Science.gov

Sample records for scale cfb combustors

  1. Improving performance of CFB boiler by adopting end effect of bed exit of CFB combustor

    SciTech Connect

    Zheng, Q.Y.; Jin, Y.

    1997-12-31

    Experiments indicate that the end effect of the bed exit of a CFB strongly influences the bulk density profile and internal circulation of bed materials in a CFB combustor. A well designed geometry of the bed exit of CFBC can create abundant internal circulation of bed materials in furnace and reduce external circulation in circulating loop of CFBC, then consequently improves the comprehensive performance of CFB boiler. This paper is devoted to analyzing the mechanism of the end effect of the bed exit on the hydrodynamics in a CFB by presenting test results. Design criteria and a suggestion for getting the end effect will also be presented.

  2. Large-scale CFB combustion demonstration project

    SciTech Connect

    Nielsen, P.T.; Hebb, J.L.; Aquino, R.

    1998-07-01

    The Jacksonville Electric Authority's large-scale CFB demonstration project is described. Given the early stage of project development, the paper focuses on the project organizational structure, its role within the Department of Energy's Clean Coal Technology Demonstration Program, and the projected environmental performance. A description of the CFB combustion process in included.

  3. Large-scale CFB combustion demonstration project

    SciTech Connect

    Nielsen, P.T.; Hebb, J.L.; Aquino, R.

    1998-04-01

    The Jacksonville Electric Authority`s large-scale CFB demonstration project is described. Given the early stage of project development, the paper focuses on the project organizational structure, its role within the Department of Energy`s Clean Coal Technology Demonstration Program, and the projected environmental performance. A description of the CFB combustion process is included.

  4. Spectral analysis of CFB data: Predictive models of Circulating Fluidized Bed combustors

    SciTech Connect

    Gamwo, I.K.; Miller, A.; Gidaspow, D.

    1992-04-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Spectral analysis of CFB data obtained at Illinois Institute of Technology shows that the frequencies of pressure oscillations are less than 0.1 Hertz and that they increase with solids volume fraction to the usual value of one Hertz obtained in bubbling beds. These data are consistent with the kinetic theory interpretation of density wave propagation.

  5. CFB combustor with internal solids recirculation -- Pilot testing and design applications

    SciTech Connect

    Belin, F.; Maryamchik, M.; Fuller, T.A.; Perna, M.A.

    1995-12-31

    The new generation of B and W`s CFB boilers with entirely internal recirculation of solids collected by the primary impact separator is uniquely compact and features a simple, low-maintenance solids collection system. Thorough testing of the new concept at the Cold CFB Model and the 2.5 MWth Pilot CFB combustor confirmed its effective performance equal to that of a CFB unit with external solids recirculation from the primary separator. While providing overall advantages of compactness and simplicity, the new design is especially valuable for repowering of the existing power plants where B and W`s CFB boiler fits into the plan area of PC-fired boilers.

  6. Design of a large-scale CFB boiler

    SciTech Connect

    Darling, S.; Li, S.

    1997-12-31

    Many CFB boilers sized 100--150 MWe are in operation, and several others sized 150--250 MWe are in operation or under construction. The next step for CFB technology is the 300--400 MWe size range. This paper will describe Foster Wheeler`s large-scale CFB boiler experience and the design for a 300 MWe CFB boiler. The authors will show how the design incorporates Foster Wheeler`s unique combination of extensive utility experience and CFB boiler experience. All the benefits of CFB technology which include low emissions, fuel flexibility, low maintenance and competitive cost are now available in the 300--400 MWe size range.

  7. Design and experience with utility-scale CFB boilers

    SciTech Connect

    Darling, S.L.; Hennenfent, M.

    1995-12-31

    Circulating fluidized bed (CFB) boilers have been in operation for many years in industrial steam and power generation applications, primarily in the 50-100 MWe range. In the past few years, however, several utility-scale CFB boilers have entered service. The scale-up of the Foster Wheeler Pyropower, Inc. CFB boilers has proceeded smoothly, and today FWPI CFB boilers up to 180 MWe are in operation, two 235 MWe boilers are now under construction, and other large units are in the design stage.

  8. Spectral analysis of CFB data: Predictive models of Circulating Fluidized Bed combustors. 11th technical progress report

    SciTech Connect

    Gamwo, I.K.; Miller, A.; Gidaspow, D.

    1992-04-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Spectral analysis of CFB data obtained at Illinois Institute of Technology shows that the frequencies of pressure oscillations are less than 0.1 Hertz and that they increase with solids volume fraction to the usual value of one Hertz obtained in bubbling beds. These data are consistent with the kinetic theory interpretation of density wave propagation.

  9. EERC pilot-scale CFBC evaluation facility Project CFB test results

    SciTech Connect

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.

  10. Industrial-scale demonstration of a new sorbent reactivation technology for fluidized bed combustors.

    PubMed

    Anthony, Edward J; McCleave, Robert; Gandolfi, Eduardo; Wang, Jinsheng

    2003-10-01

    To minimize the disposal of highly reactive spent sorbent from a fluidized bed combustor, a new method for reactivation has been developed. The method consists of grinding the spent ash in a rotary mill, hydrating the ash with an excess of water, and mixing the wet ground ash with dry solids to absorb the excess water. The mixing process eliminates the formation of a concrete-like product that normally results as wet fluidized bed combustor ash ages. Pilot-scale combustion trials proved to be successful, and the process was scaled up using a 35MWt utility boiler at Purdue University. The test lasted for 3 days and resulted in net reduction of limestone sorbent use of 18%. The results generated in this work have been used to develop an economic evaluation for a 165MWe circulating fluidized bed (CFB) boiler, which projects significant savings due to reduction of limestone supply and ash disposal costs. The evaluation also suggests that the process is cost competitive with other processes, albeit that those processes have not been demonstrated at industrial scale. Furthermore, it also has the potential to make a small net reduction in CO(2) emissions, due to reduced limestone usage. PMID:14550660

  11. Simulations of Small-Scale Liquid Film Combustors

    NASA Astrophysics Data System (ADS)

    Popov, Pavel; Sirignano, William

    2015-11-01

    Recent technological advances have generated need for small-scale combustor designs. The reduction of scale, however, leads to a higher area to volume ratio and thus greater relative heat loss. Liquid film combustors are one proposed design which aims to overcome this obstacle. In them, the fuel is injected as a liquid film on the combustor wall, and heat transfer is reduced due to evaporative cooling of the liquid film leading to reduced temperature gradients at the combustor walls. In this work, we present simulation results for a cylindrical small scale liquid film combustor, in which the reactants are liquid heptane and gaseous air. A computational procedure has been developed to simulate this two-phase combustion problem, using detailed chemical mechanisms. A cubic equation of state is applied for the simulation of the gaseous phase at high pressures. The present study examines the structure of the triple flame inside this combustor design, which has been analyzed in previous experimental work. Comparison between simulation and experimental work is made, with particular emphasis on the influence of the chemical mechanism, high-pressure equation of state, and the effect of swirl amplitudes in the liquid and gas phases on the structure of the flame. Supported by AFOSR grant FA9550-12-1-0156, AFOSR scientific manager: Dr. Mitat Birkan.

  12. Investigation of a low NOx full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  13. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  14. Experimental studies on methane-fuel laboratory scale ram combustor

    SciTech Connect

    Kinoshita, Y.; Kitajima, J.; Seki, Y.; Tatara, A.

    1995-07-01

    The laboratory scale ram combustor test program has been investigating fundamental combustion characteristics of a ram combustor, which operates from Mach 2.5 to 5 for the super/hypersonic transport propulsion system. In the previous study, combustion efficiency had been found poor, less than 70 percent, due to a low inlet air temperature and a high velocity at Mach 3 condition. To improve the low combustion efficiency, a fuel zoning combustion concept was investigated by using a subscale combustor model first. Combustion efficiency more than 90 percent was achieved and the concept was found very effective. Then a laboratory scale ram combustor was fabricated and combustion tests were carried out mainly at the simulated condition of Mach 5. A vitiation technique wa used to simulate a high temperature of 1,263 K. The test results indicate that ignition, flame stability, and combustion efficiency were not significant, but the NO{sub x} emissions are a critical problem for the ram combustor at Mach 5 condition.

  15. The ELSAM strategy of firing biomass in CFB power plants

    SciTech Connect

    Rasmussen, I.; Clausen, J.C.

    1995-12-31

    The Danish power pool ELSAM has launched a program for developing a coal and biomass-fired CFB concept for future power plants, as an option to achieve a substantial reduction of CO{sub 2} emissions associated with energy generation. The general development of CFB technology abroad and domestic experience gained from small-scale coal and straw firing form the basis for this program. Since January 1992 MIDTKRAFT Power Company has been operating an 80 MWth CFB cogeneration plant located at Grenaa. This plant is fired with a mixture of hard coal and surplus straw from farming. The share of straw ranges from 0-60% on an energy basis. Straw contains much larger amounts of chlorine and potassium than normal fossil fuels, which implies a higher potential of superheater corrosion and combustor fouling. This paper reviews the experience gained during the first 3 years of operation of the CFB plant. The record includes early superheater corrosion and fouling incidents, a heat surface modification and its impact on subsequent plant operation. Apart from operational experience the paper will review the results of the R and D activities executed at the Grenaa plant for further CFB development. Based on the specific experience from Grenaa and the general evolution of the CFB technology ELSAM has initiated a program for development of a 250 MWe CFB power plant concept, firing up to 60% biomass (wood waste and a limited amount of annular crops). USC steam conditions are adopted for the novel concept, implying an expected plant efficiency of 45% (LHV-based). Special emphasis is attached to plant operational flexibility with a view to fulfilling general power plant requirements.

  16. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    SciTech Connect

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

  17. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  18. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1983-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine. Previously announced in STAR as N83-21896

  19. Design of a 350 MWe CFB boiler

    SciTech Connect

    Darling, S.L.; Li, X.

    1997-12-31

    Circulating fluidized bed (CFB) boilers have been in operation for many years in industrial steam and power generation applications, primarily in the 50--100 MWe size range. Recently, several utility-scale CFB boilers have entered service and several others are under construction, in the 150--250 MWe size range. The next step for CFB technology is the 350 MWe size range. This paper will describe Foster Wheeler`s utility CFB experience, scale-up philosophy and the major design features of the 350 MWe CFB design.

  20. Predictive models for circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1989-11-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. The purpose of these models is to help American industry, such as Combustion Engineering, design and scale-up CFB combustors that are capable of burning US Eastern high sulfur coals with low SO{sub x} and NO{sub x} emissions. In this report, presented as a technical paper, solids distributions and velocities were computed for a PYROFLOW circulating fluidized bed system. To illustrate the capability of the computer code an example of coal-pyrite separation is included, which was done earlier for a State of Illinois project. 24 refs., 20 figs., 2 tabs.

  1. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  2. CFB combustion of high-ash Ukrainian anthracite -- Pilot testing and design implications

    SciTech Connect

    Belin, F.; Fuller, T.A.; Maryamchik, M.; Perna, M.A.; Maystrenko, A.Yu.

    1997-12-31

    High-ash anthracite is the most important indigenous fuel used for power generation in Ukraine. The power plant upgrade program, developed jointly by US Department of Energy (DOE) and Ukrainian Ministry of Energy, anticipates applying the CFB technology for efficient and environmentally clean utilization of this hard-to-burn fuel. Testing of high-ash anthracite sponsored by DOE was conducted at CFB test facilities at the Division of High Temperature Energy Conversion (DHTEC) of Ukrainian Academy of Science in Kiev and at the Babcock and Wilcox Research Center in Alliance, Ohio, USA (ARC). Testing at DHTEC included kinetic studies and combustion tests on a small-scale (100 mm diameter) CFB combustor. The rest results were used to select the fuel sizing and limestone type for pilot testing at ARC and to evaluate the effects of operating parameters on fuel combustion. Testing at the ARC 2.5 MW{sub t} CFB pilot facility (700 x 700 mm cross section, 23 m high) provided combustion and emission performance data applicable for designing of commercial-scale CFB boilers. Stable combustion without supplemental fuel and with the unburned carbon loss of less than 3% was achieved over a 55 to 100% load range. About 90% of sulfur was removed by adding limestone at a Ca/S ratio of 1.85; nitrogen oxide and carbon monoxide emissions were below 340 mg/Nm{sup 3} and 260 mg/Nm{sup 3}, respectively. The CFB boiler design recommendations for high-ash anthracite, developed based on the test results, are described in the paper.

  3. CFB repowering options

    SciTech Connect

    Gittinger, J.

    1996-12-31

    Circulating fluidized bed CFB repowering options are summarized. The following topics are discussed: why repower with CFB technology; advantages of repowering; two forms of of repowering; B and N`s internal recirculation CFB; space-saving design features; cost-saving design features; Ukrainian repowering project; and candidates for repowering.

  4. Foster Wheeler compact CFB boiler with INTREX

    SciTech Connect

    Hyppaenen, T.; Rainio, A.; Kauppinen, K.V.O.; Stone, J.E.

    1997-12-31

    Foster Wheeler has introduced a new COMPACT Circulating Fluidized Bed (CFB) boiler design based on the rectangular hot solids separator. The Compact design also enables easy implementation of new designs for INTREX fluid bed heat exchangers. These new products result in many benefits which affect the boiler economy and operation. After initial development of the Compact CFB design it has been applied in demonstration and industrial scale units. The performance of Compact CFB has been proved to be equivalent to conventional Foster Wheeler CFB has been proved to be equivalent to conventional Foster Wheeler CFB boilers with high availability. Several new Foster Wheeler Compact boilers are being built or already in operation. Operational experiences from different units will be discussed in this paper. There are currently Compact units with 100--150 MW{sub e} capacity under construction. With the scale-up experience with conventional CFB boilers and proven design approach and scale-up steps, Foster Wheeler will have the ability to provide large Compact CFB boilers up to 400--600 MW{sub e} capacity.

  5. Design and experience with large-size CFB boilers

    SciTech Connect

    Darling, S.L.

    1994-12-31

    CFB boilers have been in operation for many years in industrial steam and power generation applications demonstrating the low SO{sub x}/NO{sub x} emissions and fuel flexibility of the technology. In the past few years, several large-size CFB boilers (over 100 MWe) have entered service and are operating successfully. On the basis of this experience, CFB boilers up to 400 MWe in size are now being offered with full commercial guarantees. Such large CFB boilers will be of interest to countries with strict emission regulations or the need to reduce emissions, and to countries with both a large need for additional power and low grade indigenous solid fuel. This paper will describe Ahlstrom Pyropower`s scale-up of the AHLSTROM PYROFLOW CFB boiler, experience with large-size CFB boilers and the design features of CFB boilers in the 400 MWe size range.

  6. CFB roasting for gold ore processing

    SciTech Connect

    Hubbard, G.; D'Acierno, J.P.

    1999-07-01

    This paper describes how KTI/Dorr-Oliver applied the results from CFB boiler technology to the design for a CFB mineral processing plant built in Africa in 1992. The whole ore gold roaster plant located in Syama, Mali is presently owned and operated by Randgold of South Africa and it processes over 216 tons per hour of whole gold ore. The plant has operated continuously for over four years. The CFB reactor operates in the turbulent CFB mode of fluidization with over 40 minutes of solids residence time in the dense phase for optimum conversion of the feed material. The success of the plant after four years of operation is in large part due to the choice of the turbulent CFB mode of fluidization. This mode is very flexible in face of significant variations in feed composition and size distribution. Sulfur capture takes place in situ and the sorbent is present naturally in the feed. An electrostatic precipitator is used for particulate removal from the flue gas. The energy balance for the system requires auxiliary fuel oil burned in the CFB reactor. Energy from the 1,200--1,350 F roasted product stream is recovered and recycled back into the CFB using two fluidized bed coolers; one to directly heat the secondary air and the other to indirectly heat the primary fluidizing air. Pilot plant testing and the scale up of pilot plant results to the full scale plant is described. The plant start up including resolution of some unique start up difficulties is covered. A comparison of results for the pilot plant and commercial plant is presented.

  7. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James

    2008-01-01

    The objectives are: a) Re-introduce to you the concept of scaling; b) Describe the scaling research conducted in the 1950s and early 1960s, and present some of their conclusions; c) Narrow the focus to scaling for performance of combustion devices for liquid propellant rocket engines; and d) Present some results of subscale to full-scale performance from historical programs. Scaling is "The ability to develop new combustion devices with predictable performance on the basis of test experience with old devices." Scaling can be used to develop combustion devices of any thrust size from any thrust size. Scaling is applied mostly to increase thrust. Objective is to use scaling as a development tool. - Move injector design from an "art" to a "science"

  8. CFB: technology of the future?

    SciTech Connect

    Blankship, S.

    2008-02-15

    Fuel flexibility and a smaller carbon footprint are behind renewed interest in circulating fluidized bed (CFB) technology. The article explains the technology of CFB and discusses development of CFB units since the late 1990s. China is seeing an explosion in the number of utility-size CFBs. Alstom, Foster Wheeler, Babcock and Wilson and Alex Kvaener are today's major CFB boiler manufacturers. Alstom is testing and developing oxy-firing and post-combustion carbon capture strategies on CFB boilers. One CFB asset is its ability to burn a variety of fuels including waste coal, high sulfur coal and even discarded tires. The article mentions successful CFB projects at the Seward Station using waste coal and at the Gilbert 3 plant in the USA. Lamar is converting its Light and Power Plant from natural gas to burn coal in a 38.5 MW CFB boiler. 1 tab., 3 photos.

  9. Mercury Emission Measurement at a CFB Plant

    SciTech Connect

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and

  10. Experience from the 300 MWe CFB Demontration Plant in China

    NASA Astrophysics Data System (ADS)

    Gauvillé, P.; Semedard, J.-C.; Darling, S.

    This paper will describe the background and current status of the 300MWe CFB Demonstration Project located at the Baima Power Plant in Sichuan Province. This project was the first 300MWe class CFB in China and the first project built under the Transfer of Technology from Alstom. The plant entered commercial operation in early 2006. The fuel is a high-ash anthracite which has presented significant challenges in terms of higher-than-expected ash content and top size. While this fuel has been problematic for the adjacent suspension-fired boilers, performance in the CFB boiler has been excellent, with low carbon content in the ash, low turndown and low emissions. Key boiler performance parameters will be described along with a comparison of design and actual performance and the operational experience will be addressed. Finally, the paper will describe Alstom's process for scaling the CFB technology from 300MWe to 600MWe, and our supercritical CFB design.

  11. Design for a 350 MWe class CFB boiler

    SciTech Connect

    Darling, S.L.

    1998-07-01

    This paper describes Foster Wheeler's design for a 350 MWe Class boiler. Foster Wheeler's experience with large CFB boilers and with large suspension fired boilers is summarized. A reference 350 MWe CFB boiler design is presented and major design features are described along with expected performance. Areas in the CFB boiler design which benefit from suspension from boiler experience are highlighted. CFB boilers are now proven in the 150--250 MWe size range, with several in operation and many others scheduled to begin operation this year. The next step for CFB boiler technology is the 300 - 400 MWe size range. This paper will describe Foster Wheeler's design for a 350 MWe class CFB boiler, including the major design features and anticipated performance. The authors will demonstrate how Foster Wheeler's experience in designing large suspension-fired boilers in sizes over 900 MWe has been applied to the 350 MWe class CFB, in order to minimize scale-up risk and ensure high reliability. This design will bring the benefits of CFB technology, which include flexibility and low emissions, to the 350 MWe size range.

  12. SiC Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond Craig

    1997-01-01

    One of today's most important and challenging technological problems is the development of advanced materials and processes required to design and build a fleet of supersonic High Speed Civil Transport (HSCT) airliners, a follow-up to the Concorde SST. The innovative combustor designs required for HSCT engines will need high-temperature materials with long-term environmental stability. Higher combustor liner temperatures than today's engines and the need for lightweight materials will require the use of advanced ceramic-matrix composites (CMC's) in hot-section components. The HSCT is just one example being used to demonstrate the need for such materials. This thesis evaluates silicon carbide (SiC) as a potential base material for HSCT and other similar applications. Key issues are the environmental durability for the materials of interest. One of the leading combustor design schemes leads to an environment which will contain both oxidizing and reducing gas mixtures. The concern is that these environments may affect the stability of the silica (SiO2) scale on which SiC depends for environmental protection. A unique High Pressure Burner Rig (HPBR) was developed to simulate the combustor conditions of future gas turbine engines, and a series of tests were conducted on commercially available SiC material. These tests are intended as a feasibility study for the use of these materials in applications such as the HSCT. Linear weight loss and surface recession of the SiC is observed as a result of SiO2 volatility for both fuel-lean and fuel-rich gas mixtures. These observations are compared and agree well with thermogravimetric analysis (TGA) experiments. A strong Arrhenius-type temperature dependence exists. In addition, the secondary dependencies of pressure and gas velocity are defined. As a result, a model is developed to enable extrapolation to points outside the experimental space of the burner rig, and in particular, to potential gas turbine engine conditions.

  13. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin; Mills, Bernice E.; Liu, Shiling; Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N.; Hekmuuaty, Michelle A.

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  14. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    SciTech Connect

    Samuelsen, S.; LaRue, J.; Vilayanur, S.; Guillaume, D.

    1995-12-31

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the ``unmixedness.`` Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine System (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines. The contributions to the program which the University of California (Irvine) Combustion Lab (UCICL) will provide are: (1) establish the relationship of inlet unmixedness, length scales, and mean strain rate to performance, (2) determine the optimal levels of inlet unmixedness, length scales, and mean strain rates to maximize combustor performance, and (3) identify efficient premixing methods for achieving the necessary inlet conditions. The program during this reporting period is focused on developing a means to measure and qualify different degrees of temporal and spatial unmixedness. Laser diagnostic methods for planer unmixedness measurements are being developed and preliminary results are presented herein. These results will be used to (1), aid in the design of experimental premixers, and (2), determine the unmixedness which will be correlated with the emissions of the combustor. This measure of unmixedness coupled with length scale, strain rate and intensity information is required to attain the UCI goals.

  15. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  16. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and

  17. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  18. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)

    SciTech Connect

    John L. Marion; Nsakala ya Nsakala

    2003-11-09

    The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

  19. Scaling a single element combustor to replicate combustion instability modes of a liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Sweeney, Brian A.

    This research evaluated a method of scaling a single element sub-scale combustor to match the combustion instability modes of a full-scale liquid rocket engine. The experiments used a shear-coaxial injector in an atmospheric chamber using gaseous oxygen and a heated gaseous methane/nitrogen fuel mixture. The flow conditions matched the full-scale equivalence ratio, propellant velocities and propellant volumetric flow rates. The first set of experiments empirically determined the effect of chamber diameter on chamber temperature. The results were used to calculate the dimensions of the sub-scaled combustion chamber that would match the transverse frequencies of the full-scale engine. The scaled chamber was used in two sets of experiments. The stationary tests placed the injector at the center of the chamber and 0.25 in. from the wall. The centered test displayed evidence of coupling between the 1L chamber mode and the injector oxygen post at 885 Hz. Injector coupling was also observed during experiments with the full-scale rocket engine. With the injector 0.25 in. from the wall, the average chamber temperature dropped about 350°C from the centered test. As a consequence, the frequencies of the transverse modes were lower than the full-scale values. No major difference was found in this research between the stable and unstable set points of the full-scale engine. A translating stage was used to evaluate where various chamber modes appear as a function of injector location. The results show that the 1L chamber mode is present at every location and transverse modes appear as the injector moves near the wall.

  20. Development of a small-scale power system with meso-scale vortex combustor and thermo-electric device

    NASA Astrophysics Data System (ADS)

    Shimokuri, D.; Hara, T.; Matsumoto, R.

    2015-10-01

    A small-scale vortex combustion power system has been developed using a thermo-electric device (TED). The system consisted of a heat medium, TED, and cooling plates. A vortex combustion chamber (7 mm inner diameter and 27 mm long) was fabricated inside the heat medium (40  ×  40  ×  20 mm and 52 g of duralumin). It was found that a stable propane/air flame could be established in the narrow 7 mm channel even for the large heat input conditions of 213 ~ 355 W. With a couple of TEDs, the maximum of 8.1 W (9.8 V  ×  0.83 A) could be successfully obtained for 355 W heat input, which corresponded to the energy conversion rate of 2.4%. The results of the gas and the combustor wall temperature measurements showed that the heat transfer from the burned gas to combustor wall was significantly enhanced by the vortex flow, which contributed to the relatively high efficiency energy conversion on the vortex combustion power system.

  1. Beneficial uses of CFB ash

    SciTech Connect

    Young, L.J.; Cotton, J.L. Jr.

    1994-12-31

    Coal-fired generation accounts for almost 55 percent of the electricity produced in the United States. It has been estimated that over 90 million tons of coal combustion waste by-products were generated in 1990. Currently, only 30% of coal combustion waste is recycled for various beneficial applications. The remaining waste is primarily managed in landfills and surface impoundments. Circulating fluidized bed (CFB) combustion technology will play an important role in supplying power for future load growth and Title 4 of the 1990 Clean Air Act Amendments compliance. CFB ash by-products have many beneficial uses. This paper describes potential applications of CFB ashes based on the ash characteristics. The beneficial uses of CFB ash discussed in this study include agricultural applications, acidic waste stabilizer, ash rock, sludge stabilizer, strip mine reclamation, and structural fill.

  2. CFB sorbent selection enhances performance

    SciTech Connect

    Buecker, B.; Wofford, J.; DuBose, R.; Ray, D.

    1997-07-01

    The quality and particle size of the sorbent has a direct influence on the efficiency of sulfur dioxide (SO{sub 2}) removal in a circulating fluidized bed (CFB) boiler. This report outlines tests and subsequent operation of a CFB unit at the University of North Carolina at Chapel Hill Cogeneration Facility (UNC-CH) that proved how dramatically a change in sorbent can change the efficiency of performance.

  3. Computer modeling of a CFB (circulating fluidized bed) gasifier

    SciTech Connect

    Gidaspow, D.; Ding, J.

    1990-06-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. This report presents an extension of our cold flow modeling of a CFB given in our first quarterly report of this project and published in Numerical Methods for Multiphase Flows'' edited by I. Celik, D. Hughes, C. T. Crowe and D. Lankford, FED-Vol.91, American Society of Mechanical Engineering, pp47--56 (1990). The title of the paper is Multiphase Navier-Stokes Equation Solver'' by D. Gidaspow, J. Ding and U.K. Jayaswal. To the two dimensional code described in the above paper we added the energy equations and the conservation of species equations to describe a synthesis gas from char producer. Under the simulation conditions the injected oxygen reacted near the inlet. The solid-gas mixing was sufficiently rapid that no undesirable hot spots were produced. This simulation illustrates the code's capability to model CFB reactors. 15 refs., 20 figs.

  4. Computational fluid dynamics assessment. Volume 2: Isothermal simulations of the METC bench-scale coal-water slurry combustor

    NASA Astrophysics Data System (ADS)

    Celik, Ismail; Chattree, Mayank

    1988-09-01

    The isothermal turbulent, swirling flow inside the METC pressurized bench scale combustor was simulated using ISOPCGC-2. The effects of the swirl numbers, the momentum ratio of the primary to secondary streams, the annular wall thickness, and the quarl angle on the flow and mixing patterns were investigated. The results that with the present configuration of the combustor, an annular recirculation zone is present up to secondary swirl number of four. A central (on axis) recirculation zone can be obtained by increasing the momentum of the secondary stream by decreasing the annular area at the reactor inlet. The mixing of the primary (fuel carrier) air with the secondary air improves only slightly due to swirl unless a central recirculation zone is present. Good mixing is achieved in the quarl region when a central recirculation zone is present. A preliminary investigation of the influence of placing flow regulators inside the combustor shows that they influence the flow field significantly and that there is a potential of obtaining optimum flow conditions using these flow regulators.

  5. Application of deterministic chaos analysis to investigating CFB hydrodynamics

    SciTech Connect

    Yin, C.; Luo, Z.; Li, X.; Fang, M.; Ni, M.; Cen, K.

    1997-12-31

    This paper presents an application of deterministic chaos analysis to the behavior of a gas-solid circulating fluidized bed (CFB). Two improvements for the traditional algorithm are put forward: a rule and the mathematical model are present to determine the no-scale interval, and an improved formula and the corresponding recurrence formula are given to calculate distance. Calculation results for different operating conditions indicate that the correlation dimension and Kolmogorov entropy can be employed to characterize fluidization regimes and their transitions, and may be used to detect abnormal conditions in CFB.

  6. CFB boiler at Gardanne (France)

    SciTech Connect

    Jaud, P.; Jacquet, L.; Delot, P.; Bayle, F.

    1995-06-01

    Among the new Clean Coal Technologies, {open_quotes}Circulating Fluidized Bed{close_quotes} is one of the most promising. Today, the largest project in commissioning`s the 250 MWe Provence CFB boiler, located near MARSEILLE in the south of France. At such a size, the CFB technique has now reached a capacity corresponding to thermal power plants operated by utilities. This new unit is a very important step towards larger size i.e. 400 MWe and greater. The SO{sub 2} emissions of this CFB boiler are guaranteed to be less than 400 mg / Nm{sup 3} at 6% O{sub 2} with the ratio of Ca/S lower than 3 while total sulfur in local coal used can reach 3.68 %. The purpose of the Provence project was to replace the existing pulverized coal boiler unit 4, commissioned in 1967, of the Provence power plant, with a new CFB boiler while reusing most of the existing equipment. The new boiler has been ordered from GEC ALSTHOM STEIN INDUSTREE (GASI) by Electricite de France (EDF) on behalf of the SOPROLIF consortium. Architect Engineering and construction management was performed by EDF jointly with Charbonnages de France (CdF: the French Coal Board). The 250 MWe CFB boiler is of the superheat-reheat type. The first firing of the boiler is due in April 1995. The poster session will describe the progress in the construction of the plant and provides technical details of the new boiler and auxiliaries.

  7. Visualization and Analysis of a Hydrocarbon Premixed Flame a in Small Scale Scramjet Combustor

    NASA Astrophysics Data System (ADS)

    Cantu, Luca Maria Luigi

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight enthalpy. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature. In the same facility, OH PLIF measurements were also performed; OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulations. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical

  8. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.

    PubMed

    Shin, D; Jang, S; Hwang, J

    2005-01-01

    After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions. PMID:16009301

  9. NO and N{sub 2}O emission characteristics from a pilot scale vortexing fluidized bed combustor firing different fuels

    SciTech Connect

    Chien-Song Chyang; Fu-Ping Qian; Yen-Chin Lin; Sheng-Hong Yang

    2008-03-15

    This study investigated experimentally the effects of various operating conditions, such as bed temperature, excess air, fuel property, and the method of temperature control on NO and N{sub 2}O emissions. All the experiments are conducted in a pilot scale vortexing fluidized bed combustor (VFBC). The cross section of the combustion chamber is 0.64 x 0.32 m{sup 2}, and the inner diameter of the freeboard is 0.45 m. Rice husk, soybean, and high sulfur subbituminous coal are used as fuels. Silica sand is employed as the bed material. The experimental results reveal that NO emissions increase with excess air and are almost independent of the bed temperature (600-760{sup o}C). In addition, the amount of NO and N{sub 2}O increases while water is injected into the combustor. The high-volatile fuel appears to form a significant amount of NO and N{sub 2}O above the bed surface, However, NO emission detected at the outlet of the combustor decreases with the volatile content. Compared with the primary air, the bed temperature is the dominant factor for the trade off NO and N{sub 2}O. Most of the NO is formed above the bed surface, achieves a maximum value at the position below the inlet of second air, and is reduced considerably within the freeboard. Moreover, the most remarkable feature about them is that N{sub 2}O emission from combustion can be neglected no matter what the feeding material is. 39 refs., 2 tabs.

  10. CFB evaluation of high-ash Ukrainian anthracite coal

    SciTech Connect

    Perna, M.A.; Fuller, T.A.; Reuther, J.; Belin, F.; Maryamchik, M.; Maystrenko, A.

    1996-12-31

    High-ash Ukrainian anthracite coal (called schtib) was evaluated to determine its impact on design for commercial-scale circulating fluidized bed (CFB) boilers. The project was performed to support the US/Ukraine Clean Coal Task Force efforts to upgrade Ukraine`s coal-fired power plants. The project was sponsored by the US Agency for International Development (USAID) through the US Department of Energy, Pittsburgh Energy Technology Center (DOE-PETC). The test work was performed at the Institute of Energy Savings Problems (IESP) in Kiev, Ukraine and at the Babcock and Wilcox (B and W) Research Center in Alliance, Ohio. Parametric tests were performed on small-scale and pilot-scale CFB facilities to examine the effects of operating parameters and fuel particle size distribution on combustion and emissions performance. Test results indicate that with fuel crushed to minus 1/8 inches and an average operating temperature of 1,650 F, stable combustion without support fuel and low unburned carbon loss (<3%) can be achieved within a 50--100% load range. Gaseous emissions of sulfur dioxide were successfully controlled to about 90% sulfur removal by adding sorbent at a Ca/S ratio of about 1.9. Nitrogen oxide and carbon monoxide emissions were maintained below 0.24 lbs/MBtu and 0.18 lbs/MBtu, respectively during the tests. The test results indicated that B and W`s CFB boilers can be used to fire schtib in an efficient and environmentally acceptable manner and provided input for the refinement of the CFB design for this fuel CFB boilers of 60 Mwe and 200 Mwe capacity for repowering of Ukrainian power plants are being jointly developed by B and W and Ukrainian organizations.

  11. Dynamic modeling for simulation and control of a circulating fluidized-bed combustor

    SciTech Connect

    Muir, J.R.; Brereton, C.; Grace, J.R.; Lim, C.J.

    1997-05-01

    A dynamic model has been developed to predict the transient behavior of the temperature, the heat removal rate by the in-bed heat exchanger, and the flue-gas oxygen concentration for a circulating fluidized-bed (CFB) combustor. The model was incorporated into a control simulator to reproduce the combustion process within the overall program. The simulator predicts the behavior of the combustor under manual or automatic control to allow testing of control strategies. The model is validated by comparison with step-response tests carried out on a pilot CFB combustor. Discrepancies are attributable to unmodeled disturbances. Further validation, necessary to ensure the applicability of the simulator to control development, is provided by comparing control models identified experimentally using the pilot CFB to those obtained by simulation. Favorable comparison suggests that the dynamic model is suitable for use in control simulation.

  12. Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor.

    PubMed

    Qian, F P; Chyang, C S; Huang, K S; Tso, Jim

    2011-01-01

    The combustion of biomass of various nitrogen contents and its NO emission were investigated experimentally in this study. All the experiments were conducted in an I.D. 0.45 m pilot-scale vortexing fluidized bed combustor (VFBC). Rice husk, corn, and soybean were used as feeding materials. Urea was added into the feeding materials for the purpose of adjusting nitrogen content. The effects of various operating parameters on NO emission, such as bed temperature, excess air ratio, and flow rate of secondary air, were investigated. The effects of nitrogen content of fuels on NO emissions were also investigated by using the mixtures of rice husk/soybean, rice husk/urea, corn/soybean, and corn/urea in various weight ratios. The NO concentrations at various positions in the combustor were sampled and recorded. The experimental results show that most nitric oxide is formed at just above the bed surface. Temperature and excess air ratio are the major operating parameters for NO emission. For biomass with high nitrogen content, NO emission decreases with excess air, and increases with bed temperature. Compared with char-N, volatile-N is the more dominant reactant source for NO emission. PMID:20800476

  13. Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor--The Effect of Coal Blending

    EPA Science Inventory

    A study has been undertaken to investigate the effect of blending PRB coal with an Eastern bituminous coal on the speciation of Hg across an SCR catalyst. In this project, a pilot-scale (1.2 MWt) coal combustor equipped with an SCR reactor for NOx control was used for evaluating ...

