VAPOR PRESSURE HALOCARBONS

    EPA Science Inventory

    The paper gives results of a laboratory-scale study of the use of misting systems to provide total-flood fire protection with lower vapor pressure halocarbons. (NOTE: Several candidate Halon 1301 replacements with a low ozone-depletion potential have higher boiling points (usuall...

  2. A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure saturation relationship

    NASA Astrophysics Data System (ADS)

    Van Geel, P. J.; Roy, S. D.

    2002-09-01

    A residual non-aqueous phase liquid (NAPL) present in the vadose zone can act as a contaminant source for many years as the compounds of concern partition to infiltrating groundwater and air contained in the soil voids. Current pressure-saturation-relative permeability relationships do not include a residual NAPL saturation term in their formulation. This paper presents the results of series of two- and three-phase pressure cell experiments conducted to evaluate the residual NAPL saturation and its impact on the pressure-saturation relationship. A model was proposed to incorporate a residual NAPL saturation term into an existing hysteretic three-phase parametric model developed by Parker and Lenhard [Water Resour. Res. 23(12) (1987) 2187], Lenhard and Parker [Water Resour. Res. 23(12) (1987) 2197] and Lenhard [J. Contam. Hydrol. 9 (1992) 243]. The experimental results indicated that the magnitude of the residual NAPL saturation was a function of the maximum total liquid saturation reached and the water saturation. The proposed model to incorporate a residual NAPL saturation term is similar in form to the entrapment model proposed by Parker and Lenhard, which was based on an expression presented by Land [Soc. Pet. Eng. J. (June 1968) 149].

  3. Topical and vapor toxicity of saturated fatty acids to the German cockroach (Dictyoptera: Blattellidae).

    PubMed

    Sims, Steven R; Balusu, Rammohan R; Ngumbi, Esther N; Appel, Arthur G

    2014-04-01

    Topical and fumigant toxicity of saturated aliphatic fatty acids with chain lengths of C1 through C14 were determined against the German cockroach, Blattella germanica (L.). In the C1 to C11 series, topical toxicity (LD50 in milligram per adult male) ranged from 0.145 (C1) to 0.322 mg (C2). Toxicity declined dramatically with C12 and C14 acids whose LD50 values could not be calculated. The relative fumigation toxicity (LC50 in microliter per liter) of C1 through C5 acids was positively correlated with topical toxicity with values ranging from 6.159 (C3) to 12.302 microl/liter (C2). Fumigant toxicity decreased sharply with C6 (LC50 = 37.691 microl/liter) and there was no mortality of cockroaches exposed to vapors from C7 to C14 acids. The low fumigant toxicity of the C6 to C11 acids was correlated with their relatively low vapor pressure, but differences in diffusion of the vapors into the spiracles and subsequent passage to the target sites may have also been involved. PMID:24772558

  4. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-10-01

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Both the gas saturation method and the Knudsen effusion method are being used. Results are presented for anthracene, naphthacene, pentacene, and a mixture of anthracene and perylene obtained using the effusion method.

  5. Vapor Pressure, Vapor Composition and Fractional Vaporization of High Temperature Lavas on Io

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Schaefer, L.; Kargel, J. S.

    2003-01-01

    Observations show that Io's atmosphere is dominated by SO2 and other sulfur and sulfur oxide species, with minor amounts of Na, K, and Cl gases. Theoretical modeling and recent observations show that NaCl, which is produced volcanically, is a constituent of the atmosphere. Recent Galileo, HST and ground-based observations show that some volcanic hot spots on Io have extremely high temperatures, in the range 1400-1900 K. At similar temperatures in laboratory experiments, molten silicates and oxides have significant vapor pressures of Na, K, SiO, Fe, Mg, and other gases. Thus vaporization of these species from high temperature lavas on Io seems likely. We therefore modeled the vaporization of silicate and oxide lavas suggested for Io. Our results for vapor chemistry are reported here. The effects of fractional vaporization on lava chemistry are given in a companion abstract by Kargel et al.

  6. Heating of a fully saturated darcian half-space: Pressure generation, fluid expulsion, and phase change

    USGS Publications Warehouse

    Delaney, P.

    1984-01-01

    Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.

  7. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems. PMID:27463696

  8. Salinity gradient power: utilizing vapor pressure differences.

    PubMed

    Olsson, M; Wick, G L; Isaacs, J D

    1979-10-26

    By utilizing the vapor pressure difference between high-salinity and lowsalinity wvater, one can obtain power from the gradients of salinity. This scheme eliminates the major problems associated with conversion methods in which membranes are used. The method we tested gave higher conversion efficiencies than membrane methods. Furthermore, hardware and techniques being developed for ocean thermal energy conversion may be applied to this approach to salinity gradient energy conversion. PMID:17809370

  9. On the propagation of a coupled saturation and pressure front

    SciTech Connect

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  10. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NASA Astrophysics Data System (ADS)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  11. Nucleation pressure threshold in acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.; Kripfgans, Oliver D.

    2016-07-01

    We combine classical nucleation theory with superharmonic focusing to predict necessary pressures to induce nucleation in acoustic droplet vaporization. We show that linear acoustics is a valid approximation to leading order when particle displacements in the sound field are small relative to the radius of the droplet. This is done by perturbation analysis of an axisymmetric compressible inviscid flow about a droplet with small surface perturbations relative to the mean radius subjected to an incoming ultrasonic wave. The necessary nucleation pressure threshold inside the droplet is calculated to be -9.33 ± 0.30 MPa for typical experimental parameters by employing results from classical homogeneous nucleation theory. As a result, we are able to predict if a given incident pressure waveform will induce nucleation.

  12. Vapor pressures and gas-phase PVT data for 1,1,1,2-tetrafluoroethane

    SciTech Connect

    Weber, L.A. )

    1989-05-01

    The authors present new data for the vapor pressure and PVT surface of 1,1,1,2-tetrafluoroethane (Refrigerant 134a) in the temperature range 40{degree}C (313 K) to 150{degree}C (423 K). The PVT data are for the gas phase at densities up to one-half critical. Densities of the saturated vapor are derived at five temperatures from the intersections of the experimental isochores with the vapor pressure curve. The data are represented analytically in order to demonstrate experimental precision and to facilitate calculation of thermodynamic properties.

  13. THE VAPOR PRESSURE OF DOG'S BLOOD AT BODY TEMPERATURE.

    PubMed

    Grollman, A

    1928-05-20

    The vapor pressures of dog's blood and blood plasma were determined at 37.5 degrees by the dynamic method and the osmotic pressures calculated from the experimental data. The vapor pressures calculated from experimentally determined freezing point data agreed, within the experimental error, with the values obtained from direct measurement. The vapor pressure lowering produced by the colloid constituents of the blood was also determined and found to be minimal compared to that of the other constituents. PMID:19872415

  14. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type C and Process Pressure Vessels § 154.451 Design vapor pressure. The Po (kPa) of...

  15. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type C and Process Pressure Vessels § 154.451 Design vapor pressure. The Po (kPa) of...

  16. Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Rothrock, A M

    1930-01-01

    This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

  17. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A...

  18. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge...

  19. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure....

  20. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B...

  1. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.426 Design vapor pressure....

  2. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.426 Design vapor pressure....

  3. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A...

  4. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5...

  5. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B...

  6. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge...

  7. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5...

  8. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge...

  9. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B...

  10. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure....

  11. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A...

  12. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge...

  13. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge...

  14. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5...

  15. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge...

  16. The hysteretic evapotranspiration - vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Manzoni, S.; Katul, G. G.; Porporato, A. M.; Yang, D.

    2013-12-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems but justification for its onset and magnitude remain incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a mathematical framework, ';rate-dependent' hysteresis originating from a phase angle difference between periodic input and output time series is first considered. Lysimeter evaporation (E) measurements from wet bare soils and model calculations using the Penman equation demonstrate that the E-VPD hysteresis emerges without any biotic effects due to a phase angle difference (or time lag) between net radiation the main driver of E, and VPD. Modulations originating from biotic effects on the ET-VPD hysteresis were then considered. The phase angle difference representation earlier employed was mathematically transformed into a storage problem and applied to the soil-plant system. The transformed system shows that soil moisture storage within the root zone can produce an ET-VPD hysteresis prototypical of those generated by phase-angle differences. To explore the interplay between all the lags in the soil-plant-atmosphere system and phase angle differences among forcing and response variables, a detailed soil-plant-atmosphere continuum (SPAC) model was developed and applied to a grassland ecosystem. The results of the SPAC model suggest that the hysteresis magnitude depends on the radiation-VPD lag. The soil moisture dry-down simulations also suggest that modeled root water potential and leaf water potential are both better indicators of the hysteresis magnitude than soil moisture, suggesting that plant water status is the main factor regulating the hysteretic relation between ET and VPD. Hence, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both biotic factors and abiotic factors such as time lag between radiation and VPD originating from boundary layer processes

  17. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    PubMed

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study. PMID:25127637

  18. Ultrasonic speeds in compressed liquid and vapor pressures for 1,1,1,2-tetrafluoroethane

    SciTech Connect

    Takagi, T.

    1996-09-01

    Ultrasonic speeds in the liquid phase of 1,1,1,2-tetrafluoroethane (CF{sub 3}CH{sub 2}F) have been measured from 243.11 K to 333.15 K and from near the saturation line to about 30 MPa. The measurements were made using a sing-around technique employing a fixed path acoustic interferometer operated at a frequency of 2 MHz. The probable uncertainty in the results was no greater than {+-}0.2% except in the low-density region at near the saturation line at higher temperatures. The vapor pressures have also been observed to within {+-}10 kPa by monitoring the acoustic signal at vapor-liquid equilibrium. When these results were combined, the ultrasonic speeds for the saturated liquid were estimated to within {+-}1 m/s.

  19. LOX vaporization in high-pressure, hydrogen-rich gas

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    LOX droplet vaporization in high-pressure hydrogen-rich gas is analyzed, with special attention to thermodynamic effects which compel the surface to heat to the critical state and to supercritical vaporization processes on heating to criticality. Subcritical vaporization is modeled using a quasi-steady diffusion-controlled gas-phase transport formulation coupled to an effective-conductivity internal-energy-transport model accounting for circulation effects. It is demonstrated how the droplet surface might heat to the critical state, for ambient pressures slightly greater than the critical pressure of oxygen, such that the bulk of propellant within the droplet remains substantially below the critical mixing temperature.

  20. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  1. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  2. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available...

  3. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available...

  4. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available...

  5. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available...

  6. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Semi-Membrane Tanks § 154.436 Design vapor...

  7. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Semi-Membrane Tanks § 154.436 Design vapor...

