Science.gov

Sample records for scale performance studies

  1. Small-Scale Performance Testing for Studying New Explosives

    SciTech Connect

    Gagliardi, F J; Chambers, R D; Tran, T D

    2005-04-29

    The development of new high-explosive (HE) formulations involves characterizing their safety and performance. Small-scale experiments requiring only a small amount of explosives are of interest because they can facilitate development while minimizing hazards and reducing cost. A detonation-spreading, dent test, called the Floret test, was designed to obtain performance data for new explosives. It utilizes the detonation of about a 1.0 g sample of HE, initiated by an accelerated aluminum flyer. Upon impact, the HE sample detonates and a copper witness plate absorbs the ensuing shock wave. The dent of the plate is then measured and correlated to the energetic output of the HE. Additionally, the dent measurement can be used to compare the performance of different explosives. The Floret test is beneficial because it quickly returns important performance information, while requiring only a small explosive sample. This work will explain the Floret test and discuss some exemplary results.

  2. Experimental study of full-scale iced-airfoil aerodynamic performance using sub-scale simulations

    NASA Astrophysics Data System (ADS)

    Busch, Greg T.

    Determining the aerodynamic effects of ice accretion on aircraft surfaces is an important step in aircraft design and certification. The goal of this work was to develop a complete sub-scale wind tunnel simulation methodology based on knowledge of the detailed iced-airfoil flowfield that allows the accurate measurement of aerodynamic penalties associated with the accretion of ice on an airfoil and to validate this methodology using full-scale iced-airfoil performance data obtained at near-flight Reynolds numbers. In earlier work, several classifications of ice shape were developed based on key aerodynamic features in the iced-airfoil flowfield: ice roughness, streamwise ice, horn ice, and tall and short spanwise-ridge ice. Castings of each of these classifications were acquired on a full-scale NACA 23012 airfoil model and the aero-dynamic performance of each was measured at a Reynolds number of 12.0 x 106 and a Mach number = 0.20. In the current study, sub-scale simple-geometry and 2-D smooth simulations of each of these castings were constructed based on knowledge of iced-airfoil flowfields. The effects of each simulation on the aerodynamic performance of an 18-inch chord NACA 23012 airfoil model was measured in the University of Illinois 3 x 4 ft. wind tunnel at a Reynolds number of 1.8 x 106 and a Mach number of 0.18 and compared with that measured for the corresponding full-scale casting at high Reynolds number. Geometrically-scaled simulations of the horn-ice and tall spanwise-ridge ice castings modeled C l,maxto within 2% and Cd,min to within 15%. Good qualitative agreement in the Cp distributions suggests that important geometric features such as horn and ridge height, surface location, and angle with respect to the airfoil chordline were appropriately modeled. Geometrically-scaled simulations of the ice roughness, streamwise ice, and short-ridge ice tended to have conservative C l,max and Cd. The aerodynamic performance of simulations of these types of

  3. Evaluating Large-Scale Studies to Accurately Appraise Children's Performance

    ERIC Educational Resources Information Center

    Ernest, James M.

    2012-01-01

    Educational policy is often developed using a top-down approach. Recently, there has been a concerted shift in policy for educators to develop programs and research proposals that evolve from "scientific" studies and focus less on their intuition, aided by professional wisdom. This article analyzes several national and international educational…

  4. A numerical study of scale effects on performance of a tractor type podded propeller

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Kyu; Park, Hyoung-Gil; Kim, Hyoung-Tae

    2014-06-01

    In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called `drag ratio', which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

  5. A Simulation Study on the Performance of Four Multidimensional IRT Scale Linking Methods

    ERIC Educational Resources Information Center

    Wei, Youhua

    2008-01-01

    Scale linking is the process of developing the connection between scales of two or more sets of parameter estimates obtained from separate test calibrations. It is the prerequisite for many applications of IRT, such as test equating and differential item functioning analysis. Unidimensional scale linking methods have been studied and applied…

  6. Updating the Cognitive Performance Scale.

    PubMed

    Morris, John N; Howard, Elizabeth P; Steel, Knight; Perlman, Christopher; Fries, Brant E; Garms-Homolová, Vjenka; Henrard, Jean-Claude; Hirdes, John P; Ljunggren, Gunnar; Gray, Len; Szczerbińska, Katarzyna

    2016-01-01

    This study presents the first update of the Cognitive Performance Scale (CPS) in 20 years. Its goals are 3-fold: extend category options; characterize how the new scale variant tracks with the Mini-Mental State Examination; and present a series of associative findings. Secondary analysis of data from 3733 older adults from 8 countries was completed. Examination of scale dimensions using older and new items was completed using a forward-entry stepwise regression. The revised scale was validated by examining the scale's distribution with a self-reported dementia diagnosis, functional problems, living status, and distress measures. Cognitive Performance Scale 2 extends the measurement metric from a range of 0 to 6 for the original CPS, to 0 to 8. Relating CPS2 to other measures of function, living status, and distress showed that changes in these external measures correspond with increased challenges in cognitive performance. Cognitive Performance Scale 2 enables repeated assessments, sensitive to detect changes particularly in early levels of cognitive decline. PMID:26251111

  7. Scaling formula of ICF ignition targets and study of targets optimized in stability performance

    NASA Astrophysics Data System (ADS)

    Li, Xin; Dai, Zhensheng; Zheng, Wudi

    2014-10-01

    LPI and RTI are the two main ingredients affecting the success of ignition. The gas fill near the Au wall along the inner laser cone is the main region which stimulates SRS instabilities. At this region, pressure balance and energy balance between the inside and the outside of inner laser cone path are obtained. A plasma scaling model in ignition hohlraums of ICF has been developed. RTI could be described by IFAR(InFlight Aspect Ratio) according to linear theory. Considering other scaling formula in capsule, a index, SPI (Stability performance Index), has been proposed, which describes the balance between SPI and RTI. Designing of ignition targets is directed by using this index to obtain more margin for LPI and RTI.

  8. Study of performance scaling of 22-nm epitaxial delta-doped channel MOS transistor

    NASA Astrophysics Data System (ADS)

    Sengupta, Sarmista; Pandit, Soumya

    2015-06-01

    Epitaxial delta-doped channel (EδDC) profile is a promising approach for extending the scalability of bulk metal oxide semiconductor (MOS) technology for low-power system-on-chip applications. A comparative study between EδDC bulk MOS transistor with gate length Lg = 22 nm and a conventional uniformly doped channel (UDC) bulk MOS transistor, with respect to various digital and analogue performances, is presented. The study has been performed using Silvaco technology computer-aided design device simulator, calibrated with experimental results. This study reveals that at smaller gate length, EδDC transistor outperforms the UDC transistor with respect to various studied performances. The reduced contribution of the lateral electric field in the channel plays the key role in this regard. Further, the carrier mobility in EδDC transistor is higher compared to UDC transistor. For moderate gate and drain bias, the impact ionisation rate of the carriers for EδDC MOS transistor is lower than that of the UDC transistor. In addition, at 22 nm, the performances of a EδDC transistor are competitive to that of an ultra-thin body silicon-on-insulator transistor.

  9. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE PAGESBeta

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    2016-07-26

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  10. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    PubMed

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. PMID:25349371

  11. Study on the sensing performance of OFBG under large-scale negative strain

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hu, Qingli; Ou, Jinping

    2010-03-01

    As a new and sensitive sensing element, OFBG(Optical Fiber Bragg Grating) has been widely used in aerospace engineering and civil engineering. The sensing mechanism and properties have been widely studied by lots of researchers, but the sensing properties of OFBG under large negative strain are still destitute. In this paper, with the aids of large shrinkage performance of PP(polypropylene) during its curing, we gained about -13000 μɛ's strain changes by embeding bare OFBG inside the PP bar to study the sensing properties of OFBG in this strain level. The results show that OFBG can remain its sensing properties well---- linearity, repeatability and the shape of centre wavelength are both reasonably. And the strain sensitivity coefficient of PP-OFBG is about 0.85 pm/μɛ, this is very near with that of calculating results considering strain transmission between PP and OFBG. Which are all helpful and useful for further use of OFBG in other applications.

  12. Study of Micro and Nano Scale Features in the Fabrication, Performance, and Degradation of Advanced Engineering Materials

    NASA Astrophysics Data System (ADS)

    Lombardo, Jeffrey John

    Increasingly, modern engineering materials are designed on a micron or nano scale to fulfill a given set of requirements or to enhance the material's performance. In this dissertation several such materials will be studied including catalyst particles for carbon nanotube (CNT) growth by use of atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS), multi walled carbon nanotubes (MWNTs) by reactor scale modeling, hermetic carbon coatings by focused ion beam/ scanning electron microscopy (FIB/SEM) and Fourier transform infrared spectroscopy (FTIR) the latter of which was performed by Andrei Stolov at OFS Specialty Photonics Division (Avon, CT), and Ni/Yttria stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anodes using X-ray nanotomography (XNT) and X-ray fluorescence (XRF) the second of which was performed by Barry Lai at APS (Argonne National Lab, IL). For each material, a subset of the material properties will be looked at to determine how the selected property affects either the fabrication, performance, or degradation of the material. Following the analysis of these materials, it was found that although the materials are different, the study of micron and nano scale features has many related traits. X-rays and electrons are frequently used to examine nanoscale structures, numerical study can be exploited to expedite measurements and extract additional information from experiments, and the study of these requires knowledge across many scientific fields. As a product of this research, detailed information about all of the materials studied has been contributed to the scientific literature including size dependance information about the oxidation states of nanometer size iron particles, optimal CVD reactor growth conditions for different CNT catalyst particle sizes and number of walls, a technique for rapid measurement of hermetic carbon film thickness, and detailed microstructural detail and sulfur poisoning mapping for Ni/YSZ SOFC anodes.

  13. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  14. Performance Evaluation of Wearable Sensor Systems: A Case Study in Moderate-Scale Deployment in Hospital Environment

    PubMed Central

    Sun, Wen; Ge, Yu; Zhang, Zhiqiang; Wong, Wai-Choong

    2015-01-01

    A wearable sensor system enables continuous and remote health monitoring and is widely considered as the next generation of healthcare technology. The performance, the packet error rate (PER) in particular, of a wearable sensor system may deteriorate due to a number of factors, particularly the interference from the other wearable sensor systems in the vicinity. We systematically evaluate the performance of the wearable sensor system in terms of PER in the presence of such interference in this paper. The factors that affect the performance of the wearable sensor system, such as density, traffic load, and transmission power in a realistic moderate-scale deployment case in hospital are all considered. Simulation results show that with 20% duty cycle, only 68.5% of data transmission can achieve the targeted reliability requirement (PER is less than 0.05) even in the off-peak period in hospital. We then suggest some interference mitigation schemes based on the performance evaluation results in the case study. PMID:26426015

  15. Performance Evaluation of Wearable Sensor Systems: A Case Study in Moderate-Scale Deployment in Hospital Environment.

    PubMed

    Sun, Wen; Ge, Yu; Zhang, Zhiqiang; Wong, Wai-Choong

    2015-01-01

    A wearable sensor system enables continuous and remote health monitoring and is widely considered as the next generation of healthcare technology. The performance, the packet error rate (PER) in particular, of a wearable sensor system may deteriorate due to a number of factors, particularly the interference from the other wearable sensor systems in the vicinity. We systematically evaluate the performance of the wearable sensor system in terms of PER in the presence of such interference in this paper. The factors that affect the performance of the wearable sensor system, such as density, traffic load, and transmission power in a realistic moderate-scale deployment case in hospital are all considered. Simulation results show that with 20% duty cycle, only 68.5% of data transmission can achieve the targeted reliability requirement (PER is less than 0.05) even in the off-peak period in hospital. We then suggest some interference mitigation schemes based on the performance evaluation results in the case study. PMID:26426015

  16. Sensitivity study of a large-scale air pollution model by using high-performance computations and Monte Carlo algorithms

    NASA Astrophysics Data System (ADS)

    Ostromsky, Tz.; Dimov, I.; Georgieva, R.; Marinov, P.; Zlatev, Z.

    2013-10-01

    In this paper we present some new results of our work on sensitivity analysis of a large-scale air pollution model, more specificly the Danish Eulerian Model (DEM). The main purpose of this study is to analyse the sensitivity of ozone concentrations with respect to the rates of some chemical reactions. The current sensitivity study considers the rates of six important chemical reactions and is done for the areas of several European cities with different geographical locations, climate, industrialization and population density. One of the most widely used variance-based techniques for sensitivity analysis, such as Sobol estimates and their modifications, have been used in this study. A vast number of numerical experiments with a specially adapted for the purpose version of the Danish Eulerian Model (SA-DEM) were carried out to compute global Sobol sensitivity measures. SA-DEM was implemented and run on two powerful cluster supercomputers: IBM Blue Gene/P, the most powerful parallel supercomputer in Bulgaria and IBM MareNostrum III, the most powerful parallel supercomputer in Spain. The refined (480 × 480) mesh version of the model was used in the experiments on MareNostrum III, which is a challenging computational problem even on such a powerful machine. Some optimizations of the code with respect to the parallel efficiency and the memory use were performed. Tables with performance results of a number of numerical experiments on IBM BlueGene/P and on IBM MareNostrum III are presented and analysed.

  17. NAEP Validity Studies: Improving the Information Value of Performance Items in Large Scale Assessments. Working Paper No. 2003-08

    ERIC Educational Resources Information Center

    Pearson, P. David; Garavaglia, Diane R.

    2003-01-01

    The purpose of this essay is to explore both what is known and what needs to be learned about the information value of performance items "when they are used in large scale assessments." Within the context of the National Assessment of Educational Progress (NAEP), there is substantial motivation for answering these questions. Over the…

  18. Self-Beliefs Mediate Math Performance between Primary and Lower Secondary School: A Large-Scale Longitudinal Cohort Study

    ERIC Educational Resources Information Center

    Reed, Helen C.; Kirschner, Paul A.; Jolles, Jelle

    2015-01-01

    It is often argued that enhancement of self-beliefs should be one of the key goals of education. However, very little is known about the relation between self-beliefs and performance when students move from primary to secondary school in highly differentiated educational systems with early tracking. This large-scale longitudinal cohort study…

  19. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    SciTech Connect

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner.

  20. A study on the effects of RGB-D database scale and quality on depth analogy performance

    NASA Astrophysics Data System (ADS)

    Kim, Sunok; Kim, Youngjung; Sohn, Kwanghoon

    2016-06-01

    In the past few years, depth estimation from a single image has received increased attentions due to its wide applicability in image and video understanding. For realizing these tasks, many approaches have been developed for estimating depth from a single image based on various depth cues such as shading, motion, etc. However, they failed to estimate plausible depth map when input color image is derived from different category in training images. To alleviate these problems, data-driven approaches have been popularly developed by leveraging the discriminative power of a large scale RGB-D database. These approaches assume that there exists appearance- depth correlation in natural scenes. However, this assumption is likely to be ambiguous when local image regions have similar appearance but different geometric placement within the scene. Recently, a depth analogy (DA) has been developed by using the correlation between color image and depth gradient. DA addresses depth ambiguity problem effectively and shows reliable performance. However, no experiments are conducted to investigate the relationship between database scale and the quality of the estimated depth map. In this paper, we extensively examine the effects of database scale and quality on the performance of DA method. In order to compare the quality of DA, we collect a large scale RGB-D database using Microsoft Kinect v1 and Kinect v2 on indoor and ZED stereo camera on outdoor environments. Since the depth map obtained by Kinect v2 has high quality compared to that of Kinect v1, the depth maps from the database from Kinect v2 are more reliable. It represents that the high quality and large scale RGB-D database guarantees the high quality of the depth estimation. The experimental results show that the high quality and large scale training database leads high quality estimated depth map in both indoor and outdoor scenes.

  1. Characterization of Filtration Scale-Up Performance

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.

    2009-03-09

    The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite

  2. Connecting Performance to Social Structure and Pedagogy as a Pathway to Scaling Learning Analytics in MOOCs: An Exploratory Study

    ERIC Educational Resources Information Center

    Goggins, S. P.; Galyen, K. D.; Petakovic, E.; Laffey, J. M.

    2016-01-01

    This exploratory study focuses on the design and evaluation of teaching analytics that relate social learning structure with performance measures in a massive open online course (MOOC) prototype environment. Using reflexive analysis of online learning trace data and qualitative performance measures we present an exploratory empirical study that:…

  3. A Study on Developing "An Attitude Scale for Project and Performance Tasks for Turkish Language Leaching Course"

    ERIC Educational Resources Information Center

    Demir, Tazegul

    2013-01-01

    The main purpose of this study is to demonstrate the students' attitudes towards project and performance tasks in Turkish Lessons and to develop a reliable and valid measurement tool. A total of 461 junior high school students participated in this study. In this study, firstly the preparation of items, specialist be consulted (content…

  4. Coding task performance in early adolescence: a large-scale controlled study into boy-girl differences

    PubMed Central

    Dekker, Sanne; Krabbendam, Lydia; Aben, Aukje; de Groot, Renate; Jolles, Jelle

    2013-01-01

    This study examined differences between boys and girls regarding efficiency of information processing in early adolescence. Three hundred and six healthy adolescents (50.3% boys) in grade 7 and 9 (aged 13 and 15, respectively) performed a coding task based on over-learned symbols. An age effect was revealed as subjects in grade 9 performed better than subjects in grade 7. Main effects for sex were found in the advantage of girls. The 25% best-performing students comprised twice as many girls as boys. The opposite pattern was found for the worst performing 25%. In addition, a main effect was found for educational track in favor of the highest track. No interaction effects were found. School grades did not explain additional variance in LDST performance. This indicates that cognitive performance is relatively independent from school performance. Student characteristics like age, sex, and education level were more important for efficiency of information processing than school performance. The findings imply that after age 13, efficiency of information processing is still developing and that girls outperform boys in this respect. The findings provide new information on the mechanisms underlying boy-girl differences in scholastic performance. PMID:23986733

  5. EEHG Performance and Scaling Laws

    SciTech Connect

    Penn, Gregory

    2013-10-09

    This note will calculate the idealized performance of echo-enabled harmonic generation performance (EEHG), explore the parameter settings, and look at constraints determined by incoherent synchrotron radiation (ISR) and intrabeam scattering (IBS). Another important effect, time-of-flight variations related to transverse emittance, is included here but without detailed explanation because it has been described previously. The importance of ISR and IBS is that they lead to random energy shifts that lead to temporal shifts after the various beam manipulations required by the EEHG scheme. These effects give competing constraints on the beamline. For chicane magnets which are too compact for a given R56, the magnetic fields will be sufficiently strong that ISR will blur out the complex phase space structure of the echo scheme to the point where the bunching is strongly suppressed. The effect of IBS is more omnipresent, and requires an overall compact beamline. It is particularly challenging for the second pulse in a two-color attosecond beamline, due to the long delay between the first energy modulation and the modulator for the second pulse.

  6. Quantifying and scaling airplane performance in turbulence

    NASA Astrophysics Data System (ADS)

    Richardson, Johnhenri R.

    This dissertation studies the effects of turbulent wind on airplane airspeed and normal load factor, determining how these effects scale with airplane size and developing envelopes to account for them. The results have applications in design and control of aircraft, especially small scale aircraft, for robustness with respect to turbulence. Using linearized airplane dynamics and the Dryden gust model, this dissertation presents analytical and numerical scaling laws for airplane performance in gusts, safety margins that guarantee, with specified probability, that steady flight can be maintained when stochastic wind gusts act upon an airplane, and envelopes to visualize these safety margins. Presented here for the first time are scaling laws for the phugoid natural frequency, phugoid damping ratio, airspeed variance in turbulence, and flight path angle variance in turbulence. The results show that small aircraft are more susceptible to high frequency gusts, that the phugoid damping ratio does not depend directly on airplane size, that the airspeed and flight path angle variances can be parameterized by the ratio of the phugoid natural frequency to a characteristic turbulence frequency, and that the coefficient of variation of the airspeed decreases with increasing airplane size. Accompanying numerical examples validate the results using eleven different airplanes models, focusing on NASA's hypothetical Boeing 757 analog the Generic Transport Model and its operational 5.5% scale model, the NASA T2. Also presented here for the first time are stationary flight, where the flight state is a stationary random process, and the stationary flight envelope, an adjusted steady flight envelope to visualize safety margins for stationary flight. The dissertation shows that driving the linearized airplane equations of motion with stationary, stochastic gusts results in stationary flight. It also shows how feedback control can enlarge the stationary flight envelope by alleviating

  7. Combining performance and outcome indicators can be used in a standardized way: a pilot study of two multidisciplinary, full-scale major aircraft exercises

    PubMed Central

    2012-01-01

    Background Disaster medicine is a fairly young scientific discipline and there is a need for the development of new methods for evaluation and research. This includes full-scale disaster exercisers. A standardized concept on how to evaluate these exercises, could lead to easier identification of pitfalls caused by system-errors in the organization. The aim of this study was to demonstrate the feasibility of using a combination of performance and outcome indicators so that results can be compared in standardized full-scale exercises. Methods Two multidisciplinary, full-scale exercises were studied in 2008 and 2010. The panorama had the same setup. Sets of performance indicators combined with indicators for unfavorable patient outcome were recorded in predesigned templates. Evaluators, all trained in a standardized way at a national disaster medicine centre, scored the results on predetermined locations; at the scene, at hospital and at the regional command and control. Results All data regarding the performance indicators of the participants during the exercises were obtained as well as all data regarding indicators for patient outcome. Both exercises could therefore be compared regarding performance (processes) as well as outcome indicators. The data from the performance indicators during the exercises showed higher scores for the prehospital command in the second exercise 15 points and 3 points respectively. Results from the outcome indicators, patient survival and patient complications, demonstrated a higher number of preventable deaths and a lower number of preventable complications in the exercise 2010. In the exercise 2008 the number of preventable deaths was lower and the number of preventable complications was higher. Conclusions Standardized multidisciplinary, full-scale exercises in different settings can be conducted and evaluated with performance indicators combined with outcome indicators enabling results from exercises to be compared. If exercises are

  8. Small-Scale High-Performance Optics

    SciTech Connect

    WILSON, CHRISTOPHER W.; LEGER, CHRIS L.; SPLETZER, BARRY L.

    2002-06-01

    Historically, high resolution, high slew rate optics have been heavy, bulky, and expensive. Recent advances in MEMS (Micro Electro Mechanical Systems) technology and micro-machining may change this. Specifically, the advent of steerable sub-millimeter sized mirror arrays could provide the breakthrough technology for producing very small-scale high-performance optical systems. For example, an array of steerable MEMS mirrors could be the building blocks for a Fresnel mirror of controllable focal length and direction of view. When coupled with a convex parabolic mirror the steerable array could realize a micro-scale pan, tilt and zoom system that provides full CCD sensor resolution over the desired field of view with no moving parts (other than MEMS elements). This LDRD provided the first steps towards the goal of a new class of small-scale high-performance optics based on MEMS technology. A large-scale, proof of concept system was built to demonstrate the effectiveness of an optical configuration applicable to producing a small-scale (< 1cm) pan and tilt imaging system. This configuration consists of a color CCD imager with a narrow field of view lens, a steerable flat mirror, and a convex parabolic mirror. The steerable flat mirror directs the camera's narrow field of view to small areas of the convex mirror providing much higher pixel density in the region of interest than is possible with a full 360 deg. imaging system. Improved image correction (dewarping) software based on texture mapping images to geometric solids was developed. This approach takes advantage of modern graphics hardware and provides a great deal of flexibility for correcting images from various mirror shapes. An analytical evaluation of blur spot size and axi-symmetric reflector optimization were performed to address depth of focus issues that occurred in the proof of concept system. The resulting equations will provide the tools for developing future system designs.