  14. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M.

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  15. PROVENCE SOPROLIF 250 MWe CFB: Performances during two years of operation

    SciTech Connect

    Roulet, V.; Levy, D.; Lucat, P.

    1998-07-01

    The largest CFB boiler in the world, the SOPROLIF 250 MWe CFB boiler, has been operated commercially since the end of April 1996. The overall boiler performances and availability recorded since the beginning of this commercial operation are far better than the contractual requirements. This paper gives the performance figures measured during the performance tests of the boiler. Moreover, different performance parameters recorded by an on-line control tool are detailed for the second year of commercial operation. Then, the good flexibility of this CFB unit and its ability to follow the grid requirements are shown. Moreover this paper describes the different ways of operation and maintenance optimizations that are going to be engaged by SOPROLIF in the following years. Finally, the different results enable developments for further scaling up to 400--600 MWe. EDF has already carried out a basic study on a 600 MWe supercritical CFB unit for one year.

  16. Colorado-Ute Nucla Station Circulating-Fluidized-Bed (CFB) demonstration

    SciTech Connect

    Not Available

    1991-09-01

    An integral part of the atmospheric fluidized-bed combustion (AFBC) development program at EPRI has been support for the demonstration of AFBC technology on a utility scale, including the Colorado-Ute Nucla 110-MW circulating-fluidized-bed (CFB) demonstration plant. The objective of this demonstration was to bridge the gap between industrial and utility CFB applications and to determine the operability and performance potential of CFB technology, Test Program Preparation, volume 1 of this report, describes the activities and resources required to successfully develop a detailed test program and presents the results of this preparation phase. Test Program Results, volume 2 of this report, will present the results of the test program and provide an assessment of CFB technology. 1 ref., 64 figs., 28 tabs.

  17. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1976-01-01

    Combustor pollution reduction technology for commercial CTOL engines was generated and this technology was demonstrated in a full-scale JT9D engine in 1976. Component rig refinement of the two best combustor concepts were tested. These concepts are the vorbix combustor, and a hybrid combustor which combines the pilot zone of the staged premix combustor and the main zone of the swirl-can combustor. Both concepts significantly reduced all pollutant emissions relative to the JT9D-7 engine combustor. However, neither concept met all program goals. The hybrid combustor met pollution goals for unburned hydrocarbons and carbon monoxide but did not achieve the oxides of nitrogen goal. This combustor had significant performance deficiencies. The Vorbix combustor met goals for unburned hydrocarbons and oxides of nitrogen but did not achieve the carbon monoxide goal. Performance of the vorbix combustor approached the engine requirements. On the basis of these results, the vorbix combustor was selected for the engine demonstration program. A control study was conducted to establish fuel control requirements imposed by the low-emission combustor concepts and to identify conceptual control system designs. Concurrent efforts were also completed on two addendums: an alternate fuels addendum and a combustion noise addendum.

  18. Environmental assessment and utilization CFB ash

    SciTech Connect

    Conn, R.

    1997-12-31

    Landfill disposal has generally been accepted as the most common option for ash management in CFB power plants. However, the cost of ash disposal continues to increase due to a reduction in landfill capacity and more stringent environmental regulations. As a result, beneficial uses of CFB ashes (versus landfilling) are being investigated in order to provide a more cost effective ash management program. The chemical and physical characteristics of CFB by-products will influence both their environmental impact and potential utilization options. Compared to conventional pulverized coal boiler ashes, CFB ashes generally have different chemical properties which may limit their utilization for production of Portland cement. Other diverse utilization options have been identified for CFB residues which include: agricultural applications, structural fill, and waste stabilization. Most of these applications have to meet specifications by following certain test methods. The exact utilization options for CFB by-products will depend primarily on the type of fuel being fired, and to a lesser extent, the type of sorbent utilized for sulfur capture. Based on laboratory investigation of ash characteristics, utilization options were concluded for different Foster Wheeler commercial boilers throughout the US and abroad. Based on the results of this study, it was demonstrated that most CFB ashes could be utilized for one or more of the purposes noted above.

  19. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    NASA Astrophysics Data System (ADS)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  20. Development of a portable power system with meso-scale vortex combustor and thermo-electric device

    NASA Astrophysics Data System (ADS)

    Shimokuri, D.; Hara, T.; Ishizuka, S.

    2014-11-01

    In this study, a small scale power generation system with a meso-scale vortex combustor has been developed. The system was consisted of a couple of thermo-electric device and a heat medium. The medium was made of duralumin, 40 × 40 × 20 mm and 52 g weight, and the vortex combustion chamber of 7 mm inner diameter was embedded in it. It was found that a stable flame could be established in the narrow 7 mm channel even the mean axial velocity reached 1.2 m/s. And furthermore, the vortex flow significantly enhanced the heat transfer from the burned gas to combustion chamber, and as a result, the medium was heated to 300°C quickly (within 5 minutes) by the combustion of propane / air mixture for 145W input energy. The system could successfully generate 1.98 W (4.3 V and 0.46 A), which corresponded to the energy conversion rate of 0.7 % per unit thermo-electric device.

  1. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.

    PubMed

    Li, Ying; Suriyawong, Achariya; Daukoru, Michael; Zhuang, Ye; Biswas, Pratim

    2009-05-01

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 microm at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 microm, and 10 microm. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles. PMID:19583155

  2. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  3. Full-scale results for TAM limestone injection

    SciTech Connect

    Baer, S.

    1996-12-31

    Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.

  4. Mass balance for POPs in a real scale fluidized bed combustor co-incinerating automotive shredder residue.

    PubMed

    Van Caneghem, J; Block, C; Vermeulen, I; Van Brecht, A; Van Royen, P; Jaspers, M; Wauters, G; Vandecasteele, C

    2010-09-15

    The European directive 2000/53/EC implies a "reuse and recovery" rate for end-of-life vehicles (ELVs) of 95% to be reached by the year 2015. One of the options to increase the actual average European "reuse and recovery" rate of approximately 78% (EU 15, 2008) is incineration of automotive shredder residue (ASR) with energy-recovery. The mass balance and the congener fingerprints for PCDD/Fs, dioxin-like PCBs, PCBs and PAHs in a real scale fluidized bed combustor (FBC) incinerating 25% ASR with 25% refuse derived fuel (RDF) and 50% waste water treatment sludge (WWT sludge) were investigated. The PCDD/F, dioxin-like PCB, PCB and PAH concentrations in this input waste mix were more than hundred times higher than in the usual waste feed of the incinerator (30% RFD and 70% WWT sludge). In the outputs of the FBC, however, the concentrations of these POP groups were comparable or only slightly higher than in the outputs generated during the incineration of the usual waste feed. The considered POPs in the waste were destroyed efficiently and the formation of new POPs during cooling of the flue gas appeared to a large extent independent of the POP concentrations in the incinerated waste. PMID:20541864

  5. Utilization of silt as CFB boiler fuel

    SciTech Connect

    Herb, B.; Tsao, T.R.; Bickley, D.

    1994-12-31

    Bituminous silt represents an enormous source of discarded energy that is polluting the environment. Although bituminous silt is a potential opportunity fuel for circulating fluidized bed (CFB) boilers, handling problems and uncertainties about the impact of this fuel on CFB boiler performance and operating economics have prevented its use. Under sponsorship of the Pennsylvania Energy Development Authority, five different technologies having the potential to process silt into CFB boiler fuel were evaluated. The technologies evaluated include: washing, pelletizing, thermal drying, mulling and flaking. The desired goal was to process the silt into a form that can be fed to CFB boilers using conventional coal handling equipment and combusted in an environmentally acceptable manner. Criteria were developed for the product characteristics that are desired and tests were run to evaluate the technical feasibility of each silt processing technology. Based on these test results, the design and cost bases for a commercial silt processing facility were developed for each technology capable of achieving the desired product characteristics. As a result of considering both engineering and economic factors, the technology that best meets the objectives for use of processed silt as CFB boiler fuel was selected for further demonstration testing. This paper will present the results of this project up through the selection of the best silt processing technology.

  6. Pyroflow Compact: The next generation CFB boiler

    SciTech Connect

    Darling, S.L.

    1995-12-31

    CFB technology is the modern way to burn coal and other solid fuels. This technology was specifically developed to address today`s needs for fuel flexibility and low emissions. The low furnace temperatures characteristic of CFB technology provide for (a) low NO{sub x} emissions, (b) low SO{sub 2} emissions via simple furnace limestone injection and (c) the ability to fire a wide range of fuels because slagging is avoided. Lack of pulverizers and stack gas scrubbers results in a simple design with low maintenance costs and high availability. Ahlstrom, responsible for many innovations in CFB technology, has recently developed an improved CFB boiler design called the Pyroflow Compact. This new design retains all the benefits of the proven AHLSTROM PYROFLOW{reg_sign}CFB boiler while providing many advantages. This paper will describe the design features of the new Pyroflow Compact design, the advantages of this new design, operating experience, an up-to-date list of projects and Ahlstrom`s future plans for the new design.

  7. Computational fluid dynamics assessment: Volume 2, Isothermal simulations of the METC bench-scale coal-water slurry combustor: Final report

    SciTech Connect

    Celik, I.; Chattree, M.

    1988-09-01

    The isothermal turbulent, swirling flow inside the METC pressurized bench-scale combustor has been simulated using ISOPCGC-2. The effects of the swirl numbers, the momentum ratio of the primary to secondary streams, the annular wall thickness, and the quarl angle on the flow and mixing patterns have been investigated. The results that with the present configuration of the combustor, an annular recirculation zone is present up to secondary swirl number of four. A central (on axis) recirculation zone can be obtained by increasing the momentum of the secondary stream by decreasing the annular area at the reactor inlet. The mixing of the primary (fuel carrier) air with the secondary air improves only slightly due to swirl unless a central recirculation zone is present. Good mixing is achieved in the quarl region when a central recirculation zone is present. A preliminary investigation of the influence of placing flow regulators inside the the combustor shows that they influence the flow field significantly and that there is a potential of obtaining optimum flow conditions using these flow regulators. 58 refs., 47 figs., 12 tabs.

  8. Experimental clean combustor program; noise measurement addendum, Phase 2

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.; Bekofske, K. L.

    1976-01-01

    Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.

  9. Test research of bed ash coolers for a 50 MWe CFB boiler

    SciTech Connect

    Chen, H.P.; Lu, J.D.; Lin, Z.J.; Liu, D.C.; Hu, L.L.; Xie, P.J.; Yan, H.X.; Liu, M.C.

    1995-12-31

    CFB boilers have been developed and commercialized in China. As one of the main auxiliaries of FBC boilers, the bed ash cooler plays an important role in regular operation of the boilers. A 50 MWe 2-shaped CFB boiler will be put into operation in North China. Many kinds of bed ash cooling systems for this boiler had been designed and compared. Then the optimum bed ash coolers were determined and made. Experimental research and pilot-scale test for the bed ash coolers were also carried out. The result indicates that the bed ash cooler can be operated reliably and can meet the demand for cooling bed ash of the 50 MWe CFB boiler. The test data are very useful for further improving the performance of ash coolers.

  10. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    SciTech Connect

    Samuelsen, S.; LaRue, J.; Vilayanur, S.

    1995-10-01

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  11. Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Luo, H. H.; Chen, H. P.; Yang, H. P.; Wang, X. H.

    The content of residual carbon in fly ash of CFB boilers is a litter high especially when low-grade coal, such as lean coal, anthracite coal, gangue, etc. is in service, which greatly influences the efficiency of boilers and fly ash further disposal. Reburn of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly effective strategy to decrease the carbon content, mainly depending on the residual carbon reactivity. In this work, the combustion properties of residual carbon in fly ash and corresponding original coal from large commercial CFB boilers (Kaifeng (440t/h), and Fenyi (410t/h), all in china) are comparably investigated through experiments. The residual carbon involved was firstly extracted and enriched from fly ash by means of floating elutriation to mitigate the influence of ash and minerals on the combustion behavior of residual carbon. Then, the combustion characteristic of two residual carbons and the original coal particles was analyzed with thermogravimetric analyzer (TGA, STA409C from Nestch, Germany). It was observed that the ignition temperature of the residual carbon is much higher than that of original coal sample, and the combustion reactivity of residual carbon is not only dependent on the original coal property, but also the operating conditions. The influence of oxygen content and heating rate was also studied in TGA. The O2 concentration is set as 20%, 30%, 40% and 70% respectively in O2/N2 gas mixture with the flow rate of 100ml/min. It was found that higher oxygen content is favor for decreasing ignition temperature, accelerating the combustion rate of residual carbon. And about 40% of oxygen concentration is experimentally suggested as an optimal value when oxygen-enriched combustion is put into practice for decreasing residual carbon content of fly ash in CFB boilers.

  12. Segmented combustor

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A combustor liner segment includes a panel having four sidewalls forming a rectangular outer perimeter. A plurality of integral supporting lugs are disposed substantially perpendicularly to the panel and extend from respective ones of the four sidewalls. A plurality of integral bosses are disposed substantially perpendicularly to the panel and extend from respective ones of the four sidewalls, with the bosses being shorter than the lugs. In one embodiment, the lugs extend through supporting holes in an annular frame for mounting the liner segments thereto, with the bosses abutting the frame for maintaining a predetermined spacing therefrom.

  13. Impact of the addition of chicken litter on mercury speciation and emissions from coal combustion in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Songgeng Li; Shuang Deng; Andy Wu; Wei-ping Pan

    2008-07-15

    Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6 figs., 5 tabs.

  14. Power from coal and biomass via CFB

    SciTech Connect

    Giglio, R.; Wehrenberg, J.

    2009-04-15

    Circulating fluidized bed technology enables burning coal and biomass to generate power while reducing emissions at the same time. Flexi-Burn CFB is being developed. It produces a CO{sub 2} rich flue gas, form which CO{sub 2} can be captured.

  15. Experimental clean combustor program noise measurement addendum, phase 1

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.

    1975-01-01

    The test results of combustor noise measurements taken with waveguide probes are presented. Waveguide probes were shown to be a viable measurement technique for determining high sound pressure level broadband noise. A total of six full-scale annular combustors were tested and included the three advanced combustor designs: swirl-can, radial/axial, and double annular.

  16. Proven clean coal technology at work: The Provence 250 MW CFB boiler

    SciTech Connect

    Lucat, P.; Jacquet, L.; Roulet, V.

    1997-12-31

    The successful start-up, in the last months of 1995, of the 250 MW Provence/Gardanne unit represents a significant milestone in the development of atmospheric Circulating Fluidized Bed (CFB) boilers for power stations. This high performance unit (over 700 tonnes/hour of steam at 169 bar, 567 C, with reheat at 566 C) has been in operation since April 1996. It is the first CFB boiler in the world to reach such a capacity. CFB boilers, with their excellent SO{sub 2} and NOx emission control capability, are today recognized as a very attractive Clean Coal Technology, particularly because of their simplicity. The Provence/Gardanne project is part of a French development program for large CFB boilers which has been elaborated in the perspective of domestic applications (mainly future semi-base load units) and of the overseas market. It responds to the converging interests of Electricite de France (EDF), Charbonnages de France (CdF)and GEC ALSTHOM Stein Industrie. Besides comprehensive R and D-type investigations aiming at an in-depth understanding of the CFB process and preparing for future scale-up and development, this program has already been marked by two outstanding commercial repowering projects: a 125 MW unit, in operation since 1990 at the Emile Huchet Power Station, and the 250 MW Provence unit. These boilers have been designed and supplied by GEC ALSTHOM Stein Industrie in the framework of their long standing cooperation with Lurgi, a pioneer of the CFB process. The main components are: (1) Furnace; (2) Cyclone; (3) Back-pass; (4) Ash cooler; (5) External Heat Exchanger. However, a brief discussion of some key design options affecting bed performance is necessary to better understand this technology. The paper describes the design of the system, the retrofitting project at Emile Huchet/Carling, and then gives background information on the Provence/Gardanne retrofit, describing SO{sub 2} emissions, the 250 MW boiler, and results from the performance tests. The

  17. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    SciTech Connect

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31

    advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O

  18. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    PubMed

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be

  19. Can Chemical Looping Combustion Use CFB Technology?

    SciTech Connect

    Gamwo, I.K.

    2006-11-01

    Circulating Fluidized Bed (CFB) technology has demonstrated an unparalleled ability to achieve low SO2 and NOx emissions for coal-fired power plants without CO2 capture. Chemical Looping combustion (CLC) is a novel fuel combustion technology which appears as a leading candidate in terms of competitiveness for CO2 removal from flue gas. This presentaion deals with the adaptation of circulating fluidized bed technology to Chemical looping combustion

  20. {open_quotes}The next generations of Tampella Power`s CFB boilers{close_quotes}

    SciTech Connect

    Alliston, M.G.

    1995-12-31

    The next generation of Tampella Power Corporation`s CFB boilers is discussed in outline form. The following topics are outlined: CFB boiler advantages, CFB boiler fuel flexibility and CYMIC boiler construction.

  1. Flextech CFB boilers for southeast Asian and Chinese coals

    SciTech Connect

    Tanca, M.; Schaker, Y.

    1998-07-01

    With the rapid expansion of electrical power in Southeast Asia and China, the circulating fluidized bed (CFB) technology meets the needs of local utilities and independent power producers (IPPs) alike. This paper will discuss how the ABB-Combustion Engineering Flextech (CFB) technology can meet these growing electrical power needs. The locally available coals of China and Southeast Asia and how they are readily suited for firing in the Flextech CFB technology will be discussed. Detailed discussions will include the characteristics of the Flextech design while firing the various coals. The paper will then proceed to illustrate in details proposed Flextech CFB solutions for electrical generation from 50 to 250 Megawatts of power.

  2. CFB boiler for Southern Illinois University: Planning and design

    SciTech Connect

    Silvey, M.; Roth, N.; Haake, A.

    1995-12-31

    Southern Illinois University (SIU) is in the process of installing a Babcock and Wilcox (B and W) coal fired circulating fluidized bed (CFB) boiler at its Carbondale, Illinois campus. The CFB boiler will be used for cogeneration. Funding for this project was made possible by the State of Illinois Capital Development Board. Illinois coal will be fired in this CFB boiler. This paper provides a description of the planning process and design of the CFB boiler and related equipment with specific emphasis on particulate removal and recirculation. The startup of this new installation is scheduled for the summer of 1996, with commercial operation by fall of 1996.

  3. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    NASA Astrophysics Data System (ADS)

    Błaszczuk, Artur

    2015-09-01

    This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  4. Combustor and combustor screech mitigation methods

    DOEpatents

    Kim, Kwanwoo; Johnson, Thomas Edward; Uhm, Jong Ho; Kraemer, Gilbert Otto

    2014-05-27

    The present application provides for a combustor for use with a gas turbine engine. The combustor may include a cap member and a number of fuel nozzles extending through the cap member. One or more of the fuel nozzles may be provided in a non-flush position with respect to the cap member.

  5. The CFB boiler in Gardanne -- An experimental investigation of its bottom zone

    SciTech Connect

    Wiesendorf, V.; Hartge, E.U.; Werther, J.; Johnsson, F.; Sterneus, J.; Leckner, B.; Montat, D.; Briand, P.

    1999-07-01

    Different measurement techniques have been used to analyze the fluid dynamics in the bottom zone of the 250 MW{sub e} Circulating Fluidized Bed (CFB) boiler in Gardanne, France. In particular, horizontal profiles of the local solids volume concentration have been measured with a capacitance probe and the vertical pressure profile has been measured by a probe with densely spaced pressure taps. Local velocities were measured by cross-correlating the signals of a two-channel capacitance probe. In order to get some information on the influence of the flow structure on local combustion conditions a probe has been used which combines both capacitance and zirconia-cell sensors. This probe measured simultaneously local solids volume concentrations, local velocities and the local presence of oxygen. The results show the existence of a dense bed with a bed height of about 2% of the total riser height. This bottom bed has a flow structure which is different from the core-annulus structure observed in the upper dilute zone of the CFB combustor by several researchers. The lateral solids mixing does not seem to be enough to provide an even distribution of char over the whole cross-section of the bottom bed. Nevertheless, an even temperature distribution has been found indicating that mixing is sufficient to equalize the uneven heat generation.

  6. Chaos in an imperfectly premixed model combustor.

    PubMed

    Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O

    2015-02-01

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration. PMID:25725637

  7. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  8. Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Yu, Wugao; Bo, Shi

    The first 100MW CFB boiler, designed by the Thermal Power Research Institute and manufactured by Harbin Boiler Company Limited, has been successfully running in Jiangxi Fenyi Power Plant since 2003. Local high ash content anthracite and lean coal that are very difficult to burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and startup with two under bed burners, and the boiler efficiency higher than 88% can be got after the combustion modification test. The CFB boiler can be operated with full load and reaches design parameters. The emissions of NO, N2O and CO are less than 7Omg/m3, 30mg/m3, and 125mg/m3, respectively, and SO2 less than 400mg/m3 after limestone injection. The bottom ash temperature from bed ash coolers is less than 120°C after its modification. Coal blockage at the coal storage silo is the main problem influencing the CFB boiler continuous operation. The running experiences for 5 years proved that the CFB boiler performance is successful, and the results were applied in 210 MW and 330 MW CFB Boiler design of Fenyi Power Plant.

  9. Utilization of CFB fly ash for construction applications

    SciTech Connect

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  10. Design considerations of B&W internal circulation CFB boilers

    SciTech Connect

    Kavidass, S.; Belin, F.; James, D.E.

    1995-12-31

    Worldwide, the use of Circulating Fluidized-Bed (CFB) boiler technology is rapidly increasing due to the ability to burn low grade fuels while meeting the required NO{sub x}, SO{sub 2}, CO, VOC, and particulate emissions requirements. The CFB boiler can produce steam economically for process and electric power generation. This paper discusses various aspects of Babcock & Wilcox (B&W) internal recirculation circulating fluidized-bed (IR-CFB) boiler design including fuel, boiler process parameters, and emissions. The B&W CFB boiler is unique in design. It utilizes proven impact-type particle separators (U-beams) with in-furnace solids recirculation recirculation. The paper describes the methodology for setting up process parameters, heat duty, boiler design, including auxiliary equipment selection and advantages. The paper also updates the ongoing IR-CFB boiler contracts.

  11. Development of an Advanced Annular Combustor

    NASA Technical Reports Server (NTRS)

    Rusnak, J. P.; Shadowen, J. H.

    1969-01-01

    The objective of the effort described in this report was to determine the structural durability of a full-scale advanced annular turbojet combustor using ASTM A-1 type fuel and operating at conditions typical of advanced supersonic aircraft. A full-scale annular combustor of the ram-induction type was fabricated and subjected to a 325-hour cyclic endurance test at conditions representative of operation in a Mach 3.0 aircraft. The combustor exhibited extensive cracking and scoop burning at the end of the test program. But these defects had no appreciable effect on combustor performance, as performance remained at a high level throughout the endurance program. Most performance goals were achieved with pressure loss values near 6% and 8%, and temperature rise variation ratio (deltaTVR) values near 1.25 and l.22 at takeoff and cruise conditions, respectively. Combustion efficiencies approached l004 and the exit radial temperature profiles were approximately as desired.

  12. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  13. Formation and destruction of the aromatic products of incomplete combustion (PICs) during the chlorinated organic compounds incineration in a lab-scale combustor

    SciTech Connect

    Lin, C.; Li, W.S.; Chen, S.J.; Jeng, R.S.; Chan, C.P.

    1999-07-01

    Thermal destruction is one of the most effective processes to treat organic waste in view of the volume reduction. However, some pollutant emissions associated with waste incineration have led to reluctance to apply this state-of art technology. Proper control of the incineration process with respect to operating parameters to produce flue gases acceptable to the environment is essential for the success of this approach. Better understanding the mechanism of combustion in an incinerator will help the design of more efficient combustion devices. The objective of this research is to investigate the key operating parameters related to the performance of an incinerator using a heterogeneous laboratory scale spouted bed combustor. The spouted bed is considered as an innovative type of fluidized bed and provided with a small centrally located inlet aperture in its conical base which allows a jet of fluid to enter. The ability to use low heat value fuels due to heat recirculation inside the bed and low pollutants emission levels brought down by the long residence time stimulate the application of this combustor in laboratory research. Formation and destruction of the aromatic products of incomplete combustion (PICs) in the post-combustion region for burning toluene and PVC (polyvinyl chloride) is under investigation in this study. The residual hydrocarbons and chlorinated hydrocarbons species are measured. The primary compounds including aromatics, substituted aromatics, and polycyclic aromatics hydrocarbons (PAHs) are formed and destroyed during flue gas passing through the low temperature region. The flue gas samples are induced from the side probes along the reactor with constant flow rate and simultaneously to monitor the temperature by using thermocouples. The sampling train consists of a fiber glass filter and an impinger.

  14. MP-Pic simulation of CFB riser with EMMS-based drag model

    SciTech Connect

    Li, F.; Song, F.; Benyahia, S.; Wang, W.; Li, J.

    2012-01-01

    MP-PIC (multi-phase particle in cell) method combined with the EMMS (energy minimization multi- scale) drag force model was implemented with the open source program MFIX to simulate the gas–solid flows in CFB (circulatingfluidizedbed) risers. Calculated solid flux by the EMMS drag agrees well with the experimental value; while the traditional homogeneous drag over-predicts this value. EMMS drag force model can also predict the macro-and meso-scale structures. Quantitative comparison of the results by the EMMS drag force model and the experimental measurements show high accuracy of the model. The effects of the number of particles per parcel and wall conditions on the simulation results have also been investigated in the paper. This work proved that MP-PIC combined with the EMMS drag model can successfully simulate the fluidized flows in CFB risers and it serves as a candidate to realize real-time simulation of industrial processes in the future.

  15. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  16. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  17. Characterisation of polycyclic aromatic hydrocarbons in flue gas and residues of a full scale fluidized bed combustor combusting non-hazardous industrial waste.

    PubMed

    Van Caneghem, J; Vandecasteele, C

    2014-11-01

    This paper studies the fate of PAHs in full scale incinerators by analysing the concentration of the 16 EPA-PAHs in both the input waste and all the outputs of a full scale Fluidized Bed Combustor (FBC). Of the analysed waste inputs i.e. Waste Water Treatment (WWT) sludge, Refuse Derived Fuel (RDF) and Automotive Shredder Residue (ASR), RDF and ASR were the main PAH sources, with phenanthrene, fluoranthene and pyrene being the most important PAHs. In the flue gas sampled at the stack, naphthalene was the only predominant PAH, indicating that the PAHs in FBC's combustion gas were newly formed and did not remain from the input waste. Of the other outputs, the boiler and fly ash contained no detectable levels of PAHs, whereas the flue gas cleaning residue contained only low concentrations of naphthalene, probably adsorbed from the flue gas. The PAH fingerprint of the bottom ash corresponded rather well to the PAH fingerprint of the RDF and ASR, indicating that the PAHs in this output, in contrast to the other outputs, were mainly remainders from the PAHs in the waste inputs. A PAH mass balance showed that the total PAH input/output ratio of the FBC ranged from about 100 to about 2600 depending on the waste input composition and the obtained combustion conditions. In all cases, the FBC was clearly a net PAH sink. PMID:25002370

  18. The progress of the water cooled separator CFB boiler in China

    SciTech Connect

    Lu Junfu; Zhang Jiansheng; Yue Guangxi

    1999-07-01

    Since the first pilot 75 t/h water cooled separator CFB boiler was in operation in 1996, a hot test program has been conducted by Tsinghua University and several boiler works, so as to promote scaling of the CFB boiler. The present paper introduces the test program and the primary results, such as the separator efficiency, material balance, solid bulk density, heat transfer along the height of the furnace, etc. Besides the traditional test technology, some newly developed apparatus was used in the hot test. According to the experience obtained from the boiler, the improvement measure was taken for the second and third boiler, which were in commercial operation in 1998. The first operation experience of the second and third boiler proves the effect of the improvement. Considering the experience and the test program, the scaling up design of water cooled separator was done. The present paper also introduces the design consideration of the 130 t/h and 220 t/h CFB boiler.

  19. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  20. Modular combustor dome

    NASA Technical Reports Server (NTRS)

    Glynn, Christopher Charles (Inventor); Halila, Ely Eskenazi (Inventor); Bibler, John David (Inventor); Morris, David Byron (Inventor)

    2001-01-01

    A combustor dome module includes a mixer tube having a hollow heat shield sealingly joined around the outlet end thereof. The modules may then be assembled in an array for defining the combustor dome, with each module being individually removable therefrom.

  1. Gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  2. Design considerations of B&W internal circulation CFB boilers

    SciTech Connect

    Kavidass, S.; Alexander, K.C.

    1995-12-31

    Worldwide, the use of Circulating Fluidized-Bed (CFB) boiler technology is rapidly increasing due to the ability to burn low grade fuels while meeting the required NO{sub x}, SO{sub 2}, CO, VOC, and particulate emissions requirements. The CFB boiler can produce steam economically for process and electric power generation. This paper discusses various aspects of Babcock & Wilcox (B&W) internal recirculation circulating fluidized-bed (IR-CFB) boiler design including fuel, boiler process parameters, and emissions. The B&W CFB boiler is unique in design. It utilizes proven impact-type particle separators (U-beams) with in-furnace solids recirculation. The paper describes the methodology for setting up process parameters, heat duty, boiler design, including auxiliary equipment selection and advantages.

  3. Small Gas Turbine Combustor Primary Zone Study

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.

    1983-01-01

    A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.

  4. Effect of particle size distribution on the hydrodynamics of dense CFB risers

    NASA Astrophysics Data System (ADS)

    Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed

    2015-11-01

    Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.

  5. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  6. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  7. Dual-Mode Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  8. Monitoring the particle size in CFB using fuzzy neural network

    SciTech Connect

    Ma, L.; Chen, H.; Tian, Z.; He, W.

    1999-07-01

    The particle size and particle size distributions (PSDs) affect the performance of a circulating fluidized (CFB) boiler. For improving the efficiency of analysis of particle size to monitor the particle size and particle size distribution, a fuzzy neural network (FNN) model is presented. Because the pressure fluctuant frequency and particle size have some non-linear relationship, the FNN models the relationship between the pressure fluctuant frequencies along CFB boiler height and particle size sampled from CFB boiler by neural network training. A hybrid fuzzy neural network parameter training method is presented to identify the model parameters, which combine the gradient back propagation (BP) algorithm and least square estimation (LSE) algorithm to estimate unknown non-linear parameter and linear parameter respectively. When the FNN training procedure converges, the parameters, which reflect the non-linear relationship between frequency and particle, are determined for a given operational condition of CFB boiler. In operating CFB boilers, the coal particle size at high temperature changes with combustion and its values are unknown, however, pressure fluctuation frequency can be obtained easily. In this case, FNN can predict the particle size and PSDs along the CFB boiler height according to the pressure fluctuation frequency. To validate the FNN model effect of analyzing the particle size, data from experiment are used with fluidized gas velocity equal to 41.82 cm/s. The predictive error of FNN model is 3.839%. It is proved that the model not only identifies the non-linear relationship between particle size and pressure fluctuation frequency with high precision but also can adaptively learn the data information without expert knowledge by adjusting its own parameters. It operates quickly and can satisfy the real-time request of monitoring the particle size and its distribution in CFB boilers.

  9. Direct heating surface combustor

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shire, L. I.; Mroz, T. S. (Inventor)

    1978-01-01

    The combustor utilizes a non-adiabatic flame to provide low-emission combustion for gas turbines. A fuel-air mixture is directed through a porous wall, the other side of which serves as a combustion surface. A radiant heat sink disposed adjacent to and spaced from the combustion surface controls the combustor flame temperature in order to prevent the formation of oxides of nitrogen. A secondary air flow cools the heat sink. Additionally, up to 100% of secondary air flow is mixed with the combustion products at the direct heating surface combustor to dilute such products thereby reducing exit temperature. However, if less than 100% secondary air is mixed to the combustor, the remainder may be added to the combustion products further downstream.

  10. Combustor diffuser interaction program

    NASA Technical Reports Server (NTRS)

    Srinivasan, Ram; Thorp, Daniel

    1986-01-01

    Advances in gas turbine engine performance are achieved by using compressor systems with high stage loading and low part count, which result in high exit Mach numbers. The diffuser and combustor systems in such engines should be optimized to reduce system pressure loss and to maximize the engine thrust-to-weight ratio and minimize length. The state-of-the-art combustor-diffuser systems do not meet these requirements. Detailed understanding of the combustor-diffuser flow field interaction is required for designing advanced gas turbine engines. An experimental study of the combustor-diffuser interaction (CDI) is being conducted to obtain data for the evaluation and improvement of analytical models applicable to a wide variety of diffuser designs. The CDI program consists of four technical phases: Literature Search; Baseline Configuration; Parametric Configurations; and Performance Configurations. Phase 2 of the program is in progress.

  11. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  12. Pyroflow CFB boiler meets the dynamic challenges of utility operation

    SciTech Connect

    Chelian, P.K.; Hickey, M.; Utt, J.

    1995-12-31

    Large size CFB units supplied to utilities are required to respond rapidly and accurately to the system load demand signals. These units are designed to receive demand signals from load demand computers (economic dispatch systems), and by various types of feed forward controls to achieve the desired level of generation in a minimum amount of time, with minimum upset to the steam conditions. Pyropower Corporation supplied a 165 MWe net capacity CFB boiler to the Nova Scotia Power Inc., Point Aconi Station. This boiler was subjected to a number of tests to demonstrate the dynamic response of the boiler. The tests included minor and major load rejections as well as rapid increase and decrease of load. One of the tests was to demonstrate the ability to reject from full load to the house load and operate for eight hours. This report summarizes the experience of these tests, which leads to the conclusion that CFB boilers, when properly designed and tuned, are capable of meeting the present day challenges of dynamic response in dispatch mode of operation. This paper also draws references from other large size Pyroflow CFB units that are operating in cycling modes to address the capabilities of the CFB boilers related to rapid load variation.

  13. Design and research of retrofitting PC boiler into CFB boiler

    SciTech Connect

    Chen, H.P.; Lu, J.D.; Huang, L.; Liu, H.; Lin, Z.; Liu, D.C.

    1997-12-31

    In China, there are a large number of aged pulverized coal (PC) boilers at aging utility power plants. Many of them are beyond their reasonable working life or in a condition of unreliable operation, low combustion efficiency, and serious air pollution. It is very important and urgent to retrofit the aged PC boilers, and repower the aging utility power plants in China. Circulating fluidized bed (CFB) boilers have been developed rapidly, and paid great attention to in China. There are many striking advantages to retrofit an aged boiler with a CFB boiler. The retrofitting is suitable to meet the needs of effective utilization of low-grade coal, reducing SO{sub 2} and NO{sub x} emissions and repowering an aging power plant. The cost is much lower than that of building a new CFB unit. The National Laboratory of Coal Combustion (NLCC) has always paid great attention to studying and developing CFB combustion technology in connection with Chinese national conditions, and has evolved distinguishing technology features of its own. This paper introduces a new design concept of retrofitting PC boiler into Pi ({Pi}-shaped) CFB boiler with downward exhaust cyclone, and relevant research work and results of design and calculation.

  14. Corrosivities in a pilot-scale combustor of a British and two Illinois coals with varying chlorine contents

    USGS Publications Warehouse

    Chou, I.-Ming; Lytle, J.M.; Kung, S.C.; Ho, K.K.