  8. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    ERIC Educational Resources Information Center

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  9. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    ERIC Educational Resources Information Center

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  10. Evaluation of vapor intrusion using controlled building pressure.

    PubMed

    McHugh, Thomas E; Beckley, Lila; Bailey, Danielle; Gorder, Kyle; Dettenmaier, Erik; Rivera-Duarte, Ignacio; Brock, Samuel; MacGregor, Ian C

    2012-05-01

    The use of measured volatile organic chemical (VOC) concentrations in indoor air to evaluate vapor intrusion is complicated by (i) indoor sources of the same VOCs and (ii) temporal variability in vapor intrusion. This study evaluated the efficacy of utilizing induced negative and positive building pressure conditions during a vapor intrusion investigation program to provide an improved understanding of the potential for vapor intrusion. Pressure control was achieved in five of six buildings where the investigation program was tested. For these five buildings, the induced pressure differences were sufficient to control the flow of soil gas through the building foundation. A comparison of VOC concentrations in indoor air measured during the negative and positive pressure test conditions was sufficient to determine whether vapor intrusion was the primary source of VOCs in indoor air at these buildings. The study results indicate that sampling under controlled building pressure can help minimize ambiguity caused by both indoor sources of VOCs and temporal variability in vapor intrusion. PMID:22486634

  11. Autogenous pressurization of cryogenic vessels using submerged vapor injection

    NASA Technical Reports Server (NTRS)

    Stochl, Robert J.; Vandresar, Neil T.; Lacovic, Raymond F.

    1991-01-01

    Experimental results are reported for submerged injection pressurization and expulsion tests of a 4.89 cu m liquid hydrogen tank. The pressurant injector was positioned near the bottom of the test vessel to simulate liquid engulfment of the pressurant gas inlet; a condition that may occur in low-gravity conditions. Results indicate a substantial reduction in pressurization efficiency, with pressurant gas requirements approximately five times greater than ideal amounts. Consequently, submerged vapor injection should be avoided as a low-gravity autogenous pressurization method whenever possible. The work presented herein validates that pressurent requirements are accurately predicted by a homogeneous thermodynamic model when the submerged injection technique is employed.

  12. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    SciTech Connect

    Kim, Jinhyun; Yim, Sanggyu

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughness and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.

  13. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type C and Process Pressure...

  14. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type C and Process Pressure...

  15. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  16. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  17. Vapor Pressure of Aqueous Solutions of Ethylene Glycol

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Kikuchi, Sakae

    Vapor pressures of aqueous solutions of ethylene glycol are measured in the range of temperature from -10 to 60°C and concentration from 20 to 50wt%. In a low concentration range, the measured values of vapor pressure decrease according to the Raoult's law independent of temperature, while in a high concentration range, they show a trend to decrease towards the estimated values of freezing point with decreasing temperature. The following correlation equation is obtained for practical calculations on heating towers and the like. log(p/P0) = 5.351 - 6.4×10-4y + (1817 + 0.008y(y + 10))/(t + 240) where p, vapor perssure of aqueous solutions of ethylene glycol [kPa] ; P0, atmospheric pressure [=101.325kPa] ; y, concentration [wt%] ; t, temperature [°C].

  18. A new generalized correlation for accurate vapor pressure prediction

    NASA Astrophysics Data System (ADS)

    An, Hui; Yang, Wenming

    2012-08-01

    An accurate knowledge of the vapor pressure of organic liquids is very important for the oil and gas processing operations. In combustion modeling, the accuracy of numerical predictions is also highly dependent on the fuel properties such as vapor pressure. In this Letter, a new generalized correlation is proposed based on the Lee-Kesler's method where a fuel dependent parameter 'A' is introduced. The proposed method only requires the input parameters of critical temperature, normal boiling temperature and the acentric factor of the fluid. With this method, vapor pressures have been calculated and compared with the data reported in data compilation for 42 organic liquids over 1366 data points, and the overall average absolute percentage deviation is only 1.95%.

  19. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  20. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    SciTech Connect

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-06-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric plutonium dioxide condensed phase have been calculated for the temperature range 1500 less than or equal to T less than or equal to 4000 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model to obtain the partial pressures of O/sub 2/, O, Pu, PuO, and PuO/sub 2/. New thermodynamic functions for the solid oxide were calculated from available information and from new estimates of the heat capacity of the liquid. Thermodynamic functions for the vapor species were calculated previously. A suitable oxygen-potential model has been used previously for the solid hypostoichiometric plutonium dioxide; this model has been extended into the liquid region using several alternative methods. The effects of these alternatives on the calculated oxygen pressures have been examined in detail.

  1. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    SciTech Connect

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000/sup 0/K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O/sub 2/, O, Pu, PuO and PuO/sub 2/. The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu/sup 6 +/ from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO/sub 2/ for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed. (DLC)

  2. Salinity-gradient vapor-pressure power conversion

    NASA Astrophysics Data System (ADS)

    Olsson, M. S.

    1982-03-01

    The interface between water bodies of different salinities represents a large unexploited source of energy. An energy conversion approach that does not require the use of membranes but uses the differences in vapor pressure between solutions is examined. The resource potential, source solutions, system components, and operating characteristics are evaluated and, where similar, compared to research and development on open-cycle OTEC (Ocean Thermal Energy Conversion). It is shown that salinity-gradient, vapor-pressure power generation is within reach of current technology.

  3. Distillation device supplies cesium vapor at constant pressure

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  4. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.438 Design...

  5. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.445 Design...

  6. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.445 Design...

  7. Vapor pressures and gas-film coefficients for ketones

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Comparison of handbook vapor pressures for seven ketones with more recent literature data showed large differences for four of the ketones. Gas-film coefficients for the volatilization of these ketones from water determined by two different methods were in reasonable agreement. ?? 1987.

  8. New class of compounds have very low vapor pressures

    NASA Technical Reports Server (NTRS)

    Angell, C. A.; Gruen, D. M.

    1967-01-01

    Magnesium hexahydrate tetrachlorometallates are 50-volume-percent water, have a high melting point and possess a low vapor pressure. These new compounds are relatively noncorrosive, thermally stable, and water soluble but not hygroscopic. They may have potential applications as cooling fluids.

  9. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.438 Design...

  10. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  11. Vapor pressure of perfluoroalkylalkanes: the role of the dipole.

    PubMed

    Morgado, Pedro; Das, Gaurav; McCabe, Clare; Filipe, Eduardo J M

    2015-01-29

    The vapor pressure of four liquid perfluoroalkylalkanes (CF3(CF2)n(CH2)mCH3; n = 3, m = 4,5,7; n = 5, m = 5) was measured as a function of temperature between 278 and 328 K. Molar enthalpies of vaporization were calculated from the experimental data, and the results were compared with data from the literature for the corresponding alkanes and perfluoroalkanes. The heterosegmented statistical associating fluid theory was used to interpret the results at the molecular level both with and without the explicit inclusion of the dipolar nature of the molecules. Additionally, ab initio calculations were performed for all perfluoroalkylalkanes studied to determine the dipole moment to be used in the theoretical calculations. We demonstrate that the inclusion of a dipolar term is essential for describing the vapor-liquid equilibria of perfluoroalkylalkanes. It is also shown that vapor-liquid equilibria in these compounds result from a subtle balance between dipolar interactions, which decrease the vapor pressure, and the relatively weak dispersive interactions between the hydrogenated and fluorinated segments. PMID:25526174

  12. Dynamic response of vaporizing droplet to pressure oscillation

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Shen, Chibing; Zhang, Xinqiao

    2016-06-01

    Combustion instability is a major challenge in the development of the liquid propellant engines, and droplet vaporization is viewed as a potential mechanism for driving instabilities. Based on the previous work, an unsteady droplet heating and vaporization model was developed. The model and numerical method are validated by experimental data available in literature, and then the oscillatory vaporization of n-Heptane droplet exposed to unsteady harmonic nitrogen atmosphere was numerically investigated over a wide range of amplitudes and frequencies. Also, temperature variations inside the droplet were demonstrated under oscillation environments. It was found that the thermal wave is attenuated with significantly reduced wave intensities as it penetrates deep into droplet from the ambient gas. Droplet surface temperature exhibits smaller fluctuation than that of the ambient gas, and it exhibits a time lag with regard to the pressure variation. Furthermore, the mechanism leading to phase lag of vaporization rate with respect to pressure oscillation was unraveled. Results show that this phase lag varies during the droplet lifetime and it is strongly influenced by oscillation frequency, indicating droplet vaporization is only capable of driving combustion instability in some certain frequency domains. Instead, the amplitude of the oscillation does not have very significant effects. It is noteworthy that thermal inertia of the droplet also plays a considerable role in determining the phase lag.

  13. Subatmospheric vapor pressures evaluated from internal-energy measurements

    SciTech Connect

    Duarte-Garza, H.A. |; Magee, J.W.

    1997-01-01

    Vapor pressures were calculated from measured internal-energy changes in the vapor + liquid two-phase region, {Delta}U{sup (2)}. The method employed a thermodynamic relationship between the derivative quantity ({partial_derivative}U{sup (2)}/{partial_derivative}V){sub T} and the vapor pressure (p{sub {sigma}}) and its temperature derivative ({partial_derivative}p/{partial_derivative}T){sub {sigma}}. This method was applied at temperatures between the triple point and the normal boiling point of three substances: 1,1,1,2-tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane (R32). Agreement with experimentally measured vapor pressures near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately {+-}0.04 kPa ({+-}0.04%). The method was applied to R134a to test the thermodynamic consistency of a published p-p-T equation of state with an equation for p{sub {sigma}} for this substance. It was also applied to evaluate published p{sub {sigma}} data which are in disagreement by more than their claimed uncertainty.

  14. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  15. Low temperature measurement of the vapor pressures of planetary molecules

    NASA Technical Reports Server (NTRS)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  16. Vapor pressure critical amplitudes from the normal boiling point

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Román, F. L.; White, J. A.; Mulero, A.

    2007-04-01

    The authors propose a method to estimate the two first critical amplitudes for the vapor pressure of a fluid in terms only of the reduced pressure, Pbr=Pb/Pc, and temperature, Tbr=Tb/Tc, of the normal boiling point. The method is based on the fact that the product (1-Tr)Pr presents a maximum near the critical region. Based on a study of 43 fluids, the authors found that the reduced pressure and temperature of that maximum can be obtained from simple relations in terms of the parameter h ≡TbrlnPbr/(Tbr-1). These relations are checked against additional data for 1608 fluids.

