Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories. PMID:24074068
Quasinormal modes, bifurcations, and nonuniqueness of charged scalar-tensor black holes
Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.; Stefanov, Ivan Zh.
2010-09-15
In the present paper, we study the scalar sector of the quasinormal modes of charged general relativistic, static, and spherically symmetric black holes coupled to nonlinear electrodynamics and embedded in a class of scalar-tensor theories. We find that for a certain domain of the parametric space, there exists unstable quasinormal modes. The presence of instabilities implies the existence of scalar-tensor black holes with primary hair that bifurcate from the embedded general relativistic black-hole solutions at critical values of the parameters corresponding to the static zero modes. We prove that such scalar-tensor black holes really exist by solving the full system of scalar-tensor field equations for the static, spherically symmetric case. The obtained solutions for the hairy black holes are nonunique, and they are in one-to-one correspondence with the bounded states of the potential governing the linear perturbations of the scalar field. The stability of the nonunique hairy black holes is also examined, and we find that the solutions for which the scalar field has zeros are unstable against radial perturbations. The paper ends with a discussion of possible formulations of a new classification conjecture.
Black hole hair in generalized scalar-tensor gravity.
Sotiriou, Thomas P; Zhou, Shuang-Yong
2014-06-27
The most general action for a scalar field coupled to gravity that leads to second-order field equations for both the metric and the scalar--Horndeski's theory--is considered, with the extra assumption that the scalar satisfies shift symmetry. We show that in such theories, the scalar field is forced to have a nontrivial configuration in black hole spacetimes, unless one carefully tunes away a linear coupling with the Gauss-Bonnet invariant. Hence, black holes for generic theories in this class will have hair. This contradicts a recent no-hair theorem which seems to have overlooked the presence of this coupling. PMID:25014801
Charged anti-de Sitter scalar-tensor black holes and their thermodynamic phase structure
Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.; Stefanov, Ivan Zh.; Todorov, Michail D.
2010-05-15
In the present paper we numerically construct new charged anti-de Sitter black holes coupled to nonlinear Born-Infeld electrodynamics within a certain class of scalar-tensor theories. The properties of the solutions are investigated both numerically and analytically. We also study the thermodynamics of the black holes in the canonical ensemble. For large values of the Born-Infeld parameter and for a certain interval of the charge values we find the existence of a first-order phase transition between small and very large black holes. An unexpected result is that for a certain small charge subinterval two phase transitions have been observed, one of zeroth and one of first order. It is important to note that such phase transitions are also observed for pure Einstein-Born-Infeld-AdS black holes.
NASA Astrophysics Data System (ADS)
Berti, Emanuele; Cardoso, Vitor; Gualtieri, Leonardo; Horbatsch, Michael; Sperhake, Ulrich
2013-06-01
Scalar-tensor theories are a compelling alternative to general relativity and one of the most accepted extensions of Einstein’s theory. Black holes in these theories have no hair, but could grow “wigs” supported by time-dependent boundary conditions or spatial gradients. Time-dependent or spatially varying fields lead in general to nontrivial black hole dynamics, with potentially interesting experimental consequences. We carry out a numerical investigation of the dynamics of single and binary black holes in the presence of scalar fields. In particular we study gravitational and scalar radiation from black-hole binaries in a constant scalar-field gradient, and we compare our numerical findings to analytical models. In the single black hole case we find that, after a short transient, the scalar field relaxes to static configurations, in agreement with perturbative calculations. Furthermore we predict analytically (and verify numerically) that accelerated black holes in a scalar-field gradient emit scalar radiation. For a quasicircular black-hole binary, our analytical and numerical calculations show that the dominant component of the scalar radiation is emitted at twice the binary’s orbital frequency.
NASA Astrophysics Data System (ADS)
Cisterna, Adolfo; Cruz, Miguel; Delsate, Térence; Saavedra, Joel
2015-11-01
We derive the odd-parity perturbation equation for the nonminimal kinetic coupling sector of the general Horndeski theory, where the kinetic term is coupled to the metric and the Einstein tensor. We derive the potential of the perturbation, by identifying a master function and switching to tortoise coordinates. We then prove the mode stability under linear odd-parity perturbations of hairy black holes in this sector of Horndeski theory, when a cosmological constant term in the action is included. Finally, we comment on the existence of slowly rotating black hole solutions in this setup and discuss their implications on the physics of compact object configurations, such as neutron stars.
Black hole hair in generalized scalar-tensor gravity: An explicit example
NASA Astrophysics Data System (ADS)
Sotiriou, Thomas P.; Zhou, Shuang-Yong
2014-12-01
In a recent paper we showed that in shift-symmetric Horndeski theory the scalar field is forced to obtain a nontrivial configuration in black hole spacetimes, unless a linear coupling with the Gauss-Bonnet invariant is tuned away. As a result, black holes generically have hair in this theory. In this companion paper, we first review our argument and discuss it in more detail. We then present actual black hole solutions in the simplest case of a theory with the linear scalar-Gauss-Bonnet coupling. We generate exact solutions numerically for a wide range of values of the coupling and also construct analytic solutions perturbatively in the small-coupling limit. Comparison of the two types of solutions indicates that nonlinear effects that are not captured by the perturbative solution lead to a finite area, as opposed to a central, singularity. Remarkably, black holes have a minimum size, controlled by the length scale associated with the scalar-Gauss-Bonnet coupling. We also compute some phenomenological observables for the numerical solution for a wide range of values of the scalar-Gauss-Bonnet coupling. Deviations from the Schwarzschild geometry are generically very small.
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Gravitational radiation from compact binaries in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Lang, R. N.
2015-05-01
General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO and eLISA will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present progress in the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar- tensor theories. The waveforms are constructed using a standard GR method known as “direct integration of the relaxed Einstein equations,” appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity. In another, mixed black hole- neutron star systems, all differences from GR can be characterized by only a single parameter.
Gravitational radiation from compact binaries in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Lang, Ryan
2014-03-01
General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar-tensor theories. The waveforms are constructed using a standard GR method known as ``Direct Integration of the Relaxed Einstein equations,'' appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, mixed black hole-neutron star systems, all differences from GR can be characterized by only a single parameter. In another, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity.
Brügmann, B.; Ghez, A. M.; Greiner, J.
2001-01-01
Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801
NASA Astrophysics Data System (ADS)
Livio, Mario; Koekemoer, Anton M.
2011-02-01
Participants; Preface Mario Livio and Anton Koekemoer; 1. Black holes, entropy, and information G. T. Horowitz; 2. Gravitational waves from black-hole mergers J. G. Baker, W. D. Boggs, J. M. Centrella, B. J. Kelley, S. T. McWilliams and J. R. van Meter; 3. Out-of-this-world physics: black holes at future colliders G. Landsberg; 4. Black holes in globular clusters S. L. W. McMillan; 5. Evolution of massive black holes M. Volonteri; 6. Supermassive black holes in deep multiwavelength surveys C. M. Urry and E. Treister; 7. Black-hole masses from reverberation mapping B. M. Peterson and M. C. Bentz; 8. Black-hole masses from gas dynamics F. D. Macchetto; 9. Evolution of supermassive black holes A. Müller and G. Hasinger; 10. Black-hole masses of distant quasars M. Vestergaard; 11. The accretion history of supermassive black holes K. Brand and the NDWFS Boötes Survey Teams; 12. Strong field gravity and spin of black holes from broad iron lines A. C. Fabian; 13. Birth of massive black-hole binaries M. Colpi, M. Dotti, L. Mayer and S. Kazantzidis; 14. Dynamics around supermassive black holes A. Gualandris and D. Merritt; 15. Black-hole formation and growth: simulations in general relativity S. L. Shapiro; 16. Estimating the spins of stellar-mass black holes J. E. McClintock, R. Narayan and R. Shafee; 17. Stellar relaxation processes near the Galactic massive black hole T. Alexander; 18. Tidal disruptions of stars by supermassive black holes S. Gezari; 19. Where to look for radiatively inefficient accretion flows in low-luminosity AGN M. Chiaberge; 20. Making black holes visible: accretion, radiation, and jets J. H. Krolik.
NASA Astrophysics Data System (ADS)
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Myung, Yun Soo; Moon, Taeyoon; Son, Edwin J.
2011-06-15
We investigate the stability of an f(R) (Schwarzschild) black hole obtained from the f(R) gravity. It is difficult to carry out the perturbation analysis around the black hole because the linearized Einstein equation is fourth order in f(R) gravity. In order to resolve this difficulty, we transform f(R) gravity into the scalar-tensor theory by introducing two auxiliary scalars. In this case, the linearized curvature scalar becomes a scalaron, showing that all linearized equations are second order, which are the same equations for the massive Brans-Dicke theory. It turns out that the f(R) black hole is stable against the external perturbations if the scalaron does not have a tachyonic mass.
Instability of hairy black holes in shift-symmetric Horndeski theories
NASA Astrophysics Data System (ADS)
Ogawa, Hiromu; Kobayashi, Tsutomu; Suyama, Teruaki
2016-03-01
Recently it was pointed out that in shift-symmetric scalar-tensor theories a black hole can have nontrivial scalar hair which depends linearly on time. We develop black hole perturbation theory for such solutions and compute the quadratic action of odd parity perturbations. We show that around all the solutions known so far with such time-dependent scalar hair the perturbations trigger instabilities or are presumably strongly coupled.
NASA Astrophysics Data System (ADS)
Lang, Ryan N.
2014-04-01
We derive the tensor gravitational waveform generated by a binary of nonspinning compact objects (black holes or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is accurate to second post-Newtonian order beyond the leading order quadrupole approximation. We use the direct integration of the relaxed Einstein equations formalism, appropriately adapted to scalar-tensor theories, along with previous results for the equations of motion in these theories. The self-gravity of the compact objects is treated with an approach developed by Eardley. The scalar field causes deviations from the general relativistic waveform that depend only on a small number of parameters. Among the effects of the scalar field are new hereditary terms which depend on the past history of the source. One of these, a dipole-dipole coupling, produces a zero-frequency "gravitational-wave memory" equivalent to the Christodoulou memory of general relativity. In the special case of two black holes, the waveform reduces to the general relativistic waveform. For a mixed (black hole-neutron star) system, the waveform is identical to that of Einstein's theory to first post-Newtonian order, with deviations at higher order depending only on a single parameter. The behavior in these cases matches that found for the equations of motion.
Universal instability of hairy black holes in Lovelock-Galileon theories in D dimensions
NASA Astrophysics Data System (ADS)
Takahashi, Kazufumi; Suyama, Teruaki; Kobayashi, Tsutomu
2016-03-01
We analyze spherically symmetric black hole solutions with time-dependent scalar hair in a class of Lovelock-Galileon theories, which are the scalar-tensor theories with second-order field equations in arbitrary dimensions. We first show that known black hole solutions in five dimensions are always plagued by the ghost/gradient instability in the vicinity of the horizon. We then generalize such black hole solutions to higher dimensions and show that the same instability found in five dimensions appears universally in any number of dimensions.
Black hole based tests of general relativity
NASA Astrophysics Data System (ADS)
Yagi, Kent; Stein, Leo C.
2016-03-01
General relativity has passed all solar system experiments and neutron star based tests, such as binary pulsar observations, with flying colors. A more exotic arena for testing general relativity is in systems that contain one or more black holes. Black holes are the most compact objects in the Universe, providing probes of the strongest-possible gravitational fields. We are motivated to study strong-field gravity since many theories give large deviations from general relativity only at large field strengths, while recovering the weak-field behavior. In this article, we review how one can probe general relativity and various alternative theories of gravity by using electromagnetic waves from a black hole with an accretion disk, and gravitational waves from black hole binaries. We first review model-independent ways of testing gravity with electromagnetic/gravitational waves from a black hole system. We then focus on selected examples of theories that extend general relativity in rather simple ways. Some important characteristics of general relativity include (but are not limited to) (i) only tensor gravitational degrees of freedom, (ii) the graviton is massless, (iii) no quadratic or higher curvatures in the action, and (iv) the theory is four-dimensional. Altering a characteristic leads to a different extension of general relativity: (i) scalar-tensor theories, (ii) massive gravity theories, (iii) quadratic gravity, and (iv) theories with large extra dimensions. Within each theory, we describe black hole solutions, their properties, and current and projected constraints on each theory using black hole based tests of gravity. We close this review by listing some of the open problems in model-independent tests and within each specific theory.