    2000-01-01

    Many US boiler manufacturers have recommended limits on the chlorine (Cl) content (< 0.25% or < 0.3%) of coals to be used in their boilers. These limits were based primarily on extrapolation of British coal data to predict the probable corrosion behavior of US coals. Even though Cl-related boiler corrosion has not been reported by US utilities burning high-Cl Illinois coals, the manufacturer's limits affect the marketability of high-Cl Illinois coals. This study measured the relative rates of corrosion caused by two high-Cl coals (British and Illinois) and one low-Cl Illinois baseline coal under identical pilot-scale combustion conditions for about 1000 h which gave reliable comparisons. Temperatures used reflected conditions in boiler superheaters. The corrosion probes were fabricated from commercial alloy 304SS frequently used at the hottest superheater section of utility boilers. The results showed no evidence of direct correlation between the coal chlorine content and rate of corrosion. A correlation between the rate of corrosion and the metal temperature was obvious. The results suggested that the different field histories of corrosivity from burning high-Cl Illinois coal and high-Cl British coal occurred because of different metal temperatures operated in US and UK utility boilers. The results of this study can be combined into a database, which could be used for lifting the limits on chlorine contents of coals burned in utility boilers in the US.

  15. SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Robinson, Raymond C.; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1999-01-01

    Silicon carbide (SiC) and Si3N4 materials were tested in various turbine engine combustion environments chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high-speed aircraft. Representative chemical vapor-deposited (CVD), sintered, and composite materials were evaluated by furnace and high-pressure burner rig exposures. Although protective SiO2 scales formed in all cases, the evidence presented supports a model based on paralinear growth kinetics (i.e., parabolic growth moderated simultaneously by linear volatilization). The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were thus used to map SiO2 volatility (and SiC recession) over a range of temperatures, pressures, and velocities. The functional dependency of material recession (volatility) that emerged followed the form A[exp(-Q / RT)](P(sup x)v(sup y). These empirical relations were compared with rates predicted from the thermodynamics of volatile SiO and SiOxHy reaction products and a kinetic model of diffusion through a moving boundary layer. For typical combustion conditions, recession of 0.2 to 2 micrometers/hr is predicted at 1200 to 1400 C, far in excess of acceptable long-term limits.

  16. SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Robinson, R. Craig; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1999-01-01

    SiC and Si3N4 materials were tested under various turbine engine combustion environments, chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high speed aircraft. Representative CVD, sintered, and composite materials were evaluated in both furnace and high pressure burner rig exposure. While protective SiO2 scales form in all cases, evidence is presented to support paralinear growth kinetics, i.e. parabolic growth moderated simultaneously by linear volatilization. The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were used to map SiO2 volatility (and SiC recession) over a range of temperature, pressure, and velocity. The functional dependency of material recession (volatility) that emerged followed the form: exp(-QIRT) * P(exp x) * v(exp y). These empirical relations were compared to rates predicted from the thermodynamics of volatile SiO and SiO(sub x)H(sub Y) reaction products and a kinetic model of diffusion through a moving, boundary layer. For typical combustion conditions, recession of 0.2 to 2 micron/h is predicted at 1200- 1400C, far in excess of acceptable long term limits.

  17. Florida CFB demo plant yields low emissions on variety of coals

    SciTech Connect

    2005-07-01

    The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

  18. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    SciTech Connect

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  19. Low temperature CFB gasifier conceptual ideas and applications

    SciTech Connect

    Stoholm, P.; Fock, M.W.; Henriksen, U.

    1999-07-01

    A novel Circulating Fluidized Bed (CFB) gasification process for volatile fuels such as biomass and many waste materials are described. The fuel is pyrolyzed at e.g. 550 C in the CFB reaction chamber and the char residue is converted at e.g. 650 C in a separate Bubbling Fluidized Bed (BFB) char gasification chamber located in the particle recirculation path. Due to the tendency for char particles to segregate to the upper part of the BFB they achieve a high retention time in the slowly fluidized BFB by recirculating mainly inert particles from the bottom. In a simple version of the process essentially all of the air is added to the bottom of the BFB and the produced char gas serves as fluidizing gas in the CFB reaction chamber. This way the product gas leaving the CFB reaction chamber obtains a higher heating value at around 11 MJ/Nm{sup 3} when using a biomass fuel with around 15% moisture. In combination with the low process temperature, and not needing building height for char conversion in the CFB reaction chamber, this means that the CFB reactor and off-gas system becomes very compact. The low temperatures also means that agglomeration can be avoided even when using fuels such as unweathered straw with a high content of alkaline and chlorine. Furthermore, the alkaline and chlorine in the raw gas will mainly be in the solid state meaning that a high retention can be obtained simply by efficient particle separation. The paper mentions a number of possible applications for the gasifier including as an example a simple and compact system for co-firing biomass and waste at power plants.

  20. NASA/Pratt and Whitney experimental clean combustor program: Engine test results

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1977-01-01

    A two-stage vorbix (vortex burning and mixing) combustor and associated fuel system components were successfully tested in an experimental JT9D engine at steady-state and transient operating conditions, using ASTM Jet-A fuel. Full-scale JT9D experimental engine tests were conducted in a phase three aircraft experimental clean combustor program. The low-pollution combustor, fuel system, and fuel control concepts were derived from phase one and phase two programs in which several combustor concepts were evaluated, refined, and optimized in a component test rig. Significant pollution reductions were achieved with the combustor which meets the performance, operating, and installation requirements of the engine.

  1. Gas turbine topping combustor

    DOEpatents

    Beer, Janos; Dowdy, Thomas E.; Bachovchin, Dennis M.

    1997-01-01

    A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

  2. Combustor and method for purging a combustor

    DOEpatents

    Berry, Jonathan Dwight; Hughes, Michael John

    2015-06-09

    A combustor includes an end cap. The end cap includes a first surface and a second surface downstream from the first surface, a shroud that circumferentially surrounds at least a portion of the first and second surfaces, a plate that extends radially within the shroud, a plurality of tubes that extend through the plate and the first and second surfaces, and a first purge port that extends through one or more of the plurality of tubes, wherein the purge port is axially aligned with the plate.

  3. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  4. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  5. O and M experience underscores maturity of CFB technology

    SciTech Connect

    Jones, C.

    1995-05-01

    Several dozen unit-years of experience, summarized here, indicate that CFB boilers pose no greater level of difficulty in the field than p-c or stoker-fired units. The push for lower emissions and greater fuel flexibility certainly put the development of circulating fluidized-bed (CFB) boiler technology on the fast track. After a decade of sustained commercial development, the technology now challenges pulverized-coal-fired (p-c) units in individual sizes up to 500 MW. In smaller sizes, it has eroded the dominance of stoker-fired boilers for solid-fuel applications. Successive projects, most notably in the independent-power arena, have pushed technology in terms of fuels fired, emissions levels reached, and operability flexibility. But while the CFB design train chugs ahead, it pays to look back at the landscape of operating projects to determine just what the experience has been. Overall user satisfaction with the technology has been excellent, based on the projects surveyed (table) which represent several dozen unit-years of experience with a variety of fuels, unit sizes, etc. Availability and capacity factors meet or exceed predicted values. Most generic problem areas have been managed, though some remain. And, to the extent that CFB boilers--which generally fire a wider range of fuels than p-c units do, can be compared to p-c and stoker units, operating performance appears to be as good or better.

  6. Combustor burner vanelets

    DOEpatents

    Lacy, Benjamin; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Zuo, Baifang

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  7. Clean coal reference plants: Atmospheric CFB. Topical report, Task 1

    SciTech Connect

    Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

    1992-06-01

    The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

  8. Experimental Study on Ash-Returned Reactor of CFB Atmospheric Air Gasifier

    NASA Astrophysics Data System (ADS)

    Shihong, Zhang; Luning, Tian; Xianrong, Zhou; Hanping, Chen; Haiping, Yang; Xianhua, Wang

    In an attempt to improve the gasification efficiency and decrease the carbon content in fly ash of atmospheric air CFB gasifiers, an innovatory equipment by name ash-returned reactor is put forward by SKLCC. Ash-returned reactor is an ash-returned apparatus on line of ash circulation, typically like "U" type valve in CFB boilers, with additional function of some extent combustion of residual carbon and increase the furnace inlet temperature of returning ash, and hence the coal conversion of gasifiers is enhanced. As to its configuration compared to conventional "U" type valve, ash-returned rector has two distinguished features of several times of height scale of fluidizing transportation region to meet the combustion reaction time need and appropriate heat transfer tube bundles arranged in the region to moderate the local temperature so as to avoid slagging. And hence, corresponding to the structure renovation, the material transportation and regulation performance of ash-returned reactor is primarily investigated through a series of experiments in a cold lab-scale facility in this paper. The heat transfer characteristic of the tube bundles is then researched and its influential factors are further discussed. These works lay a foundation on the following study of hot state experiments and industrial applications.

  9. Co-Combustion of Refuse Derived Fuel with Anthracites in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Lee, Jong-Min; Kim, Jae-Sung

    Combustion of Refuse derived fuel (RDF) is considered as a priority solution to energy recovery from municipal solid waste (MSW). The co-combustion characteristics of anthracite coals with RDF were determined in the commercial scale Tonghae CFB Power Plant. As the feeding ratio of the RDF to the anthracites increased to 5%, temperature and pressure were not changed in comparison with firing only anthracites. The amount of the required air was reduced due to high O2 content in RDF relative to the anthracites. The emissions of NOx, SOx, HCl and Dioxin were also measured. According to higher mixing ratio of the RDF to the anthracites, SOx, NOx emissions slightly decreased and HCl emissions increased, because RDF has relatively smaller S, N and higher CI than the anthracites. Heavy metals of the fly ash and bottom ash and the dioxin emissions were far below Korean maximum permissible concentration level at incinerator. The results showed that it is of great use and technically possible to co-combustion of RDF with the anthracites by 5% in the form of fuel recovery and energy production in commercial scale CFB boiler.

  10. Exhaust emissions of a double annular combustor: Parametric study

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  11. Low NO sub x heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    Russell, P.; Beal, G.; Hinton, B.

    1981-01-01

    A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally processed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.

  12. Low pollution combustor designs for CTOL engines - Results of the Experimental Clean Combustor Program

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Niedzwiecki, R. W.

    1976-01-01

    The NASA/Pratt & Whitney Aircraft Experimental Clean Combustor Program is a multi-year, major contract effort. Primary program objectives are the generation of combustor technology for development of advanced commercial CTOL engines with lower exhaust emissions than current aircraft and demonstration of this technology in a full-scale JT9D engine in 1976. This paper describes the pollution and performance goals, Phase I and II test results, and the Phase III combustor hardware, pollution sampling techniques, and test plans. Best results were obtained with the Vorbix concept which employs multiple burning zones and improved fuel preparation and distribution. Substantial reductions were achieved in all pollutant categories, meeting the 1979 EPA standards for NOx, THC, and smoke when extrapolated to JT9D cycle conditions. The Vorbix concept additionally demonstrated the capability for acceptable altitude relight and did not appear to have unsolvable durability or exit temperature distribution problems.

  13. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  14. Thermally-Choked Combustor Technology

    NASA Technical Reports Server (NTRS)

    Knuth, William H.; Gloyer, P.; Goodman, J.; Litchford, R. J.

    1993-01-01

    A program is underway to demonstrate the practical feasibility of thermally-choked combustor technology with particular emphasis on rocket propulsion applications. Rather than induce subsonic to supersonic flow transition in a geometric throat, the goal is to create a thermal throat by adding combustion heat in a diverging nozzle. Such a device would have certain advantages over conventional flow accelerators assuming that the pressure loss due to heat addition does not severely curtail propulsive efficiency. As an aid to evaluation, a generalized one-dimensional compressible flow analysis tool was constructed. Simplified calculations indicate that the process is fluid dynamically and thermodynamically feasible. Experimental work is also being carried out in an attempt to develop, assuming an array of practical issues are surmountable, a practical bench-scale demonstrator using high flame speed H2/O2 combustibles.

  15. Ceramic combustor mounting

    DOEpatents

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  16. Gas turbine topping combustor

    DOEpatents

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  17. Combustor technology for future aircraft

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1990-01-01

    The continuing improvement of aircraft gas turbine engine operating efficiencies involves increases in overall engine pressure ratio increases that will result in combustor inlet pressure and temperature increases, greater combustion temperature rises, and higher combustor exit temperatures. These conditions entail the development of fuel injectors generating uniform circumferential and radial temperature patterns, as well as combustor liner configurations and materials capable of withstanding increased thermal radiation even as the amount of cooling air is reduced. Low NO(x)-emitting combustor concepts are required which will employ staged combustion. The development status of component technologies answering these requirements are presently evaluated.

  18. Postcombustion and its influences in 135 MWe CFB boilers

    SciTech Connect

    Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue

    2009-09-15

    In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

  19. Mathematical modelling of coal fired fluidized bed combustors

    SciTech Connect

    Selcuk, N.; Siddall, R.G.; Sivrioglu, U.

    1980-12-01

    A system model of continuous fluidized bed combustors burning coal of wide size distribution has been derived, and applied to the investigation of the effect of excess air and recycle on bed concentration and temperature profiles and combustion efficiency of a pilot scale coal fired fluidized combustor. To demonstrate the effect of recycling, the behaviour of the fluidized combustor has been predicted for two extreme cases of recycle: complete and no recycle of elutriated char particles, the former was chosen to determine the behaviour of the model in the absence of elutriation, and the latter corresponds to the actual operating conditions of the fluidized combustor. Expected trends for concentration and temperature profiles and combustion efficiency are predicted correctly for both cases. The predictive ability and the flexibility of the model for incorporation of refinements such as a correlation for bubble growth and a detailed combustion mechanism, makes the model a promising one for the evaluation of performance of the fluid bed industrial boilers.

  20. Study on Combustion Characteristics of Lignite in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Leng, J.; Zou, T. S.; Wu, J. X.; Jiang, C.; Gao, J. L.; Wu, J.; Su, D.; Song, D. Y.

    The shortage of coal promotes the lignite utility in power plant because of the rapid economy development recently. However, lignite is high in moisture content as well as volatile content and low in calorific value. It is very difficult to burn in traditional pulverized coal fired boiler. Circulating fluidized bed (CFB) boiler is an alternative with low pollutant emission. Some CFB boilers are built and put into commercial operation in Northeast China and East Inner Mongolia where lignite is abundant. The operation experiences of these boilers are introduced in this paper. The effect of coal particle size on bottom ash ratio, combustion efficiency, thermal efficiency, pollution emission, and ash deposits in convective heating surface were investigated. It was found that for the lignite fired CFB boiler, the largest coal particle size should be 20 to 40mm to maintain bed material balance. But the bottom ash only shares less than 10% of the total ash. Due to high volatile content in the lignite, the combustion efficiency could achieve more than 99%. Meanwhile, NOx emission was relative low and satisfied national environment protection requirement. It is suggested that flue gas velocity in convective heating surface should be ranged in a certain scope to prevent ash deposit and erosion.

  1. Solids flow pattern in the exit region of a CFB -- Furnace influence of exit geometry

    SciTech Connect

    Johnsson, F.; Leckner, B.; Vrager, A.

    1999-07-01

    The effect of the exit geometry on the flow pattern in a circulating fluidized bed (CFB) riser was studied in a cold 1/9 scale model of the Chalmers 12 MW CFB boiler. The model, which is made of transparent perspex, was operated according to the simplified scaling laws proposed by Glicksman et al. (1993). 12 different exit configurations were compared at different fluidization velocities. Two bed materials were used: iron and steel. In order to verify the scaling laws, vertical pressure and density profiles, net solids flux and pressure fluctuations measured in the model were compared with corresponding results from the 12 MW boiler. The exit configurations were evaluated by comparing the net solids fluxes and the vertical pressure and density profiles of the riser. The overall flow behavior of the scale-model was found to be similar to that of the boiler: A dense bottom bed, a splash zone and a transport zone could be identified. The dynamics (in-bed pressure fluctuations) of the bottom bed were in agreement with those of the boiler. Differences between net solids fluxes during operation with different exits were in some cases of an order of magnitude. However, there were almost no difference in solids flux between an abrupt exit, an extended exit (such as that of the boiler) and an enhanced extension. A decrease in the net solids flux (increase in the internal back-mixing) could be obtained by inserting obstacles in the upper part of the riser, and an increase in the net solids flux was achieved by narrowing the duct from the riser to the cyclone inlet (increasing the average velocity in the duct). The original configuration of the duct with an inclined bottom results in back-mixing from the duct to the furnace, thereby reducing the net (external) solids flux.

  2. Characterization of a two-phase flow field downstream of a 3x-scale gas turbine co-axial, counter-swirling, combustor dome swirl cup

    SciTech Connect

    Wang, H.Y.; Mcdonell, V.G.; Sowa, W.A.; Samuelsen, G.S. )

    1992-01-01

    Both the droplets and continuous phase (gas in the presence of the droplets) downstream of a 3x model combustor dome swirl cup are characterized in the absence of reaction. Continuous-phase and droplet velocities as well as droplet size were measured using phase Doppler interferometry. The measurements reveal that: (1) at the exit plane of the swirl cup assembly, more uniform and finer droplets are produced relative to the atomizer alone; (2) both the continuous phase and the droplets recirculate; (3) the location at which droplets join the recirculation is correlated with droplet size; and (4) significant slip velocities between the continuous phase and the droplets reflect a strong momentum exchange between the phases. 12 refs.

  3. Computational fluid dynamic analysis of hybrid rocket combustor flowfields

    NASA Technical Reports Server (NTRS)

    Venkateswaran, S.; Merkle, C. L.

    1995-01-01

    Computational fluid dynamic analyses of the Navier-Stokes equations coupled with solid-phase pyrolysis, gas-phase combustion, turbulence and radiation are performed to study hybrid rocket combustor flowfields. The computational study is closely co-ordinated with a companion experimental program using a planar slab burner configuration with HTPB as fuel and gaseous oxygen. Computational predictions agree reasonably well with measurement data of fuel regression rates and surface temperatures. Additionally, most of the parametric trends predicted by the model are in general agreement with experimental trends. The computational model is applied to extend the results from the lab-scale to a full-scale axisymmetric configuration. The numerical predictions indicate that the full-scale configuration burns at a slower rate than the lab-scale combustor under identical specific flow rate conditions. The results demonstrate that detailed CFD analyses can play a useful role in the design of hybrid combustors.

  4. HYPULSE combustor analysis

    NASA Technical Reports Server (NTRS)

    Rizkalla, O. F.

    1993-01-01

    The analysis of selected data from tests of unit fuel injectors in a generic scramjet combustor model is presented. The tests were conducted in the NASA HYPULSE expansion tube at conditions typical of flight at Mach 13.5 and 17. The analysis used a three-stream tube method, with finite-rate chemistry, in which the fuel, test gas, and mixing/combustive streams were treated independently but with the same static pressure. Performance of three candidate fuel injectors is examined based on deduced mixing and combustion efficiencies.

  5. Basic design studies for a 600 MWe CFB boiler (270b, 2 x 600 C)

    SciTech Connect

    Bursi, J.M.; Lafanechere, L.; Jestin, L.

    1999-07-01

    Commercial CFB boilers are currently available in the 300 MWe equivalent range for use with international coal. Retrofitting of Provence 4 with a 250 MWe CFB boiler was an important step in CFB development. In light of the results obtained from two large French units--Emile Huchet 4 (125 MWe) and Provence 4 (250 MWe)--this paper focuses on the main technical points which are currently being studied in relation to the basic design of a 600 MWe CFB boiler, a project that has been undertaken by EDF. The general aim of this project is to demonstrate the competitiveness of a CFB boiler compared with a PF boiler. The main areas of focus in the design of this large CFB boiler with advanced steam conditions are described. These points are subjected to particular analysis from a design standpoint. The objective is to prepare the precise specifications needed to ensure a product which is optimized in terms of quality/cost or service/cost. Due to the present lack of theoretical understanding of the refined and complex two-phase flow, design is a challenge which has to be based on reliable and comprehensive data obtained from large plants in commercial operation. This will ensure that the advantages of CFB which arise from the hydrodynamics within the circulation loop are maintained. The major goals of maintaining good particle residence time and concentration in the furnace are described. Misunderstanding of CFB furnace bottom conditions is also pointed out, with cost reduction and better NO{sub x} capture certainly among the major new targets in relation to bottom furnace design. General problems associated with the heat exchanger arrangement, principally those linked to high steam conditions and, especially, the vaporization system, are discussed. Once again, comparison with PF in this area showed that CFB boilers appear more competitive. Finally, the main area in which there is a need for sharing of CFB experience among CFB users is pointed out.

  6. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  7. Effect of Fuel Variables on Carbon Formation in Turbojet-Engine Combustors

    NASA Technical Reports Server (NTRS)

    Jonash, Edmund R; Wear, Jerrold D; Cook, William P

    1958-01-01

    Report presents the results of an investigation of the effects of fuel properties and of a number of fuel additives on combustion-chamber carbon deposition and exhaust-gas smoke formation in a single tubular turbojet-engine combustor. Limited tests were conducted with a number of the fuels in several full-scale turbojet engines to verify single-combustor data.

  8. JEA successfully completes world's largest CFB demonstration

    SciTech Connect

    2005-09-30

    JEA (formerly the Jacksonville Electric Authority) has successfully completed an eighth year landmark demonstration project that continues in baseload commercial operation. It scales up atmospheric fluidized-bed technology demonstration to the near-300-MW size, providing important data on a technology that can achieve > 90% SO{sub 2} removal and 60% NOx reduction at relatively high efficiencies and at costs comparable to those of conventional pulverized coal plants. The article recounts the history of the project. Performance tests showed a blend of coal and petcoke were most efficient as a feedstock. 3 figs.

  9. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  10. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  11. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  12. The implication of CFB technology for repowering of old pulverized coal boiler in Russia

    SciTech Connect

    Ryabov, G.A.; Nadirov, I.I.

    1999-07-01

    One of the main priorities of the energy strategy of Russia is to develop new economically efficient and environmentally friendly technologies. At the moment more than 100 old pulverized coal boilers with steam capacity of 170--240 t/h need to be reconstructed. Modern requirements on pollution and the possibility of low-grade coal firing make the use of CFB technology attractive. This paper presents some results of an economic comparison and estimations of the power range vs typical Russian fuel quality. The authors compared different CFB technology modifications. As a result it was demonstrated that it would be feasible to use CFB boilers with simple impact ash collectors. Some technical data of boiler design for the Nesvetay thermal power plant (TPP) and Cherepetskay TPP are given. The prediction of CFB boiler operation parameters is based on CFB pilot data and results of the mathematical analysis.

  13. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  14. Experimental research on rice husk combustion in CFB boiler and the design of a 35 t/h rice husk-fired CFB boiler

    SciTech Connect

    Chen Guanyi; Fang Mengxiang; Luo Zhongyang; Li Xuantian; Shi Zhenglun; Cen Kefa; Ni Mingjiang

    1997-12-31

    The fluidization and transportation properties of rice husk have been studied on a cold model bed of inner diameter 120 mm. The ignition and combustion characteristics of rice husk mixed with coal have also been studied in a 1 MW experimental circulating fluidized bed (CFB) system. The conclusions, drawn on the basis of these experiments, are found to be very useful for the design of a 35 tons per hour CFB boiler firing this biomass fuel.

  15. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  16. Experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Bahr, D. W.; Gleason, C. C.

    1975-01-01

    Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.

  17. Computational Simulation of Acoustic Modes in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  18. Nonlinear structural and life analyses of a combustor liner

    NASA Technical Reports Server (NTRS)

    Moreno, V.; Meyers, G. J.; Kaufman, A.; Halford, G. R.

    1982-01-01

    Three dimensional, nonlinear finite element structural analyses were performed for a simulated combustor liner specimen to assess the capability of nonlinear analyses using classical inelastic material models to represent the thermoplastic creep response of the one half scale component. Results indicate continued cyclic hardening and ratcheting while experimental data suggested a stable stress strain response after only a few loading cycles. The computed stress strain history at the critical location was put into two life prediction methods, strainrange partitioning and a Pratt and Whitney combustor life prediction method to evaluate their ability to predict cyclic crack initiation. It is found that the life prediction analyses over predicted the observed cyclic crack initiation life.

  19. Latest development and status of long term experience in CFB-technology

    SciTech Connect

    Cleve, K.

    1999-07-01

    CFB-fired steam generators have successfully been in operation for over 15 years. After this period of time enough practical knowledge is available to report on the Long Term Experience of selected plants. The success of CFB-fired steam generators--because of their outstanding environmental performance as well as their fuel flexibility--has led world-wide to more and larger units. In addition to well-proven components, the CFB-process is continuously being improved and New Developments are incorporated.

  20. SILVA: EDF two-phase 1D annular model of a CFB boiler furnace

    SciTech Connect

    Montat, D.; Fauquet, P.; Lafanechere, L.; Bursi, J.M.

    1997-12-31

    Aiming to improve its knowledge of CFB boilers, EDF has initiated a R and D program including: laboratory work on mock-ups, numerical modelling and on-site tests in CFB power plants. One of the objectives of this program is the development of a comprehensive steady-state 1D model of the solid circulation loop, named SILVA, for plant operation and design evaluation purposes. This paper describes its mathematical and physical modelling. Promising validation of the model on cold mock-up and industrial CFB is presented.

  1. Numerical Simulation of Dual-Mode Scramjet Combustors

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.

    2000-01-01

    Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.

  2. Energy efficient engine diffuser/combustor model technology

    NASA Technical Reports Server (NTRS)

    Gardner, W.

    1980-01-01

    A full scale, full annular diffuser/combustor model test rig was tested to investigate how configurational changes affect pressure loss and flow separation characteristics. The rig was characterized by five major modules: inlet; prediffuser; strut; simulated combustor; and full combustor. The prediffuser featured a short, curved wall dump design. Performance goals included: (1) a separation-free prediffuser flow field; (2) total pressure loss limited to 3.0 percent in the prediffuser and shrouds; and (3) an overall section pressure loss of 5.5 percent P sub T3 at the design airflow distribution. The results indicated that the prediffuser configurations operate well within the program goals for pressure loss and demonstrate separation free operation over a wide range of inlet conditions.

  3. Laser velocimetry measurements in a gas turbine research combustor

    NASA Technical Reports Server (NTRS)

    Driscoll, J. F.; Pelaccio, D. G.

    1979-01-01

    The effects of turbulence on the production of pollutant species in a gas-turbine research combustor are studied using laser diffraction velocimetry (LDV) techniques. Measurements that were made in the primary combustion zone include mean velocity, rms velocity fluctuations, velocity probability distributions, and autocorrelation functions. A unique combustor design provides relatively uniform flow conditions and independent control of drop size, equivalence ratio, inlet temperature, and combustor pressure. Parameters which characterize the nature of the spray combustion (i.e., whether single droplet or group combustion occurs), were determined from the LDV data. Turbulent diffusivity (eddy viscosity) reaches a value of 2930 sq cm/sec, corresponding to a convective integral length scale of 1.8 cm. The group combustion number, based on turbulent diffusivity, is measured to be 6.2

  4. EFFECT OF SOOT AND COPPER COMBUSTOR DEPOSITS ON DIOXIN EMISSIONS

    EPA Science Inventory

    An experimental study was conducted to investigate the effects of residual soot and copper combustor deposits on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) during the combustion of a chlorinated waste. In a bench-scale set...

  5. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  6. Combustor flame flashback

    NASA Technical Reports Server (NTRS)

    Proctor, M. P.; Tien, J. S.

    1985-01-01

    A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.

  7. Pulse Combustor Design, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  8. The effects of controlling vortex formation on the performance of a dump combustor

    SciTech Connect

    Mcmanus, K.R.

    1990-01-01

    The use of flow control methods to improve the performance of air breathing combustors, specifically with respect to controlling both volumetric energy release and combustion instability, is investigated. The flow control techniques were chosen for their ability to control vortex formation near the inlet of the combustor. Periodic spanwise forcing of the inlet boundary layer was used to control the spanwise vortex shedding process in the combustor. Delta wing vortex generators and vortex generator jets were used to introduce streamwise vorticity into the flow. These control strategies were applied separately and together to a laboratory-scale dump combustor, and the effects on combustor performance were determined. The effect of spanwise forcing on both nonreacting and reacting flowfields was to modulate the formation of spanwise coherent vortex structures just downstream of the flow separation. In the nonreacting flowfield, the shear layer spreading rate was increased when forcing was applied. In the reacting flow, forcing caused a modulation of the flame structure.

  9. Combustor and method for distributing fuel in the combustor

    DOEpatents

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; York, William David

    2016-04-26

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface, and each tube provides fluid communication through the tube bundle. A baffle extends axially inside the tube bundle between adjacent tubes. A method for distributing fuel in a combustor includes flowing a fuel into a fuel plenum defined at least in part by an upstream surface, a downstream surface, a shroud, and a plurality of tubes that extend from the upstream surface to the downstream surface. The method further includes impinging the fuel against a baffle that extends axially inside the fuel plenum between adjacent tubes.

  10. Investigation on the flame dynamics of meso-combustors

    NASA Astrophysics Data System (ADS)

    Ahmed, Mahbub

    Miniature heat engines burning hydrogen and hydrocarbon fuels have significantly higher energy densities compared to conventional lithium batteries and thus will play an essential role in the portable production of power for future electronics, remote sensors, and micro aerial vehicles. Additionally, miniature heat engines will tremendously benefit next generation of environmental technologies such as steam reforming, ammonia decomposition and fuel cells. Successful miniaturization of heat engine components demand a more complete and broader understanding of micro-fluid dynamics and micro-combustion phenomena associated with the combustor design. This dissertation is aimed at investigating the details of the micro-mixing dynamics and the combustion behavior of the meso-combustor and to create fundamental understanding of physics based design methodology. The primary goals of the project are (i) to develop an understanding of fuel-air mixing inside a meso-combustor, (ii) to develop an understanding of the flame stability (flame quenching and velocity blowout) criteria of a meso-combustor, (iii) to understand the thermal behavior of the meso-combustor, and (iv) to correlate these with combustor operating conditions such as the Reynolds number, equivalent ratio, and thermal power etc. The present study shows that adequate mixing of fuel and air is achievable in millimeter scale combustors. Both computed results and experimental measurements of iso-thermal (non-burning) flows at different mixing configurations indicate that the laminar burning velocity remains higher than the local flow velocities in most of the combustor locations to support stable flame propagations. Stable flames of hydrogen are achieved for all mixing and flow configurations. The combustion of methane with air as oxidizer in the combustors is unreliable. However, highly stable combustion of methane at various mixing and flow conditions is achieved when pure oxygen is used as an oxidizer. The

  11. Abrasion-Resistant Technology and its Prospect for CFB Boilers

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y. J.; Wang, L. J.; Liu, S. H.; Dou, Q. R.

    In recent years, CFB boilers (CFBB) have been widely used in the commercial power plants due to its environmental benefits, high combustion efficiency, wide coal flexibility, and some other advantages. At the same time, the abrasion problem, the greatest weakness of this kind of boiler, has been gradually exposed in its application process. The abrasion, particularly on key parts such as the heating surface of water-cooled wall, furnace corners, separator entrance, seriously restricts the long-period operation ability of the CFBB. This article discusses current development status for various abrasion resistant refractory materials used in a CFBB. Some comments are provided for developing new high-performance abrasion resistant refractory materials and rapid-repaired materials according to the abrasion principle and the abrasion on different parts, as well as the economical and environmental requirements for the material. The abrasion solution and operation period of CFBB can be better improved given realization.

  12. Radial midframe baffle for can-annular combustor arrangement having tangentially oriented combustor cans

    SciTech Connect

    Rodriguez, Jose L.

    2015-09-15

    A can-annular gas turbine engine combustion arrangement (10), including: a combustor can (12) comprising a combustor inlet (38) and a combustor outlet circumferentially and axially offset from the combustor inlet; an outer casing (24) defining a plenum (22) in which the combustor can is disposed; and baffles (70) configured to divide the plenum into radial sectors (72) and configured to inhibit circumferential motion of compressed air (16) within the plenum.

  13. Structure and Performance of a 600MWe Supercritical CFB Boiler with Water Cooled Panels

    NASA Astrophysics Data System (ADS)

    Li, Y.; Nie, L.; Hu, X. K.; Yue, G. X.; Li, W. K.; We, Y. X.; Lu, J. F.; Che, D. F.

    The circulating fluidized bed (CFB) combustion technology is one of the approved clean combustion technologies, and the power supply efficiency can be improved combining with the supercritical technology. A 600MWe supercritical CFB boiler is introduced in this paper. This boiler is designed based on the success of 300 MWe CFB boilers, which has a single furnace with three cyclones without external heat exchangers. There are twin furnaces and twin air distributors in the boiler. The water walls of the twin furnace above dense bed combines to a common fence wall with some channels to balance the pressure of the two furnaces. The smooth tubes are adopted in membrane water wall with mixing header. Six cyclones are located beside the furnace as well as six loopseals and six external heat exchangers. The hydrodynamic characteristic of water wall is available with the modeling prediction. And the performance of the 600MWe supercritical CFB boiler is also investigated.

  14. Application of CFB technology for large power generating units and CO{sub 2} capture

    SciTech Connect

    Ryabov, G. A. Folomeev, O. M.; Sankin, D. A.; Khaneev, K. V.; Bondarenko, I. G.; Mel'nikov, D. A.

    2010-07-15

    Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units are used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.

  15. Flextech{trademark} CFB boilers for southeast Asian and Chinese coals

    SciTech Connect

    Tanca, M.; Schaker, Y.

    1997-12-31

    With the rapid expansion of electrical power in southeast Asia and China, the circulating fluidized bed (CFB) technology meets the needs of local utilities and independent power producers (IPPs) alike. This paper will discuss how the ABB-Combustion Engineering Flextech CFB technology can meet these growing electrical power needs. The locally available coals of China and southeast Asia and how they are readily suited for firing in the Flextech CFB technology will be discussed. Detailed discussions will include the characteristics of each coal, expected local emission levels, and the operational characteristics of the Flextech designs while firing the various coals. The paper will then proceed to illustrate in detail proposed Flextech CFB solutions for electrical generation from 50 to 250 megawatts of power.

  16. Pulse combustor with controllable oscillations

    DOEpatents

    Richards, George A.; Welter, Michael J.; Morris, Gary J.

    1992-01-01

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  17. Pulse combustor with controllable oscillations

    SciTech Connect

    Richards, G.A.; Morris, G.J.; Welter, M.J.

    1991-12-31

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  18. Critical Propulsion Components. Volume 2; Combustor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Team. Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  19. Methanol tailgas combustor control method

    DOEpatents

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  20. Modeling a Transient Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1985-01-01

    Transient model of monolith catalytic combustor presented in report done under NASA/DOE contract. Model assumes quasi-steady gas phase and thermally "thin" solid. In gas-phase treatment, several quasi-global chemical reactions assumed capable of describing CO and unburnt hydrocarbon emissions in fuel-lean operations. In steady-state computation presented, influence of selected operating and design parameters on minimum combustor length studied. When fast transient responses required, both steady and unsteady studies made to achieve meaningful compromise in design.

  1. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  2. Update of operating experience of B and W IR-CFB coal-fired boilers

    SciTech Connect

    Belin, F.; Kavidass, S.; Maryamchik, M.; Walker, D.J.; Mandal, A.K.; Price, C.E.