  17. Vapor saturation of sodium: Key to unlocking the origin of chondrules

    NASA Astrophysics Data System (ADS)

    Fedkin, Alexei V.; Grossman, Lawrence

    2013-07-01

    Sodium saturation of the vapor coexisting with chondrules at their liquidus temperatures implies that vapor-condensed phase equilibrium was reached at those temperatures for all elements more refractory than sodium. In order to investigate the possibility that chondrules formed in impact-generated plumes, equilibrium calculations were applied to droplets made from two different target compositions. Combinations of dust enrichment and Ptot were found that lead to sodium saturation, and the subsequent chemical and mineralogical evolution of the droplets was explored at those conditions. If an impact on a body of CI composition caused instantaneous heating, melting and devolatilization of the target rock and ejection of a plume of gaseous, liquid and solid matter that mixed with residual nebular gas at conditions where 50% or 90% of the sodium was retained by the resulting droplets at their liquidus temperature, their mineralogical and chemical properties would strongly resemble those of Type II chondrules. If the droplets cooled and equilibrated with the mixture of residual nebular gas and their devolatilized water, sulfur and alkalis, the fayalite content of the olivine and the chemical compositions of the bulk droplets and their glasses would closely resemble those of Types IIA and IIAB chondrules at CI dust enrichments between 400× and 800×. For 50% sodium retention, the corresponding values of Ptot are 2 bars (for 400×) and 1 bar (for 800×). For 90% retention, they are 25 and 10 bars, respectively. If, instead, the target has an anhydrous, ordinary chondrite-like composition, called H', the ejected droplets are bathed in a gas mix consisting mostly of devolatilized sulfur and alkalis with residual nebular gas, a much more reducing plume. If the conditions were such that sodium were retained by the resulting droplets at their liquidus temperature, the fayalite contents of the olivine and the chemical compositions of the bulk droplets and their glasses would

  18. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure. PMID:25265908

  19. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    USGS Publications Warehouse

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  20. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  1. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    Preliminary results in the use of some low-vapor-pressure braze alloys are reported; these are binary alloys of refractory metals (Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, W) with vapor pressures below 0.1 nanotorr at 1500 K or 10 microtorr at 2000 K. The melting point minima or eutectics of the alloys range from 1510 K to above 3000 K. Melting points and surface wetting on a Ta base are given. Results are presented on brazing of Ir, LaB6, Nb, Re, W, and ZrO2 (with 22 wt % Zr) into a Ta base or a Nb-1% Zr base. The results are applicable in electrode screening programs for thermionic cesium diodes.

  2. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    The evaluation of cesium diode electrode materials called for braze fillers with very low vapor pressures and a wide range of melting points. Binary alloys of low vapor pressure refractory metals were chosen to fill this need. These alloys of Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W have reported melting point minima or eutectics from 1,510 K to above 3,000 K. Preliminary data are compiled on the use of several of these braze alloys. Melting points and surface wetting on a Ta base are given. Results of brazing Ir, LaB6, Nb, Re, W, and Zr-22 wt % ZrO2 materials into Ta and Nb-1% Zr bases are presented. Current braze usage is summarized.

  3. Water vapor pressure should be addressed in Potomac study

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    In Bruce Doe's article, “A Potomac Perspective on the Growing Global Greenhouse” (Eos, January 5,1999), a statement is made in the next to last paragraph that “other climatic parameters such as precipitation can correlate better than temperature among the five sites.” It would be expected that precipitation, and in particular the partial pressure of water vapor, should correlate with the carbon dioxide greenhouse effect. It was pointed out by W. G. Egan and coworkers in 1991 that there is an inverse relationship between carbon dioxide and water vapor partial pressure, seen both in laboratory experiments and at all worldwide Global Monitoring for Climate Change monitoring stations. Specific examples were presented for Cold Bay, Alaska and Palmer Station, Antarctica monthly and annually

  4. Vapor pressure measurements of LaGd alloys

    NASA Astrophysics Data System (ADS)

    Shoji, Yoshiyuki; Matsui, Tsuneo; Nakamura, Kinya; Inoue, Tadashi

    1997-08-01

    The vapor pressures of La(g) and Gd(g) over La xGd 1- x alloys ( x = 0.00, 0.12, 0.22, 0.45, 0.70, 0.74, 0.85, 1.00) were measured with a time-of-flight mass spectrometer equipped with a tungsten Knudsen cell over the temperature range 1588 to 1797 K. The chemical activities of lanthanum and gadolinium in the alloys were determined by comparing the vapor pressures of La(g) and Gd(g) over the alloys with those over the pure metals. The chemical activities, thus obtained, showed positive deviations from Raoult's law over the entire compositional range. The interatomic force between gadolinium and lanthanum was thought to be repulsive. The partial molar Gibbs free energy and the Gibbs free energy, enthalpy and entropy of formation were calculated from the activity values.

  5. A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K

    NASA Technical Reports Server (NTRS)

    Marti, James; Mauersberger, Konrad

    1993-01-01

    New measurements of ice vapor pressures at temperatures between 170 and 250 K are presented and published vapor pressure data are summarized. An empirical vapor pressure equation was derived and allows prediction of vapor pressures between 170 k and the triple point of water with an accuracy of approximately 2 percent. Predictions obtained agree, within experimental uncertainty, with the most reliable equation derived from thermodynamic principles.

  6. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  7. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405... Equipment Cargo Containment Systems § 154.405 Design vapor pressure (Po) of a cargo tank. (a) The design vapor pressure (Po) of a cargo tank must be equal to or greater than the MARVS. (b) The Po of a...

  8. 46 CFR 39.2013 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false High and low vapor pressure protection for tankships-T... CONTROL SYSTEMS Equipment and Installation § 39.2013 High and low vapor pressure protection for tankships—T/ALL. Each tankship with a vapor collection system must be fitted with a pressure-sensing...

  9. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405... Equipment Cargo Containment Systems § 154.405 Design vapor pressure (Po) of a cargo tank. (a) The design vapor pressure (Po) of a cargo tank must be equal to or greater than the MARVS. (b) The Po of a...

  10. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405... Equipment Cargo Containment Systems § 154.405 Design vapor pressure (Po) of a cargo tank. (a) The design vapor pressure (Po) of a cargo tank must be equal to or greater than the MARVS. (b) The Po of a...

  11. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  12. Experimentally Determined Vapor Pressures of Carbon Dioxide from 167 to 87 K

    NASA Astrophysics Data System (ADS)

    Nelson, R. N.; Michael, B. P.; Allen, J. E., Jr.

    1999-09-01

    Carbon dioxide (CO{_2}) is a major constituent in the Martian atmosphere and its abundance is controlled by surface condensation primarily at the poles. Because the sublimation temperature is determined by the vapor pressure curve, the saturation law is arguably the most important physical property of CO{_2} for Mars. A number of different representations have been used for the vapor pressure of CO{_2}; however, they are all based on data taken sixty-five years ago (Meyers and Van Dusen 1933) or calculations and extrapolations based on that data (e.g., Brown and Ziegler 1980). Using our apparatus specifically designed for low-temperature measurements of thermodynamic properties, we have experimentally determined the vapor pressure of CO{_2} from 167 to 87 K, corresponding to a pressure range of 100 to 1.8x10{(-6}) Torr and set by our lowest measurable pressure. Our preliminary data have been fitted with a simple Clausius-Clapeyron representation and compared with an extrapolation of the form recommended by Brown and Ziegler (1980). For comparison the extrapolation predicts a pressure of 1.1x10{(-6}) Torr at 87 K, whereas our measured value is 1.8x10{(-6}) Torr at this temperature. Further refinement of the data to account for thermal transpiration and fitting with a more comprehensive three-parameter model are in progress. References: Brown, G. N., Jr. and Ziegler, W. T. 1980. In Advances in Cryogenic Engineering, vol. 25 (K. Timmerhaus and H. A. Snyder, Eds.), pp. 662-670. (New York: Plenum Press). Meyers, C. H. and Van Dusen, M. S. 1933, J. Res. Natl. Bur. Stndrds. 84, 2843. Support from NASA's Planetary Atmospheres Program is gratefully acknowledged.

  13. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a temperature of 100 °F., expressed in...

  14. Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures

    NASA Astrophysics Data System (ADS)

    Chapman, Samuel; Tisato, Nicola; Quintal, Beatriz; Holliger, Klaus

    2016-03-01

    Using the forced oscillation method, we measure the extensional-mode attenuation and Young's modulus of a Berea sandstone sample at seismic frequencies (0.5-50 Hz) for varying levels of water saturation (~0-100%) and confining pressures (2-25 MPa). Attenuation is negligible for dry conditions and saturation levels <80%. For saturation levels between ~91% and ~100%, attenuation is significant and frequency dependent in the form of distinct bell-shaped curves having their maxima between 1 and 20 Hz. Increasing saturation causes an increase of the overall attenuation magnitude and a shift of its peak to lower frequencies. On the other hand, increasing the confining pressure causes a reduction in the attenuation magnitude and a shift of its peak to higher frequencies. For saturation levels above ~98%, the fluid pressure increases with increasing confining pressure. When the fluid pressure is high enough to ensure full water saturation of the sample, attenuation becomes negligible. A second series of comparable experiments reproduces these results satisfactorily. Based on a qualitative analysis of the data, the frequency-dependent attenuation meets the theoretical predictions of mesoscopic wave-induced fluid flow (WIFF) in response to a heterogeneous water distribution in the pore space, so-called patchy saturation. These results show that mesoscopic WIFF can be an important source of seismic attenuation at reservoir conditions.

  15. 46 CFR 39.2013 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false High and low vapor pressure protection for tankships-T/ALL. 39.2013 Section 39.2013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Equipment and Installation § 39.2013 High and low vapor pressure protection for tankships—T/ALL. Each tankship with a...

  16. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION...

  17. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  18. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  19. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. 40 CFR 60.482-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 2006 § 60.482-4 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Pressure relief devices...

  1. 40 CFR 60.482-4a - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Pressure relief devices in gas/vapor service. 60.482-4a Section 60.482-4a Protection of Environment ENVIRONMENTAL...

  2. 40 CFR 60.482-4a - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 60.482-4a Section 60.482-4a Protection of Environment ENVIRONMENTAL...

  3. 40 CFR 60.482-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 2006 § 60.482-4 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Pressure relief devices...

  4. 40 CFR 60.482-4a - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 60.482-4a Section 60.482-4a Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 60.482-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 2006 § 60.482-4 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Pressure relief devices...

  6. 40 CFR 60.482-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 2006 § 60.482-4 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Pressure relief devices...