  9. Spreadsheet Based Scaling Calculations and Membrane Performance

    SciTech Connect

    Wolfe, T D; Bourcier, W L; Speth, T F

    2000-12-28

    Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total Flux and Scaling Program (TFSP), written for Excel 97 and above, provides designers and operators new tools to predict membrane system performance, including scaling and fouling parameters, for a wide variety of membrane system configurations and feedwaters. The TFSP development was funded under EPA contract 9C-R193-NTSX. It is freely downloadable at www.reverseosmosis.com/download/TFSP.zip. TFSP includes detailed calculations of reverse osmosis and nanofiltration system performance. Of special significance, the program provides scaling calculations for mineral species not normally addressed in commercial programs, including aluminum, iron, and phosphate species. In addition, ASTM calculations for common species such as calcium sulfate (CaSO{sub 4}{times}2H{sub 2}O), BaSO{sub 4}, SrSO{sub 4}, SiO{sub 2}, and LSI are also provided. Scaling calculations in commercial membrane design programs are normally limited to the common minerals and typically follow basic ASTM methods, which are for the most part graphical approaches adapted to curves. In TFSP, the scaling calculations for the less common minerals use subsets of the USGS PHREEQE and WATEQ4F databases and use the same general calculational approach as PHREEQE and WATEQ4F. The activities of ion complexes are calculated iteratively. Complexes that are unlikely to form in significant concentration were eliminated to simplify the calculations. The calculation provides the distribution of ions and ion complexes that is used to calculate an effective ion product ''Q.'' The effective ion product is then compared to temperature adjusted solubility products (Ksp's) of solids in order to calculate a Saturation Index (SI) for each solid of

  10. Performance of Children on the Community Balance and Mobility Scale

    ERIC Educational Resources Information Center

    Wright, Marilyn J.; Bos, Cecily

    2012-01-01

    This study describes the performance of children 8-11 years of age on the Community Balance and Mobility Scale (CB&M) and associations between performance and age, body mass index (BMI), and sex. A convenience sample of 84 was recruited. The CB&M was administered using instructions we developed for children. Mean CB&M total scores (95% confidence…

  11. Effects of different pretreatments on the performance of ceramic ultrafiltration membrane during the treatment of oil sands tailings pond recycle water: a pilot-scale study.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; El-Din, Mohamed Gamal

    2015-03-15

    Membrane filtration is an effective treatment method for oil sands tailings pond recycle water (RCW); however, membrane fouling and rapid decrease in permeate flux caused by colloids, organic matter, and bitumen residues present in the RCW hinder its successful application. This pilot-scale study investigated the impact of different pretreatment steps on the performance of a ceramic ultrafiltration (CUF) membrane used for the treatment of RCW. Two treatment trains were examined: treatment train 1 consisted of coagulant followed by a CUF system, while treatment train 2 included softening (Multiflo™ system) and coagulant addition, followed by a CUF system. The results indicated that minimum pretreatment (train 1) was required for almost complete solids removal. The addition of a softening step (train 2) provided an additional barrier to membrane fouling by reducing hardness-causing ions to negligible levels. More than 99% removal of turbidity and less than 20% removal of total organic carbon were achieved regardless of the treatment train used. Permeate fluxes normalized at 20 °C of 127-130 L/m(2) h and 111-118 L/m(2) h, with permeate recoveries of 90-93% and 90-94% were observed for the treatment trains 1 and 2, respectively. It was also found that materials deposited onto the membrane surface had an impact on trans-membrane pressure and influenced the required frequencies of chemically enhanced backwashes (CEBs) and clean-in-place (CIP) procedures. The CIP performed was successful in removing fouling and scaling materials such that the CUF performance was restored to baseline levels. The results also demonstrated that due to their low turbidity and silt density index values, permeates produced in this pilot study were suitable for further treatment by high pressure membrane processes. PMID:25596922

  12. 30 CFR 57.3201 - Location for performing scaling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Location for performing scaling. 57.3201... Control Scaling and Support-Surface and Underground § 57.3201 Location for performing scaling. Scaling shall be performed from a location which will not expose persons to injury from falling material,...

  13. 30 CFR 57.3201 - Location for performing scaling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Location for performing scaling. 57.3201... Control Scaling and Support-Surface and Underground § 57.3201 Location for performing scaling. Scaling shall be performed from a location which will not expose persons to injury from falling material,...

  14. 30 CFR 56.3201 - Location for performing scaling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Location for performing scaling. 56.3201 Section 56.3201 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Scaling and Support § 56.3201 Location for performing scaling. Scaling shall be performed from a...

  15. 30 CFR 56.3201 - Location for performing scaling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location for performing scaling. 56.3201 Section 56.3201 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Scaling and Support § 56.3201 Location for performing scaling. Scaling shall be performed from a...

  16. 30 CFR 56.3201 - Location for performing scaling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Location for performing scaling. 56.3201 Section 56.3201 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Scaling and Support § 56.3201 Location for performing scaling. Scaling shall be performed from a...

  17. 30 CFR 57.3201 - Location for performing scaling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location for performing scaling. 57.3201... Control Scaling and Support-Surface and Underground § 57.3201 Location for performing scaling. Scaling shall be performed from a location which will not expose persons to injury from falling material,...

  18. Methodology to determine the technical performance and value proposition for grid-scale energy storage systems : a study for the DOE energy storage systems program.

    SciTech Connect

    Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K.; Trudnowski, Daniel J.

    2012-12-01

    As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

  19. Behavioral Observation Scales for Performance Appraisal Purposes

    ERIC Educational Resources Information Center

    Latham, Gary P.; Wexley, Kenneth N.

    1977-01-01

    This research attempts to determine whether Behavioral Observation Scales (BOS) could be improved by developing them through quantitative methods. The underlying assumption was that developing composite scales with greater internal consistency might improve their generalizability as evidenced by the cross-validation coefficients of scales based on…

  20. Detrending moving average algorithm: Frequency response and scaling performances.

    PubMed

    Carbone, Anna; Kiyono, Ken

    2016-06-01

    The Detrending Moving Average (DMA) algorithm has been widely used in its several variants for characterizing long-range correlations of random signals and sets (one-dimensional sequences or high-dimensional arrays) over either time or space. In this paper, mainly based on analytical arguments, the scaling performances of the centered DMA, including higher-order ones, are investigated by means of a continuous time approximation and a frequency response approach. Our results are also confirmed by numerical tests. The study is carried out for higher-order DMA operating with moving average polynomials of different degree. In particular, detrending power degree, frequency response, asymptotic scaling, upper limit of the detectable scaling exponent, and finite scale range behavior will be discussed. PMID:27415389

  1. Detrending moving average algorithm: Frequency response and scaling performances

    NASA Astrophysics Data System (ADS)

    Carbone, Anna; Kiyono, Ken

    2016-06-01

    The Detrending Moving Average (DMA) algorithm has been widely used in its several variants for characterizing long-range correlations of random signals and sets (one-dimensional sequences or high-dimensional arrays) over either time or space. In this paper, mainly based on analytical arguments, the scaling performances of the centered DMA, including higher-order ones, are investigated by means of a continuous time approximation and a frequency response approach. Our results are also confirmed by numerical tests. The study is carried out for higher-order DMA operating with moving average polynomials of different degree. In particular, detrending power degree, frequency response, asymptotic scaling, upper limit of the detectable scaling exponent, and finite scale range behavior will be discussed.

  2. Technology for Large-Scale Translation of Clinical Practice Guidelines: A Pilot Study of the Performance of a Hybrid Human and Computer-Assisted Approach

    PubMed Central

    2015-01-01

    Background The construction of EBMPracticeNet, a national electronic point-of-care information platform in Belgium, began in 2011 to optimize quality of care by promoting evidence-based decision making. The project involved, among other tasks, the translation of 940 EBM Guidelines of Duodecim Medical Publications from English into Dutch and French. Considering the scale of the translation process, it was decided to make use of computer-aided translation performed by certificated translators with limited expertise in medical translation. Our consortium used a hybrid approach, involving a human translator supported by a translation memory (using SDL Trados Studio), terminology recognition (using SDL MultiTerm terminology databases) from medical terminology databases, and support from online machine translation. This resulted in a validated translation memory, which is now in use for the translation of new and updated guidelines. Objective The objective of this experiment was to evaluate the performance of the hybrid human and computer-assisted approach in comparison with translation unsupported by translation memory and terminology recognition. A comparison was also made with the translation efficiency of an expert medical translator. Methods We conducted a pilot study in which two sets of 30 new and 30 updated guidelines were randomized to one of three groups. Comparable guidelines were translated (1) by certificated junior translators without medical specialization using the hybrid method, (2) by an experienced medical translator without this support, and (3) by the same junior translators without the support of the validated translation memory. A medical proofreader who was blinded for the translation procedure, evaluated the translated guidelines for acceptability and adequacy. Translation speed was measured by recording translation and post-editing time. The human translation edit rate was calculated as a metric to evaluate the quality of the translation. A

  3. Large-Scale Organizational Performance Improvement.

    ERIC Educational Resources Information Center

    Pilotto, Rudy; Young, Jonathan O'Donnell

    1999-01-01

    Describes the steps involved in a performance improvement program in the context of a large multinational corporation. Highlights include a training program for managers that explained performance improvement; performance matrices; divisionwide implementation, including strategic planning; organizationwide training of all personnel; and the…

  4. Centrifugal fans: Similarity, scaling laws, and fan performance

    NASA Astrophysics Data System (ADS)

    Sardar, Asad Mohammad

    Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC

  5. HIRIS performance study

    NASA Technical Reports Server (NTRS)

    Kerekes, John P.; Landgrebe, David A.

    1989-01-01

    The remote sensing system simulation is used to study a proposed sensor concept. An overview of the instrument and its parameters is presented, along with the model of the instrument as implemented in the simulation. Signal-to-noise levels of the instrument under a variety of system configurations are presented and discussed. Classification performance under these varying configurations is also shown, along with relationships between signal-to-noise ratios, feature selection, and classification performance.

  6. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James

    2008-01-01

    The objectives are: a) Re-introduce to you the concept of scaling; b) Describe the scaling research conducted in the 1950s and early 1960s, and present some of their conclusions; c) Narrow the focus to scaling for performance of combustion devices for liquid propellant rocket engines; and d) Present some results of subscale to full-scale performance from historical programs. Scaling is "The ability to develop new combustion devices with predictable performance on the basis of test experience with old devices." Scaling can be used to develop combustion devices of any thrust size from any thrust size. Scaling is applied mostly to increase thrust. Objective is to use scaling as a development tool. - Move injector design from an "art" to a "science"

  7. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases

  8. Performance Assessment of a Large Scale Pulsejet- Driven Ejector System

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Litke, Paul J.; Schauer, Frederick R.; Bradley, Royce P.; Hoke, John L.

    2006-01-01

    Unsteady thrust augmentation was measured on a large scale driver/ejector system. A 72 in. long, 6.5 in. diameter, 100 lb(sub f) pulsejet was tested with a series of straight, cylindrical ejectors of varying length, and diameter. A tapered ejector configuration of varying length was also tested. The objectives of the testing were to determine the dimensions of the ejectors which maximize thrust augmentation, and to compare the dimensions and augmentation levels so obtained with those of other, similarly maximized, but smaller scale systems on which much of the recent unsteady ejector thrust augmentation studies have been performed. An augmentation level of 1.71 was achieved with the cylindrical ejector configuration and 1.81 with the tapered ejector configuration. These levels are consistent with, but slightly lower than the highest levels achieved with the smaller systems. The ejector diameter yielding maximum augmentation was 2.46 times the diameter of the pulsejet. This ratio closely matches those of the small scale experiments. For the straight ejector, the length yielding maximum augmentation was 10 times the diameter of the pulsejet. This was also nearly the same as the small scale experiments. Testing procedures are described, as are the parametric variations in ejector geometry. Results are discussed in terms of their implications for general scaling of pulsed thrust ejector systems

  9. Effective Rating Scale Development for Speaking Tests: Performance Decision Trees

    ERIC Educational Resources Information Center

    Fulcher, Glenn; Davidson, Fred; Kemp, Jenny

    2011-01-01

    Rating scale design and development for testing speaking is generally conducted using one of two approaches: the measurement-driven approach or the performance data-driven approach. The measurement-driven approach prioritizes the ordering of descriptors onto a single scale. Meaning is derived from the scaling methodology and the agreement of…

  10. SPREADSHEET BASED SCALING CALCULATIONS AND MEMBRANE PERFORMANCE

    EPA Science Inventory

    Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total...

  11. Correlation of full-scale helicopter rotor performance in air with model-scale Freon data

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Mantay, W. R.

    1976-01-01

    An investigation was conducted in a transonic dynamics tunnel to measure the performance of a 1/5 scale model helicopter rotor in a Freon atmosphere. Comparisons were made between these data and full scale data obtained in air. Both the model and full scale tests were conducted at advance ratios between 0.30 and 0.40 and advancing tip Mach numbers between 0.79 and 0.95. Results show that correlation of model scale rotor performance data obtained in Freon with full scale rotor performance data in air is good with regard to data trends. Mach number effects were found to be essentially the same for the model rotor performance data obtained in Freon and the full scale rotor performance data obtained in air. It was determined that Reynolds number effects may be of the same magnitude or smaller than rotor solidity effects or blade elastic modeling in rotor aerodynamic performance testing.

  12. The performance of the K6 scale in a large school sample: A follow-up study evaluating measurement invariance on the Idaho Youth Prevention Survey.

    PubMed

    Peiper, Nicholas; Lee, Alexander; Lindsay, Stephanie; Drashner, Nathan; Wing, Janeena

    2016-06-01

    Since 2013, Idaho has been building capacity and infrastructure through the Strategic Prevention Framework State Incentive Grant to prevent substance abuse and related problems, namely psychiatric morbidity. As this federal initiative requires states to engage in data-driven strategic planning at the state and community levels, clinically validated instruments are particularly valuable in the context of school surveys that have limited space and require timely administration. Thus, the K6 scale was included on the 2014 Idaho Youth Prevention Survey as a measure of nonspecific psychological distress. To verify the unidimensional structure of the K6, principal axis and confirmatory factor analyses were performed in a school-based sample of Idaho students (n = 12,150). A series of multigroup confirmatory factor analyses were then performed to evaluate measurement invariance across gender, age, and race. Overall, the prevalence of serious psychological distress in the past 30 days was 17.2% in Idaho. Factor analyses confirmed the 1-factor solution of the K6. Four levels of measurement invariance were demonstrated across gender, age, and race. Together, these results further illustrate the construct validity of the K6 for use in adolescent populations. Other states are encouraged to include the K6 on their school surveys to facilitate policy planning and resource allocation as well as generate cross-state comparisons. (PsycINFO Database Record PMID:26214014

  13. Scientific Application Performance on Candidate PetaScalePlatforms

    SciTech Connect

    Oliker, Leonid; Canning, Andrew; Carter, Jonathan; Iancu, Costin; Lijewski, Michael; Kamil, Shoaib; Shalf, John; Shan, Hongzang; Strohmaier, Erich; Ethier, Stephane; Goodale, Tom

    2007-01-01

    After a decade where HEC (high-end computing) capability was dominated by the rapid pace of improvements to CPU clock frequency, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs, in the context of high-end numerical simulations, is a key step towards making effective petascale computing a reality. This work represents one of the most comprehensive performance evaluation studies to date on modern HEC systems, including the IBM Power5, AMD Opteron, IBM BG/L, and Cray X1E. A novel aspect of our study is the emphasis on full applications, with real input data at the scale desired by computational scientists in their unique domain. We examine six candidate ultra-scale applications, representing a broad range of algorithms and computational structures. Our work includes the highest concurrency experiments to date on five of our six applications, including 32K processor scalability for two of our codes and describe several successful optimizations strategies on BG/L, as well as improved X1E vectorization. Overall results indicate that our evaluated codes have the potential to effectively utilize petascale resources; however, several applications will require reengineering to incorporate the additional levels of parallelism necessary to achieve the vast concurrency of upcoming ultra-scale systems.

  14. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  15. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: a comparative study at the scale of the Czech Republic.

    PubMed

    Suchara, Ivan; Sucharova, Julie; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter

    2011-05-01

    Moss (Pleurozium schreberi), grass (Avenella flexuosa), and 1- and 2-year old spruce (Picea abies) needles were collected over the territory of the Czech Republic at an average sample density of 1 site per 290km(2). The samples were analysed for 39 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn) using ICP-MS and ICP-AES techniques (the major nutrients Ca, K, Mg and Na were not analysed in moss). Moss showed by far the highest element concentrations for most elements. Exceptions were Ba (spruce), Mn (spruce), Mo (grass), Ni (spruce), Rb (grass) and S (grass). Regional distribution maps and spatial trend analysis were used to study the suitability of the four materials as bioindicators of anthropogenic contamination. The highly industrialised areas in the north-west and the far east of the country and several more local contamination sources were indicated in the distribution maps of one or several sample materials. At the scale of the whole country moss was the best indicator of known contamination sources. However, on a more local scale, it appeared that spruce needles were especially well suited for detection of urban contamination. PMID:21421258

  16. Exploring the Performance of Multifactor Dimensionality Reduction in Large Scale SNP Studies and in the Presence of Genetic Heterogeneity among Epistatic Disease Models

    PubMed Central

    Edwards, Todd L.; Lewis, Kenneth; Velez, Digna R.; Dudek, Scott; Ritchie, Marylyn D.

    2009-01-01

    Background/Aims In genetic studies of complex disease a consideration for the investigator is detection of joint effects. The Multifactor Dimensionality Reduction (MDR) algorithm searches for these effects with an exhaustive approach. Previously unknown aspects of MDR performance were the power to detect interactive effects given large numbers of non-model loci or varying degrees of heterogeneity among multiple epistatic disease models. Methods To address the performance with many non-model loci, datasets of 500 cases and 500 controls with 100 to 10,000 SNPs were simulated for two-locus models, and one hundred 500-case/500-control datasets with 100 and 500 SNPs were simulated for three-locus models. Multiple levels of locus heterogeneity were simulated in several sample sizes. Results These results show MDR is robust to locus heterogeneity when the definition of power is not as conservative as in previous simulation studies where all model loci were required to be found by the method. The results also indicate that MDR performance is related more strongly to broad-sense heritability than sample size and is not greatly affected by non-model loci. Conclusions A study in which a population with high heritability estimates is sampled predisposes the MDR study to success more than a larger ascertainment in a population with smaller estimates. PMID:19077437

  17. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­‐scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  18. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  19. Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2008-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  20. Administration Modifications on the WISC-R Performance Scale with Different Categories of Deaf Children.

    ERIC Educational Resources Information Center

    Sullivan, Patricia M.

    1982-01-01

    Two studies investigated the effects of administration modifications on subtest scaled scores of the Wechsler-Intelligence Scale for Children-Revised (WISC-R). Performance scale rated different groups of 57 severely/profoundly hearing-impaired children. Total communication was found to result in higher scores on all subtests in the genetic and…

  1. Development and Validation of a Rating Scale for Wind Jazz Improvisation Performance

    ERIC Educational Resources Information Center

    Smith, Derek T.

    2009-01-01

    The purpose of this study was to construct and validate a rating scale for collegiate wind jazz improvisation performance. The 14-item Wind Jazz Improvisation Evaluation Scale (WJIES) was constructed and refined through a facet-rational approach to scale development. Five wind jazz students and one professional jazz educator were asked to record…

  2. Use of bench-scale digesters to evaluate full-scale digester performance

    SciTech Connect

    Murk, J.S.; Frieling, J.L.; Tortorici, L.D.; Dietrich, C.C.

    1980-11-01

    The use of properly designed laboratory-scale digestion facilities afforded an economical method to investigate the causes(s) of and remedies for a severe operational problem at the Encina wastewater treatment plant located in North San Diego Country, California. These studies resulted in verification that the chronic foaming problems were related to inadequate mixing and heating and led to the implementation of design and operational modifications to optimize digester performance. As a result of this program, subsequent design changes, and the dedicated efforts of the plant operators, a severe operational problem has been eliminated.

  3. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis".

    PubMed

    Ong, Ying Hui; Chua, Adeline Seak May; Fukushima, Toshikazu; Ngoh, Gek Cheng; Shoji, Tadashi; Michinaka, Atsuko

    2014-11-01

    The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAOs and GAOs involved, in greater detail. Two sequencing batch reactors (SBRs) were operated for EBPR in parallel at different temperatures, i.e., SBR-1 at 28 °C and SBR-2 first at 24 °C and subsequently at 32 °C. Both SBRs exhibited high phosphorus removal efficiencies at all three temperatures and produced effluents with phosphorus concentrations less than 1.0 mg/L during the steady state of reactor operation. Real-time quantitative polymerase chain reaction (qPCR) revealed Accumulibacter-PAOs comprised 64% of the total bacterial population at 24 °C, 43% at 28 °C and 19% at 32 °C. Based on fluorescent in situ hybridisation (FISH), the abundance of Competibacter-GAOs at both 24 °C and 28 °C was rather low (<10%), while it accounted for 40% of the total bacterial population at 32 °C. However, the smaller Accumulibacter population and larger population of Competibacter at 32 °C did not deteriorate the phosphorus removal performance. A polyphosphate kinase 1 (ppk1)-based qPCR analysis on all studied EBPR processes detected only Accumulibacter clade IIF. The Accumulibacter population shown by 16S rRNA and ppk1 was not significantly different. This finding confirmed the existence of single clade IIF in the processes and the specificity of the clade IIF primer sets designed in this study. Habitat filtering related to temperature could have contributed to the presence of a unique clade. The clade IIF was hypothesised to be able to perform the EBPR activity at high temperatures. The clade's robustness most likely helps it to fit the high-temperature EBPR

  4. Multi-Scale Multi-Dimensional Ion Battery Performance Model

    Energy Science and Technology Software Center (ESTSC)

    2007-05-07

    The Multi-Scale Multi-Dimensional (MSMD) Lithium Ion Battery Model allows for computer prediction and engineering optimization of thermal, electrical, and electrochemical performance of lithium ion cells with realistic geometries. The model introduces separate simulation domains for different scale physics, achieving much higher computational efficiency compared to the single domain approach. It solves a one dimensional electrochemistry model in a micro sub-grid system, and captures the impacts of macro-scale battery design factors on cell performance and materialmore » usage by solving cell-level electron and heat transports in a macro grid system.« less

  5. Multi-Scale Simulation and Optimization of Lithium Battery Performance

    NASA Astrophysics Data System (ADS)

    Golmon, Stephanie L.

    The performance and degradation of lithium batteries strongly depends on electrochemical, mechanical, and thermal phenomena. While a large volume of work has focused on thermal management, mechanical phenomena relevant to battery design are not fully understood. Mechanical degradation of electrode particles has been experimentally linked to capacity fade and failure of batteries; an understanding of the interplay between mechanics and electrochemistry in the battery is necessary in order to improve the overall performance of the battery. A multi-scale model to simulate the coupled electrochemical and mechanical behavior of Li batteries has been developed, which models the porous electrode and separator regions of the battery. The porous electrode includes a liquid electrolyte and solid active materials. A multi-scale finite element approach is used to analyze the electrochemical and mechanical performance. The multi-scale model includes a macro- and micro-scale with analytical volume-averaging methods to relate the scales. The macro-scale model describes Li-ion transport through the electrolyte, electric potentials, and displacements throughout the battery. The micro-scale considers the surface kinetics and electrochemical and mechanical response of a single particle of active material evaluated locally within the cathode region. Both scales are non-linear and dependent on the other. The electrochemical and mechanical response of the battery are highly dependent on the porosity in the electrode, the active material particle size, and discharge rate. Balancing these parameters can improve the overall performance of the battery. A formal design optimization approach with multi-scale adjoint sensitivity analysis is developed to find optimal designs to improve the performance of the battery model. Optimal electrode designs are presented which maximize the capacity of the battery while mitigating stress levels during discharge over a range of discharge rates.