    1999-07-01

    This paper updates the operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois, USA, and is designed for 35 MW{sub th} output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries in Renukoot, India, and is designed for 81 MW{sub th} output for captive power requirement, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W Ltd., a joint venture company of B and W and Thermax of India. The choice of CFB technology was based on its fuel flexibility, cost effectiveness and environmental benefits for solid fuels. Based on the broad experience in designing utility and industrial boilers for operation worldwide, B and W has developed a cost effective and compact atmospheric pressure IR-CFB boiler. The B and W IR-CFB boiler design is distinctive in its use of U-beam particle separators. Worldwide, B and W offers IF-CFB boilers up to 175 MW{sub th}, both reheat and non-reheat, and is pursuing units up to 350 MW{sub th}. This paper reviews the general description of each IR-CFB boiler, design and performance aspects, as well as overall operating experiences. The boiler availabilities including maintenance aspects and emissions data will be presented.

  3. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  4. Effect of structural heat conduction on the performance of micro-combustors and micro-thrusters

    NASA Astrophysics Data System (ADS)

    Leach, Timothy Thierry

    This thesis investigates the effect of gas-structure interaction on the design and performance of miniaturized combustors with characteristic dimensions less than a few millimeters. These are termed 'micro-combustors' and are intended for use in devices ranging from micro-scale rocket motors for micro, nano, and pico-satellite propulsion, to micro-scale engines for micro-Unmanned Air Vehicle (UAV) propulsion and compact power generation. Analytical models for the propagation of a premixed laminar flame in a micro-channel are developed. The models' predictions are compared to the results of more detailed numerical simulations that incorporate multi-step chemistry, distributed heat transfer between the reacting gas and the combustor structure, heat transfer between the combustor and the environment, and heat transfer within the combustor structure. The results of the modeling and simulation efforts are found to be in good qualitative agreement and demonstrate that the behavior of premixed laminar flames in micro-channels is governed by heat transfer within the combustor structure and heat loss to the environment. The key findings of this work are as follows: First, heat transfer through the micro-combustor's structure tends to increase the flame speed and flame thickness. The increase in flame thickness with decreasing passage height suggests that micro-scale combustors will need to be longer than their conventional-scale counterparts. However, the increase in flame speed more than compensates for this effect and the net effect is that miniaturizing a combustor can increase its power density substantially. Second, miniaturizing chemical rocket thrusters can substantially increase thrust/weight ratio but comes at the price of reduced specific impulse (i.e. overall efficiency). Third, heat transfer through the combustor's structure increases steady-state and transient flame stability. This means that micro-scale combustors will be more stable than their conventional-scale

  5. HSCT Sector Combustor Evaluations for Demonstration Engine

    NASA Technical Reports Server (NTRS)

    Greenfield, Stuart; Heberling, Paul; Kastl, John; Matulaitis, John; Huff, Cynthia

    2004-01-01

    In LET Task 10, critical development issues of the HSCT lean-burn low emissions combustor were addressed with a range of engineering tools. Laser diagnostics and CFD analysis were applied to develop a clearer understanding of the fuel-air premixing process and premixed combustion. Subcomponent tests evaluated the emissions and operability performance of the fuel-air premixers. Sector combustor tests evaluated the performance of the integrated combustor system. A 3-cup sector was designed and procured for laser diagnostics studies at NASA Glenn. The results of these efforts supported the earlier selection of the Cyclone Swirler as the pilot stage premixer and the IMFH (Integrated Mixer Flame Holder) tube as the main stage premixer of the LPP combustor. In the combustor system preliminary design subtask, initial efforts to transform the sector combustor design into a practical subscale engine combustor met with significant challenges. Concerns about the durability of a stepped combustor dome and the need for a removable fuel injection system resulted in the invention and refinement of the MRA (Multistage Radial Axial) combustor system in 1994. The MRA combustor was selected for the HSR Phase II LPP subscale combustor testing in the CPC Program.

  6. Modelling of furnaces and combustors

    SciTech Connect

    Kahil, E.E.

    1985-01-01

    This book presents an account of the art of modelling for heat transfer and fluid flows in furnaces and combustors. After describing the different types of furnace flows, the author deals with the conservation equations. The different turbulence modelling assumptions, the more complicated problem of turbulent combustion modelling, and various types of turbulent flames are also described and reviewed, with appropriate models being assigned.

  7. Premixed Prevaporized Combustor Technology Forum

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Forum was held to present the results of recent and current work intended to provide basic information required for demonstration of lean, premixed prevaporized combustors for aircraft gas turbine engine application. Papers are presented which deal with the following major topics: (1) engine interfaces; (2) fuel-air preparation; (3) autoignition; (4) lean combustion; and (5) concept design studies.

  8. Azimuthally forced flames in an annular combustor

    NASA Astrophysics Data System (ADS)

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  9. Gas-solid flow characteristics in high-density CFB

    NASA Astrophysics Data System (ADS)

    Wang, Xue-yao; Fan, Bao-guo; Wang, Sheng-dian; Xu, Xiang; Xiao, Yun-han

    2012-08-01

    The gas-solid flow characteristics in the riser of a high density CFB of square (0.27 m×0.27 m×10.4 m) or circular ( ϕ 0.187m×10.4 m) cross section, using Geldart B particles (quartz sand), was investigated experimentally. The influence of riser structure on the hydrodynamic behaviors of a high-density circulating fluidized bed was investigated. The solid circulation rate was up to 321 kg/(m2s) with the circular cross-section under the operating conditions of the main bed air velocity 12.1 m/s and loosen wind and back-feed wind flow 25.1 m3/h. Different operating conditions on realizing high density circulation was analyzed, while both solids circulation rate and particle holdup depended highly on operating conditions. The circulating gas-solid flow was accompanied by an evidently-dense character in the riser's bottom zone and became fully developed in the middle and upper zones.

  10. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Rogers, D. W.; Bahr, D. W.

    1976-01-01

    The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.

  11. Trace metal distribution and control in the pilot-scale bubbling fluidized bed combustor equipped with the pulse-jet fabric filter, limestone injection, and the humidification reactor.

    PubMed

    Kouvo, Petri

    2003-04-01

    This work focused on trace metal behavior and removal in a fabric filter or in a humidification reactor during the cofiring of sawdust and refuse-derived fuels (RDFs) in a pilot-scale bubbling fluidized bed (BFB) boiler. Trace metal emissions measurements before and after the fabric filter revealed that removal efficiency in the fabric filter was in the range of 80-100%, and that the European Union (EU) Directive on Incineration of Waste restrictions for trace metal emissions are easily achieved even if addition of RDFs substantially increases the concentration of trace metals in fuel blends. Limestone injection enhanced the removal of As and Se but had no noticeable effect on the removal of other trace metals. Extensive formation of HgCl2 and condensation on fly ash particles during sawdust plus 40% RDF cofiring resulted in a 92% Hg removal efficiency in the fabric filter. Limestone injection had no effect on the Hg removal in the fabric filter but decreased the Hg removal in a humidification reactor from 40 to 28%. Results of the bed material and fly ash analysis suggested capture of Cu, Pb, Mn, Ni, and Zn in the bed material but also suggested that these metals may be released from the bed if the fuel characteristics or process conditions are changed. PMID:12708504

  12. Development of Flexi-Burn™ CFB Power Plant to Meet the Challenge of Climate Change

    NASA Astrophysics Data System (ADS)

    Hackt, Horst; Fant, Zhen; Seltzert, Andrew; Hotta, Arto; Erikssoni, Timo; Sippu, Ossi

    Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon- dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon-dioxide with its integrated Flexi-Burn™ CFB technology. The proven high efficiency circulating fluidized-bed (CFB) technology, when coupled with air separation units and carbon purification units, offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages over pulverized coal technology of a more uniform furnace heat flux, increased fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels. Development and design of an integrated Flexi-Bum™ CFB steam generator and balance of plant system was conducted for both air mode and oxyfuel mode. Through proper configuration and design, the same steam generator can be switched from air mode to oxyfuel mode without the need for unit shutdown for modifications. The Flexi-Burn™ CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.

  13. Overview and status of first 25 MW(e) IR-CFB boiler in India

    SciTech Connect

    Kavidass, S.; Bakshi, V.K.; Diwakar, K.K.

    1997-12-31

    The Babcock and Wilcox (B and W) internal recirculation CFB (IR-CFB) boiler is unique in design. Worldwide, B and W offers IR-CFB boilers up to 150 MW(e) both reheat and non-reheat, and is pursuing units up to 300 MW(e). This paper discusses an overview and status of the construction, commissioning, initial start-up operation and milestones of the ongoing 25 MW(e) IR-CFB boiler project at Kanoria Chemicals and Industries Ltd., Renukoot, India. This IR-CFB boiler is designed, supplied and installed by Thermax Babcock and Wilcox Ltd. (TBW), a joint venture company of the B and W and Thermax in India. The boiler parameters are, steam flow of 29.2 kg/s (23,420 lbs/hr), 6.4 MPa (925 psig), and 485 C (905 F) with feedwater temperature of 180 C (356 F). The boiler will utilize high-ash content (> 45%), subbituminous coal with a heating value of 3,500 KCal/kg (6,300 Btu/lb). This paper also discusses the various aspects of the boiler design, performance, auxiliary equipment, advantages and initial start-up operating performance.

  14. Engineering of a 110 MW atmospheric CFB for the Czech Republic

    SciTech Connect

    Rode, J.R.; Brzezeina, P.; Strach, F.

    1997-12-31

    This paper discusses the engineering considerations related to the design of a new 110 MWe atmospheric fluidized bed boiler (CFB) and boiler island auxiliaries for installation at the CEZ, a.s. (Czech Republic Utility) Ledvice Power Station. The plant is located in the northwest Bohemia area of the Czech Republic in the foothills of the Krusne Hory Mountains, between the towns of Bilina and Teplice. The type of fuel to be burned in the CFB is brown coal which requires unique design considerations in as well as the particular boiler operational parameters. The impetus behind the addition of this new CFB at the plant is that the existing pulverized coal fired steam generator which was put in service in 1969 is unable to meet new regulations and laws regarding compliance with the protection of the environment and will be replaced once the new CFB unit is brought into service. A technical-economic study conducted by CEZ, a.s. evaluated CFB technology as the most advantageous from a long-term standpoint. The following variations were considered in the study: boiler retrofit and construction of new ash handling equipment; implementation of the combined cycle based upon natural gas; and reconstruction of the boiler equipment with transition to atmospheric fluid-bed combustion. The selection of the supplier of fluid-bed boiler was performed with an emphasis of the bidders` references as for the construction and operation of fluid-bed boilers with the outputs of min. 300 t/hr.

  15. Design and shakedown of {Pi} shaped CFB boiler of 35 t/h

    SciTech Connect

    Liu, D.C.; Chen, H.P.; He, Q.

    1997-12-31

    The CFB boiler has been extensively developed for years in China. There are 5 kinds of CFB boilers developed by universities and institutes. The {Pi} shaped CFB boiler with downward exhaust gas cyclones designed by Huazhong University of Science and Technology and fabricated by Wuchang Boiler and the Container Works is one of these boilers which has operated since 1994. This paper describes the design considerations: {Pi} shaped configuration that makes the boiler more compact and reduces boiler space requirements; Coal size ranges 0--10 mm which means that a small particle fluidized bed is superimposed on a large particle fluidized bed; Some immersed heating surface placed in the dense phase bed of the CFB boiler that makes the boiler cost cheaper; and A patented solid cyclone separator with downward exhaust gas is employed in the design and the separating efficiency is higher and the pressure drop is lower. Due to some uncertainty, the design of the heating surface area and gas velocity are considered. This paper also describes some problems overcome in the shakedown and operation process. Operation of the CFB boiler reveals that the boiler has reached the designed steam capacity and runs steady at the rated steam capacity. The ash return device works quite well.

  16. Induction time effects in pulse combustors

    SciTech Connect

    Bell, J B; Marcus, D L; Pember, R B

    1999-04-09

    Combustion systems that take advantage of a periodic combustion process have many advantages over conventional systems. Their rate of heat transfer is greatly enhanced and their pollutant emissions are lower. They draw in their own supply of fuel and air and they are self-venting. They have few moving parts. The most common type of pulse combustor is based on a Helmholtz resonator - a burning cycle drives a resonant pressure wave, which in turn enhances the rate of combustion, resulting in a self-sustaining, large-scale oscillation. Although the basic physical mechanisms controlling such a process were explained by Rayleigh over a century ago, a full understanding of the operation of a pulse combustor still does not exist. The dominant processes in such a system--combustion, turbulent fluid dynamics, acoustics--are highly coupled and interact nonlinearly, which has reduced the design process to a costly and inefficient trial-and-error procedure. Several recent numerical and experimental studies, however, have been focused towards a better understanding of the basic underlying physics. Barr et al. [l] have elucidated the relative roles of the time scales governing the energy release, the turbulent mixing, and the acoustics. Keller et al. [5] have demonstrated the importance of the phase relation between the resonant pressure field in the tailpipe and the periodic energy release. Marcus et al. [6] have developed the capability for a fully three-dimensional simulation of the reacting flow in a pulse combustor. This paper is an application of that methodology to a detailed investigation of the frequency response of the model to changes in the chemical kinetics. The methodology consists of a fully conservative second-order Godunov algorithm for the inviscid, reacting gas dynamics equations coupled to an adaptive mesh refinement procedure[2]. The axisymmetric and three-dimensional simulations allow us to explore in detail the interaction between the transient fluid

  17. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  18. Combustor modelling for scramjet engines

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Rogers, R. C.; Evans, J. S.

    1979-01-01

    A system of computer programs is being developed to analyse and predict the complex flow fields found in hydrogen-fueled scramjet combustors. Each program is designed to solve the governing equation system for the type of flow present in a particular combustor region. A two-dimensional parabolic program has been found to be valuable in the development and experimental evaluation of turbulence and chemistry models for supersonic flow, and in the development of a program to model supersonic flow downstream of the fuel injection struts by means of solutions to the three-dimensional parabolic Navier-Stokes equations and species equations. A partially elliptic code has been derived to account for local subsonic flow regions, and fully elliptic programs have been developed by the consideration of streamwise diffusion effects for the recirculating flow fields near transverse fuel injectors. The programs are currently being applied to problems of scramjet engine development.

  19. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    SciTech Connect

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  20. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Y.; Harrington, Richard E.

    1989-01-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.

  1. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Yu; Harrington, R.E.

    1987-05-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.

  2. Vertical combustor for particulate refuse

    NASA Astrophysics Data System (ADS)

    Chung, P. M.; Carlson, L.

    1981-03-01

    A one-dimensional model is constructed of a vertical combustor for refuse particle combustion in order to analyze it for waste energy recovery. The three components of the model, fuel particles, inert solid particles and the gaseous mixture are described by momentum, energy, and mass conservation equations, resulting in three different flow velocities and temperatures for the medium. The gaseous component is further divided into six chemical species that evolve in combustion at temperatures below about 1367 K. A detailed description is given of the fuel particle combustion through heating, devolatilization, and combustion of the volatile gas in the boundary layer, return of the flame sheet to the fuel surface, and char combustion. The solutions show the combustor to be viable for U.S. refuse which consists of combustibles that can be volatilized up to 85 to 95% below 1366 K. Char combustion, however, is found to be too slow to be attempted in the combustor, where the fuel residence time is of the order of 2 s.

  3. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    SciTech Connect

    Lu, X.F.; Amano, R.S.

    2006-12-15

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

  4. USA B and W`s IR-CFB coal-fired boiler operating experiences

    SciTech Connect

    Kavidass, S.; Maryamchik, M.; Kanoria, M.; Price, C.S.

    1998-12-31

    This paper updates operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois and is designed for 35 MWt output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries Ltd. (KCIL) in Renukoot, India and is designed for 81 MWt output for captive power requirements, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W (TBW) Ltd., a joint venture company of B and W and Thermax in India. The CFB technology is selected for these two units based on the fuel and environmental considerations. This paper discusses the various aspects of the two IR-CFB boilers` design features, performance, and operating experience including emissions.

  5. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  6. Effect of fuel injector type on performance and emissions of reverse-flow combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1981-01-01

    The combustion process in a reverse-flow combustor suitable for a small gas turbine engine was investigated to evaluate the effect of fuel injector type on performance and emissions. Fuel injector configurations using pressure-atomizing, spill-flow, air blast, and air-assist techniques were compared and evaluated on the basis of performance obtained in a full-scale experimental combustor operated at inlet conditions corresponding to takeoff, cruise, low power, and idle and typical of a 16:1-pressure-ratio turbine engine. Major differences in combustor performance and emissions characteristics were experienced with each injector type even though the aerodynamic configuration was common to most combustor models. Performance characteristics obtained with the various fuel injector types could not have been predicted from bench-test injector spray characteristics. The effect of the number of operating fuel injectors on performance and emissions is also presented.

  7. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-01-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  8. Effect of diffuser bleed on performance of an annular swirl can combustor

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1974-01-01

    A full-scale annular swirl can combustor equipped with diffuser bleed capability was tested at low fuel-air ratio, burning natural gas fuel. Test results show that, by drawing off a small amount of air on the inner or outer diffuser wall, the radial profile of combustor exit temperature could be changed from a strongly tip biased, to a strongly hub biased shape. Furthermore, combustor total pressure loss could be reduced by about one third by using a total bleed rate equal to 6 percent of diffuser inlet flow. At simulated engine idle conditions combustion efficiency was increased from 64 percent to nearly 100 percent by using 3 percent outer wall bleed. Combustor blowout performance was also improved significantly by using this diffuser bleed scheme.

  9. More than one year of operation of Provence SOPROLIF 250 Mwe CFB boiler

    SciTech Connect

    Claret, P.; Ratti, G.; Jacob, T.; Levy, M.D.

    1998-07-01

    The SOPROLIF 250 Mwe CFB boiler, installed in the Provence Power Plant located near Gardanne in the south of France, has been the largest CFB boiler in operation since April 1996. The purpose of the project was to repower with a CFB boiler 250 Mwe the existing unit 4 of pulverized coal in order to keep on burning the local high sulfur coal while ensuring an environmentally friendly operation. The erection was carried out according to the schedule. The full load was reached in November 1995 and commercial operation started in April 1996 with 5 months delay due to social and technical problems mainly relative to some boiler and steam turbine auxiliaries rather than to the CFB process itself. The training to prepare the transfer from pulverized coal to CFB boiler was carefully prepared and the new process was well accepted by the operators. The SOPROLIF CFB boiler performances which were carried out in May 97 are in accordance with the expected figures. During the first year of operation, the availability reached the contractual figure, which was determined according to such a prototype. The main operation difficulties were due to the coal moisture, which was higher than expected in winter season (problem never met with the existing PC unit due to the drier process in mills). In addition, to reduce NO{sub x} emission, cyclone modification has been performed during the first year of operation through a main overhaul, which impacted the availability of the first year. Since April 97, the availability has been very high. This paper presents the project, describes the technical experience that EDF got from the first year of operation and states the performance test results.

  10. A Design Methodology for Rapid Implementation of Active Control Systems Across Lean Direct Injection Combustor Platforms

    NASA Technical Reports Server (NTRS)

    Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)

    2003-01-01

    The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.

  11. York County Energy Partners CFB Cogeneration Project. Annual report, [September 30, 1992--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    The Department of Energy, under the Clean Coal Technology program, proposes to provide cost-shared financial assistance for the construction of a utility-scale circulating fluidized bed technology cogeneration facility by York County Energy Partners, L.P (YCEP). YCEP, a project company of ir Products and Chemicals, Inc., would design, construct and operate a 250 megawatt (gross) coal-fired cogeneration facility on a 38-acre parcel in North Codorus Township, York County, Pennsylvania. The facility would be located adjacent to the P. H. Glatfelter Company paper mill, the proposed steam host. Electricity would be delivered to Metropolitan Edison Company. The facility would demonstrate new technology designed to greatly increase energy efficiency and reduce air pollutant emissions over current generally available commercial technology which utilizes coal fuel. The facility would include a single train circulating fluidized bed boiler, a pollution control train consisting of limestone injection for reducing emissions of sulfur dioxide by greater than 92 percent, selective non-catalytic reduction for reducing emissions of nitrogen oxides, and a fabric filter (baghouse) for reducing emissions of particulates. Section II of this report provides a general description of the facility. Section III describes the site specifics associated with the facility when it was proposed to be located in West Manchester Township. After the Cooperative Agreement was signed, YCEP decided to move the proposed site to North Codorus Township. The reasons for the move and the site specifics of that site are detailed in Section IV. This section of the report also provides detailed descriptions of several key pieces of equipment. The circulating fluidized bed boiler (CFB), its design scale-up and testing is given particular emphasis.

  12. Low NO(x) Combustor Development

    NASA Technical Reports Server (NTRS)

    Kastl, J. A.; Herberling, P. V.; Matulaitis, J. M.

    2005-01-01

    The goal of these efforts was the development of an ultra-low emissions, lean-burn combustor for the High Speed Civil Transport. The HSCT Mach 2.4 FLADE C1 Cycle was selected as the baseline engine cycle. A preliminary compilation of performance requirements for the HSCT combustor system was developed. The emissions goals of the program, baseline engine cycle, and standard combustor performance requirements were considered in developing the compilation of performance requirements. Seven combustor system designs were developed. The development of these system designs was facilitated by the use of spreadsheet-type models which predicted performance of the combustor systems over the entire flight envelope of the HSCT. A chemical kinetic model was developed for an LPP combustor and employed to study NO(x) formation kinetics, and CO burnout. These predictions helped to define the combustor residence time. Five fuel-air mixer concepts were analyzed for use in the combustor system designs. One of the seven system designs, one using the Swirl-Jet and Cyclone Swirler fuel-air mixers, was selected for a preliminary mechanical design study.

  13. Combustor with non-circular head end

    SciTech Connect

    Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-29

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a head end with a non-circular configuration, a number of fuel nozzles positioned about the head end, and a transition piece extending downstream of the head end.

  14. Analytical fuel property effects--small combustors

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.

    1984-01-01

    The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.

  15. HSCT Sector Combustor Hardware Modifications for Improved Combustor Design

    NASA Technical Reports Server (NTRS)

    Greenfield, Stuart C.; Heberling, Paul V.; Moertle, George E.

    2005-01-01

    An alternative to the stepped-dome design for the lean premixed prevaporized (LPP) combustor has been developed. The new design uses the same premixer types as the stepped-dome design: integrated mixer flameholder (IMFH) tubes and a cyclone swirler pilot. The IMFH fuel system has been taken to a new level of development. Although the IMFH fuel system design developed in this Task is not intended to be engine-like hardware, it does have certain characteristics of engine hardware, including separate fuel circuits for each of the fuel stages. The four main stage fuel circuits are integrated into a single system which can be withdrawn from the combustor as a unit. Additionally, two new types of liner cooling have been designed. The resulting lean blowout data was found to correlate well with the Lefebvre parameter. As expected, CO and unburned hydrocarbons emissions were shown to have an approximately linear relationship, even though some scatter was present in the data, and the CO versus flame temperature data showed the typical cupped shape. Finally, the NOx emissions data was shown to agree well with a previously developed correlation based on emissions data from Configuration 3 tests performed at GEAE. The design variations of the cyclone swirler pilot that were investigated in this study did not significantly change the NOx emissions from the baseline design (GEAE Configuration 3) at supersonic cruise conditions.

  16. TRW advanced slagging coal combustor utility demonstration

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

  17. Experimental clean combustor program, phase 3

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A.; Greene, W.

    1977-01-01

    A two-stage vortex burning and mixing combustor and associated fuel system components were successfully tested at steady state and transient operating conditions. The combustor exceeded the program goals for all three emissions species, with oxides of nitrogen 10 percent below the goal, carbon monoxide 26 percent below the goal, and total unburned hydrocarbons 75 percent below the goal. Relative to the JT9D-7 combustor, the oxides of nitrogen were reduced by 58 percent, carbon monoxide emissions were reduced by 69 percent, and total unburned hydrocarbons were reduced by 9 percent. The combustor efficiency and exit temperature profiles were comparable to those of production combustor. Acceleration and starting characteristics were deficient relative to the production engine.

  18. Experimental results from a reverse flow annual combustor

    NASA Astrophysics Data System (ADS)

    Joubert, F. M.; Hattingh, H. V.

    Computer-predicted temperature distributions in the wall liners of a combustion chamber were compared to the experimentally obtained values from combustion tests carried out in a small, full-scale reverse-flow annular combustor at sea level take-off conditionns. The largest discrepancies between the measured and predicted linear temperatures occured in the primary zone, with most of the predictions falling above the measured values, and with neither of the two computer programs satisfying the accuracy of 4 percent (of the experimental values) needed for making estimates on the life of a combustor. On the other hand, the correlation between the measured and predicted liner pressure drop was satisfactory. The validity and usefulnes of simple computer models as aids in the design of gas turbine combustion chambers are discussed.

  19. Conceptual model of turbulent flameholding for scramjet combustors

    NASA Technical Reports Server (NTRS)

    Huber, P. W.

    1980-01-01

    New concepts and approaches to scramjet combustor design are presented. Blowoff was from failure of the recirculation-zone (RZ) flame to reach the dividing streamline (DS) at the rear stagnation zone. Increased turbulent exchange across the DS helped flameholding due to forward movement of the flame anchor point inside the RZ. Modeling of the blowoff phenomenon was based on a mass conservation concept involving the traverse of a flame element across the RZ and a flow element along the DS. The scale required to achieve flameholding, predicted by the model, showed a strong adverse effect of low pressure and low fuel equivalence ratio, moderate effect of flight Mach number, and little effect of temperature recovery factor. Possible effects of finite rate chemistry on flameholding and flamespreading in scramjets are discussed and recommendations for approaches to engine combustor design as well as for needed research to reduce uncertainties in the concepts are made.

  20. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  1. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  2. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  3. Development of topping combustor for advanced concept pressurized fluidized-bed combustion

    SciTech Connect

    Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

    1994-10-01

    The objective of this program is to develop a topping combustor to operate in a Second-Generation Pressurized Fluidized Bed (PFBC) Combined Cycle power generation system. The combustor must be able to: lightoff with a high heating value fuel and compressor discharge air to heat the fluidized bed(s) and provide power for PFBC and carbonizer off-line; operate with 1,600 F oxygen depleted air from the PFBC and high heating value fuel to handle carbonizer off-line conditions; ramp up to 100% carbonizer syngas firing (normal operation) by firing a blend of decreasing high heating value fuel and increasing low heating value syngas; utilize the vitiated air, at temperatures up to 1,600 F for as much cooling of the metal combustor as possible, thus minimizing the compressor bypass air needed for combustor cooling; provide an acceptance exit temperature pattern at the desired burner outlet temperature (BOT); minimize the conversion of fuel bound nitrogen (FBN) present in the syngas to NO{sub x}; and have acceptably high combustion efficiency, and low emissions of carbon monoxide, UHC, etc. This paper reports the results of tests of a 14 inch diameter topping combustor with a modified fuel-rich zone conducted in June 1993, design of an 18 inch diameter topping combustor to be tested in June 1994 and afterwards, and results of a 50% scale cold flow model which has been built and tested.

  4. A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting

    SciTech Connect

    Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

    1992-07-01

    The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

  5. Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz

    2003-01-01

    As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.

  6. Solid Fuel Ramjet Combustor Design

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; George, Philmon

    1998-03-01

    Combustion aspects of solid fuel ramjet (SFRJ) are reviewed. On the point of view of the ability of an SFRJ to operate satisfactorily at all off-design conditions the areas of concern to propulsion system designer are (1) selection of a fuel type, (2) flame holding requirements that limit maximum fuel loading, (3) understanding the fuel regression rate behaviour as a function of flight speed and altitude, (4) diffusion-controlled combustion process and its efficiency enhancement, and (5) inlet/combustor matching. Considering these areas, the following aspects are reviewed from the information available in open literature: (1) different experimental set-up conditions adopted in combustor research, (2) various suitable fuel types, (3) flammability limits, (4) fuel regression rate behaviour, (5) methods of achieving high efficiency in metallized fuel, and (6) various modelling efforts. Detailed discussion is presented on two different types of regression rate mechanism in SFRJ: one that is controlled by the heat transfer processes downstream of the reattachment region and the other by that in the region itself. With a view to demonstrate the use of the information collected through this review, a preliminary design procedure is presented for an SFRJ-assisted gun launched projectile of pseudo-vacuum trajectory.

  7. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, James E.; Holsapple, Allan C.

    1997-01-01

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

  8. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, J.E.; Holsapple, A.C.

    1997-06-10

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

  9. Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Williams, J.T.; Steele, R.C.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  10. Low NOx Heavy Fuel Combustor Concept Program

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1981-01-01

    The development of the technology required to operate an industrial gas turbine combustion system on minimally processed, heavy petroleum or residual fuels having high levels of fuel-bound nitrogen (FBN) while producing acceptable levels of exhaust emissions is discussed. Three combustor concepts were designed and fabricated. Three fuels were supplied for the combustor test demonstrations: a typical middle distillate fuel, a heavy residual fuel, and a synthetic coal-derived fuel. The primary concept was an air staged, variable-geometry combustor designed to produce low emissions from fuels having high levels of FBN. This combustor used a long residence time, fuel-rich primary combustion zone followed by a quick-quench air mixer to rapidly dilute the fuel rich products for the fuel-lean final burnout of the fuel. This combustor, called the rich quench lean (RQL) combustor, was extensively tested using each fuel over the entire power range of the model 570 K engine. Also, a series of parameteric tests was conducted to determine the combustor's sensitivity to rich-zone equivalence ratio, lean-zone equivalence ratio, rich-zone residence time, and overall system pressure drop. Minimum nitrogen oxide emissions were measured at 50 to 55 ppmv at maximum continuous power for all three fuels. Smoke was less than a 10 SAE smoke number.

  11. Fuel cell system with combustor-heated reformer

    DOEpatents

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  12. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, Randall S.; Richards, George A.; Yip, Mui-Tong Joseph; Robey, Edward H.; Cully, Scott R.; Addis, Richard E.

    1998-01-01

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time.

  13. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.

    1998-08-11

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.

  14. Gas turbine combustor stabilization by heat recirculation

    NASA Technical Reports Server (NTRS)

    Ganji, A.; Short, J.; Branch, M. C.; Oppenheim, A. K.

    1975-01-01

    The feasibility of heat recirculation for stabilization of lean mixtures and emission reduction has been studied in detail for a typical aircraft gas turbine combustor. Thermodynamic calculations have indicated temperature and heat recirculation rates for operation of the combustor over a range of combustion zone equivalence ratios and for varying modes of desired engine operation. Calculations indicate the feasibility of stabilizing the combustion zone at equivalence ratios as low as 0.2 with achievable heat recirculation rates. Detailed chemical kinetic calculations suggest that combustor heat release is maintained with reaction completion substantially before the NO forming reactions, even though CO is rapidly oxidized in this same region.

  15. Combustor design and analysis using the Rocket Combustor Interactive Design (ROCCID) methodology

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Pieper, Jerry L.; Walker, Richard E.

    1990-01-01

    The ROCket Combustor Interactive Design (ROCCID) Methodology is a newly developed, interactive computer code for the design and analysis of a liquid propellant rocket combustion chamber. The application of ROCCID to design a liquid rocket combustion chamber is illustrated. Designs for a 50,000 lbf thrust and 1250 psi chamber pressure combustor using liquid oxygen (LOX)RP-1 propellants are developed and evaluated. Tradeoffs between key design parameters affecting combustor performance and stability are examined. Predicted performance and combustion stability margin for these designs are provided as a function of the combustor operating mixture ratio and chamber pressure.

  16. Combustor design and analysis using the ROCket Combustor Interactive Design (ROCCID) Methodology

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Pieper, Jerry L.; Walker, Richard E.

    1990-01-01

    The ROCket Combustor Interactive Design (ROCCID) Methodology is a newly developed, interactive computer code for the design and analysis of a liquid propellant rocket combustion chamber. The application of ROCCID to design a liquid rocket combustion chamber is illustrated. Designs for a 50,000 lbf thrust and 1250 psi chamber pressure combustor using liquid oxygen (LOX)RP-1 propellants are developed and evaluated. Tradeoffs between key design parameters affecting combustor performance and stability are examined. Predicted performance and combustion stability margin for these designs are provided as a function of the combustor operating mixture ratio and chamber pressure.

  17. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  18. Numerical exploration of mixing and combustion in ethylene fueled scramjet combustor

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2015-12-01

    Numerical simulations are performed for full scale scramjet combustor of a hypersonic airbreathing vehicle with ethylene fuel at ground test conditions corresponding to flight Mach number, altitude and stagnation enthalpy of 6.0, 30 km and 1.61 MJ/kg respectively. Three dimensional RANS equations are solved along with species transport equations and SST-kω turbulence model using Commercial CFD software CFX-11. Both nonreacting (with fuel injection) and reacting flow simulations [using a single step global reaction of ethylene-air with combined combustion model (CCM)] are carried out. The computational methodology is first validated against experimental results available in the literature and the performance parameters of full scale combustor in terms of thrust, combustion efficiency and total pressure loss are estimated from the simulation results. Parametric studies are conducted to study the effect of fuel equivalence ratio on the mixing and combustion behavior of the combustor.

  19. Introducing the VRT gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Melconian, Jerry O.; Mostafa, Abdu A.; Nguyen, Hung Lee

    1990-07-01

    An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer model predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.

  20. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1976-01-01

    The alternate fuels investigation objective was to experimentally determine the impacts, if any, on exhaust emissions, performance, and durability characteristics of the hybrid and vorbix low pollution combustor concepts when operated on test fuels which simulate composition and property changes which might result from future broadened aviation turbine fuel specifications or use of synthetically derived crude feedstocks. Results of the program indicate a significant increase in CO and small NOX increase in emissions at idle for both combustor concepts, and an increase in THC for the vorbix concept. Minimal impact was observed on gaseous emissions at high power. The vorbix concept exhibited significant increase in exhaust smoke with increasing fuel aromatic content. Altitude stability was not affected for the vorbix combustor, but was substantially reduced for the hybrid concept. Severe carbon deposition was observed in both combustors following limited endurance testing with No. 2 home heat fuel. Liner temperature levels were insensitive to variations in aromatic content over the range of conditions investigated.

  1. TRW Advanced Slagging Coal Combustor Utility Demonstration

    SciTech Connect

    Not Available

    1989-01-01

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO[sub x] and SO[sub x] emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  2. Introducing the VRT gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Melconian, Jerry O.; Mostafa, Abdu A.; Nguyen, Hung Lee

    1990-01-01

    An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer model predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.

  3. Scramjet including integrated inlet and combustor

    SciTech Connect

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  4. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  5. Scramjet Combustor Characteristics at Hypervelocity Condition over Mach 10 Flight

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Komuro, T.; Sato, K.; Kodera, M.; Tanno, H.; Itoh, K.

    2009-01-01

    To investigate possibility of reduction of a scramjet combustor size without thrust performance loss, a two-dimensional constant-area combustor of a previous engine model was replaced with the one with 23% lower-height. With the application of the lower-height combustor, the pressure in the combustor becomes 50% higher and the combustor length for the optimal performance becomes 43% shorter than the original combustor. The combustion tests of the modified engine model were conducted using a large free-piston driven shock tunnel at flow conditions corresponding to the flight Mach number from 9 to 14. CFD was also applied to the engine internal flows. The results showed that the mixing and combustion heat release progress faster to the distance and the combustor performance similar to that of the previous engine was obtained with the modified engine. The reduction of the combustor size without the thrust performance loss is successfully achieved by applying the lower-height combustor.

  6. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996

    SciTech Connect

    Zauderer, B.

    1996-11-01

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

  7. B&W IR-CFB: Operating Experience and New Developments

    NASA Astrophysics Data System (ADS)

    Maryamchik, M.; Wietzke, D. L.

    The paper provides an update on B&W Internal Recirculation (IR) CFB boiler operating experience, new commercial projects, and developments in boiler design and process. Availability data for two projects in the U.S. will be presented, as well as data collected from two additional projects by a B&W licensee in India. Two new commercial projects are currently going through commissioning. Yet another unit, Great River Energy (being erected), is described in detail. To achieve the required amount of in-furnace heat absorption in higher capacity CFB boilers, a new B&W development is its patented in-bed heat exchanger (IBHX). The IBHX allows control of the bed temperature in the furnace as well as steam temperature in the superheater and reheater surfaces, thus accommodating higher capacities.

  8. Rolling contact mounting arrangement for a ceramic combustor

    DOEpatents

    Boyd, Gary L.; Shaffer, James E.

    1995-01-01

    A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components.

  9. Rolling contact mounting arrangement for a ceramic combustor

    DOEpatents

    Boyd, G.L.; Shaffer, J.E.

    1995-10-17

    A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components. 3 figs.

  10. Experimental Clean Combustor Program (ECCP), phase 3. [commercial aircraft turbofan engine tests with double annular combustor

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A double annular advanced technology combustor with low pollutant emission levels was evaluated in a series of CF6-50 engine tests. Engine lightoff was readily obtained and no difficulties were encountered with combustor staging. Engine acceleration and deceleration were smooth, responsive and essentially the same as those obtainable with the CF6-50 combustor. The emission reductions obtained in carbon monoxide, hydrocarbons, and nitrogen oxide levels were 55, 95, and 30 percent, respectively, at an idle power setting of 3.3 percent of takeoff power on an EPA parameter basis. Acceptable smoke levels were also obtained. The exit temperature distribution of the combustor was found to be its major performance deficiency. In all other important combustion system performance aspects, the combustor was found to be generally satisfactory.

  11. Development of the first demonstration CFB boiler for gas and steam cogeneration

    SciTech Connect

    Fang, M; Luo, Z.; Li, X.; Wang, Q.; Shi, Z.; Ni, M.; Cen, K.

    1997-12-31

    To solve the shortage of gas and steam supply in the small towns of the country, a new gas steam cogeneration system has been developed. On the basis of the fundamental research on the system, a demonstration gas steam cogeneration system has been designed. As the phase 1 of the project, a 75t/h demonstration CFB boiler for gas steam cogeneration has been erected and operated at Yangzhong Thermal Power Plant of China. This paper introduces the first 75t/h demonstration CFB boiler for gas steam cogeneration. Due to the need of gas steam cogeneration process, the boiler has the features of high temperature cyclone separation, high solid recycle ratio, staged combustion and an external heat exchanger adjusting bed temperature and heat load. The operation results show that the boiler has wide fuel adaptability and the heating value of the coal changes from 14MJ/Kg to 25MJ/Kg. The heat load changes from 85t/h to 28t/h while steam parameter is maintained at the normal conditions. The combustion efficiency of the boiler attain 98%. The boiler design and operation experiences may be a guide to the design and operation of larger CFB units in the future.

  12. Neijiang Power Plant -- Experiences with the largest CFB boiler in China

    SciTech Connect

    Ye Shenshou; Hotta, A.

    1997-12-31

    The 100 MWe Neijiang Thermal Power Plant owned by Sichuan Electric Power Administration (SEPA) started operation in June 1996. The power plant is equipped with Foster Wheeler CFB Boiler, which is designed to produce 114 kg/s of superheated steam at 98 bar pressure and 540 C temperature. The local Sichuan anthracite coal, which is burned in the boiler, features high ash and high sulphur content and has been difficult to burn in some PC or stoker fired boilers. The new CFB boiler has proven to be very suitable for this coal and large turn-down ratio and good load following capability have been achieved. The Neijiang CFB boiler has demonstrated that the stringent emission levels could be easily achieved with good overall economy. The construction of the project, which was done in a tight schedule jointly with Foster Wheeler and SEPA in close and excellent cooperation, is described in this paper in addition to some technical details of the power plant. Also the observations made during the commissioning as well as the performance data are presented.

  13. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  14. An efficient liner cooling scheme for advanced small gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.

    1993-01-01

    A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.

  15. Investigation of swirling flow mixing for application in an MHD pulverized coal combustor using isothermal modeling

    SciTech Connect

    Power, W. H.

    1980-05-01

    The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.

  16. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    The present status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP)1 for current-generation (N) turbofan engines is summarized. Several semi-empirical models for turbofan combustor noise are discussed, including best methods for near-term updates to ANOPP. An alternate turbine-transmission factor2 will appear as a user selectable option in the combustor-noise module GECOR in the next release. The three-spectrum model proposed by Stone et al.3 for GE turbofan-engine combustor noise is discussed and compared with ANOPP predictions for several relevant cases. Based on the results presented herein and in their report,3 it is recommended that the application of this fully empirical combustor-noise prediction method be limited to situations involving only General-Electric turbofan engines. Long-term needs and challenges for the N+1 through N+3 time frame are discussed. Because the impact of other propulsion-noise sources continues to be reduced due to turbofan design trends, advances in noise-mitigation techniques, and expected aircraft configuration changes, the relative importance of core noise is expected to greatly increase in the future. The noise-source structure in the combustor, including the indirect one, and the effects of the propagation path through the engine and exhaust nozzle need to be better understood. In particular, the acoustic consequences of the expected trends toward smaller, highly efficient gas-generator cores and low-emission fuel-flexible combustors need to be fully investigated since future designs are quite likely to fall outside of the parameter space of existing (semi-empirical) prediction tools.

  17. Two-stage combustion for reducing pollutant emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.; Lewis, D. H.

    1981-01-01

    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  18. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC)

    SciTech Connect

    Dr. Seong W. Lee

    1998-10-01

    The objective of this project is to predict the heat transfer and combustion performance in newly-designed fluidized bed combustor (FBC) and to provide the design guide lines and innovative concept for small-scale boiler and furnace. The major accomplishments are summarized.

  19. Development of pressurized coal partial combustor

    SciTech Connect

    Yoshida, K.; Ino, T.; Yamamoto, T.; Kimura, N.

    1995-12-31

    The integrated gasification combined cycle (IGCC), an environment-friendly power generation system of high thermal efficiency, is being developed via various approaches around the world. The oxygen-blown entrained flow gasification process is a relatively simple method of producing medium calorie coal gas suitable for application to gas turbines. Various systems for this process have been developed to a demonstration level in Europe and America. Japan has actively been developing the air-blown process. However, taking stable molten slag discharge into consideration, coal must be supplied at two stages to raise the combustor temperature in ash molten part. Only two reports have been presented regarding two-stage coal supply. One is the report on an experiment with the Hycol gasifier, in which air feed ratio is varied, with coal feed fixed. The other is report on a simulation study with various gasifier coal feed ratios, conducted at Central Research Institute of Electric Power Industry. It seems that the appropriate feed ratio has not yet been established. Through this activity, a unique furnace construction has been established, and these influences of stoichiometric air ratio, of oxygen enrichment, of char recycling and of coal types on performance have been clarified. The purpose of the present study is to apply this developed CPC techniques to a Pressurized CPC (PCPC), thereby improving the IGCC technology. For the present study, we conducted systematic experiments on the air-blown process with a two stage dry feed system, using a 7 t/d-coal bench scale PCPC test facility, operated at the pressure of 0.4 MPa, and clarified the influence of coal feed ratio on coal gasification performance. This report describes the above-mentioned bench scale test procedures and results, and also some informations about a plan of a 25 t/d-coal pilot test system.

  20. Combustor bulkhead heat shield assembly

    SciTech Connect

    Zeisser, M.H.

    1990-06-19

    This paper describes a gas turbine engine having an annular combustion chamber defined by an annular, inner liner, a concentric outer liner, and an upstream annular combustor head, wherein the head includes a radially extending bulkhead having circumferentially distributed openings for each receiving an individual fuel nozzle therethrough. It comprises: a segmented heat shield assembly, disposed between the combustion chamber interior and the bulkhead, including generally planar, sector shaped heat shields, each shield abutting circumferentially with two next adjacent shields and extending radially from proximate the inner liner to proximate the outer liner, the plurality of shields collectively defining an annular protective barrier, and wherein each sector shaped shield further includes an opening, corresponding to one of the bulkhead nozzle openings for likewise receiving the corresponding nozzle therethrough, the shield opening further including an annular lip extending toward the bulkhead and being received within the bulkhead opening, raised ridges on the shield backside, the ridges contacting the facing bulkhead surface and defining a flow path for a flow of cooling air issuing from a sized supply opening disposed in the bulkhead, the flow path running ultimately from adjacent the annular lip to the edges of each shield segment, wherein the raised edges extend fully along the lateral, circumferentially spaced edges of each shield segment and about the adjacent shield segments wherein the raised ridges further extend circumferentially between the annular lip and the abutting edge ridges.

  1. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    SciTech Connect

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  2. Economical Comporison PC and CFB Boilers for Retrofit and New Power Plants in Russia

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.

    According to the investment programmes of Russian electricity generating companies increased attention is paid to reconstruction and building new coal TPP. The typical projects are 225, 330 and 600 MW blocks for combustion of different domestic coals. VTI had made technical and economical comparison of CFB and PC boilers for existing and perspective (European) standards of particles, NOx and SOx emissions, according to the data of the prehminary designs and investments in new power plants of 225 and 330 MW. As the basis for technical and economical evaluations was used comparison data of metal-capacity of PC and boilers, emissions-control systems and material-handling systems, with paying attention to the exact suggestions of the boiler producers. The results of the comparisons (capital costs and O&M costs) are discussed in the paper. The most perspective fuels for combustion in CFB boilers are: anthracite culm, coals of the Pechora area, lean coals of Kuznetsk, brown coals of near Moscow, brown coals of Urals and Far East, and also the wastes of coal preparations, peat, shells and biomass. A good composition could be made from Kuznetsk coals and coals of Pechora area. Brown coals are combusted very good in suitable conditions for firing biomass and peat. Also allowed co-combustion with the wastes of coal preparations for the low reactivity fuels such as anthracite culm and lean coals. The diversification of the fuel supply is an essential advantage of CFB boilers. The CFB boiler installations are rather new for the conditions of Russian Federation. For decreasing the technical risks, first installations should be supplied by engineering or license of leading foreign companies with rather big part of their participation. One of important tasks is development of the typical projects, which would allow decreasing not only capital costs, but also decrease time of project realization. The project of the new Block #9 330MW with OTU boiler of Novocherkassk TPP is the

  3. Experimental clean combustor program, alternate fuels addendum, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1976-01-01

    The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.

  4. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  5. Dish stirling solar receiver combustor test program

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  6. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  7. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MILDTL- 83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 F (533 K), 125 psia (0.86 MPa) at 625 F (603 K), 175 psia (1.21 MPa) at 725 F (658 K), and 225 psia (1.55 MPa) at 790 F (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% delta P) for fuel: air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life.

  8. Combustor development for automotive gas turbines

    SciTech Connect

    Ross, P.T.; Anderson, D.N.; Williams, J.R.

    1983-09-01

    This paper describes the development of a combustion system for the AGT 100 automotive gas turbine engine. The AGT 100 is a 100 hp engine being developed by Detroit Diesel Allison Division of General Motors Corporation. To achieve optimum fuel economy, the AGT 100 engine operates on a regenerative cycle. A maximum turbine inlet temperature of 1288/sup 0/C (2350/sup 0/F) is reached, and air is supplied to the inlet of the combustor at temperatures as high as 1024/sup 0/C (1875/sup 0/F). To meet the low-emission and high-durability requirements at these conditions, a premix/prevaporization ceramic combustor employing variable geometry to control the temperature in the burning zone has been developed. A test section capable of handling 1024/sup 0/C (1875/sup 0/F) inlet air was designed and fabricated to evaluate this combustor. Testing of both metal (transpiration cooled) and ceramic combustors was conducted. Emissions were measured and found to be a function of burner inlet temperature. At 999/sup 0/C (1830/sup 0/F) burner inlet temperature, NO /SUB x/ emissions were two orders of magnitude below the program goals. At the same temperature but at a different variable-geometry position, the CO was 30 times below the program goal. Considerable testing was conducted to evaluate the behavior of the ceramic materials used in the combustor. No failures occurred during steady-state operation; however, some cracks developed in the dome during extended transient operation.

  9. LDV measurements in an annular combustor model

    NASA Astrophysics Data System (ADS)

    Barron, Dean A.

    1986-08-01

    The design and setup of a Laser Doppler Velocimeter (LDV) system used to take velocity measurements in an annular combustor model are covered. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. The LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.

  10. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  11. Combustor development for automotive gas turbines

    NASA Technical Reports Server (NTRS)

    Ross, P. T.; Williams, J. R.; Anderson, D. N.

    1982-01-01

    The development of a combustion system for the AGT 100 automotive gas turbine engine is described. A maximum turbine inlet temperature of 1288 C is reached during the regenerative cycle, and air up to 1024 C is supplied to the combustor inlet. A premix/prevaporization ceramic combustor employing variable geometry to control burning zone temperature was developed and tested. Tests on both metal and ceramic combustors showed that emissions were a function of burner inlet temperature (BIT). At 999 C BIT, NO(x) emissions were two orders of magnitude below program goals, and at the same temperature but at a different variable geometry position, the CO was 30 times below program goal. Tests to evaluate the durability of the ceramic materials showed no failures during steady-state operation; however, some cracks developed in the dome during extended transient operation.

  12. Flow establishment in a generic scramjet combustor

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.; Rogers, R. C.; Weidner, E. H.; Bittner, R. D.

    1990-01-01

    The establishment of a quasi-steady flow in a generic scramjet combustor was studied for the case of a time varying inflow to the combustor. Such transient flow is characteristic of the reflected shock tunnel and expansion tube test facilities. Several numerical simulations of hypervelocity flow through a straight duct combustor with either a side wall step fuel injector or a centrally located strut injector are presented. Comparisons were made between impulsively started but otherwise constant flow conditions (typical of the expansion tube or tailored operations of the reflected shock tunnel) and the relaxing flow produced by the 'undertailored' operations of the reflected shock tunnel. Generally the inviscid flow features, such as the shock pattern and pressure distribution, were unaffected by the time varying inlet conditions and approached steady state in approx. the times indicated by experimental correlations. However, viscous features, such as heat transfer and skin friction, were altered by the relaxing inlet flow conditions.

  13. LDV Measurements in an Annular Combustor Model

    NASA Technical Reports Server (NTRS)

    Barron, Dean A.

    1996-01-01

    This thesis covers the design and setup of a laser doppler velocimeter (LDV) system used to take velocity measurements in an annular combustor model. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.

  14. Optical Detection Of Flameout In A Combustor

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; West, James W.; Harper, Samuel E.; Alderfer, David W.; Lawrence, Robert M.

    1994-01-01

    Fuel supply shut down in time to prevent explosion. Optical flameout detector designed to signal control system of facility to cut off supply of fuel into combustion chamber if flame goes out. Combustor which optical flameout detector designed burns methane in air to provide hot gases for 8-ft high-temperature test chamber. Acoustical flameout detector for same combustor described in "Acoustical Detection of Flameout in Combustor" (LAR-14900). Fiber optic probes mounted to fuel-spray bar upstream of flame. No focusing optics used, and probes aimed across flow of gases at spot on combustion chamber wall downstream from spray bar. Arrangement enables flameout detection system to respond quickly to potential loss of flame since it detects movement of flame front away from spray bar face. Overall response time of detection system under 10 milliseconds.

  15. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2015-04-28

    A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.

  16. Preliminary calibration of a generic scramjet combustor

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.; Morgan, R. G.; Rogers, R. C.; Wendt, M.; Brescianini, C.; Paull, A.; Kelly, G.

    1991-01-01

    The results of a preliminary investigation of the combustion of hydrogen fuel at hypersonic flow conditions are provided. The tests were performed in a generic, constant-area combustor model with test gas supplied by a free-piston-driven reflected-shock tunnel. Static pressure measurements along the combustor wall indicated that burning did occur for combustor inlet conditions of P(static) approximately equal to 19kPa, T(static) approximately equal to 1080 K, and U approximately equal to 3630 m/s with a fuel equivalence ratio approximately equal to 0.9. These inlet conditions were obtained by operating the tunnel with stagnation enthalpy approximately equal to 8.1 MJ/kg, stagnation pressure approximately equal to 52 MPa, and a contoured nozzle with a nominal exit Mach number of 5.5.

  17. Fabrication of strain-isolated ceramic coated combustor components

    NASA Technical Reports Server (NTRS)

    Rutter, S.

    1985-01-01

    The use of strain-isolated ceramic coated material to produce an AGT1500 combustor scroll-shaped transition duct which requires no air for film cooling is investigated. The scroll receives the exhaust of the can-style combustor liner and turns it into the annular inlet of the high pressure gas producer turbine nozzle. Strain-isolation of plasma sprayed thermal barrier coating is achieved by placing a compliant pad between the structural base metal and the ceramic coating. The compliant pad is brazed to the metal structure. In order to achieve a good braze bond, the strain-isolating compliant pad and base metal must be closely matched in shape and tightly fixtured for joining. The complex geometry of the AGT1500 scroll makes it impractical to attack pads to the supporting structure in its finished shape. Instead the pads are brazed to flat stock and post-formed into scroll sections. While test samples were successfully post-formed, plasma sprayed, and subjected to cyclic heating, the forming of full scale parts by normal methods resulted in tearing of the Hastelloy-X base metal because of embrittlement by the braze material. Several solutions were explored which finally resulted in the successful forming of full scale scroll parts.

  18. Ground idle performance improvement of a double-annular combustor by using simulated variable combustor geometry

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1975-01-01

    A test program was undertaken to determine if variable combustor geometry could be used to reduce exhaust emissions of a low-pressure-ratio jet engine operating at ground idle conditions. Three techniques for varying combustor geometry were simulated. Other techniques evaluated were radial fuel staging and the use of preheated fuel. When simulated variable combustor geometry was employed with radial fuel staging, combustion efficiency at a fuel-air ratio of 0.01 was increased from 77 to 95 percent, and exhaust emissions of unburned hydrocarbons and carbon monoxide were significantly reduced.

  19. Development of a retrofit coal combustor for industrial applications, (Phase 2)

    SciTech Connect

    Not Available

    1989-07-01

    The objective of Phase I of the program for the development of a retrofit pulse coal combustor for industrial applications was to design, fabricate, test and evaluate advanced chamber designs at the laboratory-scale utilizing several fuels (Task 1). The activities were structured to provide design criteria for scaling up to the pilot-scale level for the demonstration of a pulse combustor fired with coal-water mixtures for industrial boiler and process heater retrofit applications. The design data and information acquired during Task 1 of the initial phase was to develop scale-up design criteria for scaling the laboratory-scale design to pilot-scale including interface requirements for the field demonstration. The scale-up pilot unit design was to be sufficiently developed to allow fabrication of the unit for testing in the existing test facility upon DOE exercising its option for the follow-on activities of this program. These follow-on activities (Phase II) included the fabrication, test, and engineering evaluation of the pilot-scale combustor as well as technical and laboratory test support activities for reducing the technical risks and costs of development at the pilot-scale. Based on the information, test, data and technical support activities, a retrofit combustor system was to be designed for field demonstration. An additional effort was added to the contract by modification A005. This modification added a Phase IA in place of the original Task 2 of Phase I activity. This interim phase consisted of three technical tasks described in previous quarterly reports. Phase II was initiated in April 1989.

  20. Experiment of rocket-ram annular combustor

    NASA Astrophysics Data System (ADS)

    Yatsuyanagi, N.; Sakamoto, H.; Sato, K.; Ono, F.; Sasaki, M.; Takahashi, M.

    In this experiment, the double-nozzle type of rocket-ram annular combustor with a total thrust of 5kN was designed and tested with varying ratios of thrust produced by rocket and ram. Thrust and pressure distribution along the common expansion nozzle, i.e., the ram combustor nozzle, were measured to investigate the effect of interaction of the two expansion gases on thrust. Enhancement of specific impulse was verified by the experiments. That is, the specific impulse gains in rocket-ram parallel operation, the ratio of rocket thrust to ram thrust being 50 to 50, were found to be 190 percent of gains in pure rocket operation.

  1. Combustion characteristics of a double swirling combustor

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi; Gao, Ge; Ning, Huang

    1991-01-01

    The combustion characteristics at atmospheric pressure for a coaxial double swirler combustor have been investigated. The results show that its combustion performances can be significantly improved by increasing properly swirl number for the inner swirler, as outer and inner flows are counterrotating. The annular recirculation zone is a good source for flame stabilization, which is a important factor for extending the weak extinction limit. The temperature distribution at the exit section of the combustor can be controlled by varying fuel-air ratio of outer and inner swirling flows.

  2. Predicting and Preventing Incipient Flameout in Combustors

    NASA Technical Reports Server (NTRS)

    Puster, Richard Lee

    2003-01-01

    A method of predicting and preventing incipient flameout in a combustor has been proposed. The method should be applicable to a variety of liquid- and gas-fueled combustors in furnaces and turbine engines. Until now, there have been methods of detecting flameouts after they have occurred, but there has been no way of predicting incipient flameouts and, hence, no way of acting in time to prevent them. Prevention of flameout could not only prevent damage to equipment but, in the case of aircraft turbine engines, could also save lives.

  3. Low NO.sub.x combustor

    DOEpatents

    Taylor, Jack R.

    1987-01-01

    A combustor having an annular first stage, a generally cylindrically-shaped second stage, and an annular conduit communicably connecting the first and second stages. The conduit has a relatively small annular height and a large number of quench holes in the walls thereof such that quench air injected into the conduit through the quench holes will mix rapidly with, or quench, the combustion gases flowing through the conduit. The rapid quenching reduces the amount of NO.sub.x produced in the combustor.

  4. Micro-combustor for gas turbine engine

    DOEpatents

    Martin, Scott M.

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  5. Laser diagnostics on a hypersonic combustor

    SciTech Connect

    Taylor, D.J.; Oldenborg, R.C.; Tiee, J.J.; Northam, G.B.; Antcliff, R.R.; Cutler, A.D.; Jarrett, O.; Smith, M.W. NASA, Langley Research Center, Hampton, VA )

    1991-01-01

    NASA-Langley has implemented a laser-based multipoint/multiparameter diagnostics system at its hypersonic direct-connect combustor, in order to measure both temperature and majority species densities in two dimensions, using spatially-scanned CARS; in addition, line-imaged measurements of radical densities are simultaneously generated by LIF at any of several planes downstream of the fuel injector. Initial experimental trials have demonstrated successful detection of one-dimensional images of OH density, as well as CARS N2-temperature measurements, in the turbulent reaction zone of the hypersonic combustor.

  6. A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting. Final report

    SciTech Connect

    Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

    1992-07-01

    The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

  7. Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor

    SciTech Connect

    Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

    1996-12-31

    General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

  8. Experimental Assessment of the Emissions Control Potential of a Rich/Quench/ Lean Combustor for High Speed Civil Transport Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R. (Technical Monitor); Rosfjord, T. J.; Padget, F. C.

    2001-01-01

    In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of an HSCT engine cycle. Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NO(x). The spatial profiles of NO(x) and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NO(x). Based on this study, it was also concluded that: (1) While NO(x) formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NO(x) exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve

  9. Experimental Assessment of the Emissions Control Potential of a Rich/Quench/Lean Combustor for High Speed Civil Transport Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Padget, F. C.; Tacina, Robert R. (Technical Monitor)

    2001-01-01

    In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of a HSCT engine cycle, Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NOx. The spatial profiles of NOx and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NOx. Based on this study, it was also concluded that (1) While NOx formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NOx exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and

  10. Predictive models of circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  11. System and method for controlling a combustor assembly

    DOEpatents

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  12. Simulated Altitude Performance of Combustors for the 24C Jet Engine. 2; 24C-4 Combustor

    NASA Technical Reports Server (NTRS)

    Bernardo, Everett; Schroeter, Thomas T.; Miller, Robert C.

    1947-01-01

    The performance of a 24C-4 combustor was investigated with three different combustor baskets and five modifications of these baskets at conditions simulating static (zero-ram) operation of the 24C jet engine over ranges of altitude and engine speed to determine and improve the altitude operational limits of the 24C combustor. Information was also obtained regarding combustion characteristics, the fuel-flow characteristics of the fuel manifolds, and the combustor total-pressure drop. NACA modifications, which consisted of blocking rows of holes on the baskets, increased the minimum point on the altitude-operational-limit curve, which occurs at low engine speeds, for a narrow-upstream-end basket by 8000 feet (from 23, 000 to 31,000 ft_ and for a wide-upstream-end basket by 21,000 feet (from 12, 000 to 34,000 ft). These improvements were approximately maintained over the entire range of engine speeds investigated.

  13. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  14. Effect of bed pressure drop on performance of a CFB boiler

    SciTech Connect

    Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu

    2009-05-15

    The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

  15. Combustor for a low-emissions gas turbine engine

    DOEpatents

    Glezer, Boris; Greenwood, Stuart A.; Dutta, Partha; Moon, Hee-Koo

    2000-01-01

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  16. Active Control of High-Frequency Combustor Instability Demonstrated

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  17. 250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994

    SciTech Connect

    1995-02-01

    This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

  18. Steam Reformer With Fibrous Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  19. Stably operating pulse combustor and method

    DOEpatents

    Zinn, Ben T.; Reiner, David

    1990-01-01

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  20. Stably operating pulse combustor and method

    DOEpatents

    Zinn, B.T.; Reiner, D.

    1990-05-29

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  1. Flashback Arrestor for LPP, Low NOx Combustors

    NASA Technical Reports Server (NTRS)

    Kraemer, Gil; Lee, Chi-Ming

    1998-01-01

    Lean premixed, prevaporized (LPP) high temperature combustor designs as explored for the Advanced Subsonic Transport (AST) and High Speed Civil Transport (HSCT) combustors can achieve low NO(x), emission levels. An enabling device is needed to arrest flashback and inhibit preignition at high power conditions and during transients (surge and rapid spool down). A novel flashback arrestor design has demonstrated the ability to arrest flashback and inhibit preignition in a 4.6 cm diameter tubular reactor at full power inlet temperatures (725 C) using Jet-A fuel at 0.4 less than or equal To phi less than or equal to 3.5. Several low pressure loss (0.2 to 0.4% at 30 m/s) flashback arrestor designs were developed which arrested flashback at all of the test conditions. Flame holding was also inhibited off the flash arrestor face or within the downstream tube even velocities (less than or equal to 3 to 6 m/s), thus protecting the flashback arrestor and combustor components. Upstream flow conditions influence the specific configuration based on using either a 45% or 76% upstream geometric blockage. Stationary, lean premixed dry low NO(x) gas turbine combustors would also benefit from this low pressure drop flashback arrestor design which can be easily integrated into new and existing designs.

  2. FEASIBILITY OF BURNING COAL IN CATALYTIC COMBUSTORS

    EPA Science Inventory

    The report gives results of a study, showing that pulverized coal can be burned in a catalytic combustor. Pulverized coal combustion in catalytic beds is markedly different from gaseous fuel combustion. Gas combustion gives uniform bed temperatures and reaction rates over the ent...

  3. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  4. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Lecren, R. T.; Batakis, A. P.

    1981-01-01

    A total of twelve low NOx combustor configurations, embodying three different combustion concepts, were designed and fabricated as modular units. These configurations were evaluated experimentally for exhaust emission levels and for mechanical integrity. Emissions data were obtained in depth on two of the configurations.

  5. Association of the C2-CFB locus with non-infectious uveitis, specifically predisposed to Vogt-Koyanagi-Harada disease.

    PubMed

    Yang, Mingming; Fan, Jiao-jie; Wang, Jun; Zhao, Yan; Teng, Yan; Liu, Ping

    2016-04-01

    Complement component 2 (C2) and factor B (CFB) are regulators of complement system and involved in the alternative pathway, which have been identified to be associated with multiple immune-related diseases. This study aimed to investigate the association of these genes with non-infectious intermediate and posterior uveitis. A total of 260 Chinese non-infectious uveitis patients were recruited, including 97 patients with Vogt-Koyanagi-Harada disease (VKH), 70 patients with intermediate uveitis (IU) and 93 patients with Behçet's disease (BD). Two hundred and ninety-three normal control subjects were also recruited. Five SNPs across the C2/CFB region were selected and genotyped using TaqMan SNP Genotyping Assays. Association analysis was adjusted for gender and stratified by different subtypes. The CFB SNP rs1048709 was significantly associated with non-infectious uveitis [P corr = 0.01, OR 1.49 (allele model) and P corr = 0.04, OR 1.58 (dominant model), respectively], and similar association was also detected between rs1048709 and female uveitis patients (P corr = 0.01, OR 1.70 and P corr = 0.049, OR 184, respectively). Moreover, subgroup analyses showed that CFB-rs1048709 was specifically associated with VKH, where significantly higher frequencies of A allele and AA homozygosity were observed in VKH patients compared with controls (P corr = 0.025 and P corr = 0.035, respectively), whereas none of these five SNPs was associated with IU or BD. In addition, a haplotype block across CFB (GTG) was significantly predisposed to uveitis with protective effect (OR 0.66, P corr = 0.048). Our results revealed a significant association of CFB with non-infectious uveitis, particularly predisposed to VKH disease. Genetic differences for uveitis could be gender-specific. PMID:26671509

  6. Evaluation of fuel preparation systems for lean premixing- prevaporizing combustors

    SciTech Connect

    Dodds, W.J.; Ekstedt, .E.E.

    1986-04-01

    A series of tests was conducted to provide data for the design of premixing-prevaporizing fuel-air mixture preparation systems for aircraft gas turbine engine combustors. Fifteen configurations of four different fuel-air mixture preparation system design concepts were evaluated to determine fuel-air mixture uniformity at the system exit over a range of conditions representative of cruise operation for a modern commercial turbofan engine. Operating conditions, including pressure, temperature, fuel-air ratio and velocity had no clear effect on mixture uniformity in systems which used low-pressure fuel injectors. However, performance of systems using pressure atomizing fuel nozzles and large-scale mixing devices was shown to be sensitive to operating conditions. Variations in system design variables were also evaluated and correlated. Mixture uniformity improved with increased system length, pressure drop, and number of fuel injection points per unit area. A premixing system compatible with the combustor envelope of a typical combustion system and capable of providing mixture nonuniformity (standard deviation/mean) below 15% over a typical range of cruise operating conditions was demonstrated.

  7. NYU-DOE Pressurized Fluidized Bed Combustor Facility

    SciTech Connect

    Zakkay, V.; Kolar, A.; Sellakumar, K.; Srinivasaragavan, S.; Miller, G.; Panunzio, S.; Joseph, A.; Sundaresan, C.

    1983-01-01

    New York University (NYU), under a Department of Energy (DOE) Contract, has designed and constructed a sub-pilot scale Pressurized Fluidized-Bed Combustor (PFBC) Facility at the Antonio Ferri Laboratories, Westbury, Long Island. The basic feature of this Experimental Research Facility is a well-instrumented, 30-inch diameter coal combustor capable of operating up to 10 atm and provided with a liberal number of ports, making it a versatile unit for study of fundamental in-bed phenomena. Additionally, the overall design features make it a flexible facility for solving a variety of industrial research problems. The main objectives of the facility are two-fold: (1) to perform research in important areas of Pressurized Fluidized-Bed Combustion like low-grade fuel combustion under pressure; and (2) to provide the PFBC community with a experimental research tool for basic and applied research in order to accelerate the commercialization of this technology. New York University will initially test the facility of burning low-grade fuels under pressure. During the test program, emphasis will be placed on burning North Dakota lignite under pressures up to 7 atm. The performance of lignite with regard to its feeding, combustion efficiency, sulfur adsorption and sorbent requirements will be investigated. This report describes the various systems of the PFBC facility and operating procedures, and presents an outline of the test program planned for the facility. Other details are provided in the Equipment and Maintenance Manual, Test Program and Data Acquisition Manual, and Training Manual.

  8. Modeling the performance of the whole tree energy combustor

    SciTech Connect

    Bryden, K.M.; Ragland, K.W.; Ostlie, L.D.

    1994-12-31

    A computational model has been developed for the deep, fixed bed whole-tree combustor/gasifier which includes drying, pyrolysis, heat and mass transfer, char and volatile reactions. The lowest portion of the fuel bed is an oxidizing region and the remainder of the fuel bed acts as a gasification and drying region. Heat release rates, temperature profiles, CO, CO{sub 2}, H{sub 2}O, hydrocarbon, and O{sub 2} profiles, and solid and gas velocity profiles are calculated as a function of the fuel properties and air inputs. Model results are compared to pilot scale tests of the whole-tree combustor/gasifier. The effect of operating parameters such as underfire air flow (2-12 ft/s), fuel moisture content (15-45%), and fuel bed height (8-16 ft) on the fuel feed rate, heat release rate, temperature and velocity profiles, and overfire air requirements is presented and discussed. Heat release rates range from 1x10{sup 6} to 4.5x10{sup 6} Btu/hr-ft{sup 2} depending on the conditions.

  9. Influence of air-staging on the concentration profiles of NH{sub 3} and HCN in the combustion chamber of a CFB boiler burning coal

    SciTech Connect

    Kassman, H.; Karlsson, M.; Aamand, L.E.

    1999-07-01

    The characterization of the concentration profiles of NH{sub 3} and HCN are of great importance for increasing the knowledge of the formation and destruction pathways of NO and N{sub 2}O in a fluidized bed boiler. Further improvements of the sampling methods for the determination of both NH{sub 3} and HCN in the combustion chamber in full-scale CFB boilers are also needed. A gas-sampling probe connected to a Fourier Transform Infrared (FTIR) instrument and a gas-quenching (GQ) probe in which the sample is quenched directly in the probe tip by a circulating trapper solution were used. The FTIR technique is based on analysis of hot combustion gases, whereas the trapper solutions from the GQ probe were analyzed by means of wet chemistry. The tests were performed during coal combustion in a 12 MW CFB boiler, which was operated at three air-staging cases with the addition of limestone for sulfur capture. The concentration profiles of NH{sub 3} and HCN in the combustion chamber showed a different pattern concerning the influence of air-staging. The highest levels of NH{sub 3} were observed during reducing condition (severe air-staging), and the lowest were found under oxidizing conditions (no air-staging). The levels of HCN were much lower than those measured for NH{sub 3}. The highest levels of HCN were observed for reversed air-staging and severe air-staging showed almost no HCN. The potential reactors involving NH{sub 3} and HCN in the combustion chamber as well as the potential measurement errors in each sampling technique are discussed for the three air-staging cases.

  10. Advanced Refractory and Anti-Wearing Technology of Cyclone Separator in CFB Boiler

    NASA Astrophysics Data System (ADS)

    Chen, H. P.; Shen, Y. Q.; Wang, X. H.; Dai, X. M.; Xue, H. Y.; Liu, D. C.

    The circulating fluidized bed is playing more and more vital role in the electric power field. Cyclone separator as the heart of the circulating fluidized bed combustion boiler, the technology of fire-resistant anti-wear layer in cyclone separator is the guarantee for the long-life and working safety of CFB unit. Based on the comparison of insulation-cyclone and water-cooled cyclone, a novel technology of Anchor bricks use in the cyclone separator was put forward. The temperature of Anchor brick surface is just 80˜90°C, much lower than conventional technology. The problems caused by conventional Y-shaped hook welding were overcome, such as fire-resistant anti-wear layer burned, fire-resistant anti-wear layer rupture, the high temperature of separator's surface, a large number of heat dissipation and etc. Simultaneously, three types of Anchor brick were designed for the different parts of cyclone. It was applied successfully in Thermal Power Plant in Shaoguan Iron and Steel Company. The life time and the operation cycle of the fire-resistant anti-wear layer of the cyclone were prolonged, and the number of boiler off was reduced greatly. Hence, the continuous operation time of boiler was extended. It played a key role in improving the overall economic efficiency of power plant. It is great for the utilization and development of CFB technology.

  11. The heat transfer coefficients of the heating surface of 300 MWe CFB boiler

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Zhang, Man; Lu, Qinggang; Sun, Yunkai

    2012-08-01

    A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The heat transfer coefficients of the platen heating surface, the external heat exchanger (EHE) and cyclone separator were calculated according to the relative operation data at different boiler loads. Moreover, the heat transfer coefficient of the waterwall was calculated by heat balance of the hot circuit of the CFB boiler. With the boiler capacity increasing, the heat transfer coefficients of these heating surface increases, and the heat transfer coefficient of the water wall is higher than that of the platen heating surface. The heat transfer coefficient of the EHE is the highest in high boiler load, the heat transfer coefficient of the cyclone separator is the lowest. Because the fired coal is different from the design coal in No.1 boiler, the ash content of the fired coal is much lower than that of the design coal. The heat transfer coefficients which calculated with the operation data are lower than the previous design value and that is the reason why the bed temperature is rather high during the boiler operation in No.1 boiler.

  12. Low SO2 emission from CFB co-firing MSW and bituminous.

    PubMed

    Lu, Qing-Gang; Li, Zhi-Wei; Na, Yong-Jie; Ba, Shao-Lin; Sun, Yun-Kai; He, Jun

    2004-01-01

    Influence of co-firing rate on SO2 emission from co-firing municipal solid waste (MSW) and bituminous containing high amount of sulfur (1.79%) was studied in a 0.15 MWt circulating fluidized bed (CFB). The temperature selected is 1123 K, typical for MSW incineration using CFB. The particle concentration in the dilution zone of the furnace, the alkali metal concentration and sulfate concentration in the recirculating ash and fly ash, and flue gas composition were determined. The results showed that the addition of MSW leads to a significant decrease in SO2 emission. Concentration of SO2 in flue gas decreased to 0 with the co-firing rate greater than 51%. This reduction in SO2 emission is attributed both to the high particle concentration in the dilution zone of the furnace, the high content of alkali metals in the bed material, and to the comparatively high concentration of HCI in flue gas during co-firing of MSW and bituminous. PMID:15559820

  13. Numerical simulations of combustion instabilities in gas turbine combustors, with applications

    NASA Astrophysics Data System (ADS)

    Swenson, Grant Douglas

    Recent advances in technology have opened up a potential market for small gas turbine power systems in the 50--100 MW range. In an effort to improve their systems, the gas-turbine industry is interested in understanding and controlling combustion instabilities as well as reducing pollutant production. To understand the dynamics inherent in a combustion system, information about the flow field behavior is required. Because of a scarcity of available experimental or numerical results for full-scale gas-turbine combustors, we decided to use numerical simulations to provide the required information about the flow field dynamics. The ability of the numerical simulations to reproduce unstable behavior in combustion environments will be presented. The investigation of the flow field dynamics has been conducted for three test cases; a planar heat source in a tube, premixed flow in a dump combustor, and premixed and diffusion flames in a full-scale gas turbine combustor. The numerically determined unsteady acoustic modes will be shown to compare well with theory and experiments. An investigation of the local heat release response to an unsteady flow field is conducted for incorporation into an approximate analysis method. The results of including a Helmholtz resonator in a dump combustor as a passive control mechanism will be presented. The production of NOx and CO will be compared between stable and unstable flow configurations. The pollutant results indicate that for the planar flame in a tube and the dump combustor, the NOx levels at the exit plane are reduced when the system is unstable.

  14. Advanced Low NOx Combustors for Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  15. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    NASA Astrophysics Data System (ADS)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  16. Systems Characterization of Combustor Instabilities With Controls Design Emphasis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    This effort performed test data analysis in order to characterize the general behavior of combustor instabilities with emphasis on controls design. The analysis is performed on data obtained from two configurations of a laboratory combustor rig and from a developmental aero-engine combustor. The study has characterized several dynamic behaviors associated with combustor instabilities. These are: frequency and phase randomness, amplitude modulations, net random phase walks, random noise, exponential growth and intra-harmonic couplings. Finally, the very cause of combustor instabilities was explored and it could be attributed to a more general source-load type impedance interaction that includes the thermo-acoustic coupling. Performing these characterizations on different combustors allows for more accurate identification of the cause of these phenomena and their effect on instability.

  17. Energy efficient engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Zeisser, M. H.; Greene, W.; Dubiel, D. J.

    1982-01-01

    The combustor for the Energy Efficient Engine is an annular, two-zone component. As designed, it either meets or exceeds all program goals for performance, safety, durability, and emissions, with the exception of oxides of nitrogen. When compared to the configuration investigated under the NASA-sponsored Experimental Clean Combustor Program, which was used as a basis for design, the Energy Efficient Engine combustor component has several technology advancements. The prediffuser section is designed with short, strutless, curved-walls to provide a uniform inlet airflow profile. Emissions control is achieved by a two-zone combustor that utilizes two types of fuel injectors to improve fuel atomization for more complete combustion. The combustor liners are a segmented configuration to meet the durability requirements at the high combustor operating pressures and temperatures. Liner cooling is accomplished with a counter-parallel FINWALL technique, which provides more effective heat transfer with less coolant.

  18. Pollution measurements of a swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.; Jones, R. E.

    1972-01-01

    Pollutant levels of oxides of nitrogen, unburned hydrocarbons, and carbon monoxide were measured for an experimental, annular, swirl can combustor. The combustor was 42 inches in diameter, incorporated 120 modules, and was specifically designed for elevated exit temperature performance. Test conditions included combustor inlet temperatures of 600, 900 and 1050 F, inlet pressures of 5 to 6 atmospheres, reference velocities of 69 to 120 feet per second and fuel-air ratios of 0.014 to 0.0695. Tests were also conducted at a simulated engine idle condition. Results demonstrated that swirl can combustors produce oxides of nitrogen levels substantially lower than conventional combustor designs. These reductions are attributed to reduced dwell times resulting from short combustor length, quick mixing of combustion gases with diluent air, and to uniform fuel distributions resulting from the swirl can approach. Radial staging of fuel at idle conditions resulted in increases in combustion efficiencies and corresponding reductions in pollutant levels.

  19. Ring connection for porous combustor wall panels

    NASA Technical Reports Server (NTRS)

    Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of unique configuration has an outer wall made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween by a reinforcing and heat dissipation ring and a unique weld configuration to prevent thermal erosion of the ends of the porous metal panels at the butt joints; the combustor further including a unique inner wall made up of a plurality of like axially extending multi-layered porous metal panels joined at butt joints by a reinforcing and heat dissipation ring on the inner surface of the inner wall panels and an improved butt weld joint that prevents thermal erosion of the ends of the porous metal inner wall panels.

  20. Development of a pressure gain combustor for improved cycle efficiency

    SciTech Connect

    Gemmen, R.S.; Richards, G.A.; Janus, M.C.

    1994-09-01

    This paper presents results from an experimental research program attempting to improve the thermodynamic efficiencies of gas-turbine combustors. An elementary thermodynamic analysis shows that the thermodynamic cycle efficiencies of gas turbines can be significantly improved by using unsteady combustion that achieves quasi-constant-volume combustion. The ability to produce the so-called pressure gain via this process has already been demonstrated by others for pressures less than 3 atmospheres. This paper presents experimental results for pressures up to 11 atmospheres, compares certain process parameters to a numerical simulation, and briefly examines the problem of scale-up. Results of pollutant measurements over the 2--11 atmospheric range of operation are also included.

  1. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  2. Fuel property effects in stirred combustors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Soot formation in strongly backmixed combustion was investigated using the jet-stirred combustor (JSC). This device provided a combustion volume in which temperature and combustion were uniform. It simulated the recirculating characteristics of the gas turbine primary zone; it was in this zone where mixture conditions were sufficiently rich to produce soot. Results indicate that the JSC allows study of soot formation in an aerodynamic situation revelant to gas turbines.

  3. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  4. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart, S.

    2012-01-01

    The current status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP) for current-generation (N) turbofan engines is summarized. Best methods for near-term updates are reviewed. Long-term needs and challenges for the N+1 through N+3 timeframe are discussed. This work was carried out under the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, Quiet Aircraft Subproject.

  5. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  6. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  7. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  8. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  9. Low NOx Fuel Flexible Combustor Integration Project Overview

    NASA Technical Reports Server (NTRS)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  10. High-temperature durability considerations for HSCT combustor

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1992-01-01

    The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics.

  11. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  12. Rapid-quench axially staged combustor

    DOEpatents

    Feitelberg, Alan S.; Schmidt, Mark Christopher; Goebel, Steven George

    1999-01-01

    A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.

  13. Low Emissions RQL Flametube Combustor Test Results

    NASA Technical Reports Server (NTRS)

    Chang, Clarence T.; Holdeman, James D.

    2001-01-01

    The overall objective of this test program was to demonstrate and evaluate the capability of the Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept for HSR applications. This test program was in support of the Pratt & Whitney and GE Aircraft Engines HSR low-NOx Combustor Program. Collaborative programs with Parker Hannifin Corporation and Textron Fuel Systems resulted in the development and testing of the high-flow low-NOx rich-burn zone fuel-to-air ratio research fuel nozzles used in this test program. Based on the results obtained in this test program, several conclusions can be made: (1) The RQL tests gave low NOx and CO emissions results at conditions corresponding to HSR cruise. (2) The Textron fuel nozzle design with optimal multiple partitioning of fuel and air circuits shows potential of providing an acceptable uniform local fuel-rich region in the rich burner. (3) For the parameters studied in this test series, the tests have shown T3 is the dominant factor in the NOx formation for RQL combustors. As T3 increases from 600 to 1100 F, EI(NOx) increases approximately three fold. (4) Factors which appear to have secondary influence on NOx formation are P4, T4, infinity(sub rb), V(sub ref,ov). (5) Low smoke numbers were measured for infinity(sub rb) of 2.0 at P4 of 120 psia.

  14. Interactions between acoustics and vortex structures in a central dump combustor

    NASA Astrophysics Data System (ADS)

    Kailasanath, K.; Gardner, J.; Boris, J.; Oran, E.

    1986-06-01

    Results are presented of numerical simulations performed to isolate and study the interaction between acoustic waves and large scale vortex structures in a central-dump ramjet combustor. A strong coupling between the acoustic modes of the chamber and large scale vortex structures is observed. The results in the early part of the calculations indicate unforced natural vortex growth near the entrance to the combustor (dump plane) at a frequency close to the acoustic frequency. With time, the acoustic modes shift the frequency of the most amplified mode near the dump plane into resonance with the acoustic mode. The location in space where the modes grow can also be shifted by acoustic forcing. An interesting feature observed in the simulations is a low frequency mode corresponding to the arrival of the merged vortex structures at the choked exit. This mode causes major changes in the merging pattern of the vortices.

  15. The present situation and tentative ideas on the improvement of 75 t/h CFB boiler in P.R. China

    SciTech Connect

    Zhu Ning

    1997-12-31

    In order to use the low grade and cheap coal, reduce the air pollution and meet the demand for process steam and district heating, quite a number of CFB boiler cogeneration power plants with a capacity of less than 50 MW have been and will be installed in China. This article makes a detailed analysis on the existing problems of China-manufactured 75 t/h CFB boilers in regard to design, manufacturing, erection, operation, auxiliary components and systems, and engineering design. Suggestions are made on the measures to solve the problems and the immediate object for the improvement of 75 t/h CFB boilers.

  16. Numerical analysis of the flows in annular slinger combustors

    NASA Astrophysics Data System (ADS)

    Huebner, S.; Exley, T.

    1990-07-01

    Improved gas-turbine combustor design techniques are developed through the application of CFD flow predictions. The conservation equations of mass, momentum, and energy are solved using the finite-volume approach of Spalding. The geometry is a three-dimensional region of cyclic symmetry for a selected annular slinger combustor of reasonable performance. The flow is assumed nonreacting, isothermal, and turbulent. Mixing of the dilution jet stream with the bulk combustor flow is simulated by assuming different inlet temperatures for the two mass sources and noting the temperature profile at the combustor exit plane. A flow visualization experiment is performed on cold flow conditions and reasonably corroborates the CFD predictions.

  17. Apparatus and method for cooling a combustor cap

    DOEpatents

    Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

    2014-04-29

    A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

  18. Controlled pilot oxidizer for a gas turbine combustor

    DOEpatents

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  19. Predicting Noise From Aircraft Turbine-Engine Combustors

    NASA Technical Reports Server (NTRS)

    Gliebe, P.; Mani, R.; Salamah, S.; Coffin, R.; Mehta, Jayesh

    2005-01-01

    COMBUSTOR and CNOISE are computer codes that predict far-field noise that originates in the combustors of modern aircraft turbine engines -- especially modern, low-gaseous-emission engines, the combustors of which sometimes generate several decibels more noise than do the combustors of older turbine engines. COMBUSTOR implements an empirical model of combustor noise derived from correlations between engine-noise data and operational and geometric parameters, and was developed from databases of measurements of acoustic emissions of engines. CNOISE implements an analytical and computational model of the propagation of combustor temperature fluctuations (hot spots) through downstream turbine stages. Such hot spots are known to give rise to far-field noise. CNOISE is expected to be helpful in determining why low-emission combustors are sometimes noisier than older ones, to provide guidance for refining the empirical correlation model embodied in the COMBUSTOR code, and to provide insight on how to vary downstream turbinestage geometry to reduce the contribution of hot spots to far-field noise.

  20. Axial-slot Air Admission for Controlling Performance of a One-quarter-annulus Turbojet Combustor and Comparison with Complete Engine

    NASA Technical Reports Server (NTRS)

    Mark, H; Mark, Herman; Zettle, Eugene V

    1952-01-01

    An investigation of a single-annulus turbojet combustor with slot-type air admission was conducted to demonstrate the application of certain design principles to the control of outlet-gas temperature distributions. Comparisons of performance of a one-quarter-annulus combustor (duct-type installation) and a full-annulus combustor (obtained in a full-scale turbojet engine) are presented to indicate the applicability of results obtained from combustion studies conducted in duct-type installations. A reasonable correlation existed between the performance of the one-quarter-annulus and full-annulus combustors except for temperature distribution. Sufficient trends did exist which made it possible to predict temperature distributions for the engine, although absolute correlation did not exist. A radial temperature distribution similar to that required for a given engine was obtained using a one-quarter-annulus duct-type setup to predict results.

  1. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Third quarterly technical progress report, April 1--June 30, 1996

    SciTech Connect

    Zauderer, B.

    1996-09-01

    The primary project objective is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor. This non-equilibrium process is a key step in the capture and retention of sulfur released during coal combustion by the interaction with calcium based sorbent particles. By encapsulating the sulfur bearing calcium particles in slag, the need for landfilling of this waste is eliminated. This objective will be implemented through a series of up to 20 one day tests carried out in a 20 MMBtu/hr air cooled, slagging combustor-boiler installation located in Philadelphia, PA. The project will consist of two tasks. Task 1 consists of the experiments conducted in the 20 MMBtu/hr combustor, and task 2 will consist of analysis of this data. All the operating procedures for this effort have been developed in the 7 years of operation of this combustor.

  2. ENVIRONMENTAL ASSESSMENT: SOURCE TEST AND EVALUATION REPORT - B AND W/ALLIANCE ATMOSPHERIC FLUIDIZED-BED COMBUSTOR

    EPA Science Inventory

    The report gives results of a comprehensive emission sampling and analysis of a pilot-scale, atmospheric-pressure, coal-fired, fluidized-bed combustor (AFBC). Screening data on organic and inorganic pollutants and indications of biological activity were obtained. The Babcock and ...

  3. Rift-zone magmatism: Petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin

    NASA Astrophysics Data System (ADS)

    Fodor, R. V.; Vetter, S. K.

    1984-12-01

    Compositions of basaltic samples from the southeastern Brazil passive margin (18° 24° S) depict the change from continental to oceanic lithosphere during the opening of the South Atlantic Ocean. Samples studied range from 138 to 105 m.y. old and are from 12 Petrobrás drill cores recovered from the coastline to about 150 km offshore in the Espirito Santo, Campos, and Santos basins. Compositions vary, ranging, for example, from 49 54 wt.% SiO2, 0.5 3.0 wt.% TiO2, 0.6 5.0 FeO*/MgO, and <1->6 La/ Yb(n), but can be grouped: (i) basalts enriched in incompatible elements, such as K (some K2O>2.0 wt.%), Rb (>18 ppm), Zr (>120 ppm), and LREE (some FeO* 16 wt.%; most with SiO2 51 54 wt.%), and resembling Serra Geral continental flood basalts (SG-CFB) of southern Brazil; (ii) basalts less enriched, or transitional, in incompatible elements, having K2O <0.40 wt.% and flat REE patterns, and resemble N. Atlantic diabases and FAMOUS basalts; and (iii) one depleted sample, Ce/Yb(n)=0.7, where Ce(n)=4. Expressed in oceanic-basalt terminology and Zr-Nb-Y abundances, ‘enriched’ samples are P- and T-type MORB (e.g., Zr/Nb ˜4 25), ‘transitional’ samples are T-type (Zr/ Nb ˜8 27), and the ‘depleted’ sample is N-type MORB (Zr/Nb>30). Trace-element ratios (e.g., Zr/Nb, Zr/Y) link the Brazil margin basalts to a heterogeneous mantle (attributed to metasomatic veining) of variably proportioned mixtures of depleted-mantle (N-MORB) and plume (P-MORB, e.g., Tristan hotspot) materials. The various compositions therefore reflect, in part, different zones of melting during the separation of Gondwanaland, where gradual decompression during rifting enabled concurrent melting of upper, more depleted (non- or sparsely-veined) mantle and enriched (densely-veined) mantle. Within the time represented, melting produced enriched, transitional, and depleted magmas that were emplaced subaerially, hypabyssally, and subaqueously; they mark the transition from CFB before rifting and separation

  4. Operation Experience and Performance of the First 300MWe CFB Boiler Developed by DBC in China

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Zheng, X. S.; Zhou, Q.; Nie, L.; Liu, T. S.; Hu, X. K.; Lu, J. F.

    In this paper, general layout, design, operational experience and performance of the first 300MWe circulating fluidized bed (CFB) boiler that developed by Dongfang Boiler Group Co., Ltd China, are introduced. The furnace was with large width-depth ratio. The problems occurred during in commissioning were analyzed and the corresponding modifications were presented. Cold-state experiment and operation experience showed that both fluidization quality and circulating flow rate meet the designated value in the frunace. The imbalance of circulating material flow caused by asymmetric layout of three cyclones was very limited. Heating surfaces were safe except wing wall superheater located in upper part of the furnace was overheated at low load. After commissioning, the boiler was correspondingly modified and its performance was excellent.

  5. The first pilot compact CFB boiler with water cooled separator in China

    SciTech Connect

    Yue Guangxi; Li Yan; Lu Xiaoma; Zhang Yanguo; Liu Qing; Lu Junfu; Zhao Xiaoxing

    1997-12-31

    The square cyclone was experimentally investigated in Tsinghua University. The flow field in the cyclone was measured and numerically simulated. The investigation prove that the corner of square cyclone created turbulence to decrease the collection efficiency. The acceleration of solid particles at the inlet of the square cyclone was also a factor for good efficiency. The collection efficiency has been improved by a carefully designed curved inlet of the cyclone which received the patent in China. The patented water cooled cyclone was used in a design of improved 75 T/h CFB boiler. The demonstration of the boiler started test operation in April 1996 at Jianjiang Cement Co. in Sichuan Province. The first operation will be used for adjusting the boiler. Further tests will be done to confirm the performance of the boiler.

  6. Nova-Scotia Power's Point Aconi plant overcomes CFB design problems to become rock of reliability

    SciTech Connect

    Peltier, R.

    2006-09-15

    Point Aconi's circulating fluidized-bed boiler experienced erosion, corrosion, and fouling problems from the day it went on-line in 1993. After several frustrating years of unreliable operation, in late 1999, Nova Scotia Power discovered the right combination of engineering and fuel modifications. Today, after a switch to 80% petroleum coke and major boiler modifications, Point Aconi's output exceeds its original nameplate rating. For having the vision and fortitude to plan and execute a multi year, $20 million project to revitalize North America's first in-service utility CFB boiler, Nova Scotia Power's Point Aconi plant is the well-deserved winner of POWER magazine's 2006 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshooter par excellence. 10 figs. 1 tab.

  7. Time-averaged and time-dependent computations of isothermal flowfields in a centerbody combustor

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, L.; Raju, M. S.; Creed, M. J.; Memering, J. N.

    1984-12-01

    A numerical investigation of the near-wake region in a ducted bluff-body combustor by finite-difference computations is reported. The numerical predictions are based upon: (1) the Reynolds-averaged Navier Stokes equations and the k-epsilon turbulence model; and (2) the time-dependent, compressible Navier-Stokes equations, The standard K-epsilon turbulence model was modified to account for the effect of streamline curvature and for the preferential influence of normal stresses. The time-averaged calculations addressed the turbulent mixing under isothermal conditions in: (1) the large and small-scale centerbody combustor configurations, due to annular air flow and central CO2 flow; and (2) the two-dimensional mixing-layer configuration, due to two streams of nitrogen at different velocities. The time-dependent calculations addressed the near-wake flowfield of the large-scale centerbody combustor configuration with only the annular air stream present. The Reynolds-averaged predictions examined the influence of the turbulence model corrections and geometric scale under varying annular and central flows on: (1) the axial and radial distributions of the mean and fluctuating components of the axial and radial velocities and of the mean CO2 concentrations; and (2) the axial and the radial locations of the vortex center, as well as the magnitude and location of the minimum centerline mean axial velocity. Comparison of the predicted results with experimental data emphasizes and clarifies the complex flowfield interactions of the recirculating near-wake region.

  8. The partitioning of calcium and sulfur between bottom ash and flyash in a commercial CFB boiler

    SciTech Connect

    Rozelle, P.L.; Pisupati, S.V.; Morrison, J.L.; Scaroni, A.W.

    1999-07-01

    As part of a program to examine the effect of sorbent properties on sulfation performance in the circulating fluidized bed (CFB) combustion process, a series of sorbents varying in chemical composition was tested under similar operating conditions in a 30 MW(e) CFB boiler. These sorbents ranged from 27.8 to 55.2 wt% CaO, and from 0.54 to 18.8 wt% MgO. The fuel used was a high ash content (68 wt%) coal refuse. Parameters of boiler operation were established from distributed control system data, used to screen test results, and data were eliminated from consideration where changes in boiler load or bed inventory levels were seen prior to sampling of bottom ash and flyash streams. This, and the development of a set of simultaneous equations for measuring individual ash stream flow rates, allowed the computation of calcium and sulfur material balances around the boiler for each sorbent test. The partitioning of calcium and sulfur to the bottom ash and flyash streams was examined. It was found that the majority of both calcium and sulfur fed to the boiler was removed with the flyash, regardless of the sorbent. It was further found that across the range of sorbent properties, the flow of sulfur as a solid with the flyash was relatively uniform (71 to 86 wt% of that fed to the boiler). Calcium to sulfur ratios in the bottom ash were uniformly higher than those found for the corresponding flyash streams, indicating that attrition may play a key role in overall sorbent performance. The calcium balance data also indicated that thermally induced fractures (TIFs) may affect attrition.

  9. Externally fired gas turbine cycles for small scale biomass cogeneration

    SciTech Connect

    Anheden, M.; Ahlroth, M.; Martin, A.R.; Svedberg, G.

    1999-07-01

    In this conceptual study, externally fired gas turbine cycles in combination with a biomass-fueled, atmospheric circulating fluidized bed (CFB) furnace are investigated for small scale heat and power production ({approximately} 8 MW fuel input). Three cycle configurations are considered: closed cycle, with nitrogen, helium, and a helium/carbon dioxide mixture as working fluids; open cycle operating in parallel to the CFB system; and open cycle with a series connection to the CFB system. Intercooling, postcooling, and recuperation are employed with the goal of maximizing power output. Aside from a thermodynamic performance analysis, the study also includes an evaluation of the turbomachinery characteristics. Simulation results show that thermodynamic performance varies slightly between the different configurations, with electrical efficiencies approaching 38% (LHV) and power-to-heat ratios as high as 0.80. Equipment size is found to depend primarily upon the type of working fluid.

  10. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier; Mosbacher, David Matthew; Janssen, Jonathan Sebastian; Iyer, Venkatraman Ananthakrishnan

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  11. Noise addendum experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Ross, D. A.

    1975-01-01

    The development of advanced CTOL aircraft engines with reduced exhaust emissions is discussed. Combustor noise information provided during the basic emissions program and used to advantage in securing reduced levels of combustion noise is included. Results are presented of internal pressure transducer measurements made during the scheduled emissions test program on ten configurations involving variations of three basic combustor designs.

  12. Combustor technology for future small gas turbine aircraft

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Niedzwiecki, Richard W.

    1994-01-01

    To enhance fuel efficiency, future advanced small gas turbine engines will utilize engine cycles calling for overall engine pressure ratios, leading to higher combustor inlet pressures and temperatures. Further, the temperature rise through the combustor and the corresponding exit temperature are also expected to increase. This report describes future combustor technology needs for small gas turbine engines. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is anticipated in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors. Due to combustor size considerations, staged combustion is more easily accommodated in large engines. The inclusion of staged combustion in small engines will pose greater combustor design challenges.

  13. Preliminary Investigation of Combustion of Diborane in a Turbojet Combustor

    NASA Technical Reports Server (NTRS)

    Kaufman, Warner B; Gibbs, James B; Branstetter, J Robert

    1957-01-01

    Boron and its hydrides offer increased flight range relative to conventional fuels for turbojet engines. Preliminary evaluation has been made of the combustion characteristics and deposition problems resulting from burning diborone in a single, modified J33 combustor. A combustor relatively free of deposits for the limited test conditions has been developed. Three possible methods of alleviating deposits on the turbine blades are reported.

  14. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  15. COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS

    SciTech Connect

    Mathur, M.P.; Freeman, Mark; Gera, Dinesh

    2001-11-06

    In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.

  16. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  17. Evaluation of pilot-scale pulse-corona-induced plasma device to remove NO{sub x} from combustion exhausts from a subscale combustor and from a hush house at Nellis AFB, Nevada. Final report, August 1994--January 1997

    SciTech Connect

    Haythornthwaite, S.M.; Durham, M.D.; Anderson, G.L.; Rugg, D.E.

    1997-05-01

    Jet engine test cells (JETCs) are used to test-fire new, installed, and reworked jet engines. Because JETCs have been classified as stationary sources of pollutant emissions, they are subject to possible regulation under Title 1 of the Clean Air Act (CAA) as amended in 1990. In Phase 1 of the Small Business Innovation Research (SBIR) program, a novel NOx-control approach utilizing pulsed-corona-induced plasma successfully showed 90% removal of NOx in the laboratory. The objective of Phase 2 was to reproduce the laboratory-scale results in a pilot-scale system. The technology was successfully demonstrated at pilot scale in the field, on a slipstream of JETC flue gas at Nellis Air Force Base. Based on the field data, cost projections were made for a system to treat the full JETC exhaust. The technology efficiently converted NO into ONO, and a wet scrubber was required to achieve the treatment goal of 50-percent removal and destruction of NOx. The plasma simultaneously removes hydrocarbons from the flue gas stream. This project demonstrated that pulse-corona-induced plasma technology is scalable to practical industrial dimensions.

  18. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  19. Numerical investigation of recirculation in the UTSI MHD combustor

    SciTech Connect

    Schulz, R.J.; Lee, J.J.; Giel, T.V. Jr.

    1983-09-01

    Numerical studies were carried out to investigate the gross structure of flow in cylindrical combustors. The combustor configurations studied are variations of a working design used at the University of Tennessee Space Institute to burn pulverized coal at temperatures in excess of 3000K for generation of a plasma feeding a magnetohydrodynamic channel. The numerical studies were conducted for an isothermal fluid; the main objective of the calculations was to study the effect of the oxidant injection pattern on the gross structure of recirculating flows within the combustor. The calculations illustrate the basic features of the flow in combustors of this type and suggest implications for the injection of coal and oxidizer in this type of combustor.

  20. Experimental evaluation of combustor concepts for burning broad property fuels

    NASA Technical Reports Server (NTRS)

    Kasper, J. M.; Ekstedt, E. E.; Dodds, W. J.; Shayeson, M. W.

    1980-01-01

    A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied.

  1. Parameters controlling nitric oxide emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Mikus, T.

    1973-01-01

    Nitric oxide forms in the primary zone of gas turbine combustors where the burnt gas composition is close to stoichiometric and gas temperatures are highest. It was found that combustor air inlet conditions, mean primary zone fuel-air ratio, residence time, and the uniformity of the primary zone are the most important variables affecting nitric oxide emissions. Relatively simple models of the flow in a gas turbine combustor, coupled with a rate equation for nitric oxide formation via the Zeldovich mechanism are shown to correlate the variation in measured NOx emissions. Data from a number of different combustor concepts are analyzed and shown to be in reasonable agreement with predictions. The NOx formation model is used to assess the extent to which an advanced combustor concept, the NASA swirl can, has produced a lean well-mixed primary zone generally believed to be the best low NOx emissions burner type.

  2. Thermal and emission characteristics of a CAN combustor

    NASA Astrophysics Data System (ADS)

    Shah, Rupesh D.; Banerjee, Jyotirmay

    2016-03-01

    Experimental investigations are carried out to establish the thermal and emission characteristics of a CAN combustor. Temperature and emission levels at the combustor exit are measured for different swirler vane angles and air fuel ratios (AFR). Swirler vane angle is varied from 15° to 60° in steps of 15°. AFR is varied in the range of 41-51. Experimental analysis is carried out using methane as fuel. Measured temperature variation at combustor outlet indicates that the hot product of combustor flows near the liner wall. Gradient of temperature near the wall decreases as the swirler vane angle (and corresponding swirl number) is increased. The peak temperature reduces at higher value of AFR. Emission level of carbon monoxide decreases with increase in AFR and swirler vane orientation. A higher level of NOX emission is observed for AFR of 45. This is due to change in shape and strength of the recirculation region in the primary zone of the combustor.

  3. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  4. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  5. Parametric test results of a swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.; Jones, R. E.

    1973-01-01

    Pollutant levels of oxides of nitrogen, unburned hydrocarbons, and carbon monoxide were measured for three models of an experimental, annular swirl can combustor. The combustor was 1.067 meters in outer diameter, incorporated 120 modules, and was specifically designed for elevated exit temperature performance. Test conditions included combustor inlet temperatures of 589, 756 and 839 K, inlet pressures of 3 to 6.4 atmospheres, reference velocities of 21 to 38 meters per second and combustor equivalence ratios, based on total combustor flows of 0.206 to 1.028. Maximum oxides of nitrogen emission index values occurred at an equivalence ratio of 0.7 with lower values measured for both higher and lower equivalence ratios. Oxides of nitrogen concentrations, to the 0.7 level with 756 K inlet air, were correlated for the three models by a combined parameter consisting of measured flow and geometric parameters. Effects of the individual parameters comprising the correlation are also presented.

  6. Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor

    NASA Technical Reports Server (NTRS)

    VanFossen, G. James; Bunker, Ronald S.

    2000-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NO(x), ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36' at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid generated turbulence.

  7. Numerical prediction of flow and combustion characteristics of a model annular combustor

    NASA Astrophysics Data System (ADS)

    McGuirk, J. J.; Chow, S. K.

    1991-06-01

    Two instantaneous chemistry descriptions (full chemical equilibrium and laminar flamelet) were applied to the prediction of gaseous reaction in a small-scale combustor. The chemical state relationships were combined with a single conserved scalar/beta-function pdf/k-epsilon turbulence model closure. Encouraging results were obtained for the flowfield and conserved scalar distributions, although only when the jet entry boundary conditions were altered to accord closely with several expected experimental features. These predictions imply that any acceptable approach to combustor modeling must extend calculations to include the outer annulus. Exit temperature levels were predicted fairly well, but the quality of internal distributions deteriorated due to errors in predicted fuel/air mixing. Differences between the two chemistry models were small except for CO and H2 species concentrations, where the flamelet model gave better agreement with experiments.

  8. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, Cold Flow Burner Development''. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  9. Numerical simulations of cold flow in a ramjet dump combustor with a choked exit nozzle

    NASA Astrophysics Data System (ADS)

    Menon, S.; Jou, W.-H.

    1986-10-01

    Simulations of the flow field were performed in a ramjet dump combustor equipped with an exit nozzle. The flow through the nozzle is choked numerically to simulate a realistic ramjet configuration. This also removes any ambiguities associated with the imposed outflow boundary conditions. The method of numerical choking is described. Large-scale motions similar to those in unchoked flow simulations are observed. The interaction between these large vortices and the choked throat is studied. Two simulations at Mach numbers 0.32 and 0.44 are discussed. Spectral analysis of the pressure and vorticity fluctuations in the combustor indicate a much richer spectral content when compared to unchoked flow results. Both convective-wave-dominated oscillations and acoustic oscillations appear to be present in the flow. Some preliminary results are presented.

  10. NOx results from two combustors tested on medium BTU coal gas

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  11. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control

    SciTech Connect

    Helfritch, D.J.

    1989-12-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons. (VC)

  12. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control

    SciTech Connect

    Quimby, J.M.

    1990-11-01

    The objective of this test program is the performance and economic evaluation of a pre-charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons.

  13. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control

    SciTech Connect

    Quimby, J.M.

    1990-04-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons.

  14. Radial inlet guide vanes for a combustor

    SciTech Connect

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  15. Lean stability augmentation for premixing, prevaporizing combustors

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An experimental program was conducted to investigate techniques for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Augmented flameholders employing recessed perforated plates, catalyzed tube bundles, and configurations in which pilot fuel was injected into the wakes of V-gutters or perforated plates were designed and tested. Stable operation of the piloted designs was achieved at equivalence ratios as low as 0.25; NOx emissions of less than 1.0 g/kg at simulated turbine engine cruise conditions were obtained. A piloted perforated plate employing four percent pilot fuel flow produced the best performance while meeting severe NOx constraints.

  16. Testing and Characterization of CMC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    Multiple combustor liner applications, both segmented and fully annular designs, have been configured for exposure in NASA's High Pressure Burner Rig (HPBR). The segmented liners were attached to the rig structure with SiC/SiC fasteners and exposed to simulated gas turbine conditions for nearly 200 hours. Test conditions included pressures of 6 atm., gas velocity of 42 m/s, and gas temperatures near 1450 C. The temperatures of both the cooled and combustion flow sides of the liners were measured using optical and contact measurement techniques. Minor weight loss was observed, but the liners remained structural sound, although damage was noted in some fasteners.