  7. 40 CFR 60.482-4a - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 60.482-4a Section 60.482-4a Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  9. Ignitability of DMSO vapors at elevated temperature and reduced pressure

    SciTech Connect

    Bergman, W; Ural, E A; Weisgerber, W

    1999-03-08

    Ignitability of DMSO vapors have been evaluated at 664 mm Hg pressure. The minimum temperature at which the DMSO vapors that are in equilibrium with liquid DMSO has been determined using two types of strong ignition sources. This temperature is 172 F for chemical igniters, and 178 F for spark ignition. Numerous tests have been conducted using controlled intensity sparks to define the shape of the minimum ignition energy curve as a function of temperature. The ignition energies spanned four orders of magnitude (approximately from 20,000 to 2 mJ) while the DMSO vapor mixture temperature varied from 185 to 207 F. The Sandia Generator was used to simulate worst case electrostatic sparks that can be produced by the human body. Although it was not designed for air discharges, this device had been used by LLNL for 1 mm spark gap and the resultant spark energy had been measured to fall within the range from 3.2 to 8.8 mJ. CRC tests using this device showed that the minimum ignition temperature strongly depends on the spark gap. The minimum ignition temperature was 207 F at 1 mm spark gap, 203 F at 3 mm spark gap, and 197 F at 6 mm spark gap. This strong dependence on the spark gap is believed to be partly due to the changes in the spark energy as the spark gap changes.

  10. Laboratory measurements of the microwave opacity and vapor pressure of sulfuric acid vapor under simulated conditions for the middle atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1985-01-01

    Microwave absorption measurements at wavelengths of 13.4 and 3.6 cm were made in gaseous H2SO4 in a CO2 atmosphere under simulated conditions for the Venus middle atmosphere. The results suggest that abundances of gaseous H2SO4 on the order of 15-30 ppm could account for the absorption observed by radio occultation measurements at these wavelengths. They also imply that such abundances would correspond to saturation vapor pressure existing at or above the 46-48-km range, which correlates with the observed cloud base.

  11. Atmospheric pressure laser-induced acoustic desorption chemical ionization mass spectrometry for analysis of saturated hydrocarbons.

    PubMed

    Nyadong, Leonard; Quinn, John P; Hsu, Chang S; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2012-08-21

    We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+•) species dominate the mass spectrum at lower capillary temperature (<100 °C) and [M - H](+) at higher temperature (>200 °C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products. PMID:22881221

  12. Precision ozone calibration system based on vapor pressures of ozone

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1987-01-01

    A precision ozone calibration system for stratospheric research has been developed and evaluated. Vapor pressures above solid ozone are mixed with a carrier gas (N2) to produce stratospheric ozone mixing ratios at total pressures of 1 to cover 20 torr. The uncertainty in the ozone mixing ratios is approximately + or - 1.5 percent, the stability of ozone is + or - 0.3 percent. Experiments to be calibrated may sample the gas mixture over a wide range of flow rates; the maximum throughput of gas with corrections of less than 1 percent to ozone is about 200 torr 1/min. A mass spectrometer system continuously monitors the purity and stability of the N2-O3 gas mixture.

  13. New Nickel Vapor Pressure Measurements: Possible Implications for Nebular Condensates

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Meibom, A.; Ferguson, F. T.; Nuth, J. A., III

    2004-01-01

    Temperatures high enough to vaporize even refractory solids existed in the midplane of the solar nebula during its earliest evolutionary stages and played an important role in the processing of materials that went into the formation of the inner planets and asteroids. A variety of such high-T materials have been identified in primitive chondritic meteorites. These include chemically zoned FeNi metal grains that are generally believed to have formed directly by gas-solid condensation from a gas of approximately solar composition. These FeNi particles provide important information about the times scales of formation and physical transport mechanisms in the nebula, as well as formation temperature, pressure and gas chemistry. Currently, however, the interpretation of the chemical signatures in these FeNi particles rests on less than perfect information about the condensation sequence of siderophile elements. For example much, if not all, of the thermodynamic data for the vapor pressures of moderately refractory metals , such as Fe, Ni and Co, do not cover the desired temperature range. As a result, quite large extrapolations are needed. These extrapolations can be complex and uncertain due to factors such as oxygen fugacity or the presence of hydrogen gas.

  14. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Gauges and vapor return for cargo vapor pressures... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.372 Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  15. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Gauges and vapor return for cargo vapor pressures... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.372 Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  16. Analysis of the saturation phenomena of the neutralization rate of positively charged 218Po in water vapor.

    PubMed

    Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian

    2014-09-01

    Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high. PMID:25068963

  17. vapor pressure of uranyl beta-diketonates. IV. effect of adduct formation on volatility of uranyl pivaloyltrifluoroacetonate

    SciTech Connect

    Sidorenko, G.V.; Suglobov, D.N.

    1986-07-01

    Gas-phase adduct formation of uranyl pivaloyltrifluoroacetonate (I) with donor active materials such as trimethyl phosphate (TMP), pyridine (Py), tetrahydrofuran (THF), and ethanol (EtOH) was demonstrated by IR spectroscopy. Vapor pressure of the I-TMF adduct was measured by the flow method. The volatility of I was studied in a stream of helium saturated with vapors of donor-active materials: Py, THF, diethyl ether (Et/sub 2/O), EtOH, and acetonitrile. The temperature dependence of the pressure of saturated I.TMP and I vapor in a stream of neutral ligand vapor is described by log p (Pa) = -A/T + B. Following are, respectively, neutral ligand, T range (degreeK), and coefficiencts A, B: TMP 383453, 4648 +/- 48, 12.06 +/- 0.18; Py, 383-463, 5277 +/- 87, 13.36 +/- 0.21; THF, 363453, 4662 +/- 69, 12.66 +/- 0.17; Et/sub 2/O, 353-423, 4864 +/- 110, 13.29 +/- 0.28; EtOH, 363-443, 4509 +/- 89, 12.18 +/- 0.22. Adduct formation with these neutral ligands decreases the volatility of I significantly. A tendency to increase of adduct volatility was observed when the donor properties of the neutral ligand decrease.

  18. Temperature/pressure and water vapor sounding with microwave spectroscopy

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  19. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 264.1054 Section 264.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 264.1054 Section 264.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  1. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Pressure relief devices in gas...

  2. 40 CFR 61.242-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 61.242-4 Section 61.242-4 Protection of Environment ENVIRONMENTAL PROTECTION...

  3. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Pressure relief devices in gas...

  4. 40 CFR 61.242-4 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in gas... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 61.242-4 Section 61.242-4 Protection of Environment ENVIRONMENTAL PROTECTION...

  5. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Pressure relief devices in gas...

  6. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Pressure relief devices in gas...

  7. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 264.1054 Section 264.1054 Protection of Environment ENVIRONMENTAL PROTECTION...

  8. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Pressure relief devices in gas...

  9. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Pressure relief devices in gas...

  10. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The... section, each pressure relief device in gas and vapor service shall be operated with an instrument reading... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Pressure relief devices in gas...

  11. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator... section, each pressure relief device in gas or vapor service shall be operated with an instrument reading... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Pressure relief devices in gas...

  12. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  13. The vapor pressures of solid and liquid ozone

    NASA Technical Reports Server (NTRS)

    Hanson, David; Mauersberger, Konrad

    1986-01-01

    Vapor pressures of solid and liquid ozone have been measured over a temperature range 87 to below 66 K. The experiment was performed under flow conditions, and the gas was analyzed by a precision mass spectrometer system. In the range of solid ozone two forms, supercooled and crystalline ozone, were found. A least-square fit of the data for crystalline ozone resulted in the equation log P(torr) = A + B/T, where A = 10.460 and B = -1021.6. The estimated uncertainty of the data is + or - 1.0 percent. A triple-point temperature of 79.6 + or - 0.3 K was found where supercooled and crystalline ozone data intersect.

  14. Molecular weight of aquatic fulvic acids by vapor pressure osmometry

    USGS Publications Warehouse

    Aiken, G.R.; Malcolm, R.L.

    1987-01-01

    The molecular weights of aquatic fulvic acids extracted from five rivers were determined by vapor pressure osmometry with water and tetrahydrofuran as solvents. The values obtained ranged from 500 to 950 dallons, indicating that the molecular weights of aquatic fulvic acids are not as great as has been suggested in some other molecular weight studies. The samples were shown to be relatively monodisperse from radii of gyration measurements determined by small angle x-ray scattering. THF affords greater precision and accuracy than H2O in VPO measurements, and was found to be a suitable solvent for the determination of molecular weight of aquatic fulvic acid because it obviates the dissociation problem. An inverse correlation was observed with these samples between the concentration of Ca++ and Mg++ in the river water and the radii of gyration and molecular weights of the corresponding fulvic acid samples. ?? 1987.

  15. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false High and low vapor pressure protection for tankships-T... VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for tankships—T/ALL. Each tankship vapor collection system must be fitted with a pressure sensing device...

  16. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false High and low vapor pressure protection for tankships-T... VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for tankships—T/ALL. Each tankship vapor collection system must be fitted with a pressure sensing device...

  17. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false High and low vapor pressure protection for tankships-T... VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for tankships—T/ALL. Each tankship vapor collection system must be fitted with a pressure sensing device...

  18. Vapor pressure and viscosity of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione

    SciTech Connect

    George, M.A.; Young, K.M.; Robertson, E.A. III; Beck, S.E.; Voloshin, G.

    1998-01-01

    1,1,1,5,5,5-Hexafluoro-2,4-pentanedione (H{sup +}hfac) is a potential vapor-phase cleaning agent for removing trace transition metals from silicon wafer surfaces and for in situ removal of spurious bulk copper in Cu CVD chamber cleaning applications. The viscosity and vapor pressure of the reactive chelating ligand, H{sup +}hfac have been determined. The viscosity of liquid H{sup +}hfac was determined to be (1.39 {+-} 0.19) {times} 10{sup {minus}3} Pa{center_dot}s at 24 C and (8.35 {+-} 0.25) {times} 10{sup {minus}4} Pa{center_dot}s at 35 C. The vapor pressure of H{sup +}hfac was found to range from 4 kPa at 0 C to 49.5 kPa at 57 C. The viscosity was measured using a capillary tube viscometer, and the vapor pressure was measured using a mass transfer gas saturation apparatus. These methods were employed because conventional methodologies would have produced unreliable data due to the formation of the tetrol hydrate of H{sup +}hfac inside the apparatus and potentially exposed laboratory personnel to hazardous working conditions.