Extended scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Crisostomi, Marco; Koyama, Kazuya; Tasinato, Gianmassimo
2016-04-01
We study new consistent scalar-tensor theories of gravity recently introduced by Langlois and Noui with potentially interesting cosmological applications. We derive the conditions for the existence of a primary constraint that prevents the propagation of an additional dangerous mode associated with higher order equations of motion. We then classify the most general, consistent scalar-tensor theories that are at most quadratic in the second derivatives of the scalar field. In addition, we investigate the possible connection between these theories and (beyond) Horndeski through conformal and disformal transformations. Finally, we point out that these theories can be associated with new operators in the effective field theory of dark energy, which might open up new possibilities to test dark energy models in future surveys.
Inflation in anisotropic scalar-tensor theories
NASA Technical Reports Server (NTRS)
Pimentel, Luis O.; Stein-Schabes, Jaime
1988-01-01
The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
Numerical simulations of stellar collapse in scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Sperhake, Ulrich; Ott, Christian D.
2016-07-01
We present numerical-relativity simulations of spherically symmetric core collapse and compact-object formation in scalar-tensor theories of gravity. The additional scalar degree of freedom introduces a propagating monopole gravitational-wave mode. Detection of monopole scalar waves with current and future gravitational-wave experiments may constitute smoking gun evidence for strong-field modifications of general relativity. We collapse both polytropic and more realistic pre-supernova profiles using a high-resolution shock-capturing scheme and an approximate prescription for the nuclear equation of state. The most promising sources of scalar radiation are protoneutron stars collapsing to black holes. In case of a galactic core collapse event forming a black hole, Advanced LIGO may be able to place independent constraints on the parameters of the theory at a level comparable to current solar-system and binary-pulsar measurements. In the region of the parameter space admitting spontaneously scalarised stars, transition to configurations with prominent scalar hair before black-hole formation further enhances the emitted signal. Although a more realistic treatment of the microphysics is necessary to fully investigate the occurrence of spontaneous scalarisation of neutron star remnants, we speculate that formation of such objects could constrain the parameters of the theory beyond the current bounds obtained with solar-system and binary-pulsar experiments.
NASA Astrophysics Data System (ADS)
Fukue, Jun
2000-08-01
A black hole falling into the Earth would syndrome toward the center, while it would shine through mass accretion. The author has re-examined the dynamics of such a black hole in the Earth. In the case of a non-radiating black hole, the timescale of the syndrome is inversely proportional to the initial mass of the black hole. In the case of a radiating black hole, on the other hand, the syndrome time is of the order of the Eddington time. The radiating black hole in the Earth would act as a strong heat source.
In this NASA Now episode, Dr. Daniel Patnaude talks about how his team discovered a baby black hole, why this is important and how black holes create tidal forces. Throughout his discussion, Patnau...
NASA Astrophysics Data System (ADS)
Levin, Janna; D'Orazio, Daniel
2016-03-01
Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.
Hyperbolicity of scalar-tensor theories of gravity
Salgado, Marcelo; Martinez del Rio, David; Alcubierre, Miguel; Nunez, Dario
2008-05-15
Two first order strongly hyperbolic formulations of scalar-tensor theories of gravity allowing nonminimal couplings (Jordan frame) are presented along the lines of the 3+1 decomposition of spacetime. One is based on the Bona-Masso formulation, while the other one employs a conformal decomposition similar to that of Baumgarte-Shapiro-Shibata-Nakamura. A modified Bona-Masso slicing condition adapted to the scalar-tensor theory is proposed for the analysis. This study confirms that the scalar-tensor theory has a well-posed Cauchy problem even when formulated in the Jordan frame.
NASA Astrophysics Data System (ADS)
Sokolov, V. V.
2015-06-01
There are two new observational facts: the mass spectrum of neutron stars and black hole candidates (or collapsars) shows an evident absence of compact objects with masses within the interval from 2 M⊙ (with a peak for neutron stars about 1.4 M⊙) to about 6 M⊙, and in close binary stellar systems with a low-massive (about 0.6 M⊙) optical companion the most probable mass value (the peak in the masses distribution of black hole candidates) is close to 7 M⊙. The problem of the compact objects discrete mass spectra demands some solution both in the context of the supernovae and gamma-ray bursts relation, and in connection with the core-collapse supernovae explosion mechanism itself. In the totally non-metric scalar-tensor model of gravitational interaction (in a modified or extended Feynman field approach to gravitation) the total mass of a compact relativistic object with extremely strong gravitational field (an analog of black holes in General Relativity) is approximately equal to 6.7 M⊙ with radius of a region filled with a matter (quark-gluon plasma) ≈ 10 km. Polarized emission of long gamma-ray bursts, a black-body component in their spectrum and other observed properties could be explained by the direct manifestation of a surface of these collapsars.
NASA Astrophysics Data System (ADS)
Sciama, D. W.
A physical account of the processes of black hole explosions is presented. Black holes form when the degeneracy pressure in a neutron star can no longer balance gravitational forces because the mass of the star is too large. Although black holes absorb surrounding matter through the action of a gravitational field, quantum fluctuations have been theoretically demonstrated to occur in the vacuum, and feature a thermal character. The temperature field decreases outwards, in accordance with the nonuniformity of the gravitational field, but does allow thermal radiation, i.e., Hawking radiation, to escape the black hole. The time scale for the radiation shortens as the mass of the black hole decreases, until a time scale is reached which is short enough for the process to be called an explosion. Observations of electron-positron Hawking radiation are suggested to offer proof of a black hole explosion.
NASA Astrophysics Data System (ADS)
He, Xiao-Gang; Ma, Bo-Qiang
We show that black holes can be quantized in an intuitive and elegant way with results in agreement with conventional knowledge of black holes by using Bohr's idea of quantizing the motion of an electron inside the atom in quantum mechanics. We find that properties of black holes can also be derived from an ansatz of quantized entropy Δ S = 4π k Δ R/{{-{λ }}}, which was suggested in a previous work to unify the black hole entropy formula and Verlinde's conjecture to explain gravity as an entropic force. Such an Ansatz also explains gravity as an entropic force from quantum effect. This suggests a way to unify gravity with quantum theory. Several interesting and surprising results of black holes are given from which we predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors.
NASA Astrophysics Data System (ADS)
Chung, Hyeyoun
2015-10-01
This thesis explores the evolution of different types of black holes, and the ways in which black hole dynamics can be used to answer questions about other physical systems. We first investigate the differences in observable gravitational effects between a four-dimensional Randall-Sundrum (RS) braneworld universe compared to a universe without the extra dimension, by considering a black hole solution to the braneworld model that is localized on the brane. When the brane has a negative cosmological constant, then for a certain range of parameters for the black hole, the intersection of the black hole with the brane approximates a Banados-Teitelboim-Zanelli (BTZ) black hole on the brane with corrections that fall off exponentially outside the horizon. We compute the quasinormal modes of the braneworld black hole, and compare them to the known quasinormal modes of the three-dimensional BTZ black hole. We find that there are two distinct regions for the braneworld black hole solutions that are reflected in the dependence of the quasinormal modes on the black hole mass. The imaginary parts of the quasinormal modes display phenomenological similarities to the quasinormal modes of the three-dimensional BTZ black hole, indicating that nonlinear gravitational effects may not be enough to distinguish between a lower-dimensional theory and a theory derived from a higher-dimensional braneworld. Secondly, we consider the evolution of non-extremal black holes in N=4, d=2 supergravity, and investigate how such black holes might evolve over time if perturbed away from extremality. We study this problem in the probe limit by finding tunneling amplitudes for a Dirac field in a single-centered background, which gives the decay rates for the emission of charged probe black holes from the central black hole. We find that there is no minimum to the potential for the probe particles at a finite distance from the central black hole, so any probes that are emitted escape to infinity. If
Begelman, Mitchell C
2003-06-20
Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138
Noncommutative Singular Black Holes
NASA Astrophysics Data System (ADS)
Hamid Mehdipour, S.
2010-11-01
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
NASA Astrophysics Data System (ADS)
Bousso, R.; Hawking, S. W.
1997-08-01
We summarise recent work on the quantum production of black holes in the inflationary era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for the pair creation rate and for the evolution of the black holes.
Fluctuating black hole horizons
NASA Astrophysics Data System (ADS)
Mei, Jianwei
2013-10-01
In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.
Self-accelerating solutions of scalar-tensor gravity
Barenboim, Gabriela; Lykken, Joseph D E-mail: lykken@fnal.gov
2008-03-15
Scalar-tensor gravity is the simplest and best understood modification of general relativity, consisting of a real scalar field coupled directly to the Ricci scalar curvature. Models of this type have self-accelerating solutions. In an example inspired by string dilaton couplings, scalar-tensor gravity coupled to ordinary matter exhibits a de Sitter type expansion, even in the presence of a negative cosmological constant whose magnitude exceeds that of the matter density. This unusual behavior does not require phantoms, ghosts or other exotic sources. More generally, we show that any expansion history can be interpreted as arising partly or entirely from scalar-tensor gravity. To distinguish any quintessence or inflation model from its scalar-tensor variants, we use the fact that scalar-tensor models imply deviations of the post-Newtonian parameters of general relativity and time variation of Newton's gravitational coupling G. We emphasize that next-generation probes of modified GR and the time variation of G are an essential complement to dark energy probes based on luminosity-distance measurements.
NASA Astrophysics Data System (ADS)
Hartman, Thomas Edward
The connection between black holes in four dimensions and conformal field theories (CFTs) in two dimensions is explored, focusing on zero temperature (extreme) black holes and their low-temperature cousins. It is shown that extreme black holes in a theory of quantum gravity are holographically dual to field theories living in two dimensions without gravity, and that the field theory reproduces a variety of black hole phenomena in detail. The extreme black hole/CFT correspondence is derived from a symmetry analysis near the horizon of a Kerr black hole with mass M and maximal angular momentum J=M 2. The asymptotic symmetry generators form one copy of the Virasoro algebra with central charge c=12J, which implies that the near-horizon quantum states are identical to those of a two-dimensional CFT. We discuss extensions of this result to near-extreme black holes and cosmological horizons. Astrophysical black holes are never exactly extremal, but the black hole GRS1915+105 observed through X-ray and radio telescopy is likely within 1% of the extremal spin, suggesting that this extraordinary and well studied object is approximately dual to a two-dimensional CFT with c˜1079. As evidence for the correspondence, microstate counting in the CFT is used to derive the Bekenstein-Hawking area law for the Kerr entropy, S=Horizon area/4. Furthermore, the correlators in the dual CFT are shown to reproduce the scattering amplitudes of a charged scalar or spin-½ field by a near-extreme Kerr-Newman black hole, and a neutral spin-1 or spin-2 field by a near-extreme Kerr black hole. Scattering amplitudes probe the vacuum of fields living on the black hole background. For scalars, bound superradiant modes lead to an instability, while for fermions, it is shown that the bound superradiant modes condense and form a Fermi sea which extends well outside the ergosphere. Assuming no further instabilities, the low energy effective theory near the black hole is described by ripples in the
ULTRAMASSIVE BLACK HOLE COALESCENCE
Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu
2015-01-10
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.
Mathur, Samir D.
2012-11-15
The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome 'remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a 'fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: Black-Right-Pointing-Pointer The information paradox is a serious problem. Black-Right-Pointing-Pointer To solve it we need to find 'hair' on black holes. Black-Right-Pointing-Pointer In string theory we find 'hair' by the fuzzball construction. Black-Right-Pointing-Pointer Fuzzballs help to resolve many other issues in gravity.
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Figueras, Pau; Martínez, Marina
2014-12-01
We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary nonmonotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black rings, to black Saturns, and to a novel class of bumpy black rings. For a different, recently identified class of bumpy black holes, we find evidence that this family ends in solutions with a localized singularity that exhibits apparently universal properties, and which does not seem to allow for transitions to any known class of black holes.
NASA Astrophysics Data System (ADS)
Garmire, Gordon
1999-09-01
WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.