  17. Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    A method of feedback control has been proposed as a means of suppressing thermo-acoustic instabilities in a liquid- fueled combustor of a type used in an aircraft engine. The basic principle of the method is one of (1) sensing combustor pressure oscillations associated with instabilities and (2) modulating the rate of flow of fuel to the combustor with a control phase that is chosen adaptively so that the pressure oscillations caused by the modulation oppose the sensed pressure oscillations. The need for this method arises because of the planned introduction of advanced, lean-burning aircraft gas turbine engines, which promise to operate with higher efficiencies and to emit smaller quantities of nitrogen oxides, relative to those of present aircraft engines. Unfortunately, the advanced engines are more susceptible to thermoacoustic instabilities. These instabilities are hard to control because they include large dead-time phase shifts, wide-band noise characterized by amplitudes that are large relative to those of the instabilities, exponential growth of the instabilities, random net phase walks, and amplitude fluctuations. In this method (see figure), the output of a combustion-pressure sensor would be wide-band-pass filtered and then further processed to generate a control signal that would be applied to a fast-actuation valve to modulate the flow of fuel. Initially, the controller would rapidly take large phase steps in order to home in, within a fraction of a second, to a favorable phase region within which the instability would be reduced. Then the controller would restrict itself to operate within this phase region and would further restrict itself to operate within a region of stability, as long as the power in the instability signal was decreasing. In the phase-shifting scheme of this method, the phase of the control vector would be made to continuously bounce back and forth from one boundary of an effective stability region to the other. Computationally

  18. Development of a retrofit coal combustor for industrial applications, (Phase 2). Technical progress report, April--June 1989

    SciTech Connect

    Not Available

    1989-07-01

    The objective of Phase I of the program for the development of a retrofit pulse coal combustor for industrial applications was to design, fabricate, test and evaluate advanced chamber designs at the laboratory-scale utilizing several fuels (Task 1). The activities were structured to provide design criteria for scaling up to the pilot-scale level for the demonstration of a pulse combustor fired with coal-water mixtures for industrial boiler and process heater retrofit applications. The design data and information acquired during Task 1 of the initial phase was to develop scale-up design criteria for scaling the laboratory-scale design to pilot-scale including interface requirements for the field demonstration. The scale-up pilot unit design was to be sufficiently developed to allow fabrication of the unit for testing in the existing test facility upon DOE exercising its option for the follow-on activities of this program. These follow-on activities (Phase II) included the fabrication, test, and engineering evaluation of the pilot-scale combustor as well as technical and laboratory test support activities for reducing the technical risks and costs of development at the pilot-scale. Based on the information, test, data and technical support activities, a retrofit combustor system was to be designed for field demonstration. An additional effort was added to the contract by modification A005. This modification added a Phase IA in place of the original Task 2 of Phase I activity. This interim phase consisted of three technical tasks described in previous quarterly reports. Phase II was initiated in April 1989.

  19. Experiment of rocket-ram annular combustor

    NASA Astrophysics Data System (ADS)

    Yatsuyanagi, Nobuyuki; Sakamoto, Hiroshi; Sato, Kazuo; Sasaki, Masaki; Ono, Fumiei

    Superiority in specific impulse of the double-nozzle type of rocket-ram combined engine over the ducted type of combined engine was shown by performance calculations. Then, a double-nozzle type of rocket-ram annular combustor with a total thrust of 5 kN was designed and experimentally tested with varying ratios of thrust produced by rocket and ram. With the combustor having different diverging half-angles, namely 10 deg 18 arcmin, and 6 deg 40 arcmin, thrust and pressure distribution along the common expansion nozzle were measured to investigate the effect of interaction of the two expansion gases on thrust. Enhancement of specific impulse was experimentally verified. That is, the specific impulse gained in rocket-ram parallel operations, the ratio of rocket thrust to ram thrust being 50 to 50, were found to be 190 percent of those in pure rocket operations. However, in the downstream region of the common nozzle, the flow might separate due to the generation of shock waves in either type of nozzle configuration.

  20. Combustor Computations for CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Brankovic, Andreja; Ryder, Robert C.; Huber, Marcia

    2011-01-01

    Knowing the pure component C(sub p)(sup 0) or mixture C(sub p) (sup 0) as computed by a flexible code such as NIST-STRAPP or McBride-Gordon, one can, within reasonable accuracy, determine the thermophysical properties necessary to predict the combustion characteristics when there are no tabulated or computed data for those fluid mixtures 3or limited results for lower temperatures. (Note: C(sub p) (sup 0) is molar heat capacity at constant pressure.) The method can be used in the determination of synthetic and biological fuels and blends using the NIST code to compute the C(sub p) (sup 0) of the mixture. In this work, the values of the heat capacity were set at zero pressure, which provided the basis for integration to determine the required combustor properties from the injector to the combustor exit plane. The McBride-Gordon code was used to determine the heat capacity at zero pressure over a wide range of temperatures (room to 6,000 K). The selected fluids were Jet-A, 224TMP (octane), and C12. It was found that each heat capacity loci were form-similar. It was then determined that the results [near 400 to 3,000 K] could be represented to within acceptable engineering accuracy with the simplified equation C(sub p) (sup 0) = A/T + B, where A and B are fluid-dependent constants and T is temperature (K).

  1. Error Reduction Program. [combustor performance evaluation codes

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; Chiappetta, L. M.; Gosman, A. D.

    1985-01-01

    The details of a study to select, incorporate and evaluate the best available finite difference scheme to reduce numerical error in combustor performance evaluation codes are described. The combustor performance computer programs chosen were the two dimensional and three dimensional versions of Pratt & Whitney's TEACH code. The criteria used to select schemes required that the difference equations mirror the properties of the governing differential equation, be more accurate than the current hybrid difference scheme, be stable and economical, be compatible with TEACH codes, use only modest amounts of additional storage, and be relatively simple. The methods of assessment used in the selection process consisted of examination of the difference equation, evaluation of the properties of the coefficient matrix, Taylor series analysis, and performance on model problems. Five schemes from the literature and three schemes developed during the course of the study were evaluated. This effort resulted in the incorporation of a scheme in 3D-TEACH which is usuallly more accurate than the hybrid differencing method and never less accurate.

  2. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1990-08-15

    BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

  3. Multi-fuel pre combustor unit

    SciTech Connect

    Paul, M.A.; Paul, A.

    1993-07-06

    A pre combustor unit is described for installation in a thermal engine having means for generating compressed air for mixing with a fuel for combustion in a main combustion chamber in the engine, the pre combustor unit comprising: a housing having means for installing the precombustion unit in the engine, the housing having an internal precombustion chamber with a discharge passage that communicates with the main combustion chamber of the engine when the unit is installed in the engine; a displaceable valve head in the housing, where the housing includes a valve seat at the discharge passage and the valve head is seatable on the valve seat to block discharge passage from communicating with the precombustion chamber; actuating means connected to the valve head for selectively displacing the valve head into seating engagement with the valve seat, wherein the discharge passage is closed, and for retracting the valve head from a seating engagement, wherein the discharge passage is open; a compressed air passage communicating with the precombustion chamber and having means for selectively communicating with the means of the thermal engine for generating compressed air, wherein compressed air from the engine is delivered to the precombustion chamber; and a fuel supply means communicating with the compressed air passage for supplying fuel to the compressed air passage wherein a fuel-air mixture is delivered to the precombustion chamber.

  4. Low NO.sub.x multistage combustor

    DOEpatents

    Becker, Frederick E.; Breault, Ronald W.; Litka, Anthony F.; McClaine, Andrew W.; Shukla, Kailash

    2000-01-01

    A high efficiency, Vortex Inertial Staged Air (VIStA) combustor provides ultra-low NO.sub.X production of about 20 ppmvd or less with CO emissions of less than 50 ppmvd, both at 3% O.sub.2. Prompt NO.sub.X production is reduced by partially reforming the fuel in a first combustion stage to CO and H.sub.2. This is achieved in the first stage by operating with a fuel rich mixture, and by recirculating partially oxidized combustion products, with control over stoichiometry, recirculation rate and residence time. Thermal NO.sub.X production is reduced in the first stage by reducing the occurrence of high temperature combustion gas regions. This is achieved by providing the first stage burner with a thoroughly pre-mixed fuel/oxidant composition, and by recirculating part of the combustion products to further mix the gases and provide a more uniform temperature in the first stage. In a second stage combustor thermal NO.sub.X production is controlled by inducing a large flow of flue gas recirculation in the second stage combustion zone to minimize the ultimate temperature of the flame. One or both of the first and second stage burners can be cooled to further reduce the combustion temperature and to improve the recirculation efficiency. Both of these factors tend to reduce production of NO.sub.X.

  5. Analytical fuel property effects: Small combustors

    NASA Technical Reports Server (NTRS)

    Cohen, J. D.

    1984-01-01

    The study performed in Phase 1 of this program applies only to a T700/CT7 engine family type combustor functioning in the engine as defined and does not necessarily apply to other cycles or combustors of differing stoichiometry. The study was not extended to any of the fuel delivery accessories such as pumps or control systems, nor was there any investigation of potential systems problems which might arise as a consequence of abnormal properties such as density which might affect delivery schedules or aromatics content which might affect fuel system seals. The T700/CT7 engine is a front drive turboshaft or turboprop engine in the 1500-1800 shp (1120-1340 kW) class as currently configured with highpower core flows of about 10 lb/sec (4.5 kg/sec). It employs a straight-through annular combustion system less than 5 in. (12.5 cm) in length utilizing a machined ring film cooled construction and twelve low-pressure air blast fuel injectors. Commercial and Naval versions employ two 0.5 Joule capacitive discharge surface gap ignitors.

  6. Ultra-Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Steele, R.C.; Williams, J.T.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2006-05-01

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  7. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  8. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    SciTech Connect

    Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan; Zhou, Chenn Q.

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

  9. Combustion tests of a turbine simulator burning low Btu fuel and a rich-quench-lean combustor

    SciTech Connect

    Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Najewicz, D.J.; Samuels, M.S.

    1993-06-01

    The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, and particulate emission. In a related project, a reduced scale rich-quench-lean (RQL) gas turbine combustor has been designed, constructed, and fires with simulated low Btu fuel. The overall objective of this work is to develop an RQL combustor with lower conversion of fuel bound nitrogen (FBN) to NO{sub x} than a conventional combustor.

  10. Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction

    NASA Technical Reports Server (NTRS)

    Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)

    2004-01-01

    Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.

  11. Obseration of flow regime transition in CFB riser using an LDV

    SciTech Connect

    Yue, Paul C.; Mei, Joseph S.; Shadle, Lawrence J.

    2011-01-01

    The solids flow in a circulating fluidized bed (CFB) riser is often described to have a core-annular structure. For a given superficial gas velocity, at the initial introduction of solids into a riser a flow structure of dilute upflow regime exists. Continuing to increase the solids flow in the riser transitions the flow structure to the core-annular flow regime. However, with further increase of solids flow a condition is reached, depending on the superficial gas velocity, where all the solids across the riser cross section flow upwards, even those at the wall. When the solids flux, solids fraction and gas velocity are relatively high, such a condition is described as the dense phase suspense upflow (DSU) regime. In this paper we report our observations of these flow regime transitions by using a laser Doppler velocimeter (LDV) to monitor the upward and downward particle flow velocities at and near the riser wall of the National Energy Technology Laboratory’s 30.4 centimeters diameter CFB cold flow model. The particles were high density polyethylene (PPE) spheres with a Sauter mean diameter of 861 micron and a density of 800 kg/m3. Three superficial gas velocities of 6.55 m/s, 10.67 m/s and 13.72 m/s were used in this study. For the case of superficial gas velocity 6.55 m/s, the experimental data show that the transition from dilute upflow to core-annular flow occurred when the solids flux was about 7 kg/m{sup 2}-s and the transition from core-annular flow to dense suspension upflow was about 147 kg/m{sup 2}-s. As the superficial gas velocity was increased to 10.67 m/s the corresponding flow regime transitions were at 34 kg/m{sup 2}-s and 205 kg/m{sup 2}-s, respectively. For the case of superficial gas velocity of 13.72 m/s the data showed no distinct transition of flow regimes. The particles were all upflow for the range of solids fluxes from 10 kg/m{sup 2}-s to 286 kg/m{sup 2}-s.

  12. Combustor technology for future small gas turbine aircraft

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Niedzwiecki, Richard W.

    1993-01-01

    Future engine cycles proposed for advanced small gas turbine engines will increase the severity of the operating conditions of the combustor. These cycles call for increased overall engine pressure ratios which increase combustor inlet pressure and temperature. Further, the temperature rise through the combustor and the corresponding exit temperature also increase. Future combustor technology needs for small gas turbine engines is described. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is expected in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors.

  13. Large Eddy Simulation of Mixing within a Hypervelocity Scramjet Combustor

    NASA Astrophysics Data System (ADS)

    Petty, David; Wheatley, Vincent; Pantano, Carlos; Smart, Michael

    2013-11-01

    The turbulent mixing of parallel hypervelocity (U = 3230 m/sec, M = 3.86) air-streams with a sonic stream of gaseous hydrogen is simulated using large eddy simulation. The resultant mixing layers are characterized by a convective Mach number of 1.20. This configuration represents parallel slot injection of hydrogen via an intrusive centerbody within a constant area rectangular combustor. A hybrid shock-capturing/zero numerical dissipation (WENO/TCD) switch method designed for simulations of compressible turbulent flows was utilized. Sub-grid scale turbulence was modeled using the stretched vortex model. Visualizations of the three dimensional turbulent structures generated behind the centerbody will be presented. It has been observed that a span-wise instability of the wake behind the centerbody is initially dominant. Further downstream, the shear-layers coalesce into a mixing wake and develop the expected large-scale coherent span-wise vortices. Ph.D. Candidate, School of Mechanical and Mining Engineering, Centre for Hypersonics.

  14. Results of the NASA/General Electric Experimental Clean Combustor Program

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Niedzwiecki, R. W.

    1976-01-01

    The NASA/General Electric Experimental Clean Combustor Program is a multi-year, major contract effort. Primary program objectives are the generation of technology for development of advanced commercial CTOL engines with lower exhaust emissions than current aircraft and, demonstrations of this technology in a full-scale CF6-50C engine in 1976. This paper describes pollution and performance goals, Phase I and II test results and Phase III hardware, pollution sampling techniques and test plans. Pollution results are presented in emission index and Environmental Protection Agency 1979 Standard Parameters (EPAP). Best results were obtained with a double annular combustor concept. This concept, which incorporates multistage burning, produced EPAP values extrapolated to CF6-50C engine conditions for CO, HC, and NOx of 3.3, 0.3 and 4.5, respectively. These represent respective CO, HC and NOx percentage reductions of 69, 93 and 42%, compared to current CF6-50 engine values. The combustor also met development engine performance requirements.

  15. Multiple jet mixing flowfields in an isothermal model combustor

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Schulz, R. J.; Giel, T. V., Jr.

    1986-01-01

    The purpose of the present experimental investigation of confined, multiple turbulent jet-mixing with recirculation, in an axisymmetric duct that simulated a combustor, was the examination of flow fields that employ injector plates for the mixing of fuels and oxidizers. Quantitative descriptions of the velocity and turbulence fields were obtained with a vectorized, two-component laser Doppler velocimeter. The results obtained indicate that the annular slit injector jet generates a two-dimensional combustor flow that is in accord with theoretical studies, although rings of discrete injector jets create very complex, fully three-dimensional combustor flow fields.

  16. YF 102 in-duct combustor noise measurement, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, C. A.

    1977-01-01

    The combustion chamber from a YF 102 gas turbine engine was instrumented with semi-infinite acoustic wave guide probes and installed in a test rig to complement the combustor noise test. These combustor rig tests are described and the recorded data are listed. Internal dynamic pressure level measurements were made at the same locations and at the same operating conditions of the NASA YF 102 test. In addition, the combustor was operated at various off-designed points where one parameter at a time was varied. Background noise recordings were made to determine the magnitude of facility or test rig noise present.

  17. Multifuel evaluation of rich/quench/lean combustor

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Novick, A. S.; Troth, D. L.

    1982-01-01

    The fuel flexible combustor technology was developed for application to the Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry NOx reduction methods. Due to the high levels of fuel-bound nitrogen (FBN), control of NOx can be effected through a staged combustor with a rich initial combustion zone. A rich/quench/lean variable geometry combustor utilizes the technology presented to achieve low NOx from alternate fuels containing FBN. The results focus on emissions and durability for multifuel operation.

  18. Small gas-turbine combustor study: Fuel injector evaluation

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1981-01-01

    As part of a continuing effort at the Lewis Research Center to improve performance, emissions, and reliability of turbine machinery, an investigation of fuel injection technique and effect of fuel type on small gas turbine combustors was undertaken. Performance and pollutant emission levels are documented over a range of simulated flight conditions for a reverse flow combustor configuration using simplex pressure-atomizing, spill-flow return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types was obtained. Jet A and an experimental referee broad specification fuel were used to determine the effect of fuel type.

  19. Design study of a gas turbine combustor with heat recirculation

    NASA Technical Reports Server (NTRS)

    Ganji, A.; Branch, M. C.; Oppenheim, A. K.

    1976-01-01

    A means of avoiding stoichiometric combustion, reducing emissions, and yet providing stable burning for lean mixtures is based on the use of heat recirculation rather than flow recirculation. This paper is concerned with the calculations of the design parameters of a gas turbine combustor with heat exchanger to produce the desired preheat temperature. The combustor inlet temperature, maximum temperature, equivalence ratio and recirculated heat are determined by thermodynamic analysis. The heat transfer analysis then provides the dimensions of the system to produce the predetermined boundary conditions. It is indicated that practical combustor design may be feasible for reactant mixtures as low as equivalence ratio 0.2.

  20. Achieving improved cycle efficiency via pressure gain combustors

    SciTech Connect

    Gemmen, R.S.; Janus, M.C.; Richards, G.A.; Norton, T.S.; Rogers, W.A.

    1995-04-01

    As part of the Department of Energy`s Advanced Gas Turbine Systems Program, an investigation is being performed to evaluate ``pressure gain`` combustion systems for gas turbine applications. This paper presents experimental pressure gain and pollutant emission data from such combustion systems. Numerical predictions for certain combustor geometries are also presented. It is reported that for suitable aerovalved pulse combustor geometries studied experimentally, an overall combustor pressure gain of nearly 1 percent can be achieved. It is also shown that for one combustion system operating under typical gas turbine conditions, NO{sub x} and CO emmissions, are about 30 ppmv and 8 ppmv, respectively.

  1. Systems and methods for detection of blowout precursors in combustors

    DOEpatents

    Lieuwen, Tim C.; Nair, Suraj

    2006-08-15

    The present invention comprises systems and methods for detecting flame blowout precursors in combustors. The blowout precursor detection system comprises a combustor, a pressure measuring device, and blowout precursor detection unit. A combustion controller may also be used to control combustor parameters. The methods of the present invention comprise receiving pressure data measured by an acoustic pressure measuring device, performing one or a combination of spectral analysis, statistical analysis, and wavelet analysis on received pressure data, and determining the existence of a blowout precursor based on such analyses. The spectral analysis, statistical analysis, and wavelet analysis further comprise their respective sub-methods to determine the existence of blowout precursors.

  2. Low Emission Combustor Technology Program. Final report, October 1, 1982-October 31, 1984. [Multiannular Swirl Burner

    SciTech Connect

    Lew, H.G.; Toof, J.L.

    1984-09-01

    Purpose is to evaluate coal water mixture (CWM) in a low emissions staged rich-lean combustor for stationary combustion turbines. This evaluation was made with the Multiannular Swirl Burner (MASB). The MASB configuration was scaled up from the 5-inch diameter previously tested to a 10-inch diameter and modified for the combustion of CWM and for testing at 3 to 10 atmospheres pressure and 2000/sup 0/F (1094/sup 0/C) turbine inlet temperature. This testing was performed in the Westinghouse Advanced Combustor Development Rig at Concordville, Pa. Testing was done with CWM and No. 2 fuel oil for comparison. In addition, No. 2 fuel oil doped with pyridine was used to simulate the effect of fuel bound nitrogen on NO/sub x/ production. The design of the MASB for CWM combustion has encompassed several subtasks which provided valuable design data. These include numerical combustor flow field calculations by the computer code CORA 2-83, nozzle spray tests on CWM to select the proper nozzle, and the selection of the appropriate CWM. Test results to date on the MASB operating in both the rich-lean mode and lean-lean mode indicate that CWM combustion in a metal walled combustor such as the MASB is feasible. The NO/sub x/ results for oil show an increase in the NO/sub x/ from the 5-inch MASB obtained previously. Combustion efficiencies greater than 99.9% were obtained on oil. CWM combustion with a methane gas pilot has shown combustion efficiencies up to 99.5%. However, combustion to date of CWM alone has only shown combustion efficiencies up to 53%.

  3. Advanced Low Emissions Subsonic Combustor Study

    NASA Technical Reports Server (NTRS)

    Smith, Reid

    1998-01-01

    Recent advances in commercial and military aircraft gas turbines have yielded significant improvements in fuel efficiency and thrust-to-weight ratio, due in large part to increased combustor operating pressures and temperatures. However, the higher operating conditions have increased the emission of oxides of nitrogen (NOx), which is a pollutant with adverse impact on the atmosphere and environment. Since commercial and military aircraft are the only important direct source of NOx emissions at high altitudes, there is a growing consensus that considerably more stringent limits on NOx emissions will be required in the future for all aircraft. In fact, the regulatory communities have recently agreed to reduce NOx limits by 20 percent from current requirements effective in 1996. Further reductions at low altitude, together with introduction of limits on NOx at altitude, are virtual certainties. In addition, the U.S. Government recently conducted hearings on the introduction of federal fees on the local emission of pollutants from all sources, including aircraft. While no action was taken regarding aircraft in this instance, the threat of future action clearly remains. In these times of intense and growing international competition, the U.S. le-ad in aerospace can only be maintained through a clear technological dominance that leads to a product line of maximum value to the global airline customer. Development of a very low NOx combustor will be essential to meet the future needs of both the commercial and military transport markets, if additional economic burdens and/or operational restrictions are to be avoided. In this report, Pratt & Whitney (P&W) presents the study results with the following specific objectives: Development of low-emissions combustor technologies for advances engines that will enter into service circa 2005, while producing a goal of 70 percent lower NOx emissions, compared to 1996 regulatory levels. Identification of solution approaches to

  4. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  5. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Astrophysics Data System (ADS)

    Huff, R. G.

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  6. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Astrophysics Data System (ADS)

    Huff, R. G.

    1984-10-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  7. Photoluminescence and energy transfer properties of Sm 3+ doped CFB glasses

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, J.; Pavani, K.; Sasikala, T.; Sreenivasa Rao, A.; Giri, Neeraj Kumar; Rai, S. B.; Rama Moorthy, L.

    2011-08-01

    The present paper describes the optical absorption, photoluminescence and lifetime measurements of trivalent samarium doped calcium fluoroborate (CFB) glasses. From the observed energy levels, the free-ion energy level parameters for the 4f 5 electronic configuration of Sm 3+ ion have been evaluated using H FI model. The experimental oscillator strengths of absorption bands have been analyzed to determine the Judd-Ofelt (J-O) parameters. From the evaluated J-O parameters and luminescence data, the radiative parameters such as AR, τR and σe values were obtained from the excited 4G 5/2 level to different lower energy levels. The decay curves of 4G 5/2 → 6H 7/2 transition were analyzed by the Inokuti-Hirayama model assuming dipole-dipole interaction between the dopant ions. The decrease of fluorescence intensities as well as measured lifetimes at higher concentrations has been explained based on energy transfer process through cross-relaxation between Sm 3+ ions.

  8. Application of antifungal CFB to increase the durability of cement mortar.

    PubMed

    Park, Jong-Myong; Park, Sung-Jin; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-07-01

    Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calciteforming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed CaCO3 precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at 18 degrees C for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the CaCO3 precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded. PMID:22580322

  9. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  10. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Kubasco, A. J.

    1982-01-01

    Three simulated coal gas fuels based on hydrogen and carbon monoxide were tested during an experimental evaluation with a rich lean can combustor: these were a simulated Winkler gas, Lurgi gas and Blue Water gas. All three were simulated by mixing together the necessary pure component species, to levels typical of fuel gases produced from coal. The Lurgi gas was also evaluated with ammonia addition. Fuel burning in a rich lean mode was emphasized. Only the Blue Water gas, however, could be operated in such fashion. This showed that the expected NOx signature form could be obtained, although the absolute values of NOx were above the 75 ppm goals for most operating conditions. Lean combustion produced very low NOx well below 75 ppm with the Winkler and Lurgi gases. In addition, these low levels were not significantly impacted by changes in operating conditions.

  11. Numerical Analysis of the SCHOLAR Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    Rodriguez, Carlos G.; Cutler, Andrew D.

    2003-01-01

    The SCHOLAR scramjet experiment is the subject of an ongoing numerical investigation. The facility nozzle and combustor were solved separate and sequentially, with the exit conditions of the former used as inlet conditions for the latter. A baseline configuration for the numerical model was compared with the available experimental data. It was found that ignition-delay was underpredicted and fuel-plume penetration overpredicted, while the pressure rise was close to experimental values. In addition, grid-convergence by means of grid-sequencing could not be established. The effects of the different turbulence parameters were quantified. It was found that it was not possible to simultaneously predict the three main parameters of this flow: pressure-rise, ignition-delay, and fuel-plume penetration.

  12. Mercury emissions from municipal solid waste combustors

    SciTech Connect

    Not Available

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  13. Method for operating a combustor in a fuel cell system

    DOEpatents

    Chalfant, Robert W.; Clingerman, Bruce J.

    2002-01-01

    A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

  14. SLUDGE COMBUSTOR USING SWIRL AND ACTIVE COMBUSTION CONTROL

    EPA Science Inventory

    A research program directed at developing technology for compact shipboard incinerators for sludges is described. The concept utilizes previously developed Vortex Containment Combustor (VCC) as a primary unit with an active combustion control afterburner (AB). The overall power s...

  15. A variable geometry combustor for broadened properties fuels

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Fear, J. S.

    1987-01-01

    A program was conducted to design and develop a variable geometry combustor, sized for the cycle and envelope of a large commercial turbofan engine. The combustor uses a variable area swirl cup to control stoichiometry in the primary combustion zone. Potential advantages of this design include improved capability to burn non-standard fuels, short system length, and increased operating temperature range for advanced high performance engine cycles. After considerable development, key program emissons and performance goals were met with the variable geometry combustor. Primary development efforts were to evolve improved variable swirl cup configurations. In particular, air leakage through the variable area swirl cup had a strong effect on low power emissions and performance, while smoke level at high power was affected by features for improved mixing of the fuel and swirler air flow. Additional design and development is still needed to evolve a practical variable geometry combustor.

  16. Composite Matrix Cooling Scheme for Small Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Ross, Phillip T.; Mongia, Hukam C.; Acosta, Waldo A.

    1990-01-01

    The design, manufacture, and testing of a compliant metal/ceramic (CMC) wall cooling concept-implementing combustor for small gas turbine engines has been undertaken by a joint U.S. Army/NASA technology development program. CMC in principle promises greater wall cooling effectiveness than conventional designs and materials, thereby facilitating a substantial reduction in combustor cooling air requirements and furnishing greater airflow for the control of burner outlet temperature patterns as well as improving thermodynamic efficiency and reducing pollutant emissions and smoke levels. Rig test results have confirmed the projected benefits of the CMC concept at combustor outlet temperatures of the order of 2460 F, at which approximately 80 percent less cooling air than conventionally required was being employed by the CMC combustor.

  17. Exhaust gas emissions of a vortex breakdown stabilized combustor

    NASA Technical Reports Server (NTRS)

    Yetter, R. A.; Gouldin, F. C.

    1976-01-01

    Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.

  18. Pollution technology program, can-annular combustor engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  19. The Numerical Investigation of a Dual-Mode Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Riggins, David

    1998-01-01

    A numerical investigation of a multiple-jet array dual-mode scramjet combustor has been performed utilizing a three-dimensional Navier-Stokes code with finite-rate chemistry. Results indicate substantial upstream interaction in the form of an oblique shock/expansion train upstream of the combustor, culminating in completely subsonic flow in the vicinity of fuel injectors. The flow returns to supersonic velocities in the downstream (diverging) portion of the combustor. Mixing and combustion are rapid in this flow and predicted combustion efficiency closely matches experimental data. However, comparisons of wall pressure between the simulation and the experiment show i) substantial underprediction of the upstream interaction distance and ii) moderate overprediction of peak pressure in the vicinity of the entrance of the combustor. This can be at least partially explained by examination of available experimental data; this data shows a very significant movement of the entering vitiated airflow to the sides of the combustor (around the injector array and the upstream interaction front as a whole). This important effect is currently being examined by an extension of the modeling to include the entire half-duct of the same combustor geometry.

  20. CFD Analysis of Emissions for a Candidate N+3 Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud

    2015-01-01

    An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.

  1. CFD Analysis of Emissions for a Candidate N+3 Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud

    2015-01-01

    An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spraymodeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.

  2. Particle-jet interactions in an MHD second stage combustor

    SciTech Connect

    Lottes, S.A.; Chang, S.L.

    1992-07-01

    An Argonne two-phase combustion flow computer code is used to simulate reacting flows to aid in the development of an advanced combustor for magnetohydrodynamic power generation. The combustion code is a general hydrodynamics computer code for two-phase, two- dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and particles. The combustion code includes turbulence, integral combustion, and particle evaporation submodels. A recently developed integral combustion submodel makes calculations more efficient and more stable while still preserving the major physical effects of the complex combustion processes. The combustor under investigation is a magnetohydrodynamic second stage combustor in which opposed jets of oxidizer are injected into a confined cross-stream of hot coal gas flow following a first stage swirl combustor. The simulation is intended to enhance the understanding the of seed particle evaporation in the combustor and evaluate the effects of combustor operating conditions on seed particle evaporation and vapor dispersion, which directly affect overall magnetohydrodynamic power generation. Computation results show that oxidizer jet angle and particle size may greatly affect particle evaporation and vapor dispersion. At a jet angle about 130 degrees, particle evaporation rate is the highest because of the highest average gas temperature. As particle size increases beyond 10 microns in diameter, the effects of particle size on wall deposition rate, evaporation delay, and downstream seed vapor dispersion become more pronounced. 16 refs., 10 figs.

  3. Low NOx, Lean Direct Wall Injection Combustor Concept Developed

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2003-01-01

    The low-emissions combustor development at the NASA Glenn Research Center is directed toward advanced high-pressure aircraft gas turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low-power conditions. Low-NOx combustors can be classified into rich burn and lean burn concepts. Lean burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) combustors. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibly of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone and, thus, does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, the key is good atomization and mixing of the fuel quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP.

  4. Atmospheric fluidized bed combustor development program. Final report

    SciTech Connect

    Ashworth, R.A.; Melick, T.A.; Plessinger, D.A.; Sommer, T.M.; Keener, H.M.; Webner, R.L.

    1995-12-01

    The objective of this project was to demonstrate and promote the commercialization of a coal-fired atmospheric fluidized bed combustion (AFBC) system, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications in the 1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr capacity range. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. The project itself was separated into three levels: (1) feasibility, (2--3) subsystem development and integration, and (4) proof-of-concept. In Level (1), the technical and economic feasibility of a 1 million Btu/hr coal-fired AFBC air heater was evaluated. In Level (2--3), the complete EER fluidized bed combustor (1.5 million Btu/hr) system was developed and tested. The goal or reducing SO{sub 2} emissions to 1.2 lb/10{sup 6} Btu, from high sulfur Ohio coal, was achieved by adding limestone with a Ca/S (coal) ratio of {approximately} 3.0. Finally, in Level (4), the proof-of-concept system, a 2.2 million Btu/hr unit was installed and successfully operated at Cedar Lane Farms, a commercial nursery in Ohio.

  5. Modeling the performance of the whole tree energy combustor

    SciTech Connect

    Bryden, K.M.; Ragland, K.W.

    1995-12-31

    A computational model has been developed for the deep, fixed bed whole-tree combustor gasifier which includes drying, pyrolysis, heat and mass transfer, char and volatile reactions. The lowest portion of the fuel bed is an oxidizing region and remainder of the fuel bed acts as a gasification and drying region. Heat release rates, temperature profiles, CO, CO{sub 2}, H{sub 2}O, hydrocarbon, and O{sub 2} profiles, and solid and gas velocity profiles are calculated as a function of the fuel properties and air inputs. Model results are compared to pilot scale tests of the whole-tree combustion/gasifier. The affect of operating parameters such as underfire air flow (3-12 ft/s), fuel moisture content (15-45%), and fuel bed height (8-16 ft) on the fuel feed rate, heat rate, heat release rate, temperature and velocity profiles, and. overfire air requirements is presented and discussed. Heat release rates range from 1 x 10{sup 6} to 4.5 x 10{sup 6} Btu/hr-ft{sup 2} depending on the conditions.

  6. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  7. Simulated Altitude Performance of Combustors for the Westinghouse 24C Jet Engine I-24C-2 Combustor

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J.; Bernardo, Everett; Schroeter, Thomas T.

    1948-01-01

    A Westinghouse 24C-2 combustor was investigated at conditions simulating operation of the 24C Jet engine at zero ram over ranges of altitude and engine speed. The investigation was conducted to determine the altitude operational limits, that is, the maximum altitude for various engine speeds at which an average combustor-outlet gas temperature sufficient for operation of the jet engine could be obtained. Information was also obtained regarding the character of the flames, the combustion efficiency, the combustor-outlet gas temperature and velocity distributions, the extent of afterburning, the flow characteristics of the fuel manifolds, the combustor inlet-to-outlet total-pressure drop, and the durability of the combustor basket. The results of the investigation indicated that the altitude operational limits for zero ram decreased from 12,000 feet at an engine speed of 4000 rpm to a minimum of 9000 feet at 6000 rpm, and thence increased to 49,000 feet at 12,000 rpm.. At altitudes below the operational limits, flames were essentially steady, but, at altitudes above the operational limits, flames were often cycling and either blew out or caused violent explosions and vibrations. At conditions on the altitude operational limits the type of combustion varied from steady to cycling with increasing fuel-air ratio and the reverse occurred with decreasing fuel-air ratio. In the region of operation investigated, the combustion efficiency ranged from 75 to 95 percent at altitudes below the operational limits and dropped to 55 percent or less at some altitudes above the operational limits. The deviations in the local combustor-outlet gas temperatures were within +20 to -30 percent of the mean combustor temperature rise for inlet-air temperatures at the low end of the range investigated, but became more uneven (up to +/-100 percent) with increasing inlet-air temperatures. The distribution of the combustor-outlet gas velocity followed a similar trend. Practically no

  8. Fatigue life prediction of liquid rocket engine combustor with subscale test verification

    NASA Astrophysics Data System (ADS)

    Sung, In-Kyung

    Reusable rocket systems such as the Space Shuttle introduced a new era in propulsion system design for economic feasibility. Practical reusable systems require an order of magnitude increase in life. To achieve this improved methods are needed to assess failure mechanisms and to predict life cycles of rocket combustor. A general goal of the research was to demonstrate the use of subscale rocket combustor prototype in a cost-effective test program. Life limiting factors and metal behaviors under repeated loads were surveyed and reviewed. The life prediction theories are presented, with an emphasis on studies that used subscale test hardware for model validation. From this review, low cycle fatigue (LCF) and creep-fatigue interaction (ratcheting) were identified as the main life limiting factors of the combustor. Several life prediction methods such as conventional and advanced viscoplastic models were used to predict life cycle due to low cycle thermal stress, transient effects, and creep rupture damage. Creep-fatigue interaction and cyclic hardening were also investigated. A prediction method based on 2D beam theory was modified using 3D plate deformation theory to provide an extended prediction method. For experimental validation two small scale annular plug nozzle thrusters were designed, built and tested. The test article was composed of a water-cooled liner, plug annular nozzle and 200 psia precombustor that used decomposed hydrogen peroxide as the oxidizer and JP-8 as the fuel. The first combustor was tested cyclically at the Advanced Propellants and Combustion Laboratory at Purdue University. Testing was stopped after 140 cycles due to an unpredicted failure mechanism due to an increasing hot spot in the location where failure was predicted. A second combustor was designed to avoid the previous failure, however, it was over pressurized and deformed beyond repair during cold-flow test. The test results are discussed and compared to the analytical and numerical

  9. Development of the control and ignition systems on a high pressure gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Valdez, Carlos Alejandro

    The ignition and control systems of a laboratory scale high-pressure gas turbine combustor were developed in the present work. This work provides a detailed description of the design, development and testing of the remote control system developed for a High Pressure Gas Turbine Combustor (HPTC). The combustor has the capability to operate at pressures up to 1.5 MPa and temperatures up to 2400 K. It is also designed for a maximum air and fuel flow rates of 81.93 g/s and 35.77 g/s respectively. The fuel used will be CH4 for the early experiments but it is designed to operate using a mixture of H2-CO with a hydrogen fuel composition variation of up to 30 percent. The HPTC also has optical accessibility capabilities in its combustion chamber with a converging nozzle that restricts the exhaust flow. It also has three circular ports that can be used as instrumentation ports to obtain real time data from the combustion chamber. LabVIEW was used as the controlling interface for the user. A detailed outline of the LabVIEW programming is also described. LabVIEW controlled the proportional valves (ball valves), and solenoid valves; it also provided the user with data from mass flow meters as well as pressure transducers. Both proportional and solenoid valves are 1.91 cm and can withstand pressures of up to 1551 kPa. Thermal mass flow meters were used to obtain the flow in the lines with a range from 200-1000 L/min with an accuracy of 1.5 percent. Pressure transducers with a range from 0 to 2068 kPa were also positioned on the lines in order to know the line pressures. The ignition system design, development and testing is also described with its integration to the High Pressure Gas Turbine Combustor. A modified spark plug was used to provide the igniter with an ignition source. A diffusion flame was used to ignite the main line using methane as the fuel that utilizes the air in the combustion chamber as the oxidizer. Testing included a functional test of the equipment, and

  10. C2 and CFB Genes in Age-Related Maculopathy and Joint Action with CFH and LOC387715 Genes

    PubMed Central

    Jakobsdottir, Johanna; Conley, Yvette P.; Weeks, Daniel E.; Ferrell, Robert E.; Gorin, Michael B.

    2008-01-01

    Background Age-related maculopathy (ARM) is a common cause of visual impairment in the elderly populations of industrialized countries and significantly affects the quality of life of those suffering from the disease. Variants within two genes, the complement factor H (CFH) and the poorly characterized LOC387715 (ARMS2), are widely recognized as ARM risk factors. CFH is important in regulation of the alternative complement pathway suggesting this pathway is involved in ARM pathogenesis. Two other complement pathway genes, the closely linked complement component receptor (C2) and complement factor B (CFB), were recently shown to harbor variants associated with ARM. Methods/Principal Findings We investigated two SNPs in C2 and two in CFB in independent case-control and family cohorts of white subjects and found rs547154, an intronic SNP in C2, to be significantly associated with ARM in both our case-control (P-value 0.00007) and family data (P-value 0.00001). Logistic regression analysis suggested that accounting for the effect at this locus significantly (P-value 0.002) improves the fit of a genetic risk model of CFH and LOC387715 effects only. Modeling with the generalized multifactor dimensionality reduction method showed that adding C2 to the two-factor model of CFH and LOC387715 increases the sensitivity (from 63% to 73%). However, the balanced accuracy increases only from 71% to 72%, and the specificity decreases from 80% to 72%. Conclusions/Significance C2/CFB significantly influences AMD susceptibility and although accounting for effects at this locus does not dramatically increase the overall accuracy of the genetic risk model, the improvement over the CFH-LOC387715 model is statistically significant. PMID:18493315

  11. Performance gains by using heated natural-gas fuel in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    A full-scale annular turbojet combustor was tested with natural gas fuel heated from ambient temperature to 800 K (980 F). In all tests, heating the fuel improved combustion efficiency. Two sets of gaseous fuel nozzles were tested. Combustion instabilities occurred with one set of nozzles at two conditions: one where the efficiency approached 100 percent with the heated fuel; the other where the efficiency was very poor with the unheated fuel. The second set of nozzles exhibited no combustion instability. Altitude relight tests with the second set showed that relight was improved and was achievable at essentially the same condition as blowout when the fuel temperature was 800 K (980 F).

  12. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  13. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  14. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    DOEpatents

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  15. Effects of radial and circumferential inlet velocity profile distortions on performance of a short-length double-annular ram induction combustor

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Perkins, P. J.

    1972-01-01

    Inlet air velocity profile tests were conducted on a full-scale short-length 102-centimeter-diameter annual combustor designed for advanced gas turbine engine applications. The inlet profiles studied include radial distortions that were center peaked, and tip peaked, as well as a circumferential distortion which was center peaked for one-third of the circumference and flat for the other two-thirds. An increase in combustor pressure loss was the most significant effect of the radial air velocity distortions. With the circumferential distortion, exit temperature pattern factor doubled when compared to a flat velocity profile.

  16. Core Noise: Overview of Upcoming LDI Combustor Test

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  17. CFD simulation of hydrodynamic characteristics on pulse combustor

    NASA Astrophysics Data System (ADS)

    Rahmatika, Annie Mufyda; Salihat, Efaning; Tikasari, Rachma; Widiyastuti, W.; Winardi, Sugeng

    2016-02-01

    The purpose of this research is to study the simulation of the combustion characteristics and performances in pulse combustor using different excess air composition and different pulse combustor geometry using CFD (Computational Fluid Dynamics) software Ansys FLUENT 15.0. The distribution of temperature, pressure, and fluid velocity using 2D axisymmetric with k-ɛ turbulence models. Two kind geometries of pulse combustors were selected and compared their performance. The first combustor, called geometry A has expanded tail-pipe with diameter 10 mm expanded to 20 mm with length 86 mm. The second combustor, called geometry B has cylinder tailpipe which 10 mm in diameter and 200 mm in length. Air and propane were selected as oxidizer and fuel, respectively, at temperature 27°C and pressure 1 atm with varied excess air of 0%, 23%, 200%, and 500%. The simulation result shows that the average temperature of outflow gas combustion decreased with increasing the excess air. On the other hand, the pressure amplitude increased with increasing the excess air. Amplitude of presure for excess air of 0%, 23%, 200% and 500% were 14,976.03 Pa; 26,100.19 Pa; 41,529.02 Pa; and 85,019.01 Pa, respectively. The geometry of pulse combustor affected the performance of gas combustion produced. Geometry A showed that the energy produced in the combustion cycle amounts to 538,639 to 958,639 J/kg. On the other hand, geometry B showed that the generated energy was in the range 864,502 to 1,280,814 J/kg. Combustor with geometry B provided more effective combustion performance rather than B caused by its larger heat transfer area sectional area.

  18. Shock-tunnel combustor testing for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Loomis, Mark P.

    1994-01-01

    Proposed configurations for the next generation of transatmospheric vehicles will rely on air breathing propulsion systems during all or part of their mission. At flight Mach numbers greater than about 7 these engines will operate in the supersonic combustion ramjet mode (scramjet). Ground testing of these engine concepts above Mach 8 requires high pressure, high enthalpy facilities such as shock tunnels and expansion tubes. These impulse, or short duration facilities have test times on the order of a millisecond, requiring high speed instrumentation and data systems. One such facility ideally suited for scramjet testing is the NASA-Ames 16-Inch shock tunnel, which over the last two years has completed a series of tests for the NASP (National Aero-Space Plane) program at simulated flight Mach numbers ranging from 12-16. The focus of the experimental programs consisted of a series of classified tests involving a near-full scale hydrogen fueled scramjet combustor model in the semi-free jet method of engine testing whereby the compressed forebody flow ahead of the cowl inlet is reproduced (see appendix A). The AIMHYE-1 (Ames Integrated Modular Hypersonic Engine) test entry for the NASP program was completed in April 1993, while AIMHYE-2 was completed in May 1994. The test entries were regarded as successful, resulting in some of the first data of its kind on the performance of a near full scale scramjet engine at Mach 12-16. The data was distributed to NASP team members for use in design system verification and development. Due to the classified nature of the hardware and data, the data reports resulting from this work are classified and have been published as part of the NASP literature. However, an unclassified AIAA paper resulted from the work and has been included as appendix A. It contains an overview of the test program and a description of some of the important issues.

  19. Numerical Modelling of Pulse Combustor Tail Pipe Heat Transfer.

    NASA Astrophysics Data System (ADS)

    Thyageswaran, Sridhar

    1994-01-01

    Computational fluid dynamics analysis was used to perform multi-dimensional simulations of flow in a pulse combustor tail pipe. The tail pipe flow is complicated by periodic reversals amid large rates of turbulent heat transfer. The primary objectives were to understand the mechanisms causing heat transfer enhancement under pulsing flow conditions, and to develop a flow-based model capable of predicting heat transfer rates over a broad range of operating conditions. The experiments of Dec et al. (Combustion and Flame, 77, 80 and 83), in a square cross-section tail pipe, were used as the reference. The research focussed on modelling the near-wall turbulence transport, by treating the tail pipe as a two-dimensional channel. An experimental baseline pulsing case was simulated using the wall-function model, and an alternative near -wall turbulence model known as the Boundary Layer Wall Model. The latter uses an algebraically prescribed wall layer turbulence length scale, and allows much greater phase resolution between the near-wall and the bulk flow. Heat transfer predictions from these quasi-steady models compare poorly with the time-resolved measurements, and fail to match the observed increase in the instantaneous heat transfer during times of flow reversal. An unsteady wall layer model, with a robust prescription for the length scale damping factor, A^ {+}, was developed. Allowing A ^{+} to vary with the wall layer parameter, u^{+}p ^{+}, helps to model the effects of adverse and favourable pressure gradients on the wall layer turbulence during a pulsation cycle. A sequence of lag equations is also used, to incorporate the delayed response of the wall layer turbulence to the time-varying pressure gradient. Simulations of many operating conditions, spanning a range of pulsation frequencies, amplitudes and mean flow Reynolds numbers, indicate that the improved model is capable of capturing the essential trends observed by Dec et al.

  20. Formed platelet combustor liner construction feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Janke, D. E.

    1992-01-01

    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase

  1. Low NO.sub.x combustor

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A combustor includes a dome assembly having radially outer and inner liners joined thereto and defining therebetween a combustion zone. The dome assembly includes at least one annular dome having a pair of axially extending first flanges between which are disposed a plurality of circumferentially spaced apart carburetors for discharging a fuel/air mixture into the combustion zone for generating combustion gases. An annular heat shield includes a pair of axially extending legs integrally joined to a radially extending face in a generally U-shaped configuration, with the face including a plurality of circumferentially spaced apart ports disposed concentrically with perspective ones of the carburetors for allowing the fuel/air mixture to be discharged therefrom through the heat shield. At least one of the heat shield legs includes a plurality of circumferentially spaced apart mounting holes disposed adjacent to a respective one of the dome flanges, and a plurality of mounting pins are fixedly joined to the dome flange and extend radially through respective ones of the mounting holes without interference therewith for allowing unrestrained thermal movement between the heat shield and the dome while supporting the heat shield against axial pressure loads thereon. In a preferred embodiment, the dome assembly includes three domes having respective ones of the heat shield, and respective baffles are spaced from the heat shields for providing impingement cooling thereof.

  2. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  3. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  4. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  5. Analysis of Regen Cooling in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  6. Heat transfer in circulating fluidized bed combustor

    SciTech Connect

    Bucak, O.; Dogan, O.M.; Uysal, B.Z.

    1999-07-01

    The importance of fluidized bed combustion in utilizing the energy of especially low quality coals is widely accepted. Among various fluidized bed combustion technologies, circulating fluidized beds are preferred as a result of the efforts to get higher combustion efficiencies. The aim of the present research was to investigate the applicability of this technology to Turkish lignites. To achieve this object a 6.5 m tall pilot circulating fluidized bed combustor with 155 mm diameter and all the auxiliary equipment were designed, constructed and tested using Seyitomer lignite of 0.9--2.38 mm in size. Heat transfer from the bed to the water cooling jackets was examined to recover the combustion energy. The inside heat transfer coefficient was determined to be around 121 W/m{sup 2} K for the suspension density of 20--55 kg/m{sup 3}. The agreement of the experimental findings with theoretical estimations was also checked. Furthermore, the thermal efficiency of the system for the heat recovered was found to be 63%.

  7. External combustor for gas turbine engine

    DOEpatents

    Santanam, Chandran B.; Thomas, William H.; DeJulio, Emil R.

    1991-01-01

    An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

  8. Large eddy simulation of premixed and non-premixed combustion in a Stagnation Point Reverse Flow combustor

    NASA Astrophysics Data System (ADS)

    Undapalli, Satish

    A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need

  9. Ceramic composite liner material for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.; Walker, C. L.; Norgren, C. T.

    1984-01-01

    Advanced commercial and military gas turbine engines may operate at combustor outlet temperatures in excess of 1920 K (3000 F). At these temperatures combustors liners experience extreme convective and radiative heat fluxes. The ability of a plasma sprayed ceramic coating to reduce liner metal temperature has been recognized. However, the brittleness of the ceramic layer and the difference in thermal expansion with the metal substrate has caused cracking, spalling and some separation of the ceramic coating. Research directed at turbine tip seals (or shrouds) has shown the advantage of applying the ceramic to a compliant metal pad. This paper discusses recent studies of applying ceramics to combustor liners in which yttria stabilized zirconia plasma sprayed on compliant metal substrates which were exposed to near stoichiometric combustion, presents performance and durability results, and describes a conceptual design for an advanced, small gas turbine combustor. Test specimens were convectively cooled or convective-transpiration cooled and were evaluated in a 10 cm square flame tube combustor at inlet air temperatures of 533 K (500 F) and at a pressure of 0.5 MPa (75 psia). The ceramics were exposed to flame temperatures in excess of 2000 K (3320 F). Results appear very promising with all 30 specimens surviving a screening test and one of two specimens surviving a cyclic durability test.

  10. Testing of felt-ceramic materials for combustor applications

    NASA Technical Reports Server (NTRS)

    Venkat, R. S.; Roffe, G.

    1983-01-01

    The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.

  11. Flame structures in the pressurized methane-air combustor

    SciTech Connect

    Yamamoto, Tsuyoshi; Miyazaki, Tomonaga, Furuhata, Tomohiko; Arai, Norio

    1998-07-01

    This study has been carried out in order to investigate the applicability of a pressurized and fuel-rich burner at a first stage combustor for a newly proposed chemical gas turbine system. The flammability limits, exhaust gas composition and the NO{sub x} emission characteristics under the pressurized conditions of 1.1--4.1 MPa have been investigated in a model combustor. This paper focuses on the influence of pressure and F/A equivalence ratio on flame structures of pressurized combustion with methane and air to obtain detailed data for designing of fuel-rich combustor for gas turbine application. The flame under fuel-rich condition and pressure of 1 MPa showed underventilated structure like other atmospheric fuel-rich flames while the flame under pressure over 1.5 MPa had shapes as fuel-lean flame. The flame becomes longer as the pressure was increased under the fuel-lean conditions, which under fuel-rich condition the influence of pressure on flame length was smaller in comparison with the flame under fuel-lean conditions. These results give an opportunity for developing smaller combustor under fuel-rich and pressurized condition compared to fuel-lean one. Numerical simulation has been done for defining the temperature profile in the model combustor using the k-{var{underscore}epsilon} turbulence model and three-step reaction model. The comparison between theoretical results and experimental data showed fair agreements.

  12. Prediction of hydrodynamic properties of mixed-particle systems and theoretical analysis of loop pressure profile in a CFB unit

    SciTech Connect

    Das, M.; Meikap, B.C.; Saha, R.K.

    2008-07-15

    The hydrodynamic behaviors of mixed system of particles were investigated in a circulating fluidized bed (CFB) unit consisting of fast column (riser) with an inner diameter of 0.1016 m and a height of 5.62 m. Particle mixtures containing a Geldart group-A-like fluid catalytic cracking (FCC) catalyst with group-B-like sand and iron ore with coal were used to study the hydrodynamic features including static pressure, voidage, and loop pressure profile. The mixed system consisting of FCC catalyst and sand contained 20, 50, and 80 mass % sand, and the coal-iron ore mixture contained 80 mass % coal. The superficial air velocity ranged between 2.01 and 4.681 m/s, and the corresponding mass fluxes were 12.5-50 kg/(m{sup 2} s). A comparison of the available experimental values for static pressure profiles at different operating conditions for mixed-particle systems shows good agreement with those predicted from the single-particle systems. Using experimental data on the loop pressure balance, a simplified theoretical analysis was performed to predict the pressure profile in the CFB loop. The deviations between the two sets of values are within reasonable limits of accuracy.

  13. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  14. 40 CFR 60.56a - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for municipal waste combustor... Performance for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.56a Standards for municipal waste combustor operating practices....

  15. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  16. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  17. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  18. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for municipal waste combustor... Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced After... Standards for municipal waste combustor operator training and certification. (a) No later than the date...

  19. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  20. 40 CFR 60.56a - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... Performance for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.56a Standards for municipal waste combustor operating practices....

  1. 40 CFR 60.36b - Emission guidelines for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor fugitive ash emissions. 60.36b Section 60.36b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions. For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions...

  2. 40 CFR Table 3 to Subpart Fff of... - Municipal Waste Combustor Operating Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Operating Requirements Municipal waste combustor technology Carbon monoxide emissions level (parts per... combustor 200 24 a Measured at the combustor outlet in conjunction with a measurement of oxygen concentration, corrected to 7 percent oxygen, dry basis. Calculated as an arithmetic average. b Averaging...

  3. Advanced Low NO Sub X Combustors for Supersonic High-Altitude Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.

    1975-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO sub x, of three advanced aircraft combustor concepts at a simulated, high altitude cruise condition. The three combustor designs, all members of the lean reaction, premixed family, are the Jet Induced Circulation (JIC) combustor, the Vortex Air Blast (VAB) combustor, and a catalytic combustor. They were rig tested in the form of reverse flow can combustors in the 0.127 m. (5.0 in.) size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO sub x level of 1.1 gm NO2/kg fuel with essentially 100% combustion efficiency at the simulated cruise combustor condition of 50.7 N/sq cm (5 atm), 833 K (1500 R) inlet pressure and temperature respectively and 1778 K (3200 R) outlet temperature on Jet-A1 fuel. Early tests on the catalytic combustor were unsuccessful due to a catalyst deposition problem and were discontinued in favor of the JIC and VAB tests. In addition emissions data were obtained on the JIC and VAB combustors at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.

  4. Combustor with two stage primary fuel assembly

    DOEpatents

    Sharifi, Mehran; Zolyomi, Wendel; Whidden, Graydon Lane

    2000-01-01

    A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.

  5. Advanced low emissions catalytic combustor program at General Electric

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The Advanced Low Emissions Catalytic Combustors Program (ALECC) is being undertaken to evaluate the feasibility of employing catalytic combustion technology in aircraft gas turbine engines as a means to control emission of oxides of nitrogen during subsonic stratospheric cruise operation. The ALECC Program is being conducted in three phases. The first phase, which was completed in November, 1978, consisted of a design study to identify catalytic combustor designs having the greatest potential to meet the emissions and performance goals specified. The primary emissions goal of this program was to obtain cruise NO emissions of less than 1g/kg (compared with levels of 15 to 20 g/x obtained with current designs)/ However, good overall performance and feasibility for engine development were heavily weighted in the evaluation of combustor designs.

  6. Gas turbine engine combustor can with trapped vortex cavity

    DOEpatents

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  7. Low NO(x) heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1979-01-01

    The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  8. National Combustion Code: A Multidisciplinary Combustor Design System

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Liu, Nan-Suey

    1997-01-01

    The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.

  9. Analytical fuel property effects: Small combustors, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, T. G.; Monty, J. D.; Morton, H. L.

    1985-01-01

    The effects of non-standard aviation fuels on a typical small gas turbine combustor were studied and the effectiveness of design changes intended to counter the effects of these fuels was evaluated. The T700/CT7 turboprop engine family was chosen as being representative of the class of aircraft power plants desired for this study. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. No. 2 diesel fuel was also evaluated in this program. Results demonstrated the anticipated higher than normal smoke output and flame radiation intensity with resulting increased metal temperatures on the baseline T700 combustor. Three new designs were evaluated using the non standard fuels. The three designs incorporated enhanced cooling features and smoke reduction features. All three designs, when burning the broad specification fuels, exhibited metal temperatures at or below the baseline combustor temperatures on JP-5. Smoke levels were acceptable but higher than predicted.

  10. Low NO/x/ heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1980-01-01

    The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  11. Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor.

    PubMed

    Chakravarthy, Satyanarayanan R; Shreenivasan, Obla J; Boehm, Benjamin; Dreizler, Andreas; Janicka, Johannes

    2007-07-01

    This paper reports work on a nonpremixed half-dump combustor, in which methane is injected at the backward-facing step, and mixes and burns with the air flowing past the step in the unsteady recirculation zone. The flow and geometric parameters are widely varied, to gradually change from conditions of low-amplitude noise to excitation of high-amplitude discrete tones. The purpose of the work is to focus on the transition from the former condition to the latter, and to mark the onset of instability. Dimensionless groups such as the Helmholtz and Strouhal numbers are formed based on the observed dominant frequencies, whose variation with the air flow Reynolds number is used to identify the oscillations as those due to the natural acoustic modes or the vortex shedding process. High-speed chemiluminescence imaging reveals shedding of vortical structures in the flame zone. With variation in the conditions, flow-acoustic lock-on and transition from one vortex shedding mode to another is marked by nonlinearity in the corresponding amplitude variations. Such conditions are identified as the onset of instability in terms of the ratio of the flow time scale to the acoustic time scale and mapped against the operating fuel-air equivalence ratio of the combustor. PMID:17614471

  12. Development of an advanced high efficiency coal combustor for boiler retrofit. Task 1, Cold flow burner development: Final report

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, ``Cold Flow Burner Development``. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  13. Characterization of melt-infiltrated SiC/SiC composite combustor liners using meso- and micro-NDE techniques

    SciTech Connect

    Ellingson, W. A.; Sun, J. G.; More, K. L.; Hines, R.

    2000-01-26

    Melt-infiltrated ceramic matrix composite SiC/SiC material systems are under development for use in combustor liners for low-emission advanced gas turbines. Uncertainty in repeatability of processing methods for these large components (33--76 cm diameter), and hence possible reduced reliability for the end user. This requires that appropriate test methods, at both meso- and micro-scale, be used to ensure that the liners are acceptable for use. Nondestructive evaluation (NDE) methods, if demonstrated to reliably detect changes caused by processing, would be of significant benefit to both manufacturer and end user. This paper describes the NDE methods and their applications in detecting a process upset in a melt-infiltrated 33 cm combustor liner and how high-resolution scanning electron microscopy was used to verify the NDE data.

  14. Combustor flow computations in general coordinates with a multigrid method

    NASA Astrophysics Data System (ADS)

    Shyy, Wei; Braaten, Mark E.

    The computational approach presented for single-phase combusting turbulent flowfields balances the requirements of complex physical and chemical flow interactions with those of resolving the three-dimensional geometrical constraints of the combustor contours, film cooling slots, and circular dilution holes. Attention is given to the three-dimensional grid-generation algorithm, the two-dimensional adaptive grid method applied to recirculating turbulent reacting flows, and theory/data assessments for three-dimensional combusting flows in an annular gas turbine combustor.

  15. Preliminary studies of combustor sensitivity to alternative fuels

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.

    1980-01-01

    Combustion problems associated with using alternative fuels ground power and aeropropulsion applications were studied. Rectangular sections designed to simulate large annular combustor test conditions were examined. The effects of using alternative fuels with reduced hydrogen content, increased aromatic content, and a broad variation in fuel property characteristics were also studied. Data of special interest were collected which include: flame radiation characteristics in the various combustor zones; the correponding increase in liner temperature from increased radiant heat flux; the effect of fuel bound nitrogen on oxides of nitrogen (NO sub x) emissions; and the overall total effect of fuel variations on exhaust emissions.

  16. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  17. Variable volume combustor with center hub fuel staging

    DOEpatents

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  18. Method for operating a combustor in a fuel cell system

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.

    2002-01-01

    In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.

  19. Large-eddy simulations of flows in a ramjet combustor

    NASA Astrophysics Data System (ADS)

    Jou, Wen-Huei; Menon, Suresh

    The oscillatory cold flow in a ramjet combustor configuration is presently addressed by a numerical simulation method which gives attention to the interaction between the flowfield's vorticity and acoustic components, when the reduced frequency of the flow, based on the speed of sound, is of the order of unity. The numerical model has indicated that the combustor's interior must be isolated from the external region region by a choked nozzle. The numerical simulations thus obtained are able to exclude the effects of artificially imposed outflow-boundary conditions. The unsteady flow fields near the shear layer separation point in the nozzle region are investigated.

  20. Adaptive Instability Suppression Controls in a Liquid-fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.

    2002-01-01

    An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig.

  1. Numerical Simulations of Static Tested Ramjet Dump Combustor

    NASA Astrophysics Data System (ADS)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    The flow field of a Liquid Fuel Ram Jet engine side dump combustor with kerosene fuel is numerically simulated using commercial CFD code CFX-11. Reynolds Averaged 3-D Navier-Stokes equations are solved alongwith SST turbulence model. Single step infinitely fast reaction is assumed for kerosene combustion. The combustion efficiency is evaluated in terms of the unburnt kerosene vapour leaving the combustor. The comparison of measured pressures with computed values show that the computation underpredicts (~5 %) pressures for non reacting cases but overpredicts (9-7 %) for reacting cases.

  2. Stagnation point reverse flow combustor for a combustion system

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Hashmonay, Ben-Ami (Inventor)

    2007-01-01

    A combustor assembly includes a combustor vessel having a wall, a proximate end defining an opening and a closed distal end opposite said proximate end. A manifold is carried by the proximate end. The manifold defines a combustion products exit. The combustion products exit being axially aligned with a portion of the closed distal end. A plurality of combustible reactant ports is carried by the manifold for directing combustible reactants into the combustion vessel from the region of the proximate end towards the closed distal end.

  3. Low NO/x/ and fuel flexible gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Decorso, S. M.; Vermes, G.; Carl, D.; Havener, W. J.; Schwab, J.; Notardonato, J.

    1981-01-01

    The feasibility of various low NO(x) emission gas turbine combustor configurations was evaluated. The configurations selected for fabrication and testing at full pressure and temperature involved rich-lean staged combustion utilizing diffusion flames, rich-lean prevaporized/premix flames, and staged catalytic combustion. The test rig consisted of a rich burner module, a quench module, and a lean combustion module. Test results are obtained for the combustor while burning petroleum distillate fuel, a coal derived liquid, and a petroleum residual fuel. The results indicate that rich-lean diffusion flames with low fuel-bound nitrogen conversion are achievable with very high combustion efficiencies.

  4. Prediction of Solids Circulation Rate of Cork Particles in an Ambient-Pressure Pilot-Scale Circulating Fluidized Bed

    SciTech Connect

    Huang, Yue; Turton, Richard; Famouri, Parviz; Boyle, Edward J.

    2009-01-07

    Circulating fluidized beds (CFB) are currently used in many industrial processes for noncatalytic and catalytic because its effective control is the key to smooth operation of a CFB system. This paper presents a method for solids flow metering from pressure drop measurements in the standpipe dense phase. A model based on the Ergun equation is developed to predict the solids flow rate and voidage in the dense phase of the standpipe. The profile of the solids flow rate under unsteady state is also presented. With the use of this method, the dynamic response time at different locations along the standpipe of a pilot-scale fluidized bed operating at ambient conditions with 812 mu m cork particles is estimated successfully. Through the use of a pressure balance analysis, solids flow models for the standpipe, riser, and other sections of the flow loop are combined to give an integrated CFB model.

  5. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  6. Measurement and analysis of an unstable model rocket combustor

    NASA Astrophysics Data System (ADS)

    Sisco, James C.

    Experimental data from a longitudinally unstable uni-element model rocket combustor are analyzed using two levels of modeling. Linear acoustic model results showed that perfect acoustic coupling between the injector oxidizer tube and the combustion chamber is not necessary to produce unstable combustion. At a chamber length of 50.8 cm (20-in) perfect coupling was predicted at the chamber second longitudinal mode frequency, but tests were unstable at the first longitudinal mode. Linear growth rates were iteratively determined by fitting the output from a four-mode, longitudinal stability model including nonlinear gas dynamics to the temporal and spectral characteristics of measured pressure oscillations from a single unstable test. Results showed that both the first and second longitudinal modes must be linearly unstable. Acoustically induced vortex shedding was postulated as the driving instability mechanism in the experiment. Two modified experiments were designed: the first had a decreased injector face width, an assumed controlling geometry for the mechanism, and the other was outfitted with an array of point light emission measurements. Test data showed that the injector face width had a drastic influence on stability. At a chamber length of 25.4 cm (10-in) and injector face width of 0.76 cm (0.30-in) the magnitude of pressure oscillations increased to 40% of mean chamber pressure from 2% at a face width of 1.1 cm (0.43-in). Highly unstable tests showed distinct phase relationships between light emission and pressure and their spatial variation indicated the propagation of a light source. The location of combustion driving varied with chamber length. The oscillation decrement, a useful parameter for estimating stability margin from dynamic pressure, is described along with its application to full-scale test data. Four injector configurations shown to have noticeably different oscillation decrements were tested to verify the uni-element scaling methodology. The

  7. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  8. Small gas turbine combustor experimental study: Compliant metal/ceramic liner and performance evaluation

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.; Norgren, C. T.

    1986-01-01

    Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.

  9. Computations of soot and and NO sub x emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Srivatsa, S. K.

    1982-01-01

    An analytical program was conducted to compute the soot and NOx emissions from a combustor and the radiation heat transfer to the combustor walls. The program involved the formulation of an emission and radiation model and the incorporation of this model into the Garrett 3-D Combustor Perfomance Computer Program. Computations were performed for the idle, cruise, and take-off conditions of a JT8D can combustor. The predicted soot and NOx emissions and the radiation heat transfer to the combustor walls agree reasonably well with the limited experimental data available.

  10. Hypersonic research engine project. Phase 2: Some combustor test results of NASA aerothermodynamic integration model

    NASA Technical Reports Server (NTRS)

    Sun, Y. H.; Gaede, A. E.; Sainio, W. C.

    1975-01-01

    Combustor test results of the NASA Aerothermodynamic Integration Model are presented of a ramjet engine developed for operation between Mach 3 and 8. Ground-based and flight experiments which provide the data required to advance the technology of hypersonic air-breathing propulsion systems as well as to evaluate facility and testing techniques are described. The engine was tested with synthetic air at Mach 5, 6, and 7. The hydrogen fuel was heated to 1500 R prior to injection to simulate a regeneratively cooled system. Combustor efficiencies up to 95 percent at Mach 6 were achieved. Combustor process in terms of effectiveness, pressure integral factor, total pressure recovery and Crocco's pressure-area relationship are presented and discussed. Interactions between inlet-combustor, combustor stages, combustor-nozzle, and the effects of altitude, combustor step, and struts are observed and analyzed.

  11. Non-reacting flow visualization of supersonic combustor based on cavity and cavity-strut flameholder

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Liang, Jianhan; Zhao, Yuxin

    2016-04-01

    Nano-particle planer laser scattering and particle image velocimetry technology are employed to observe the flow field of scramjet combustors based on cavity and cavity-strut flameholder. Density field and velocity distribution inside combustors are obtained. Mainstream fluid enters into cavity nearby side wall in experimental observation because side wall shock waves interact with bottom wall boundary layer. Cavity fluid is entrained into mainstream in the middle of combustor meanwhile. Flow past cavity displays obvious three dimensional characteristics in both combustors. But cavity-strut combustor displays asymmetrical flow field because of strut configuration. Mass exchange between mainstream and cavity fluid is evaluated by statistic mass flow rate into cavity. Mass flow rate near side wall is raised to 6.62 times of the value in the middle of cavity combustor while it is 5.1 times in cavity-strut combustor. Further study is needed to injection strategies and realistic flow characteristics on condition of combustion.

  12. MUNICIPAL SOLID WASTE (MSW) COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  13. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  14. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  15. DEVELOPMENT OF GOOD COMBUSTION PRACTICE FOR MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The paper summarizes the rationale for EPA's good combustion practice (GCP) strategy. OTE: The EPA is developing new air pollution rules for all new and existing municipal waste combustors (MWCs), rules requiring all MWCs to use GCP. The goals of GCP are to maximize furnace destr...

  16. Using the NASA GRC Sectored-One-Dimensional Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Mehta, Vishal R.

    2014-01-01

    The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.

  17. Performance characteristics of a slagging gasifier for MHD combustor systems

    NASA Technical Reports Server (NTRS)

    Smith, K. O.

    1979-01-01

    The performance of a two stage, coal combustor concept for magnetohydrodynamic (MHD) systems was investigated analytically. The two stage MHD combustor is comprised of an entrained flow, slagging gasifier as the first stage, and a gas phase reactor as the second stage. The first stage was modeled by assuming instantaneous coal devolatilization, and volatiles combustion and char gasification by CO2 and H2O in plug flow. The second stage combustor was modeled assuming adiabatic instantaneous gas phase reactions. Of primary interest was the dependence of char gasification efficiency on first stage particle residence time. The influence of first stage stoichiometry, heat loss, coal moisture, coal size distribution, and degree of coal devolatilization on gasifier performance and second stage exhaust temperature was determined. Performance predictions indicate that particle residence times on the order of 500 msec would be required to achieve gasification efficiencies in the range of 90 to 95 percent. The use of a finer coal size distribution significantly reduces the required gasifier residence time for acceptable levels of fuel use efficiency. Residence time requirements are also decreased by increased levels of coal devolatilization. Combustor design efforts should maximize devolatilization by minimizing mixing times associated with coal injection.

  18. Assessment, development and application of combustor aerothermal models

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Mongia, H. C.; Mularz, E. J.

    1988-01-01

    The gas turbine combustion system design and development effort is an engineering exercise to obtain an acceptable solution to the conflicting design trade-offs between combustion efficiency, gaseous emissions, smoke, ignition, restart, lean blowout, burner exit temperature quality, structural durability, and life cycle cost. For many years, these combustor design trade-offs have been carried out with the help of fundamental reasoning and extensive component and bench testing, backed by empirical and experience correlations. Recent advances in the capability of computational fluid dynamics codes have led to their application to complex 3-D flows such as those in the gas turbine combustor. A number of U.S. Government and industry sponsored programs have made significant contributions to the formulation, development, and verification of an analytical combustor design methodology which will better define the aerothermal loads in a combustor, and be a valuable tool for design of future combustion systems. The contributions made by NASA Hot Section Technology (HOST) sponsored Aerothermal Modeling and supporting programs are described.

  19. Advanced catalytic combustors for low pollutant emissions, phase 1

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.

  20. LEVEL 2 CHEMICAL ANALYSIS OF FLUIDIZED-BED COMBUSTOR SAMPLES

    EPA Science Inventory

    The report gives results of a Level 1 data evaluation and prioritization and the Level 2 environmental assessment (EA) chemical data acquired on a set of fluidized-bed combustor (FBC) particulate samples. The Level 2 analysis followed the approach described in 'Approach to Level ...