  19. Comparison of average and point capillary pressure-saturation functions determined by steady-state centrifugation

    SciTech Connect

    Cropper, Clark; Perfect, Edmund; van den Berg, Dr. Elmer; Mayes, Melanie

    2010-01-01

    The capillary pressure-saturation function can be determined from centrifuge drainage experiments. In soil physics, the data resulting from such experiments are usually analyzed by the 'averaging method.' In this approach, average relative saturation, , is expressed as a function of average capillary pressure, <{psi}>, i.e., (<{psi}>). In contrast, the capillary pressure-saturation function at a physical point, i.e., S({psi}), has been extracted from similar experiments in petrophysics using the 'integral method.' The purpose of this study was to introduce the integral method applied to centrifuge experiments to a soil physics audience and to compare S({psi}) and (<{psi}>) functions, as parameterized by the Brooks-Corey and van Genuchten equations, for 18 samples drawn from a range of porous media (i.e., Berea sandstone, glass beads, and Hanford sediments). Steady-state centrifuge experiments were performed on preconsolidated samples with a URC-628 Ultra-Rock Core centrifuge. The angular velocity and outflow data sets were then analyzed using both the averaging and integral methods. The results show that the averaging method smoothes out the drainage process, yielding less steep capillary pressure-saturation functions relative to the corresponding point-based curves. Maximum deviations in saturation between the two methods ranged from 0.08 to 0.28 and generally occurred at low suctions. These discrepancies can lead to inaccurate predictions of other hydraulic properties such as the relative permeability function. Therefore, we strongly recommend use of the integral method instead of the averaging method when determining the capillary pressure-saturation function by steady-state centrifugation. This method can be successfully implemented using either the van Genuchten or Brooks-Corey functions, although the latter provides a more physically precise description of air entry at a physical point.

  20. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  1. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88

    SciTech Connect

    Gerlach, T.M.; McGee, K.A.

    1994-12-15

    SO{sub 2} from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. TOMS, COSPEC, and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO{sub 2} emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO{sub 2} emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of {open_quotes}excess sulfur{close_quotes} (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO{sub 2} emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO{sub 2} emissions, together with the H{sub 2}O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO{sub 2}. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body. 23 refs., 3 figs.

  2. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  3. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Compliance schedule. The owner or operator shall comply... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION...

  4. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111 Standards: Pressure relief devices in gas/vapor service....

  5. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Compliance schedule. The owner or operator shall comply... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION...

  6. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Pressure relief devices in gas/vapor service. (a) Compliance schedule. The owner or operator shall comply... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION...

  7. Impact of sample geometry on the measurement of pressure-saturation curves: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Moura, M.; Fiorentino, E.-A.; Mâløy, K. J.; Schäfer, G.; Toussaint, R.

    2015-11-01

    In this paper, we study the influence of sample geometry on the measurement of pressure-saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2-D random porous medium. The medium is transparent, which allows for the direct visualization of the invasion pattern during flow, and is initially saturated with a viscous liquid (a dyed glycerol-water mix). As the pressure in the liquid is gradually reduced, air penetrates from an open inlet, displacing the liquid which leaves the system from an outlet on the opposite side. Pressure measurements and images of the flow are recorded and the pressure-saturation relationship is computed. We show that this relationship depends on the system size and aspect ratio. The effects of the system's boundaries on this relationship are measured experimentally and compared with simulations produced using an invasion percolation algorithm. The pressure build up at the beginning and end of the invasion process are particularly affected by the boundaries of the system whereas at the central part of the model (when the air front progresses far from these boundaries), the invasion happens at a statistically constant capillary pressure. These observations have led us to propose a much simplified pressure-saturation relationship, valid for systems that are large enough such that the invasion is not influenced by boundary effects. The properties of this relationship depend on the capillary pressure thresholds distribution, sample dimensions, and average pore connectivity and its applications may be of particular interest for simulations of two-phase flow in large porous media.

  8. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    SciTech Connect

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work.

  9. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    SciTech Connect

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-06-10

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO{sub 2} gas/oil ratio in a reservoir undergoing CO{sub 2} flood. Crosswell seismic and electromagnetic data sets taken before and during CO{sub 2} flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO{sub 2} injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO{sub 2} relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO{sub 2}/oil ratio. Resulting images of the CO{sub 2}/oil ratio show CO{sub 2}-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO{sub 2}. The images produced by this process are better correlated to the location and amount of injected

  10. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.

    SciTech Connect

    Rudeen, David Keith; Lord, David L.

    2005-08-01

    Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be

  11. MODEL FOR HYSTERETIC CONSTITUTIVE RELATIONS GOVERNING MULTIPHASE FLOW. 1. SATURATION-PRESSURE RELATIONS

    EPA Science Inventory

    In these companion papers, a general theoretical model is presented for the description of functional relationships between relative permeability k, fluid saturation S, and pressure P in two- or three-phase (e.g., air-water or air-oil-water) porous media systems subject to arbitr...

  12. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.

    PubMed

    Kertész, K; Piszter, G; Jakab, E; Bálint, Zs; Vértesy, Z; Biró, L P

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. PMID:24863219

  13. Hydrogen bonding and vapor pressure isotope effect of deuterioisomeric methanethiols

    SciTech Connect

    Wolff, H.; Szydlowski, J.; Dill-Staffenberger, L.

    1981-04-16

    Wilson parameters, activity coefficients, association constants, and other thermodynamic functions which are derived from isothermal vapor pressure measurements between 223 and 293 K for binary mixtures of CH/sub 3/SH, CH/sub 3/SD, CS/sub 3/SH, and CD/sub 3/SD with n-hexane show the weakness of the hydrogen and the deuterium bonds of methanethiol. As far as these functions depend on the association model used for the calculation, the relation of their values to those obtained for the corresponding amines and alcohols under the same conditions attests the weak methanethiol association. While for the more strongly associated methylamines and methanols a greater energy of the deuterium bond compared to the hydrogen bond has clearly been observed, the differences between the thermodynamic functions of the systems with the SH compounds and of those with the SD compounds are insignificant. This observation as well as the fact that the vapor pressure ratios P-(CH/sub 3/SD)/P(CH/sub 3/SH) are only slightly greater than unity, that the ratios P(CD/sub 3/SD)/P(CH/sub 3/SH) are even greater than P(CD/sub 3/SH)/P(CH/sub 3/SH), and that the changes of these ratios with temperature and dilution are small in comparison to the strong increase of the corresponding quotients of the methylamines and the methanols are the consequence of the weak methanethiol association. P(CH/sub 3/SD)/P(CH/sub 3/SH), P(CD/sub 3/SH)/P(CH/sub 3/SH), and P(CD/sub 3/SD)/P(CH/sub 3/SH) are represented by equations of the type ln P/sub D/ P/sub H/ = -A/T/sup 2/ + B/T where A and B are nearly additive. The low values of A and B for CH/sub 3/SD/CH/sub 3/SH in comparison to the high values for CH/sub 3/ND/sub 2//CH/sub 3/NH/sub 2/ and CH/sub 3/OD/CH/sub 3/OH reflect the weakness of the methanethiol hydrogen bonds. The constants can be related to the thermochemical and the spectroscopic data reported in the literature.

  14. Feasibility of hydroxyl concentration measurements by laser-saturated fluorescence in high-pressure flames.

    PubMed

    Carter, C D; Salmon, J T; King, G B; Laurendeau, N M

    1987-11-01

    A feasibility study has been performed on the application of laser-saturated fluoresence (LSF) to the measurement of OH concentration in high-pressure flames. Using a numerical model for the collisional dynamics of the OH molecule under nonuniform laser excitation, we have investigated the effect of pressure on the balanced cross-rate model and determined the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing (1) electronic quenching of the vibrational levels for which upsilon'' > 0 and (2) vibrational relaxation from upsilon'' > 0 to upsilon'' = 0. At sufficiently high pressures in near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching is vibrational relaxation is small and the rate coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced crossrate model no longer holds. In these conditions, however, knowledge of the asymptotic value achieved by the laser-coupled levels could be used to correct the balanced cross-rate model and thus allow LSF measurements at sufficiently high pressures. PMID:20523402

  15. Correlation of chemical evaporation rate with vapor pressure.

    PubMed

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-01

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed. PMID:25105222

  16. A new ozone standard - The vapor pressure of ozone at liquid argon temperatures

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1985-01-01

    The vapor pressure of ozone has been measured at liquid argon temperatures. At the normal boiling point of argon (-185.9 C) an ozone pressure of 0.0405 torr was obtained with an accuracy of + or - 1.5 percent. Increases and decreases in liquid argon temperatures raised and lowered the ozone vapor pressure, respectively. During the vapor pressure measurements the purity of ozone was monitored with a mass spectrometer. The proposed ozone standard will considerably improve the calibration of experiments for atmospheric research, the determination of absorption cross sections and other laboratory ozone studies.

  17. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-12-31

    There is significant current interest in general area of coal pyrolysis, particularly because of the central role of pyrolysis in all thermally driven coal conversion processes-gasification, combustion, liquefaction, mild gasification, or thermal beneficiation. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. A significant amount of time has been devoted during this quarter to extending the work on measurements of vapor pressures of tars. For this purpose, cellulose tar and cellulose tar related compounds have been selected as model systems. Cellulose tar has a much narrower distribution of molecular weight than does coal tar, and it is much more homogeneous. Thus it is better to develop the methods to be used for coal tars on this simpler model system first.

  18. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    NASA Astrophysics Data System (ADS)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003

  19. Power production with two-phase expansion through vapor dome

    SciTech Connect

    Amend, W.E.; Toner, S.J.

    1984-08-07

    In a system wherein a fluid exhibits a regressive vapor dome in a T-S diagram, the following are provided: a two-phase nozzle receiving the fluid in pressurized and heated liquid state and expanding the received liquid into saturated or superheated vapor state, and apparatus receiving the saturated or superheated vapor to convert the kinetic energy thereof into power.

  20. U.S. Strategic Petroleum Reserve Vapor Pressure Committee 2009 annual report.

    SciTech Connect

    Allen, Ray; Eldredge, Lisa; DeLuca, Charles; Mihalik, Patrick; Maldonado, Julio; Lord, David L.; Rudeen, David Keith; Berndsen, Gerard

    2010-05-01

    This report comprises an annual summary of activities under the U.S. Strategic Petroleum Reserve (SPR) Vapor Pressure Committee in FY2009. The committee provides guidance to senior project management on the issues of crude oil vapor pressure monitoring nd mitigation. The principal objectives of the vapor pressure program are, in the event of an SPR drawdown, to minimize the impact on the environment and assure worker safety and public health from crude oil vapor emissions. The annual report reviews key program areas ncluding monitoring program status, mitigation program status, new developments in measurements and modeling, and path forward including specific recommendations on cavern sampling for the next year. The contents of this report were first presented to SPR senior anagement in December 2009, in a deliverable from the vapor pressure committee. The current SAND report is an adaptation for the Sandia technical audience.