Cosmic black-hole hair growth and quasar OJ287
Horbatsch, M.W.; Burgess, C.P. E-mail: cburgess@perimeterinstitute.ca
2012-05-01
An old result (astro-ph/9905303) by Jacobson implies that a black hole with Schwarzschild radius r{sub s} acquires scalar hair, Q∝r{sub s}{sup 2}μ, when the (canonically normalized) scalar field in question is slowly time-dependent far from the black hole, ∂{sub t}φ ≅ μM{sub p} with μr{sub s} << 1 time-independent. Such a time dependence could arise in scalar-tensor theories either from cosmological evolution, or due to the slow motion of the black hole within an asymptotic spatial gradient in the scalar field. Most remarkably, the amount of scalar hair so induced is independent of the strength with which the scalar couples to matter. We argue that Jacobson's Miracle Hair-Growth Formula{sup ©} implies, in particular, that an orbiting pair of black holes can radiate dipole radiation, provided only that the two black holes have different masses. Quasar OJ287, situated at redshift z ≅ 0.306, has been argued to be a double black-hole binary system of this type, whose orbital decay recently has been indirectly measured and found to agree with the predictions of General Relativity to within 6%. We argue that the absence of observable scalar dipole radiation in this system yields the remarkable bound |μ| < (16 days){sup −1} on the instantaneous time derivative at this redshift (as opposed to constraining an average field difference, Δφ, over cosmological times), provided only that the scalar is light enough to be radiated — i.e. m∼<10{sup −23} eV — independent of how the scalar couples to matter. This can also be interpreted as constraining (in a more model-dependent way) the binary's motion relative to any spatial variation of the scalar field within its immediate vicinity within its host galaxy.
Cosmic black-hole hair growth and quasar OJ287
NASA Astrophysics Data System (ADS)
Horbatsch, M. W.; Burgess, C. P.
2012-05-01
An old result (astro-ph/9905303) by Jacobson implies that a black hole with Schwarzschild radius rs acquires scalar hair, Qproptors2μ, when the (canonically normalized) scalar field in question is slowly time-dependent far from the black hole, ∂tphi simeq μMp with μrs << 1 time-independent. Such a time dependence could arise in scalar-tensor theories either from cosmological evolution, or due to the slow motion of the black hole within an asymptotic spatial gradient in the scalar field. Most remarkably, the amount of scalar hair so induced is independent of the strength with which the scalar couples to matter. We argue that Jacobson's Miracle Hair-Growth Formula© implies, in particular, that an orbiting pair of black holes can radiate dipole radiation, provided only that the two black holes have different masses. Quasar OJ287, situated at redshift z simeq 0.306, has been argued to be a double black-hole binary system of this type, whose orbital decay recently has been indirectly measured and found to agree with the predictions of General Relativity to within 6%. We argue that the absence of observable scalar dipole radiation in this system yields the remarkable bound |μ| < (16 days)-1 on the instantaneous time derivative at this redshift (as opposed to constraining an average field difference, Δphi, over cosmological times), provided only that the scalar is light enough to be radiated — i.e. mlsim10-23 eV — independent of how the scalar couples to matter. This can also be interpreted as constraining (in a more model-dependent way) the binary's motion relative to any spatial variation of the scalar field within its immediate vicinity within its host galaxy.
Hamiltonian structure of scalar-tensor theories beyond Horndeski
Lin, Chunshan; Mukohyama, Shinji; Namba, Ryo; Saitou, Rio E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp E-mail: rio.saitou@ipmu.jp
2014-10-01
We study the nature of constraints and the Hamiltonian structure in a scalar-tensor theory of gravity recently proposed by Gleyzes, Langlois, Piazza and Vernizzi (GLPV). For the simple case with A{sub 5}=0, namely when the canonical momenta conjugate to the spatial metric are linear in the extrinsic curvature, we prove that the number of physical degrees of freedom is three at fully nonlinear level, as claimed by GLPV. Therefore, while this theory extends Horndeski's scalar-tensor gravity theory, it is protected against additional degrees of freedom.
Anisotropically inflating universes in a scalar-tensor theory
Kao, W. F.; Lin, I.-C.
2009-02-15
We show that a Brans-Dicke model admits some anisotropically inflating solutions which are identical to the solutions found in a higher derivative pure gravity theory. These inflating solutions were shown to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. The stability conditions of these solutions in this scalar-tensor theory are shown explicitly in this paper. It is shown that there exist unstable modes of the anisotropic perturbations. Therefore the inflating solutions are unstable in the scalar-tensor theory.
Scalar-tensor theories with an external scalar
NASA Astrophysics Data System (ADS)
Chauvineau, Bertrand; Rodrigues, Davi C.; Fabris, Júlio C.
2016-06-01
Scalar-tensor (ST) gravity is considered in the case where the scalar is an external field. We show that general relativity (GR) and usual ST gravity are particular cases of the external scalar-tensor (EST) gravity. It is shown with a particular cosmological example that it is possible to join a part of a GR solution to a part of a ST one such that the complete solution neither belongs to GR nor to ST, but fully satisfies the EST field equations. We argue that external fields may effectively work as a type of screening mechanism for ST theories.
Scalar-tensor theory of gravitation with negative coupling constant
NASA Technical Reports Server (NTRS)
Smalley, L. L.; Eby, P. B.
1976-01-01
The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.
NASA Astrophysics Data System (ADS)
Barr, Ian A.; Bull, Anne; O’Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.
2016-07-01
Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.
ERIC Educational Resources Information Center
Ruffini, Remo; Wheeler, John A.
1971-01-01
discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)
NASA Technical Reports Server (NTRS)
Garcia, M.
1998-01-01
Our UV/VIS work concentrates on black hole X-ray nova. These objects consist of two stars in close orbit, one of which we believe is a black hole - our goal is to SHOW that one is a black hole. In order to reach this goal we carry out observations in the Optical, UV, IR and X-ray bands, and compare the observations to theoretical models. In the past year, our UV/VIS grant has provided partial support (mainly travel funds and page charges) for work we have done on X-ray nova containing black holes and neutron stars. We have been very successful in obtaining telescope time to support our project - we have completed approximately a dozen separate observing runs averaging 3 days each, using the MMT (5M), Lick 3M, KPNO 2.1M, CTIO 4M, CTIO 1.5M, and the SAO/WO 1.2M telescopes. These observations have allowed the identification of one new black hole (Nova Oph 1977), and allowed the mass of another to be measured (GS2000+25). Perhaps our most exciting new result is the evidence we have gathered for the existence of 'event horizons' in black hole X-ray nova.
ERIC Educational Resources Information Center
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
A Class of Homogeneous Scalar Tensor Cosmologies with a Radiation Fluid
NASA Astrophysics Data System (ADS)
Yazadjiev, Stoytcho S.
We present a new class of exact homogeneous cosmological solutions with a radiation fluid for all scalar tensor theories. The solutions belong to Bianchi type VIh cosmologies. Explicit examples of nonsingular homogeneous scalar tensor cosmologies are also given.
NASA Astrophysics Data System (ADS)
Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.
2011-10-01
In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.
NASA Astrophysics Data System (ADS)
Genzel, Reinhard
1998-01-01
The dimness of the black holes located at the center of galaxies surprises astrophysicists, but a possible explanation has been found in the behavior of the plasma they consume. In a hot accretion flow, the gas is ionized to form a plasma. The heavy ions carry most of the mass, and thus of the energy, whereas the electrons produce most of the radiation. But, crucially, in a low-density flow the temperatures of the ions and of the electrons may decouple. Consequently, most of the gravitational energy would be viscously converted into thermal energy of the ions and not radiated away by the electrons. Instead, the gravitational energy is carried with the flow across the event horizon of the black hole. Such a flow leads to a low radiation efficiency even in a highly dissipative accretion disk.
NASA Astrophysics Data System (ADS)
Centrella, Joan
2009-05-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
NASA Astrophysics Data System (ADS)
Hawking, S. W.
1996-03-01
One would expect spacetime to have a foamlike structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix S/ that does not factorize into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.
NASA Technical Reports Server (NTRS)
Centrella, John
2009-01-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
NASA Astrophysics Data System (ADS)
Vaz, Cenalo; Wijewardhana, L. C. R.
2013-12-01
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.
NASA Astrophysics Data System (ADS)
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-01
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
NASA Technical Reports Server (NTRS)
Centrella, Joan
2010-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wove detection, testing general relativity, and astrophysics.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746
Lyutikov, Maxim; McKinney, Jonathan C.
2011-10-15
The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N{sub B}=e{Phi}{sub {infinity}}/({pi}c({h_bar}/2{pi})), where {Phi}{sub {infinity}}{approx_equal}2{pi}{sup 2}B{sub NS}R{sub NS}{sup 3}/(P{sub NS}c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Noncommutative solitonic black hole
NASA Astrophysics Data System (ADS)
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2012-05-01
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Characterizing Black Hole Mergers
NASA Technical Reports Server (NTRS)
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
NASA Technical Reports Server (NTRS)
Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.
2010-01-01
Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.
NASA Technical Reports Server (NTRS)
Dowker, Fay; Gregory, Ruth; Traschen, Jennie
1991-01-01
We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex sitting at the horizon of a black hole. We find the asymptotic behaviors, at the horizon and at infinity, of vortex solutions for the gauge and scalar fields in an abelian Higgs model on a Euclidean Schwarzschild background and interpolate between them by integrating the equations numerically. Calculating the backreaction shows that the effect of the vortex is to cut a slice out of the Schwarzschild geometry. Consequences of these solutions for black hole thermodynamics are discussed.
Post-Newtonian celestial mechanics in scalar-tensor cosmology
NASA Astrophysics Data System (ADS)
Galiautdinov, Andrei; Kopeikin, Sergei M.
2016-08-01
Applying the recently developed dynamical perturbation formalism on cosmological background to scalar-tensor theory, we provide a solid theoretical basis and a rigorous justification for phenomenological models of orbital dynamics that are currently used to interpret experimental measurements of the time-dependent gravitational constant. We derive the field equations for the scalar-tensor perturbations and study their gauge freedom associated with the cosmological expansion. We find a new gauge eliminating a prohibitive number of gauge modes in the field equations and significantly simplifying post-Newtonian equations of motion for localized astronomical systems in the universe with a time-dependent gravitational constant. We identify several new post-Newtonian terms and calculate their effect on secular cosmological evolution of the osculating orbital elements.
Wormholes, the weak energy condition, and scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Shaikh, Rajibul; Kar, Sayan
2016-07-01
We obtain a large class of Lorentzian wormhole spacetimes in scalar-tensor gravity, for which the matter stress energy does satisfy the weak energy condition. Our constructions have zero Ricci scalar and an everywhere finite, nonzero scalar field profile. Interpreting the scalar-tensor gravity as an effective on-brane theory resulting from a two-brane Randall-Sundrum model of warped extra dimensions, it is possible to link wormhole existence with that of extra dimensions. We study the geometry, matter content, gravitational redshift and circular orbits in such wormholes and argue that our examples are perhaps among those which may have some observational relevance in astrophysics in the future. We also study traversability and find that our wormholes are indeed traversable for values of the metric parameters satisfying the weak energy condition.
Anabalón, Andrés; Astefanesei, Dumitru
2015-03-26
We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim; McKinney, Jonathan C.
2011-10-01
The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
NASA Astrophysics Data System (ADS)
Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki
2012-03-01
We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.
Nathanail, Antonios; Contopoulos, Ioannis
2014-06-20
We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.
NASA Technical Reports Server (NTRS)
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Bender, P.; Bloom, E.; Cominsky, L.
1995-07-01
Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.
Weighing supermassive black holes
NASA Astrophysics Data System (ADS)
Rafiee, Alireza
We calculate the black hole masses for a sample of 27728 quasars selected from the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3). To ensure a high signal-to-noise ratio, we reconstruct quasar spectra for this large sample of quasars using the eigenspectra method (Yip et al., 2004). This method reduces the uncertainty of the measurements for even noisy original spectra, making almost all the SDSS quasar spectra usable for our study. A few applications for black hole mass estimates are presented here. Wang et al. (2006) estimated an average radiative efficiency of 30%-35% for quasars at moderate redshift, which implies that most supermassive black holes are rotating very rapidly. Using our black hole mass estimates, we have found that their method is not independent of quasar lifetimes and thus that quasars do not necessarily have such high efficiencies. As a second application, we have investigated a claim by Steinhardt and Elvis (2009) that there exists a sub-Eddington boundary in the quasar mass-luminosity plane using the Shen et al. (2008) mass estimates. We re-calibrate the mass-scaling relations following Wang et al. (2009) with the most up-to-date reverberation estimates of black hole masses. We compare results from the original data sets with the new re-calibrated estimates of the mass-luminosity plane. We conclude that the presence of the sub-Eddington boundary in the original data of Shen et al. (2008) is likely due to biases in the mass-scaling relation and not to any physical process.
Rotating black hole and quintessence
NASA Astrophysics Data System (ADS)
Ghosh, Sushant G.
2016-04-01
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω ) due to the quintessential matter, apart from the mass ( M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α =-e^2 ne 0 and ω =1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α =0. Interestingly, for a given value of parameter ω , there exists a critical rotation parameter (a=aE), which corresponds to an extremal black hole with degenerate horizons, while for a
Prisons of light : black holes
NASA Astrophysics Data System (ADS)
Ferguson, Kitty
What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE
Takahashi, Masaaki; Takahashi, Rohta
2010-05-15
We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.