  6. A comparison of the performance of rating scales used in the diagnosis of postnatal depression.

    PubMed

    Thompson, W M; Harris, B; Lazarus, J; Richards, C

    1998-09-01

    The results of a study looking into the association between thyroid status and depression in the postpartum period were reanalysed to explore the psychometric properties of the rating scales employed. The performance of the Edinburgh Postnatal Depression Scale was found to be superior to that of the Hospital Anxiety and Depression Scale in identifying RDC-defined depression, and on a par with the observer-rated Hamilton Rating Scale for Depression, which it also matched for sensitivity to change in mood state over time. The anxiety subscale of the Hospital Anxiety and Depression Scale performed well, reflecting the fact that anxiety represents a prominent symptom in postnatal depression. PMID:9761410

  7. Flow structure, performance and scaling of acoustic jets

    NASA Astrophysics Data System (ADS)

    Muller, Michael Oliver

    Acoustic jets are studied, with an emphasis on their flow structure, performance, and scaling. The ultimate goal is the development of a micromachined acoustic jet for propulsion of a micromachined airborne platform, as well as integrated cooling and pumping applications. Scaling suggests an increase in performance with decreasing size, motivating the use of micro-technology. Experimental studies are conducted at three different orders of magnitude in size, each closely following analytic expectations. The jet creates a periodic vortical structure, the details of which are a function of amplitude. At small actuation amplitude, but still well above the linear acoustic regime, the flow structure consists of individual vortex rings, propagating away from the nozzle, formed during the outstroke of the acoustic cavity. At large amplitude, a trail of vorticity forms between the periodic vortex rings. Approximately corresponding to these two flow regions are two performance regimes. At low amplitude, the jet thrust increases with the fourth power of the amplitude; and at large amplitude, the thrust equals the momentum flux ejected during the output stroke, and increases as the square of the amplitude. Resonance of the cavity, at Reynolds numbers greater than approximately 10, enhances the jet performance beyond the incompressible behavior. Gains of an order of magnitude in the jet velocity occur at Reynolds numbers of approximately 100, and the data suggest further gains with increasing Reynolds number. The smallest geometries tested are micromachined acoustic jets, manufactured using MEMS technology. The throat dimensions are 50 by 200 mum, and the overall device size is approximately 1 mm 2, with eight throats per device. Several jets are manufactured in an array, to suit any given application. The performance is very dependent on frequency, with a sharp peak at the system resonance, occurring at approximately 70 kHz (inaudible). The mean jet velocity of these devices

  8. Hybrid Wing Body Configuration Scaling Study

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    The Hybrid Wing Body (HWB) configuration is a subsonic transport aircraft concept with the potential to simultaneously reduce fuel burn, noise and emissions compared to conventional concepts. Initial studies focused on very large applications with capacities for up to 800 passengers. More recent studies have focused on the large, twin-aisle class with passenger capacities in the 300-450 range. Efficiently scaling this concept down to the single aisle or smaller size is challenging due to geometric constraints, potentially reducing the desirability of this concept for applications in the 100-200 passenger capacity range or less. In order to quantify this scaling challenge, five advanced conventional (tube-and-wing layout) concepts were developed, along with equivalent (payload/range/technology) HWB concepts, and their fuel burn performance compared. The comparison showed that the HWB concepts have fuel burn advantages over advanced tube-and-wing concepts in the larger payload/range classes (roughly 767-sized and larger). Although noise performance was not quantified in this study, the HWB concept has distinct noise advantages over the conventional tube-and-wing configuration due to the inherent noise shielding features of the HWB. NASA s Environmentally Responsible Aviation (ERA) project will continue to investigate advanced configurations, such as the HWB, due to their potential to simultaneously reduce fuel burn, noise and emissions.

  9. Scales affect performance of Monarch butterfly forewings in autorotational flight

    NASA Astrophysics Data System (ADS)

    Demko, Anya; Lang, Amy

    2012-11-01

    Butterfly wings are characterized by rows of scales (approximately 100 microns in length) that create a shingle-like pattern of cavities over the entire surface. It is hypothesized that these cavities influence the airflow around the wing and increase aerodynamic performance. A forewing of the Monarch butterfly (Danus plexippus) naturally undergoes autorotational flight in the laminar regime. Autorotational flight is an accurate representation of insect flight because the rotation induces a velocity gradient similar to that found over a flapping wing. Drop test flights of 22 forewings before and after scale removal were recorded with a high-speed camera and flight behavior was quantified. It was found that removing the scales increased the descent speed and decreased the descent factor, a measure of aerodynamic efficacy, suggesting that scales increased the performance of the forewings. Funded by NSF REU Grant 1062611.

  10. Improving the Performance of the Extreme-scale Simulator

    SciTech Connect

    Engelmann, Christian; Naughton III, Thomas J

    2014-01-01

    Investigating the performance of parallel applications at scale on future high-performance computing (HPC) architectures and the performance impact of different architecture choices is an important component of HPC hardware/software co-design. The Extreme-scale Simulator (xSim) is a simulation-based toolkit for investigating the performance of parallel applications at scale. xSim scales to millions of simulated Message Passing Interface (MPI) processes. The overhead introduced by a simulation tool is an important performance and productivity aspect. This paper documents two improvements to xSim: (1) a new deadlock resolution protocol to reduce the parallel discrete event simulation management overhead and (2) a new simulated MPI message matching algorithm to reduce the oversubscription management overhead. The results clearly show a significant performance improvement, such as by reducing the simulation overhead for running the NAS Parallel Benchmark suite inside the simulator from 1,020\\% to 238% for the conjugate gradient (CG) benchmark and from 102% to 0% for the embarrassingly parallel (EP) and benchmark, as well as, from 37,511% to 13,808% for CG and from 3,332% to 204% for EP with accurate process failure simulation.

  11. LAMMPS strong scaling performance optimization on Blue Gene/Q

    SciTech Connect

    Coffman, Paul; Jiang, Wei; Romero, Nichols A.

    2014-11-12

    LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using an 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.

  12. Scaling studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Chang, J.

    1985-01-01

    A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.

  13. Scaling studies of solar pumped lasers

    NASA Astrophysics Data System (ADS)

    Christiansen, W. H.; Chang, J.

    1985-08-01

    A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.

  14. Scaled control moment gyroscope dynamics effects on performance

    NASA Astrophysics Data System (ADS)

    Leve, Frederick A.

    2015-05-01

    The majority of the literature that discusses the dynamics of control moment gyroscopes (CMG) contains formulations that are not derived from first principles and make simplifying assumptions early in the derivation, possibly neglecting important contributions. For small satellites, additional dynamics that are no longer negligible are shown to cause an increase in torque error and loss of torque amplification. The goal of the analysis presented here is to provide the reader with a complete and general analytical derivation of the equations for dynamics of a spacecraft with n-CMG and to discuss the performance degradation imposed to CMG actuators when scaling them for small satellites. The paper first derives the equations of motion from first principles for a very general case of a spacecraft with n-CMG. Each contribution of the dynamics is described with its effect on the performance of CMG and its significance on scaled CMG performance is addressed. It is shown analytically and verified numerically, that CMG do not scale properly with performance and care must be taken in their design to trade performance, size, mass, and power when reducing their scale.

  15. Full-scale tilt-rotor hover performance

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Maisel, M. D.; Betzina, M. D.

    1986-01-01

    The hover performance of three full-scale rotors was measured at the Ames Outdoor Aerodynamic Research Facility. The rotors, all designed for tilt-rotor aircraft, were the original metal blades for the XV-15 Tilt Rotor Research Aircraft, a set of composite, advanced technology blades for the XV-15, and a 0.658-scale model of the proposed V-22A Osprey (JVX) rotor. The composite advanced technology blades for the XV-15 were tested with several alternate blade root and blade tip configurations. This paper presents the performance of these three rotors, shows the effects of tip Mach number and root and tip configuration changes on rotor performance, and presents data on rotor wake velocity distributions and tip vortex geometry. Measured rotor performance is compared with theoretical predictions, and the discrepancies are discussed.

  16. Critical Multicultural Education Competencies Scale: A Scale Development Study

    ERIC Educational Resources Information Center

    Acar-Ciftci, Yasemin

    2016-01-01

    The purpose of this study is to develop a scale in order to identify the critical mutlicultural education competencies of teachers. For this reason, first of all, drawing on the knowledge in the literature, a new conceptual framework was created with deductive method based on critical theory, critical race theory and critical multicultural…

  17. Reliable High Performance Peta- and Exa-Scale Computing

    SciTech Connect

    Bronevetsky, G

    2012-04-02

    As supercomputers become larger and more powerful, they are growing increasingly complex. This is reflected both in the exponentially increasing numbers of components in HPC systems (LLNL is currently installing the 1.6 million core Sequoia system) as well as the wide variety of software and hardware components that a typical system includes. At this scale it becomes infeasible to make each component sufficiently reliable to prevent regular faults somewhere in the system or to account for all possible cross-component interactions. The resulting faults and instability cause HPC applications to crash, perform sub-optimally or even produce erroneous results. As supercomputers continue to approach Exascale performance and full system reliability becomes prohibitively expensive, we will require novel techniques to bridge the gap between the lower reliability provided by hardware systems and users unchanging need for consistent performance and reliable results. Previous research on HPC system reliability has developed various techniques for tolerating and detecting various types of faults. However, these techniques have seen very limited real applicability because of our poor understanding of how real systems are affected by complex faults such as soft fault-induced bit flips or performance degradations. Prior work on such techniques has had very limited practical utility because it has generally focused on analyzing the behavior of entire software/hardware systems both during normal operation and in the face of faults. Because such behaviors are extremely complex, such studies have only produced coarse behavioral models of limited sets of software/hardware system stacks. Since this provides little insight into the many different system stacks and applications used in practice, this work has had little real-world impact. My project addresses this problem by developing a modular methodology to analyze the behavior of applications and systems during both normal and faulty

  18. Development and performance of a large-scale, transonic turbine blade cascade facility for aerodynamic studies of merging coolant-mainstream flows

    NASA Astrophysics Data System (ADS)

    Al-Sayeh, Amjad Isaaf

    1998-11-01

    A new, large scale, linear cascade facility of turbine blades has been developed for the experimental exploration of the aerodynamic aspects of film cooling technology. Primary interest is in the mixing of the ejected coolant with the mainstream, at both subsonic and supersonic mainstream Mach numbers at the cascade exit. In order to achieve a spatial resolution adequate for the exploration of details on the scale of the coolant ejection holes, the cascade dimensions were maximized, within the limitations of the air supply system. The cascade contains four blades (three passages) with 14.05 cm axial chord, 17.56 cm span and a design total turning angle of 130.6 degrees. Exit Mach numbers range from 0.6 to 1.5 and Reynolds numbers from 0.5 to 1.5 million. The air supply system capacity allows run times up to five minutes at maximum flow rates. A coolant supply system has been built to deliver mixtures of SFsb6 and air to simulate coolant/mainstream density ratios up to 2. The cascade contains several novel features. A full-perimeter bleed slot upstream of the blades is used to remove the approach boundary layer from all four walls, to improve the degree of two-dimensionality. The exit flow is bounded by two adjustable tailboards that are hinged at the trailing edges and actuated to set the exit flow direction according to the imposed pressure ratio. The boards are perforated and subjected to mass removal near the blades, to minimize the undesirable reflection of shocks and expansion waves. A probe actuator is incorporated that allows continuous positioning of probes in the exhaust stream, in both the streamwise and pitchwise directions. Diagnostic methods include extensive surface pressure taps on the approach and exhaust ducts and on the blade surfaces. The large size permitted as many as 19 taps on the trailing edge itself. Shadowgraph and schlieren are available. A three-prong wake probe has been constructed to simultaneously measure total and static pressures

  19. Effects of Isometric Scaling on Vertical Jumping Performance

    PubMed Central

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  20. An Application of the Facet-Factorial Approach to Scale Construction in Development of a Rating Scale for High School Marching Band Performance

    ERIC Educational Resources Information Center

    Greene, Travis

    2012-01-01

    The purpose of this study was to develop and validate an instrument through facet-factorial analysis to assess high school marching band performance. Forty-one items were chosen to define subscales for the Marching Band Performance Rating Scale - Music and 31 items for the Marching Band Performance Rating Scale - Visual. To examine the stability…

  1. Performance of a full-scale biofilter with peat and ash as a medium for treating industrial landfill leachate: a 3-year study of pollutant removal efficiency.

    PubMed

    Kängsepp, Pille; Mathiasson, Lennart

    2009-03-01

    Shredder residues of end-of-life vehicles and white goods are a complex waste stream, which nowadays most often is disposed of at industrial landfills. This paper describes the most important findings concerning the complex composition of the landfill leachate and its on-site, year-round treatment under cold-climate conditions. A 3-year investigation has confirmed that concentrations of different types of pollutants, most of them at low initial concentrations, can be simultaneously reduced in vertical-flow biofilters consisting of a mixture of peat and carbon-containing ash. For metals such as Mn, Cu, Sn, Cd, Pb, Fe and Ni the average removal was 73, 72, 66, 60, 55, 55 and 37%, respectively. An average reduction of NH(4)-N (45%), N(tot) (25%), total organic carbon (30%), dissolved organic carbon (28%) and suspended solids (38%) was also obtained. A good reduction was achieved for phenols (between 75 and 95%), polychlorinated biphenyls (between 22 and 99%), and gas chromatography-mass spectrometry amenable pollutants, considered at initial concentration above 50 microg L( -1) (between 80 and 100%). The performance of the biofilter system was good in spite of large variations of inlet concentration during the considered period. PMID:19244414

  2. The Influence of Extrinsic Motivation on Student Performance on Large-Scale Assessments

    ERIC Educational Resources Information Center

    McGee, Carl Dean

    2013-01-01

    The purposes of this mixed method study were to examine the relationship between student motivation and performance on large-scale, low- and high-stakes examinations and identify the types of incentive programs used by principals to promote test performance among high school students. The study took take place in California's Southern San Joaquin…

  3. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.

    PubMed

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

    2011-01-01

    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units. PMID:21252428

  4. Happiness Scale Interval Study. Methodological Considerations

    ERIC Educational Resources Information Center

    Kalmijn, W. M.; Arends, L. R.; Veenhoven, R.

    2011-01-01

    The Happiness Scale Interval Study deals with survey questions on happiness, using verbal response options, such as "very happy" and "pretty happy". The aim is to estimate what degrees of happiness are denoted by such terms in different questions and languages. These degrees are expressed in numerical values on a continuous [0,10] scale, which are…

  5. A simulation infrastructure for examining the performance of resilience strategies at scale.

    SciTech Connect

    Ferreira, Kurt Brian; Levy, Scott N.; Bridges, Patrick G.

    2013-04-01

    Fault-tolerance is a major challenge for many current and future extreme-scale systems, with many studies showing it to be the key limiter to application scalability. While there are a number of studies investigating the performance of various resilience mechanisms, these are typically limited to scales orders of magnitude smaller than expected for next-generation systems and simple benchmark problems. In this paper we show how, with very minor changes, a previously published and validated simulation framework for investigating appli- cation performance of OS noise can be used to simulate the overheads of various resilience mechanisms at scale. Using this framework, we compare the failure-free performance of this simulator against an analytic model to validate its performance and demonstrate its ability to simulate the performance of two popular rollback recovery methods on traces from real

  6. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  7. Landscape Scale Hydrologic Performance Measures for the South Florida Everglades

    NASA Astrophysics Data System (ADS)

    Johnson, R. A.; Kotun, K.; Engel, V.

    2008-05-01

    Large scale drainage and land reclamation activities began in the south Florida Everglades around 1905. By 1920 four large canals were constructed across the Everglades to drain Lake Okeechobee to the Atlantic Ocean. In 1930, following two major hurricanes, construction began on a levee system around Lake Okeechobee, and two additional coastal outlets were created to the St. Lucie and Caloosahatchee Rivers. These activities significantly lowered water levels in the lake and reduced natural surface water flows to the downstream Everglades. Throughout the 1930s and early 1940s, a network of uncontrolled canals were excavated along the Atlantic Coastal Ridge that penetrated the permeable Biscayne Aquifer, further draining the Everglades and local groundwater to the ocean. Early hydrologic studies documented the detrimental affects of this over-drainage on urban and agricultural water supply, including the abandonment of wellfields because of saltwater intrusion. In the interior marshes the loss of soil moisture in the Everglades organic soils also caused widespread soil subsidence and increased fire frequency. Following a third major hurricane in 1947, which resulted in loss of life and widespread economic losses, the U.S. Congress authorized the Army Corps of Engineers to begin construction of the Central and Southern Florida Project. The C&SF Project was designed to correct the flooding and water supply problems in south Florida, as well as providing adequate water supply to protect fish and wildlife resources of the Everglades. By 1953 most of the major drainage canals had control structures added to prevent excessive drainage, and an East Coast Protective Levee was constructed from Lake Okeechobee to Everglades National Park, to reduce flooding along the Atlantic Coastal Ridge and retain water in the Everglades. By the late 1950's most of the northern Everglades was diked and drained to form the Everglades Agricultural Area, and by 1963 the central Everglades were

  8. Corrosion performance of alumina scales in coal gasification environments

    SciTech Connect

    Natesan, K.

    1997-02-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

  9. Performance Engineering: Understanding and Improving thePerformance of Large-Scale Codes

    SciTech Connect

    Bailey, David H.; Lucas, Robert; Hovland, Paul; Norris, Boyana; Yelick, Kathy; Gunter, Dan; de Supinski, Bronis; Quinlan, Dan; Worley,Pat; Vetter, Jeff; Roth, Phil; Mellor-Crummey, John; Snavely, Allan; Hollingsworth, Jeff; Reed, Dan; Fowler, Rob; Zhang, Ying; Hall, Mary; Chame, Jacque; Dongarra, Jack; Moore, Shirley

    2007-10-01

    Achieving good performance on high-end computing systems is growing ever more challenging due to enormous scale, increasing architectural complexity, and increasing application complexity. To address these challenges in DOE's SciDAC-2 program, the Performance Engineering Research Institute (PERI) has embarked on an ambitious research plan encompassing performance modeling and prediction, automatic performance optimization and performance engineering of high profile applications. The principal new component is a research activity in automatic tuning software, which is spurred by the strong user preference for automatic tools.

  10. The Development, Test, and Evaluation of Three Pilot Performance Reference Scales.

    ERIC Educational Resources Information Center

    Horner, Walter R.; And Others

    A set of pilot performance reference scales was developed based upon airborne Audio-Video Recording (AVR) of student performance in T-37 undergraduate Pilot Training. After selection of the training maneuvers to be studied, video tape recordings of the maneuvers were selected from video tape recordings already available from a previous research…

  11. A comprehensive field and laboratory study of scale control and scale squeezes in Sumatra, Indonesia

    SciTech Connect

    Oddo, J.E.; Reizer, J.M.; Sitz, C.D.; Setia, D.E.A.; Hinrichsen, C.J.; Sujana, W.

    1999-11-01

    Scale squeezes were performed on thirteen wells in the Duri Field, Sumatra. At the time the squeezes were completed, seven were designed to be `Acid Squeezes` and six were designed to be `Neutral Squeezes.` In the course of preparing for the scale squeezes, produced waters were collected and analyzed. In addition, scale inhibitor evaluations, and inhibitor compatibility studies were completed. Simulated squeezes were done in the laboratory to predict field performance. The methodologies and results of the background work are reported. In addition, the relative effectiveness of the two sets of squeezes is discussed. The inhibitor flowback concentrations alter the squeezes, in all cases, can be explained using speciation chemistry and the amorphous and crystalline phase solubilities of the inhibitor used. The wells squeezed with a more acidic inhibitor have more predictable and uniform inhibitor return concentration curves than the wells squeezed with a more neutral scale inhibitor.

  12. HACC: Extreme Scaling and Performance Across Diverse Architectures

    NASA Astrophysics Data System (ADS)

    Habib, Salman; Morozov, Vitali; Frontiere, Nicholas; Finkel, Hal; Pope, Adrian; Heitmann, Katrin

    2013-11-01

    Supercomputing is evolving towards hybrid and accelerator-based architectures with millions of cores. The HACC (Hardware/Hybrid Accelerated Cosmology Code) framework exploits this diverse landscape at the largest scales of problem size, obtaining high scalability and sustained performance. Developed to satisfy the science requirements of cosmological surveys, HACC melds particle and grid methods using a novel algorithmic structure that flexibly maps across architectures, including CPU/GPU, multi/many-core, and Blue Gene systems. We demonstrate the success of HACC on two very different machines, the CPU/GPU system Titan and the BG/Q systems Sequoia and Mira, attaining unprecedented levels of scalable performance. We demonstrate strong and weak scaling on Titan, obtaining up to 99.2% parallel efficiency, evolving 1.1 trillion particles. On Sequoia, we reach 13.94 PFlops (69.2% of peak) and 90% parallel efficiency on 1,572,864 cores, with 3.6 trillion particles, the largest cosmological benchmark yet performed. HACC design concepts are applicable to several other supercomputer applications.

  13. Parametric scaling study of a magnetically insulated thermionic vacuum switch

    SciTech Connect

    Vanderberg, B.H.; Eninger, J.E.

    1996-02-01

    A parametric scaling study is performed on MINOS (Magnetically INsulated Opening Switch), a novel fast ({approximately}100 ns) high-power opening switch concept based on a magnetically insulated thermionic vacuum diode. Principal scaling parameters are the switch dimensions, voltage, current, applied magnetic field, and switching time. The scaling range of interest covers voltages up to 100 kV and currents of several kA. Fundamental scaling properties are derived from models of space-charge flow and magnetic cutoff. The scaling is completed with empirical results from the experimental MX-1 switch operated in an inductive storage pulsed power generator. Results are presented in diagrams showing voltage, current, power, and efficiency relationships and their limitations. The scaling is illustrated by the design of a megawatt average power opening switch for pulsed power applications. Trade-offs in the engineering of this type of switch are discussed.

  14. Development and Validation of a Clarinet Performance Adjudication Scale

    ERIC Educational Resources Information Center

    Abeles, Harold F.

    1973-01-01

    A basic assumption of this study is that there are generally agreed upon performance standards as evidenced by the use of adjudicators for evaluations at contests and festivals. An evaluation instrument was developed to enable raters to measure effectively those aspects of performance that have common standards of proficiency. (Author/RK)

  15. Capturing field-scale variability in crop performance across a regional-scale climosequence

    NASA Astrophysics Data System (ADS)

    Brooks, E. S.; Poggio, M.; Anderson, T. R.; Gasch, C.; Yourek, M. A.; Ward, N. K.; Magney, T. S.; Brown, D. J.; Huggins, D. R.

    2014-12-01

    With the increasing availability of variable rate technology for applying fertilizers and other agrichemicals in dryland agricultural production systems there is a growing need to better capture and understand the processes driving field scale variability in crop yield and soil water. This need for a better understanding of field scale variability has led to the recent designation of the R. J. Cook Agronomy Farm (CAF) (Pullman, WA, USA) as a United States Department of Agriculture Long-Term Agro-Ecosystem Research (LTAR) site. Field scale variability at the CAF is closely monitored using extensive environmental sensor networks and intensive hand sampling. As investigating land-soil-water dynamics at CAF is essential for improving precision agriculture, transferring this knowledge across the regional-scale climosequence is challenging. In this study we describe the hydropedologic functioning of the CAF in relation to five extensively instrumented field sites located within 50 km in the same climatic region. The formation of restrictive argillic soil horizons in the wetter, cooler eastern edge of the region results in the development of extensive perched water tables, surface saturation, and surface runoff, whereas excess water is not an issue in the warmer, drier, western edge of the region. Similarly, crop and tillage management varies across the region as well. We discuss the implications of these regional differences on field scale management decisions and demonstrate how we are using proximal soil sensing and remote sensing imagery to better understand and capture field scale variability at a particular field site.