  1. Sound Propagation in Saturated Gas-Vapor-Droplet Suspensions Considering the Effect of Transpiration on Droplet Evaporation

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.

  2. Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1989-01-01

    Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.

  3. Oxygen saturation changes in the optic nerve head during acute intraocular pressure elevation in monkeys

    NASA Astrophysics Data System (ADS)

    Khoobehi, Bahram; Kawano, Hiroyuki; Ning, Jinfeng; Burgoyne, Claude F.; Rice, David A.; Khan, Fareeha; Thompson, Hilary W.; Beach, James M.

    2009-02-01

    Background and Objective: To evaluate the effect of an acute elevated intraocular pressure (IOP) on oxygen saturation of structures of the optic nerve head. Study Design/Materials and Methods: In the cynomolgus monkey eye, IOP was set to 10 mm Hg, and then raised to 30, 45, and 55 mm Hg. The ONH and overlying vessels were imaged using a fundus camera attached to a hyperspectral imaging system (HSI) at 10 and 30 minutes after IOP elevation. Results: Raising IOP from 10 to 30 mm Hg did not significantly (P < 0.0001) change saturation in vessels or ONH tissue structures but at 55 mm Hg, all structures showed significant reduction. Conclusions: Quantitative assay of the blood oxygen saturation in structures on the surface and overlying the optic nerve head is possible using hyperspectral imaging techniques.

  4. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  5. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study. PMID:10192116

  6. Accurate determination of the vapor pressure of potassium using optical absorption

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Wang, C. C.

    1983-01-01

    The vapor pressure of potassium has been measured in absorption using a CW tunable laser and calibrated against the accurate radiative lifetime of the 4s-4p doublet of potassium. An accurate value of 20,850 + or - 30 cal/mol for the heat of vaporization (from the liquid phase) at the melting point was determined.

  7. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... device in gas/vapor service shall be operated with an instrument reading of less than 500 parts...

  8. Elasticity of water-saturated rocks as a function of temperature and pressure.

    NASA Technical Reports Server (NTRS)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  9. Dynamic testing of concrete under high confined pressure. Influence of saturation ratio and aggregate size

    NASA Astrophysics Data System (ADS)

    Forquin, P.; Piotrowska, E.; Gary, G.

    2015-09-01

    Concrete structures can be exposed to intense pressure loadings such as projectile-impact or detonation near a concrete structural element. To investigate the mechanical behaviour of concrete under high confining pressure, dynamic quasi-oedometric compression tests have been performed with a large diameter (80 mm) Split Hopkinson Pressure Bar apparatus. The concrete sample is placed within a steel confining ring and compressed along its axial direction. Hydrostatic pressures as high as 800 MPa and axial strain of about - 10% are reached during the tests. In the present work, experiments have been conducted on two types of concrete: MB50 microconcrete with a maximum grain size of 2 mm and R30A7 ordinary concrete of maximum grain size about 8 mm. Both concretes are tested in dry or saturated conditions. According to these dynamic experiments it is noted that grain size has a small influence whereas water content has a strong effect on the confined behaviour of concrete.

  10. Vapor Pressure of Hexamethylene Triperoxide Diamine (HMTD) Estimated Using Secondary Electrospray Ionization Mass Spectrometry.

    PubMed

    Aernecke, Matthew J; Mendum, Ted; Geurtsen, Geoff; Ostrinskaya, Alla; Kunz, Roderick R

    2015-11-25

    A rapid method for vapor pressure measurement was developed and used to derive the vapor pressure curve of the thermally labile peroxide-based explosive hexamethylene triperoxide diamine (HMTD) over the temperature range from 28 to 80 °C. This method uses a controlled flow of vapor from a solid-phase HMTD source that is presented to an ambient-pressure-ionization mass spectrometer equipped with a secondary-electrospray-ionization (SESI) source. The subpart-per-trillion sensitivity of this system enables direct detection of HMTD vapor through an intact [M + H](+) ion in real time at temperatures near 20 °C. By calibrating this method using vapor sources of cocaine and heroin, which have known pressure-temperature (P-T) curves, the temperature dependence of HMTD vapor was determined, and a Clausius-Clapeyron plot of ln[P (Pa)] vs 1/[T (K)] yielded a straight line with the expression ln[P (Pa)] = {(-11091 ± 356) × 1/[T (K)]} + 25 ± 1 (error limits are the standard error of the regression analysis). From this equation, the sublimation enthalpy of HMTD was estimated to be 92 ± 3 kJ/mol, which compares well with the theoretical estimate of 95 kJ/mol, and the vapor pressure at 20 °C was estimated to be ∼60 parts per trillion by volume, which is within a factor of 2 of previous theoretical estimates. Thus, this method provides not only the first direct experimental determination of HMTD vapor pressure but also a rapid, near-real-time capability to quantitatively measure low-vapor-pressure compounds, which will be useful for aiding in the development of training aids for bomb-sniffing canines. PMID:26505487

  11. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure release and being returned to organic HAP service, the pressure relief device shall be monitored... release, a rupture disk shall be installed upstream of the pressure relief device as soon as practicable... relief device in gas/vapor service shall be operated with an instrument reading of less than 500...

  12. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    PubMed Central

    Rudenski, Aram; Gibson, John; Howard, Luke; O’Driscoll, Ronan

    2015-01-01

    Key Points In clinical practice, the level of arterial oxygenation can be measured either directly by blood gas sampling to measure partial pressure (PaO2) and percentage saturation (SaO2) or indirectly by pulse oximetry (SpO2). This review addresses the strengths and weaknesses of each of these tests and gives advice on their clinical use. The haemoglobin–oxygen dissociation curve describing the relationship between oxygen partial pressure and saturation can be modelled mathematically and routinely obtained clinical data support the accuracy of a historical equation used to describe this relationship. Educational Aims To understand how oxygen is delivered to the tissues. To understand the relationships between oxygen saturation, partial pressure, content and tissue delivery. The clinical relevance of the haemoglobin–oxygen dissociation curve will be reviewed and we will show how a mathematical model of the curve, derived in the 1960s from limited laboratory data, accurately describes the relationship between oxygen saturation and partial pressure in a large number of routinely obtained clinical samples. To understand the role of pulse oximetry in clinical practice. To understand the differences between arterial, capillary and venous blood gas samples and the role of their measurement in clinical practice. The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (SO2) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined

  13. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  14. Determination of Vapor Pressure-Temperature Relationships of Current Use Pesticides and Transformation Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sub-cooled liquid vapor pressures of current use organochlorine and organophosphate pesticides (chlorothalonil, chlorpyrifos methyl, diazinon, fipronil) and selected transformation products (chlorpyrifos oxon, heptachlor epoxide, oxychlordane, 3,5,6-trichloro-2-pyridinol) were determined at multiple...

  15. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1990-01-01

    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a

  16. The influence of surfactant sorption on capillary pressure-saturation relationships

    SciTech Connect

    Desai, F.N.; Demond, A.H.; Hayes, K.F.

    1991-01-01

    The capillary pressure-saturation relationship, a fundamental relationship in the description of multiphase flow, depends on the interfacial properties of the system. Sorption of a cationic surfactant such as cetyltrimethylammonium bromide (CTAB) at the various interfaces of a system changes interfacial properties such as electrophoretic mobility, interfacial tensions, and contact angle. The objective of this paper is to examine the effect of the changes in these interfacial properties on the capillary pressure-saturation relationships for the air-water-silica system. The results presented here show that as the sorption of CTAB increases, the naturally negatively-charged silica surface becomes positively charged. This change in charge is reflected in the contact angle which passes through a maximum when the electrophoretic mobility is close to zero. The spontaneous imbibition capillary pressure relationship is more sensitive to changes in interfacial properties than the drainage relationship. In the air-water-silica system studied here, no imbibition is observed at the maximum contact angle. The surface tension and contact angle can be used to predict both the drainage and imbibition relationships of the air-water-silica-CTAB systems from that of the air-water-silica system. The prediction is accomplished through scaling using the value of surface tension and the operational contact angle, which can be obtained from the intrinsic angle through the incorporation of corrections for roughness and interfacial curvature. A comparison of the measured and calculated capillary pressure relationships shows that it is possible to predict the effect of surfactant sorption on both drainage and imbibition capillary pressure-saturation relationships for the system studied.

  17. The influence of surfactant sorption on capillary pressure-saturation relationships

    SciTech Connect

    Desai, F.N.; Demond, A.H.; Hayes, K.F.

    1991-12-31

    The capillary pressure-saturation relationship, a fundamental relationship in the description of multiphase flow, depends on the interfacial properties of the system. Sorption of a cationic surfactant such as cetyltrimethylammonium bromide (CTAB) at the various interfaces of a system changes interfacial properties such as electrophoretic mobility, interfacial tensions, and contact angle. The objective of this paper is to examine the effect of the changes in these interfacial properties on the capillary pressure-saturation relationships for the air-water-silica system. The results presented here show that as the sorption of CTAB increases, the naturally negatively-charged silica surface becomes positively charged. This change in charge is reflected in the contact angle which passes through a maximum when the electrophoretic mobility is close to zero. The spontaneous imbibition capillary pressure relationship is more sensitive to changes in interfacial properties than the drainage relationship. In the air-water-silica system studied here, no imbibition is observed at the maximum contact angle. The surface tension and contact angle can be used to predict both the drainage and imbibition relationships of the air-water-silica-CTAB systems from that of the air-water-silica system. The prediction is accomplished through scaling using the value of surface tension and the operational contact angle, which can be obtained from the intrinsic angle through the incorporation of corrections for roughness and interfacial curvature. A comparison of the measured and calculated capillary pressure relationships shows that it is possible to predict the effect of surfactant sorption on both drainage and imbibition capillary pressure-saturation relationships for the system studied.

  18. Liquid-propellant droplet vaporization and combustion in high pressure environments

    NASA Technical Reports Server (NTRS)

    Yang, Vigor

    1991-01-01

    In order to correct the deficiencies of existing models for high-pressure droplet vaporization and combustion, a fundamental investigation into this matter is essential. The objective of this research are: (1) to acquire basic understanding of physical and chemical mechanisms involved in the vaporization and combustion of isolated liquid-propellant droplets in both stagnant and forced-convective environments; (2) to establish droplet vaporization and combustion correlations for the study of liquid-propellant spray combustion and two-phase flowfields in rocket motors; and (3) to investigate the dynamic responses of multicomponent droplet vaporization and combustion to ambient flow oscillations.

  19. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Foreman, W.T.; Tuschall, J.R.