NASA Astrophysics Data System (ADS)
Chamblin, A.; Hawking, S. W.; Reall, H. S.
2000-03-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
NASA Technical Reports Server (NTRS)
Dolan, Joseph F.; Fisher, Richard R. (Technical Monitor)
2001-01-01
When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.
Thermal corpuscular black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-06-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.
NASA Astrophysics Data System (ADS)
Contopoulos, I.
2013-09-01
We revisit the Blandford & Znajek (1977) process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current I. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem, the inner `light surface' located inside the ergosphere, and the outer `light surface' which is the generalization of the pulsar light cylinder. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blanford & Znajek. Unless the black hole is surrounded by a thick disk and/or extended disk outflows, the asymptotic solution is very similar to the asymptotic pulsar magnetosphere which has no collimation and no significant plasma acceleration. We discuss the role of the surrounding disk and of pair production in the generation of black hole jets.
Black Holes in Higher Dimensions
NASA Astrophysics Data System (ADS)
Horowitz, Gary T.
2012-04-01
List of contributors; Preface; Part I. Introduction: 1. Black holes in four dimensions Gary Horowitz; Part II. Five Dimensional Kaluza-Klein Theory: 2. The Gregory-Laflamme instability Ruth Gregory; 3. Final state of Gregory-Laflamme instability Luis Lehner and Frans Pretorius; 4. General black holes in Kaluza-Klein theory Gary Horowitz and Toby Wiseman; Part III. Higher Dimensional Solutions: 5. Myers-Perry black holes Rob Myers; 6. Black rings Roberto Emparan and Harvey Reall; Part IV. General Properties: 7. Constraints on the topology of higher dimensional black holes Greg Galloway; 8. Blackfolds Roberto Emparan; 9. Algebraically special solutions in higher dimensions Harvey Reall; 10. Numerical construction of static and stationary black holes Toby Wiseman; Part V. Advanced Topics: 11. Black holes and branes in supergravity Don Marolf; 12. The gauge/gravity duality Juan Maldacena; 13. The fluid/gravity correspondence Veronika Hubeny, Mukund Rangamani and Shiraz Minwalla; 14. Horizons, holography and condensed matter Sean Hartnoll; Index.
Nonuniversal scalar-tensor theories and big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth
2009-05-01
We investigate the constraints that can be set from big bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big bang nucleosynthesis sets more stringent constraints than those obtained from Solar System tests.
Nonuniversal scalar-tensor theories and big bang nucleosynthesis
Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth
2009-05-15
We investigate the constraints that can be set from big bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big bang nucleosynthesis sets more stringent constraints than those obtained from Solar System tests.
Stellar oscillations in scalar-tensor theory of gravity
Sotani, Hajime; Kokkotas, Kostas D.
2005-06-15
We derive the perturbation equations for relativistic stars in scalar-tensor theories of gravity and study the corresponding oscillation spectrum. We show that the frequency of the emitted gravitational waves is shifted proportionally to the scalar field strength. Scalar waves which might be produced from such oscillations can be a unique probe for the theory, but their detectability is questionable if the radiated energy is small. However, we show that there is no need for a direct observation of scalar waves: The shift in the gravitational wave spectrum could unambiguously signal the presence of a scalar field.
Spinning Particles in Scalar-Tensor Gravity with Torsion
Wang, C.-H.
2008-10-10
A new model of neutral spinning particles in scalar-tensor gravity with torsion is developed by using a Fermi coordinates associated with orthonormal frames attached to a timelike curve and Noether identities. We further analyze its equations of motion both in background Brans-Dicke torsion field and the constant pseudo-Riemannian curvature with a constant scalar field. It turns that the particle's spin vector is parallel transport along its wordline in the Brans-Dicke torsion field and de Sitter spacetime. However, the dynamics of the spinning particle cannot completely determined in anti-de Sitter spacetime and it requires a further investigation.
Observational constraints in scalar tensor theory with tachyonic potential
Farajollahi, Hossein; Salehi, Amin; Shahabi, Asieh E-mail: a.salehi@guilan.ac.ir
2011-10-01
We study the dynamics of the scalar tensor cosmological model in the presence of tachyon field. In an alternative approach, in two exponential and power law form of the scalar field functions in the model, field equations are solved by simultaneously best fitting the model parameters with the most recent observational data. This approach gives us an observationally verified interpretation of the dynamics of the universe. We then discuss the best fitted of equation of state parameter, the statefinder parameters and the reconstructed scalar field in the model.
NASA Astrophysics Data System (ADS)
Punsly, Brian
This chapter compares and contrasts winds and jets driven by the two distinct components of the black magnetosphere: the event horizon magnetosphere (the large scale magnetic field lines that thread the event horizon) and the ergospheric disk magnetosphere associated with poloidal magnetic flux threading plasma near the equatorial plane of the ergosphere. The power of jets from the two components as predicted from single-fluid, perfect MHD numerical simulations are compared. The decomposition of the magnetosphere into these two components depends on the distribution of large scale poloidal magnetic flux in the ergosphere. However, the final distribution of magnetic flux in a black hole magnetosphere depends on physics beyond these simple single-fluid treatments, non-ideal MHD (eg, the dynamics of magnetic field reconnection and radiation effects) and two-fluid effects (eg, ion coupled waves and instabilities in the inner accretion flow). In this chapter, it is emphasized that magnetic field line reconnection is the most important of these physical elements. Unfortunately, in single-fluid perfect MHD simulations, reconnection is a mathematical artifact of numerical diffusion and is not determined by physical processes. Consequently, considerable calculational progress is required before we can reliably assess the role of each of these components of black hole magnetospheres in astrophysical systems.
NASA Astrophysics Data System (ADS)
Kocsis, Bence; Loeb, Abraham
2014-09-01
Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.
Relativistic stars in scalar-tensor theories with disformal coupling
NASA Astrophysics Data System (ADS)
Minamitsuji, Masato; Silva, Hector O.
2016-06-01
We present a general formulation to analyze the structure of slowly rotating relativistic stars in a broad class of scalar-tensor theories with disformal coupling to matter. Our approach includes theories with generalized kinetic terms, generic scalar field potentials and contains theories with conformal coupling as particular limits. In order to investigate how the disformal coupling affects the structure of relativistic stars, we propose a minimal model of a massless scalar-tensor theory and investigate in detail how the disformal coupling affects the spontaneous scalarization of slowly rotating neutron stars. We show that for negative values of the disformal coupling parameter between the scalar field and matter, scalarization can be suppressed, while for large positive values of the disformal coupling parameter stellar models cannot be obtained. This allows us to put a mild upper bound on this parameter. We also show that these properties can be qualitatively understood by linearizing the scalar field equation of motion in the background of a general-relativistic incompressible star. To address the intrinsic degeneracy between uncertainties in the equation of state of neutron stars and gravitational theory, we also show the existence of universal equation-of-state-independent relations between the moment of inertia and compactness of neutron stars in this theory. We show that in a certain range of the theory's parameter space the universal relation largely deviates from that of general relativity, allowing, in principle, to probe the existence of spontaneous scalarization with future observations.
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Micu, Octavian; Orlandi, Alessio
2015-10-01
We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.
Acceleration of black hole universe
NASA Astrophysics Data System (ADS)
Zhang, T. X.; Frederick, C.
2014-01-01
Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.
How black holes saved relativity
NASA Astrophysics Data System (ADS)
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Black holes as antimatter factories
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Dolgov, Alexander D.; Petrov, Alexey A.
2009-09-01
We consider accretion of matter onto a low mass black hole surrounded by ionized medium. We show that, because of the higher mobility of protons than electrons, the black hole would acquire positive electric charge. If the black hole's mass is about or below 1020 g, the electric field at the horizon can reach the critical value which leads to vacuum instability and electron-positron pair production by the Schwinger mechanism. Since the positrons are ejected by the emergent electric field, while electrons are back-captured, the black hole operates as an antimatter factory which effectively converts protons into positrons.
Black holes and the multiverse
NASA Astrophysics Data System (ADS)
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
NASA Astrophysics Data System (ADS)
Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Bizon, P. )
1990-06-11
We analyze the static spherically symmetric Einstein-Yang-Mills equations with SU(2) gauge group and show numerically that the equations possess asymptotically flat solutions with regular event horizon and nontrivial Yang-Mills (YM) connection. The solutions have zero global YM charges and asymptotically approximate the Schwarzschild solution with quantized values of the Arnowitt-Deser-Misner mass. Our result questions the validity of the no-hair'' conjecture for YM black holes. This work complements the recent study of Bartnik and McKinnon on static spherically symmetric Einstein-Yang-Mills soliton solutions.
NASA Astrophysics Data System (ADS)
2002-10-01
Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way
BOOK REVIEW: The Scalar-Tensor Theory of Gravitation
NASA Astrophysics Data System (ADS)
Fujii, Yasunori; Maeda, Kei-ichi
2003-10-01
Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical
Black-Hole Feedback in Quasars
This animation illustrates how black-hole feedback works in quasars. Dense gas and dust in the center simultaneously fuels the black hole and shrouds it from view. The black-hole wind propels large...
Prisons of Light - Black Holes
NASA Astrophysics Data System (ADS)
Ferguson, Kitty
1998-05-01
In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
When Charged Black Holes Merge
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-08-01
Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge
Black hole final state conspiracies
NASA Astrophysics Data System (ADS)
McInnes, Brett
2009-01-01
The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of “conspiracies” between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required “conspiracies” if real black holes are described by some kind of sum over all AdS black holes having the same entropy.
Some remarks on the genesis of scalar-tensor theories
NASA Astrophysics Data System (ADS)
Goenner, Hubert
2012-08-01
Between 1941 and 1962, scalar-tensor theories of gravitation were suggested four times by different scientists in four different countries. The earliest originator, the Swiss mathematician W. Scherrer, was virtually unknown until now whereas the chronologically latest pair gave their names to a multitude of publications on Brans-Dicke theory. P. Jordan, one of the pioneers of quantum mechanics and quantum field theory, and Y. Thiry, known by his book on celestial mechanics, a student of the mathematician Lichnerowicz, complete the quartet. Diverse motivations for and conceptual interpretations of their theories will be discussed as well as relations among them. Also, external factors like language, citation habits, or closeness to the mainstream are considered. It will become clear why Brans-Dicke theory, although structurally a déjà-vu, superseded all the other approaches.
New class of consistent scalar-tensor theories.
Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo
2015-05-29
We introduce a new class of scalar-tensor theories of gravity that extend Horndeski, or "generalized Galileon," models. Despite possessing equations of motion of higher order in derivatives, we show that the true propagating degrees of freedom obey well-behaved second-order equations and are thus free from Ostrogradski instabilities, in contrast to standard lore. Remarkably, the covariant versions of the original Galileon Lagrangians-obtained by direct replacement of derivatives with covariant derivatives-belong to this class of theories. These extensions of Horndeski theories exhibit an uncommon, interesting phenomenology: The scalar degree of freedom affects the speed of sound of matter, even when the latter is minimally coupled to gravity. PMID:26066423
New Class of Consistent Scalar-Tensor Theories
NASA Astrophysics Data System (ADS)
Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo
2015-05-01
We introduce a new class of scalar-tensor theories of gravity that extend Horndeski, or "generalized Galileon," models. Despite possessing equations of motion of higher order in derivatives, we show that the true propagating degrees of freedom obey well-behaved second-order equations and are thus free from Ostrogradski instabilities, in contrast to standard lore. Remarkably, the covariant versions of the original Galileon Lagrangians—obtained by direct replacement of derivatives with covariant derivatives—belong to this class of theories. These extensions of Horndeski theories exhibit an uncommon, interesting phenomenology: The scalar degree of freedom affects the speed of sound of matter, even when the latter is minimally coupled to gravity.
The Cauchy problem of scalar tensor theories of gravity
NASA Astrophysics Data System (ADS)
Salgado, Marcelo
2006-07-01
The 3 + 1 formulation of scalar tensor theories of gravity (STT) is obtained in the physical (Jordan) frame departing from the 4 + 0 covariant field equations. Contrary to common belief (folklore), the new system of ADM-like equations shows that the Cauchy problem of STT is well formulated (in the sense that the whole system of evolution equations is of first order in the time derivative). This is the first step towards a full first-order (in time and space) formulation from which a subsequent hyperbolicity analysis (a well-posedness determination) can be performed. Several gauge (lapse and shift) conditions are considered and implemented for STT. In particular, a generalization of the harmonic gauge for STT allows us to prove the well posedness of the STT using a second-order analysis which is very similar to the one employed in general relativity. Several appendices complement the ideas of the main part of the paper.
Hamiltonian analysis of higher derivative scalar-tensor theories
NASA Astrophysics Data System (ADS)
Langlois, David; Noui, Karim
2016-07-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of the dangerous Ostrogradsky ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, including a ghost, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.
Cosmology in new gravitational scalar-tensor theories
NASA Astrophysics Data System (ADS)
Saridakis, Emmanuel N.; Tsoukalas, Minas
2016-06-01
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2 +2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
Gravitational self-force in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Zimmerman, Peter
2015-09-01
Motivated by the theoretical possibility of floating orbits and the potential to contribute extra constraints on alternative theories, in this paper we derive the self-force equation for a small compact object moving on an accelerated world line in a background spacetime which is a solution of the coupled gravitational and scalar field equations of scalar-tensor theory. In the Einstein frame, the coupled field equations governing the perturbations sourced by the particle share the same form as the field equations for perturbations of a scalarvac spacetime in general relativity, with both falling under the general class of hyperbolic field equations studied in [1]. Here, we solve the field equations formally in terms of retarded Green functions, which have explicit representations as Hadamard forms in the neighborhood of the world line. Using a quasilocal expansion of the Hadamard form, we derive the regular solutions in Fermi normal coordinates according to the Detweiler-Whiting prescription. To compute the equation of motion, we parametrize the world line by the particle's mass and "charge," which we define in terms of the original Jordan frame mass, its derivative, and the parameter which translates the proper time in the Jordan frame to the Einstein frame. These parameters depend on the value of the background scalar field and its self-field corrections. The equation of motion which follows from the regular fields strongly resembles the equation for the self-force acting on a charged, massive particle in a scalarvac geometry of general relativity. Unlike the scalar vacuum scenario, the charge parameter in the scalar-tensor self-force equation is time variable and leading to additional local and tail terms. We also provide evolution equations for the world line parameters under the influence of the self-fields.
NASA Astrophysics Data System (ADS)
Bini, Donato; Bittencourt, Eduardo; Geralico, Andrea; Jantzen, Robert T.
2015-04-01
A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand, properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.
Coleman, S. ); Preskill, J. ); Wilczek, F. )
1991-10-07
A black hole can carry quantum numbers that are {ital not} associated with massless gauge fields, contrary to the spirit of the no-hair'' theorems. In the Higgs phase of a gauge theory, electric charge on a black hole generates a nonzero electric field outside the event horizon. This field is nonperturbative in {h bar} and is exponentially screened far from the hole. It arises from the cloud of virtual cosmic strings that surround the black hole. In the confinement phase, a magnetic charge on a black hole generates a {ital classical} field that is screened at long range by nonperturbative effects. Despite the sharp difference in their formal descriptions, the electric and magnetic cases are closely similar physically.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Poster Version
This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.
The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.
The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.
More Hidden Black Hole Dangers
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
Black holes such as GRO J1655-40 form from collapsed stars. When stars at least eight times more massive than our Sun exhaust their fuel supply, they no longer have the energy to support their tremendous bulk. These stars explode as supernovae, blasting their outer envelopes into space. If the core is more than three times the mass of the Sun, it will collapse into a singularity, a single point of infinite density.Although light cannot escape black holes, astronomers can see black holes by virtue of the hot, glowing gas often stolen from a neighboring star that orbits these objects. From our vantage point, the light seems to flicker. The Rossi Explorer has recorded this flickering (called quasiperiodic oscillations, or QPOs) around many black holes. QPOs are produced by gas very near the innermost stable orbit the closest orbit a blob of gas can maintain before falling pell-mell into the black hole. As gas whips around the black hole at near light speed, gravity pulls the gas in one direction, then another, adding to the flickering. The QPO is related to the speed and size of this orbit and the mass of the black hole.
Acceleration of Black Hole Universe
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2012-05-01
An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.
A nonsingular rotating black hole
NASA Astrophysics Data System (ADS)
Ghosh, Sushant G.
2015-11-01
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a well-defined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m( r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r ≫ k, k>0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k=0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics.
Gravitational polarizability of black holes
Damour, Thibault; Lecian, Orchidea Maria
2009-08-15
The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.
Dynamics of Charged Black Holes
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Cardoso, Vitor; Herdeiro, Carlos; Lehner, Luis; Sperhake, Ulrich
2015-01-01
We report on numerical simulations of charged-black-hole collisions.We focus on head-on collisions of non-spinning black holes, starting from rest and with the same charge to mass ratio. The addition of charge to black holes introduces a new interesting channel of radiation and dynamics. The amount of gravitational-wave energy generated throughout the collision decreases by about three orders of magnitude as the charge-to-mass ratio is increased from 0 to 0.98. This is a consequence of the smaller accelerations present for larger values of the charge.
Evaporation of primordial black holes
NASA Astrophysics Data System (ADS)
Hawking, S. W.
The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.
Thermodynamics of Lifshitz black holes
NASA Astrophysics Data System (ADS)
Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür
2011-06-01
We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.
Black Holes: A Traveler's Guide
NASA Astrophysics Data System (ADS)
Pickover, Clifford A.
1998-03-01
BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747
Long time black hole evaporation with bounded Hawking flux
NASA Astrophysics Data System (ADS)
Grumiller, D.
2004-05-01
The long time behaviour of an evaporating black hole presents a challenge to theoretical physics and touches relevant conceptual issues of quantum gravity, such as the information paradox. There are basically two strategies: top-down, i.e., constructing first a full quantum theory of gravity and discussing black hole evaporation as a particular application thereof, and bottom-up, i.e., sidestepping the difficulties inherent to the former approach by invoking `reasonable' ad hoc assumptions. Exploiting the fact that the Schwarzschild black hole can be described by means of an effective theory in 2D, a particular dilaton gravity model, the latter route is pursued. A crucial technical ingredient is Izawa's result on consistent deformations of 2D BF theory, while the most relevant physical assumption is boundedness of the asymptotic matter flux during the whole evaporation process. Together with making technical assumptions which can be relaxed, the dynamics of the evaporating black hole is described by means of consistent deformations of the underlying gauge symmetries with only one important deformation parameter. An attractor solution, the end-point of the evaporation process, is found. Its metric is flat. However, the behaviour of the dilaton field (which corresponds to the surface area) is non-trivial: it is argued that during the final flicker a first-order phase transition occurs from a linear to a constant dilaton vacuum. Consequently, a shock wave is emitted as a final `thunderbolt' with a total energy of a fraction of the Planck mass. Relations to ultrarelativistic boosts are pointed out. Another fraction of the Planck mass may reside in a cold remnant. The physical discussion addresses the lifetime, the specific heat, the Carter Penrose diagram, the information paradox and cosmological implications. The phenomenon of `dilaton evaporation' to a constant dilaton vacuum might be of relevance also for higher dimensional scalar tensor theories. Based on an
Erratic Black Hole Regulates Itself
NASA Astrophysics Data System (ADS)
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
Black hole accretion disc impacts
NASA Astrophysics Data System (ADS)
Pihajoki, P.
2016-04-01
We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.
Black holes and Newtonian physics
NASA Astrophysics Data System (ADS)
Raychaudhuri, A. K.
1992-03-01
It is argued that one-way passage is inconsistent with Newtonian physics and thus the dark bodies as thought of by Michell and Laplace cannot be considered as exact analogues of relativistic black holes.
NASA Astrophysics Data System (ADS)
van Herck, Walter; Wyder, Thomas
2010-04-01
The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2014-06-01
The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin
Charged rotating noncommutative black holes
Modesto, Leonardo; Nicolini, Piero
2010-11-15
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Charged rotating noncommutative black holes
NASA Astrophysics Data System (ADS)
Modesto, Leonardo; Nicolini, Piero
2010-11-01
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Probability for primordial black holes
NASA Astrophysics Data System (ADS)
Bousso, R.; Hawking, S. W.
1995-11-01
We consider two quantum cosmological models with a massive scalar field: an ordinary Friedmann universe and a universe containing primordial black holes. For both models we discuss the complex solutions to the Euclidean Einstein equations. Using the probability measure obtained from the Hartle-Hawking no-boundary proposal we find that the only unsuppressed black holes start at the Planck size but can grow with the horizon scale during the roll down of the scalar field to the minimum.
Bianchi I in scalar and scalar-tensor cosmologies
NASA Astrophysics Data System (ADS)
Belinchón, José
2012-08-01
We study how the constants G and Λ may vary in different theoretical models (general relativity (GR) with a perfect fluid, scalar cosmological models (SM) ("quintessence") with and without interacting scalar and matter fields and three scalar-tensor theories (STT) with a dynamical Λ) in order to explain some observational results. We apply the program outlined in section II to study the Bianchi I models, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we conclude that the solutions are isotropic and noninflationary. We also arrive at the conclusion that in the GR model with time-varying constants, Λ vanishes while G is constant. In the SM all the solutions are massless i.e. the potential vanishes and all the interacting models are inconsistent from the thermodynamical point of view. The solutions obtained in the STT collapse to the perfect fluid one obtained in the GR model where G is a true constant and Λ vanishes as in the GR and SM frameworks.
Erratic Black Hole Regulates Itself
NASA Astrophysics Data System (ADS)
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field
NASA Astrophysics Data System (ADS)
Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Popchev, Dimitar
2016-04-01
In the scalar-tensor theories with a massive scalar field, the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper, we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined—the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak-field limit. In the latter case, we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastically compared to the massless case. It turns out that mass, radius, and moment of inertia for neutron stars in massive scalar-tensor theories can differ drastically from the pure general relativistic solutions if sufficiently large masses of the scalar field are considered.
Low-mass black holes as the remnants of primordial black hole formation
NASA Astrophysics Data System (ADS)
Greene, Jenny E.
2012-12-01
Bridging the gap between the approximately ten solar mass `stellar mass' black holes and the `supermassive' black holes of millions to billions of solar masses are the elusive `intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ~104-105Msolar black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.
NASA Astrophysics Data System (ADS)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
NASA Astrophysics Data System (ADS)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
Tomograms of spinning black holes
NASA Astrophysics Data System (ADS)
Krishnan, Chethan
2009-12-01
The classical internal structure of spinning black holes is vastly different from that of static black holes. We consider spinning Banados-Teitelboim-Zanelli black holes, and probe their interior from the gauge theory. Utilizing the simplicity of the geometry and reverse engineering from the geodesics, we propose a thermal correlator construction which can be interpreted as arising from two entangled conformal field theories. By analytic continuation of these correlators, we can probe the Cauchy horizon. Correlators that capture the Cauchy horizon in our work have a structure closely related to those that capture the singularity in a nonrotating Banados-Teitelboim-Zanelli. As expected, the regions beyond the Cauchy horizon are not probed in this picture, protecting cosmic censorship.
Quantum Criticality and Black Holes
Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States
2009-09-01
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Scrambling with matrix black holes
NASA Astrophysics Data System (ADS)
Brady, Lucas; Sahakian, Vatche
2013-08-01
If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.
Quantum Criticality and Black Holes
Sachdev, Subir
2007-08-22
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Liouvillian perturbations of black holes
NASA Astrophysics Data System (ADS)
Couch, W. E.; Holder, C. L.
2007-10-01
We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.
Close encounters of three black holes
Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef
2008-05-15
We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.
NASA Astrophysics Data System (ADS)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
NASA Astrophysics Data System (ADS)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
Building Black Holes: Supercomputer Cinema
NASA Astrophysics Data System (ADS)
Shapiro, Stuart L.; Teukolsky, Saul A.
1988-07-01
A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.
Information loss in black holes
NASA Astrophysics Data System (ADS)
Hawking, S. W.
2005-10-01
The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with nontrivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.
Two Monster Black Holes at Work
Zoom into Markarian 739, a nearby galaxy hosting two monster black holes. Using NASA's Swift and Chandra, astronomers have shown that both black holes are producing energy as gas falls into them. T...
Superradiance from a charged dilation black hole
Shiraishi, K. )
1992-12-07
In this paper, the authors study the behavior of the wave function of charged Klein-Gordon field around a charge dilaton black hole. The rate of spontaneous charge loss is estimated for large black hole case.
Black Holes: A Selected Bibliography.
ERIC Educational Resources Information Center
Fraknoi, Andrew
1991-01-01
Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…
'Black holes': escaping the void.
Waldron, Sharn
2013-02-01
The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche. PMID:23351000
Prisons of Light - Black Holes
NASA Astrophysics Data System (ADS)
Ferguson, Kitty
1998-02-01
Prologue; 1. A cosmic case of burnout; 2. Matters of gravity: Newton and Einstein; 3. The capture of light; 4. Tripping the theoretical fantastic; 5. Crossing the bar; 6. Contemplating an enormous nothing; 7. Evidence in the case; 8. Hearts of darkness; 9. The search goes on; 10. Passages into the labyrinth; 11. Black hole legends and far out ideas; Epilogue.
Fenimore, Edward E.
2014-10-06
Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.
Gravitational Collapse and Black Holes
ERIC Educational Resources Information Center
Ryder, Lewis
1973-01-01
The newest and most exotic manner in which stars die is investigated. A brief outline is presented, along with a discussion of the role supernova play, followed by a description of how the black holes originate, exist, and how they might be detected. (DF)
Signatures of black holes at the LHC
NASA Astrophysics Data System (ADS)
Cavaglià, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.
2007-06-01
Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.
Compensating Scientism through "The Black Hole."
ERIC Educational Resources Information Center
Roth, Lane
The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for transcendent…
Resource Letter BH-1: Black Holes.
ERIC Educational Resources Information Center
Detweiler, Steven
1981-01-01
Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)
Scalar field radiation from dilatonic black holes
NASA Astrophysics Data System (ADS)
Gohar, H.; Saifullah, K.
2012-12-01
We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.
Extremal higher spin black holes
NASA Astrophysics Data System (ADS)
Bañados, Máximo; Castro, Alejandra; Faraggi, Alberto; Jottar, Juan I.
2016-04-01
The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3 d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require supersymmetry, we exemplify its consequences in the context of sl(3|2) ⊕ sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions preserve supersymmetries. Remarkably, we find in addition that the higher spin setup allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) ⊕ sl(3|2) Chern-Simons theory and two-dimensional CFTs with W (3|2) symmetry, the simplest higher spin extension of the N = 2 super-Virasoro algebra. In particular, we compute W (3|2) BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3 d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N = 2 two-dimensional CFTs with extended symmetry algebras.
Black hole mimickers: Regular versus singular behavior
Lemos, Jose P. S.; Zaslavskii, Oleg B.
2008-07-15
Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to
Tunnelling from black holes and tunnelling into white holes
NASA Astrophysics Data System (ADS)
Chatterjee, Bhramar; Ghosh, A.; Mitra, P.
2008-03-01
Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton-Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.
Gamma ray bursts of black hole universe
NASA Astrophysics Data System (ADS)
Zhang, T. X.
2015-07-01
Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.
Chandra Catches "Piranha" Black Holes
NASA Astrophysics Data System (ADS)
2007-07-01
Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never
Noncritical superstring-black hole transition
Parnachev, Andrei; Sahakyan, David A.
2006-04-15
An interesting case of string/black hole transition occurs in two-dimensional noncritical string theory dressed with a compact CFT. In these models the high energy densities of states of perturbative strings and black holes have the same leading behavior when the Hawking temperature of the black hole is equal to the Hagedorn temperature of perturbative strings. We compare the first subleading terms in the black hole and closed string entropies in this setting and argue that the entropy interpolates between these expressions as the energy is varied. We compute the subleading correction to the black hole entropy for a specific simple model.
Mechanism of quasistabilization of primordial black holes
NASA Astrophysics Data System (ADS)
Torres, R.
2013-06-01
It is argued that primordial black holes with initial masses satisfying M<1015g, instead of having explode, might currently be in a quasistable phase contributing to a tiny fraction of the measured dark matter. This statement is based on a computation of black hole evaporation in which energy conservation is taken into account that shows that the backreaction to Hawking radiation favors the quasistabilization of the black hole. The result is specifically shown for general spherically symmetric quantum black holes described by an effective metric independently of the specific framework from which it is derived. The quintessential primordial black hole is fully analyzed as an example.
Black Holes Shed Light on Galaxy Formation
NASA Technical Reports Server (NTRS)
2000-01-01
This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.
Hydrogen Burning in Low Mass Stars Constrains Scalar-Tensor Theories of Gravity.
Sakstein, Jeremy
2015-11-13
The most general scalar-tensor theories of gravity predict a weakening of the gravitational force inside astrophysical bodies. There is a minimum mass for hydrogen burning in stars that is set by the interplay of plasma physics and the theory of gravity. We calculate this for alternative theories of gravity and find that it is always significantly larger than the general relativity prediction. The observation of several low mass red dwarf stars therefore rules out a large class of scalar-tensor gravity theories and places strong constraints on the cosmological parameters appearing in the effective field theory of dark energy. PMID:26613428
Black hole with quantum potential
NASA Astrophysics Data System (ADS)
Ali, Ahmed Farag; Khalil, Mohammed M.
2016-08-01
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Black holes in magnetic monopoles
NASA Technical Reports Server (NTRS)
Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.
1991-01-01
We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.
Symmetries of supergravity black holes
NASA Astrophysics Data System (ADS)
Chow, David D. K.
2010-10-01
We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Stäckel tensors. These are induced by rank-2 Killing-Stäckel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the 'physical' metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity but also consider some other solutions.
Complexity, action, and black holes
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying
2016-04-18
In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.
Complexity, action, and black holes
NASA Astrophysics Data System (ADS)
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying
2016-04-01
Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.
NASA Astrophysics Data System (ADS)
Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew
2016-06-01
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
Glory scattering by black holes
Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.
1985-04-15
We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/d..cap omega.. = 4..pi../sup 2/lambda/sup -1/B/sub g/ /sup 2/(dB mW..pi.., where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 ..sqrt..3 + 3.48 exp(-theta), theta > owig..pi... The numerical values of dsigma/d..cap omega.. for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes.
Accretion disks around black holes
NASA Technical Reports Server (NTRS)
Abramowicz, M. A.
1994-01-01
The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.
Black hole binaries and microquasars
NASA Astrophysics Data System (ADS)
Zhang, Shuang-Nan
2013-12-01
This is a general review on the observations and physics of black hole X-ray binaries and microquasars, with the emphasize on recent developments in the high energy regime. The focus is put on understanding the accretion flows and measuring the parameters of black holes in them. It includes mainly two parts: i) Brief review of several recent review article on this subject; ii) Further development on several topics, including black hole spin measurements, hot accretion flows, corona formation, state transitions and thermal stability of standard think disk. This is thus not a regular bottom-up approach, which I feel not necessary at this stage. Major effort is made in making and incorporating from many sources useful plots and illustrations, in order to make this article more comprehensible to non-expert readers. In the end I attempt to make a unification scheme on the accretion-outflow (wind/jet) connections of all types of accreting BHs of all accretion rates and all BH mass scales, and finally provide a brief outlook.
Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew
2016-06-10
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. PMID:27341223
Constraints on black hole remnants
Giddings, S.B. )
1994-01-15
One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in cornucopion scenarios. Criteria for avoiding infinite production are stated in terms of couplings in the effective theory. Such instabilities remain a problem barring what would be described in that theory as a strong coupling conspiracy. The relation to Euclidean calculations of cornucopion production is sketched, and potential flaws in that analysis are outlined. However, it is quite plausible that pair production of ordinary black holes (e.g., Reissner-Noerdstrom or others) is suppressed due to strong effective couplings. It also remains an open possibility that a microsopic dynamics can be found yielding an appropriate strongly coupled effective theory of neutral informons without infinite pair production.
Shapes of rotating nonsingular black hole shadows
NASA Astrophysics Data System (ADS)
Amir, Muhammed; Ghosh, Sushant G.
2016-07-01
It is believed that curvature singularities are a creation of general relativity and, hence, in the absence of a quantum gravity, models of nonsingular black holes have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass (M ), spin (a ), and a deviation parameter (k ). The nonsingular black hole under consideration is a generalization of the Kerr black hole that can be recognized asymptotically (r ≫k ,k >0 ) explicitly as the Kerr-Newman black hole, and in the limit k →0 as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by a deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter k . Indeed, for a given a , the size of a shadow reduces as the parameter k increases, and the shadow becomes more distorted as we increase the value of the parameter k when compared with the analogous Kerr black hole shadow. We also investigate, in detail, how the ergoregion of a black hole is changed due to the deviation parameter k .
Charged spinning black holes as particle accelerators
Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune
2010-11-15
It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/{radical}(3)){<=}(a/M){<=}1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.
Black Holes, Worm Holes, and Future Space Propulsion
NASA Technical Reports Server (NTRS)
Barret, Chris
2000-01-01
NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.
A Black Hole in Our Galactic Center
ERIC Educational Resources Information Center
Ruiz, Michael J.
2008-01-01
An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…
NASA Astrophysics Data System (ADS)
Gabach-Clement, Maria E.; Reiris, Martin
2013-08-01
We give a thorough description of the shape of rotating axisymmetric stable black-hole (apparent) horizons applicable in dynamical or stationary regimes. It is found that rotation manifests in the widening of their central regions (rotational thickening), limits their global shapes to the extent that stable holes of a given area A and angular momentum J≠0 form a precompact family (rotational stabilization) and enforces their whole geometry to be close to the extreme-Kerr horizon geometry at almost maximal rotational speed (enforced shaping). The results, which are based on the stability inequality, depend only on A and J. In particular they are entirely independent of the surrounding geometry of the space-time and of the presence of matter satisfying the strong energy condition. A complete set of relations between A, J, the length L of the meridians and the length R of the greatest axisymmetric circle, is given. We also provide concrete estimations for the distance between the geometry of horizons and that of the extreme Kerr, in terms only of A and J. Besides its own interest, the work has applications to the Hoop conjecture as formulated by Gibbons in terms of the Birkhoff invariant, to the Bekenstein-Hod entropy bounds and to the study of the compactness of classes of stationary black-hole space-times.
Holographic interpretation of acoustic black holes
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Sun, Jia-Rui; Tian, Yu; Wu, Xiao-Ning; Zhang, Yun-Long
2015-10-01
With the attempt to find the holographic description of the usual acoustic black holes in fluid, we construct an acoustic black hole formed in the d -dimensional fluid located at the timelike cutoff surface of a neutral black brane in asymptotically AdSd +1 spacetime; the bulk gravitational dual of the acoustic black hole is presented at the first order of the hydrodynamic fluctuation. Moreover, the Hawking-like temperature of the acoustic black hole horizon is showed to be connected to the Hawking temperature of the real anti-de Sitter (AdS) black brane in the bulk, and the duality between the phonon scattering in the acoustic black hole and the sound channel quasinormal mode propagating in the bulk perturbed AdS black brane is extracted. We thus point out that the acoustic black hole appearing in fluid, which was originally proposed as an analogous model to simulate Hawking radiation of the real black hole, is not merely an analogy, it can indeed be used to describe specific properties of the real AdS black holes, in the spirit of the fluid/gravity duality.
Destroying Kerr-Sen black holes
NASA Astrophysics Data System (ADS)
Siahaan, Haryanto M.
2016-03-01
By neglecting the self-force, self-energy, and radiative effects, it has been shown that an extremal or near-extremal Kerr-Newman black hole can turn into a naked singularity when it captures charged and spinning massive particles. A straightforward question then arises: do charged and rotating black holes in string theory possess the same property? In this paper we apply Wald's gedanken experiment, in his study on the possibility of destroying extremal Kerr-Newman black holes, to the case of (near-)extremal Kerr-Sen black holes. We find that feeding a test particle into a (near-)extremal Kerr-Sen black hole could lead to a violation of the extremal bound for the black hole.
Binary black hole merger dynamics and waveforms
NASA Technical Reports Server (NTRS)
Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James
2006-01-01
We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.
NASA's Chandra Finds Black Holes Are "Green"
NASA Astrophysics Data System (ADS)
2006-04-01
Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce
Boosting jet power in black hole spacetimes
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis
2011-01-01
The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341
Boosting jet power in black hole spacetimes
NASA Astrophysics Data System (ADS)
Neilsen, D.; Lehner, L.; Palenzuela, C.; Hirschmann, E. W.; Liebling, S. L.; Motl, P. M.; Garrett, T.
2011-08-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Tapping into the Energy of Black Holes
NASA Astrophysics Data System (ADS)
Motl, Patrick M.; Lenher, L.; Liebling, S.; Palenzuela, C.; Neilsen, D.; Hirschmann, E.
2012-01-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Entropy, area, and black hole pairs
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Horowitz, Gary T.; Ross, Simon F.
1995-04-01
We clarify the relation between gravitational entropy and the area of horizons. We first show that the entropy of an extreme Reissner-Nordström black hole is zero, despite the fact that its horizon has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It is shown that the action which governs the rate of this pair creation is directly related to the area of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon. This provides a simple explanation of the result that the rate of pair creation of nonextreme black holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation, and argue that Planck scale remnants are not sufficient to preserve unitarity in quantum gravity.
Escape of Black Holes from the Brane
Flachi, Antonino; Tanaka, Takahiro
2005-10-14
TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the 'black hole plus brane' system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.
Hawking temperature of constant curvature black holes
Cai Ronggen; Myung, Yun Soo
2011-05-15
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Hidden conformal symmetry of extremal black holes
Chen Bin; Long Jiang; Zhang Jiaju
2010-11-15
We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS{sub 3}, and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.
Boson shells harboring charged black holes
Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike
2010-11-15
We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.
Noncommutative Black Holes and the Singularity Problem
NASA Astrophysics Data System (ADS)
Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.
2011-09-01
A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.
Quantum radiation of general nonstationary black holes
NASA Astrophysics Data System (ADS)
Hua, Jia-Chen; Huang, Yong-Chang
2009-02-01
Quantum radiation of general nonstationary black holes is investigated by using the method of generalized tortoise-coordinate transformation (GTT). It is shown in general that the temperature and the shape of the event horizon of this kind of black holes depend on time and angle. Further, we find that the chemical potential in the thermal-radiation spectrum is equal to the highest energy of the negative-energy state of particles in nonthermal radiation for general nonstationary black holes.
Test fields cannot destroy extremal black holes
NASA Astrophysics Data System (ADS)
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2016-09-01
We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr–Newman or Kerr–Newman–anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.
Low-mass black holes as the remnants of primordial black hole formation.
Greene, Jenny E
2012-01-01
Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism. PMID:23250434
Aspects of Black Holes in Higher Dimensions
NASA Astrophysics Data System (ADS)
Hartnett, Gavin S.
This thesis is divided into three Parts. In Part I the general theory of black holes in higher dimensions is discussed. In addition to an introductory essay, two studies of linear perturbations of Myers-Perry black holes are presented. These black holes are the higher dimensional generalization of the Kerr black hole, and their analysis reveals numerous instabilities. Threshold unstable modes provide the connection between the Myers-Perry black holes and novel stationary black hole solutions such as black rings or black Saturns, as well as other non-stationary solutions known as single Killing vector field black holes. In Part II gauge/gravity duality is briefly reviewed and two aspects are studied in detail. First, the problem of finding a holographic dual to a superconductor with d-wave order parameter is investigated, and second, we examine the problem of holographic thermalization in field theories dual to rotating black holes. Lastly, in Part III the role of de Sitter solutions in string theory is discussed. A recent puzzle surrounding the fate of the de Sitter landscape is reviewed, and it is shown how the study of black holes in certain flux backgrounds can provide insight into this puzzle. We then present a theorem ruling out the addition of black holes to a certain class of flux backgrounds. Finally, a study is presented which shows that black holes can be added to the flux backgrounds relevant for the de Sitter landscape in string theory, thereby providing strong evidence for the resolution of the puzzle.
Black holes in galactic centers
Rees, M.J. )
1990-11-01
For more than 25 years astronomers have known that some galaxies also have a bright, compact central nucleus whose emission does not come from normal stars. The most extreme instances of these so-called active galactic nuclei are quasars, objects no larger than the solar system whose total radiation exceeds that of 100 billion stars. Quasars seem to represent a particularly agitated stage in the development of some galaxies. Astronomers generally agree that gravity powers active galactic nuclei. The best candidate for the central engine of quasars is a black hole--a collapsed body whose gravity is so great that nothing, including light, can escape from it. The discovery of black holes in galactic centers, exciting in its own right, could affect current ideas about the evolution of the universe. Quasars appeared when the universe was less than one billion years old, indicting that some galaxies had already developed dense central regions. The early appearance of quasars rules out many cosmological models, which predict that the formation of galaxies should require billions of years, and even raises problems for the reigning cold dark matter model. Recent measurements of the cosmic background radiation intensify the puzzle. Most theorists think that galaxies formed from density variations in the newborn universe. Yet measurements of the background radiation indicate that any variations were so slight that it is difficult to understand how they could have produced the structures seen today. Apart from its cosmological significance, the detection of massive black holes also could elucidate predictions of Einstein's theory of general relativity.
Gamma ray astronomy and black hole astrophysics
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1990-01-01
The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.
The horizon of the lightest black hole
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Casadio, Roberto
2015-09-01
We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors.
Black Hole Universe Model and Dark Energy
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2011-01-01
Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.
Entropy spectrum of dimensional stringy black holes
NASA Astrophysics Data System (ADS)
Suresh, Jishnu; Kuriakose, V. C.
2015-05-01
We explore the entropy spectrum of dimensional dilatonic stringy black holes via the adiabatic invariant integral method known as Jiang and Han's method (Phys Lett B 718:584, 2012) and the Bohr-Sommerfeld quantization rule. It is found that the corresponding spectrum depends on black hole parameters like charge, ADM mass, and, more interestingly, on the dilatonic field. We calculate the entropy of the present black hole system via the Euclidean treatment of quantum gravity and study the thermodynamics of the black hole and find that the system does not undergo any phase transition.
Schwarzschild Black Holes can Wear Scalar Wigs
NASA Astrophysics Data System (ADS)
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-01
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Black Holes versus Supersymmetry at the LHC
NASA Astrophysics Data System (ADS)
Roy, Arunava; Cavaglia, Marco
2007-11-01
Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. In this paper we assess the distinguishability of supersymmetry and black hole events at the LHC. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our analysis shows that supersymmetry and black hole events at the Large Hadron Collider can be easily discriminated.
Black holes and local dark matter
NASA Technical Reports Server (NTRS)
Hegyi, D. J.; Kolb, E. W.; Olive, K. A.
1986-01-01
Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
Black hole thermodynamics from Euclidean horizon constraints.
Carlip, S
2007-07-13
To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints. PMID:17678209
Hawking radiation from fluctuating black holes
NASA Astrophysics Data System (ADS)
Takahashi, Tomohiro; Soda, Jiro
2010-09-01
Classically, black holes have a rigid event horizon. However, quantum mechanically, the event horizon of black holes becomes fuzzy due to quantum fluctuations. We study Hawking radiation of a real scalar field from a fluctuating black hole. To quantize metric perturbations, we derive the quadratic action for those in the black hole background. Then, we calculate cubic interaction terms in the action for the scalar field. Using these results, we obtain the spectrum of Hawking radiation in the presence of the interaction between the scalar field and the metric. It turns out that the spectrum deviates from the Planck spectrum due to quantum fluctuations of the metric.
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations. PMID:23002734
Locking information in black holes.
Smolin, John A; Oppenheim, Jonathan
2006-03-01
We show that a central presumption in the debate over black-hole information loss is incorrect. Ensuring that information not escape during evaporation does not require that it all remain trapped until the final stage of the process. Using the recent quantum information-theoretic result of locking, we show that the amount of information that must remain can be very small, even as the amount already radiated is negligible. Information need not be additive: A small system can lock a large amount of information, making it inaccessible. Only if the set of initial states is restricted can information leak. PMID:16606164
Black Hole Researchers in Schools
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
"Black Holes in my School" is a research project that aims to explore the impact of engaging students in real research experiences while learning new skills and topics addressed in the regular school curriculum. The project introduces teachers to innovative tools for science teaching, explore student centered methodologies such as inquiry based learning and provides a setting where students take the role of an astrophysicist researching the field of compact stellar mass objects in binary systems. Students will study already existing data and use the Faulkes Telescopes to acquire new data. In this presentation the main aim is to present the framework being built and the results achieved so far.
Corda, Christian
2015-03-10
The idea that black holes (BHs) result in highly excited states representing both the “hydrogen atom” and the “quasi-thermal emission” in quantum gravity is today an intuitive but general conviction. In this paper it will be shown that such an intuitive picture is more than a picture. In fact, we will discuss a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. The model is completely consistent with existing results in the literature, starting from the celebrated result of Bekenstein on the area quantization.
Hidden symmetries and black holes
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.
2009-10-01
The paper contains a brief review of recent results on hidden symmetries in higher dimensional black hole spacetimes. We show how the existence of a principal CKY tensor (that is a closed conformal Killing-Yano 2-form) allows one to generate a `tower' of Killing-Yano and Killing tensors responsible for hidden symmetries. These symmetries imply complete integrability of geodesic equations and the complete separation of variables in the Hamilton-Jacobi, Klein-Gordon, Dirac and gravitational perturbation equations in the general Kerr-NUT-(A)dS metrics. Equations of the parallel transport of frames along geodesics in these spacetimes are also integrable.
NASA Observatory Confirms Black Hole Limits
NASA Astrophysics Data System (ADS)
2005-02-01
The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first
NASA Observatory Confirms Black Hole Limits
NASA Astrophysics Data System (ADS)
2005-02-01
The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first
Black holes are almost optimal quantum cloners
NASA Astrophysics Data System (ADS)
Adami, Christoph; Ver Steeg, Greg
2015-06-01
If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.
A Different Reason Why Black Holes are Black
NASA Astrophysics Data System (ADS)
Farghal, Noha S.
2009-11-01
Although it is true that black holes appear to be black on the outside due to the fact that the escape velocity from the event horizon is even higher than that of light, black holes may be black on the inside as well. A recent paper by Zach Adams (2009) presents a new model which provides evidence of gravitons actually being a result of a fusion of 2 photons, which manifests in 4-D space. In fact, the duality between gravitons and photons has been suggested in earlier works as well. Falling Photon Experiment shows that as photons approach a massive body, their energies increase, and their wavelengths decrease. Photon-graviton conversions occur when the wavelengths of photons decrease to Planck's length. As a result, the photons approaching the event horizon of a black hole may gain energy enough for photon pairs to fuse and become gravitons. Therefore, as we will discuss in this work, there exists a probability that photons cannot survive within the event horizon of a black hole. It is true that nothing can escape a black hole, which is the reason why it looks black on the outside, but also the possibility that photons may not be able to survive on a black hole means that black holes may be black on the inside as well.
Spacetime and orbits of bumpy black holes
Vigeland, Sarah J.; Hughes, Scott A.
2010-01-15
Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.
Quantum criticality and black holes.
Sachdev, Subir; Müller, Markus
2009-04-22
Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance. PMID:21825396
Observational Evidences of Black Hole Universe
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2010-01-01
Recently, the author has proposed an alternative cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and a zero limit for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by a universe family tree. The entire space can be represented as a set of all universes. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. This presentation will demonstrate the observational evidences of the black hole universe in terms of the universe expansion, star-like and supermassive black holes, galactic evolutions, quasars, background radiation, and large scale structure. We will also compare the black hole universe with the big bang cosmology.
Effective Potential in Noncommutative BTZ Black Hole
NASA Astrophysics Data System (ADS)
Sadeghi, Jafar; Shajiee, Vahid Reza
2016-02-01
In this paper, we investigated the noncommutative rotating BTZ black hole and showed that such a space-time is not maximally symmetric. We calculated effective potential for the massive and the massless test particle by geodesic equations, also we showed effect of non-commutativity on the minimum mass of BTZ black hole.
Quasinormal modes of extremal black holes
NASA Astrophysics Data System (ADS)
Richartz, Maurício
2016-03-01
The continued fraction method (also known as Leaver's method) is one of the most effective techniques used to determine the quasinormal modes of a black hole. For extremal black holes, however, the method does not work (since, in such a case, the event horizon is an irregular singular point of the associated wave equation). Fortunately, there exists a modified version of the method, devised by Onozawa et al. [Phys. Rev. D 53, 7033 (1996)], which works for neutral massless fields around an extremal Reissner-Nordström black hole. In this paper, we generalize the ideas of Onozawa et al. to charged massless perturbations around an extremal Reissner-Nordström black hole and to neutral massless perturbations around an extremal Kerr black hole. In particular, the existence of damped modes is analyzed in detail. Similarities and differences between the results of the original continued fraction method for near extremal black holes and the results of the new continued fraction method for extremal black holes are discussed. Mode stability of extremal black holes is also investigated.
Black Hole Phase Transition in Massive Gravity
NASA Astrophysics Data System (ADS)
Ning, Shou-Li; Liu, Wen-Biao
2016-07-01
In massive gravity, some new phenomena of black hole phase transition are found. There are more than one critical points under appropriate parameter values and the Gibbs free energy near critical points also has some new properties. Moreover, the Maxwell equal area rule is also investigated and the coexistence curve of the black hole is given.
Slender Galaxy with Robust Black Hole
NASA Technical Reports Server (NTRS)
2008-01-01
This plot of data from NASA's Spitzer Space Telescope indicates that a flat, spiral galaxy called NGC 3621 has a feeding, supermassive black hole lurking within it -- a surprise considering that astronomers thought this particular class of super-thin galaxies lacked big black holes.
The data were captured by Spitzer's infrared spectrograph, an instrument that cracks infrared light open to reveal the signatures of elements. In this case, the data, or spectrum, for NGC 3621, shows the signature of highly ionized neon -- a sure sign of an active, supermassive black hole. Only a black hole that is actively consuming gas and stars has enough energy to ionize neon to this state. The other features in this plot are polycyclic aromatic hydrocarbons and chlorine, produced in the gas surrounding stars.
The results challenge current theories, which hold that supermassive black holes require the bulbous central bulges that poke out from many spiral galaxies to form and grow. NGC 3621 is the second disk galaxy without any bulge found to harbor a supermassive black hole; the first, found in 2003, is NGC 4395. Astronomers have also used Spitzer to find six other mega black holes in thin spirals with only minimal bulges. Together, the findings indicate that, for a galaxy, being plump in the middle is not a necessary condition for growing a rotund black hole.
Black Hole Interior in Quantum Gravity.
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2015-05-22
We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent. PMID:26047218
How to Create Black Holes on Earth
ERIC Educational Resources Information Center
Bleicher, Marcus
2007-01-01
We present a short overview on the ideas of large extra dimensions and their implications for the possible production of micro black holes in the next generation particle accelerator at CERN (Geneva, Switzerland) from this year on. In fact, the possibility of black hole production on Earth is currently one of the most exciting predictions for the…
Black hole physics: More similar than knot
NASA Astrophysics Data System (ADS)
Gómez, José L.
2016-08-01
The detection of a discrete knot of particle emission from the active galaxy M81* reveals that black hole accretion is self-similar with regard to mass, producing the same knotty jets irrespective of black hole mass and accretion rate.
Black Holes at the LHC: Progress since 2002
Park, Seong Chan
2008-11-23
We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.
Black holes and stars in Horndeski theory
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Charmousis, Christos; Lehébel, Antoine
2016-08-01
We review black hole and star solutions for Horndeski theory. For non-shift symmetric theories, black holes involve a Kaluza–Klein reduction of higher dimensional Lovelock solutions. On the other hand, for shift symmetric theories of Horndeski and beyond Horndeski, black holes involve two classes of solutions: those that include, at the level of the action, a linear coupling to the Gauss–Bonnet term and those that involve time dependence in the galileon field. We analyze the latter class in detail for a specific subclass of Horndeski theory, discussing the general solution of a static and spherically symmetric spacetime. We then discuss stability issues, slowly rotating solutions as well as black holes coupled to matter. The latter case involves a conformally coupled scalar field as well as an electromagnetic field and the (primary) hair black holes thus obtained. We review and discuss the recent results on neutron stars in Horndeski theories.
Supermassive Black Holes and Galaxy Evolution
NASA Technical Reports Server (NTRS)
Merritt, D.
2004-01-01
Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.
Mass formula for quasi-black holes
Lemos, Jose P. S.; Zaslavskii, Oleg B.
2008-12-15
A quasi-black hole, either nonextremal or extremal, can be broadly defined as the limiting configuration of a body when its boundary approaches the body's quasihorizon. We consider the mass contributions and the mass formula for a static quasi-black hole. The analysis involves careful scrutiny of the surface stresses when the limiting configuration is reached. It is shown that there exists a strict correspondence between the mass formulas for quasi-black holes and pure black holes. This perfect parallelism exists in spite of the difference in derivation and meaning of the formulas in both cases. For extremal quasi-black holes the finite surface stresses give zero contribution to the total mass. This leads to a very special version of Abraham-Lorentz electron in general relativity in which the total mass has pure electromagnetic origin in spite of the presence of bare stresses.
Kerr Black Hole Entropy and its Quantization
NASA Astrophysics Data System (ADS)
Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng
2016-08-01
By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.
Voros Product and Noncommutative Inspired Black Holes
NASA Astrophysics Data System (ADS)
Gangopadhyay, Sunandan
2013-03-01
We emphasize the importance of the Voros product in defining the noncommutative (NC) inspired black holes. The computation of entropy for both the noncommutative inspired Schwarzschild and Reissner-Nordström (RN) black holes show that the area law holds up to order (1)/(√ {θ )}e-M2/θ . The leading correction to the entropy (computed in the tunneling formalism) is shown to be logarithmic. The Komar energy E for these black holes is then obtained and a deviation from the standard identity E = 2STH is found at the order √ {θ }e-M2/θ . This deviation leads to a nonvanishing Komar energy at the extremal point TH = 0 of these black holes. The Smarr formula is finally worked out for the NC Schwarzschild black hole. Similar features also exist for a de Sitter-Schwarzschild geometry.
Shadow of noncommutative geometry inspired black hole
NASA Astrophysics Data System (ADS)
Wei, Shao-Wen; Cheng, Peng; Zhong, Yi; Zhou, Xiang-Nan
2015-08-01
In this paper, the shadow casted by the rotating black hole inspired by noncommutative geometry is investigated. In addition to the dimensionless spin parameter a/M0 with M0 black hole mass and inclination angle i, the dimensionless noncommutative parameter √vartheta/M0 is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter √vartheta/M0, while the distortion increases with it. Compared to the Kerr black hole, the parameter √vartheta/M0 increases the deformation of the shadow. This may offer a way to distinguish noncommutative geometry inspired black hole from Kerr one via astronomical instruments in the near future.
Renormalized vacuum polarization of rotating black holes
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Black hole thermodynamics in MOdified Gravity (MOG)
NASA Astrophysics Data System (ADS)
Mureika, Jonas R.; Moffat, John W.; Faizal, Mir
2016-06-01
We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.
Modeling Flows Around Merging Black Hole Binaries
NASA Technical Reports Server (NTRS)
Centrella, Joan
2008-01-01
Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.
FEASTING BLACK HOLE BLOWS BUBBLES
NASA Technical Reports Server (NTRS)
2002-01-01
A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas
Spacetime and orbits of bumpy black holes
NASA Astrophysics Data System (ADS)
Vigeland, Sarah J.; Hughes, Scott A.
2010-01-01
Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced “bumpy black holes”: objects that are almost, but not quite, general relativity’s black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes—objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime’s bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime’s multipoles deviate from the black hole expectation.
Effects of kination and scalar-tensor cosmologies on sterile neutrinos
Rehagen, Thomas; Gelmini, Graciela B. E-mail: gelmini@physics.ucla.edu
2014-06-01
We study the effects of kination and scalar-tensor pre-Big Bang Nucleosynthesis cosmologies on the non-resonant production of sterile neutrinos. We show that if the peak of the production rate of sterile neutrinos occurs during a non-standard cosmological phase, the relic number density of sterile neutrinos could be reduced with respect to the number expected in the standard cosmology. Consequently, current bounds on active-sterile neutrino mixing derived from the relic energy density of sterile neutrinos could be greatly relaxed. In particular, we show that the sterile neutrinos which could explain the anomalies found in short-baseline neutrino experiments are compatible with recent joint Planck upper limits on their contribution to the energy density of the Universe in a scalar-tensor or a low-reheating temperature pre-Big Bang Nucleosynthesis cosmology.
Are Scalar-Tensor Theories Ruled Out by Solar System Observations?
NASA Astrophysics Data System (ADS)
Anderson, David; Yunes, Nicolás; Barausse, Enrico
2016-03-01
With the advent of new observations that probe the strong-field regime, it is a crucial time to determine which extensions of General Relativity are worth constraining. Scalar-tensor theories are both simple and well-motivated alternatives, and some lead to an excitation of the scalar in the strong field (scalarization), while reducing to Einstein's theory in the weak field. Previous studies, however, have shown that, upon cosmological evolution, the scalar field is typically driven to values that are ruled out today by Solar System observations. In this talk, I resolve this issue by modifying scalar-tensor theories in such a way so that the scalar field is driven to values that do satisfy weak-field tests today after cosmological evolution. In addition, these theories preserve scalarization (spontaneous, dynamical, induced) in the strong field regime, for example allowing neutron stars to deviate significantly from the predictions of General Relativity.
Disformal invariance of second order scalar-tensor theories: Framing the Horndeski action
NASA Astrophysics Data System (ADS)
Bettoni, Dario; Liberati, Stefano
2013-10-01
The Horndeski action is the most general one involving a metric and a scalar field that leads to second-order field equations in four dimensions. Being the natural extension of the well-known scalar-tensor theories, its structure and properties are worth analyzing along the experience accumulated in the latter context. Here, we argue that disformal transformations play, for the Horndeski theory, a similar role to that of conformal transformations for scalar-tensor theories a là Brans-Dicke. We identify the most general transformation preserving second-order field equations and discuss the issue of viable frames for this kind of theory, in particular, the possibility to cast the action in the so-called Einstein frame. Interestingly, we find that only for a subset of the Horndeski Lagrangian such a frame exists. Finally, we investigate the transformation properties of such frames under field redefinitions and frame transformations and their reciprocal relationship.
Relativistic stars in f(R) and scalar-tensor theories
Babichev, Eugeny; Langlois, David
2010-06-15
We study relativistic stars in the context of scalar-tensor theories of gravity that try to account for the observed cosmic acceleration and satisfy the local gravity constraints via the chameleon mechanism. More specifically, we consider two types of models: scalar-tensor theories with an inverse power law potential and f(R) theories. Using a relaxation algorithm, we construct numerically static relativistic stars, both for constant energy density configurations and for a polytropic equation of state. We can reach a gravitational potential up to {Phi}{approx}0.3 at the surface of the star, even in f(R) theories with an 'unprotected' curvature singularity. However, we find static configurations only if the pressure does not exceed one third of the energy density, except possibly in a limited region of the star (otherwise, one expects tachyonic instabilities to develop). This constraint is satisfied by realistic equations of state for neutron stars.
Black hole as a wormhole factory
NASA Astrophysics Data System (ADS)
Kim, Sung-Won; Park, Mu-In
2015-12-01
There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc / G) 1 / 2 ∼10-5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as "spacetime foam", due to large fluctuations below the Planck length (ħG /c3) 1 / 2 ∼10-33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2 > 1 / 2), a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2 < 1 / 2), the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2 = 1 / 2). This solution suggests the "Generalized Cosmic Censorship" by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by "negative" energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the recent " ER
Evolution of Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Filloux, Charline; de Freitas Pacheco, J. A.; Durier, Fabrice; Silk, Joseph
2010-05-01
Cosmological simulations describing both the evolution of supermassive black holes and their host galaxies were performed by using the tree PM-SPH code GADGET-2 (Springel 2005). Physical mechanisms affecting the dynamics and the physical conditions of the gas (ionization and cooling processes, local heating by stars, injection of mechanical energy by supernovae, chemical enrichment) were introduced in the present version of the code (Filloux 2009). Black holes in a state of accretion (AGNs) also inject mechanical energy in the surrounding medium, contributing for quenching the star formation activity. In all simulations a ΛCDM cosmology was adopted (h = 0.7, ΩΛ=0.7, Ωm=0.3, Ωb=0.046 and σ8=0.9). Simulations were performed in a volume with a side of 50h-1 Mpc, starting at z = 50 and through the present time (z = 0). For low and intermediate resolution runs, the initial gas mass particles are respectively 5.35× 108 M⊙ and 3.09×108 M⊙. Black holes (BHs) are represented by collisionless particles and seeds of 100 M⊙ were introduced in density peaks at z = 15, growing either by accretion or coalescence. The accretion rate from the “disk mode” is based on a turbulent viscous thin disk model whereas in the “spherical mode” the rate is given by the Bondi-Hoyle formula. When accreting matter, jets, modeled by conical regions perpendicular to the disk plane, inject kinetic energy into the surrounding medium. Two models were tested: in the first, the injected energy rate is about 10% of the gravitational energy rate released in the accretion process while in the second, the injected energy rate is based on the Blandford & Znajek (1977) mechanism. All simulations give, at z = 0, similar black hole mass function but they overestimate slightly the BH density for masses above ~ 108 M⊙. The resulting BH density in this mass range is affected by feedback processes since they control the amount of gas available for accretion. The present simulations are not
Close supermassive binary black holes
NASA Astrophysics Data System (ADS)
Gaskell, C. Martin
2010-01-01
It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.