  16. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall

  17. Investigation of Scaling Effects on Fish Pectoral Fin Performance

    NASA Astrophysics Data System (ADS)

    Bozkurttas, Meliha; Dong, Haibo; Mittal, Rajat; Madden, Peter; Lauder, George

    2006-11-01

    Reynolds and Strouhal numbers are two key parameters that can potentially affect the performance of rigid and deformable flapping foils. Flow past a deformable pectoral fin of a fish in steady forward motion (speed of 1 BL/s) is simulated using a Cartesian grid immersed boundary solver. Investigation of the scaling of the performance with these two parameters allows us to gain better insight into the fundamental mechanisms of the thrust production as well as address the practical question of how the performance of a fin is expected to change with changes in size, speed and frequency. It is found that the essential fluid dynamic mechanisms are unchanged with Reynolds number. We observe that although the vortex structures get more complicated with increasing Re, the key features (like the strong tip vortex, leading and trailing edge vortices) are similar in all the cases. On the other hand, the hydrodynamic performance of the fin is found to be quite sensitive to the Strouhal number. A set of numerical simulations of fin gaits synthesized from the POD modes are also carried out. This approach allows us to connect specific features in the fin gait with the observed vortex dynamics and hydrodynamic force production.

  18. Hover performance tests of full scale variable geometry rotors

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.

    1976-01-01

    Full scale whirl tests were conducted to determine the effects of interblade spatial relationships and pitch variations on the hover performance and acoustic signature of a 6-blade main rotor system. The variable geometry rotor (VGR) variations from the conventional baseline were accomplished by: (1) shifting the axial position of alternate blades by one chord-length to form two tip path planes; and (2) varying the relative azimuthal spacing from the upper rotor to the lagging hover rotor in four increments from 25.2 degrees to 62.1 degrees. For each of these four configurations, the differential collective pitch between upper and lower rotors was set at + or - 1 deg, 0 deg and -1 deg. Hover performance data for all configurations were acquired at blade tip Mach numbers of 0.523 and 0.45. Acoustic data were recorded at all test conditions, but analyzed only at 0 deg differential pitch at the higher rotor speed. The VGR configurations tested demonstrated improvements in thrust at constant power as high as 6 percent. Reductions of 3 PNdb in perceived noise level and of 4 db in blade passage frequency noise level were achieved at the higher thrust levels. Consistent correlation exists between performance and acoustic improvements. For any given azimuth spacing, performance was consistently better for the differential pitch condition of + or - 1 degree, i.e. with the upper rotor pitch one degree higher than the lower rotor.

  19. V/STOL tilt rotor aircraft study. Volume 10: Performance and stability test of A 1-14.622 Froude scaled Boeing Vertol Model 222 tilt rotor aircraft (Phase 1)

    NASA Technical Reports Server (NTRS)

    Mchugh, F. J.; Eason, W.; Alexander, H. R.; Mutter, H.

    1973-01-01

    Wind tunnel test data obtained from a 1/4.622 Froude scale Boeing Model 222 with a full span, two prop, tilt rotor, powered model in the Boeing V/STOL wind tunnel are reported. Data were taken in transition and cruise flight conditions and include performance, stability and control and blade loads information. The effects of the rotors, tail surfaces and airframe on the performance and stability are isolated as are the effects of the airframe on the rotors.

  20. SUPERFUND TREATABILITY CLEARINGHOUSE: BENGART AND MEMEL (BENCH-SCALE), GULFPORT (BENCH AND PILOT-SCALE), MONTANA POLE (BENCH-SCALE), AND WESTERN PROCESSING (BENCH-SCALE) TREATABILITY STUDIES

    EPA Science Inventory

    This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...

  1. Scaling Semantic Graph Databases in Size and Performance

    SciTech Connect

    Morari, Alessandro; Castellana, Vito G.; Villa, Oreste; Tumeo, Antonino; Weaver, Jesse R.; Haglin, David J.; Choudhury, Sutanay; Feo, John T.

    2014-08-06

    In this paper we present SGEM, a full software system for accelerating large-scale semantic graph databases on commodity clusters. Unlike current approaches, SGEM addresses semantic graph databases by only employing graph methods at all the levels of the stack. On one hand, this allows exploiting the space efficiency of graph data structures and the inherent parallelism of graph algorithms. These features adapt well to the increasing system memory and core counts of modern commodity clusters. On the other hand, however, these systems are optimized for regular computation and batched data transfers, while graph methods usually are irregular and generate fine-grained data accesses with poor spatial and temporal locality. Our framework comprises a SPARQL to data parallel C compiler, a library of parallel graph methods and a custom, multithreaded runtime system. We introduce our stack, motivate its advantages with respect to other solutions and show how we solved the challenges posed by irregular behaviors. We present the result of our software stack on the Berlin SPARQL benchmarks with datasets up to 10 billion triples (a triple corresponds to a graph edge), demonstrating scaling in dataset size and in performance as more nodes are added to the cluster.

  2. A Study on Emotional Literacy Scale Development

    ERIC Educational Resources Information Center

    Akbag, Müge; Küçüktepe, Seval Eminoglu; Özmercan, Esra Eminoglu

    2016-01-01

    Emotional literacy is described as being aware of our own feelings in order to improve our personal power and life quality as well as people's life quality around us. In this study, the aim is to develop a Likert scale which measures people's emotional literacy in order to be used both in descriptive and experimental researches. Related literature…

  3. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  4. A Normative Study of the Wechsler Memory Scale

    ERIC Educational Resources Information Center

    Kear-Colwell, J. J.; Heller, Mary

    1978-01-01

    Aims of this study were to determine whether the factor structure produced in earlier research by Kear-Colwell (1973, 1977) on the Wechsler Memory Scale could be replicated in a non-patient population (most research uses patient populations) and also to examine the effects of age, sex, and social class on the performance of normal adults on this…

  5. Research on the synthesis and scale inhibition performance of a new terpolymer scale inhibitor.

    PubMed

    Bao, Yufei; Li, Meng; Zhang, Yanqing

    2016-01-01

    A new terpolymer named β-CD-MA-SSS was produced using free-radical polymerization of β-cyclodextrin (β-CD), maleic-anhydride (MA) and sodium-styrene-sulfonate (SSS) as monomers, with potassium persulfate (KPS) as initiator. Its performance as a scale inhibitor to prevent deposition of calcium carbonate (CaCO3) has been investigated. Experimental results demonstrated that β-CD-MA-SSS performed excellent scale inhibition and exhibited a high conversion rate under the following conditions: initiator consisting of 6%, molar ratio of reaction monomers SSS:MA = 0.8:1, MA:β-CD = 6:1, reaction temperature of 80 °C, reaction time of 6 h, and dropping time of 40 min when MA was dosed as a substrate, and SSS and KPS were dosed as dropping reactants simultaneously. Use of a Fourier transform infrared spectrometer for this inhibitor showed that the polymerization reaction had taken place with the reaction monomers under the above specified conditions. Scanning electron microscopy indicated that the β-CD-MA-SSS had a strong chelating ability for calcium (Ca(2+)) and a good dispersion ability for calcium carbonate (CaCO3). PMID:27054733

  6. Speed Scaling for Energy and Performance with Instantaneous Parallelism

    NASA Astrophysics Data System (ADS)

    Sun, Hongyang; He, Yuxiong; Hsu, Wen-Jing

    We consider energy-performance tradeoff for scheduling parallel jobs on multiprocessors using dynamic speed scaling. The objective is to minimize the sum of energy consumption and certain performance metric, including makespan and total flow time. We focus on designing algorithms that are aware of the jobs' instantaneous parallelism but not their characteristics in the future. For total flow time plus energy, it is known that any algorithm that does not rely on instantaneous parallelism is Ω(ln 1/α P)-competitive, where P is the total number of processors. In this paper, we demonstrate the benefits of knowing instantaneous parallelism by presenting an O(1)-competitive algorithm. In the case of makespan plus energy, which is considered in the literature for the first time, we present an O(ln 1 - 1/α P)-competitive algorithm for batched jobs consisting of fully-parallel and sequential phases. We show that this algorithm is asymptotically optimal by providing a matching lower bound.

  7. Performance/price estimates for cortex-scale hardware: a design space exploration.

    PubMed

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. PMID:21232918

  8. The Development of Hyper-MNP: Hyper-Media Navigational Performance Scale

    ERIC Educational Resources Information Center

    Firat, Mehmet; Yurdakul, Isil Kabakci

    2016-01-01

    The present study aimed at developing a scale to evaluate navigational performance as a whole, which is one of the factors influencing learning in hyper media. In line with this purpose, depending on the related literature, an item pool of 15 factors was prepared, and these variables were decreased to 5 based on the views of 38 field experts. In…

  9. Performance scaling of magnetic nozzles for electric propulsion

    NASA Astrophysics Data System (ADS)

    Little, Justin M.

    The use of magnetic nozzles (MNs) in electric propulsion (EP) systems is investigated analytically and experimentally. MNs have the potential to efficiently accelerate propellant without the restrictions of electrodes, however, their measured performance has been poor compared to existing EP technology. A theoretical model was developed to understand the requirements for efficient operation. Analytical scaling laws were derived for the mass utilization efficiency, channel efficiency, and MN thermal and divergence efficiencies, in terms of dimensionless parameters that describe the relevant collisional processes in the channel and the radial plasma structure at the MN throat. In comparison to previous MN thrusters, performance levels comparable to state of the art EP systems are only possible if three conditions are met: (1) the thruster operates in a high confinement mode, (2) the plume divergence is significantly reduced, and (3) electron temperatures are increased by an order of magnitude. The final requirement implies these thrusters should be operated with heavy propellants such as xenon to limit the specific impulse to reasonable values. An experiment was designed to investigate the fundamental dynamics of plasma flow through a MN. The experiment consists of a helicon plasma source and two electromagnetic coils. The plasma parameters are determined at a variety of locations using electric probes mounted on a positioning system. The existence of a critical magnetic field strength for high confinement and the predicted scaling of the mass utilization efficiency were verified. Electron cooling in the magnetically expanding plasma was observed to follow a polytropic law with an exponent that agrees with theory. With decreasing magnetic field, a transition from a collimated plume to an under-collimated plume was found, where an under-collimated plume is defined such that the plume divergence is greater than the magnetic field divergence. This transition was

  10. Rating Scale Impact on EFL Essay Marking: A Mixed-Method Study

    ERIC Educational Resources Information Center

    Barkaoui, Khaled

    2007-01-01

    Educators often have to choose among different types of rating scales to assess second-language (L2) writing performance. There is little research, however, on how different rating scales affect rater performance. This study employed a mixed-method approach to investigate the effects of two different rating scales on EFL essay scores, rating…

  11. Canadian Occupational Performance Measure performance scale: validity and responsiveness in chronic pain.

    PubMed

    Nieuwenhuizen, Mieke G; de Groot, Sonja; Janssen, Thomas W J; van der Maas, Lia C C; Beckerman, Heleen

    2014-01-01

    The construct validity and construct responsiveness of the performance scale of the Canadian Occupational Performance Measure (COPM) was measured in 87 newly admitted patients with chronic pain attending an outpatient rehabilitation clinic. At admission and after 12 wk, patients completed a COPM interview, the Pain Disability Index (PDI), and the RAND 36-Item Health Survey (RAND-36). We determined the construct validity of the COPM by correlations between the COPM performance scale (COPM-P), the PDI, and the RAND-36 at admission. Construct responsiveness was assessed by calculating the correlations between the change scores (n = 57). The COPM-P did not significantly correlate with the PDI (r = -0.260) or with any subscale of the RAND-36 (r = -0.007 to 0.248). Only a moderate correlation was found between change scores of the COPM-P and PDI (r = -0.380) and weak to moderate correlations were found between change scores of the COPM-P and the RAND-36 (r = -0.031 to 0.388), with the higher correlations for the physical functioning, social functioning, and role limitations (physical) subscales. In patients with chronic pain attending our rehabilitation program, the COPM-P measures something different than the RAND-36 or PDI. Therefore, construct validity of the COPM-P was not confirmed by our data. We were not able to find support for the COPM-P to detect changes in occupational performance. PMID:25357091

  12. Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales

    DOE PAGESBeta

    Wu, Xiaocui; Ju, Weimin; Zhou, Yanlian; He, Mingzhu; Law, Beverly E.; Black, T. Andrew; Margolis, Hank A.; Cescatti, Alessandro; Gu, Lianhong; Montagni, Leonardo; et al

    2015-02-25

    The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourlymore » and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001) than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.« less

  13. Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales

    SciTech Connect

    Wu, Xiaocui; Ju, Weimin; Zhou, Yanlian; He, Mingzhu; Law, Beverly E.; Black, T. Andrew; Margolis, Hank A.; Cescatti, Alessandro; Gu, Lianhong; Montagni, Leonardo; Noormets, Asko; Griffis, Timothy J.; Pilegaard, Kim; Varlagin, Andrej; Valentini, Riccardo; Blanken, Peter D.; Wang, Shaoquiang; Wang, Huimin; Han, Shijie; Yan, Junhau; Li, Yingnian; Zhou, Bingbing; Liu, Yibo

    2015-02-25

    The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001) than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.

  14. Evaluating Mediated Perception of Narrative Health Messages: The Perception of Narrative Performance Scale

    PubMed Central

    Lee, Jeong Kyu; Hecht, Michael L.; Miller-Day, Michelle; Elek, Elvira

    2011-01-01

    Narrative media health messages have proven effective in preventing adolescents’ substance use but as yet few measures exist to assess perceptions of them. Without such a measure it is difficult to evaluate the role these messages play in health promotion or to differentiate them from other message forms. In response to this need, a study was conducted to evaluate the Perception of Narrative Performance Scale that assesses perceptions of narrative health messages. A sample of 1185 fifth graders in public schools at Phoenix, Arizona completed a questionnaire rating of two videos presenting narrative substance use prevention messages. Confirmatory factor analyses were computed to identify the factor structure of the scale. Consistent with prior studies, results suggest a 3 factor structure for the Perception of Narrative Performance Scale: interest, realism, and identification (with characters). In addition, a path analysis was performed to test the predictive power of the scale. The analysis shows that the scale proves useful in predicting intent to use substances. Finally, practical implications and limitations are discussed. PMID:21822459

  15. Estimation of Crop Gross Primary Production (GPP). 2; Do Scaled (MODIS) Vegetation Indices Improve Performance?

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Cheng, Yen-Ben; Lyapustin, Alexei I.; Wang, Yujie; Zhang, Xiaoyang; Suyker, Andrew; Verma, Shashi; Shuai, Yanmin; Middleton, Elizabeth M.

    2015-01-01

    Satellite remote sensing estimates of Gross Primary Production (GPP) have routinely been made using spectral Vegetation Indices (VIs) over the past two decades. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the green band Wide Dynamic Range Vegetation Index (WDRVIgreen), and the green band Chlorophyll Index (CIgreen) have been employed to estimate GPP under the assumption that GPP is proportional to the product of VI and photosynthetically active radiation (PAR) (where VI is one of four VIs: NDVI, EVI, WDRVIgreen, or CIgreen). However, the empirical regressions between VI*PAR and GPP measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for regressions). Therefore they are somewhat difficult to interpret and apply. This study investigates (1) what are the scaling factors and offsets (i.e., regression slopes and intercepts) between the fraction of PAR absorbed by chlorophyll of a canopy (fAPARchl) and the VIs, and (2) whether the scaled VIs developed in (1) can eliminate the deficiency and improve the accuracy of GPP estimates. Three AmeriFlux maize and soybean fields were selected for this study, two of which are irrigated and one is rainfed. The four VIs and fAPARchl of the fields were computed with the MODerate resolution Imaging Spectroradiometer (MODIS) satellite images. The GPP estimation performance for the scaled VIs was compared to results obtained with the original VIs and evaluated with standard statistics: the coefficient of determination (R2), the root mean square error (RMSE), and the coefficient of variation (CV). Overall, the scaled EVI obtained the best performance. The performance of the scaled NDVI, EVI and WDRVIgreen was improved across sites, crop types and soil/background wetness conditions. The scaled CIgreen did not improve results, compared to the original CIgreen. The scaled green band indices (WDRVIgreen, CIgreen) did not exhibit superior performance to either the

  16. A Laboratory Study of Heterogeneity and Scaling in Geologic Media

    NASA Astrophysics Data System (ADS)

    Brown, S.; Boitnott, G.; Bussod, G.; Hagan, P.

    2004-05-01

    In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. For sedimentary materials the length scales are: the pore scale (irregularities in grain surface roughness and cementation), the scale of grain packing faults (and the resulting correlated porosity structures), the scale dominated by sorting or winnowing due to depositional processes, and the scale of geomorphology at the time of deposition. We are studying the heterogeneity and anisotropy in geometry, permeability, and geophysical response from the pore (microscopic), laboratory (mesoscopic), and backyard field (macroscopic) scales. In turn these data are being described and synthesized for development of mathematical models. Eventually, we will perform parameter studies to explore these models in the context of transport in the vadose and saturated zones. We have developed a multi-probe physical properties scanner which allows for the mapping of geophysical properties on a slabbed sample or core. This device allows for detailed study of heterogeneity at those length scales most difficult to quantify using standard field and laboratory practices. The measurement head consists of a variety of probes designed to make local measurements of various properties, including: gas permeability, acoustic velocities (compressional and shear), complex electrical impedance (4 electrode, wide frequency coverage), and ultrasonic reflection (ultrasonic impedance and permeability). We can thus routinely generate detailed geophysical maps of a particular sample. We are testing and modifying these probes as necessary for use on soil samples. As a baseline study we have been characterizing the heterogeneity of a bench-size Berea sandstone block. Berea Sandstone has long been regarded as a laboratory standard in rock properties studies, owing to its uniformity and ``typical'' physical properties. We find

  17. Do Plot Scale Studies Yield Useful Data When Assessing Field Scale Practices?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plot scale data has been used to develop models used to assess field and watershed scale nutrient losses. The objective of this study was to determine if phosphorus (P) loss results from plot scale rainfall simulation studies are “directionally correct” when compared to field scale P losses. Two fie...

  18. Sensitivity of School-Performance Ratings to Scaling Decisions

    ERIC Educational Resources Information Center

    Ng, Hui Leng; Koretz, Daniel

    2015-01-01

    Policymakers usually leave decisions about scaling the scores used for accountability to their appointed technical advisory committees and the testing contractors. However, scaling decisions can have an appreciable impact on school ratings. Using middle-school data from New York State, we examined the consistency of school ratings based on two…

  19. Happiness Scale Interval Study. Methodological Considerations.

    PubMed

    Kalmijn, W M; Arends, L R; Veenhoven, R

    2011-07-01

    The Happiness Scale Interval Study deals with survey questions on happiness, using verbal response options, such as 'very happy' and 'pretty happy'. The aim is to estimate what degrees of happiness are denoted by such terms in different questions and languages. These degrees are expressed in numerical values on a continuous [0,10] scale, which are then used to compute 'transformed' means and standard deviations. Transforming scores on different questions to the same scale allows to broadening the World Database of Happiness considerably. The central purpose of the Happiness Scale Interval Study is to identify the happiness values at which respondents change their judgment from e.g. 'very happy' to 'pretty happy' or the reverse. This paper deals with the methodological/statistical aspects of this approach. The central question is always how to convert the frequencies at which the different possible responses to the same question given by a sample into information on the happiness distribution in the relevant population. The primary (cl)aim of this approach is to achieve this in a (more) valid way. To this end, a model is introduced that allows for dealing with happiness as a latent continuous random variable, in spite of the fact that it is measured as a discrete one. The [0,10] scale is partitioned in as many contiguous parts as the number of possible ratings in the primary scale sums up to. Any subject with a (self-perceived) happiness in the same subinterval is assumed to select the same response. For the probability density function of this happiness random variable, two options are discussed. The first one postulates a uniform distribution within each of the different subintervals of the [0,10] scale. On the basis of these results, the mean value and variance of the complete distribution can be estimated. The method is described, including the precision of the estimates obtained in this way. The second option assumes the happiness distribution to be described

  20. Evaluation of full-scale biofilter media performance

    SciTech Connect

    Cardenas-Gonzalez, B.; Ergas, S.J.; Switzenbaum, M.S.; Phillibert, N.

    1999-09-30

    The objective of this study was to characterize the key physical, chemical and biological properties of compost media from a full-scale biofiltration system used to control VOC emissions. Results of media characterization were used to assess the need for operational changes and media replacement. Biofilter media properties evaluated included: moisture content, pH, total organic carbon (TOC) and nitrogen content in water extracts and solid matrix, oxygen uptake rates, and microbial plate counts including total heterotrophs, oligotrophs, actinomycetes and fungi. Samples were taken from various locations and depths in the biofilter after three and five years of system operation. Media moisture content was highly variable, with samples from deeper in the bed dryer than surface samples. Low moisture contents were associated with low pH values and low oxygen uptake rates. Total organic carbon contents in water extracts were higher than typical biosolids compost in samples near the inlet to the biofilter, possibly due to extracellular polysaccharides. After five years of use, total nitrogen and organic carbon contents in the solid matrix did not significantly differ from initial levels or those in typical biosolids compost.

  1. Performance Studies on Distributed Virtual Screening

    PubMed Central

    Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.

    2014-01-01

    Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219

  2. Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.

    PubMed

    Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E

    2016-04-15

    Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications. PMID:26872594

  3. Performance studies of electrochromic displays

    NASA Astrophysics Data System (ADS)

    Ionescu, Ciprian; Dobre, Robert Alexandru

    2015-02-01

    The idea of having flexible, very thin, light, low power and even low cost display devices implemented using new materials and technologies is very exciting. Nowadays we can talk about more than just concepts, such devices exist, and they are part of an emerging concept: FOLAE (Flexible Organic and Large Area Electronics). Among the advantages of electrochromic devices are the low power consumption (they are non-emissive, i.e. passive) and the aspect like ink on paper with good viewing angle. Some studies are still necessary for further development, before proper performances are met and the functional behavior can be predicted. This paper presents the results of the research activity conducted to develop electric characterization platform for the organic electronics display devices, especially electrochromic displays, to permit a thorough study. The hardware part of platform permits the measuring of different electric and optical parameters. Charging/discharging a display element presents high interest for optimal driving circuitry. In this sense, the corresponding waveforms are presented. The contrast of the display is also measured for different operation conditions as driving voltage levels and duration. The effect of temperature on electrical and optical parameters (contrast) of the display will be also presented.

  4. Performance of Young People with Down Syndrome on the Leiter-R and British Picture Vocabulary Scales

    ERIC Educational Resources Information Center

    Glenn, S.; Cunningham, C.

    2005-01-01

    The British picture vocabulary scales (BPVS-II) and the Leiter international performance scales (Leiter-R), both restandardised in 1997, are often used in experimental studies to match individuals with intellectual impairment. Both provide a brief measure of mental age, and cover a wide ability range using a simple format. The BPVS-II assesses…

  5. Emotional Presence in Online Learning Scale: A Scale Development Study

    ERIC Educational Resources Information Center

    Sarsar, Firat; Kisla, Tarik

    2016-01-01

    Although emotions are not a new topic in learning environments, the emerging technologies have changed not only the type of learning environments but also the perspectives of emotions in learning environments. This study designed to develop a survey to assist online instructors to understand students' emotional statement in online learning…

  6. Contemporary Daughter/Son Adult Social Role Performance Rating Scale and Interview Protocol: Development, Content Validation, and Exploratory Investigation

    ERIC Educational Resources Information Center

    Cozad, Dana Everett

    2009-01-01

    The purpose of this study was to develop and content validate a Performance Rating Scale and Interview Protocol, enabling study of the social role performance of adult daughters and sons as they fulfill the societal norms and expectations of adult children. This exploratory investigation was one of 13 contemporary adult social roles completed by…

  7. Impact of technology scaling on analog and RF performance of SOI-TFET

    NASA Astrophysics Data System (ADS)

    Kumari, P.; Dash, S.; Mishra, G. P.

    2015-12-01

    This paper presents both the analytical and simulation study of analog and RF performance for single gate semiconductor on insulator tunnel field effect transistor in an extensive manner. Here 2D drain current model has been developed using initial and final tunneling length of band-to-band process. The investigation is further extended to the quantitative and comprehensive analysis of analog parameters such as surface potential, electric field, tunneling path, and transfer characteristics of the device. The impact of scaling of gate oxide thickness and silicon body thickness on the electrostatic and RF performance of the device is discussed. The analytical model results are validated with TCAD sentaurus device simulation results.

  8. Scaling performance of Ga2O3/GaN nanowire field effect transistor

    NASA Astrophysics Data System (ADS)

    Li, Chi-Kang; Yeh, Po-Chun; Yu, Jeng-Wei; Peng, Lung-Han; Wu, Yuh-Renn

    2013-10-01

    A three-dimensional finite element solver is applied to investigate the performance of Ga2O3/GaN nanowire transistors. Experimental nanowire results of 50 nm gate length are provided to compare with the simulation, and they show good agreement. The performance of a shorter gate length (<50 nm) is studied and scaling issues of the short-channel effect are analyzed. With a better surrounding gate design and a recessed gate approach, the optimal conditions for a 20 nm gate length are explored in this paper.

  9. Assessing the performance of multi-purpose channel management measures at increasing scales

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve

    2016-04-01

    highlights the importance of structure design (porosity and degree of channel blockage) and placement in zones of high sediment transport to optimise performance. At the large scale, well designed flood embankment lowering can improve connectivity to the floodplain during low to medium return period events. However, ancillary works to stabilise the bank failed thus emphasising the importance of letting natural processes readjust channel morphology and hydrological connections to the floodplain. Although these trial measures demonstrated limited effects, this may be in part owing to restrictions in the range of hydroclimatological conditions during the study period and further work is needed to assess the performance under more extreme conditions. This work will contribute to refining guidance for managing channel coarse sediment problems in the future which in turn could help mitigate flooding using natural approaches.

  10. Connecting Performance Analysis and Visualization to Advance Extreme Scale Computing

    SciTech Connect

    Bremer, Peer-Timo; Mohr, Bernd; Schulz, Martin; Pasccci, Valerio; Gamblin, Todd; Brunst, Holger

    2015-07-29

    The characterization, modeling, analysis, and tuning of software performance has been a central topic in High Performance Computing (HPC) since its early beginnings. The overall goal is to make HPC software run faster on particular hardware, either through better scheduling, on-node resource utilization, or more efficient distributed communication.

  11. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    SciTech Connect

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  12. Continuous bench-scale tests to assess METHOXYCOAL process performance

    SciTech Connect

    Knight, R.A.

    1991-01-01

    Laboratory-scale research conducted at Southern Illinois University at Carbondale (SIUC) has shown that coal pyrolysis in the presence of CH{sub 4} and small quantities of O{sub 2} (the METHOXYCOAL process) can produce high yields of liquids and valuable chemicals compared to conventional pyrolysis. The addition of MgO, coal ash, and clays have been shown to further enhance coal conversion. The goal of this two-year project is to build upon that laboratory research by conducting continuous bench-scale tests at IGT. Tests are being conducted with IBC-101 coal under CH{sub 4}/O{sub 2} blends with and without added coal ash, MgO, and/or clays, at temperatures and pressures up to 1000{degrees}F and 200 psig. These tests will provide data to select preferred operating conditions for chemicals production from high-sulfur Illinois coals.

  13. Performance of Extended Local Clustering Organization (LCO) for Large Scale Job-Shop Scheduling Problem (JSP)

    NASA Astrophysics Data System (ADS)

    Konno, Yohko; Suzuki, Keiji

    This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.

  14. The Role of Performance-Based Assessments in Large-Scale Accountability Systems: Lessons Learned from the Inside. Technical Guidelines for Performance Assessment.

    ERIC Educational Resources Information Center

    Pearson, P. David; Calfee, Robert; Webb, Patricia L. Walker; Fleischer, Steve

    In 1996, a subcommittee of the State Collaborative on Assessment and Student Standards commissioned a study of the use of performance-based assessments in large-scale accountability systems. The idea was to look into current state assessment work on performance-based assessments to see what has been learned, but not widely reported, by those who…

  15. A Comfortability Level Scale for Performance of Cardiopulmonary Resuscitation.

    ERIC Educational Resources Information Center

    Otten, Robert Drew

    1984-01-01

    This article discusses the development of an instrument to appraise the comfortability level of college students in performing cardiopulmonary resuscitation. Methodology and findings of data collection are given. (Author/DF)

  16. Scaling study for SP-100 reactor technology

    NASA Astrophysics Data System (ADS)

    Marshall, A. C.; McKissock, B.

    Several ways were explored of extending SP-100 reactor technology to higher power levels. One approach was to use the reference SP-100 pin design and increase the fuel pin length and the number of fuel pins as needed to provide higher capability. The impact on scaling of a modified and advanced SP-100 reactor technology was also explored. Finally, the effect of using alternative power conversion subsystems, with SP-100 reactor technology was investigated. One of the principal concerns for any space based system is mass; consequently, this study focused on estimating reactor, shield, and total system mass. The RSMASS code (Marshall 1986) was used to estimate reactor and shield mass. Simple algorithms developed at NASA-Lewis were used to estimate the balance of system mass. Power ranges from 100 kWe to 10 MWe were explored assuming both one year and seven years of operation. Thermoelectric, Stirling, Rankine, and Brayton power conversion systems were investigated. The impact on safety, reliability, and other system attributes, caused by extending the technology to higher power levels, was also investigated.

  17. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    SciTech Connect

    Lee, Kearn P.; Thien, Michael G.

    2013-11-07

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased.

  18. Two-phase performance of scale models of a primary coolant pump. Final report

    SciTech Connect

    Kamath, P.S.; Swift, W.L.

    1982-09-01

    Scale models of PWR primary coolant pumps were tested in steady and transient two-phase flows in order to generate a data base to aid in the development and assessment of pump performance models for use in computer codes for the analysis of postulated Loss-of-Coolant Accidents (LOCA). This report summarizes and unifies the single and two-phase air/water and steam/water performance data on the relatively high specific speed pumps (4200 rpm (US gpm) /sup 1/2//ft /sup 3/4/) tested in these programs. These data are compared with those acquired from tests on the lower specific speed Semiscale pump (926 rpm (US gpm)/sup 1/2//ft/sup 3/4/) to better understand the mechanism of performance degradation with increasing void fraction. The study revealed that scaling down the size of the pump while maintaining the same design specific speed produces very similar performance characteristics both in single and two-phase flows. Effects due to size and operating speed were not discernible within the range of test conditions and within experimental uncertainties. System pressure appears to affect the rate of degradation as a function of void fraction. The report includes a survey of the existing two-phase pump performance correlations. A correlation synthesized from the B and W, C-E and Creare two-phase data is also presented.

  19. Aeroacoustic and Performance Simulations of a Test Scale Open Rotor

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.

    2013-01-01

    This paper explores a comparison between experimental data and numerical simulations of the historical baseline F31/A31 open rotor geometry. The experimental data were obtained at the NASA Glenn Research Center s Aeroacoustic facility and include performance and noise information for a variety of flow speeds (matching take-off and cruise). The numerical simulations provide both performance and aeroacoustic results using the NUMECA s Fine-Turbo analysis code. A non-linear harmonic method is used to capture the rotor/rotor interaction.

  20. On-Line Performance Assessment Using Rating Scales.

    ERIC Educational Resources Information Center

    Stahl, John; Shumway, Rebecca; Bergstrom, Betty; Fisher, Anne

    1997-01-01

    The development of an online performance assessment instrument, the Assessment of Motor and Process Skills, is reported. Issues addressed include development, implementation, and validation of the scoring rubric in an extended Rasch model, rater training, and implementation of the assessment in a computerized program. (SLD)

  1. Developing and Testing the Guitar Songleading Performance Scale (GSPS)

    ERIC Educational Resources Information Center

    Silverman, Michael J.

    2011-01-01

    Guitar songleading is a critical component in music education and music therapy training curricula. However, at present, there is no standardized instrument to evaluate guitar songleading performance that is both valid and reliable. The purpose of this article is to describe the construction, development, and testing of a guitar songleading…

  2. PILOT SCALE EXPERIMENTS TO IMPROVE PERFORMANCE OF ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The paper describes pilot plant experience with techniques with a potential for improving the performance of electrostatic precipitators (ESPs) by using a novel rapping reentrainment collector and flexible steel cable (in place of solid large-diameter discharge electrodes) for bo...

  3. Referred Students' Performance on the Reynolds Intellectual Assessment Scales and the Wechsler Intelligence Scale for Children--Fourth Edition

    ERIC Educational Resources Information Center

    Edwards, Oliver W.; Paulin, Rachel V.

    2007-01-01

    This study investigates the convergent relations of the Reynolds Intellectual Assessment Scales (RIAS) and the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV). Data from counterbalanced administrations of each instrument to 48 elementary school students referred for psychoeducational testing were examined. Analysis of the 96…

  4. Actuarial Assessment of Wechsler Verbal-Performance Scale Differences as Signs of Lateralized Cerebral Impairment.

    ERIC Educational Resources Information Center

    Leli, Dano A.; Filskov, Susan B.

    1981-01-01

    The long-standing clinical lore which holds that a discrepancy between Wechsler-Bellevue Verbal-Performance Scale weighted scores is a more sensitive sign of lateralized brain damage than a discrepancy between Verbal-Performance Scale IQ is investigated. The results do not support the clinical lore. (Author/AL)

  5. The Effects of Scaling Tennis Equipment on the Forehand Groundstroke Performance of Children

    PubMed Central

    Larson, Emma J.; Guggenheimer, Joshua D.

    2013-01-01

    The modifications that have taken place within youth sports have made games, such as basketball, soccer, or tennis, easier for children to play. The purpose of this study was to determine the effects low compression (LC) tennis balls and scaled tennis courts had on the forehand groundstroke performance of children. The forehand groundstroke performances of eight subjects’ (8.10 ± 0.74 yrs) using LC tennis balls were measured on a scaled tennis court and standard compression balls (SC) on a standard court. Forehand groundstroke performance was assessed by the ForeGround test which measures Velocity Precision Success Index (VPS) and Velocity Precision Index (VP). Participants attempted three different forehand rally patterns on two successive days, using LC balls on the 18.3m court one day and SC balls on the 23.8m court the other. When using LC balls, participants’ recorded higher overall VPS performance scores (p < 0.001) for each non-error stroke as well as higher VP scores (p = 0.01). The results of this study confirmed that the use of modified balls and modified court size may increase the control, velocity and overall success rate of the tennis forehand groundstroke of children. Key Points This study observed the effects of modified tennis balls and court had on the forehand groundstroke performance in children. Modified ball compression and modified court size can increase control, velocity and overall success of tennis performance. Children will have more success learning the game of tennis using modified equipment than using standard equipment. PMID:24149812

  6. Scaling up explanation generation: Large-scale knowledge bases and empirical studies

    SciTech Connect

    Lester, J.C.; Porter, B.W.

    1996-12-31

    To explain complex phenomena, an explanation system must be able to select information from a formal representation of domain knowledge, organize the selected information into multisentential discourse plans, and realize the discourse plans in text. Although recent years have witnessed significant progress in the development of sophisticated computational mechanisms for explanation, empirical results have been limited. This paper reports on a seven year effort to empirically study explanation generation from semantically rich, large-scale knowledge bases. We first describe Knight, a robust explanation system that constructs multi-sentential and multi-paragraph explanations from the Biology Knowledge Base, a large-scale knowledge base in the domain of botanical anatomy, physiology, and development. We then introduce the Two Panel evaluation methodology and describe how Knight`s performance was assessed with this methodology in the most extensive empirical evaluation conducted on an explanation system. In this evaluation, Knight scored within {open_quotes}half a grade{close_quote} of domain experts, and its performance exceeded that of one of the domain experts.

  7. Some observations on hyperuniform disordered photonic bandgap materials, from microwave scale study to infrared scale study

    NASA Astrophysics Data System (ADS)

    Tsitrin, Sam; Nahal, Geev; Florescu, Marian; Man, Weining; San Francisco State University Team; University of Surrey Team

    2015-03-01

    A novel class of disordered photonic materials, hyperuniform disordered solids (HUDS), attracted more attention. Recently they have been experimentally proven to provide complete photonic band gap (PBG) when made with Alumina or Si; as well as single-polarization PBG when made with plastic with refract index of 1.6. These PBGs were shown to be real energy gaps with zero density of photonic states, instead of mobility gaps of low transmission due to scattering, etc. Using cm-scale samples and microwave experiments, we reveal the nature of photonic modes existing in these disordered materials by analyzing phase delay and mapping field distribution profile inside them. We also show how to extend the proof-of-concept microwave studies of these materials to proof-of-scale studies for real applications, by designing and fabricating these disordered photonic materials at submicron-scale with functional devices for 1.55 micron wavelength. The intrinsic isotropy of the disordered structure is an inherent advantage associated with the absence of limitations of orientational order, which is shown to provide valuable freedom in defect architecture design impossible in periodical structures. NSF Award DMR-1308084, the University of Surrey's FRSF and Santander awards.

  8. Diagnostics and performance of a 1/4-scale MPD thruster

    NASA Technical Reports Server (NTRS)

    York, T. M.; Zakrzwski, C.; Soulas, G.

    1990-01-01

    The primary purpose of this study is to evaluate the performance and scaling characteristics of a 1/4-scale magnetoplasmadynamic (MPD) thruster operating with and without applied magnetic nozzle fields. The experiment was carried out with separate pulse forming networks for the thruster and the applied field solenoidal coil. A strong correlation of impact pressure signal with thruster current was noted. Also striking was the larger impact signal when the magnetic nozzle field was applied. Measurements of N(e) and T(e) from Langmuir probes have been made. Compatible interpretation of pressure with N(e), T(e), allow local velocity to be mapped, thus enhancing understanding of the acceleration process.

  9. System characteristics and performance evaluation of a trailer-scale downdraft gasifier with different feedstock.

    PubMed

    Balu, Elango; Chung, J N

    2012-03-01

    The main objective of this study is to investigate the thermal profiles of a trailer-scale gasifier in different zones during the course of gasification and also to elaborate on the design, characteristics and performance of the gasification system using different biomass feedstock. The purpose is to emphasize on the effectiveness of distributed power generation systems and demonstrate the feasibility of such gasification systems in real world scenarios, where the lingo-cellulosic biomass resources are widely available and distributed across the board. Experimental data on the thermal profiles with respect to five different zones in the gasifier and a comprehensive thermal-chemical equilibrium model to predict the syngas composition are presented in detail. Four different feedstock-pine wood, horse manure, red oak, and cardboard were evaluated. The effects of C, H, O content variations in the feedstock on the thermal profiles, and the efficiency and viability of the trailer-scale gasifier are also discussed. PMID:22265984

  10. Development and performance evaluation of frustum cone shaped churn for small scale production of butter.

    PubMed

    Kalla, Adarsh M; Sahu, C; Agrawal, A K; Bisen, P; Chavhan, B B; Sinha, Geetesh

    2016-05-01

    The present research was intended to develop a small scale butter churn and its performance by altering churning temperature and churn speed during butter making. In the present study, the cream was churned at different temperatures (8, 10 and 12 °C) and churn speeds (35, 60 and 85 rpm). The optimum parameters of churning time (40 min), moisture content (16 %) and overrun (19.42 %) were obtained when cream was churned at churning temperature of 10 °C and churn speed of 60 rpm. Using appropriate conditions of churning temperature and churn speed, high quality butter can be produced at cottage scale. PMID:27407187

  11. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    SciTech Connect

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles were prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.

  12. SEASAT SAR performance evaluation study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The performance of the SEASAT synthetic aperture radar (SAR) sensor was evaluated using data processed by the MDA digital processor. Two particular aspects are considered the location accuracy of image data, and the calibration of the measured backscatter amplitude of a set of corner reflectors. The image location accuracy was assessed by selecting identifiable targets in several scenes, converting their image location to UTM coordinates, and comparing the results to map sheets. The error standard deviation is measured to be approximately 30 meters. The amplitude was calibrated by measuring the responses of the Goldstone corner reflector array and comparing the results to theoretical values. A linear regression of the measured against theoretical values results in a slope of 0.954 with a correlation coefficient of 0.970.

  13. Psychomotor vigilance performance predicted by Epworth Sleepiness Scale scores in an operational setting with the United States Navy.

    PubMed

    Shattuck, Nita Lewis; Matsangas, Panagiotis

    2015-04-01

    It is critical in operational environments to identify individuals who are at higher risk of psychomotor performance impairments. This study assesses the utility of the Epworth Sleepiness Scale for predicting degraded psychomotor vigilance performance in an operational environment. Active duty crewmembers of a USA Navy destroyer (N = 69, age 21-54 years) completed the Epworth Sleepiness Scale at the beginning of the data collection period. Participants wore actigraphs and completed sleep diaries for 11 days. Psychomotor vigilance tests were administered throughout the data collection period using a 3-min version of the psychomotor vigilance test on the actigraphs. Crewmembers with elevated scores on the Epworth Sleepiness Scale (i.e. Epworth Sleepiness Scale >10) had 60% slower reaction times on average, and experienced at least 60% more lapses and false starts compared with individuals with normal Epworth Sleepiness Scale scores (i.e. Epworth Sleepiness Scale ≤ 10). Epworth Sleepiness Scale scores were correlated with daily time in bed (P < 0.01), sleep (P < 0.05), mean reaction time (P < 0.001), response speed 1/reaction time (P < 0.05), slowest 10% of response speed (P < 0.001), lapses (P < 0.01), and the sum of lapses and false starts (P < 0.001). In this chronically sleep-deprived population, elevated Epworth Sleepiness Scale scores identified that subset of the population who experienced degraded psychomotor vigilance performance. We theorize that Epworth Sleepiness Scale scores are an indication of personal sleep debt that varies depending on one's individual sleep requirement. In the absence of direct performance metrics, we also advocate that the Epworth Sleepiness Scale can be used to determine the prevalence of excessive sleepiness (and thereby assess the risk of performance decrements). PMID:25273376

  14. Full-scale studies of alum recovery

    SciTech Connect

    1988-01-01

    Full-scale testing was conducted at the Williams Water Treatment Plant to evaluate alum recovery. Two tests were conducted, one in August and one is September. The objective was to determine the dewaterability of the solids remaining after alum recovery on sand drying beds and to evaluate the effectiveness of the recovered alum as a coagulant in the water plant and for phosphorus removal at the wastewater plant.

  15. Reflective Thinking Scale: A Validity and Reliability Study

    ERIC Educational Resources Information Center

    Basol, Gulsah; Evin Gencel, Ilke

    2013-01-01

    The purpose of this study was to adapt Reflective Thinking Scale to Turkish and investigate its validity and reliability over a Turkish university students' sample. Reflective Thinking Scale (RTS) is a 5 point Likert scale (ranging from 1 corresponding Agree Completely, 3 to Neutral, and 5 to Not Agree Completely), purposed to measure…

  16. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-06-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  17. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale

    NASA Astrophysics Data System (ADS)

    Hatt, Belinda E.; Fletcher, Tim D.; Deletic, Ana

    2009-02-01

    SummaryBiofiltration systems are a recommended and increasingly popular technology for stormwater management; however there is a general lack of performance data for these systems, particularly at the field scale. The objective of this study was to investigate the hydrologic and pollutant removal performance of three field-scale biofiltration systems in two different climates. Biofilters were shown to effectively attenuate peak runoff flow rates by at least 80%. Performance assessment of a lined biofilter demonstrated that retention of inflow volumes by the filter media, for subsequent loss via evapotranspiration, reduced runoff volumes by 33% on average. Retention of water was found to be most influenced by inflow volumes, although only small to medium storms could be assessed. Vegetation was shown to be important for maintaining hydraulic capacity, because root growth and senescence countered compaction and clogging. Suspended solids and heavy metals were effectively removed, irrespective of the design configuration, with load reductions generally in excess of 90%. In contrast, nutrient retention was variable, and ranged from consistent leaching to effective and reliable removal, depending on the design. To ensure effective removal of phosphorus, a filter medium with a low phosphorus content should be selected. Nitrogen is more difficult to remove because it is highly soluble and strongly influenced by the variable wetting and drying regime that is inherent in biofilter operation. The results of this research suggest that reconfiguration of biofilter design to manage the deleterious effects of drying on biological activity is necessary to ensure long term nitrogen removal.

  18. The reliability of the Personal and Social Performance scale - informing its training and use.

    PubMed

    White, Sarah; Dominise, Christianne; Naik, Dhruv; Killaspy, Helen

    2016-09-30

    Social functioning is as an important outcome in studies of people with schizophrenia. Most measures of social function include a person's ability to manage everyday activities as well as their abilities to engage in leisure and occupational activities. The Personal Social Performance (PSP) scale assesses functioning across four dimensions (socially useful activities, personal and social relationships, self-care, disturbing and aggressive behaviours) rather than one global score and thus has been reported to be easier to use. In a pan-European study of people with severe mental illness a team of 26 researchers received training in rating the scale, after which the inter-rater reliability (IRR) was assessed and found to be not sufficiently high. A brief survey of the researchers elicited information with which to explore the low IRR and their experience of using the PSP. Clinicians were found to have higher IRR, in particular, psychologists. Patients' employment status was found to be the most important predictor of PSP. Researchers used multiple sources of information when rating the scale. Sufficient training is required to ensure IRR, particularly for non-clinical researchers, if the PSP is to be established as a reliable research tool. PMID:27428085

  19. Sex Differences in Performance over 7 Years on the Wechsler Intelligence Scale for Children Revised among Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Kittler, P.; Krinsky-McHale, S. J.; Devenny, D. A.

    2004-01-01

    The aim of this study was to explore changes related to sex differences on the Wechsler Intelligence Scale for Children Revised (WISC-R) subtest performance over a 7-year interval in middle-aged adults with intellectual disability (ID). Cognitive sex differences have been extensively studied in the general population, but there are few reports…

  20. Factor analysis of two versions of the Oral Impacts on Daily Performance scale.

    PubMed

    Pilotto, Luciane M; Scalco, Giovana P C; Abegg, Claides; Celeste, Roger K

    2016-06-01

    The aim of this study was to explore the factorial structure and agreement of two scoring versions of the Oral Impacts on Daily Performance (OIDP) scale, and to compare the fit of the originally proposed factorial structure, as opposed to an alternative model. Exploratory factor analyses (EFA) were conducted to explore the dimensional structure of the OIDP on a convenience sample of 200 adults (S1). Confirmatory factor analyses (CFA) were performed on a random sample of 720 adults (S2). The Cronbach's alpha coefficients for the total and frequency versions of the OIDP scale were, respectively, 0.81 and 0.70 for S1, and 0.82 and 0.79 for S2, with a quadratic Kappa κ = 0.83 (95% CI: 0.75-0.89) in S1 and κ = 0.92 (95% CI: 0.89-0.94) in S2. Exploratory factor analyses showed one factor for the total version and three factors (non-interpretable) for the frequency version. Confirmatory factor analyses showed that the frequency version for the one-factor model (Model 1) had the best fit [Root Mean Square Error of Approximation (RMSEA) = 0.04; Comparative Fit Index (CFI) = 0.98; Tucker-Lewis index (TLI) = 0.97, χ(2) P-value < 0.01]. The one-factor model was not significantly different from the original three-factor model. These findings suggest that the scale captures only one overall quality of life dimension, and that the frequency version was the most parsimonious model of the OIDP scale. PMID:26935779

  1. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  2. Habitat–performance relationships: finding the right metric at a given spatial scale

    PubMed Central

    Gaillard, Jean-Michel; Hebblewhite, Mark; Loison, Anne; Fuller, Mark; Powell, Roger; Basille, Mathieu; Van Moorter, Bram

    2010-01-01

    The field of habitat ecology has been muddled by imprecise terminology regarding what constitutes habitat, and how importance is measured through use, selection, avoidance and other bio-statistical terminology. Added to the confusion is the idea that habitat is scale-specific. Despite these conceptual difficulties, ecologists have made advances in understanding ‘how habitats are important to animals’, and data from animal-borne global positioning system (GPS) units have the potential to help this clarification. Here, we propose a new conceptual framework to connect habitats with measures of animal performance itself—towards assessing habitat–performance relationship (HPR). Long-term studies will be needed to estimate consequences of habitat selection for animal performance. GPS data from wildlife can provide new approaches for studying useful correlates of performance that we review. Recent examples include merging traditional resource selection studies with information about resources used at different critical life-history events (e.g. nesting, calving, migration), uncovering habitats that facilitate movement or foraging and, ultimately, comparing resources used through different life-history strategies with those resulting in death. By integrating data from GPS receivers with other animal-borne technologies and combining those data with additional life-history information, we believe understanding the drivers of HPRs will inform animal ecology and improve conservation. PMID:20566502

  3. ALTERNATIVE BIOLOGICAL TREATMENT PROCESSES FOR REMEDIATION OF CREOSOTE-CONTAMINATED MATERIALS: BENCH-SCALE TREATABILITY STUDIES

    EPA Science Inventory

    Bench-scale biotreatability studies were performed to determine the most effective of two bioremediation application strategies to ameliorate creosote and pentachlorophenol (PCP) contaminated soils present at the American Creosote Works Superfund site, Pensacola, Florida: olid-ph...

  4. A scalable silicon photonic chip-scale optical switch for high performance computing systems.

    PubMed

    Yu, Runxiang; Cheung, Stanley; Li, Yuliang; Okamoto, Katsunari; Proietti, Roberto; Yin, Yawei; Yoo, S J B

    2013-12-30

    This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME. PMID:24514859

  5. Systematic Land-Surface-Model Performance Evaluation on different time scales

    NASA Astrophysics Data System (ADS)

    Mahecha, M. D.; Jung, M.; Reichstein, M.; Beer, C.; Braakhekke, M.; Carvalhais, N.; Lange, H.; Lasslop, G.; Le Maire, G.; Seneviratne, S. I.; Vetter, M.

    2008-12-01

    Keeping track of the space--time evolution of CO2--, and H2O--fluxes between the terrestrial biosphere and atmosphere is essential to our understanding of current climate. Monitoring fluxes at site level is one option to characterize the temporal development of ecosystem--atmosphere interactions. Nevertheless, many aspects of ecosystem--atmosphere fluxes become meaningful only when interpreted in time over larger geographical regions. Empirical and process based models play a key role in spatial and temporal upscaling exercises. In this context, comparative model performance evaluations at site level are indispensable. We present a model evaluation scheme which investigates the model-data agreement separately on different time scales. Observed and modeled time series were decomposed by essentially non parametric techniques into subsignals (time scales) of characteristic fluctuations. By evaluating the extracted subsignals of observed and modeled C--fluxes (gross and net ecosystem exchange, GEE and NEE, and terrestrial ecosystem respiration, TER) separately, we obtain scale--dependent performances for the different evaluation measures. Our diagnostic model comparison allows uncovering time scales of model-data agreement and fundamental mismatch. We focus on the systematic evaluation of three land--surface models: Biome--BGC, ORCHIDEE, and LPJ. For the first time all models were driven by consistent site meteorology and compared to respective Eddy-Covariance flux observations. The results show that correct net C--fluxes may result from systematic (simultaneous) biases in TER and GEE on specific time scales of variation. We localize significant model-data mismatches of the annual-seasonal cycles in time and illustrate the recurrence characteristics of such problems. For example LPJ underestimates GEE during winter months and over estimates it in early summer at specific sites. Contrary, ORCHIDEE over-estimates the flux from July to September at these sites. Finally

  6. Measuring Psychosocial Aspects of Well-Being in Older Community Residents: Performance of Four Short Scales.

    ERIC Educational Resources Information Center

    Steiner, Andrea; And Others

    1996-01-01

    Uses Cronbach's alpha and correlational methods, including factor analysis, to evaluate the performance of four short scales measuring psychosocial aspects of well-being (depression, quality of life, sense of coherence, social support) in two samples of community-dwelling persons ages 75 and over. All scales exhibited good range, high internal…

  7. Performance Measurements of the Injection Laser System Configured for Picosecond Scale Advanced Radiographic Capability

    SciTech Connect

    Haefner, L C; Heebner, J E; Dawson, J W; Fochs, S N; Shverdin, M Y; Crane, J K; Kanz, K V; Halpin, J M; Phan, H H; Sigurdsson, R J; Brewer, S W; Britten, J A; Brunton, G K; Clark, W J; Messerly, M J; Nissen, J D; Shaw, B H; Hackel, R P; Hermann, M R; Tietbohl, G L; Siders, C W; Barty, C J

    2009-10-23

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  8. Performance of Ultra-Scale Applications on Leading Vector andScalar HPC Platforms

    SciTech Connect

    Oliker, Leonid; Canning, Andrew; Carter, Jonathan Carter; Shalf,John; Simon, Horst; Ethier, Stephane; Parks, David; Kitawaki, Shigemune; Tsuda, Yoshinori; Sato, Tetsuya

    2005-01-01

    The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers primarily because of their generality, scalability, and cost effectiveness. However, the constant degradation of superscalar sustained performance, has become a well-known problem in the scientific computing community. This trend has been widely attributed to the use of superscalar-based commodity components who's architectural designs offer a balance between memory performance, network capability, and execution rate that is poorly matched to the requirements of large-scale numerical computations. The recent development of massively parallel vector systems offers the potential to increase the performance gap for many important classes of algorithms. In this study we examine four diverse scientific applications with the potential to run at ultrascale, from the areas of plasma physics, material science, astrophysics, and magnetic fusion. We compare performance between the vector-based Earth Simulator (ES) and Cray X1, with leading superscalar-based platforms: the IBM Power3/4 and the SGI Altix. Results demonstrate that the ES vector systems achieve excellent performance on our application suite - the highest of any architecture tested to date.

  9. Scale-up studies on high shear wet granulation process from mini-scale to commercial scale.

    PubMed

    Aikawa, Shouhei; Fujita, Naomi; Myojo, Hidetoshi; Hayashi, Takashi; Tanino, Tadatsugu

    2008-10-01

    A newly developed mini-scale high shear granulator was used for scale-up study of wet granulation process from 0.2 to 200 L scales. Under various operation conditions and granulation bowl sizes, powder mixture composed of anhydrous caffeine, D-mannitol, dibasic calcium phosphate, pregelatinized starch and corn starch was granulated by adding water. The granules were tabletted, and disintegration time and hardness of the tablets were evaluated to seek correlations of granulation conditions and tablet properties. As the granulation proceeded, disintegration time was prolonged and hardness decreased. When granulation processes were operated under the condition that agitator tip speed was the same, similar relationship between granulation time and tablet properties, such as disintegration time and hardness, between 0.2 L and 11 L scales were observed. Likewise, between 11 L and 200 L scales similar relationship was observed when operated under the condition that the force to the granulation mass was the same. From the above results, the mini-scale high shear granulator should be useful tool to predict operation conditions of large-scale granulation from its mini-scale operation conditions, where similar tablet properties should be obtained. PMID:18827384

  10. A Confirmatory Study of Rating Scale Category Effectiveness for the Coaching Efficacy Scale

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Feltz, Deborah L.; Wolfe, Edward W.

    2008-01-01

    This study extended validity evidence for measures of coaching efficacy derived from the Coaching Efficacy Scale (CES) by testing the rating scale categorizations suggested in previous research. Previous research provided evidence for the effectiveness of a four-category (4-CAT) structure for high school and collegiate sports coaches; it also…

  11. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies.

    PubMed

    Wang, Long; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2014-12-01

    The anaerobic digestion performances of kitchen waste (KW) and fruit/vegetable waste (FVW) were investigated for establishing engineering digestion system. The study was conducted from lab-scale to pilot-scale, including batch, single-phase and two-phase experiments. The lab-scale experimental results showed that the ratio of FVW to KW at 5:8 presented higher methane productivity (0.725 L CH4/g VS), and thereby was recommended. Two-phase digestion appeared to have higher treatment capacity and better buffer ability for high organic loading rate (OLR) (up to 5.0 g(VS) L(-1) d(-1)), compared with the low OLR of 3.5 g(VS) L(-1) d(-1) for single-phase system. For two-phase digestion, the pilot-scale system showed similar performances to those of lab-scale one, except slightly lower maximum OLR of 4.5 g(VS) L(-1) d(-1) was allowed. The pilot-scale system proved to be profitable with a net profit of 10.173$/ton as higher OLR (⩾ 3.0 g(VS) L(-1) d(-1)) was used. PMID:25192798

  12. Performance Support Case Studies from IBM.

    ERIC Educational Resources Information Center

    Duke-Moran, Celia; Swope, Ginger; Morariu, Janis; deKam, Peter

    1999-01-01

    Presents two case studies that show how IBM addressed performance support solutions and electronic learning. The first developed a performance support and expert coaching solution; the second applied performance support to reducing implementation time and total cost of ownership of enterprise resource planning systems. (Author/LRW)

  13. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2013-12-01

    This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems. PMID:24210547

  14. Feed process studies: Research-Scale Melter

    SciTech Connect

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ``channeling`` which allowed the top section to cool, reducing production rates.

  15. Century Scale Evaporation Trend: An Observational Study

    NASA Technical Reports Server (NTRS)

    Bounoui, Lahouari

    2012-01-01

    Several climate models with different complexity indicate that under increased CO2 forcing, runoff would increase faster than precipitation overland. However, observations over large U.S watersheds indicate otherwise. This inconsistency between models and observations suggests that there may be important feedbacks between climate and land surface unaccounted for in the present generation of models. We have analyzed century-scale observed annual runoff and precipitation time-series over several United States Geological Survey hydrological units covering large forested regions of the Eastern United States not affected by irrigation. Both time-series exhibit a positive long-term trend; however, in contrast to model results, these historic data records show that the rate of precipitation increases at roughly double the rate of runoff increase. We considered several hydrological processes to close the water budget and found that none of these processes acting alone could account for the total water excess generated by the observed difference between precipitation and runoff. We conclude that evaporation has increased over the period of observations and show that the increasing trend in precipitation minus runoff is correlated to observed increase in vegetation density based on the longest available global satellite record. The increase in vegetation density has important implications for climate; it slows but does not alleviate the projected warming associated with greenhouse gases emission.

  16. Performance analysis of landslide early warning systems at regional scale: the EDuMaP method

    NASA Astrophysics Data System (ADS)

    Piciullo, Luca; Calvello, Michele

    2016-04-01

    Landslide early warning systems (LEWSs) reduce landslide risk by disseminating timely and meaningful warnings when the level of risk is judged intolerably high. Two categories of LEWSs, can be defined on the basis of their scale of analysis: "local" systems and "regional" systems. LEWSs at regional scale (ReLEWSs) are used to assess the probability of occurrence of landslides over appropriately-defined homogeneous warning zones of relevant extension, typically through the prediction and monitoring of meteorological variables, in order to give generalized warnings to the public. Despite many studies on ReLEWSs, no standard requirements exist for assessing their performance. Empirical evaluations are often carried out by simply analysing the time frames during which significant high-consequence landslides occurred in the test area. Alternatively, the performance evaluation is based on 2x2 contingency tables computed for the joint frequency distribution of landslides and alerts, both considered as dichotomous variables. In all these cases, model performance is assessed neglecting some important aspects which are peculiar to ReLEWSs, among which: the possible occurrence of multiple landslides in the warning zone; the duration of the warnings in relation to the time of occurrence of the landslides; the level of the warning issued in relation to the landslide spatial density in the warning zone; the relative importance system managers attribute to different types of errors. An original approach, called EDuMaP method, is proposed to assess the performance of landslide early warning models operating at regional scale. The method is composed by three main phases: Events analysis, Duration Matrix, Performance analysis. The events analysis phase focuses on the definition of landslide (LEs) and warning events (WEs), which are derived from available landslides and warnings databases according to their spatial and temporal characteristics by means of ten input parameters. The

  17. Multisite Studies and Scaling up in Educational Research

    ERIC Educational Resources Information Center

    Harwell, Michael

    2012-01-01

    A scale-up study in education typically expands the sample of students, schools, districts, and/or practices or materials used in smaller studies in ways that build in heterogeneity. Yet surprisingly little is known about the factors that promote successful scaling up efforts in education, in large part due to the absence of empirically supported…

  18. Developing the Educational Belief Scale: The Validity and Reliability Study

    ERIC Educational Resources Information Center

    Yilmaz, Kursad; Altinkurt, Yahya; Cokluk, Omay

    2011-01-01

    The aim of this study is to develop a valid and reliable scale that can be used in determining educational beliefs of teachers and prospective teachers. After studies such as scale expert views and the evaluation of intelligibility, the measure is administered to a sample consisting of 154 teachers and 305 prospective teachers with a total number…

  19. A Factor Analytic Study of the Internet Usage Scale

    ERIC Educational Resources Information Center

    Monetti, David M.; Whatley, Mark A.; Hinkle, Kerry T.; Cunningham, Kerry T.; Breneiser, Jennifer E.; Kisling, Rhea

    2011-01-01

    This study developed an Internet Usage Scale (IUS) for use with adolescent populations. The IUS is a 26-item scale that measures participants' beliefs about how their Internet usage impacts their behavior. The sample for this study consisted of 947 middle school students. An exploratory factor analysis with varimax rotation was conducted on the…

  20. Extreme Postnatal Scaling in Bat Feeding Performance: A View of Ecomorphology from Ontogenetic and Macroevolutionary Perspectives.

    PubMed

    Santana, Sharlene E; Miller, Kimberly E

    2016-09-01

    Ecomorphology studies focus on understanding how anatomical and behavioral diversity result in differences in performance, ecology, and fitness. In mammals, the determinate growth of the skeleton entails that bite performance should change throughout ontogeny until the feeding apparatus attains its adult size and morphology. Then, interspecific differences in adult phenotypes are expected to drive food resource partitioning and patterns of lineage diversification. However, Formal tests of these predictions are lacking for the majority of mammal groups, and thus our understanding of mammalian ecomorphology remains incomplete. By focusing on a fundamental measure of feeding performance, bite force, and capitalizing on the extraordinary morphological and dietary diversity of bats, we discuss how the intersection of ontogenetic and macroevolutionary changes in feeding performance may impact ecological diversity in these mammals. We integrate data on cranial morphology and bite force gathered through longitudinal studies of captive animals and comparative studies of free-ranging individuals. We demonstrate that ontogenetic trajectories and evolutionary changes in bite force are highly dependent on changes in body and head size, and that bats exhibit dramatic, allometric increases in bite force during ontogeny. Interspecific variation in bite force is highly dependent on differences in cranial morphology and function, highlighting selection for ecological specialization. While more research is needed to determine how ontogenetic changes in size and bite force specifically impact food resource use and fitness in bats, interspecific diversity in cranial morphology and bite performance seem to closely match functional differences in diet. Altogether, these results suggest direct ecomorphological relationships at ontogenetic and macroevolutionary scales in bats. PMID:27371380

  1. The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita).

    PubMed

    McHenry, Matthew J; Jed, Jason

    2003-11-01

    It is not well understood how ontogenetic changes in the motion and morphology of aquatic animals influence the performance of swimming. The goals of the present study were to understand how changes in size, shape and behavior affect the hydrodynamics of jet propulsion in the jellyfish Aurelia aurita and to explore how such changes affect the ontogenetic scaling of swimming speed and cost of transport. We measured the kinematics of jellyfish swimming from video recordings and simulated the hydrodynamics of swimming with two computational models that calculated thrust generation by paddle and jet mechanisms. Our results suggest that thrust is generated primarily by jetting and that there is negligible thrust generation by paddling. We examined how fluid forces scaled with body mass using the jet model. Despite an ontogenetic increase in the range of motion by the bell diameter and a decrease in the height-to-diameter ratio, we found that thrust and acceleration reaction scaled with body mass as predicted by kinematic similarity. However, jellyfish decreased their pulse frequency with growth, and speed consequently scaled at a lower exponential rate than predicted by kinematic similarity. Model simulations suggest that the allometric growth in Aurelia results in swimming that is slower, but more energetically economical, than isometric growth with a prolate bell shape. The decrease in pulse frequency over ontogeny allows large Aurelia medusae to avoid a high cost of transport but generates slower swimming than if they maintained a high pulse frequency. Our findings suggest that ontogenetic change in the height-to-diameter ratio and pulse frequency of Aurelia results in swimming that is relatively moderate in speed but is energetically economical. PMID:14555752

  2. Scale-up and advanced performance analysis of boiler combustion chambers

    SciTech Connect

    Richter, W.

    1985-12-31

    This paper discusses methods for evaluation of thermal performance of large boiler furnaces. Merits and limitations of pilot-scale testing and mathematical modeling are pointed out. Available computer models for furnace performance predictions are reviewed according to their classification into finite-difference methods and zone methods. Current state of the art models for industrial application are predominantly zone methods based on advanced Monte-Carlo type techniques for calculation of radiation heat transfer. A representation of this model type is described in more detail together with examples of its practical application. It is also shown, how pilot-scale results can be scaled-up with help of the model to predict full-scale performance of particular boiler furnaces.

  3. Durability study of a vehicle-scale hydrogen storage system.

    SciTech Connect

    Johnson, Terry Alan; Dedrick, Daniel E.; Behrens, Richard, Jr.

    2010-11-01

    Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

  4. Evidences of Validity of a Scale for Mapping Professional as Defining Competences and Performance by Brazilian Tutors

    ERIC Educational Resources Information Center

    Coelho, Francisco Antonio, Jr.; Ferreira, Rodrigo Rezende; Paschoal, Tatiane; Faiad, Cristiane; Meneses, Paulo Murce

    2015-01-01

    The purpose of this study was twofold: to assess evidences of construct validity of the Brazilian Scale of Tutors Competences in the field of Open and Distance Learning and to examine if variables such as professional experience, perception of the student´s learning performance and prior experience influence the development of technical and…

  5. The Consequences of Perfectionism Scale: Factorial Structure and Relationships with Perfectionism, Performance Perfectionism, Affect, and Depressive Symptoms

    ERIC Educational Resources Information Center

    Stoeber, Joachim; Hoyle, Azina; Last, Freyja

    2013-01-01

    This study investigated the Consequences of Perfectionism Scale (COPS) and its relationships with perfectionism, performance perfectionism, affect, and depressive symptoms in 202 university students using confirmatory factor analysis, correlations, and regression analyses. Results suggest that the COPS is a reliable and valid measure of positive…

  6. Performance of an Abbreviated Version of the Lubben Social Network Scale among Three European Community-Dwelling Older Adult Populations

    ERIC Educational Resources Information Center

    Lubben, James; Blozik, Eva; Gillmann, Gerhard; Iliffe, Steve; von Renteln-Kruse, Wolfgang; Beck, John C.; Stuck, Andreas E.

    2006-01-01

    Purpose: There is a need for valid and reliable short scales that can be used to assess social networks and social supports and to screen for social isolation in older persons. Design and Methods: The present study is a cross-national and cross-cultural evaluation of the performance of an abbreviated version of the Lubben Social Network Scale…

  7. Genome-Scale Studies of Aging: Challenges and Opportunities

    PubMed Central

    McCormick, Mark A; Kennedy, Brian K

    2012-01-01

    Whole-genome studies involving a phenotype of interest are increasingly prevalent, in part due to a dramatic increase in speed at which many high throughput technologies can be performed coupled to simultaneous decreases in cost. This type of genome-scale methodology has been applied to the phenotype of lifespan, as well as to whole-transcriptome changes during the aging process or in mutants affecting aging. The value of high throughput discovery-based science in this field is clearly evident, but will it yield a true systems-level understanding of the aging process? Here we review some of this work to date, focusing on recent findings and the unanswered puzzles to which they point. In this context, we also discuss recent technological advances and some of the likely future directions that they portend. PMID:23633910

  8. OrigenArp Primer: How to Perform Isotopic Depletion and Decay Calculations with SCALE/ORIGEN

    SciTech Connect

    Bowman, Stephen M; Gauld, Ian C

    2010-08-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer software system developed at Oak Ridge National Laboratory is widely used and accepted around the world for nuclear analyses. ORIGEN-ARP is a SCALE isotopic depletion and decay analysis sequence used to perform point-depletion calculations with the well-known ORIGEN-S code using problem-dependent cross sections. Problem-dependent cross-section libraries are generated using the ARP (Automatic Rapid Processing) module using an interpolation algorithm that operates on pre-generated libraries created for a range of fuel properties and operating conditions. Methods are provided in SCALE to generate these libraries using one-, two-, and three-dimensional transport codes. The interpolation of cross sections for uranium-based fuels may be performed for the variables burnup, enrichment, and water density. An option is also available to interpolate cross sections for mixed-oxide (MOX) fuels using the variables burnup, plutonium content, plutonium isotopic vector, and water moderator density. This primer is designed to help a new user understand and use ORIGEN-ARP with the OrigenArp Windows graphical user interface in SCALE. It assumes that the user has a college education in a technical field. There is no assumption of familiarity with nuclear depletion codes in general or with SCALE/ORIGEN-ARP in particular. The primer is based on SCALE 6 but should be applicable to earlier or later versions of SCALE. Information is included to help new users, along with several sample problems that walk the user through the different input forms and menus and illustrate the basic features. References to related documentation are provided. The primer provides a starting point for the nuclear analyst who uses SCALE/ORIGEN-ARP. Complete descriptions are provided in the SCALE documentation. Although the primer is self-contained, it is intended as a companion volume to the SCALE documentation. The SCALE Manual is

  9. Evaluating Performance Measurement Systems in Nonprofit Agencies: The Program Accountability Quality Scale (PAQS).

    ERIC Educational Resources Information Center

    Poole, Dennis L.; Nelson, Joan; Carnahan, Sharon; Chepenik, Nancy G.; Tubiak, Christine

    2000-01-01

    Developed and field tested the Performance Accountability Quality Scale (PAQS) on 191 program performance measurement systems developed by nonprofit agencies in central Florida. Preliminary findings indicate that the PAQS provides a structure for obtaining expert opinions based on a theory-driven model about the quality of proposed measurement…

  10. Including Performance Assessments in Accountability Systems: A Review of Scale-Up Efforts

    ERIC Educational Resources Information Center

    Tung, Rosann

    2010-01-01

    The purpose of this literature and field review is to understand previous efforts at scaling up performance assessments for use across districts and states. Performance assessments benefit students and teachers by providing more opportunities for students to demonstrate their knowledge and complex skills, by providing teachers with better…

  11. Factor- and Item-Level Analyses of the 38-Item Activities Scale for Kids-Performance

    ERIC Educational Resources Information Center

    Bagley, Anita M.; Gorton, George E.; Bjornson, Kristie; Bevans, Katherine; Stout, Jean L.; Narayanan, Unni; Tucker, Carole A.

    2011-01-01

    Aim: Children and adolescents highly value their ability to participate in relevant daily life and recreational activities. The Activities Scale for Kids-performance (ASKp) instrument measures the frequency of performance of 30 common childhood activities, and has been shown to be valid and reliable. A revised and expanded 38-item ASKp (ASKp38)…

  12. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    NASA Astrophysics Data System (ADS)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  13. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  14. Parameter study of a vehicle-scale hydrogen storage system.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

  15. A Review. A Criterion-related Study of Three Sets of Rating Scales Used for Measuring and Evaluating the Instrumental Achievement of First and Second Year Clarinet Students.

    ERIC Educational Resources Information Center

    Radocy, Rudolf E.

    1987-01-01

    Reviews a study that examined the validity of different rating scales for measuring instrumental achievement with the clarinet. Rejects the contention that the new rating scales are superior to the Clarinet Performance Rating Scale. (BSR)

  16. Prenatal predictors of performance on the Brazelton Neonatal Behavioral Assessment Scale.

    PubMed

    Oyemade, U J; Cole, O J; Johnson, A A; Knight, E M; Westney, O E; Laryea, H; Hill, G; Cannon, E; Fomufod, A; Westney, L S

    1994-06-01

    The present study presents a prospective analysis of the interrelationships among prenatal medical, nutritional (dietary and biochemical) and behavioral determinants of Brazelton performance. Previous researchers (Scanlon 1984, Lester and Brazelton 1984) have raised questions regarding the relative roles of medical factors, nutrition, ponderal index and other behavioral factors in neonatal performance on the BNBAS. Four hundred sixty-seven predominantly Black nulliparous women and their neonates in Washington, D.C. who were enrolled in the study by the 20th week of gestation were subjects. Results of univariate tests of significant (P < 0.01) association between independent variables and Brazelton clusters from scores measured on day 2 are presented. The 26 behavioral items were summarized into 6 clusters as done in similar studies by linearizing measures made on a curvilinear scale and taking the mean. The 6 behavioral clusters are habituation, motor, orientation, range of states, regulation of states, and autonomic. Results of 16 reflex tests are used to define a seventh reflex cluster. Independent variables included demographic, lifestyle, nutritional, medical, ponderal index, and psychosocial measures. Several psychosocial variables, including stress, anxiety and partner interaction were associated with the behavioral clusters. Nutritional variables were associated with BNBAS habituation, motor, orientation, reflex score and autonomic responses. An analysis of co-variance was performed to determine the joint effect of the above variables on the variation in the Brazelton performance on the seven cluster scores. Five of the seven models (orientation, motor, range of states, autonomic, and reflex scores) were significant predictors of the outcome variables. PMID:8201439

  17. Wyoming Social Studies Content and Performance Standards.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    The Wyoming Social Studies Content and Performance Standards were developed in the recognition that social studies is the integrated study of the social sciences and humanities to promote civic competence. The mission of social studies is to help young people develop the ability to make informed and reasoned decisions as citizens of a culturally…

  18. Small Scale Mixing Demonstration Batch Transfer and Sampling Performance of Simulated HLW - 12307

    SciTech Connect

    Jensen, Jesse; Townson, Paul; Vanatta, Matt

    2012-07-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste treatment Plant (WTP) has been recognized as a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. At the end of 2009 DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS), awarded a contract to EnergySolutions to design, fabricate and operate a demonstration platform called the Small Scale Mixing Demonstration (SSMD) to establish pre-transfer sampling capacity, and batch transfer performance data at two different scales. This data will be used to examine the baseline capacity for a tank mixed via rotational jet mixers to transfer consistent or bounding batches, and provide scale up information to predict full scale operational performance. This information will then in turn be used to define the baseline capacity of such a system to transfer and sample batches sent to WTP. The Small Scale Mixing Demonstration (SSMD) platform consists of 43'' and 120'' diameter clear acrylic test vessels, each equipped with two scaled jet mixer pump assemblies, and all supporting vessels, controls, services, and simulant make up facilities. All tank internals have been modeled including the air lift circulators (ALCs), the steam heating coil, and the radius between the wall and floor. The test vessels are set up to simulate the transfer of HLW out of a mixed tank, and collect a pre-transfer sample in a manner similar to the proposed baseline configuration. The collected material is submitted to an NQA-1 laboratory for chemical analysis. Previous work has been done to assess tank mixing performance at both scales. This work involved a combination of unique instruments to understand the three dimensional distribution of solids using a combination of Coriolis meter measurements, in situ chord length distribution measurements, and electro

  19. Experimental performance of a piston expander in a small- scale organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Oudkerk, J. F.; Dickes, R.; Dumont, O.; Lemort, V.

    2015-08-01

    Volumetric expanders are suitable for more and more applications in the field of micro- and small-scale power system as waster heat recovery or solar energy. This paper present an experimental study carried out on a swatch-plate piston expander. The expander was integrated into an ORC test-bench using R245fa. The performances are evaluated in term of isentropic efficiency and filling factor. The maximum efficiency and power reached are respectively 53% and 2 kW. Inside cylinder pressure measurements allow to compute mechanical efficiency and drown P-V diagram. A semi-empirical simulation model is then proposed, calibrated and used to analyse the different sources of losses.

  20. Influence of particle size on performance of a pilot-scale fixed-bed gasification system.

    PubMed

    Yin, Renzhan; Liu, Ronghou; Wu, Jinkai; Wu, Xiaowu; Sun, Chen; Wu, Ceng

    2012-09-01

    The effect of particle size on the gasification performance of a pilot-scale (25 kg/h) downdraft fixed bed gasification system was investigated using prunings from peach trees at five different size fractions (below 1, 1-2, 2-4, 4-6 and 6-8 cm). The gas and hydrocarbon compositions were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS), respectively. With increasing particle size, gas yield increased while tar and dust content decreased. The lower heating value of the gas decreased slightly with particle size. At a smaller particle size, more hydrocarbons were detected in the producer gas. Hydrogen and carbon dioxide contents increased with the decrease in particle size, reaching 16.09% and 14.36% at particle size below 1cm, respectively. Prunings with a particle size of 1-2 cm were favorable for gasification in the downdraft gasifier used in this study. PMID:22728176

  1. Multi-scale investigation of tensile creep of ultra-high performance concrete for bridge applications

    NASA Astrophysics Data System (ADS)

    Garas Yanni, Victor Youssef

    Ultra-high performance concrete (UHPC) is relatively a new generation of concretes optimized at the nano and micro-scales to provide superior mechanical and durability properties compared to conventional and high performance concretes. Improvements in UHPC are achieved through: limiting the water-to-cementitious materials ratio (i.e., w/cm ≤ 0.20), optimizing particle packing, eliminating coarse aggregate, using specialized materials, and implementing high temperature and high pressure curing regimes. In addition, and randomly dispersed and short fibers are typically added to enhance the material's tensile and flexural strength, ductility, and toughness. There is a specific interest in using UHPC for precast prestressed bridge girders because it has the potential to reduce maintenance costs associated with steel and conventional concrete girders, replace functionally obsolete or structurally deficient steel girders without increasing the weight or the depth of the girder, and increase bridge durability to between 75 and 100 years. UHPC girder construction differs from that of conventional reinforced concrete in that UHPC may not need transverse reinforcement due to the high tensile and shear strengths of the material. Before bridge designers specify such girders without using shear reinforcement, the long-term tensile performance of the material must be characterized. This multi-scale study provided new data and understanding of the long-term tensile performance of UHPC by assessing the effect of thermal treatment, fiber content, and stress level on the tensile creep in a large-scale study, and by characterizing the fiber-cementitious matrix interface at different curing regimes through nanoindentation and scanning electron microscopy (SEM) in a nano/micro-scale study. Tensile creep of UHPC was more sensitive to investigated parameters than tensile strength. Thermal treatment decreased tensile creep by about 60% after 1 year. Results suggested the possibility of

  2. Evaluation of the pressure ulcers risk scales with critically ill patients: a prospective cohort study 1

    PubMed Central

    Borghardt, Andressa Tomazini; do Prado, Thiago Nascimento; de Araújo, Thiago Moura; Rogenski, Noemi Marisa Brunet; Bringuente, Maria Edla de Oliveira

    2015-01-01

    AIMS: to evaluate the accuracy of the Braden and Waterlow risk assessment scales in critically ill inpatients. METHOD: this prospective cohort study, with 55 patients in intensive care units, was performed through evaluation of sociodemographic and clinical variables, through the application of the scales (Braden and Waterlow) upon admission and every 48 hours; and through the evaluation and classification of the ulcers into categories. RESULTS: the pressure ulcer incidence was 30.9%, with the Braden and Waterlow scales presenting high sensitivity (41% and 71%) and low specificity (21% and 47%) respectively in the three evaluations. The cut off scores found in the first, second and third evaluations were 12, 12 and 11 in the Braden scale, and 16, 15 and 14 in the Waterlow scale. CONCLUSION: the Braden scale was shown to be a good screening instrument, and the Waterlow scale proved to have better predictive power. PMID:25806628

  3. Homework Purpose Scale for High School Students: A Validation Study

    ERIC Educational Resources Information Center

    Xu, Jianzhong

    2010-01-01

    The purpose of this study is to test the validity of scores on the Homework Purpose Scale using 681 rural and 306 urban high school students. First, confirmatory factor analysis was conducted on the rural sample. The results reveal that the Homework Purpose Scale comprises three separate yet related factors, including Learning-Oriented Reasons,…

  4. The Theoretical Orientation Profile Scale-Revised: A Validation Study.

    ERIC Educational Resources Information Center

    Worthington, Roger L.; Dillon, Frank R.

    2003-01-01

    This study supported evidence of reliability and validity of the Theoretical Orientation Profile Scale-Revised (TOPS-R) scores. The TOPS-R was designed to measure theoretical orientation among counselors and trainees. Factor analysis yielded a 6-factor solution accounting for 87.5% of the total variance in the scale. The 6 factors corresponded to…

  5. The Culturally Responsive Teacher Preparedness Scale: An Exploratory Study

    ERIC Educational Resources Information Center

    Hsiao, Yun-Ju

    2015-01-01

    The purpose of this study was to investigate the competencies of culturally responsive teaching and construct a Culturally Responsive Teacher Preparedness Scale (CRTPS) for the use of teacher preparation programs and preservice teachers. Competencies listed in the scale were identified through literature reviews and input from experts. The…

  6. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  7. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  8. Effects of scaling on the performance of magnetoplasmadynamic thrusters. Engineer's thesis

    SciTech Connect

    Schmidt, W.M.

    1989-06-01

    A combined theoretical and empirical numerical model was developed which predicts the performance of continuous electrode coaxial magnetoplasmadynamic thrusters as a function of thruster dimensions, mass flow rate, and input current. This model was used to predict the effects of scaling on these thrusters. The model predicts that for scaling factors down to one-half, relations can be found relating the performance of one thruster to another. The model was used to examine these relationships for four different thruster configurations over a broad range of operating currents. The thrusters examined consisted of two geometries and their half scale counterparts. A conclusion from the analysis is that scaling down the size of the thruster by 50% can reduce the total power input by 30% to 40% at comparable efficiencies. However, this is at the cost of increasing the specific impulse by a factor of two which may render the thruster inappropriate for the intended missions.

  9. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory.

    PubMed

    Pettersen, Amanda K; White, Craig R; Marshall, Dustin J

    2015-11-22

    Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects-larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed. PMID:26559952

  10. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    NASA Technical Reports Server (NTRS)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated

  11. Software for large scale tracking studies

    SciTech Connect

    Niederer, J.

    1984-05-01

    Over the past few years, Brookhaven accelerator physicists have been adapting particle tracking programs in planning local storage rings, and lately for SSC reference designs. In addition, the Laboratory is actively considering upgrades to its AGS capabilities aimed at higher proton intensity, polarized proton beams, and heavy ion acceleration. Further activity concerns heavy ion transfer, a proposed booster, and most recently design studies for a heavy ion collider to join to this complex. Circumstances have thus encouraged a search for common features among design and modeling programs and their data, and the corresponding controls efforts among present and tentative machines. Using a version of PATRICIA with nonlinear forces as a vehicle, we have experimented with formal ways to describe accelerator lattice problems to computers as well as to speed up the calculations for large storage ring models. Code treated by straightforward reorganization has served for SSC explorations. The representation work has led to a relational data base centered program, LILA, which has desirable properties for dealing with the many thousands of rapidly changing variables in tracking and other model programs. 13 references.

  12. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect

    Laros, James H., III

    2011-08-01

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  13. Interpreting 12th-Graders' NAEP-Scaled Mathematics Performance Using High School Predictors and Postsecondary Outcomes from the National Education Longitudinal Study of 1988 (NELS:88). Statistical Analysis Report. NCES 2007-328

    ERIC Educational Resources Information Center

    Scott, Leslie A.; Ingels, Steven J.

    2007-01-01

    The search for an understandable reporting format has led the National Assessment Governing Board to explore the possibility of measuring and interpreting student performance on the 12th-grade National Assessment of Educational Progress (NAEP), the Nation's Report Card, in terms of readiness for college, the workplace, and the military. This…

  14. Determining the Influence of Groundwater Composition on the Performance of Arsenic Adsorption Columns Using Rapid Small-Scale Column Tests

    NASA Astrophysics Data System (ADS)

    Aragon, A. R.; Siegel, M.

    2004-12-01

    The USEPA has established a more stringent drinking water standard for arsenic, reducing the maximum contaminant level (MCL) from 50 μ g/L to 10 μ g/L. This will affect many small communities in the US that lack the appropriate treatment infrastructure and funding to reduce arsenic to such levels. For such communities, adsorption systems are the preferred technology based on ease of operation and relatively lower costs. The performance of adsorption media for the removal of arsenic from drinking water is dependent on site-specific water quality. At certain concentrations, co-occurring solutes will compete effectively with arsenic for sorption sites, potentially reducing the sorption capacity of the media. Due to the site-specific nature of water quality and variations in media properties, pilot scale studies are typically carried out to ensure that a proposed treatment technique is cost effective before installation of a full-scale system. Sandia National Laboratories is currently developing an approach to utilize rapid small-scale columns in lieu of pilot columns to test innovative technologies that could significantly reduce the cost of treatment in small communities. Rapid small-scale column tests (RSSCTs) were developed to predict full-scale treatment of organic contaminants by adsorption onto granular activated carbon (GAC). This process greatly reduced the time and costs required to verify performance of GAC adsorption columns. In this study, the RSSCT methodology is used to predict the removal of inorganic arsenic using mixed metal oxyhydroxide adsorption media. The media are engineered and synthesized from materials that control arsenic behavior in natural and disturbed systems. We describe the underlying theory and application of RSSCTs for the performance evaluation of novel media in several groundwater compositions. Results of small-scale laboratory columns are being used to predict the performance of pilot-scale systems and ultimately to design full-scale

  15. Performance studies of the parallel VIM code

    SciTech Connect

    Shi, B.; Blomquist, R.N.

    1996-05-01

    In this paper, the authors evaluate the performance of the parallel version of the VIM Monte Carlo code on the IBM SPx at the High Performance Computing Research Facility at ANL. Three test problems with contrasting computational characteristics were used to assess effects in performance. A statistical method for estimating the inefficiencies due to load imbalance and communication is also introduced. VIM is a large scale continuous energy Monte Carlo radiation transport program and was parallelized using history partitioning, the master/worker approach, and p4 message passing library. Dynamic load balancing is accomplished when the master processor assigns chunks of histories to workers that have completed a previously assigned task, accommodating variations in the lengths of histories, processor speeds, and worker loads. At the end of each batch (generation), the fission sites and tallies are sent from each worker to the master process, contributing to the parallel inefficiency. All communications are between master and workers, and are serial. The SPx is a scalable 128-node parallel supercomputer with high-performance Omega switches of 63 {micro}sec latency and 35 MBytes/sec bandwidth. For uniform and reproducible performance, they used only the 120 identical regular processors (IBM RS/6000) and excluded the remaining eight planet nodes, which may be loaded by other`s jobs.

  16. Standardization Study of Internet Addiction Improvement Motivation Scale

    PubMed Central

    Park, Jae Woo; Park, Kee Hwan; Lee, In Jae; Kwon, Min

    2012-01-01

    Objective The purpose of this study was to develop a scale to measure motivation to improve Internet addiction. Motivation is known to be important to treat Internet addiction successfully. The reliability of the scale was assessed, and its concurrent validity was evaluated. Methods Ninety-two adolescents participated in this study. The basic demographic characteristics were recorded and the Korean version of the Stages of Readiness for Change and Eagerness for Treatment Scale for Internet Addiction (K-SOCRATES-I) was administered. Subsequently, the Internet Addiction Improvement Motivation Scale was developed using 10 questions based on the theory of motivation enhancement therapy and its precursor version designed for smoking cessation. Results The motivation scale was composed of three subscales through factor analysis; each subscale had an adequate degree of reliability. In addition, the motivation scale had a high degree of validity based on its significant correlation with the K-SOCRATES-I. A cut-off score, which can be used to screen out individuals with low motivation, was suggested. Conclusion The Internet Addiction Improvement Motivation Scale, composed of 10 questions developed in this study, was deemed a highly reliable and valid scale to measure a respondent's motivation to be treated for Internet addiction. PMID:23251202

  17. Performance Testing of Web Map Services tn three Dimensions - X, Y, Scale

    NASA Astrophysics Data System (ADS)

    Cibulka, Dušan

    2013-03-01

    The paper deals with the performance testing of web mapping services. The paper describes map service tests in which it is possible to determine the performance characteristics of a map service, depending on the location and scale of the map. The implementation of the test is tailored to the Web Map Service specifications provided by the Open Geospatial Consortium. The practical experiment consists of testing the map composition acquired from OpenStreetMap data for the area of southwestern Slovakia. These tests permit checking the performance of services in different positions, verifying the configuration of services, the composition of a map, and the visualization of geodata. The task of this paper is to also highlight the fact that it is not sufficient to only interpret a map service performance with conventional indicators. A map service's performance should be linked to information about the map's scale and location.

  18. Influence of time scale on performance of a psychrometric energy balance method to estimate precipitation phase

    NASA Astrophysics Data System (ADS)

    Harder, P.; Pomeroy, J. W.

    2012-12-01

    Precipitation phase determination is fundamental to estimating catchment hydrological response to precipitation in cold regions and is especially variable over time and space in mountains. Hydrological methods to estimate phase are predominantly calibrated, depend on air temperature and use daily time steps. Air temperature is not physically related to phase and precipitation events are very dynamic, adding significant uncertainty to the use of daily air temperature indices to estimate phase. Data for this study comes from high quality, high temporal resolution precipitation phase and meteorological observations at multiple elevations in a small Canadian Rockies catchment, the Marmot Creek Research Basin, from 2005 to 2012. The psychrometric energy balance of a falling hydrometeor, requiring air temperature and humidity observations, was employed to examine precipitation phase with respect to meteorological conditions via calculation of a hydrometeor temperature. The hydrometeor temperature-precipitation phase relationship was used to quantify temporal scaling in phase observations and to develop a method to estimate precipitation phase. Temporal scaling results show that the transition range of the distribution of hydrometeor temperatures associated with mixed rainfall and snowfall decreases with decreasing time interval. The amount of precipitation also has an influence as larger events lead to smaller transition ranges across all time scales. The uncertainty of the relationship between the hydrometeor temperature and phase was quantified and degrades significantly with an increase in time interval. The errors associated with the 15 minute and hourly intervals are small. Comparisons with other methods indicate that the psychrometric energy balance method performs much better than air temperature methods and that this improvement increases with decreasing time interval. These findings suggest that the physically based psychrometric method, employed on sub

  19. Laboratory Performance Evaluation of Residential Scale Gas Engine Driven Heat Pump

    SciTech Connect

    Abu-Heiba, Ahmad; Mehdizadeh Momen, Ayyoub; Mahderekal, Dr. Isaac

    2016-01-01

    Building space cooling is, and until 2040 is expected to continue to be, the single largest use of electricity in the residential sector in the United States (EIA Energy Outlook 2015 .) Increases in electric-grid peak demand leads to higher electricity prices, system inefficiencies, power quality problems, and even failures. Thermally-activated systems, such as gas engine-driven heat pump (GHP), can reduce peak demand. This study describes the performance of a residential scale GHP. It was developed as part of a cooperative research and development agreement (CRADA) that was authorized by the Department of Energy (DOE) between OAK Ridge National Laboratory (ORNL) and Southwest Gas. Results showed the GHP produced 16.5 kW (4.7 RT) of cooling capacity at 35 C (95 F) rating condition with gas coefficient of performance (COP) of 0.99. In heating, the GHP produced 20.2 kW (5.75 RT) with a gas COP of 1.33. The study also discusses other benefits and challenges facing the GHP technology such as cost, reliability, and noise.

  20. Bioabsorbable fish scale for the internal fixation of fracture: a preliminary study.

    PubMed

    Chou, Cheng-Hung; Chen, Yong-Guei; Lin, Chien-Chen; Lin, Shang-Ming; Yang, Kai-Chiang; Chang, Shih-Hsin

    2014-09-01

    Fish scales, which consist of type I collagen and hydroxyapatite (HA), were used to fabricate a bioabsorbable bone pin in this study. Fresh fish scales were decellularized and characterized to provide higher biocompatibility. The mechanical properties of fish scales were tested, and the microstructure of an acellular fish scale was examined. The growth curve of a myoblastic cell line (C2C12), which was cultured on the acellular fish scales, implied biocompatibility in vitro, and the morphology of the cells cultured on the scales was observed using scanning electron microscopy (SEM). A bone pin made of decellularized fish scales was used for the internal fixation of femur fractures in New Zealand rabbits. Periodic X-ray evaluations were obtained, and histologic examinations were performed postoperatively. The present results show good cell growth on decellularized fish scales, implying great biocompatibility in vitro. Using SEM, the cell morphology revealed great adhesion on a native, layered collagen structure. The Young's modulus was 332 ± 50.4 MPa and the tensile strength was 34.4 ± 6.9 MPa for the decellularized fish scales. Animal studies revealed that a fish-scale-derived bone pin improved the healing of bone fractures and degraded with time. After an 8-week implantation, the bone pin integrated with the adjacent tissue, and new extracellular matrix was synthesized around the implant. Our results proved that fish-scale-derived bone pins are a promising implant material for bone healing and clinical applications. PMID:25211643

  1. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    SciTech Connect

    Coles, D.G.; Peters, R.D.

    1986-04-01

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance.

  2. Analysis on the detection performance of BOTDR in small-scale precision engineering

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Luan, Lijun

    2013-12-01

    In this thesis, the authors discuss the detection performance of the small-scale precision engineering with the Brillouin scattering light on the base of experiments. The authors made the measurements using the traditional Strain Distribution Gauge and optical fiber scattering light shift equipment AQ8603 and obtained two results. The authors compared and analyzed the data and made the conclusion that the BOTDR technology is not suitable for the small-scale Precision Engineering. The wiring methods and their effects to detection performance are also been discussed in this thesis.

  3. The development of a facility for full-scale testing of airfoil performance in simulated rain

    NASA Technical Reports Server (NTRS)

    Taylor, John T.; Moore, Cadd T., III; Campbell, Bryan A.; Melson, W. EDWARD., Jr.

    1988-01-01

    NASA Langley's Aircraft Landing Dynamics Facility has been adapted in order to test the performance of airfoils in a simulated rain environment, at rainfall rates of 2, 10, 30, and 40 inches/hour, and thereby derive the scaling laws associated with simulated rain in wind tunnel testing. A full-scale prototype of the rain-generation system has been constructed and tested for suitable rain intensity, uniformity, effects of crosswinds on uniformity, and drop size range. The results of a wind tunnel test aimed at ascertaining the minimum length of the simulated rain field required to yield an airfoil performance change due to the rain environment are presented.

  4. Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells

    NASA Astrophysics Data System (ADS)

    Hong, M.; Yuan, G. D.; Peng, Y.; Chen, H. Y.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Cai, B.; Zhu, Y. M.; Chen, Y.; Liu, J. H.; Li, J. M.

    2014-06-01

    We report an enhanced performance of multi-scale textured black silicon solar cell with power conversion efficiency of 15.5% by using anisotropic tetramethylammonium hydroxide etching to control the recombination. The multi-scale texture can effectively reduce the surface reflectance in a wide wavelength range, and both the surface and Auger recombination can be effectively suppressed by etching the samples after the n++ emitter formed. Our result shows that the reformed solar cell has higher conversion efficiency than that of conventional pyramid textured cell (15.3%). This work presents an effective method for improving the performance of nanostructured silicon solar cells.

  5. Brazilian meningococcal C conjugate vaccine: Scaling up studies.

    PubMed

    Bastos, Renata Chagas; de Souza, Iaralice Medeiros; da Silva, Milton Neto; Silva, Flavia de Paiva; Figueira, Elza Scott; Leal, Maria de Lurdes; Jessouroun, Ellen; da Silva, José Godinho; Medronho, Ricardo de Andrade; da Silveira, Ivna Alana Freitas Brasileiro

    2015-08-20

    Several outbreaks caused by Neisseria meningitidis group C have been occurred in different regions of Brazil. A conjugate vaccine for Neisseria meningitidis was produced by chemical linkage between periodate-oxidized meningococcal C polysaccharide and hydrazide-activated monomeric tetanus toxoid via a modified reductive amination conjugation method. Vaccine safety and immunogenicity tested in Phase I and II trials showed satisfactory results. Before starting Phase III trials, vaccine production was scaled up to obtain industrial lots under Good Manufacture Practices (GMP). Comparative analysis between data obtained from industrial and pilot scales of the meningococcal C conjugate bulk showed similar execution times in the scaling up production process without significant losses or alterations in the quality attributes of purified compounds. In conclusion, scale up was considered satisfactory and the Brazilian meningococcal conjugate vaccine production aiming to perform Phase III trials is feasible. PMID:25865466

  6. High Thermoelectric Performance Lead Selenide Materials through All-scale Hierarchical Structuring

    NASA Astrophysics Data System (ADS)

    Lee, Yeseul

    Industries have paid increasing attention to power generation using waste heat through thermoelectrics, which convert heat to electric energy. This method can be used in renewable applications because of its environmentally friendly process. Large-scale production of bulk materials with high thermoelectric figure of merit (ZT) is the key to practical applications. PbTe-based materials have been mostly studied, but are facing a challenge regarding scarcity of Te. PbSe is a more abundant analog of PbTe that has been less frequently studied. This work presents a synthesis and characterization of bulk thermoelectric materials based on both n- and p-type PbSe with atomic-, nano-, meso-scale architectures. When PbSe is doped with Ga and In they efficiently generate electron carriers that are sufficient for high ZT. Thus, higher ZT of n-type PbSe can be achieved than that of optimized n-type PbTe at high temperatures. The study of the thermoelectric properties of p-type PbSe with Li, Na, and K indicates that the efficiency of Na in doping PbSe is found to be the highest. The additional spark plasma sintering (SPS) process allows samples to have increased carrier density and produce mesoscale grains that reduce lattice thermal conductivity, increasing ZT. Additional studies for reducing lattice thermal conductivity through nanostructuring were conducted. Adding (Ca/Sr/Ba)Se and EuSe to Na doped SPS PbSe generates nanoprecipitates. This study shows that the hierarchical architecture on the atomic scale (Na and Ca/Sr/Ba/Eu solid solution), nanoscale (MSe/EuSe nanoprecipitates), and mesoscale (grains) effectively increases ZT. MSe samples show no appreciable change in charge transport, while EuSe samples show decreased charge carriers. However, adding more Na optimizes properties. Continued investigating n-type dopants with Sb and Bi shows that Sb not only plays the role as a dopant but also is unexpectedly effective in generating nanostructuring. The Sb-rich precipitates

  7. A variability study on the ASTM thin slicing and scaling test method for evaluating the long-term performance of an extruded polystyrene foam blown with HCFC-142b

    SciTech Connect

    Fabian, B.A.; Graves, R.S.; Yarbrough, D.W.; Hofton, M.R.

    1997-11-01

    The ASTM accelerated aging test method for unfaced foamboard insulation that is based on slicing and scaling has been used on an extruded polystyrene product blown with HCFC-142b. The test method including specimen preparation was carried out at three laboratories. The participating laboratories used different means to prepare thin test specimens. Thin slices of foamboard with and without surface skins were tested in order to assess the effect of skins on the aging process. Measured values for the apparent thermal conductivity, k{sub a}, were used to calculate time average k{sub a} for life-times of 10, 20, and 40 years. The time-average k{sub a} from the three laboratories differed by less than 2.5% for 1.5-inch-thick product and less than 2% for 2.0-inch-thick product. The k{sub a} for slices with skin on one surface were less than k{sub a} of slices of the core foam.

  8. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  9. Human Rights Attitude Scale: A Validity and Reliability Study

    ERIC Educational Resources Information Center

    Ercan, Recep; Yaman, Tugba; Demir, Selcuk Besir

    2015-01-01

    The objective of this study is to develop a valid and reliable attitude scale having quality psychometric features that can measure secondary school students' attitudes towards human rights. The study group of the research is comprised by 710 6th, 7th and 8th grade students who study at 4 secondary schools in the centre of Sivas. The study group…

  10. Ute Mountain Ute Tribe Community-Scale Solar Feasibility Study

    SciTech Connect

    Rapp, Jim; Knight, Tawnie

    2014-01-30

    Parametrix Inc. conducted a feasibility study for the Ute Mountain Ute Tribe to determine whether or not a community-scale solar farm would be feasible for the community. The important part of the study was to find where the best fit for the solar farm could be. In the end, a 3MW community-scale solar farm was found best fit with the location of two hayfield sites.

  11. Simulating river discharges on a global scale - Identifying determinants of model performance

    NASA Astrophysics Data System (ADS)

    Eisner, S.; Flörke, M.; Kynast, E.

    2012-04-01

    Global hydrological models and land surface models are used to understand and simulate the global terrestrial water cycle. They, in particular, are applied to assess global scale impacts of global and climate change on water resources. While in recent years the growing availability of remote sensing products, e.g. evapotranspiration and soil moisture estimates, provide valuable information to validate simulated states and fluxes, however, the validation of simulated river discharges against observed time series is still widely-used. Thereby, most studies focus on: long-term mean monthly or annual discharges, discharge time series of the most downstream gauging stations of large-scale river basins (e.g. Amazon, Brahmaputra, etc.), or correlation-based metrics As global modeling approaches are constrained by simplified physical process representations and the implicit assumption that more or less the same model structure is globally valid, it is important to understand where and why these models perform good or poor in simulating 20th century river runoff and discharge fields. We present an extensive yet deliberately kept generic evaluation of the WaterGAP (Water - Global Assessment and Prognosis) Hydrology Model to simulate 20th century discharges. The model is designed as a conceptual water balance model, in the current version, WaterGAP3, operating on 5 arc minutes global grid. River runoff generated on the individual grid cells is routed along a global drainage direction map taking into account retention in natural surface water bodies, i.e. lakes and wetlands, as well as anthropogenic impacts, i.e. flow regulation and water abstraction for agriculture, industry and domestic purposes. Simulated discharges are evaluated against 1600 observed discharge records provided by the Global Runoff Data Centre (GRDC). Globally, the selected gauging stations differ substantially concerning their corresponding catchment areas, between 3000 and 3.6 mill sqkm, as well as

  12. Relationships between study skills and academic performance

    NASA Astrophysics Data System (ADS)

    Md Rahim, Nasrudin; Meon, Hasni

    2013-04-01

    Study skills play an important role in influencing academic performance of university students. These skills, which can be modified, can be used as an indicator on how a student would perform academically in his course of study. The purpose of the study is to determine the study skills profile among Universiti Selangor's (Unisel) students and to find the relationships of these skills with student's academic performance. A sample of seventy-eight (78) foundation studies and diploma students of Unisel were selected to participate in this study. Using Study Skills Inventory instrument, eight skills were measured. They are note taking; test taking; textbook study; concentration and memory; time management; analytical thinking and problem solving; nutrition; and vocabulary. Meanwhile, student's academic performance was measured through their current Grade Point Average (GPA). The result showed that vocabulary skill scored the highest mean with 3.01/4.00, followed by test taking (2.88), analytical thinking and problem solving (2.80), note taking (2.79), textbook study (2.58), concentration and memory (2.54), time management (2.25) and nutrition (2.21). Correlation analysis showed that test taking (r=0.286, p=0.011), note taking (r=0.224, p=0.048), and analytical thinking and problem solving (r=0.362, p=0.001) skills were positively correlated with GPA achievement.

  13. Performance of a pilot-scale compost biofilter treating gasoline vapor

    SciTech Connect

    Wright, W.F.; Schroeder, E.D.; Chang, D.P.Y.; Romstad, K.

    1997-06-01

    A pilot-scale compost biofiltration system was operated as gasoline soil vapor extraction site in Hayward, California for one year. The media was composed of equal volumes of compost and perlite, a bulking agent. Supplements added included nitrogen (as KNO{sub 3}), a gasoline degrading microbial inoculum, buffer (crushed oyster shell), and water. The biofiltration system was composed of four identical units with outside dimensions of 1.2 x 1.2 x 1.2 m (4 x 4 x 4 ft) operated in an up-flow mode. The units were configured in parallel during the first eight months and then reconfigured to two parallel systems of two units in series. Air flux values ranged from 0.29 to 1.0 m{sup 3}/m{sup 2} per min. Inlet total petroleum hydrogen hydrocarbon (TPH{sub gas}) concentrations ranged from 310 to 2,700 mg/m{sup 3}. The average empty bed contact time was 2.2 min. Following start-up, performance of the individual biofilters varied considerably for a seven-month period. The principal factor affecting performance appeared to be bed moisture content. Overall TPH{sub gas} removals reached 90% for short periods in one unit, and BTEX removals were typically above 90%. Drying resulted in channeling and loss of bed activity. Management of bed moisture content improved over the study period, and recovery of system performance was achieved without replacement of bed media. Overall TPH{sub gas} removals exceeded 90% during the final 50 days of the study.

  14. A large-scale validation study of the Medication Adherence Rating Scale (MARS).

    PubMed

    Fialko, Laura; Garety, Philippa A; Kuipers, Elizabeth; Dunn, Graham; Bebbington, Paul E; Fowler, David; Freeman, Daniel

    2008-03-01

    Adherence to medication is an important predictor of illness course and outcome in psychosis. The Medication Adherence Rating Scale (MARS) is a ten-item self-report measure of medication adherence in psychosis [Thompson, K., Kulkarni, J., Sergejew, A.A., 2000. Reliability and validity of a new Medication Adherence Rating Scale (MARS) for the psychoses. Schizophrenia Research. 42. 241-247]. Although initial results suggested that the scale has good reliability and validity, the development sample was small. The current study aimed to establish the psychometric properties of the MARS in a sample over four times larger. The scale was administered to 277 individuals with psychosis, along with measures of insight and psychopathology. Medication adherence was independently rated by each individual's keyworker. Results showed the internal consistency of the MARS to be lower than in the original sample, though adequate. MARS total score correlated weakly with keyworker-rated adherence, hence concurrent validity of the scale appeared only moderate to weak. The three factor structure of the MARS was replicated. Examination of the factor scores suggested that the factor 1 total score, which corresponds to the Medication Adherence Questionnaire [Morisky,D.E., Green,L.W. and Levine,D.M., 1986. Concurrent and predictive validity of a self-reported measure of medication adherence. Medical Care. 24, 67-74] may be a preferable measure of medication adherence behaviour to the total scale score. PMID:18083007

  15. A new method for testing the scale-factor performance of fiber optical gyroscope

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengxin; Yu, Haicheng; Li, Jing; Li, Chao; Shi, Haiyang; Zhang, Bingxin

    2015-10-01

    Fiber optical gyro (FOG) is a kind of solid-state optical gyroscope with good environmental adaptability, which has been widely used in national defense, aviation, aerospace and other civilian areas. In some applications, FOG will experience environmental conditions such as vacuum, radiation, vibration and so on, and the scale-factor performance is concerned as an important accuracy indicator. However, the scale-factor performance of FOG under these environmental conditions is difficult to test using conventional methods, as the turntable can't work under these environmental conditions. According to the phenomenon that the physical effects of FOG produced by the sawtooth voltage signal under static conditions is consistent with the physical effects of FOG produced by a turntable in uniform rotation, a new method for the scale-factor performance test of FOG without turntable is proposed in this paper. In this method, the test system of the scale-factor performance is constituted by an external operational amplifier circuit and a FOG which the modulation signal and Y waveguied are disconnected. The external operational amplifier circuit is used to superimpose the externally generated sawtooth voltage signal and the modulation signal of FOG, and to exert the superimposed signal on the Y waveguide of the FOG. The test system can produce different equivalent angular velocities by changing the cycle of the sawtooth signal in the scale-factor performance test. In this paper, the system model of FOG superimposed with an externally generated sawtooth is analyzed, and a conclusion that the effect of the equivalent input angular velocity produced by the sawtooth voltage signal is consistent with the effect of input angular velocity produced by the turntable is obtained. The relationship between the equivalent angular velocity and the parameters such as sawtooth cycle and so on is presented, and the correction method for the equivalent angular velocity is also presented by

  16. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage

    SciTech Connect

    Cho, KT; Ridgway, P; Weber, AZ; Haussener, S; Battaglia, V; Srinivasan, V

    2012-01-01

    The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.018211jes] All rights reserved.

  17. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.

    2016-02-01

    Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.

  18. The Video Suggestibility Scale for Children: how generalizable is children's performance to other measures of suggestibility?

    PubMed

    McFarlane, Felicity; Powell, Martine B

    2002-01-01

    This study explored the generalizability of the Video Suggestibility Scale for Children (VSSC), which was developed by Scullin and colleagues (Scullin & Ceci, 2001; Scullin & Hembrooke, 1998) as a tool for discriminating among children (aged three to five years) who have different levels of suggestibility. The VSSC consists of two subscales; Yield (a measure of children's willingness to acquiesce to misleading questions) and Shift (a measure of children's tendency to change their responses after feedback from the interviewer). Children's (N = 77) performance on each of the subscales was compared with their performance using several other measures of suggestibility. These measures included children's willingness to assent to a false event as well as the number of false interviewer suggestions and false new details that the children provided when responding to cued-recall questions about an independent true-biased and an independent false (non-experienced) event. An independent samples t-test revealed that those children who assented to the false event generated higher scores on the Yield measure. Hierarchical regression analyses revealed that Yield was a significant predictor of the number of false details reported about the false activity, but not the true-biased activity. There was no significant relationship between the Shift subscale and any of the dependent variables. The potential contribution of the VSSC for forensic researchers and practitioners is discussed. PMID:12465135

  19. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  20. Full scale performance of the aerobic granular sludge process for sewage treatment.

    PubMed

    Pronk, M; de Kreuk, M K; de Bruin, B; Kamminga, P; Kleerebezem, R; van Loosdrecht, M C M

    2015-11-01

    Recently, aerobic granular sludge technology has been scaled-up and implemented for industrial and municipal wastewater treatment under the trade name Nereda(®). With full-scale references for industrial treatment application since 2006 and domestic sewage since 2009 only limited operating data have been presented in scientific literature so far. In this study performance, granulation and design considerations of an aerobic granular sludge plant on domestic wastewater at the WWTP Garmerwolde, the Netherlands were analysed. After a start-up period of approximately 5 months, a robust and stable granule bed (>8 g L(-1)) was formed and could be maintained thereafter, with a sludge volume index after 5 min settling of 45 mL g(-1). The granular sludge consisted for more than 80% of granules larger than 0.2 mm and more than 60% larger than 1 mm. Effluent requirements (7 mg N L(-1) and 1 mg P L(-1)) were easily met during summer and winter. Maximum volumetric conversion rates for nitrogen and phosphorus were respectively 0.17 and 0.24 kg (m(3) d)(-1). The energy usage was 13.9 kWh (PE150·year)(-1) which is 58-63 % lower than the average conventional activated sludge treatment plant in the Netherlands. Finally, this study demonstrated that aerobic granular sludge technology can effectively be implemented for the treatment of domestic wastewater. PMID:26233660

  1. The Examination of Reliability According to Classical Test and Generalizability on a Job Performance Scale

    ERIC Educational Resources Information Center

    Yelboga, Atilla; Tavsancil, Ezel

    2010-01-01

    In this research, the classical test theory and generalizability theory analyses were carried out with the data obtained by a job performance scale for the years 2005 and 2006. The reliability coefficients obtained (estimated) from the classical test theory and generalizability theory analyses were compared. In classical test theory, test retest…

  2. A pilot scale electrical infrared dry-peeling system for tomatoes: design and performance evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A pilot scale infrared dry-peeling system for tomatoes was designed and constructed. The system consisted of three major sections including the IR heating, vacuum, and pinch roller sections. The peeling performance of the system was examined under different operational conditions using tomatoes with...

  3. Concurrent Validity of the Universal Nonverbal Intelligence Test and the Leiter International Performance Scale-Revised

    ERIC Educational Resources Information Center

    Hooper, V. Scott; Bell, Sherry Mee

    2006-01-01

    One hundred elementary- and middle-school students were administered the Universal Nonverbal Intelligence Test (UNIT; B.A. Bracken & R.S. McCallum, 1998) and the Leiter International Performance Scale-Revised (Leiter-R; G.H. Roid & L.J. Miller, 1997). Correlations between UNIT and Leiter-R scores were statistically significant ( p less than…

  4. Performance of Black and White Children on the Bracken Basic Concept Scale.

    ERIC Educational Resources Information Center

    Bracken, Bruce A.; And Others

    1987-01-01

    Administered Bracken Basic Concept Scale (BBCS) to 114 matched pairs of Black and White children. Scores of White children were nearly identical with national average while Black children scored approximately one-half standard deviation below their White counterparts. Blacks and Whites showed similar performance patterns on BBCS subtests,…

  5. Basing Performance Assessment on Behaviorally Anchored Rating Scales in Collegiate Organizations.

    ERIC Educational Resources Information Center

    Lyons, Paul R.

    The use of behaviorally anchored rating scales (BARS) as the basis of an assessment system that was designed to improve academic department chairpersons in a college of arts and sciences is described. Twenty-eight faculty members, two from each department, were asked to identify evaluative dimensions for assessing chairperson performance and to…

  6. A small-scale study of magneto-rheological track vibration isolation system

    NASA Astrophysics Data System (ADS)

    Li, Rui; Mu, Wenjun; Zhang, Luyang; Wang, Xiaojie

    2016-04-01

    A magneto-rheological bearing (MRB) is proposed to improve the vibration isolation performance of a floating slab track system. However, it's difficult to carry out the test for the full-scale track vibration isolation system in the laboratory. In this paper, the research is based on scale analysis of the floating slab track system, from the point view of the dimensionless of the dynamic characteristics of physical quantity, to establish a small scale test bench system for the MRBs. A small scale MRB with squeeze mode using magneto-rheological grease is designed and its performance is tested. The major parameters of a small scale test bench are obtained according to the similarity theory. The force transmissibility ratio and the relative acceleration transmissibility ratio are selected as evaluation index of system similarity. Dynamics of these two similarity systems are calculated by MATLAB experiment. Simulation results show that the dynamics of the prototype and scale models have good similarity. Further, a test bench is built according to the small-scale model parameter analysis. The experiment shows that the bench testing results are consistency with that of theoretical model in evaluating the vibration force and acceleration. Therefore, the small-scale study of magneto-rheological track vibration isolation system based on similarity theory reveals the isolation performance of a real slab track prototype system.

  7. Performance Technolgies for Peta-Scale Systems: A White Paper Prepared by the Performance Evaluation Research Center

    SciTech Connect

    Bailey, D H; de Supinski, B R; Dongarra, J; Dunigan, T; Gao, G; Hoisie, A; Hovland, J; Hollangsworth, J; Jeffferson, D R; Kamath, C; Malony, A; Norris, B; Quinlan, D; McKee, S A; Mendes, C; Moore, S; Reed, D; Snavely, A; Strohmaier, E; Vetter, J S; Worley, P

    2003-05-20

    Future-looking high end computing initiatives will deploy powerful, large-scale computing platforms that leverage novel component technologies for superior node performance in advanced system architectures with tens or even hundreds of thousands of nodes. Recent advances in performance tools and modeling methodologies suggest that it is feasible to acquire such systems intelligently and achieve excellent performance, while also significantly reducing the user time required to attain high performance. These developments are relevant to several aspects of future HEC technology outlined in the recent HECRTF white paper request, in particular items 5.4, 5.5, 5.6, and 5.8. We envision the following specific capabilities: (1) Performance modeling tools, available to researchers and vendors, will extrapolate performance from prototype systems to full-scale systems, and even accurately predict performance behavior before systems are manufactured, thus enabling both improved designs and more intelligent selection of systems in procurements. (2) System simulation facilities, implemented on highly parallel platforms and available to researchers and vendors, will for instance realistically model the performance of a specific interprocessor network design running a specific scientific application code. As with item 1, these facilities can lead both to improved designs and procurement decisions that yield significantly greater sustained performance for targeted scientific applications. (3) A program monitoring and analysis infrastructure, scalable to 100,000 processors and beyond, will provide performance information at every level of system's memory hierarchy and network. This infrastructure will build upon knowledge discovery and data mining techniques to be significantly more scalable and easier to use than the current infrastructure, and a standard version will be incorporated in most high-end systems. (4) Self-tuning software facilities, now available only for a few

  8. A Reliability Generalization Study of the Geriatric Depression Scale.

    ERIC Educational Resources Information Center

    Kieffer, Kevin M.; Reese, Robert J.

    2002-01-01

    Conducted a reliability generalization study of the Geriatric Depression Scale (T. Brink and others, 1982). Results from this investigation of 338 studies shows that the average score reliability across studies was 0.8482 and identifies the most important predictors of score reliability. (SLD)

  9. Cognition, study habits, test anxiety, and academic performance.

    PubMed

    Kleijn, W C; van der Ploeg, H M; Topman, R M

    1994-12-01

    The Study Management and Academic Results Test (SMART) was developed to measure study- and examination-related cognitions, time management, and study strategies. This questionnaire was used in three prospective studies, together with measures for optimism and test anxiety. In the first two studies, done among 253 first-year students enrolled in four different faculties, the highest significant correlations with academic performance were found for the SMART scales. In a replication study among first-year medical students (n = 156) at a different university, the same pattern of results was observed. A stepwise multiple regression analysis, with academic performance as a dependent variable, showed significant correlations only for the SMART Test Competence and Time Management (Multiple R = .61). Results give specific indications about the profile of successful students. PMID:7892384

  10. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.

    PubMed

    Straub, Anthony P; Lin, Shihong; Elimelech, Menachem

    2014-10-21

    We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings. PMID:25222561