    1990-01-01

    Vapor pressures for nonpolar and moderately polar organochlorine, pyrethroid, and organophosphate insecticides, phthalate esters, and organophosphate flame retardants were determined by capillary gas chromatography (GC). Organochlorines and polycyclic aromatic hydrocarbons with known liquid-phase vapor pressures (P??L) (standard compounds) were chromatographed along with two reference compounds n-C20 (elcosane) and p,p???-DDT on a 1.0-m-long poly(dimethylsiloxane) bonded-phase (BP-1) column to determine their vapor pressures by GC (P??GC). A plot of log P??L vs log P??GC for standard compounds was made to establish a correlation between measured and literature values, and this correlation was then used to compute P??L of test compounds from their measured P??GC. P??L of seven major components of technical chlordane, endosulfan and its metabolites, ??-hexachlorocyclohexane, mirex, and two components of technical toxaphene were determined by GC. This method provides vapor pressures within a factor of 2 of average literature values for nonpolar compounds, similar to reported interlaboratory precisions of vapor pressure determinations. GC tends to overestimate vapor pressures of moderately polar compounds. ?? 1990 American Chemical Society.

  20. Melting Processes at the Base of the Mantle Wedge: Melt Compositions and Melting Reactions for the First Melts of Vapor-Saturated Lherzolite

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.

    2014-12-01

    Vapor-saturated melting experiments have been performed at pressures near the base of the mantle wedge (3.2 GPa). The starting composition is a metasomatized lherzolite containing 3 wt. % H2O. Near-solidus melts and coexisting mineral phases have been characterized in experiments that span 925 to 1100 oC with melt % varying from 6 to 9 wt. %. Olivine, orthopyroxene, clinopyroxene and garnet coexist with melt over the entire interval and rutile is also present at < 1000 oC. Melt is andesitic in composition and varies from 60 wt. % SiO2 at 950 oC to 52 wt. % at 1075 oC. The Al2O3 contents of the melt are 13 to 14 wt. %, and CaO contents range from 1 and 4 wt. %. Melting is peritectic with orthopyroxene + liquid produced by melting of garnet + olivine + high-Ca pyroxene. In addition to quenched melt, we observe a quenched silicate component that is rhyolitic (>72 % SiO2) that we interpret as a precipitate from the coexisting supercritical H2O-rich vapor. Extrapolation of the measured compositional variation toward the solidus suggests that the first melt may be very SiO2 rich (i.e., granitic). We suggest that these granitic melts are the first melts of the mantle near the slab-wedge interface. As these SiO2-rich melts ascend into shallower, hotter overlying mantle, they continue to interact with the surrounding mantle and evolve in composition. These first melts may elucidate the geochemical and physical processes that accompany the beginnings of H2O flux melting.

  1. Sulfide saturation of basalt and andesite melts at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Wendlandt, R. F.

    1982-01-01

    When the sulfur content of an Fe-bearing magma exceeds the saturation limit for the bulk composition, an immiscible iron sulfide melt fraction separates. For an understanding of the geochemistry of sulfur-bearing magmatic systems, more information is needed regarding the solubility of metal sulfide in silicate melt at its source and the solubility changes as a function of changing intensive and extensive variables. In the present investigation, the sulfur saturation surface is determined for the pressure range from 12.5 to 30 kbar and the temperature range from 1300 to 1460 C for three silicate melt compositions representing a range of SiO2 and FeO compositions.

  2. Feasibility of hydroxyl concentration measurements by laser-saturated fluorescence in high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.; Salmon, J. Thaddeus

    1987-01-01

    The effect of pressure on the laser-saturated fluorescence method for measuring OH concentration in high-pressure flames is studied using calculations for the burned-gas region of a stoichiometric H2-O2 flame at 2000 K. A numerical model of the excitation dynamics of OH is developed to explore the validity of the balanced cross-rate model at higher pressures. It is shown that depopulation of the laser-coupled levels is sensitive to collisions which depopulate v-double-prime (VDP) = 0 and to rate coefficients for rotational transfer in the ground state which are smaller than those in the excited state. In particular, it is shown that the depopulation of VDP = 0, and hence the laser-coupled levels, depends on the probability of electronic quenching to vibrational levels for which VDP is greater than 0 and vibrational relaxation to VDP = 0.

  3. Numerical modelling of pore-pressure measurements in saturated sandy seabed sediments

    SciTech Connect

    Magda, W.

    1995-12-31

    The question of model conditions (i.e., saturation procedure and temporal dewatering of soil model, as well as existence of a geotextile on the top of seabed model and existence of pore-pressure transducers itself in seabed sediments) in large-scale modelling is discussed with respect to the quality of measured pore-pressure values. The meaning of locally unsaturated zones within the seabed model, due to an improper installation procedure or man-made mistake during the testing period, are illustrated by some example computations, based on 2-D finite-element model, the results of which are presented in terms of the momentaneous pore-pressure distribution with depth, induced by surface harmonic waves passing over the seabed.

  4. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  5. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  6. Ice nucleation of Snomax® particles below water vapor saturation: immersion freezing in concentrated solution droplets

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Kanji, Zamin A.; Boose, Yvonne; Beyer, Alexander; Henning, Silvia; Augustin-Bauditz, Stefanie

    2015-04-01

    Heterogeneous ice nucleation has received an increasing amount of interest in the past years, as it initiates the ice phase in mixed phase clouds (MPCs) and, to some extent, also in cirrus clouds. The presence of ice influences cloud radiative properties and, for mixed phase clouds, also the formation of precipitation. Immersion freezing is thought to be the most important mechanism through which ice formation could take place in MPCs. Here, we examine the ice nucleation activity of biological ice nucleating particles (INP) derived from bacteria, namely, particles generated from Snomax® suspensions, both above and below water vapor saturation. During a measurement campaign in Leipzig, ice nucleation measurements were conducted with PINC (Portable Ice Nucleus Counter, Chou et al., 2011) and LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014a). Immersion freezing measurements from PINC and LACIS were in agreement in the temperature regime for which both instruments operate reliably. Here, we will show that measurements done below water vapour saturation and above the deliquescence relative humidity of the Snomax® particles follow what would be expected for immersion freezing in concentrated solutions, similar to what was suggested for coated kaolinite particles in Wex et al. (2014b). Additionally, some measurements reported in the literature that were done in the water vapour sub-saturated regime will be evaluated based on the assumption made above, showing that at least some of the ice nucleation which previously was ascribed to deposition ice nucleation rather follows the behavior of immersion freezing in concentrated solutions. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725-4738, doi:10.5194/acp-11-4725-2011. Wex, H. et al. (2014a) Intercomparing different devices

  7. Effect of strain amplitude on relaxation spectra of attenuation in dry and saturated sandstone under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2007-06-01

    Laboratory experiments have been carried out to investigate the amplitude-frequency dependence of compressional- and shear-wave attenuation in samples of dry and saturated sandstone. The measurements were performed using the reflection method on a pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. In general, the attenuation decreases monotonically with increasing strain amplitude as Q^{-1} \\propto \\varepsilon ^{-n_{\\sim} }, where n~ = 0.003-0.045. The decrease in P-wave attenuation, Q-1p, for dry sandstone is 5%, but for saturated sandstone there is no change. The analogous decrease for Q-1s in the dry and the saturated sandstone is 8% and 4%, respectively. The P-wave relaxation spectra, Q-1p(f), in the dry and saturated sandstone are slightly different from each other but the S-wave relaxation spectra, Q-1s(f), are very different. The amplitude variation causes the change in the value of the relaxation strength Δ that leads to the displacement of the curve Q-1(f) in the Y-direction. The value of Δs in the saturated rock is four times more than the value Δp in the dry rock, and the curves Q-1s(f) are shifted relative to Q-1p(f) towards higher frequencies. The upward-downward amplitude dependence Δp(ɛ1-6-1) both in the dry and the saturated rock is represented by the descending curve. The Δs(ɛ1-6-1) curve for the saturated rock shows hysteresis, but for the dry rock hysteresis is absent. The increase in the strain amplitude gives rise to a small change in peak frequency, but stimulates considerable (up to 40%) decrease in the S-wave relaxation peak width. The unusual behaviour of attenuation is explained by a feature of the joint action of viscoelastic and microplastic mechanisms. These results can be used to improve methods of geological interpretation of acoustical and seismic data.

  8. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  9. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOEpatents

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  10. Measurements of Capillary Pressure-Saturation Relationships for Silica Sands Using Light Transmission Visualization and a Rapid Pseudo Static Methods

    EPA Science Inventory

    Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...

  11. Establishing a quantitative functional relationship between capillary pressure, saturation and interfacial area. 1997 annual progress report

    SciTech Connect

    Montemagno, C.D.

    1997-01-01

    'There is a fundamental knowledge gap associated with the in situ remediation of non-aqueous phase pollutants. Currently it is not possible to accurately determine the interfacial surface area of non-aqueous contaminants. As a result it is impossible to (1) accurately establish the health and environmental risk associated with the pollution: (2) precisely quantify and evaluate the potential efficacy of various in situ treatment technologies; and (3) conduct reliable performance assessments of the applied remediation technology during and after the clean-up. The global goal of this investigation is to try to remedy these shortcomings through the development of a formalized functional relationship between interfacial area (a), phase saturation (S) and capillary pressure (P). The development of this relationship will allow the direct determination of the fluid-fluid interfacial area from field measurements. Quantitative knowledge of the surface area of the non-aqueous phase pollutant facilitates accurate predictions of both the rate of dissolution and the contact area available for treatment. In addition. if saturation and capillary pressure measurements are made during the remediation process. both the spatial and temporal effectiveness of the remediation technology can be quantified. This information can then be used to optimize the restoration program. The project objective will be achieved through an integrated and focused research program that is comprised of theoretical computational and experimental efforts. These efforts are organized into a framework of four tasks: (1) improve on newly developed laboratory techniques to quantify and directly measure the functional relationship between phase interfacial area (a), saturation (S) and capillary pressure (P). (2) Develop new computational algorithms in conjunction with laboratory measurements to predict P, S and a. (3) Test existing theory and develop new theory to describe the relationship between P, S and a at

  12. Pore pressure diffusion and the hydrologic response of nearly saturated, thin landslide deposits of rainfall

    SciTech Connect

    Haneberg, W.C. )

    1991-11-01

    Previous workers have correlated slope failures during rainstorms with rainfall intensity, rainfall duration, and seasonal antecedent rainfall. This note shows how such relationships can be interpreted using a periodic steady-state solution to the well-known linear pressure diffusion equation. Normalization of the governing equation yields a characteristic response time that is a function of soil thickness, saturated hydraulic conductivity, and pre-storm effective porosity, and which is analogous to the travel time of a piston wetting front. The effects of storm frequency and magnitude are also successfully quantified using dimensionless attenuation factors and lag times.

  13. Reduction in the Vapor Pressure in Condensation on Cold Droplets of a Liquid

    NASA Astrophysics Data System (ADS)

    Bochkareva, E. M.; Nemtsev, V. A.; Sorokin, V. V.; Terekhov, V. V.; Terekhov, V. I.

    2016-05-01

    A physicomathematical model of the process of depressurization in a pure saturated and superheated vapor due to the injection of monodisperse cold droplets of a liquid has been developed. A cellular model has been developed that is based on solving the equation of heat conduction in a liquid phase and on the integral method for a gas phase in a spherically symmetric one-dimensional formulation. Numerical investigation has been carried out of the influence of the size and concentration of the droplets and of the initial parameters of the steam on the dynamics of depressurization during the vapor condensation on the droplets.

  14. Reduction in the Vapor Pressure in Condensation on Cold Droplets of a Liquid

    NASA Astrophysics Data System (ADS)

    Bochkareva, E. M.; Nemtsev, V. A.; Sorokin, V. V.; Terekhov, V. V.; Terekhov, V. I.

    2016-06-01

    A physicomathematical model of the process of depressurization in a pure saturated and superheated vapor due to the injection of monodisperse cold droplets of a liquid has been developed. A cellular model has been developed that is based on solving the equation of heat conduction in a liquid phase and on the integral method for a gas phase in a spherically symmetric one-dimensional formulation. Numerical investigation has been carried out of the influence of the size and concentration of the droplets and of the initial parameters of the steam on the dynamics of depressurization during the vapor condensation on the droplets.

  15. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  16. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  17. Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport

    NASA Astrophysics Data System (ADS)

    Babu, Eadi Sunil; Kim, Sungjin; Song, Jung-Hoon; Hong, Soon-Ku

    2016-08-01

    The effect of growth pressure on the morphology of the ZnO nanostructures in chemical vapor transport by using Zn powder and oxygen as source materials has been investigated. Highly uniform aligned ZnO nanorods or multifaceted tripod structures were grown depending on the growth pressure. The mechanism governing the morphology change was explained by the relative concentration of Zn vapor and supersaturation based on experimental observations. It was concluded that heterogeneous nucleation on the substrate is enhanced at low growth pressure, while homogeneous nucleation from vapor phase is enhanced at high growth pressure. The difference resulted in different morphology of ZnO nanostructures. ZnO nanorods grown at optimized condition were used for the fabrication of gas sensor for the detection of H2 gas.

  18. Assessment of the Accuracy of Pharmacy Students’ Compounded Solutions Using Vapor Pressure Osmometry

    PubMed Central

    McPherson, Timothy B.

    2013-01-01

    Objective. To assess the effectiveness of using a vapor pressure osmometer to measure the accuracy of pharmacy students’ compounding skills. Design. Students calculated the theoretical osmotic pressure (mmol/kg) of a solution as a pre-laboratory exercise, compared their calculations with actual values, and then attempted to determine the cause of any errors found. Assessment. After the introduction of the vapor pressure osmometer, the first-time pass rate for solution compounding has varied from 85% to 100%. Approximately 85% of students surveyed reported that the instrument was valuable as a teaching tool because it objectively assessed their work and provided immediate formative assessment. Conclusions. This simple technique of measuring compounding accuracy using a vapor pressure osmometer allowed students to see the importance of quality control and assessment in practice for both pharmacists and technicians. PMID:23610476

  19. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.

    PubMed

    Perez Sirkin, Yamila A; Factorovich, Matías H; Molinero, Valeria; Scherlis, Damian A

    2016-06-14

    The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach ( Factorovich , M. H. J. Chem. Phys. 2014 , 140 , 064111 ) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid-vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion-ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions. PMID:27196963

  20. Pulmonary atresia with ventricular septal defect: a case for central venous pressure and oxygen saturation monitoring.

    PubMed Central

    Weiss, B. M.; Atanassoff, P. G.; Jenni, R.; Walder, B.; Wight, E.

    1998-01-01

    A 21-year-old patient with pulmonary atresia and ventricular septal defect (PA-VSD) was admitted to the hospital for tubal ligation. Invasive arterial and central venous (CVP) pressure, pulse oximetric oxygen saturation (SpO2), and (from the tip of oximetric central venous catheter) central venous oxygen saturation (ScvO2) and oxygen extraction rate (ExO2) were continuously monitored. Heart rate (range: 68-75 beat/min), mean arterial pressure (80-90 mmHg), CVP (7-10 mmHg), SpO2 (79-90 percent), ScvO2 (57-70 percent), and ExO2 (21-30 percent) remained stable during epidural anesthesia and transvaginal sterilization. Following an overnight stay (peak SpO2 92 percent; peak ScvO2 71 percent; through ExO2 21 percent), the oxygen data returned to baseline on awakening (SpO2 < 80 percent, ScvO2 < 55 percent, ExO2 > 35 percent), and the patient was discharged. In PA-VSD, a single-outlet double-ventricle anomaly, CVP reflects the preload of systemic ventricle. As the mixed venous oxygen saturation cannot be defined, ScvO2 is the best available indicator of the whole body oxygen consumption. Continuous monitoring of CVP, ScvO2 and ExO2 in the superior vena cava may provide more insight into the response to anesthesia and surgery in patients with PA-VSD. Images Figure 1 PMID:9713951

  1. Vapor pressures of substituted polycarboxylic acids are much lower than previously reported

    NASA Astrophysics Data System (ADS)

    Huisman, A. J.; Krieger, U. K.; Zuend, A.; Marcolli, C.; Peter, T.

    2013-01-01

    The partitioning of compounds between the aerosol and gas phase is a primary focus in the study of the formation and fate of secondary organic aerosol. We present measurements of the vapor pressure of 2-Methylmalonic (isosuccinic) acid, 2-Hydroxymalonic (tartronic) acid, 2-Methylglutaric acid, 3-Hydroxy-3-carboxy-glutaric (citric) acid and 2,3-Dihydroxysuccinic (tartaric) acid which were obtained from the evaporation rate of supersaturated liquid particles levitated in an electrodynamic balance. Our measurements indicate that the pure component liquid vapor pressures at 298.15 K for tartronic, citric and tartaric acids are much lower than the same quantity which was derived from solid state measurements in the only other room temperature measurement of these materials (made by Booth et al., 2010). This strongly suggests that empirical correction terms in vapor pressure estimation models to account for the inexplicably high vapor pressures of these and similar compounds should be revisited, and that due caution should be used when the estimated vapor pressures of these and similar compounds are used as inputs for other studies.

  2. Vapor pressures of substituted polycarboxylic acids are much lower than previously reported

    NASA Astrophysics Data System (ADS)

    Huisman, A. J.; Krieger, U. K.; Zuend, A.; Marcolli, C.; Peter, T.

    2013-07-01

    The partitioning of compounds between the aerosol and gas phase is a primary focus in the study of the formation and fate of secondary organic aerosol. We present measurements of the vapor pressure of 2-methylmalonic (isosuccinic) acid, 2-hydroxymalonic (tartronic) acid, 2-methylglutaric acid, 3-hydroxy-3-carboxy-glutaric (citric) acid and DL-2,3-dihydroxysuccinic (DL-tartaric) acid, which were obtained from the evaporation rate of supersaturated liquid particles levitated in an electrodynamic balance. Our measurements indicate that the pure component liquid vapor pressures at 298.15 K for tartronic, citric and tartaric acids are much lower than the same quantity that was derived from solid state measurements in the only other room temperature measurement of these materials (made by Booth et al., 2010). This strongly suggests that empirical correction terms in a recent vapor pressure estimation model to account for the inexplicably high vapor pressures of these and similar compounds should be revisited, and that due caution should be used when the estimated vapor pressures of these and similar compounds are used as inputs for other studies.

  3. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    PubMed

    Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide. PMID:26890190

  4. Modeling atomization processes in high-pressure vaporizing sprays

    NASA Astrophysics Data System (ADS)

    Reitz, Rolf D.

    The theoretical basis and numerical implementation of KIVA, a multidimensional computer code for the simulation of atomization and vaporization processes in the injection of a liquid through a round hole into a compressed gas, are described. KIVA is based on the blob-injection model of Reitz and Diwakar (1987), taking into account the effects of liquid inertia, surface tension, and the aerodynamic forces on the jet, as well as drop collision and coalescence and the effect of drops on turbulence in the gas. The predictions of KIVA for different injection regimes are compared with published experimental data in extensive graphs, and good agreement is demonstrated.

  5. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry.

    PubMed

    Ahrenberg, Mathias; Beck, Martin; Neise, Christin; Keßler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2016-08-01

    The very low vapor pressure of ionic liquids is challenging to measure. At elevated temperatures the liquids might start to decompose, and at relatively low temperatures the vapor pressure becomes too low to be measured by conventional methods. In this work we developed a highly sensitive method for mass loss determination at temperatures starting from 350 K. This technique is based on an alternating current calorimeter equipped with a chip sensor that consists of a free-standing SiNx-membrane (thickness <1 μm) and a measuring area with lateral dimensions of the order of 1 mm. A small droplet (diameter ca. 600 μm) of an ionic liquid is vaporized isothermally from the chip sensor in a vacuum-chamber. The surface-to-volume-ratio of such a droplet is large and the relative mass loss due to evaporation is therefore easy to monitor by the changing heat capacity (J K(-1)) of the remaining liquid. The vapor pressure is determined from the measured mass loss rates using the Langmuir equation. The method was successfully tested for the determination of the vapor pressure and the vaporization enthalpy of an archetypical ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]). The data set created in this way in an extremely broad temperature range from 358 K to 780 K has allowed the estimation of the boiling temperature of [EMIm][NTf2]. The value (1120 ± 50) K should be considered as the first reliable boiling point of the archetypical ionic liquid obtained from experimental vapor pressures measured in the most possible close proximity to the normal boiling temperature. PMID:27425628

  6. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressure of the remediation material: (i) Method 25E in 40 CFR part 60 appendix A; (ii) Methods described... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure...

  7. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pressure of the remediation material: (i) Method 25E in 40 CFR part 60 appendix A; (ii) Methods described... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure...

  8. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure of the remediation material: (i) Method 25E in 40 CFR part 60 appendix A; (ii) Methods described... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure...

  9. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure of the remediation material: (i) Method 25E in 40 CFR part 60 appendix A; (ii) Methods described... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure...

  10. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure of the remediation material: (i) Method 25E in 40 CFR part 60 appendix A; (ii) Methods described... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure...