Science.gov

Sample records for scanning lidar error

  1. Scanning holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1993-01-01

    We have developed a unique telescope for lidar using a holographic optical element (HOE) as the primary optic. The HOE diffracts 532 nm laser backscatter making a 43 deg angle with a normal to its surface to a focus located 130 cm along the normal. The field of view scans a circle as the HOE rotates about the normal. The detector assembly and baffling remain stationary, compared to conventional scanning lidars in which the entire telescope and detector assembly require steering, or which use a large flat steerable mirror in front of the telescope to do the pointing. The spectral bandpass of our HOE is 50 nm (FWHM). Light within that bandpass is spectrally dispersed at 0.6 nm/mm in the focal plane. An aperture stop reduces the bandpass of light reaching the detector from one direction to 1 nm while simultaneously reducing the field of view to 1 mrad. Wavelengths outside the 50 nm spectral bandpass pass undiffracted through HOE to be absorbed by a black backing. Thus, the HOE combines three functions into one optic: the scanning mirror, the focusing mirror, and a narrowband filter.

  2. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis.

    PubMed

    Wang, Zhangjun; Liu, Zhishen; Liu, Liping; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Chu, Xinzhao

    2010-12-20

    An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 8-10 km at night and 6-8 km during daytime with range resolution of 10 m and temporal resolution of 3 min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain

  3. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  4. Conically Scanned Holographic LIDAR Telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary

    1993-01-01

    Holographic LIDAR telescope includes holographic disk, rotation of which sweeps collimated, monochromatic beam of light from laser through conical scan. Holographic disk diffracts light scattered back from target volume or area to focal point located at stationary photomultiplier detector. Two conical baffles prevent stray light from reaching detector.

  5. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.

  6. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  7. Conically scanned holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary (Inventor)

    1993-01-01

    An optical scanning device utilizing a source of optical energy such as laser light backscattered from the earth's atmosphere or transmitted outward as in a lidar, a rotating holographic optical element having an axis of rotation perpendicular to the plane of its substrate, and having a stationary focus which may or may not be located on its axis of rotation, with the holographic optical element diffracting the source of optical energy at an angle to its rotation axis enabling a conical scanning area and a motor for supporting and rotating the rotating holographic optical element, is described.

  8. Diffractive Optical Elements for Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Nordin, Gregory P.

    1996-01-01

    Wind measurement from space can provide critical data for understanding weather patterns and large-scale storm phenomena. An instrument for providing such measurements is currently under development at NASA's Marshall Space Flight Center. The instrument utilizes a pulsed coherent lidar system operating at a wavelength of 2.06 micrometers in order to achieve decreased weight, size, and cost compared to systems operating at longer wavelengths, and it is being developed to be compatible with the capabilities of small satellites. A key aspect of such an orbital lidar system is that the beam must be conically scanned after it exits the final beam expansion telescope. Previous work indicates that the aperture of the beam expansion telescope should be 50 cm with a scanner half-angle of 300 and a rotation rate of 10 RPM. The critical requirements for the beam scanning element include a 50 cm aperture, an induced wavefront error of less than lambda/10, and high efficiency deflection (i.e., 95+ % of the incident light is deflected). This report is intended to provide a brief overview and discussion of potential technologies for space-borne laser radar (lidar) beam scanning.

  9. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGESBeta

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  10. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGESBeta

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  11. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE PAGESBeta

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  12. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  13. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  14. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  15. Lidar Uncertainty Measurement Experiment (LUMEX) - Understanding Sampling Errors

    NASA Astrophysics Data System (ADS)

    Choukulkar, A.; Brewer, W. A.; Banta, R. M.; Hardesty, M.; Pichugina, Y.; Senff, Christoph; Sandberg, S.; Weickmann, A.; Carroll, B.; Delgado, R.; Muschinski, A.

    2016-06-01

    Coherent Doppler LIDAR (Light Detection and Ranging) has been widely used to provide measurements of several boundary layer parameters such as profiles of wind speed, wind direction, vertical velocity statistics, mixing layer heights and turbulent kinetic energy (TKE). An important aspect of providing this wide range of meteorological data is to properly characterize the uncertainty associated with these measurements. With the above intent in mind, the Lidar Uncertainty Measurement Experiment (LUMEX) was conducted at Erie, Colorado during the period June 23rd to July 13th, 2014. The major goals of this experiment were the following: Characterize sampling error for vertical velocity statistics Analyze sensitivities of different Doppler lidar systems Compare various single and dual Doppler retrieval techniques Characterize error of spatial representativeness for separation distances up to 3 km Validate turbulence analysis techniques and retrievals from Doppler lidars This experiment brought together 5 Doppler lidars, both commercial and research grade, for a period of three weeks for a comprehensive intercomparison study. The Doppler lidars were deployed at the Boulder Atmospheric Observatory (BAO) site in Erie, site of a 300 m meteorological tower. This tower was instrumented with six sonic anemometers at levels from 50 m to 300 m with 50 m vertical spacing. A brief overview of the experiment outline and deployment will be presented. Results from the sampling error analysis and its implications on scanning strategy will be discussed.

  16. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  17. Scanning Iron Temperature Lidar for Mesopause Temperature Observation

    NASA Astrophysics Data System (ADS)

    Lautenbach, Jens; Höffner, Josef

    2004-08-01

    We introduce a new method for temperature profile measurements in the mesopause region in the altitude range from 80 to 105 km. A frequency-doubled narrowband alexandrite laser is used to scan the iron resonance line at 386 nm. The isotopic shifts of the iron isotopes and the laser bandwidth are derived by the measurement itself. Neglecting the minor isotopes results in large temperature errors up to 28 K. We discuss the derived temperatures in comparison with results of our potassium temperature lidar. The iron lidar-derived temperatures have typically a statistical error of 0.4 K and vary by less than 10 K, which is due to the daily natural variation. The all-solid-state system, which is compact, can be containerized and deployed at remote locations.

  18. Temperature measurement error simulation of the pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Jia, Jingyu; Huang, Yong; Wang, Zhirui; Yi, Fan; Shen, Jianglin; Jia, Xiaoxing; Chen, Huabin; Yang, Chuan; Zhang, Mingyang

    2015-11-01

    Temperature represents the atmospheric thermodynamic state. Measure the atmospheric temperature accurately and precisely is very important to understand the physics of the atmospheric process. Lidar has some advantages in the atmospheric temperature measurement. Based on the lidar equation and the theory of pure rotational Raman (PRR), we've simulated the temperature measurement errors of the double-grating-polychromator (DGP) based PRR lidar. First of all, without considering the attenuation terms of the atmospheric transmittance and the range in the lidar equation, we've simulated the temperature measurement errors which are influenced by the beam splitting system parameters, such as the center wavelength, the receiving bandwidth and the atmospheric temperature. We analyzed three types of the temperature measurement errors in theory. We've proposed several design methods for the beam splitting system to reduce the temperature measurement errors. Secondly, we simulated the temperature measurement error profiles by the lidar equation. As the lidar power-aperture product is determined, the main target of our lidar system is to reduce the statistical and the leakage errors.

  19. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  20. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE PAGESBeta

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  1. Lidar Data Products and Applications Enabled by Conical Scanning

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Lee, Sang-Woo

    2004-01-01

    Several new data products and applications for elastic backscatter lidar are achieved using simple conical scanning. Atmospheric boundary layer spatial and temporal structure is revealed with resolution not possible with static pointing lidars. Cloud fractional coverage as a function of altitude is possible with high temporal resolution. Wind profiles are retrieved from the cloud and aerosol structure motions revealed by scanning. New holographic technology will soon allow quasi-conical scanning and push-broom lidar imaging without mechanical scanning, high resolution, on the order of seconds.

  2. Scanning Lidar Transceiver Telescopes Using Holographic Optical Elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    2000-01-01

    Scanning enables remote measurements perpendicular to the ground track of airborne and spaceborne lidar systems, giving us three dimensional images of atmospheric backscatter or other measurable parameters. For ground based systems, scanning allows one to record a time series of data in multiple spatial dimensions. The large size and cost of scanning systems for atmospheric lidars using conventional scanning technologies is prohibitive for space based systems. By replacing the conventional reflective telescope with a holographic optical element (HOE) in the lidar, single axis conical scanning can be achieved with a mechanically simple system. Relatively inexpensive to produce, HOES can be used to satisfy a variety of scanning lidar applications. I will introduce the concept of the HOE and describe its production and use as a scanning lidar transceiver telescope. I will describe the advantages as well as the disadvantages and limitations of HOES in this application. Optical performance test results and two lidar systems currently using HOES will be described. Examples of data taken with these systems will be presented. Current and planned future developments will be described, including scanning without mechanical motion and wide field-of-view lidar imaging.

  3. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  4. Motion error analysis of the 3D coordinates of airborne lidar for typical terrains

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Lan, Tian; Ni, Guoqiang

    2013-07-01

    A motion error model of 3D coordinates is established and the impact on coordinate errors caused by the non-ideal movement of the airborne platform is analyzed. The simulation results of the model show that when the lidar system operates at high altitude, the influence on the positioning errors derived from laser point cloud spacing is small. For the model the positioning errors obey simple harmonic vibration whose amplitude envelope gradually reduces with the increase of the vibration frequency. When the vibration period number is larger than 50, the coordinate errors are almost uncorrelated with time. The elevation error is less than the plane error and in the plane the error in the scanning direction is less than the error in the flight direction. Through the analysis of flight test data, the conclusion is verified.

  5. Laser safety in design of near-infrared scanning LIDARs

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (<1.4μm) is mainly from the thermal effect accumulated from many individual pulses over a period of seconds, scanning can effectively reduce the laser beam hazard effect from the LIDARs. Neptec LIDARs have been used in docking to the International Space Station, military helicopter landing and industrial mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  6. Conically scanned lidar telescope using holographic optical elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1992-01-01

    Holographic optical elements (HOE) using volume phase holograms make possible a new class of lightweight scanning telescopes having advantages for lidar remote sensing instruments. So far, the only application of HOE's to lidar has been a non-scanning receiver for a laser range finder. We introduce a large aperture, narrow field of view (FOV) telescope used in a conical scanning configuration, having a much smaller rotating mass than in conventional designs. Typically, lidars employ a large aperture collector and require a narrow FOV to limit the amount of skylight background. Focal plane techniques are not good approaches to scanning because they require a large FOV within which to scan a smaller FOV mirror or detector array. Thus, scanning lidar systems have either used a large flat scanning mirror at which the receiver telescope is pointed, or the entire telescope is steered. We present a concept for a conically scanned lidar telescope in which the only moving part is the HOE which serves as the primary collecting optic. We also describe methods by which a multiplexed HOE can be used simultaneously as a dichroic beamsplitter.

  7. NASA DC-8 Airborne Scanning Lidar Cloud and Contrail Observations

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Oseberg, Terje E.; Nielsen, Norman B.

    1997-01-01

    An angular scanning backscatter lidar has been developed and operated from the NASA DC-8 aircraft; the lidar viewing direction could be scanned from vertically upward to forward in the direction of aircraft travel to vertically downward. The scanning lidar was used to generate real-time video displays of clouds and contrails above, below, and ahead of the aircraft to aid in positioning the aircraft for achieving optimum cloud/contrail sampling by onboard in situ samplers. Data examples show that the lidar provides unique information for the interpretation of the other data records and that combined data analyses provides enhanced evaluations of contrail/cloud structure, dynamics, composition, and optical/radiative properties.

  8. Error Correction Method for Wind Speed Measured with Doppler Wind LIDAR at Low Altitude

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Feng, Changzhong; Liu, Zhishen

    2014-11-01

    For the purpose of obtaining global vertical wind profiles, the Atmospheric Dynamics Mission Aeolus of European Space Agency (ESA), carrying the first spaceborne Doppler lidar ALADIN (Atmospheric LAser Doppler INstrument), is going to be launched in 2015. DLR (German Aerospace Center) developed the A2D (ALADIN Airborne Demonstrator) for the prelaunch validation. A ground-based wind lidar for wind profile and wind field scanning measurement developed by Ocean University of China is going to be used for the ground-based validation after the launch of Aeolus. In order to provide validation data with higher accuracy, an error correction method is investigated to improve the accuracy of low altitude wind data measured with Doppler lidar based on iodine absorption filter. The error due to nonlinear wind sensitivity is corrected, and the method for merging atmospheric return signal is improved. The correction method is validated by synchronous wind measurements with lidar and radiosonde. The results show that the accuracy of wind data measured with Doppler lidar at low altitude can be improved by the proposed error correction method.

  9. Effects of Cloud on Goddard Lidar Observatory for Wind (GLOW) Performance and Analysis of Associated Errors

    NASA Astrophysics Data System (ADS)

    Bacha, Tulu

    The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement

  10. Instrument configuration for dual-Doppler lidar coplanar scans: METCRAX II

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nihanth Wagmi; Calhoun, Ronald; Lehner, Manuela; Hoch, Sebastian W.; Whiteman, C. David

    2015-01-01

    The second Meteor Crater Experiment (METCRAX II) was designed to study downslope-windstorm-type flows occurring at the Barringer Meteorite Crater in Arizona. Two Doppler wind lidars were deployed to perform a coplanar dual-Doppler lidar analysis to capture the two-dimensional (2-D) vertical structure of these flows in the crater basin. This type of analysis allows the flow to be resolved on a 2-D Cartesian grid constructed in the range height indicator scan overlap region. Previous studies have shown that the dominant error in the coplanar dual-Doppler analysis mentioned above is due to the under sampling of radial velocities. Hence, it is necessary to optimize the setup and choose a scan strategy that minimizes the under sampling of radial velocities and provides a good spatial as well as temporal coverage of these short-lived events. A lidar simulator was developed using a large Eddy simulation wind field to optimize the lidar parameters for METCRAX II field experiment. A retrieval technique based on the weighted least squares technique with weights calculated based on the relative location of the lidar range gate centers to the grid intersection point was developed. The instrument configuration was determined by comparing the simulator retrievals to the background wind field and taking into account the limitations of commercially available lidars.

  11. NASA DC-8 Airborne Scanning Lidar Sensor Development

    NASA Technical Reports Server (NTRS)

    Nielsen, Norman B.; Uthe, Edward E.; Kaiser, Robert D.; Tucker, Michael A.; Baloun, James E.; Gorordo, Javier G.

    1996-01-01

    The NASA DC-8 aircraft is used to support a variety of in-situ and remote sensors for conducting environmental measurements over global regions. As part of the atmospheric effects of aviation program (AEAP) the DC-8 is scheduled to conduct atmospheric aerosol and gas chemistry and radiation measurements of subsonic aircraft contrails and cirrus clouds. A scanning lidar system is being developed for installation on the DC-8 to support and extend the domain of the AEAP measurements. Design and objectives of the DC-8 scanning lidar are presented.

  12. NASA DC-8 airborne scanning LIDAR sensor development

    SciTech Connect

    Nielsen, N.B.; Uthe, E.E.; Kaiser, R.D.

    1996-11-01

    The NASA DC-8 aircraft is used to support a variety of in-situ and remote sensors for conducting environmental measurements over global regions. As part of the atmospheric effects of aviation program (AEAP) the DC-8 is scheduled to conduct atmospheric aerosol and gas chemistry and radiation measurements of subsonic aircraft contrails and cirrus clouds. A scanning lidar system is being developed for installation on the DC-8 to support and extend the domain of the AEAP measurements. Design and objectives of the DC-8 scanning lidar are presented. 4 figs.

  13. Differential method for processing scanning lidar data.

    PubMed

    Kovalev, Vladimir

    2015-11-20

    The significant deficiency of the classic multiangle data-processing technique is that the accuracy of the lidar-data inversion strongly depends on whether the assumption of the horizontal stratification of the searched atmosphere is valid. The aggravating factor is that no reliable methodology exists that would allow establishment of whether the above assumption is met; even the thorough analysis of the measured lidar signals rarely allows for a reliable conclusion about the fulfillment of this requirement. In this study, a new multiangle differential data-processing method is considered, which provides the renewed interpretation of multiangle measurements. It allows for distinguishing and separating the data points from the areas where the backscatter extinction coefficient is not constant in the horizontal directions. Simulated and experimental data are presented that illustrate the principle and specifics of such a differential technique. PMID:26836537

  14. Two-component wind fields from single scanning aerosol lidar

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Derian, Pierre; Mauzey, Christopher F.; Hamada, Masaki

    2015-09-01

    An overview of recent research results on the performance of two motion estimation algorithms used to deduce two-component horizontal wind fields from ground-based scanning elastic backscatter lidar is presented. One motion estimation algorithm is a traditional cross-correlation method optimized for atmospheric lidar data. The second algorithm is a recently-developed wavelet-based optical flow. An intercomparison of experimental results with measurements from an independent Doppler lidar over an agricultural area in Chico, California, during daytime convective conditions in 2013-14 are presented. Finally, early results from application of the algorithms to data collected over the ocean from a compact and portable aerosol lidar that was deployed on the northern California coast in March of 2015 are presented.

  15. Quantification of LiDAR measurement uncertainty through propagation of errors due to sensor sub-systems and terrain morphology

    NASA Astrophysics Data System (ADS)

    Goulden, T.; Hopkinson, C.

    2013-12-01

    The quantification of LiDAR sensor measurement uncertainty is important for evaluating the quality of derived DEM products, compiling risk assessment of management decisions based from LiDAR information, and enhancing LiDAR mission planning capabilities. Current quality assurance estimates of LiDAR measurement uncertainty are limited to post-survey empirical assessments or vendor estimates from commercial literature. Empirical evidence can provide valuable information for the performance of the sensor in validated areas; however, it cannot characterize the spatial distribution of measurement uncertainty throughout the extensive coverage of typical LiDAR surveys. Vendor advertised error estimates are often restricted to strict and optimal survey conditions, resulting in idealized values. Numerical modeling of individual pulse uncertainty provides an alternative method for estimating LiDAR measurement uncertainty. LiDAR measurement uncertainty is theoretically assumed to fall into three distinct categories, 1) sensor sub-system errors, 2) terrain influences, and 3) vegetative influences. This research details the procedures for numerical modeling of measurement uncertainty from the sensor sub-system (GPS, IMU, laser scanner, laser ranger) and terrain influences. Results show that errors tend to increase as the laser scan angle, altitude or laser beam incidence angle increase. An experimental survey over a flat and paved runway site, performed with an Optech ALTM 3100 sensor, showed an increase in modeled vertical errors of 5 cm, at a nadir scan orientation, to 8 cm at scan edges; for an aircraft altitude of 1200 m and half scan angle of 15°. In a survey with the same sensor, at a highly sloped glacial basin site absent of vegetation, modeled vertical errors reached over 2 m. Validation of error models within the glacial environment, over three separate flight lines, respectively showed 100%, 85%, and 75% of elevation residuals fell below error predictions. Future

  16. The high spectral resolution (scanning) lidar (HSRL)

    SciTech Connect

    Eloranta, E.

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  17. Study and mitigation of calibration error sources in a water vapour Raman lidar

    NASA Astrophysics Data System (ADS)

    David, Leslie; Bock, Olivier; Bosser, Pierre; Thom, Christian; Pelon, Jacques

    2014-05-01

    The monitoring of water vapour throughout the atmosphere is important for many scientific applications (weather forecasting, climate research, calibration of GNSS altimetry measurements). Measuring water vapour remains a technical challenge because of its high variability in space and time. The major issues are achieving long-term stability (e.g., for climate trends monitoring) and high accuracy (e.g. for calibration/validation applications). LAREG and LOEMI at Institut National de l'Information Géographique et Forestière (IGN) have developed a mobile scanning water vapour Raman lidar in collaboration with LATMOS at CNRS. This system aims at providing high accuracy water vapour measurements throughout the troposphere for calibrating GNSS wet delay signals and thus improving vertical positioning. Current developments aim at improving the calibration method and long term stability of the system to allow the Raman lidar to be used as a reference instrument. The IGN-LATMOS lidar was deployed in the DEMEVAP (Development of Methodologies for Water Vapour Measurement) campaign that took place in 2011 at the Observatoire de Haute Provence. The goals of DEMEVAP were to inter-compare different water vapour sounding techniques (lidars, operational and research radiosondes, GPS,…) and to study various calibration methods for the Raman lidar. A significant decrease of the signals and of the calibration constants of the IGN-LATMOS Raman lidar has been noticed all along the campaign. This led us to study the likely sources of uncertainty and drifts in each part of the instrument: emission, reception and detection. We inventoried several error sources as well as instability sources. The impact of the temperature dependence of the Raman lines on the filter transmission or the fluorescence in the fibre, are examples of the error sources. We investigated each error source and each instability source (uncontrolled laser beam jitter, temporal fluctuations of the photomultiplier

  18. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  19. Design of a Non-scanning Lidar for Wind Velocity and Direction Measurement

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Peng, Zhangxian

    2016-06-01

    A Doppler lidar system for wind velocity and direction measurement is presented. The lidar use a wide field of view (FOV) objective lens as an optical antenna for both beam transmitting and signal receiving. By four fibers coupled on different position on the focal plane, the lidar can implement wind vector measurement without any scanning movement.

  20. Automated All-Weather Lidar with Scanning Option

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Alvarez, Raul J., II; Intrieri, Janet M.; Sandberg, Scott P.; Koenig, Keith W.; Healy, Kathleen R.

    1998-01-01

    The design of the Depolarization and Backscatter Unattended Lidar (DABUL) was reported at the last ILRC. The addition of automated scanning in elevation angle within a single azimuthal plane permits more comprehensive sampling of clouds and more quantitative interpretation of the data, especially near the surface. Some highlights are described of measurements made during field tests of DABUL. Examples are also given of preliminary results from the current year-long deployment aboard a research vessel drifting in the arctic ice pack as part of the SHEBA (Surface HEat Budget of the Arctic) project and NASA's arctic cloud and satellite validation research.

  1. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  2. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    PubMed

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-01

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km. PMID:25321553

  3. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  4. Design of an Airborne Scanning Lidar Using a Holographic Optical Element

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Hopf, Dan; Neuman, Mark; Kubalak, David; Christhilif, Ellen; Hasselbrack, William; Ranganayakamma, Belthur; Kim, Jin; Hwang, I. H.

    1998-01-01

    An aerosol and cloud backscatter lidar system has been built using a one meter focal length transmission holographic optical element that functions as a scanning telescope. Rotating the disk about the center line normal effects a 45 degree conical scan.

  5. Metrological capabilities of Scanning Long Range Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Loaec, Sophie; Boquet, Matthieu; Cariou, Jean-Pierre

    2013-04-01

    Many application areas are interested in getting wind measurements within the Planetary Boundary Layer (PBL) height, and with a relatively high accuracy. These applications include meteorology like PBL studies, air traffic safety like aircraft induced wake vortices and wind shears detection or wind farming like wind resources assessment. In order to answer these demands there are recent developments and deployments of long-range vertical profiler or fully hemispherical scanning wind lidars. To validate the measurements provided by such a system, it is possible to make inter-comparisons with a met mast at short distance and with wind profilers radar or sodar at longer distance. But, there are difficulties that may arise from the implementation of this kind of methodology because of the uncertainty related to the campaign set-up and the instruments used as reference. In that perspective Leosphere is developing a method to assess the accuracy of the Leosphere's lidars. In this presentation, we will give a detail description of the method and its results.

  6. Current Applications of Scanning Coherent Doppler Lidar in Wind Energy Industry

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, R.; Boquet, M.; Osler, E.

    2016-06-01

    Scanning Doppler Lidars have become more prominent in the wind energy industry for a variety of applications. Scanning Lidar's provide spatial variation of winds and direction over a large area, which can be used to assess the spatial uncertainty of winds and analyze complex flows. Due to the recent growth in wind energy, wind farms are being built in complex terrain areas and fine tuning of the existing wind farms for optimized performance have gained significant interest. Scanning Lidar is an ideal tool for improved assessment of flow over complex terrains and wake characterization of large wind farms. In this article, the various applications of Lidar in the wind industry are discussed and results from several campaigns conducted in US and Europe is presented. The conglomeration of results provided in this article would assist wind energy developers and researchers in making improved decisions about their wind farm operations and pre-construction analysis using scanning Lidar's.

  7. A new mobile and portable scanning lidar for profiling lower troposphere

    NASA Astrophysics Data System (ADS)

    Chiang, C.-W.; Das, S. K.; Chiang, H.-W.; Nee, J.-B.; Sun, S.-H.; Chen, S.-W.; Lin, P.-H.; Chu, J.-C.; Su, C.-S.; Su, L.-S.

    2014-04-01

    We present and discuss on an indigenously developed mobile and portable 3-D scanning lidar system. The system utilizes a stimulated Raman-scattering technique for the continuous observation of atmospheric aerosols, clouds and trace gases. The system provides fast scanning technique with a high speed data acquisition, which permits the real-time measurement of air pollutant mobility. The temporal resolution of data retrieval is every one min. The scanning lidar system provides typical horizontal coverage of about 8-10 km when scanning, while the vertical range can be up to 20 km depending upon the laser power and sky conditions. This versatile lidar system has also overcome the drawbacks which are popular in the other scanning lidar system such as complicated operation; overlapping height between laser beam and telescope field of view; and damage of optic detectors for long duration measurement by using an integral coaxial transmitter and receiver. Some of the initial results obtained from the scanning lidar system are also presented. We have shown that the developed 3-D scanning lidar system can resolve the boundary layer structure and land-sea breeze circulation. Discussion is also made on the application of scanning lidar system to measure pollutant over industrial areas.

  8. Dose error analysis for a scanned proton beam delivery system

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Wang, N.; Miller, D. W.; Yang, Y.

    2010-12-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 × 10 × 8 cm3 target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy.

  9. Scanning Raman Lidar Measurements During the WVIOP2000 and AFWEX Field Experiments

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Evans, K. D.; Berkoff, T. B.; Demoz, B. D.; DiGirolamo, P.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) participated in the Water Vapor IOP 2000 (WVIOP2000) and ARM FIRE Water Vapor Experiment (AFWEX) at the DOE SGP CART site in northern Oklahoma. These experiments occurred during the period of September and December, 2000. The goals of both the WVIOP2000 and AFWEX were to better characterize the water vapor measurement capability of numerous sensors in the lower atmosphere and upper troposphere, respectively. The SRL received several hardware upgrades in anticipation of these experiments that permitted improved measurements of water vapor during the daytime and in the upper troposphere (UT). The daytime SRL water vapor error statistics were demonstrated a factor of 2-3 improvement compared to the permanently stationed CART Raman lidar (CARL). The performance of the SRL in the UT showed improvements as well. The technological upgrades that permitted these improved SRL measurements could also be implemented in the CARL system. Data examples demonstrating the new daytime and upper tropospheric measurement capability of the SRL will be shown at the meeting. In addition, preliminary analysis will be presented on several topics: 1) inter comparison of the water vapor measurements for several water vapor sensors including SRL, CARL, the NASA/Langley Lidar Atmospheric Sensing Experiment (LASE) flown onboard the NASA DC-8, in-situ sensors flown on the DC-8, and the Max Planck Institute Differential Absorption Lidar 2) comparison of cirrus cloud measurements using SRL and CARL and 3) case studies of meteorological events that occurred during the IOPs such as a cold frontal passage on the night of September 23.

  10. Efficient, Off-Grid LiDAR Scanning of Remote Field Sites

    NASA Astrophysics Data System (ADS)

    Gold, P.; Gold, R.; Cowgill, E.; Kreylos, O.; Hamann, B.

    2007-12-01

    As terrestrial LiDAR scanning systems become increasingly available, strategies for executing efficient field surveys in settings without access to the power grid are increasingly needed. To evaluate scan methods and develop an off-grid power system, we used a tripod-mounted laser scanner to create high resolution (≤40 mm point spacing) topographic maps for use in neotectonic studies of active faulting in arid, high elevation settings. We required 1-2 cm internal precision within point clouds spanning field sites that were ~300 x 300 m. Main components of our survey system included a Trimble GX DR200+ terrestrial laser scanner, a Leica TCR407power total station, a ruggedized laptop (2 GB RAM, 2.33 GHz dual-processor, and an Intel GMA 950 graphics card), batteries, and a portable photovoltaic array. Our first goal was to develop an efficient field-survey workflow. We started each survey project by using the total station for 1-2 days to locate an average of 8 ground control locations per site and to measure key geomorphic features within the project area. We then used the laser scanner to capture overlapping scans of the site, which required an average of six, 5-hour scanning sessions and an average of ten station setups. At each station, the scanner located itself on a particular point by measuring the relative positions of an average of four backsights, each of which is a ~17 x 17cm reflective target mounted on a tripod over the ground control point. To locate the scanner at a particular station prior to scanning, we experimented with both setting up over known points as measured using the total station, and resectioning, by positioning the scanner over an unmeasured location and backsighting on previously scanned points. We found that resectioning provided the smallest errors in scan registration. We then framed and queued a series of scans from each station that optimized point density and minimized data repetition. We also increased the accuracy of the

  11. A new mobile and portable scanning lidar for profiling the lower troposphere

    NASA Astrophysics Data System (ADS)

    Chiang, C.-W.; Das, S. K.; Chiang, H.-W.; Nee, J.-B.; Sun, S.-H.; Chen, S.-W.; Lin, P.-H.; Chu, J.-C.; Su, C.-S.; Su, L.-S.

    2015-02-01

    An in-house developed mobile and portable three-dimensional scanning lidar system is discussed in this work. The system uses a stimulated Raman-scattering technique for the continuous observation of atmospheric aerosols, clouds and trace gases. This system has a fast scanning technique with a high-speed data acquisition, and permits the real-time measurement of atmospheric pollutants with the temporal resolution of 1 min. This scanning lidar system provides typical horizontal coverage of about 8-10 km while scanning; however, in zenith mode, good quality backscattered signals can be from 20 km, depending upon the laser power and sky conditions. This versatile lidar system has also overcome the drawbacks which are popular in the traditional scanning lidar systems such as complicated operation, overlap height between laser beam and telescope field of view In this system, the optical damage is reduced by using an integral coaxial transmitter and receiver. Some of the initial results obtained from the scanning lidar system are also presented. This study shows that boundary-layer structure and land-sea breeze circulation can be resolved from the developed scanning lidar system. The application of this lidar system to measure the pollutants over an industrial area is also discussed.

  12. Canopy wake measurements using multiple scanning wind LiDARs

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Stefan, Heinz; Porté-Agel, Fernando

    2014-05-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ~O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 35-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is 35 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity vector near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  13. Canopy wake measurements using multiple scanning wind LiDARs

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  14. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    PubMed Central

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206

  15. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    PubMed

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206

  16. Quantifying the Effect of Lidar Turbulence Error on Wind Power Prediction

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew

    2016-01-01

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST

  17. The HOLO Series: Critical Ground-Based Demonstrations of Holographic Scanning Lidars

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.; Sanders, Jason A.; Andrus, Ionio Q.; Schwemmer, Geary K.; Miller, David O.; Guerra, David; Schnick, Jeffrey; Moody, Stephen E.

    2000-01-01

    Results of two lidar measurement campaigns are presented, HOLO-1 (Utah, March 1999) and HOLO-2 (New Hampshire, June 1999). These tests demonstrate the ability of lidars utilizing holographic optical elements (HOEs) to determine tropospheric wind velocity and direction at cloud altitude. Several instruments were employed. HOLO-1 used the 1,064 mm transmission-HOE lidar (HARLIE, Goddard Space Flight Center), a zenith-staring 532 nm lidar (AROL-2, Utah State University), and a wide-field video camera (SkyCam) for imagery of clouds overhead. HOLO-2 included these instruments plus the 532 nm reflection-HOE lidar (PHASERS, St. Anselm College). HARLIE and PHASERS scan the sky at constant cone angles of 45 deg. and 42 deg. from normal, respectively. The progress of clouds and entire cloud fields across the sky is tracked by the repetitive conical scans of the HOE lidars. AROL-2 provides the attitude information enabling the SkyCam cloud images to be analyzed for independent data on cloud motion. Data from the HOE lidars are reduced by means of correlations, visualization by animation techniques, and kinematic diagrams of cloud feature motion. Excellent agreement is observed between the HOE lidar results and those obtained with video imagery and lidar ranging.

  18. Fiber laser-based scanning lidar for space rendezvous and docking.

    PubMed

    Luo, Yuan; He, Yan; Gao, Min; Zhou, Cuiyun; Zang, Huaguo; Lei, Linjun; Xie, Kedi; Yang, Yan; Shi, Wei; Hou, Xia; Chen, Weibiao

    2015-03-20

    Lidar systems have played an important role in space rendezvous and docking (RVD). A new type of scanning lidar is developed using a high-repetition-rate pulsed fiber laser and a position detector. It will be a candidate for autonomous space RVD between two spacecrafts. The lidar can search and track cooperative targets in a large region without artificial guidance. The lidar's operational range spans from 18 m to 20 km, and the relative angle between two aircrafts can be measured with high accuracy. A novel fiber laser with tunable pulse energy and repetition rate is developed to meet the wide dynamic detection range of the lidar. This paper presents the lidar system's composition, performance, and experimental results in detail. PMID:25968536

  19. Dose error analysis for a scanned proton beam delivery system.

    PubMed

    Coutrakon, G; Wang, N; Miller, D W; Yang, Y

    2010-12-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 × 10 × 8 cm(3) target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy. PMID:21076200

  20. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  1. An Airborne Scanning LiDAR System for Ocean and Coastal Applications

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Castel, D.; Melville, W. K.

    2008-12-01

    We have developed an airborne scanning LiDAR (Light Detection And Ranging) system and demonstrated its functionality for terrestrial and oceanographic measurements. Differential GPS (DGPS) and an Inertial Navigation System (INS) are synchronized with the LiDAR, providing end result vertical rms errors of approximately 6~cm. Flying 170~m above the surface, we achieve a point density of ~ 0.7 m-2 and a swath width of 90 to 120~m over ocean and 200~m over land. Georeferencing algorithms were developed in-house and earth-referenced data are available several hours after acquisition. Surveys from the system are compared with ground DGPS surveys and existing airborne surveys of fixed targets. Twelve research flights in a Piper Twin Comanche from August 2007 to July 2008 have provided topography of the Southern California coastline and sea surface wave fields in the nearshore ocean environment. Two of the flights also documented the results of the October 2007 landslide on Mt.~Soledad in La Jolla, California. Eight research flights aboard a Cessna Caravan surveyed the topography, lagoon, reef, and surrounding seas of Lady Elliot Island (LEI) in Australia's Great Barrier Reef in April 2008. We describe applications for the system, including coastal topographic surveys, wave measurements, reef research, and ship wake studies.

  2. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme.

    PubMed

    Mattis, Ina; Tesche, Matthias; Grein, Matthias; Freudenthaler, Volker; Müller, Detlef

    2009-05-10

    Signals of many types of aerosol lidars can be affected with a significant systematic error, if depolarizing scatterers are present in the atmosphere. That error is caused by a polarization-dependent receiver transmission. In this contribution we present an estimation of the magnitude of this systematic error. We show that lidar signals can be biased by more than 20%, if linearly polarized laser light is emitted, if both polarization components of the backscattered light are measured with a single detection channel, and if the receiver transmissions for these two polarization components differ by more than 50%. This signal bias increases with increasing ratio between the two transmission values (transmission ratio) or with the volume depolarization ratio of the scatterers. The resulting error of the particle backscatter coefficient increases with decreasing backscatter ratio. If the particle backscatter coefficients are to have an accuracy better than 5%, the transmission ratio has to be in the range between 0.85 and 1.15. We present a method to correct the measured signals for this bias. We demonstrate an experimental method for the determination of the transmission ratio. We use collocated measurements of a lidar system strongly affected by this signal bias and an unbiased reference system to verify the applicability of the correction scheme. The errors in the case of no correction are illustrated with example measurements of fresh Saharan dust. PMID:19424398

  3. Case Study Analyses of the SUCCESS DC-8 Scanning Lidar Database

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.

    2000-01-01

    Under project SUCCESS (Subsonic Aircraft Contrail and Cloud Effects Special Study) funded by the Atmospheric Effects of Aviation Program, SRI International (SRI) developed an angular scanning backscatter lidar for operation on the NASA DC-8 research aircraft and deployed the scanning lidar during the SUCCESS field campaign. The primary purpose of the lidar was to generate real-time video displays of clouds and contrails above, ahead of, and below the DC-8 as a means to help position the aircraft for optimum cloud and contrail sampling by onboard in situ sensors, and to help extend the geometrical domain of the in situ sampling records. A large, relatively complex lidar database was collected and several data examples were processed to illustrate the value of the lidar data for interpreting the other data records collected during SUCCESS. These data examples were used to develop a journal publication for the special SUCCESS Geophysical Research Letters issue. The data examples justified data analyses of a larger part of the DC-8 lidar database and is the objective of the current study. Efficient processing of the SUCCESS DC-8 scanning lidar database required substantial effort to enhance hardware and software components of the data system that was used for the initial analyses. MATLAB instructions are used to generate altitude and distance color-coded lidar displays corrected for effects introduced by aircraft pitch and forward movement during an angular scan time interval. Onboard in situ sensor atmospheric measurements are propagated to distances ahead of the DC-8 using recorded aircraft velocity so that they can be plotted on the lidar displays for comparison with lidar remotely observed aerosol distributions. Resulting lidar and in situ sensor polar scan displays over extended sampling intervals are integrated into a time series movie format for 36 case studies. Contrails and clouds were detected to ranges of 15 km by the forward-viewing angular scanning lidar

  4. Expected Characteristics of Global Wind Profile Measurements with a Scanning, Hybrid, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    2008-01-01

    Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.

  5. Determination of the smoke-plume heights and their dynamics with ground-based scanning lidar.

    PubMed

    Kovalev, V; Petkov, A; Wold, C; Urbanski, S; Hao, W M

    2015-03-10

    Lidar-data processing techniques are analyzed, which allow determining smoke-plume heights and their dynamics and can be helpful for the improvement of smoke dispersion and air quality models. The data processing algorithms considered in the paper are based on the analysis of two alternative characteristics related to the smoke dispersion process: the regularized intercept function, extracted directly from the recorded lidar signal, and the square-range corrected backscatter signal, obtained after determining and subtracting the constant offset in the recorded signal. The analysis is performed using experimental data of the scanning lidar obtained in the area of prescribed fires. PMID:25968377

  6. Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang

    2006-01-01

    In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:

  7. Ground Based Operational Testing Of Holographic Scanning Lidars : The HOLO Experiments

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.; Sanders, Jason A.; Guerra, David V.; Miller, David O.; Moody, Stephen E.

    2000-01-01

    Two aerosol backscatter lidar measurement campaigns were conducted using two holographic scanning lidars and one zenith staring lidar for the purposes of reliability testing under field conditions three new lidar systems and to develop new scanning measurement techniques and applications. The first campaign took place near the campus of Utah State University in Logan Utah in March of 1999 and is called HOLO-1. HOLO-2 was conducted in June of 1999 on the campus of Saint Anselm College, near the city of Manchester, New Hampshire. Each campaign covered a period of approximately one week of nearly continuous observation of cloud and aerosol backscatter in the visible and near infrared by lidar, and wide field visible sky images by video camera in the daytime. The scanning capability coupled with a high rep-rate, high average power laser enables both high spatial and high temporal resolution observations that Particularly intriguing is the possibility of deriving atmospheric wind profiles from temporal analysis of aerosol backscatter spatial structure obtained by conical scan without the use of Doppler techniques.

  8. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  9. Three-dimension scanning micro pulse lidar for detecting haze space distribution

    NASA Astrophysics Data System (ADS)

    Li, Shichun; Yan, Qing; Wei, Pengpeng; Xin, Wenhui; Hua, Dengxin

    2015-10-01

    Aim to the current situation that the haze distribution detection is limited by network of point-type instruments, a three dimension scanning micro pulse lidar is researched on the basis of the Mie scattering theory of atmospheric particles. In order to strengthen detective ability of fine particles having a significant effect on human respiratory system, we choose a diode-pumped Nd:YAG solid laser with 532-nm wavelength and wind cooled technique as excited optical source to actualize lidar miniaturization. The pulse energy of 50 μJ and pulse repetitive frequency of 1 kHz are configured to ensure the eye-safety and high temporal-spatial resolution, while the lidar operates in the horizontal scanning mode. A Cassegrain telescope with clear aperture of 254 mm is utilized to collect the backscattering signal for portable multi-location observation. The lidar echo signal is filtered through an interference filter with passed bandwidth of 0.2 nm to implement all-time efficient detection. The experimental observation of atmospheric particle distribution is carried out in horizontal scanning mode. Each plane- position-indication of atmospheric particle distribution contains approximately 300 profiles in the horizontal plane within 6-min interval. Experimental results show that this lidar prototype can probe the space distribution of atmospheric particle with the range of 6 km, and that the influence of industrial production on the atmospheric particle density is 2-3 times as much as that of human activity.

  10. Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data

    DOE PAGESBeta

    Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.

    2016-04-06

    An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less

  11. Albedo Observation by Hayabusa2 LIDAR: Instrument Performance and Error Evaluation

    NASA Astrophysics Data System (ADS)

    Yamada, Ryuhei; Senshu, Hiroki; Namiki, Noriyuki; Mizuno, Takahide; Abe, Shinsuke; Yoshida, Fumi; Noda, Hirotomo; Hirata, Naru; Oshigami, Shoko; Araki, Hiroshi; Ishihara, Yoshiaki; Matsumoto, Koji

    2016-03-01

    The Japanese asteroid explorer Hayabusa2 was launched at the end of 2014. Hayabusa2 is supposed to observe the near-Earth C-type asteroid 162173 Ryugu (1999 JU3) and bring surface material samples back to Earth in 2020. It is equipped with Light Detection and Ranging (LIDAR) instrument for laser ranging which can be used to measure the intensities of transmitted and received pulses. The intensity data can be used to estimate the normal albedo of Ryugu at a laser wavelength of 1.064 μm. To perform this estimation, we determined the transfer functions of the laser module and receiver to convert the intensity data into pulse energies, along with the utilization ratio of the returned pulse energy, through verification tests of the LIDAR flight model. Then, we evaluated the error of the normal albedo. This error is affected not only by the performance of the LIDAR but also by the slope and roughness of the asteroid's surface. In this paper, we focus on the error in the normal albedo due only to the instrument error, which will be 18.0 % in an observation at a nominal altitude of 20 km.

  12. DC-8 Scanning Lidar Characterization of Aircraft Contrails and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Oseberg, Terje E.

    1998-01-01

    An angular-scanning large-aperture (36 cm) backscatter lidar was developed and deployed on the NASA DC-8 research aircraft as part of the SUCCESS (Subsonic Aircraft: Contrail and Cloud Effects Special Study) program. The lidar viewing direction could be scanned continuously during aircraft flight from vertically upward to forward to vertically downward, or the viewing could be at fixed angles. Real-time pictorial displays generated from the lidar signatures were broadcast on the DC-8 video network and used to locate clouds and contrails above, ahead of, and below the DC-8 to depict their spatial structure and to help select DC-8 altitudes for achieving optimum sampling by onboard in situ sensors. Several lidar receiver systems and real-time data displays were evaluated to help extend in situ data into vertical dimensions and to help establish possible lidar configurations and applications on future missions. Digital lidar signatures were recorded on 8 mm Exabyte tape and generated real-time displays were recorded on 8mm video tape. The digital records were transcribed in a common format to compact disks to facilitate data analysis and delivery to SUCCESS participants. Data selected from the real-time display video recordings were processed for publication-quality displays incorporating several standard lidar data corrections. Data examples are presented that illustrate: (1) correlation with particulate, gas, and radiometric measurements made by onboard sensors, (2) discrimination and identification between contrails observed by onboard sensors, (3) high-altitude (13 km) scattering layer that exhibits greatly enhanced vertical backscatter relative to off-vertical backscatter, and (4) mapping of vertical distributions of individual precipitating ice crystals and their capture by cloud layers. An angular scan plotting program was developed that accounts for DC-8 pitch and velocity.

  13. Surface measurement errors using commercial scanning white light interferometers

    NASA Astrophysics Data System (ADS)

    Gao, F.; Leach, R. K.; Petzing, J.; Coupland, J. M.

    2008-01-01

    This paper examines the performance of commercial scanning white light interferometers in a range of measurement tasks. A step height artefact is used to investigate the response of the instruments at a discontinuity, while gratings with sinusoidal and rectangular profiles are used to investigate the effects of surface gradient and spatial frequency. Results are compared with measurements made with tapping mode atomic force microscopy and discrepancies are discussed with reference to error mechanisms put forward in the published literature. As expected, it is found that most instruments report errors when used in regions close to a discontinuity or those with a surface gradient that is large compared to the acceptance angle of the objective lens. Amongst other findings, however, we report systematic errors that are observed when the surface gradient is considerably smaller. Although these errors are typically less than the mean wavelength, they are significant compared to the vertical resolution of the instrument and indicate that current scanning white light interferometers should be used with some caution if sub-wavelength accuracy is required.

  14. Measurement error analysis of Brillouin lidar system using F-P etalon and ICCD

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Niu, Qunjie; Liang, Kun

    2016-09-01

    Brillouin lidar system using Fabry-Pérot (F-P) etalon and Intensified Charge Coupled Device (ICCD) is capable of real time remote measuring of properties like temperature of seawater. The measurement accuracy is determined by two key parameters, Brillouin frequency shift and Brillouin linewidth. Three major errors, namely the laser frequency instability, the calibration error of F-P etalon and the random shot noise are discussed. Theoretical analysis combined with simulation results showed that the laser and F-P etalon will cause about 4 MHz error to both Brillouin shift and linewidth, and random noise bring more error to linewidth than frequency shift. A comprehensive and comparative analysis of the overall errors under various conditions proved that colder ocean(10 °C) is more accurately measured with Brillouin linewidth, and warmer ocean (30 °C) is better measured with Brillouin shift.

  15. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Clouds during the International H2O Project (IHOP) Field Campaign

    NASA Technical Reports Server (NTRS)

    Whiteman, David; Demoz, Belay; DiGirolamo, Paolo; Wang, Zhi-En; Evans, Keith; Lin, Ruei-Fong

    2003-01-01

    The NASA/GSFC Scanning Raman Lidar (SFL) acquired approximately 200 hours of water vapor, aerosol and cloud measurements during the IHOP field campaign. The detailed water vapor structure of events such as a dryline passage and internal bores were revealed. We discuss the error characteristics of the instrument as well as the water vapor and cirrus cloud structure during the 19-20 June bore event.

  16. Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar systems

    NASA Astrophysics Data System (ADS)

    Vuorenkoski, Anni K.; Dalgleish, Fraser R.; Twardowski, Michael S.; Ouyang, Bing; Trees, Charles C.

    2015-05-01

    A fine structure underwater imaging LiDAR (FSUIL) has recently been developed and initial field trials have been conducted. The instrument, which rapidly scans an array of closely spaced, narrow, collimated laser pulses into the water column produces two-dimensional arrays of backscatter profiles, with fine spatial and temporal resolution. In this paper a novel method to derive attenuation profiles is introduced. This approach is particularly attractive in applications where primary on-board processing is required, and other applications where conventional model-based approaches are not feasible due to a limited computational capacity or lack of a priori knowledge of model input parameters. The paper also includes design details regarding the new FSUIL instrument are given, with field results taken in clear to moderately turbid water being presented to illustrate the various effects and considerations in the analysis of the system data. LiDAR waveforms and LiDAR derived attenuation coefficients are analyzed and compared to calibrated beam attenuation, particulate scattering and absorption coefficients. The system was field tested during the NATO Ligurian Sea LIDAR & Optical Measurements Experiment (LLOMEx) cruise in March 2013, during the spring bloom conditions. Throughout a wide range of environmental conditions, the FSUIL was deployed on an in situ profiler obtaining thousands of three-dimensional LiDAR scans from the near surface down to the lower thermocline. Deployed concurrent to the FSUIL was a range of commercially available off-the-shelf instruments providing side-by-side in-situ attenuation measurement.

  17. Measurements of Wind and Turbulence Profiles with Scanning Doppler Lidar for Wind Energy Applications

    SciTech Connect

    Frehlich, R.; Kelley, N.

    2008-03-01

    High-quality profiles of mean and turbulent statistics of the wind field upstream of a wind farm can be produced using a scanning Doppler lidar. Careful corrections for the spatial filtering of the wind field by the lidar pulse produce turbulence estimates equivalent to point sensors but with the added advantage of a larger sampling volume to increase the statistical accuracy of the estimates. For a well-designed lidar system, this permits accurate estimates of the key turbulent statistics over various subdomains and with sufficiently short observation times to monitor rapid changes in conditions. These features may be ideally suited for optimal operation of wind farms and also for improved resource assessment of potential sites.

  18. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed. PMID:18354611

  19. Error analysis of 3D laser scanning system for gangue monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Xia, Yuyang; Zhang, Aiwu

    2012-01-01

    The paper put forward the system error evaluation method of 3D scanning system for gangue monitoring; analyzed system errors including integrated error which can be avoided, and measurement error which needed whole analysis; firstly established the system equation after understanding the relationship of each structure. Then, used error independent effect and spread law to set up the entire error analysis system, and simulated the trend of error changing along X, Y, Z directions. At last, it is analytic that the laser rangefinder carries some weight in system error, and the horizontal and vertical scanning angles have some influences on system error in the certain vertical and horizontal scanning parameters.

  20. Detecting shallow mixing heights in two coastal locations with a scanning Doppler lidar

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; O'Connor, Ewan J.; Nisantzi, Argyro; Mamouri, Rodanthi E.; Hadjimitsis, Diofantos Gl.

    2015-04-01

    Turbulent mixing is one of the most important processes in the lower troposphere for climate, weather and air quality. A key parameter describing turbulent mixing in atmosphere is mixing height, i.e. the height of the layer that is constantly in contact with the surface. Doppler lidar offers a way to observe the vertical wind velocity profile with a high enough time resolution to retrieve information on turbulent mixing. However, Doppler lidars cannot retrieve wind velocity measurements below an instrument-specific threshold, typically 100 - 200 metres. Here, we introduce a method for identifying mixing heights below the vertical minimum range of a scanning Doppler lidar. The new method for detecting shallow mixing height is based on velocity variance in low elevation angle conical scanning, i.e. vertical azimuth display (VAD) scanning, which provides simultaneously the horizontal wind profile. This method is applied to measurements in two very different coastal environments: Limassol, Cyprus during summer; and Loviisa, Finland during winter. At Limassol the measurements were carried out from 22 August to 15 October 2013 at the Cyprus University of Technology campus, 600 metres NE from the Mediterranean Sea shoreline. At Loviisa, the measurement campaign took place from 10 December 2013 to 17 March 2014 on a 2000 m long, 500 m wide island in the Baltic Sea archipelago. At both locations, the new method agrees well with mixing heights derived from turbulent kinetic energy dissipation rate profiles obtained from vertically-pointing Doppler lidar measurements. Furthermore, when the vertically pointing measurements indicated the mixing height to be below the Doppler lidar minimum range, the VADs indicated a shallow mixing height on 87 % of the time at Loviisa and on 58 % of the time at Limassol. At Limassol such low mixing heights occurred only during the night; at Loviisa very low mixing heights were also common during the day.

  1. Multispectral elastic scanning lidar for industrial flare research: characterizing the electronic subsystem and application.

    PubMed

    Guerrero-Rascado, Juan Luis; Facundes da Costa, Renata; Bedoya, Andrés Esteban; Guardani, Roberto; Alados-Arboledas, Lucas; Bastidas, Álvaro Efrain; Landulfo, Eduardo

    2014-12-15

    This work deals with the analysis of the electronic subsystem of a multiwavelength elastic scanning lidar. Several calibration tests are applied to the Cubatão scanning lidar placed at the industrial area of Cubatão in the State of São Paulo (Brazil), in order to improve the knowledge of its performing itself and to design protocols for correcting lidar signal for undesirable instrumental effects. In particular, the trigger delay is assessed by means of zero-bin and bin-shift tests for analog (AN) and photo-counting (PC) signals, respectively. Dark current test is also performed to detect potential range-dependency that could affect lidar products. All tests were performed at different spatial resolutions. These instrumental corrections were applied to a case study of data acquired for characterizing the optical and microphysical properties of particles in an industrial flare. To that aim, a graphical method based on the space defined by the extinction-related Angström exponent versus its spectral curvature is used to derive the contribution of fine aerosol to extinction and the size of the fine aerosols in the industrial flare, therefore revealing features of the processes occurring inside the flame. Our study demonstrates the potential of this new technique for the study and measurement of industrial emissions. PMID:25607056

  2. Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers.

    PubMed

    Machol, Janet L; Marchbanks, Richard D; Senff, Christoph J; McCarty, Brandi J; Eberhard, Wynn L; Brewer, William A; Richter, Ronald A; Alvarez, Raul J; Law, Daniel C; Weickmann, Ann M; Sandberg, Scott P

    2009-01-20

    The Ozone Profiling Atmospheric Lidar is a scanning four-wavelength ultraviolet differential absorption lidar that measures tropospheric ozone and aerosols. Derived profiles from the lidar data include ozone concentration, aerosol extinction, and calibrated aerosol backscatter. Aerosol calibrations assume a clear air region aloft. Other products include cloud base heights, aerosol layer heights, and scans of particulate plumes from aircraft. The aerosol data range from 280 m to 12 km with 5 m range resolution, while the ozone data ranges from 280 m to about 1.2 km with 100 m resolution. In horizontally homogeneous atmospheres, data from multiple-elevation angles is combined to reduce the minimum altitude of the aerosol and ozone profiles to about 20 m. The lidar design, the characterization of the photomultiplier tubes, ozone and aerosol analysis techniques, and sample data are described. Also discussed is a double-gating technique to shorten the gated turn-on time of the photomultiplier tubes, and thereby reduce the detection of background light and the outgoing laser pulse. PMID:19151820

  3. DC-8 scanning lidar characterization of aircraft contrails and cirrus clouds

    NASA Technical Reports Server (NTRS)

    Nielsen, Norman B.; Uthe, Edward E. (Principal Investigator)

    1996-01-01

    A Subsonic Assessment (SASS) element of the overall Atmospheric Effects of Aviation Project (AEAP) was initiated by NASA to assess the atmospheric impact of subsonic aircraft. SRI was awarded a project to develop and test a scanning backscatter lidar for installation on the NASA DC-8 (year 1), participate in the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program (year 2), and conduct a comprehensive analysis of field data (year 3). A scanning mirror pod attached to the DC-8 aircraft provides for scanning lidar observations ahead of the DC-8 and fixed-angle upward or downward observations. The lidar system installed within the DC-8 transmits 275 MJ at 1.06 gm wavelength or about 130 mJ at 1.06 and 0.53 gm simultaneously. Range-resolved aerosol backscatter is displayed in real time in terms of cloud/contrail spatial distributions. The objectives of the project are to map contrail/cloud vertical distributions ahead of DC-8; provide DC-8 guidance into enhanced scattering layers; document DC-8 flight path intersection of contrail and cloud geometries (in-situ measurement positions relative to cloud/contrail shape and an extension of in-situ measurements into the vertical -- integrated contrail/cloud properties); analyze contrail/cloud radiative properties with LIRAD (combined lidar and radiometry) technique; evaluate mean particle sizes of aircraft emissions from two-wavelength observations; study contrail/cloud interactions, diffusion, and mass decay/growth; and make observations in the near-field of aircraft engine emissions. The scanning mirror pod may also provide a scanning capability for other remote sensing instruments.

  4. Quantifying spatial distribution of snow depth errors from LiDAR using Random Forests

    NASA Astrophysics Data System (ADS)

    Tinkham, W.; Smith, A. M.; Marshall, H.; Link, T. E.; Falkowski, M. J.; Winstral, A. H.

    2013-12-01

    There is increasing need to characterize the distribution of snow in complex terrain using remote sensing approaches, especially in isolated mountainous regions that are often water-limited, the principal source of terrestrial freshwater, and sensitive to climatic shifts and variations. We apply intensive topographic surveys, multi-temporal LiDAR, and Random Forest modeling to quantify snow volume and characterize associated errors across seven land cover types in a semi-arid mountainous catchment at a 1 and 4 m spatial resolution. The LiDAR-based estimates of both snow-off surface topology and snow depths were validated against ground-based measurements across the catchment. Comparison of LiDAR-derived snow depths to manual snow depth surveys revealed that LiDAR based estimates were more accurate in areas of low lying vegetation such as shrubs (RMSE = 0.14 m) as compared to areas consisting of tree cover (RMSE = 0.20-0.35 m). The highest errors were found along the edge of conifer forests (RMSE = 0.35 m), however a second conifer transect outside the catchment had much lower errors (RMSE = 0.21 m). This difference is attributed to the wind exposure of the first site that led to highly variable snow depths at short spatial distances. The Random Forest modeled errors deviated from the field measured errors with a RMSE of 0.09-0.34 m across the different cover types. Results show that snow drifts, which are important for maintaining spring and summer stream flows and establishing and sustaining water-limited plant species, contained 30 × 5-6% of the snow volume while only occupying 10% of the catchment area similar to findings by prior physically-based modeling approaches. This study demonstrates the potential utility of combining multi-temporal LiDAR with Random Forest modeling to quantify the distribution of snow depth with a reasonable degree of accuracy. Future work could explore the utility of Terrestrial LiDAR Scanners to produce validation of snow-on surface

  5. Error reduction methods for integrated-path differential-absorption lidar measurements.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2012-07-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log". PMID:22772254

  6. Effects of atmospheric stability on the evolution of wind turbine wakes: Volumetric LiDAR scans

    NASA Astrophysics Data System (ADS)

    Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2014-05-01

    Aerodynamic optimization of wind farm layout is a fundamental task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, like the vertical profiles of the mean wind velocity and the turbulence intensity, which are in turn affected by the ABL stability regime. Therefore, the characterization of the variability of wind turbine wakes under different ABL stability regimes becomes fundamental to better predict wind power harvesting and improve wind farm efficiency. To this aim, wind velocity measurements of the wake produced by a 2 MW Enercon E-70 wind turbine were performed with three scanning Doppler wind Light Detection and Ranging (LiDAR) instruments. One LiDAR was typically devoted to the characterization of the incoming wind, in particular wind velocity, shear and turbulence intensity at the height of the rotor disc. The other two LiDARs performed scans in order to characterize the wake velocity field produced by the tested wind turbine. The main challenge in performing field measurements of wind turbine wakes is represented by the varying wind conditions, and by the consequent adjustments of the turbine yaw angle needed to maximize power production. Consequently, taking into account possible variations of the relative position between LiDAR measurement volume and wake location, different LiDAR measurement procedures were carried out in order to perform 2-D and 3-D characterizations of the mean wake velocity field. However, larger measurement volumes and higher spatial resolution require longer sampling periods; thus, to investigate wake turbulence tests were also performed by staring the LiDAR laser beam over fixed directions and with the maximum sampling frequency. Furthermore, volumetric scans of the wind turbine wake were performed under different wind

  7. Scanning Raman lidar measurements of atmospheric water vapor during a cold frontal passage

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Melfi, S. H.; Starr, D. O. C.; Ferrare, R. A.; Evans, K. D.; Lare, A. R.

    1995-01-01

    The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) had a highly successful deployment at the Department of Energy Cloud and Radiation Testbed (CART) Site in Billings, OK during April, 1994 for the first Intensive Operation Period (IOP) hosted there. During the IOP, the SRL operated from just after sundown to just before sunrise for all declared evenings of operation. The lidar acquired more than 123 hours of data over 15 nights with less than 1 hour of data lost due to minor system malfunction. The SRL acquired data both on the vertical and in scanning mode toward an instrumented 60 m tower during various meteorological conditions such as an intense cold frontal passage on April 15 which is the focus of this presentation.

  8. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  9. Scanning lidar fluorosensor for remote diagnostic of surfaces

    NASA Astrophysics Data System (ADS)

    Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Fiorani, Luca

    2013-08-01

    Scanning hyperspectral systems based on laser induced fluorescence (LIF) have been developed and realized at the ENEA allowing to obtain information of analytical and qualitative interest on different materials by the study of the emission of fluorescence. This technique, for a surface analysis, is fast, remote, not invasive and specific. A new compact setup capable of fast 2D monochromatic images acquisition on up to 90 different spectral channels in the visible/UV range will be presented. It has been recently built with the aim to increase the performances in terms of space resolution, time resolved capabilities and data acquisition speed. Major achievements have been reached by a critical review of the optical design. The results recently obtained with in-situ measurements of interest for applications in the field of cultural heritage will be shown. 2001 Elsevier Science. All rights reserved

  10. Estimation of random errors for lidar based on noise scale factor

    NASA Astrophysics Data System (ADS)

    Wang, Huan-Xue; Liu, Jian-Guo; Zhang, Tian-Shu

    2015-08-01

    Estimation of random errors, which are due to shot noise of photomultiplier tube (PMT) or avalanche photodiode (APD) detectors, is very necessary in lidar observation. Due to the Poisson distribution of incident electrons, there still exists a proportional relationship between standard deviation and square root of its mean value. Based on this relationship, noise scale factor (NSF) is introduced into the estimation, which only needs a single data sample. This method overcomes the distractions of atmospheric fluctuations during calculation of random errors. The results show that this method is feasible and reliable. Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB05040300) and the National Natural Science Foundation of China (Grant No. 41205119).

  11. Scanning Lidar Measurements of the Full-Scale RDD Field Trial Puff Plumes.

    PubMed

    Cao, Xiaoying; Roy, Gilles

    2016-05-01

    A vertically scanning lidar (light/radar) was used to measure the time evolution of clouds generated by a small explosive device. Vertical sweeps were performed at a downwind distance of 105 m from the detonation. The measured quantity obtained from the lidar was the light extinction coefficient. This quantity is directly proportional to the aerosol concentration. The background aerosol value was set to 0.0001 m (-1) (assuming a visibility of 40 km), and assuming the scattering properties of the explosively generated cloud is the same as the background aerosol, the authors found that the instantaneous maximal local concentration of aerosol in the cloud did not exceed 500 times the background aerosol value, and the instantaneous concentration was typically less than five times the background aerosol value. In the two trials that were done, the volumes of the clouds were reasonably close at 2,700 m(3) and 4,000 m(3), respectively. PMID:27023031

  12. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds.

    PubMed

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-01-01

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average

  13. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds†

    PubMed Central

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-01-01

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average

  14. 2D MEMS scanning for LIDAR with sub-Nyquist sampling, electronics, and measurement procedure

    NASA Astrophysics Data System (ADS)

    Giese, Thorsten; Janes, Joachim

    2015-05-01

    Electrostatic driven 2D MEMS scanners resonantly oscillate in both axes leading to Lissajous trajectories of a digitally modulated laser beam reflected from the micro mirror. A solid angle of about 0.02 is scanned by a 658nm laser beam with a maximum repetition rate of 350MHz digital pulses. Reflected light is detected by an APD with a bandwidth of 80MHz. The phase difference between the scanned laser light and the light reflected from an obstacle is analyzed by sub-Nyquist sampling. The FPGA-based electronics and software for the evaluation of distance and velocity of objects within the scanning range are presented. Furthermore, the measures to optimize the Lidar accuracy of about 1mm and the dynamic range of up to 2m are examined. First measurements demonstrating the capability of the system and the evaluation algorithms are discussed.

  15. Lidar based emissions measurement at the whole facility scale: Method and error analysis

    NASA Astrophysics Data System (ADS)

    Bingham, Gail E.; Marchant, Christian C.; Zavyalov, Vladimir V.; Ahlstrom, Douglas J.; Moore, Kori D.; Jones, Derek S.; Wilkerson, Thomas; Hipps, Larry E.; Martin, Randal S.; Hatfield, Jerry L.; Prueger, John H.; Pfeiffer, Richard L.

    2009-02-01

    Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regional, well-mixed aerosols are challenged by changing wind directions, disrupted flow fields caused by structures, varied surface temperatures, and the episodic nature of the sources found at these facilities. We describe a three-wavelength lidar-based method, which, when added to a standard point sampler array, provides unambiguous measurement and characterization of the particulate emissions from agricultural production operations in near real time. Point-sampled data are used to provide the aerosol characterization needed for the particle concentration and size fraction calibration, while the lidar provides 3D mapping of particulate concentrations entering, around, and leaving the facility. Differences between downwind and upwind measurements provide an integrated aerosol concentration profile, which, when multiplied by the wind speed profile, produces the facility source flux. This approach assumes only conservation of mass, eliminating reliance on boundary layer theory. We describe the method, examine measurement error, and demonstrate the approach using data collected over a range of agricultural operations, including a swine grow-finish operation, an almond harvest, and a cotton gin emission study.

  16. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.

    PubMed

    Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M

    1998-01-19

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States. PMID:19377577

  17. Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.

    1997-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  18. LiDAR scan and smart piezo layer combined damage detection

    NASA Astrophysics Data System (ADS)

    Chen, Shenen; Chung, Howard; Park, Youngjin

    2013-04-01

    The motivation of this study is to determine a technique to completely describe the damage state of large deformed structures commonly found during forensic investigations. The combination of Laser Detecting and Ranging (LiDAR) and Piezoelectric (PZT) Sensing Technologies for damage quantification is suggested to generate the full-field description of large deformation of a plate. The test subject is a 16 inch by 16 inch aluminum plate subjected to different damage scenarios. LiDAR is a static scanning laser that provides a 3-dimensional picture of the object. Smart Layer is a commercial PZT actuator/sensor network system that generates stress waves for internal damage evaluation. Both techniques were applied to the test plate after damages are introduced. In order to effectively analyze the results, the images for each test were superimposed. Frequencies that depicted the best interpretation of damage in the direct path images were superimposed with the 3-dimensional LiDAR images. Four damage scenarios were imposed on an aluminum plate including saw cuts at different depths using an electric saw. The final damage is a severe bending of the plate. The bending of the specimen produced an image that located the most severe damage directly under the left hand portion and directly above the right hand portion of the bend.

  19. Application of the Backscatter Near-End Solution for the Inversion of Scanning Lidar Data

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir; Wold, Cyle; Petkov, Alexander; Hao, Wei Min

    2016-06-01

    The significant issue of the classic multiangle data-processing technique is that the upper boundary height, up to which the multiangle data processing technique allows reliable extraction of optical parameters of the searched atmosphere, is always significantly less than the operative range of the scanning lidar. The existing inversion methodology yields poor accuracy when inverting the far-end data points of the signals measured in and close to zenith. In the report, the data processing technique is considered which allows using the zenith-measured signal to increase the maximal heights of profiling of the atmosphere. Simulated and experimental data are presented that illustrate the specifics of such a technique.

  20. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Clouds During IHOP

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Demoz, Belay; DiGirolamo, Paolo; Comer, Joe; Wang, Zhien; Lin, Rei-Fong; Evans, Keith; Veselovskii, Igor

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U.S. The SRL acquired measurements of water vapor, aerosols, cloud liquid and ice water, and temperature for more than 200 hours during IHOP. Here we report on the SRL water vapor and cirrus cloud measurements with particular emphasis being given to the measurements of June 19-20, 2002, which are motivating cirrus cloud model comparison studies.

  1. Mapping the Risk of Forest Wind Damage Using Airborne Scanning LiDAR

    NASA Astrophysics Data System (ADS)

    Saarinen, N.; Vastaranta, M.; Honkavaara, E.; Wulder, M. A.; White, J. C.; Litkey, P.; Holopainen, M.; Hyyppä, J.

    2015-03-01

    Wind damage is known for causing threats to sustainable forest management and yield value in boreal forests. Information about wind damage risk can aid forest managers in understanding and possibly mitigating damage impacts. The objective of this research was to better understand and quantify drivers of wind damage, and to map the probability of wind damage. To accomplish this, we used open-access airborne scanning light detection and ranging (LiDAR) data. The probability of wind-induced forest damage (PDAM) in southern Finland (61°N, 23°E) was modelled for a 173 km2 study area of mainly managed boreal forests (dominated by Norway spruce and Scots pine) and agricultural fields. Wind damage occurred in the study area in December 2011. LiDAR data were acquired prior to the damage in 2008. High spatial resolution aerial imagery, acquired after the damage event (January, 2012) provided a source of model calibration via expert interpretation. A systematic grid (16 m x 16 m) was established and 430 sample grid cells were identified systematically and classified as damaged or undamaged based on visual interpretation using the aerial images. Potential drivers associated with PDAM were examined using a multivariate logistic regression model. Risk model predictors were extracted from the LiDAR-derived surface models. Geographic information systems (GIS) supported spatial mapping and identification of areas of high PDAM across the study area. The risk model based on LiDAR data provided good agreement with detected risk areas (73 % with kappa-value 0,47). The strongest predictors in the risk model were mean canopy height and mean elevation. Our results indicate that open-access LiDAR data sets can be used to map the probability of wind damage risk without field data, providing valuable information for forest management planning.

  2. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface

  3. Use of a rapid-scanning backscatter LIDAR to validate dispersion models

    NASA Astrophysics Data System (ADS)

    Bennett, Michael

    2001-04-01

    We review the history and capabilities of UMIST's Rapid- scanning Lidar (RASCAL). This is a backscatter Lidar designed to study aerosol dispersion from industrial plant. The system is fully computer-controlled and is based around a frequency- doubled Nd-YAG laser having a pulse repetition rate of 30 Hz. The signal is measured with a 10-bit, 60 MHz digitizer. Overall, a plume cross-section can be obtained in < 2 s and repeated every approximately 4 s. Such scanning can continue for several hours. Range resolution is typically 5 m with sensitivity down two a few (mu) g m-3 of aerosol. Over 10 years we have developed software to analyze the returns to estimate plume height, spread and intermittency; wind speed at plume height; and mixing layer depth. The backscatter from combustion plant plumes appears to be well enough conserved to allow point measurements within the plume to be interpreted as concentration/flux ratios, (c/Q) for comparison with dispersion models. This technique has recently been successfully tested using a chemical tracer. A substantial dataset acquired with the system has been used to test the predictions of various regulatory models. We present recent comparisons of modelled and measured c/Q at a small power station: the ensemble values show impressive agreement.

  4. Structure Measurements of Leaf and Woody Components of Forests with Dual-Wavelength Lidar Scanning Data

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Li, Z.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E. J.; Wang, Z.; Woodcock, C. E.; Jupp, D. L. B.; Schaefer, M.; Newnham, G.

    2014-12-01

    Forest structure plays a critical role in the exchange of energy, carbon and water between land and atmosphere and nutrient cycle. We can provide detailed forest structure measurements of leaf and woody components with the Dual Wavelength Echidna® Lidar (DWEL), which acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths from simultaneous laser pulses. We collected DWEL scans at a broadleaf forest stand and a conifer forest stand at Harvard Forest in June 2014. Power returned from leaves is much lower than from woody materials such as trunks and branches at the SWIR wavelength due to the liquid water absorption by leaves, whereas returned power at the NIR wavelength is similar from both leaves and woody materials. We threshold a normalized difference index (NDI), defined as the difference between returned power at the two wavelengths divided by their sum, to classify each return pulse as a leaf or trunk/branch hit. We obtain leaf area index (LAI), woody area index (WAI) and vertical profiles of leaf and woody components directly from classified lidar hits without empirical wood-to-total ratios as are commonly used in optical methods of LAI estimation. Tree heights, diameter at breast height (DBH), and stem count density are the other forest structure parameters estimated from our DWEL scans. The separation of leaf and woody components in tandem with fine-scale forest structure measurements will benefit studies on carbon allocation of forest ecosystems and improve our understanding of the effects of forest structure on ecosystem functions. This research is supported by NSF grant, MRI-0923389

  5. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    DOE PAGESBeta

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s−1) and errors in the vertical velocity measurement exceed the actual

  6. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    SciTech Connect

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors.

    To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s−1) and errors in the vertical velocity measurement

  7. Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Wang, Z.; Demoz, B.

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.

  8. Correlation Study of Water Vapor and Aerosol Distributions in Troposphere Using Scanning Raman Lidar

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanic, S.; Bergant, K.; He, T.-Y.

    2012-04-01

    Aiming at the study of water vapor and aerosol distributions in the lower atmosphere from the Otlica observatory, Slovenia (45.93°N, 13.91°E, elevation 945 m above sea level), we have built a new Raman lidar in parallel to the existing Mie lidar. The new system is oriented towards the Adriatic coast with a fixed azimuth angle of 235.1° and shares the transmitter (tripled Nd:YAG pulsed laser at 355 nm with pulse energy of 100 mJ and repetition rate of 20 Hz) and mechanical support with scanning functionality in zenith angle with the Mie lidar. The receiver part of the Raman lidar employs custom optics using a low f-number aspheric lens, designed to maximize the coupling of lidar returns collected by a parabolic mirror with a diameter of 800 mm and focal length of 410 mm and the 1000 μm core multi-mode optical fiber used to transport the light to the polychromator for spectral analysis. In the polychromator, 5-nm bandwidth interference filters combined with dichroic beam splitters were used to separate the vibrational Raman signals of nitrogen and water wapor molecules. The three return signals were detected by photo-multiplier tubes and sampled by transient recorders in photon-counting mode. System functionality was assessed in a number of preliminary experiments, where water vapor concentrations were calibrated using radiosonde data. During the nights of 24-25 August 2011 a series of measurements of water vapor and aerosol distributions along the lidar line of sight were performed at various elevation angles. In the vertical measurements, two layers with larger water vapor content were visible at altitudes of 1.5 km and 4.0 km with relative humidity in both cases exceeding 75%. Aerosol extinction decreased linearly between the altitudes of 2 km and 4.5 km, with aerosol layers appearing at 4.0 km, 4.7 km and 5.6 km. In horizontal measurements, the water vapor mixing ratio and the relative humidity were found to be almost constant in the range of 1.5 km to 4.5 km

  9. Study of target tracking techniques based on non-scanning imaging lidar

    NASA Astrophysics Data System (ADS)

    Chen, Sui; Wang, Qianqian; Zhang, Shuhao; Shan, Bin; Li, Xiaoyang; Peng, Zhong

    2015-08-01

    Non-scanning imaging lidar, as a sensor, is applied in target tracking system to acquire distance image, intensity image and amplitude image, which makes it possible to achieve information fusion of the target. This system applies ARM as a hardware development platform which makes it easy to carry and achieve the system miniaturization. Target characteristics are extracted by the method combines codebook model and connected domain denoising to improve the accuracy of target characteristics extraction. Qt/Embedded development platform applied in building graphical user interface has a good architecture and programming mode which improves man-machine interaction and control efficiency. The results show the high accuracy of the target tracking, excellent man-machine interaction and perfect interface functions of the designed system.

  10. Observations of Canopy Waves Above an Orchard by a Horizontally-scanning Aerosol Lidar

    NASA Astrophysics Data System (ADS)

    Randall, T.; Mayor, S. D.

    2013-12-01

    Studies of canopy waves (internal atmospheric gravity waves immediately above forest canopies) to date have primarily been performed using time-series data. In our work we show how advances in active, laser-based, remote-sensing technology have enabled the spatial observation of canopy waves. From March to June 2007, the Raman-shifted Eye-safe Aerosol Lidar (REAL) scanned horizontally above an orchard canopy nearly continuously creating images every 11 s to 30 s. The resulting spatiotemporal dataset enables us to detect the waves more easily and quantify key characteristics that have not been possible to observe until now. For example, the lidar provides a direct measurement of the wavelength and phase speed of the waves. Wavelength can be determined subjectively through visual inspection of the images or objectively through autocorrelation. Phase speed can be calculated from the cross-correlation of two sequential images. When used in conjunction with the REAL data, in situ measurements from a fully-instrumented micrometeorological mast enable a more comprehensive description of the waves and the environment that supports them. From the 3-month dataset we identified 52 episodes of canopy waves. They all occurred at night when the atmosphere from the treetops to the top of the mast (29 m AGL) was very stably stratified. The wavelengths ranged from approximately 40 m to 100 m. The phase speeds ranged from 1 m/s to 2 m/s. The phase speed is always within the range of wind speeds at canopy top (10 m) and 18 m AGL. The periods ranged from 20 s to 60 s. The crests are oriented perpendicular to the mean wind direction and they propagate downstream. The oscillations in vertical-velocity time series are 90 degrees out of phase with both the temperature and horizontal velocity, resulting in near zero heat and momentum flux in the vertical. One square kilometer area from one scan created by the REAL during canopy wave activity.

  11. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  12. Multispectral airborne laser scanning - a new trend in the development of LiDAR technology

    NASA Astrophysics Data System (ADS)

    Bakuła, K.

    2015-12-01

    Airborne laser scanning (ALS) is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser) recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system - Titan by Optech - with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs) were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G), near-infrared (NIR) and shortwave-infrared (SWIR) lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.

  13. Continuous wave synthetic low-coherence wind sensing Lidar: motionless measurement system with subsequent numerical range scanning.

    PubMed

    Brinkmeyer, Ernst; Waterholter, Thomas

    2013-01-28

    A continuous wave (CW) Lidar system for detection of scattering from atmospheric aerosol particles is presented which is useful in particular for remote sensing of wind velocities. It is based on a low-coherence interferometric setup powered by a synthetic broadband laser source with Gaussian power density spectrum. The laser bandwidth is electronically adjustable and determines the spatial resolution which is independent of range. The Lidar system has no moving parts. The location to be resolved can be shifted numerically after the measurement meaning that a single measurement already contains the full range information. The features of constant resolution and numerical range scanning are in sharp contrast to ordinary CW Lidar systems. PMID:23389172

  14. Three-dimensional observations of atmospheric humidity with a scanning differential absorption Lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wulfmeyer, Volker; Riede, Andrea; Wagner, Gerd; Pal, Sandip; Bauer, Heinz; Radlach, Marcus; Späth, Florian

    2009-09-01

    A novel scanning water vapor differential absorption lidar (DIAL) system has been developed. This instrument is mobile and was applied successfully in two field campaigns: COPS 2007 (Convective and Orographically-induced Precipitation Study), a research and development project of the World Weather Research Programme, and FLUXPAT2009 within the German Research Foundation project Patterns in Soil-Vegetation-Atmosphere Systems: monitoring, modeling and data assimilation". In this paper, the instrument is described and its capabilities are illustrated with measurements examples. The DIAL provides remote sensing data of the atmospheric water-vapor field with previously unachieved resolution. The data products of the DIAL are profiles of absolute humidity with typical resolutions of 15 to 300 m with a temporal resolution of 1 to 10 s and a maximum range of several kilometers at both day and night. But spatial and temporal resolution can be traded off against each other. Intercomparisons with other instruments confirm high accuracy. Beside humidity, also the backscatter field and thus aerosols and clouds are observed simultaneously. The DIAL transmitter is based on an injection-seeded Titanium:Sapphire laser operated at 820 nm which is end-pumped with a diode-pumped Nd:YAG laser. By use of a scanning transmitter with an 80-cm receiving telescope, the measurements can be performed in any direction of interest and the 3-dimensional structure of the water vapor field can be observed.

  15. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Cirrus Clouds during WVIOP2000 and AFWEX

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.

  16. Nurses' Behaviors and Visual Scanning Patterns May Reduce Patient Identification Errors

    ERIC Educational Resources Information Center

    Marquard, Jenna L.; Henneman, Philip L.; He, Ze; Jo, Junghee; Fisher, Donald L.; Henneman, Elizabeth A.

    2011-01-01

    Patient identification (ID) errors occurring during the medication administration process can be fatal. The aim of this study is to determine whether differences in nurses' behaviors and visual scanning patterns during the medication administration process influence their capacities to identify patient ID errors. Nurse participants (n = 20)…

  17. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  18. Capturing Detailed Outcrop Geology Using Terrestrial Laser Scanning (Lidar) and Other Digital Technologies: Current Status and Future Directions

    NASA Astrophysics Data System (ADS)

    Jones, R. R.; McCaffrey, K. J.

    2007-12-01

    terrace offsets. These kinds of studies are giving new insights into geological processes, and provide real-world constraints for validation and calibration in geological modelling. Because of the versatility of terrestrial laser scanning, a raw lidar dataset can often be used both to generate realistic virtual outcrop models, and to carry out detailed quantitative analysis. The main difference lies in the way the raw data are processed. This is reflected in the challenges that we are now facing. To make it easier to generate and use photo-realistic virtual outcrop models we need more efficient methods to render very large datasets (hundreds of millions of points or polygons). This requires better ways to smooth and filter point data, more dynamic meshing of points to recreate the outcrop surface, improved texture mapping of higher quality photos onto the mesh, and more seamless "Level of Detail" functionality so that progressively more detail is shown as the user zooms in on the outcrop. To improve quantitative analysis of geological features from lidar data, we need better colour imagery, and better co-registration of images with the raw point cloud. This can help to improve methods for automatic picking of features and removal of vegetation. More relevant methods for 3D spatial analysis of geological data need to be developed and tested. Further work is needed to compare different types of laser scanning equipment and improve the quantification of errors.

  19. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized

  20. Comparison of measurements by the NASA/GSFC scanning raman lidar and the DOE/ARM CART raman lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David; Turner, David; Evans, Keith; Demoz, Belay; Melfi, Harvey; Schwemmer, Geary; Cadirola, Martin; Ferrare, Richard; Goldsmith, John; Tooman, Tim; Wise, Stacy

    1998-01-01

    Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warming scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy's Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

  1. Comparison of measurements by the NASA/GSFC scanning Raman lidar and the DOE/ARM CART Raman lidar

    SciTech Connect

    Whiteman, D.; Turner, D.; Evans, K.

    1998-04-01

    Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warning scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy`s Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

  2. Development of teaching modules for geology and engineering coursework using terrestrial LiDAR scanning systems

    NASA Astrophysics Data System (ADS)

    Yarbrough, L. D.; Katzenstein, K.

    2012-12-01

    Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication

  3. Error Analysis of Terrestrial Laser Scanning Data by Means of Spherical Statistics and 3D Graphs

    PubMed Central

    Cuartero, Aurora; Armesto, Julia; Rodríguez, Pablo G.; Arias, Pedro

    2010-01-01

    This paper presents a complete analysis of the positional errors of terrestrial laser scanning (TLS) data based on spherical statistics and 3D graphs. Spherical statistics are preferred because of the 3D vectorial nature of the spatial error. Error vectors have three metric elements (one module and two angles) that were analyzed by spherical statistics. A study case has been presented and discussed in detail. Errors were calculating using 53 check points (CP) and CP coordinates were measured by a digitizer with submillimetre accuracy. The positional accuracy was analyzed by both the conventional method (modular errors analysis) and the proposed method (angular errors analysis) by 3D graphics and numerical spherical statistics. Two packages in R programming language were performed to obtain graphics automatically. The results indicated that the proposed method is advantageous as it offers a more complete analysis of the positional accuracy, such as angular error component, uniformity of the vector distribution, error isotropy, and error, in addition the modular error component by linear statistics. PMID:22163461

  4. Refracting type laser beam scanner with minimum across-scan error

    NASA Astrophysics Data System (ADS)

    Khattak, Anwar S.

    1993-11-01

    An economical refracting type laser beam scanning device, exhibiting a minimum across-scan error without corrective measures, is described. The main structural assembly of the device consists of a rotating prism, a fixed spherical lens, and a fixed convex spherical auxiliary reflector (SAR). Trigonometric equations are developed to determine the radius of curvature of the SAR and the size of the exit pupil. Resolution analyses are presented for a specific set of design parameters.

  5. Utilizing Ground-based LiDAR (Terrestrial Laser Scanning) to estimate hydraulic roughness in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.

    2012-12-01

    Roughness is one of the more difficult parameters to quantify in the field for hydraulic studies, partially because it occurs at a variety of scales (i.e. grain, unit and reach), and because individual roughness elements, such as trees, grass and sediment grains, are difficult to measure. Ground-based LiDAR (also known as Terrestrial Laser Scanning) is changing the collection of high-quality topographic datasets for a variety of scientific endeavors, including forestry, geomorphology and hydrology and can be used to quantify hydraulic roughness in the field. Using datasets collected from several rivers in California, we evaluate the use of ground-based LiDAR (also known as Terrestrial Laser Scanning) for estimating hydraulic roughness in gravel-bed rivers. From our initial measurements, in addition to topography, there are a number of useful parameters that can be collected quickly and efficiently with ground-based LiDAR, including some that are not explicitly considered by existing hydraulic equations.

  6. Three Dimensional Monitoring of Stack Plume Dynamics by a Scanning Mie Lidar System as a Plume Watchdog Station

    NASA Astrophysics Data System (ADS)

    Saito, Yasunori; Kurata, Hidehumi; Hara, Yuta; Kobayashi, Fumitoshi; Kawahara, Takuya; Nomura, Akio

    A scanning lidar system was developed to watch the nighttime diffusion process of plume from a smokestack of a large incinerator located around 3 km from the system. Observed data sets were visualized as three dimensional images in which could be seen the diffusion pattern from any direction, and this made it easy to investigate the exhaust dynamics. Observation results showed that the original plume extended at least 1.6 km, where there was a residential area, from the smokestack increasing in diameter to about 500 m. High density aerosols originating from the smokestack were measured in that area even at midnight. The lidar system performance as a plume watchdog station was discussed from the standpoint of publichealth-related plume monitoring.

  7. Infrared micro-scanning error compensation algorithm based on edge location

    NASA Astrophysics Data System (ADS)

    Gao, Hang; Chen, Qian; Sui, Xiubao

    2015-03-01

    For area-array thermal imaging devices, an essential factor affecting the system imaging quality is the sub-sampling caused by oversized discrete sampling pitch. In order to obtain higher spatial resolution, staring infrared focal plane array (IRFPA) gets multi-frame sub-sampling images by micro-scanning movement to achieve an adequate spatial sampling frequency. However, influenced by external environment and the accuracy of the scanning system itself, the relative displacement between the detector and the scene cannot be absolutely precisely controlled, but exist some error, which will affect the final performance of the reconstructed high-resolution image. We analyzed the distribution of the error and then proposed an infrared micro-scanning error compensation algorithm based on edge location, which is inspired by human retina fixational eye movement pattern. It first locates the edge point in the reconstruction unit and finds the corresponding characteristic values. Later on, matches the characteristic value with the fixed templates and reorders the pixel responses in reconstruction unit utilizing the gray correlation. Finally, it compensates the error real-timely through repeated update and iteration. We apply the algorithm in video sequences acquired by 4-step infrared micro-scanning system. The experiment results show that when aligning to a static scene or stationary region in dynamic scene, the algorithm possesses good resolution enhancement effect, particularly, can improve the clarity and the accuracy of static image edge details.

  8. Restraint of range walk error in a Geiger-mode avalanche photodiode lidar to acquire high-precision depth and intensity information.

    PubMed

    Xu, Lu; Zhang, Yu; Zhang, Yong; Yang, Chenghua; Yang, Xu; Zhao, Yuan

    2016-03-01

    There exists a range walk error in a Geiger-mode avalanche photodiode (Gm-APD) lidar because of the fluctuation in the number of signal photoelectrons. To restrain this range walk error, we propose a new returning-wave signal processing technique based on the Poisson probability response model and the Gaussian functions fitting method. High-precision depth and intensity information of the target at the distance of 5 m is obtained by a Gm-APD lidar using a 6 ns wide pulsed laser. The experiment results show that the range and intensity precisions are 1.2 cm and 0.015 photoelectrons, respectively. PMID:26974630

  9. Error analysis of motion correction method for laser scanning of moving objects

    NASA Astrophysics Data System (ADS)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  10. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  11. Results from 1984 airborne Doppler lidar wind measurement program. Flight 6: Analysis of line-of-sight elevation angle errors and apparent Doppler velocities

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1987-01-01

    During the summer of 1984 the Marshall Space Flight Center's Airborne Doppler Lidar System (ADLS) made a series of wind measurements in the California Central Valley. This study quantifies the lidar beam angle errors and velocity errors through analysis of ground return signals. Line-of-sight elevation (LOSE) angle errors are under 1 deg. Apparent Doppler ground velocities, as large as 2m/s, are considerably less than in a previous flight experiment in 1981. No evidence was found of a Schuler resonance phenomenon common to inertial navigation systems (INS), however the aperiodic nature of the apparent velocities implies an error in the INS-derived ground speeds. Certain features and subtleties in the ground returns are explained in terms of atmospheric structure and characteristics of the ADLS hardware and software. Finally, least squares and low-pass filtering techniques are suggested for eliminating errors during post-processing.

  12. Wind-speed measurements with a scanning elastic-backscatter lidar

    SciTech Connect

    Buttler, W.T.; Eichinger, W.E.

    1994-01-01

    During the 1992 Summer Olympics, the Los Alamos National Laboratory (LANL) lidar team participated in the Barcelona Air Quality Initiative (BAQI). One of the main objectives of this experiment was the remote measurement of wind speeds around the city to verify wind speeds and directions predicted by the Nonhydrostatic Mesoscale Model (MEMO). Remote determination of wind velocities in the mixing layer is important for the verification and determination of critical input parameters of urban-pollution transport models. Most present elastic-backscatter-lidar wind-speed-measurement methods rely on data acquired over time periods between 5 to 10 minutes (Matsui, 1990) and 30 minutes to 1 hour (Schols, et al. 1992). Lidar can measure the spatial properties of the wind field over large volumes of space. This capability is an improvement over present methods, which rely on instruments attached to balloons that measure only those winds along the path the balloon travels. The material that follows describes the principles implicit in the measurement of winds with an elastic-backscatter lidar, as well as the maximum cross-correlation algorithm used to extract wind speeds from lidar data acquired during the Summer Olympics at Barcelona, Spain, in July 1992.

  13. Tidewater Glacier Velocities from Repeat Ground-Based Terrestrial LiDAR Scanning; Helheim Glacier, Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Finnegan, D. C.; Hamilton, G. S.; Stearns, L. A.; LeWinter, A. L.; Farid, H.; Renedo, H.

    2014-12-01

    Tidewater glaciers exhibit dynamic behaviors across a range of spatial and temporal scales, posing a challenge to both in situ and remote sensing observations. In situ measurements capture variability over very short time intervals, but with limited spatial coverage, and at significant cost and risk to deploy. Conversely, airborne and satellite remote sensing is capable of measuring changes over large spatial extents but at limited temporal resolution. Here we use a near-situ approach to observing dynamic glacier behavior. Terrestrial LiDAR Scanning (TLS) combines the rapid acquisition capabilities of in situ measurements with the broad spatial coverage of traditional remote sensing, and can be carried out from a safe off-ice location. Repeat (30 min) high-resolution, long-range (6-10km) TLS surveys were conducted at Helheim Glacier, southeast Greenland, during July 9-14, 2014, and coincident in situ global positioning system (GPS) observations were acquired close to the glacier terminus. Analysis of these data allows for independent estimates of flow displacement and verification of 3D analytic techniques for quantifying vector motion. These techniques will enable the automated processing of large volumes of repeat scanning data to be collected during planned the deployment of an autonomous version of our LiDAR scanning system.

  14. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  15. Vertical aerosol structure and aerosol mixed layer heights determined with scanning shipborne lidars during the TexAQS II study

    NASA Astrophysics Data System (ADS)

    McCarty, B. J.; Senff, C. J.; Tucker, S. C.; Eberhard, W. L.; Marchbanks, R. D.; Machol, J.; Brewer, W. A.

    2007-12-01

    The NOAA Earth Systems Research Laboratory (ESRL) deployed the Ozone Profiling Atmospheric LIDAR (OPAL) on the R/V Ronald H. Brown during the summer of 2006 for the Texas Air Quality Study (TEXAQS II). Calibrated aerosol backscatter profiles were determined from data collected at the 355 nm wavelength using a modified Klett retrieval method. OPAL employs a unique scan sequence that consists of staring at multiple elevation angles between 2 and 90 degrees, which is repeated approx. every 90 sec. Blending the data from the various elevation angles allows to extend the aerosol backscatter profiles down to near the surface (approximately 10 meters ASL), while maintaining a high spatial resolution (5 meters). Successful application of this technique requires the aerosol distribution to be sufficiently horizontally homogeneous over several kilometers. Estimates of aerosol mixed layer height were determined by applying a Haar wavelet transform method to detect the gradient that is often present at the top of the boundary layer. Co-located on the R/V Ronald H. Brown, was NOAA/ESRL's High Resolution Doppler LIDAR (HRDL). Aerosol mixed layer heights were also estimated using the data from the 2 micron Doppler LIDAR. A comparison of the mixed layer heights as determined from each LIDAR's observations was used to choose the height of the layer likely connected with the surface. The vertical structure of aerosols in the lower troposphere, in particular the presence of aerosol layers above the boundary layer, is important in understanding radiative effects of aerosols. We will present aerosol backscatter structure in the lower troposphere encountered during the TexAQS II study as well as a comparison of relative aerosol content in the free troposphere compared to that within the boundary layer.

  16. ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction

    SciTech Connect

    Wu Yan; Shannon, Mark A.

    2006-04-15

    The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed.

  17. Compensation of body shake errors in terahertz beam scanning single frequency holography for standoff personnel screening

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Chao; Sun, Zhao-Yang; Zhao, Yu; Wu, Shi-You; Fang, Guang-You

    2016-08-01

    In the terahertz (THz) band, the inherent shake of the human body may strongly impair the image quality of a beam scanning single frequency holography system for personnel screening. To realize accurate shake compensation in imaging processing, it is quite necessary to develop a high-precision measure system. However, in many cases, different parts of a human body may shake to different extents, resulting in greatly increasing the difficulty in conducting a reasonable measurement of body shake errors for image reconstruction. In this paper, a body shake error compensation algorithm based on the raw data is proposed. To analyze the effect of the body shake on the raw data, a model of echoed signal is rebuilt with considering both the beam scanning mode and the body shake. According to the rebuilt signal model, we derive the body shake error estimated method to compensate for the phase error. Simulation on the reconstruction of point targets with shake errors and proof-of-principle experiments on the human body in the 0.2-THz band are both performed to confirm the effectiveness of the body shake compensation algorithm proposed. Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123).

  18. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Sukhanov, A. Y.

    2015-11-01

    Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.

  19. Adaptive Airborne Doppler Wind Lidar Beam Scanning Patterns for Complex Terrain and Small Scale Organized Atmospheric Structure Observations

    NASA Astrophysics Data System (ADS)

    Emmitt, G.; O'Handley, C.; de Wekker, S. F.

    2008-12-01

    The conical scan is the traditional pattern used to obtain vertical profiles of the wind field with an airborne Doppler wind lidar. Nadir or zenith pointing scanning wedges are ideal for this type of scan. A bi-axis scanner has been operated on a Navy Twin Otter for more than 6 years and has been recently installed on a Navy P3 for use in a field experiment to study typhoons. The bi-axis scanner enables a broad range of scanning patterns. A subset of the possible patterns is critical to obtaining useful wind profiles in the presence of complex terrain or small (~ 100's of meters) organized atmospheric structures (rolls, updrafts, waves, etc). Several scanning strategies have been tested in flights over the Monterey Peninsula and within tropical cyclones. Combined with Google Earth (on-board) and satellite imagery overlays, new realtime adaptive scanning algorithms are being developed and tested. The results of these tests (both real and simulated) will be presented in the form of case studies.

  20. Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Su, Lin; Yang, Liming; Huang, Hanlu; Shen, Yibing

    2014-07-10

    This paper presents detailed analysis about the effects of spectral discrimination on the retrieval errors for atmospheric aerosol optical properties in high-spectral-resolution lidar (HSRL). To the best of our knowledge, this is the first study that focuses on this topic comprehensively, and our goal is to provide some heuristic guidelines for the design of the spectral discrimination filter in HSRL. We first introduce a theoretical model for retrieval error evaluation of an HSRL instrument with a general three-channel configuration. The model only takes the error sources related to the spectral discrimination parameters into account, while other error sources not associated with these focused parameters are excluded on purpose. Monte Carlo (MC) simulations are performed to validate the correctness of the theoretical model. Results from both the model and MC simulations agree very well, and they illustrate one important, although not well realized, fact: a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial to promote the retrieval accuracy. More specifically, we find that a large SDR can reduce retrieval errors conspicuously for atmosphere at low altitudes, while its effect on the retrieval for high altitudes is very limited. A large molecular transmittance contributes to good retrieval accuracy everywhere, particularly at high altitudes, where the signal-to-noise ratio is small. Since the molecular transmittance and SDR are often trade-offs, we suggest considering a suitable SDR for higher molecular transmittance instead of using unnecessarily high SDR when designing the spectral discrimination filter. These conclusions are expected to be applicable to most of the HSRL instruments, which have similar configurations as the one discussed here. PMID:25090057

  1. Estimation of vertical plant area density profiles in a rice canopy at different growth stages by high-resolution portable scanning lidar with a lightweight mirror

    NASA Astrophysics Data System (ADS)

    Hosoi, Fumiki; Omasa, Kenji

    2012-11-01

    We used a high-resolution portable scanning lidar together with a lightweight mirror and a voxel-based canopy profiling method to estimate the vertical plant area density (PAD) profile of a rice (Oryza sativa L. cv. Koshihikari) canopy at different growth stages. To improve the laser's penetration of the dense canopy, we used a mirror to change the direction of the laser beam from horizontal to vertical (0°) and off-vertical (30°). The estimates of PAD and plant area index (PAI) were more accurate at 30° than at 0°. The root-mean-square errors of PAD at each growth stage ranged from 1.04 to 3.33 m2 m-3 at 0° and from 0.42 to 2.36 m2 m-3 at 30°, and those across all growth stages averaged 1.79 m2 m-3 at 0° and 1.52 m2 m-3 at 30°. The absolute percent errors of PAI at each growth stage ranged from 1.8% to 66.1% at 0° and from 4.3% to 23.2% at 30°, and those across all growth stages averaged 30.4% at 0° and 14.8% at 30°. The degree of laser beam coverage of the canopy (expressed as index Ω) explained these errors. From the estimates of PAD at 30°, regressions between the areas of stems, leaves, and ears per unit ground area and actual dry weights gave standard errors of 7.9 g m-2 for ears and 12.2 g m-2 for stems and leaves.

  2. Turbulence in wind turbine wakes under different atmospheric conditions from static and scanning Doppler LiDARs

    NASA Astrophysics Data System (ADS)

    Kumer, Valerie; Reuder, Joachim

    2016-04-01

    Wake characteristics are of great importance for wind park performances and turbine loads. Wind tunnel experiments helped to validate wake model simulations under neutral atmospheric conditions. However, recent studies show strongest wake characteristics and power losses in stable atmospheric conditions. Considering all three occurring atmospheric conditions this study presents a turbulence analysis of wind turbine wake flows measured by static and scanning Doppler LiDARs at the coast of the Netherlands. We use data collected by three Windcubes v1, a scanning Windcube 100S and sonic anemometers during the Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W). Turbulence parameters such as Turbulence Intensity (TI) and turbulent kinetic energy (TKE) are retrieved from the collected raw data. Results show highest turbulence on the flanks of the wake where strong wind shear dominates. On average the spatial turbulence distribution becomes more homogeneous with conical areas of enhanced TI. Highest turbulence and strongest wind deficits occur during stable weather conditions. Despite the ongoing research on the reliability of turbulence retrievals of Doppler LiDAR data, the results are consistent with sonic anemometer measurements and show promising opportunities for a qualitative study of wake characteristics such as wake strength and wake peak frequencies.

  3. Separating Leaves from Trunks and Branches with Dual-Wavelength Terrestrial Lidar Scanning: Improving Canopy Structure Characterization in 3-D Space

    NASA Astrophysics Data System (ADS)

    Li, Z.; Strahler, A. H.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E.; Wang, Z.; Yang, X.; Yao, T.; Zhao, F.; Woodcock, C.; Jupp, D.; Schaefer, M.; Culvenor, D.; Newnham, G.; Lowell, J.

    2013-12-01

    Leaf area index (LAI) is an important parameter characterizing forest structure, used in models regulating the exchange of carbon, water and energy between the land and the atmosphere. However, optical methods in common use cannot separate leaf area from the area of upper trunks and branches, and thus retrieve only plant area index (PAI), which is adjusted to LAI using an appropriate empirical woody-to-total index. An additional problem is that the angular distributions of leaf normals and normals to woody surfaces are quite different, and thus leafy and woody components project quite different areas with varying zenith angle of view. This effect also causes error in LAI retrieval using optical methods. Full-waveform scans at both the NIR (1064 nm) and SWIR (1548 nm) wavelengths from the new terrestrial Lidar, the Dual-Wavelength Echidna Lidar (DWEL), which pulses in both wavelengths simultaneously, easily separate returns of leaves from trunks and branches in 3-D space. In DWEL scans collected at two different forest sites, Sierra National Forest in June 2013 and Brisbane Karawatha Forest Park in July 2013, the power returned from leaves is similar to power returned from trunks/branches at the NIR wavelength, whereas the power returned from leaves is much lower (only about half as large) at the SWIR wavelength. At the SWIR wavelength, the leaf scattering is strongly attenuated by liquid water absorption. Normalized difference index (NDI) images from the waveform mean intensity at the two wavelengths demonstrate a clear contrast between leaves and trunks/branches. The attached image shows NDI from a part of a scan of an open red fir stand in the Sierra National Forest. Leaves appear light, while other objects are darker.Dual-wavelength point clouds generated from the full waveform data show weaker returns from leaves than from trunks/branches. A simple threshold classification of the NDI value of each scattering point readily separates leaves from trunks and

  4. Incorporation of 3-D Scanning Lidar Data into Google Earth for Real-time Air Pollution Observation

    NASA Astrophysics Data System (ADS)

    Chiang, C.; Nee, J.; Das, S.; Sun, S.; Hsu, Y.; Chiang, H.; Chen, S.; Lin, P.; Chu, J.; Su, C.; Lee, W.; Su, L.; Chen, C.

    2011-12-01

    3-D Differential Absorption Scanning Lidar (DIASL) system has been designed with small size, light weight, and suitable for installation in various vehicles and places for monitoring of air pollutants and displays a detailed real-time temporal and spatial variability of trace gases via the Google Earth. The fast scanning techniques and visual information can rapidly identify the locations and sources of the polluted gases and assess the most affected areas. It is helpful for Environmental Protection Agency (EPA) to protect the people's health and abate the air pollution as quickly as possible. The distributions of the atmospheric pollutants and their relationship with local metrological parameters measured with ground based instruments will also be discussed. Details will be presented in the upcoming symposium.

  5. Scanning pupil approach to aspheric surface slope error tolerancing in head-up display optics

    NASA Astrophysics Data System (ADS)

    Sivokon, V. P.

    2015-09-01

    We present a novel approach to tolerancing slope errors of aspheric surfaces in relay optics of typical avionics head-up displays (HUD). In these systems, a beamlet entering the pilot eye occupies only a tiny fraction of HUD entrance pupil/eyebox with a typical diameter of 125mm. Consequently the beam footprint on any HUD optical surface is a small fraction of its clear aperture. This presents challenges to HUD tolerancing which is typically based on parallax (angular difference in line of sight between left and right eyes) analysis. Aspheric surfaces manufactured by sub-aperture grinding/polishing techniques add another source of error - surface slope error. This type of error not only degrades image quality of observed HUD symbology but also leads to its "waviness" and "floating" especially noticeable when a pilot moves his head within the HUD eyebox. The suggested approach allows aspheric surface slope error tolerancing that ensures an acceptable level of symbology "waviness". A narrow beamlet is traced from a pilot eye position backwards through the HUD optics until it hits the light source. Due to the small beamlet size, slope error of the aspheric surface acts primarily as an overall tilt/wedge that deviates the beam and causes it to shift. The slope error is acceptable when this shift is not resolved by a pilot eye. The beamlet is scanned over entire eyebox and field of view and the slope error tolerance is established for several zones in the aspheric surface clear aperture. The procedure is then repeated for each aspheric surface.

  6. Development and Testing of a Scanning Differential Absorption Lidar For Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Soukup, B.; Johnson, W.; Repasky, K. S.; Carlsten, J. L.

    2013-12-01

    A scanning differential absorption lidar (DIAL) instrument for carbon sequestration site monitoring is under development and testing at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the on-line absorption wavelength at 1571.4067 nm and the second operating at the off-line wavelength at 1571.2585 nm. Two in-line fiber optic switches are used to switch between on-line and off-line operation. After the fiber optic switches, an acousto-optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 J and a pulse repetition frequency of 15 kHz. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a fiber coupled photo-multiplier tube (PMT) module operating in the photon counting mode. The PMT has a 3% quantum efficiency, a dark count rate of 90 kHz, and a maximum count rate of 1 MHz. Recently, a fiber coupled avalanche photodiode (APD) operating in the geiger mode has been incorporated into the DIAL receiver. The APD has a quantum efficiency of 10%, a dark count rate of 10 kHz, and a maximum count rate of 1 MHz and provides a much larger dynamic range than the PMT. Both the PMT and APD provide TTL logic pulses that are monitored using a multichannel scaler card used to count the return photons as a function of time of flight and are thus interchangeable. The DIAL instrument was developed at the 1.571 m wavelength to take advantage of commercial-off-the-shelf components. The instrument is operated using a custom Labview program that switches to the DMLD operating at the on-line wavelength, locks this laser to a user defined wavelength setting, and collects return signals for a user defined time. The control program switches to the DMLD operating at the off

  7. Characterizing active volcanic processes at Kilauea volcano using LiDAR scanning

    NASA Astrophysics Data System (ADS)

    LeWinter, A. L.; Finnegan, D. C.; Patrick, M. R.; Anderson, S. W.; Orr, T. R.

    2012-12-01

    Active craters and lava lakes evolve in response to a variety of volcanic processes. Quantifying those changes can be difficult or even impossible, for safety reasons, due to the technical limitations of sensors that require a minimum standoff distance. In recent years, advancements in ground-based Light Detection and Ranging (LiDAR) scanners and accessibility to these systems have enhanced our ability to capture data in a diversity of volcanic settings at the highest spatial and temporal resolutions yet seen. Moreover, advancements in full-waveform digitization have significantly improved the ability to acquire data in environments where ash, steam, and sulfur dioxide emissions have historically hampered efforts. Kilauea's ongoing summit eruption, which began in March 2008, has been characterized in part by the evolution of its vent into a 160-meter diameter collapse crater holding an active lava lake. This process has been documented in detail by field and webcam observations, but has not been accurately quantified. Our research focuses on acquiring repeat, high-resolution full-waveform LiDAR data throughout 2012 to monitor changes in the geometry of Kilauea's active lava lake and the crater to which it is confined. We collected LiDAR data in February and July 2012, with plans for an additional survey in October 2012. Our results show changes in the shape of the vent walls and the shape and level of the confined lava lake. Specifically, the LiDAR data has revealed 1) changes in the lava lake level, corresponding to tiltmeter observations of pressure fluctuations in the summit magma reservoir, 2) enlargement of the vent cavity, due to frequent rock falls, and 3) modifications to the lake size and surrounding lava ledges due to competing processes of accretion and collapse. The rapid acquisition of repeat, high-resolution topographic data enables researchers to more accurately characterize shape and volume changes involved in a range of eruptive systems, while

  8. Applicability of terrestrial LIDAR scanning for scientific studies in Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert

    2006-01-01

    In November 2004, an experimental high flow release of water from Glen Canyon Dam into the Colorado River through Grand Canyon National Park in Arizona was conducted. The goal of the experiment was to evaluate the use of high flow events as a management tool for the preservation and restoration of natural resources in the Colorado River below Glen Canyon Dam. The U.S. Geological Survey (USGS), Grand Canyon Monitoring and Research Center (GCMRC) located in Flagstaff, Arizona performed oversight of all aspects of scientific data collection including suspended sediment transport studies, biological population variations, effects on archaeological resources, and morphological studies of river sand bars. As part of the experimental high flow studies, the USGS Coastal and Marine Geology (CMG) team was invited to participate to test the effectiveness of utilizing terrestrial LIDAR technology for gathering morphological data on sand bars, biological habitats, and archaeological sites. The CMG is equipped with a terrestrial LIDAR unit and has used the technique in a variety of terrains to gather high-resolution morphological data. A three-member team from CMG participated in the experiment, joining a GCMRC team on a river trip from November 18 to November 21, 2004. This report begins with a brief description of the LIDAR technique and then outlines the data collected, processing required, and results for three study areas located within the Grand Canyon. Specifically, studies were performed at the Mile 30 Sand Bar, at Vaseys Paradise (Mile 32), and at the Mile 66 Palisades Archaeological Site. Conclusions and recommendations for utilizing terrestrial LIDAR for future studies at each of these sites are also included.

  9. Using Terrestrial Laser Scanning and LIDAR Data for Photo-Realistic Visualisation of Climate Impacts at Heritage Sites

    NASA Astrophysics Data System (ADS)

    Nettley, A.; Anderson, K.; De Silvey, C.; Caseldine, C.

    2011-09-01

    Remote sensing technologies such as terrestrial laser scanning (TLS) and light detection and ranging (LIDAR) can now provide accurate spatial data for describing topographic patterns in landscapes and mapping the fine geometric detail of complex structures. Interdisciplinary studies using such data for characterising heritage sites are now widespread, but it is less common for data derived from these technologies to be used in an operational setting to 'engage' local people with the idea of future change. Three- dimensional landscape models using TLS and LIDAR are a powerful way of communicating climate change to lay audiences on a local level and the use of multi-scale spatial data can help to show the anticipated impacts of climate change at heritage sites. The aim of this paper is to present the results of a project designed to produce a photorealistic geospatial model of the historic quayside at Cotehele Quay, Cornwall, UK. Our central aim was to generate a spatially accurate and visually realistic three-dimensional model of the site for use in local engagement strategies. TLS and LIDAR data were collected and processed to produce a three-dimensional model. The key image processing stages included: registration to a national co-ordinate system, meshing using 3D reshaper and visualisation creation in 3DS Max. The resulting model will permit spatial consideration of the impact of management strategies at the site. The over-arching application of this method beyond the study site will provide a platform for discussion that addresses the needs of site managers and the expectations of local communities.

  10. Fusion of Remote Sensing Methods, UAV Photogrammetry and LiDAR Scanning products for monitoring fluvial dynamics

    NASA Astrophysics Data System (ADS)

    Lendzioch, Theodora; Langhammer, Jakub; Hartvich, Filip

    2015-04-01

    Fusion of remote sensing data is a common and rapidly developing discipline, which combines data from multiple sources with different spatial and spectral resolution, from satellite sensors, aircraft and ground platforms. Fusion data contains more detailed information than each of the source and enhances the interpretation performance and accuracy of the source data and produces a high-quality visualisation of the final data. Especially, in fluvial geomorphology it is essential to get valuable images in sub-meter resolution to obtain high quality 2D and 3D information for a detailed identification, extraction and description of channel features of different river regimes and to perform a rapid mapping of changes in river topography. In order to design, test and evaluate a new approach for detection of river morphology, we combine different research techniques from remote sensing products to drone-based photogrammetry and LiDAR products (aerial LiDAR Scanner and TLS). Topographic information (e.g. changes in river channel morphology, surface roughness, evaluation of floodplain inundation, mapping gravel bars and slope characteristics) will be extracted either from one single layer or from combined layers in accordance to detect fluvial topographic changes before and after flood events. Besides statistical approaches for predictive geomorphological mapping and the determination of errors and uncertainties of the data, we will also provide 3D modelling of small fluvial features.

  11. A Novel Concept for Observing Land-Surface-Atmosphere Feedback Based on a Synergy of Scanning Lidar Systems

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Turner, D. D.; Mauder, M.; Behrendt, A.; Ingwersen, J.; Streck, T.

    2015-12-01

    Improved simulations of land-surface-atmosphere interaction are fundamental for improving weather forecast and climate models. This requires observations of 2D fields of surface fluxes and the 3D structure of the atmospheric boundary layer simultaneously. A novel strategy is introduced for studying land-surface exchange and entrainment processes in the convective boundary layer (CBL) over complex terrain by means of a new generation of remote sensing systems. The sensor synergy consists of scanning Doppler lidar (DL), water-vapor differential absorption lidar (WVDIAL), and temperature rotational Raman lidar (TRRL) systems supported by surface in-situ measurements. The 2D measurements of surface fluxes are realized by the operation of a DL, a WVDIAL, and a TRRL along the same line-of-sight (LOS) in a range-height-indicator (RHI) mode whereas the other DL is performing a series of cross track RHI scans along this LOS. This new setup enables us to determine the friction velocity as well as surface sensible and latent heat fluxes by closing the complete set of Monin-Obukhov similarity relationships under a variety of surface layer stability conditions and different land cover and soil properties. As this closure is performed at all DL crossing points along the LOS, this is a strategy towards a 2D mapping of surface fluxes entirely based on remote sensing systems. Further details are presented at the conference. The second configuration is the simultaneous vertical profiling of vertical wind, humidity and temperature by DL, WVDIAL and TRRL so that latent heat and sensible heat flux profiles as well as a variety of different turbulent moments can be measured in the CBL. Consequently, by alternating of RHI scanning and vertical pointing modes, entrainment fluxes and surface fluxes can be measured almost simultaneously. This novel strategy has been realized for the first time during the Surface Atmospheric Boundary Layer Exchange (SABLE) campaign in the Kraichgau region

  12. Estimation of spatially distributed latent energy flux over complex terrain using a scanning water-vapor Raman lidar

    SciTech Connect

    Cooper, D.I.; Eichinger, W.; Archuleta, J.; Cottingame, W.; Osborne, M.; Tellier, L.

    1995-09-01

    Evapotranspiration is one of the critical variables in both water and energy balance models of the hydrological system. The hydrologic system is driven by the soil-plant-atmosphere continuum, and as such is a spatially distributed process. Traditional techniques rely on point sensors to collect information that is then averaged over a region. The assumptions involved in spatially average point data is of limited value (1) because of limited sensors in the arrays, (2) the inability to extend and interpret the Measured scalars and estimated fluxes at a point over large areas in complex terrain, and (3) the limited understanding of the relationship between point measurements of spatial processes. Remote sensing technology offers the ability to collect detailed spatially distributed data. However, the Los Alamos National Laboratory`s volume-imaging, scanning water-vapor Raman lidar has been shown to be able to estimate the latent energy flux at a point. The extension of this capability to larger scales over complex terrain represents a step forward. This abstract Outlines the techniques used to estimate the spatially resolved latent energy flux. The following sections describe the site, model, data acquired, and lidar estimated latent energy ``map``.

  13. On the Potential Implementation of Ground-based Scanning & Imaging LIDARs on Future Surface Planetary Exploration Missions

    NASA Astrophysics Data System (ADS)

    Singhania, A.; Fernandez, J. C.

    2006-12-01

    To this date Landers and Rovers used in planetary exploration have relied on stereoscopic camera systems to provide 3D information used to perform both scientific imaging and navigation tasks. Despite being highly reliable, stereoscopic systems have several limitations in the creation of accurate 3D models. Light Detection and Ranging (LIDAR) systems have evolved from simple ranging devices used as altimeters to complex mapping systems capable of developing highly accurate 3D models. Data collected using a COTS Scanning and Imaging LIDAR (SIL) under simulated planetary surface conditions is presented and evaluated as an alternative to the traditional stereoscopic imaging systems, to provide navigation and scientific data for future planetary surface missions. SIL data set includes 3D spatial information (XYZ coordinates), laser return intensity and mapped to each laser point, the RGB pixel value obtained from the imaging sensor. The main advantage of SIL over stereo cameras is that it establishes a precise Cartesian coordinate system which enables the scientific and imaging data to be integrated into a single spatially coherent data set. A complete description of the pros and cons between stereo imagers and SIL is given.

  14. Statistical Characterization of Environmental Error Sources Affecting Electronically Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Walker, Eric L.; Everhart, Joel L.

    2006-01-01

    Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure [ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.

  15. Statistical Characterization of Environmental Error Sources Affecting Electronically Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Walker, Eric L.; Everhart, Joel L.

    2006-01-01

    Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure (ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.

  16. Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization

    NASA Astrophysics Data System (ADS)

    Pérez-Ramírez, D.; Whiteman, D. N.; Veselovskii, I.; Kolgotin, A.; Korenskiy, M.; Alados-Arboledas, L.

    2013-11-01

    In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.

  17. Effects of Systematic and Random Errors on the Retrieval of Particle Microphysical Properties from Multiwavelength Lidar Measurements Using Inversion with Regularization

    NASA Technical Reports Server (NTRS)

    Ramirez, Daniel Perez; Whiteman, David N.; Veselovskii, Igor; Kolgotin, Alexei; Korenskiy, Michael; Alados-Arboledas, Lucas

    2013-01-01

    In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.

  18. 3D Scan of Ornamental Column (huabiao) Using Terrestrial LiDAR and Hand-held Imager

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Wang, C.; Xi, X.

    2015-08-01

    In ancient China, Huabiao was a type of ornamental column used to decorate important buildings. We carried out 3D scan of a Huabiao located in Peking University, China. This Huabiao was built no later than 1742. It is carved by white marble, 8 meters in height. Clouds and various postures of dragons are carved on its body. Two instruments were used to acquire the point cloud of this Huabiao, a terrestrial LiDAR (Riegl VZ-1000) and a hand-held imager (Mantis Vision F5). In this paper, the details of the experiment were described, including the differences between these two instruments, such as working principle, spatial resolution, accuracy, instrument dimension and working flow. The point clouds obtained respectively by these two instruments were compared, and the registered point cloud of Huabiao was also presented. These should be of interest and helpful for the research communities of archaeology and heritage.

  19. Evaluation of vegetation fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2013-08-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterize the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently concern by wildfire with low dense shrubs. Using Lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterized by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycenter technique. The smoke plume displacement was determined using a digital video camera coupled with the Lidar. The simulation was performed using a meso-scale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire) taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycenter was systematically below the barycenter derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosols particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  20. Evaluation of wildland fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2014-03-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterise the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently subject to wildfire with low dense shrubs. Using lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterised by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycentre technique. The smoke plume displacement was determined using a digital video camera coupled with the lidar. The simulation was performed using a mesoscale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire), taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycentre was systematically below the barycentre derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosol particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  1. Optimization of legacy lidar data sets for measuring near-field earthquake displacements

    NASA Astrophysics Data System (ADS)

    Glennie, Craig L.; Hinojosa-Corona, Alejandro; Nissen, Edwin; Kusari, Arpan; Oskin, Michael E.; Arrowsmith, J. Ramon; Borsa, Adrian

    2014-05-01

    Airborne lidar (light detection and ranging) topography, acquired before and after an earthquake, can provide an estimate of the coseismic surface displacement field by differencing the preevent and postevent lidar point clouds. However, estimated displacements can be contaminated by the presence of large systematic errors in either of the point clouds. We present three-dimensional displacements obtained by differencing airborne lidar point clouds collected before and after the El Mayor-Cucapah earthquake, a Mw 7.2 earthquake that occurred in 2010. The original surface displacement estimates contained large, periodic artifacts caused by systematic errors in the preevent lidar data. Reprocessing the preevent data, detailed herein, removed a majority of these systematic errors that were largely due to misalignment between the scanning mirror and the outgoing laser beam. The methodology presented can be applied to other legacy airborne laser scanning data sets in order to improve change estimates from temporally spaced lidar acquisitions.

  2. Variations of the Wake Height over the Bolund Escarpment Measured by a Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lange, Julia; Mann, Jakob; Angelou, Nikolas; Berg, Jacob; Sjöholm, Mikael; Mikkelsen, Torben

    2016-04-01

    The wake zone behind the escarpment of the Bolund peninsula in the Roskilde Fjord, Denmark, has been investigated with the help of a continuous-wave Doppler lidar. The instrument measures the line-of-sight wind speed 390 times per second in highly resolved 7-m tall profiles by rapidly changing the focus distance and beam direction. The profiles reveal the detailed and rapidly changing structure of the wake induced by the Bolund escarpment. The wake grows with distance from the escarpment, with the wake height depending strongly on the wind direction, such that the minimum height appears when the flow is perpendicular to the escarpment. The wake increases by 10-70 % when the wind direction deviates ± 15° from perpendicular depending on the distance to the edge and to a lesser degree on the method by which the wake height is determined. This finding is supported by a comparison with in situ measurements acquired on the Bolund peninsula.

  3. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  4. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror.

    PubMed

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  5. Compact 3D lidar based on optically coupled horizontal and vertical scanning mechanism for the autonomous navigation of robots

    NASA Astrophysics Data System (ADS)

    Lee, Min-Gu; Baeg, Seung-Ho; Lee, Ki-Min; Lee, Hae-Seok; Baeg, Moon-Hong; Park, Jong-Ok; Kim, Hong-Ki

    2011-06-01

    The purpose of this research is to develop a new 3D LIDAR sensor, named KIDAR-B25, for measuring 3D image information with high range accuracy, high speed and compact size. To measure a distance to the target object, we developed a range measurement unit, which is implemented by the direct Time-Of-Flight (TOF) method using TDC chip, a pulsed laser transmitter as an illumination source (pulse width: 10 ns, wavelength: 905 nm, repetition rate: 30kHz, peak power: 20W), and an Si APD receiver, which has high sensitivity and wide bandwidth. Also, we devised a horizontal and vertical scanning mechanism, climbing in a spiral and coupled with the laser optical path. Besides, control electronics such as the motor controller, the signal processing unit, the power distributor and so on, are developed and integrated in a compact assembly. The key point of the 3D LIDAR design proposed in this paper is to use the compact scanning mechanism, which is coupled with optical module horizontally and vertically. This KIDAR-B25 has the same beam propagation axis for emitting pulse laser and receiving reflected one with no optical interference each other. The scanning performance of the KIDAR-B25 has proven with the stable operation up to 20Hz (vertical), 40Hz (horizontal) and the time is about 1.7s to reach the maximum speed. The range of vertical plane can be available up to +/-10 degree FOV (Field Of View) with a 0.25 degree angular resolution. The whole horizontal plane (360 degree) can be also available with 0.125 degree angular resolution. Since the KIDAR-B25 sensor has been planned and developed to be used in mobile robots for navigation, we conducted an outdoor test for evaluating its performance. The experimental results show that the captured 3D imaging data can be usefully applicable to the navigation of the robot for detecting and avoiding the moving objects with real time.

  6. Analysis of open-loop conical scan pointing error and variance estimators

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.

    1993-01-01

    General pointing error and variance estimators for an open-loop conical scan (conscan) system are derived and analyzed. The conscan algorithm is modeled as a weighted least-squares estimator whose inputs are samples of receiver carrier power and its associated measurement uncertainty. When the assumptions of constant measurement noise and zero pointing error estimation are applied, the variance equation is then strictly a function of the carrier power to uncertainty ratio and the operator selectable radius and period input to the algorithm. The performance equation is applied to a 34-m mirror-based beam-waveguide conscan system interfaced with the Block V Receiver Subsystem tracking a Ka-band (32-GHz) downlink. It is shown that for a carrier-to-noise power ratio greater than or equal to 30 dB-Hz, the conscan period for Ka-band operation may be chosen well below the current DSN minimum of 32 sec. The analysis presented forms the basis of future conscan work in both research and development as well as for the upcoming DSN antenna controller upgrade for the new DSS-24 34-m beam-waveguide antenna.

  7. Evaluating point cloud accuracy of static three-dimensional laser scanning based on point cloud error ellipsoid model

    NASA Astrophysics Data System (ADS)

    Chen, Xijiang; Hua, Xianghong; Zhang, Guang; Wu, Hao; Xuan, Wei; Li, Moxiao

    2015-01-01

    Evaluation of static three-dimensional (3-D) laser scanning point cloud accuracy has become a topical research issue. Point cloud accuracy is typically estimated by comparing terrestrial laser scanning data related to a finite number of check point coordinates against those obtained by an independent source of higher accuracy. These methods can only estimate the point accuracy but not the point cloud accuracy, which is influenced by the positional error and sampling interval. It is proposed that the point cloud error ellipsoid is favorable for inspecting the point cloud accuracy, which is determined by the individual point error ellipsoid volume. The kernel of this method is the computation of the point cloud error ellipsoid volume and the determination of the functional relationship between the error ellipsoid and accuracy. The proposed point cloud accuracy evaluation method is particularly suited for small sampling intervals when there exists an intersection of two error ellipsoids, and is suited not only for planar but also for nonplanar target surfaces. The performance of the proposed method (PM) is verified using both planar and nonplanar board point clouds. The results demonstrate that the proposed evaluation method significantly outperforms the existing methods when the target surface is nonplanar or there exists an intersection of two error ellipsoids. The PM therefore has the potential for improving the reliability of point cloud digital elevation models and static 3-D laser scanning-based deformation monitoring.

  8. On the instrumental characterization of a 3-λ scanning lidar to monitor industrial flames and its application for retrieving optical and microphysical properties

    NASA Astrophysics Data System (ADS)

    Guerrero-Rascado, Juan Luis; da Costa, Renata; Esteban Bedoya, Andrés; Guardani, Roberto; Alados-Arboledas, Lucas; Efrain Bastidas, Álvaro; Landulfo, Eduardo

    2015-04-01

    The emission of pollutants in megacities and industrial areas can have strong impact, not only from an environmental point of view, but also for human health. Cubatão (23° 53' S, 46° 26' W, 10 m asl) has been one of the most industrialized city in Brazil (located at São Paulo state coast) during the last decades. This work deals with the recent advances made on a 3-λ scanning lidar placed at this industrial region. Special attention has been paid to the characterization of the electronic performance of this lidar system. For this goal, the quality assurance tests, regularly applied in well-established lidar networks such as LALINET [Guerrero-Rascado et al., 2014] and EARLINET [Pappalardo et al. 2014], were applied to the Cubatão scanning lidar in order to improve the knowledge of its performing itself and to design protocols for correcting lidar signal for undesirable instrumental effects. The application of the results derived from these quality assurance tests together with the state-of-the-art methodologies to map the particle optical and microphysical properties inside industrial flares demonstrate the potential of this lidar for the study and measurement of industrial emissions. References: J. L. Guerrero-Rascado, E. Landulfo, J. C. Antuña, H. M. J. Barbosa, B. Barja, A. E. Bastidas, A. E. Bedoya, R. da Costa, R. Estevan, R. N. Forno, D. A. Gouveia, C. Jiménez, E. G. Larroza, F. J. S. Lopes, E. Montilla-Rosero, G. A. Moreira, W. M. Nakaema, D. Nisperuza, L. Otero, J. V. Pallotta, S. Papandrea, E. Pawelko, E. J. Quel, P. Ristori, P. F. Rodrigues, J. Salvador, M. F. Sánchez, and A. Silva, "Towards an instrumental harmonization in the framework of LAINET: dataset of technical specifications", Proceedings of SPIE 2014, vol. 9246, 92460O-1 -- 92460O-14, doi: 10.1117/12.2066873 (2014) G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D'Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L

  9. An error-dependent model of instrument-scanning behavior in commercial airline pilots. Ph.D. Thesis - May 1983

    NASA Technical Reports Server (NTRS)

    Jones, D. H.

    1985-01-01

    A new flexible model of pilot instrument scanning behavior is presented which assumes that the pilot uses a set of deterministic scanning patterns on the pilot's perception of error in the state of the aircraft, and the pilot's knowledge of the interactive nature of the aircraft's systems. Statistical analyses revealed that a three stage Markov process composed of the pilot's three predicted lookpoints (LP), occurring 1/30, 2/30, and 3/30 of a second prior to each LP, accurately modelled the scanning behavior of 14 commercial airline pilots while flying steep turn maneuvers in a Boeing 737 flight simulator. The modelled scanning data for each pilot were not statistically different from the observed scanning data in comparisons of mean dwell time, entropy, and entropy rate. These findings represent the first direct evidence that pilots are using deterministic scanning patterns during instrument flight. The results are interpreted as direct support for the error dependent model and suggestions are made for further research that could allow for identification of the specific scanning patterns suggested by the model.

  10. Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm.

    PubMed

    Sicard, Michaël; Comerón, Adolfo; Rocadenbosch, Francisco; Rodríguez, Alejandro; Muñoz, Constantino

    2009-01-10

    The elastic, two-component algorithm is the most common inversion method for retrieving the aerosol backscatter coefficient from ground- or space-based backscatter lidar systems. A quasi-analytical formulation of the statistical error associated to the aerosol backscatter coefficient caused by the use of real, noise-corrupted lidar signals in the two-component algorithm is presented. The error expression depends on the signal-to-noise ratio along the inversion path and takes into account "instantaneous" effects, the effect of the signal-to-noise ratio at the range where the aerosol backscatter coefficient is being computed, as well as "memory" effects, namely, both the effect of the signal-to-noise ratio in the cell where the inversion is started and the cumulative effect of the noise between that cell and the actual cell where the aerosol backscatter coefficient is evaluated. An example is shown to illustrate how the "instantaneous" effect is reduced when averaging the noise-contaminated signal over a number of cells around the range where the inversion is started. PMID:19137026

  11. Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR data

    USGS Publications Warehouse

    Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.

    2015-01-01

    Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.

  12. Effect of radiometric errors on accuracy of temperature-profile measurement by spectral scanning using absorption-emission pyrometry

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1972-01-01

    The spectral-scanning method may be used to determine the temperature profile of a jet- or rocket-engine exhaust stream by measurements of gas radiation and transmittance, at two or more wavelengths. A single, fixed line of sight is used, using immobile radiators outside of the gas stream, and there is no interference with the flow. At least two sets of measurements are made, each set consisting of the conventional three radiometric measurements of absorption-emission pyrometry, but each set is taken over a different spectral interval that gives different weight to the radiation from a different portion of the optical path. Thereby, discrimination is obtained with respect to location along the path. A given radiometric error causes an error in computed temperatures. The ratio between temperature error and radiometric error depends on profile shape, path length, temperature level, and strength of line absorption, and the absorption coefficient and its temperature dependency. These influence the choice of wavelengths, for any given gas. Conditions for minimum temperature error are derived. Numerical results are presented for a two-wavelength measurement on a family of profiles that may be expected in a practical case of hydrogen-oxygen combustion. Under favorable conditions, the fractional error in temperature approximates the fractional error in radiant-flux measurement.

  13. 3-D Real Time Lidar scanning measurements to assess and determine the impact of aerosol sources in highly densely-populated cities in south France

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Sauvage, L.; Loaec, S.; Guinot, B.; Fofana, M.

    2009-12-01

    EZ Lidar, produced by LEOSPHERE, was deployed in several measurement campaigns from November 2008 to July 2009 in densely-populated cities of south of France to assess the impact of tunnels, highways, airports, industries and other pollution sources on aerosol emissions. PM2.5 and PM1 are particularly harmful on the population. The study and the fully characterization of pollution sources is then crucial to reduce these emission to improve air quality in large metropolitan areas. EZ Lidar is capable to produce 3-D scan almost instantaneously. The backscattered power is then range corrected and transformed in false colors from blue to red that are proportional to the aerosol density (Blue low aerosol density, red high aerosol density). Each scan can be considered as a frame, and it is superimposed to the site satellite map. The temporal sequence of the frames fully characterize the pollution sources. The paper shows the 3-D scan analysis over the selected sites and the individuation of principal emission sources and their temporal evolution.

  14. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three

  15. A parametric study of aliasing error for a narrow field of view scanning radiometer. [for the Earth Radiation Budget experiment

    NASA Technical Reports Server (NTRS)

    Halyo, N.; Stallman, S. T.

    1980-01-01

    Starting from the general measurement equation, it is shown that a NFOV scanner can be approximated by a spatially invariant system whose point spread function depends on the detector shape and angular characteristics and electrical filter transfer function for given patches at the top of the atmosphere. The radiometer is modeled by a detector, electrical filter, analog to digital converter followed by a reconstruction filter. The errors introduced by aliasing and blurring into a reconstruction of the input radiant exitance are modeled and analyzed for various detector shapes, sampling intervals, electrical filters and scan types. Quantitative results on the errors introduced are presented showing the various tradeoffs between design parameters. The results indicate that proper selection of detector shape coupled with electrical filter can reduce aliasing errors significantly.

  16. Frequency Agile Tm,Ho:YLF Local Oscillator for a Scanning Doppler wind Lidar in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Hemmati, Hamid; Esproles, Carlos

    1997-01-01

    A compact cw Tm,Ho:YLF laser with single-mode tunability over +/-4 GHz has been developed into a modular unit containing an isolator and photomixer for offset tuning of the LO from a master oscillator which controls the frequency of a Doppler lidar transmitter. This and an alternative diode laser LO will be described.

  17. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  18. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  19. A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Linnemann, J. T.; Tollefson, K.; Abeysekara, A. U.; Bhat, P. N.; Sonbas, E.; Gehrels, N.

    2011-01-01

    We investigate the feasibility of implementing a system that will coordinate ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The aim of the system is to localize GBM detected GRBs and facilitate multi-wavelength follow-up from space and ground. This system will optimize the observing locations in the GBM EC based on individual telescope location, Field of View (FoV) and sensitivity. The proposed system will coordinate GBM EC scanning by professional as well as amateur astronomers around the world. The results of a Monte Carlo simulation to investigate the feasibility of the project are presented.

  20. SCAN+

    Energy Science and Technology Software Center (ESTSC)

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  1. Characterization of sub-cloud vertical velocity distributions and precipitation-driven outflow dynamics using a ship-based, scanning Doppler lidar during VOCALS-Rex

    NASA Astrophysics Data System (ADS)

    Brewer, A.; Feingold, G.; Tucker, S. C.; Covert, D. S.; Hardesty, R.

    2010-12-01

    During the VOCALS Regional Experiment NOAA's High Resolution Doppler Lidar (HRDL) operated from the RV Ronald H. Brown and made continuous measurements of sub-cloud horizontal and vertical wind speed and aerosol backscatter signal strength. We will present averaged profiles of vertical velocity distributions and turbulence parameters, stratified by a range of conditions including diurnal variation, precipitation, and distance from shore. The results point to a strong diurnal dependence in the strength of turbulence with nighttime conditions exhibiting stronger subcloud variance. Skewness shows less diurnal sensitivity with a trend towards more negative skewness near cloud base. Combining HRDL’s scanning horizontal wind speed measurements with other ship based in-situ and remote sensing measurements, we investigate the dynamics of precipitation-driven outflows and their impact on surface thermodynamic and aerosol properties. Using a sample of over 150 airmass transitions over the course of the 5 week deployment, we observed that warmer outflow air is typically drier, has less aerosol scattering and tends to have higher ozone concentrations (indicating the transport of air from above the boundary layer top). Transitions to cooler air are generally moister, have more aerosol scattering and show no significant change in ozone concentration. We will present animations of combined lidar/radar/GOES imagery that were used to facilitate visualization and interpretation of the dynamics of the outflows.

  2. Accuracy of Lidar Measurements of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1986-01-01

    Report reviews sources of systematic error in laser radar (lidar) measurements of particles in atmosphere. Report applies particularly to stationary pulsed carbon dioxide lidars of type used to measure backscatter from aerosols in troposphere. Provides information for calibrating such systems accurately and consistently and interpreting their data correctly. Also useful in calibrating mobile and airborne lidars, lidars operating at wavelengths other than those of carbon dioxide lasers, and continuouswave lidars.

  3. Experimental validation of a thermal model used to predict the image placement error of a scanned EUVL reticle

    NASA Astrophysics Data System (ADS)

    Gianoulakis, Steven E.; Craig, Marcus J.; Ray-Chaudhuri, Avijit K.

    2000-07-01

    Lithographic masks must maintain dimensional stability during exposure in a lithographic tool to minimize subsequent overlay errors. In extreme ultraviolet lithography (EUVL), multilayer coatings are deposited on a mask substrate to make the mask surface reflective at EUV wavelengths. About 40% of the incident EUV light is absorbed by the multilayer coating which leads to a temperature rise. The choice of mask substrate material and absorber affects the magnitude of thermal distortion. Finite element modeling has been used to investigate potential mask materials and to explore the efficiency of various thermal management strategies. An experimental program was conducted to validate the thermal models used to predict the performance of EUV reticles. The experiments closely resembled actual conditions expected within the EUV tool. A reticle instrumented with temperature sensors was mounted on a scanning stage with an electrostatic chuck. An actively cooled isolation plate was mounted in front of the reticle for thermal management. Experimental power levels at the reticle corresponding to production throughput levels were utilized in the experiments. Both silicon and low expansion glass reticles were tested. Temperatures were measured a several locations on the reticle and tracked over time as the illuminated reticle was scanned. The experimental results coupled with the predictive modeling capability validates that the assertion that the use of a low expansion glass will satisfy image placement error requirements down to the 30 nm lithographic node.

  4. Target error for image-to-physical space registration: preliminary clinical results using laser range scanning

    NASA Astrophysics Data System (ADS)

    Cao, Aize; Miga, Michael I.; Dumpuri, P.; Ding, S.; Dawant, B. M.; Thompson, R. C.

    2007-03-01

    In this paper, preliminary results from an image-to-physical space registration platform are presented. The current platform employs traditional and novel methods of registration which use a variety of data sources to include: traditional synthetic skin-fiducial point-based registration, surface registration based on facial contours, brain feature point-based registration, brain vessel-to-vessel registration, and a more comprehensive cortical surface registration method that utilizes both geometric and intensity information from both the image volume and physical patient. The intraoperative face and cortical surfaces were digitized using a laser range scanner (LRS) capable of producing highly resolved textured point clouds. In two in vivo cases, a series of registrations were performed using these techniques and compared within the context of a true target error. One of the advantages of using a textured point cloud data stream is that true targets among the physical cortical surface and the preoperative image volume can be identified and used to assess image-to-physical registration methods. The results suggest that iterative closest point (ICP) method for intraoperative face surface registration is equivalent to point-based registration (PBR) method of skin fiducial markers. With regard to the initial image and physical space registration, for patient 1, mean target registration error (TRE) were 3.1+/-0.4 mm and 3.6 +/-0.9 mm for face ICP and skin fiducial PBR, respectively. For patient 2, the mean TRE were 5.7 +/-1.3 mm, and 6.6 +/-0.9 mm for face ICP and skin fiducial PBR, respectively. With regard to intraoperative cortical surface registration, SurfaceMI outperformed feature based PBR and vessel ICP with 1.7+/-1.8 mm for patient 1. For patient 2, the best result was achieved by using vessel ICP with 1.9+/-0.5 mm.

  5. Development of a small portable eyesafe unattended scanning lidar for analysis of the structural and optical properties of tropospheric aerosols

    NASA Astrophysics Data System (ADS)

    Sicard, Michael; Pelon, Jacques R.; Buis, Jean P.; Chazette, Patrick

    2001-01-01

    Structural and optical properties of aerosols and clouds can be retrieved by active remote sensing systems, such as lidars. Such parameters are of importance in the study of dynamics and radiation budget of the atmosphere. In that respect, a small, portable, eyesafe, unattended, elastic-backscatter lidar is being developed at Cimel Electronique, in collaboration with CNRS. It sues a compact, low-energy laser in the visible. The detection is made by a high-gain, high-speed PMT, and a single electronic card for fast acquisition. The aim of the system is also to be tunable to various pointing angles. A variational method was developed to make use of the multiangle measurements and tested on data collected during the INDOEX campaign in March 1999. The optical thickness and backscatter coefficient profiles were retrieved up to 1 km with a total uncertainty of 18 percent. The system has been assembled and first measurements have been made beginning of 2000 for comparison with the theoretical predictions. The system has shown it was satisfactory and the signal profiles obtained are in agreement with the ones simulated with the system parameters.

  6. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation

  7. Characterising the effect of a variety of surface roughness on boundary layer wind and dynamics within the scanning Doppler lidar network in Finland

    NASA Astrophysics Data System (ADS)

    Hirsikko, Anne; O'Connor, Ewan J.; Wood, Curtis R.; Vakkari, Ville

    2013-04-01

    Aerosol particle and trace gas atmospheric content is controlled by natural and anthropological emissions. However, further dispersion in the atmosphere is driven by wind and dynamic mixing. Atmospheric surface and boundary layer dynamics have direct and indirect effects on weather, air quality and processes affecting climate (e.g. gas exchange between ecosystem and atmosphere). In addition to the amount of solar energy and prevailing meteorological condition, the surface topography has a strong influence on the close to surface wind field and turbulence, particularly in urban areas (e.g. Barlow and Coceal, 2009). In order to characterise the effect of forest, urban and coastal surfaces on boundary layer wind and mixing, we have utilised the Finnish Doppler lidar network (Hirsikko et al., 2013). The network consists of five 1.5 μm Doppler lidars (HALO Photonics, Pearson et al., 2009), of which four are capable of full hemispheric scanning and are located at Helsinki (60.12°N, 25.58°E, 45 m asl.), Utö island (59.47°N, 21.23°E, 8 m asl.), SMEAR II at Hyytiälä (61.50°N, 24.17°E, 181 m asl.) and Kuopio (62.44°N, 27.32°E, 190 m asl.). The fifth lidar at Sodankylä (67.37°N, 26.63°E, 171 m asl.) is a new model designed for the Arctic environment with no external moving parts, but still retains limited scan capability. Investigation of boundary layer wind and mixing condition can now be extended beyond vertical profiles of horizontal wind, and dissipation rate of turbulent kinetic energy (O'Connor et al., 2010) throughout the boundary layer. We have applied custom designed scanning routines for 3D-observation of the wind fields and simultaneous aerosol particle distribution continuously for over one year at Helsinki and Utö, and began similar scanning routines at Kuopio and Hyytiälä in spring 2013. In this long term project, our aims are to 1) characterise the effect of the land-sea interface and the urban environment on the wind and its turbulent nature

  8. Automatic Registration of Tree Point Clouds from Terrestrial LIDAR Scanning for Reconstructing the Ground Scene of Vegetated Surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Guiyun; Zhou, Junjie

    2014-11-01

    Multiple scans are generally required to fully reconstruct three-dimensional models of botanical trees. An algorithm for the automatic registration of tree point clouds scanned from terrestrial laser scanners is proposed in this poster. The method extracts skeletons from the point cloud and conducts coarse registration automatically. The algorithm does not require a perfect skeleton to be extracted. No manual coarse registration is needed. The algorithm contributes to the automatic marker-free tree point cloud registration and improves field scanning efficiency by making the placement of markers unnecessary.

  9. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  10. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.

    PubMed

    Wagner, Gerd; Behrendt, Andreas; Wulfmeyer, Volker; Späth, Florian; Schiller, Max

    2013-04-10

    The Ti:sapphire (TISA) laser transmitter of the mobile, three-dimensional-scanning water-vapor differential absorption lidar (DIAL) of the University of Hohenheim is described in detail. The dynamically-stable, unidirectional ring resonator contains a single Brewster-cut TISA crystal, which is pumped from both sides with 250 Hz using a diode-pumped frequency-doubled Nd:YAG laser. The resonator is injection seeded and actively frequency-stabilized using a phase-sensitive technique. The TISA laser is operating near 820 nm, which is optimum for ground-based water-vapor DIAL measurements. An average output power of up to 6.75 W with a beam quality factor of M2<2 is reached. The pointing stability is <13 μrad (rms), the depolarization <1%. The overall optical-optical conversion efficiency is up to 19%. The pulse length is 40 ns with a pulse linewidth of <157 MHz. The short- and long-term frequency stabilities are 10 MHz (rms). A spectral purity of 99.9% was determined by pointing to a stratus cloud in low-elevation scanning mode with a cloud bottom height of ≈2.4 km. PMID:23670775

  11. Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Milovac, Josipa; Warrach-Sagi, Kirsten; Behrendt, Andreas; Späth, Florian; Ingwersen, Joachim; Wulfmeyer, Volker

    2016-01-01

    Six simulations with the Weather Research and Forecasting (WRF) model differing in planetary boundary layer (PBL) schemes and land surface models (LSMs) are investigated in a case study in western Germany during clear-sky weather conditions. The simulations were performed at 2 km resolution with two local and two nonlocal PBL schemes, combined with two LSMs (NOAH and NOAH-MP). Resulting convective boundary layer (CBL) features are investigated in combination with high-resolution water vapor differential absorption lidar measurements at an experimental area. Further, the simulated soil-vegetation-atmosphere feedback processes are quantified applying a mixing diagram approach. The investigation shows that the nonlocal PBL schemes simulate a deeper and drier CBL than the local schemes. Furthermore, the application of different LSMs reveals that the entrainment of dry air depends on the energy partitioning at the land surface. The study demonstrates that the impact of processes occurring at the land surface is not constrained to the lower CBL but extends up to the interfacial layer and the lower troposphere. With respect to the choice of the LSM, the discrepancies in simulating a diurnal change of the humidity profiles are even more significant at the interfacial layer than close to the land surface. This indicates that the representation of land surface processes has a significant impact on the simulation of mixing properties within the CBL.

  12. Spot Scanning Proton Beam Therapy for Prostate Cancer: Treatment Planning Technique and Analysis of Consequences of Rotational and Translational Alignment Errors

    SciTech Connect

    Meyer, Jeff; Bluett, Jaques; Amos, Richard

    2010-10-01

    Purpose: Conventional proton therapy with passively scattered beams is used to treat a number of tumor sites, including prostate cancer. Spot scanning proton therapy is a treatment delivery means that improves conformal coverage of the clinical target volume (CTV). Placement of individual spots within a target is dependent on traversed tissue density. Errors in patient alignment perturb dose distributions. Moreover, there is a need for a rational planning approach that can mitigate the dosimetric effect of random alignment errors. We propose a treatment planning approach and then analyze the consequences of various simulated alignment errors on prostate treatments. Methods and Materials: Ten control patients with localized prostate cancer underwent treatment planning for spot scanning proton therapy. After delineation of the clinical target volume, a scanning target volume (STV) was created to guide dose coverage. Errors in patient alignment in two axes (rotational and yaw) as well as translational errors in the anteroposterior direction were then simulated, and dose to the CTV and normal tissues were reanalyzed. Results: Coverage of the CTV remained high even in the setting of extreme rotational and yaw misalignments. Changes in the rectum and bladder V45 and V70 were similarly minimal, except in the case of translational errors, where, as a result of opposed lateral beam arrangements, much larger dosimetric perturbations were observed. Conclusions: The concept of the STV as applied to spot scanning radiation therapy and as presented in this report leads to robust coverage of the CTV even in the setting of extreme patient misalignments.

  13. Experimental Assessment of the Quanergy m8 LIDAR Sensor

    NASA Astrophysics Data System (ADS)

    Mitteta, M.-A.; Nouira, H.; Roynard, X.; Goulette, F.; Deschaud, J.-E.

    2016-06-01

    In this paper, some experiments with the Quanergy M8 scanning LIDAR system are related. The distance measurement obtained with the Quanergy M8 can be influenced by different factors. Moreover, measurement errors can originate from different sources. The environment in which the measurements are performed has an influence (temperature, light, humidity, etc.). Errors can also arise from the system itself. Then, it is necessary to determine the influence of these parameters on the quality of the distance measurements. For this purpose different studies are presented and analyzed. First, we studied the temporal stability of the sensor by analyzing observations during time. Secondly, the assessment of the distance measurement quality has been conducted. The aim of this step is to detect systematic errors in measurements regarding the range. Differents series of measurements have been conducted : at different range and in diffrent conditions (indoor and outdoor). Finally, we studied the consistency between the differents beam of the LIDAR.

  14. Comparative Analysis of Different LIDAR System Calibration Techniques

    NASA Astrophysics Data System (ADS)

    Miller, M.; Habib, A.

    2016-06-01

    With light detection and ranging (LiDAR) now being a crucial tool for engineering products and on the fly spatial analysis, it is necessary for the user community to have standardized calibration methods. The three methods in this study were developed and proven by the Digital Photogrammetry Research Group (DPRG) for airborne LiDAR systems and are as follows; Simplified, Quasi-Rigorous, and Rigorous. In lieu of using expensive control surfaces for calibration, these methods compare overlapping LiDAR strips to estimate the systematic errors. These systematic errors are quantified by these methods and include the lever arm biases, boresight biases, range bias and scan angle scale bias. These three methods comprehensively represent all of the possible flight configurations and data availability and this paper will test the limits of the method with the most assumptions, the simplified calibration, by using data that violates the assumptions it's math model is based on and compares the results to the quasi-rigorous and rigorous techniques. The overarching goal is to provide a LiDAR system calibration that does not require raw measurements which can be carried out with minimal control and flight lines to reduce costs. This testing is unique because the terrain used for calibration does not contain gable roofs, all other LiDAR system calibration testing and development has been done with terrain containing features with high geometric integrity such as gable roofs.

  15. The Airborne Snow Observatory: fusion of imaging spectrometer and scanning lidar for studies of mountain snow cover (Invited)

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.

    2013-12-01

    Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially

  16. lidar change detection using building models

    NASA Astrophysics Data System (ADS)

    Kim, Angela M.; Runyon, Scott C.; Jalobeanu, Andre; Esterline, Chelsea H.; Kruse, Fred A.

    2014-06-01

    Terrestrial LiDAR scans of building models collected with a FARO Focus3D and a RIEGL VZ-400 were used to investigate point-to-point and model-to-model LiDAR change detection. LiDAR data were scaled, decimated, and georegistered to mimic real world airborne collects. Two physical building models were used to explore various aspects of the change detection process. The first model was a 1:250-scale representation of the Naval Postgraduate School campus in Monterey, CA, constructed from Lego blocks and scanned in a laboratory setting using both the FARO and RIEGL. The second model at 1:8-scale consisted of large cardboard boxes placed outdoors and scanned from rooftops of adjacent buildings using the RIEGL. A point-to-point change detection scheme was applied directly to the point-cloud datasets. In the model-to-model change detection scheme, changes were detected by comparing Digital Surface Models (DSMs). The use of physical models allowed analysis of effects of changes in scanner and scanning geometry, and performance of the change detection methods on different types of changes, including building collapse or subsistence, construction, and shifts in location. Results indicate that at low false-alarm rates, the point-to-point method slightly outperforms the model-to-model method. The point-to-point method is less sensitive to misregistration errors in the data. Best results are obtained when the baseline and change datasets are collected using the same LiDAR system and collection geometry.

  17. A calibration method of the multi-channel imaging lidar

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Liu, Jun; Shu, Rong

    2014-06-01

    We design a kind of imaging LiDAR with sixteen channels, which consists of a fiber laser source, dual scanning galvanometers, range measurement circuits and information processing circuits etc. The image LiDAR provides sixteen range measurements for one laser shot and the distance accuracy of each channel is about 4cm. This paper provides a calibrate method to correct point cloud images captured with the multi-channel LiDAR. The method needs to construct different slanted planes to cover the imaging field, and establish precise plane equations in the known ground coordinates, then fit planes with point clouds data and calculate correction parameters of all channels through the error model. The image accuracy is better than 5cm processed by this calibration method.

  18. Quantification of Barchan Dune Evolution over Monthly to Interannual Time Scales Using Airborne LIDAR and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Hoose, M.; Pelletier, J. D.

    2013-12-01

    Barchan dunes are among the most rapidly evolving landforms on Earth, with migration rates of up to 100 m/yr. Despite the central importance of barchan dunes in aeolian geomorphology and the relative ease of quantifying changes in their shape and position, basic questions remain about barchan dune evolution. For example, how does the position of a dune relative to its neighbors affect the evolution of a dune? The presence of a dune influences the air flow around the dune, potentially modifying the evolution of neighboring dunes. Also, a dune may grow in size more rapidly if neighboring dunes are located immediately upwind of the dune, thus providing additional sources of sand for the dune relative to the case of an isolated dune. To address these questions, we quantified the change in the position of 14 dunes, and the sand flux among them, in the Salton Sea dune field over two time scales: 1 month and 3 years. The 1-month change map was created using two TLS surveys completed in the summer of 2013, and the 3-year change map was created using the results of a TLS survey in 2013 and an airborne LIDAR survey from 2010. The PHOENICS Computational Fluid Dynamics solver was used to predict the change in the positions of the dunes and the flux of sand among them. PHOENICS was used to model the shear stress over the dune field using DEM data from the beginning of each interval of study, together with data on the wind profile collected at the study site using a wind tower. The output of PHOENICS was used as input to a shear-stress-dependent aeolian transport formula with the effect of slope on the threshold of entrainment included. Preliminary analyses of the ALSM- and TLS-derived change maps indicate that clustered dunes interact via boundary layer effects to alter the migration and growth rates of their downwind neighbors. Additionally, the effects of subdominant, southeasterly winds were observed in the 1-month change map in the form of sand wedges deposited along the

  19. Using the Rapid-Scanning, Ultra-Portable, Canopy Biomass Lidar (CBL) Alone and In Tandem with the Full-Waveform Dual-Wavelength Echidna® Lidar (DWEL) to Establish Forest Structure and Biomass Estimates in a Variety of Ecosystems

    NASA Astrophysics Data System (ADS)

    Schaaf, C.; Paynter, I.; Saenz, E. J.; Li, Z.; Strahler, A. H.; Peri, F.; Erb, A.; Raumonen, P.; Muir, J.; Howe, G.; Hewawasam, K.; Martel, J.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Schaefer, M.; Newnham, G.; Jupp, D. L. B.; van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; Faulring, J.

    2014-12-01

    Terrestrial lidars are increasingly being deployed in a variety of ecosystems to calibrate and validate large scale airborne and spaceborne estimates of forest structure and biomass. While these lidars provide a wealth of high resolution information on canopy structure and understory vegetation, they tend to be expensive, slow scanning and somewhat ponderous to deploy. Therefore, frequent deployments and characterization of larger areas of a hectare or more can still be challenging. This suggests a role for low cost, ultra-portable, rapid scanning (but lower resolution) instruments -- particularly in scanning extreme environments and as a way to augment and extend strategically placed scans from the more highly capable lidars. The Canopy Biomass Lidar (CBL) is an inexpensive, highly portable, fast-scanning (33 seconds), time-of-flight, terrestrial laser scanning (TLS) instrument, built in collaboration with RIT, by U Mass Boston. The instrument uses a 905nm SICK time of flight laser with a 0.25o resolution and 30m range. The higher resolution, full-waveform Dual Wavelength Echidna® Lidar (DWEL), developed by Boston University, U Mass Lowell and U Mass Boston, builds on the Australian CSIRO single wavelength, full-waveform Echidna® Validation Instrument (EVI), but utilizes two simultaneous laser pulses at 1064 and 1548 nm to separate woody returns from those of foliage at a range of up to 100m range. The UMass Boston CBL has been deployed in rangelands (San Joaquin Experimental Range, CA), high altitude conifers (Sierra National Forest, CA), mixed forests (Harvard Forest LTER MA), tropical forests (La Selva and Sirena Biological Stations, Costa Rica), eucalypts (Karawatha, Brisbane TERN, Australia), and woodlands (Alice Holt Forest, UK), frequently along-side the DWEL, as well as in more challenging environments such as mangrove forests (Corcovado National Park, Costa Rica) and Massachusetts salt marshes and eroding bluffs (Plum Island LTER, and UMass Boston

  20. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  1. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    PubMed

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  2. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    PubMed Central

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  3. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (Editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  4. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  5. Implication of spot position error on plan quality and patient safety in pencil-beam-scanning proton therapy

    SciTech Connect

    Yu, Juan; Beltran, Chris J. Herman, Michael G.

    2014-08-15

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 to 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot

  6. Lidar Report

    SciTech Connect

    Wollpert.

    2009-04-01

    This report provides an overview of the LiDAR acquisition methodology employed by Woolpert on the 2009 USDA - Savannah River LiDAR Site Project. LiDAR system parameters and flight and equipment information is also included. The LiDAR data acquisition was executed in ten sessions from February 21 through final reflights on March 2, 2009; using two Leica ALS50-II 150kHz Multi-pulse enabled LiDAR Systems. Specific details about the ALS50-II systems are included in Section 4 of this report.

  7. Continuous measurements of PM at ground level over an industrial area of Evia (Greece) using synergy of a scanning Lidar system and in situ sensors during TAMEX campaign

    NASA Astrophysics Data System (ADS)

    Georgoussis, G.; Papayannis, A.; Remoudaki, E.; Tsaknakis, G.; Mamouri, R.; Avdikos, G.; Chontidiadis, C.; Kokkalis, P.; Tzezos, M.; Veenstra, M.

    2009-09-01

    During the TAMEX (Tamyneon Air pollution Mini EXperiment) field Campaign, which took place in the industrial site of Aliveri (38o,24'N, 24o 01'E), Evia (Greece) between June 25 and September 25, 2008, continuous measurements of airborne particulate matter (PM) were performed by in situ sensors at ground level. Additional aerosol measurements were performed by a single-wavelength (355 nm) eye-safe scanning lidar, operating in the Range-Height Indicator (RHI) mode between July 22 and 23, 2008. The industrial site of the city of Aliveri is located south-east of the city area at distance of about 2.5 km. The in situ aerosol sampling site was located at the Lykeio area at 62 m above sea level (ASL) and at a distance of 2,8 km from the Public Power Corporation complex area (DEI Corporation) and 3,3 km from a large cement industrial complex owned by Hercules/Lafarge SA Group of Companies (HLGC) and located at Milaki area. According to the European Environment Agency (EEA) report for the year 2004, this industry emits about 302 tons per year of PM10, 967,000 tons of CO2, 16700 tons of SOx and 1410 tons of NOx while the second industrial complex (HLGC) emits about 179 tons per year of PM10, 1890 tons of CO, 1,430,000 tons of CO2, 3510 tons of NOx, 15.4 Kg of cadmium and its compounds, 64.2 kg of mercury and its compounds and 2.2 tons of benzene. The measuring site was equipped with a full meteorological station (Davis Inc., USA), and 3 aerosol samplers: two Dust Track optical sensors from TSI Inc. (USA) and 1 Skypost PM sequential atmospheric particulate matter. The Dust Track sensors monitored the PM10, PM2.5 and PM1.0 concentration levels, with time resolution ranging from 1 to 3 minutes, while a Tecora sensor was taking continuous PM monitoring by the sampling method on 47 mm diameter filter membrane. The analysis of the PM sensors showed that, systematically, during nighttime large quantities of PM2.5 particles were detected (e.g. exceeding 50 ug/m3). During daytime

  8. Lidar performance analysis

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1994-01-01

    Section 1 details the theory used to build the lidar model, provides results of using the model to evaluate AEOLUS design instrument designs, and provides snapshots of the visual appearance of the coded model. Appendix A contains a Fortran program to calculate various forms of the refractive index structure function. This program was used to determine the refractive index structure function used in the main lidar simulation code. Appendix B contains a memo on the optimization of the lidar telescope geometry for a line-scan geometry. Appendix C contains the code for the main lidar simulation and brief instruction on running the code. Appendix D contains a Fortran code to calculate the maximum permissible exposure for the eye from the ANSI Z136.1-1992 eye safety standards. Appendix E contains a paper on the eye safety analysis of a space-based coherent lidar presented at the 7th Coherent Laser Radar Applications and Technology Conference, Paris, France, 19-23 July 1993.

  9. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  10. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

    2012-01-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances

  11. Uncertainty assessment and probabilistic change detection using terrestrial and airborne lidar

    NASA Astrophysics Data System (ADS)

    Jalobeanu, André; Kim, Angela M.; Runyon, Scott C.; Olsen, R. C.; Kruse, Fred A.

    2014-06-01

    Change detection using remote sensing has become increasingly important for characterization of natural disasters. Pre- and post-event LiDAR data can be used to identify and quantify changes. The main challenge consists of producing reliable change maps that are robust to differences in collection conditions, free of processing artifacts, and that take into account various sources of uncertainty such as different point densities, different acquisition geometries, georeferencing errors and geometric discrepancies. We present a simple and fast technique that accounts for these sources of uncertainty, and enables the creation of statistically significant change detection maps. The technique makes use of Bayesian inference to estimate uncertainty maps from LiDAR point clouds. Incorporation of uncertainties enables a change detection that is robust to noise due to ranging, position and attitude errors, as well as "roughness" in vegetation scans. Validation of the method was done by use of small-scale models scanned with a terrestrial LiDAR in a laboratory setting. The method was then applied to two airborne collects of the Monterey Peninsula, California acquired in 2011 and 2012. These data have significantly different point densities (8 vs. 40 pts/m2) and some misregistration errors. An original point cloud registration technique was developed, first to correct systematic shifts due to GPS and INS errors, and second to help measure large-scale changes in a consistent manner. Sparse changes were detected and interpreted mostly as construction and natural landscape evolution.

  12. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  13. Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error

    PubMed Central

    Fan, Qiao; Verhoeven, Virginie J. M.; Wojciechowski, Robert; Barathi, Veluchamy A.; Hysi, Pirro G.; Guggenheim, Jeremy A.; Höhn, René; Vitart, Veronique; Khawaja, Anthony P.; Yamashiro, Kenji; Hosseini, S Mohsen; Lehtimäki, Terho; Lu, Yi; Haller, Toomas; Xie, Jing; Delcourt, Cécile; Pirastu, Mario; Wedenoja, Juho; Gharahkhani, Puya; Venturini, Cristina; Miyake, Masahiro; Hewitt, Alex W.; Guo, Xiaobo; Mazur, Johanna; Huffman, Jenifer E.; Williams, Katie M.; Polasek, Ozren; Campbell, Harry; Rudan, Igor; Vatavuk, Zoran; Wilson, James F.; Joshi, Peter K.; McMahon, George; St Pourcain, Beate; Evans, David M.; Simpson, Claire L.; Schwantes-An, Tae-Hwi; Igo, Robert P.; Mirshahi, Alireza; Cougnard-Gregoire, Audrey; Bellenguez, Céline; Blettner, Maria; Raitakari, Olli; Kähönen, Mika; Seppala, Ilkka; Zeller, Tanja; Meitinger, Thomas; Ried, Janina S.; Gieger, Christian; Portas, Laura; van Leeuwen, Elisabeth M.; Amin, Najaf; Uitterlinden, André G.; Rivadeneira, Fernando; Hofman, Albert; Vingerling, Johannes R.; Wang, Ya Xing; Wang, Xu; Tai-Hui Boh, Eileen; Ikram, M. Kamran; Sabanayagam, Charumathi; Gupta, Preeti; Tan, Vincent; Zhou, Lei; Ho, Candice E. H.; Lim, Wan'e; Beuerman, Roger W.; Siantar, Rosalynn; Tai, E-Shyong; Vithana, Eranga; Mihailov, Evelin; Khor, Chiea-Chuen; Hayward, Caroline; Luben, Robert N.; Foster, Paul J.; Klein, Barbara E. K.; Klein, Ronald; Wong, Hoi-Suen; Mitchell, Paul; Metspalu, Andres; Aung, Tin; Young, Terri L.; He, Mingguang; Pärssinen, Olavi; van Duijn, Cornelia M.; Jin Wang, Jie; Williams, Cathy; Jonas, Jost B.; Teo, Yik-Ying; Mackey, David A.; Oexle, Konrad; Yoshimura, Nagahisa; Paterson, Andrew D.; Pfeiffer, Norbert; Wong, Tien-Yin; Baird, Paul N.; Stambolian, Dwight; Wilson, Joan E. Bailey; Cheng, Ching-Yu; Hammond, Christopher J.; Klaver, Caroline C. W.; Saw, Seang-Mei; Rahi, Jugnoo S.; Korobelnik, Jean-François; Kemp, John P.; Timpson, Nicholas J.; Smith, George Davey; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Chew, Emily; Janmahasatian, Sarayut; Martin, Nicholas G.; MacGregor, Stuart; Xu, Liang; Schache, Maria; Nangia, Vinay; Panda-Jonas, Songhomitra; Wright, Alan F.; Fondran, Jeremy R.; Lass, Jonathan H.; Feng, Sheng; Zhao, Jing Hua; Khaw, Kay-Tee; Wareham, Nick J.; Rantanen, Taina; Kaprio, Jaakko; Pang, Chi Pui; Chen, Li Jia; Tam, Pancy O.; Jhanji, Vishal; Young, Alvin L.; Döring, Angela; Raffel, Leslie J.; Cotch, Mary-Frances; Li, Xiaohui; Yip, Shea Ping; Yap, Maurice K.H.; Biino, Ginevra; Vaccargiu, Simona; Fossarello, Maurizio; Fleck, Brian; Yazar, Seyhan; Tideman, Jan Willem L.; Tedja, Milly; Deangelis, Margaret M.; Morrison, Margaux; Farrer, Lindsay; Zhou, Xiangtian; Chen, Wei; Mizuki, Nobuhisa; Meguro, Akira; Mäkelä, Kari Matti

    2016-01-01

    Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10−5), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia. PMID:27020472

  14. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error.

    PubMed

    Fan, Qiao; Verhoeven, Virginie J M; Wojciechowski, Robert; Barathi, Veluchamy A; Hysi, Pirro G; Guggenheim, Jeremy A; Höhn, René; Vitart, Veronique; Khawaja, Anthony P; Yamashiro, Kenji; Hosseini, S Mohsen; Lehtimäki, Terho; Lu, Yi; Haller, Toomas; Xie, Jing; Delcourt, Cécile; Pirastu, Mario; Wedenoja, Juho; Gharahkhani, Puya; Venturini, Cristina; Miyake, Masahiro; Hewitt, Alex W; Guo, Xiaobo; Mazur, Johanna; Huffman, Jenifer E; Williams, Katie M; Polasek, Ozren; Campbell, Harry; Rudan, Igor; Vatavuk, Zoran; Wilson, James F; Joshi, Peter K; McMahon, George; St Pourcain, Beate; Evans, David M; Simpson, Claire L; Schwantes-An, Tae-Hwi; Igo, Robert P; Mirshahi, Alireza; Cougnard-Gregoire, Audrey; Bellenguez, Céline; Blettner, Maria; Raitakari, Olli; Kähönen, Mika; Seppala, Ilkka; Zeller, Tanja; Meitinger, Thomas; Ried, Janina S; Gieger, Christian; Portas, Laura; van Leeuwen, Elisabeth M; Amin, Najaf; Uitterlinden, André G; Rivadeneira, Fernando; Hofman, Albert; Vingerling, Johannes R; Wang, Ya Xing; Wang, Xu; Tai-Hui Boh, Eileen; Ikram, M Kamran; Sabanayagam, Charumathi; Gupta, Preeti; Tan, Vincent; Zhou, Lei; Ho, Candice E H; Lim, Wan'e; Beuerman, Roger W; Siantar, Rosalynn; Tai, E-Shyong; Vithana, Eranga; Mihailov, Evelin; Khor, Chiea-Chuen; Hayward, Caroline; Luben, Robert N; Foster, Paul J; Klein, Barbara E K; Klein, Ronald; Wong, Hoi-Suen; Mitchell, Paul; Metspalu, Andres; Aung, Tin; Young, Terri L; He, Mingguang; Pärssinen, Olavi; van Duijn, Cornelia M; Jin Wang, Jie; Williams, Cathy; Jonas, Jost B; Teo, Yik-Ying; Mackey, David A; Oexle, Konrad; Yoshimura, Nagahisa; Paterson, Andrew D; Pfeiffer, Norbert; Wong, Tien-Yin; Baird, Paul N; Stambolian, Dwight; Wilson, Joan E Bailey; Cheng, Ching-Yu; Hammond, Christopher J; Klaver, Caroline C W; Saw, Seang-Mei; Rahi, Jugnoo S; Korobelnik, Jean-François; Kemp, John P; Timpson, Nicholas J; Smith, George Davey; Craig, Jamie E; Burdon, Kathryn P; Fogarty, Rhys D; Iyengar, Sudha K; Chew, Emily; Janmahasatian, Sarayut; Martin, Nicholas G; MacGregor, Stuart; Xu, Liang; Schache, Maria; Nangia, Vinay; Panda-Jonas, Songhomitra; Wright, Alan F; Fondran, Jeremy R; Lass, Jonathan H; Feng, Sheng; Zhao, Jing Hua; Khaw, Kay-Tee; Wareham, Nick J; Rantanen, Taina; Kaprio, Jaakko; Pang, Chi Pui; Chen, Li Jia; Tam, Pancy O; Jhanji, Vishal; Young, Alvin L; Döring, Angela; Raffel, Leslie J; Cotch, Mary-Frances; Li, Xiaohui; Yip, Shea Ping; Yap, Maurice K H; Biino, Ginevra; Vaccargiu, Simona; Fossarello, Maurizio; Fleck, Brian; Yazar, Seyhan; Tideman, Jan Willem L; Tedja, Milly; Deangelis, Margaret M; Morrison, Margaux; Farrer, Lindsay; Zhou, Xiangtian; Chen, Wei; Mizuki, Nobuhisa; Meguro, Akira; Mäkelä, Kari Matti

    2016-01-01

    Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia. PMID:27020472

  15. Results from 1984 airborne Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1986-01-01

    Observations made with the revised Airborne Doppler Lidar System (ADLS) during research flights in the summer of 1984 are described. The functioning of the ADLS system is described. The research flights measured the flow around Mt. Shasta about 3 km above the surrounding terrain as well as the flow in the area of the Carquenez Strait in the Sacramento River Valley. The flight tracks are described and the resulting scan radial velocities are shown and discussed. The results demonstrate the success of the modifications made in order to correct major error sources present in the 1981 flights of the ADLS system.

  16. Analysis of Lidar Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1999-01-01

    Line of sight velocity and measurement position sensitivity analyses for an orbiting coherent Doppler lidar are developed and applied to two lidars, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude, 89 deg. inclination orbit. The effect of orbit related effects on the backscatter sensitivity of a coherent Doppler lidar is also discussed. Draft performance estimate, error budgets and payload accommodation requirements for the SPARCLE (Space Readiness Coherent Lidar) instrument were also developed and documented.

  17. Evaluation of airborne topographic lidar for quantifying beach changes

    USGS Publications Warehouse

    Sallenger, A.H., Jr.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; Morgan, K.; Yunkel, J.K.; Frederick, E.B.; Stockdon, H.

    2003-01-01

    A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based measurements - 1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ??? 15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ??? 15 cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells comprising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future

  18. Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information

    NASA Astrophysics Data System (ADS)

    Hosoi, F.

    2014-12-01

    Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of

  19. Mobile incoherent Doppler lidar using fiber-based lidar receivers

    NASA Astrophysics Data System (ADS)

    Hu, Dongdong; Sun, Dongsong; Shu, Zhifeng; Shangguan, Mingjia; Gao, Yuanyuan; Dou, Xiankang

    2014-09-01

    A mobile incoherent Doppler lidar was developed at the University of Science and Technology of China. The lidar consists of three subsystems. All subsystems are designed based on the well-proven double-edge technique, operate at 354.7 nm, and use Fabry-Perot etalons as frequency discriminators. The whole system is designed for wind measurement from 15- to 60-km height. In order to make the lidar receiver more compact and stable and to reduce interference between optical paths inside the receiver box, fiber splitters are introduced into the lidar receivers as a substitute for normally used discrete components. According to the stability of the splitter, the wind error dominated by the splitting ratio would be <0.49 m/s. To reduce luminance heterogeneity's influence on the splitter performance, an integrating sphere is used in the system. Multiple measurements of transmission curves have a maximum mean squared error of 9.674E-5. A typical result of wind profile is also given to help demonstrate the reliability of the lidar and the fiber-based receiver.

  20. Autonomic responses to correct outcomes and interaction errors during single-switch scanning among children with severe spastic quadriplegic cerebral palsy

    PubMed Central

    2014-01-01

    Background The combination of single-switch access technology and scanning is the most promising means of augmentative and alternative communication for many children with severe physical disabilities. However, the physical impairment of the child and the technology’s limited ability to interpret the child’s intentions often lead to false positives and negatives (corresponding to accidental and missed selections, respectively) occurring at rates that frustrate the user and preclude functional communication. Multiple psychophysiological studies have associated cardiac deceleration and increased phasic electrodermal activity with self-realization of errors among able-bodied individuals. Thus, physiological measurements have potential utility at enhancing single-switch access, provided that such prototypical autonomic responses exist in persons with profound disabilities. Methods The present case series investigated the autonomic responses of three pediatric single-switch users with severe spastic quadriplegic cerebral palsy, in the context of a single-switch letter matching activity. Each participant exhibited distinct autonomic responses to activity engagement. Results Our analysis confirmed the presence of the autonomic response pattern of cardiac deceleration and increased phasic electrodermal activity following true positives, false positives and false negatives errors, but not subsequent to true negative outcomes. Conclusions These findings suggest that there may be merit in complementing single-switch input with autonomic measurements to improve augmentative and alternative communications for pediatric access technology users. PMID:24607065

  1. Study of Diagenetic Features in Rudist Buildups of Cretaceous Edwards Formation Using Ground Based Hyperspectral Scanning and Terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.

    2015-12-01

    Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.

  2. Pierre Auger Atmosphere-Monitoring Lidar System

    NASA Astrophysics Data System (ADS)

    Filipcic, A.; Horvat, M.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.; Chiosso, M.; Mussa, R.; Sequeiros, G.; Mostafa, M. A.; Roberts, M. D.

    2003-07-01

    The fluorescence-detection techniques of cosmic-ray air-shower experiments require precise knowledge of atmospheric properties to reconstruct air-shower energies. Up to now, the atmosphere in desert-like areas was assumed to be stable enough so that o ccasional calibration of atmospheric attenuation would suffice to reconstruct shower profiles. However, serious difficulties have been reported in recent fluorescence-detector experiments causing systematic errors in cosmic ray spectra at extreme energies. Therefore, a scanning backscatter lidar system has been constructed for the Pierre Auger Observatory in Malargue, Argentina, where ¨ on-line atmospheric monitoring will be performed. One lidar system is already deployed at the Los Leones fluorescence detector (FD) site and the second one is currently (April 2003) under construction at the Coihueco site. Next to the established ones, a novel analysis method with assumption on horizontal invariance, using multi-angle measurements is shown to unambiguously measure optical depth, as well as absorption and backscatter coefficient.

  3. Lidar Detection of Explosives Traces

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, Sergei M.; Gorlov, Evgeny V.; Zharkov, Victor I.; Panchenko, Yury N.

    2016-06-01

    The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF) is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT), hexogen (RDX), trotyl-hexogen (Comp B), octogen (HMX), and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  4. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    SciTech Connect

    Santoro, J. P.; McNamara, J.; Yorke, E.; Pham, H.; Rimner, A.; Rosenzweig, K. E.; Mageras, G. S.

    2012-10-15

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged images for determining tumor deviations. Methods: Eleven stage II-IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction

  5. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  6. Heterogeneous Boundary Layers through the Diurnal Cycle: Evaluation of the WRF Wind Farm Parameterization using Scanning Lidar Observations and Wind Turbine Power Measurements during a Range of Stability Conditions

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.

    2015-12-01

    As wind energy deployment increases, questions arise regarding impacts on local climates and how these impacts evolve with the diurnal cycle of the boundary layer. Satellite observations suggest nocturnal increases of surface temperatures, and measurements of turbine wakes document stronger and more persistent reductions of wind speed and increases in turbulence downwind of turbines during stable conditions. Validations of mesoscale parameterizations of these effects have been constrained to idealized conditions defined by neutrally-stratified conditions and/or limited wind directions and wind speeds, or by comparison to idealized large-eddy simulations. Synthesis of conventional meteorological measurements and unconventional measurements can offer unique insights for validating models over a large heterogeneous domain. The CWEX-13 field experiment provides an extensive dataset for such validation at spatial scales on the order of 10 km in a range of atmospheric stability and wind conditions. CWEX-13 took place within a 300 MW wind farm in central Iowa during summer 2013 and featured strong diurnal cycles. The wind turbines are sited irregularly, creating a heterogenous "canopy". Three profiling lidars, numerous surface flux stations, and a scanning lidar sampled wakes from multiple turbines. Further, the wind farm owner/operator has provided access to turbine power production and wind speed measurement data for model validation, providing ~ 200 measurements of proxies that integrate the wind profile over the rotor disk, from 40 m to 120 m above the surface. Building on previous work that identified optimal physics options, grid configurations, and boundary condition data sets by comparison to lidar wind profile measurements, we execute simulations with the WRF Wind Farm Parameterization for a ten-day period featuring moderate winds and strong diurnal cycles. We evaluate simulations with different modeling choices (e.g., vertical resolution, approaches to

  7. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  8. Coherent Lidar Design and Performance Verification

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1996-01-01

    This final report summarizes the investigative results from the 3 complete years of funding and corresponding publications are listed. The first year saw the verification of beam alignment for coherent Doppler lidar in space by using the surface return. The second year saw the analysis and computerized simulation of using heterodyne efficiency as an absolute measure of performance of coherent Doppler lidar. A new method was proposed to determine the estimation error for Doppler lidar wind measurements without the need for an independent wind measurement. Coherent Doppler lidar signal covariance, including wind shear and turbulence, was derived and calculated for typical atmospheric conditions. The effects of wind turbulence defined by Kolmogorov spatial statistics were investigated theoretically and with simulations. The third year saw the performance of coherent Doppler lidar in the weak signal regime determined by computer simulations using the best velocity estimators. Improved algorithms for extracting the performance of velocity estimators with wind turbulence included were also produced.

  9. ESTIMATION OF TROPICAL FOREST STRUCTURE AND BIOMASS FROM FUSION OF RADAR AND LIDAR MEASUREMENTS (Invited)

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Dubayah, R.; Clark, D. B.; Chazdon, R.

    2009-12-01

    Radar and Lidar instruments are active remote sensing sensors with the potential of measuring forest vertical and horizontal structure and the aboveground biomass (AGB). In this paper, we present the analysis of radar and lidar data acquired over the La Selva Biological Station in Costa Rica. Radar polarimetry at L-band (25 cm wavelength), P-band (70 cm wavelength) and interferometry at C-band (6 cm wavelength) and VV polarization were acquired by the NASA/JPL airborne synthetic aperture radar (AIRSAR) system. Lidar images were provided by a large footprint airborne scanning Lidar known as the Laser Vegetation Imaging Sensor (LVIS). By including field measurements of structure and biomass over a variety of forest types, we examined: 1) sensitivity of radar and lidar measurements to forest structure and biomass, 2) accuracy of individual sensors for AGB estimation, and 3) synergism of radar imaging measurements with lidar imaging and sampling measurements for improving the estimation of 3-dimensional forest structure and AGB. The results showed that P-band radar combined with any interformteric measurement of forest height can capture approximately 85% of the variation of biomass in La Selva at spatial scales larger than 1 hectare. Similar analysis at L-band frequency captured only 70% of the variation. However, combination of lidar and radar measurements improved estimates of forest three-dimensional structure and biomass to above 90% for all forest types. We present a novel data fusion approach based on a Baysian estimation model with the capability of incorporating lidar samples and radar imagery. The model was used to simulate the potential of data fusion in future satellite mission scenarios as in BIOMASS (planned by ESA) at P-band and DESDynl (planned by NASA) at L-band. The estimation model was also able to quantify errors and uncertainties associated with the scale of measurements, spatial variability of forest structure, and differences in radar and lidar

  10. The Application of Lidar to Synthetic Vision System Integrity

    NASA Technical Reports Server (NTRS)

    Campbell, Jacob L.; UijtdeHaag, Maarten; Vadlamani, Ananth; Young, Steve

    2003-01-01

    One goal in the development of a Synthetic Vision System (SVS) is to create a system that can be certified by the Federal Aviation Administration (FAA) for use at various flight criticality levels. As part of NASA s Aviation Safety Program, Ohio University and NASA Langley have been involved in the research and development of real-time terrain database integrity monitors for SVS. Integrity monitors based on a consistency check with onboard sensors may be required if the inherent terrain database integrity is not sufficient for a particular operation. Sensors such as the radar altimeter and weather radar, which are available on most commercial aircraft, are currently being investigated for use in a real-time terrain database integrity monitor. This paper introduces the concept of using a Light Detection And Ranging (LiDAR) sensor as part of a real-time terrain database integrity monitor. A LiDAR system consists of a scanning laser ranger, an inertial measurement unit (IMU), and a Global Positioning System (GPS) receiver. Information from these three sensors can be combined to generate synthesized terrain models (profiles), which can then be compared to the stored SVS terrain model. This paper discusses an initial performance evaluation of the LiDAR-based terrain database integrity monitor using LiDAR data collected over Reno, Nevada. The paper will address the consistency checking mechanism and test statistic, sensitivity to position errors, and a comparison of the LiDAR-based integrity monitor to a radar altimeter-based integrity monitor.

  11. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  12. Magnitude of observer error using cone beam CT for prostate interfraction motion estimation: effect of reducing scan length or increasing exposure

    PubMed Central

    Harris, Emma J; Hansen, Vibeke N; Thomas, Karen; South, Christopher; Hafeez, Shaista; Huddart, Robert; Dearnaley, David P

    2015-01-01

    Objective: Cone beam CT (CBCT) enables soft-tissue registration to planning CT for position verification in radiotherapy. The aim of this study was to determine the interobserver error (IOE) in prostate position verification using a standard CBCT protocol, and the effect of reducing CBCT scan length or increasing exposure, compared with standard imaging protocol. Methods: CBCT images were acquired using a novel 7 cm length image with standard exposure (1644 mAs) at Fraction 1 (7), standard 12 cm length image (1644 mAs) at Fraction 2 (12) and a 7 cm length image with higher exposure (2632 mAs) at Fraction 3 (7H) on 31 patients receiving radiotherapy for prostate cancer. Eight observers (two clinicians and six radiographers) registered the images. Guidelines and training were provided. The means of the IOEs were compared using a Kruzkal–Wallis test. Levene's test was used to test for differences in the variances of the IOEs and the independent prostate position. Results: No significant difference was found between the IOEs of each image protocol in any direction. Mean absolute IOE was the greatest in the anteroposterior direction. Standard deviation (SD) of the IOE was the least in the left–right direction for each of the three image protocols. The SD of the IOE was significantly less than the independent prostate motion in the anterior–posterior (AP) direction only (1.8 and 3.0 mm, respectively: p = 0.017). IOEs were within 1 SD of the independent prostate motion in 95%, 77% and 96% of the images in the RL, SI and AP direction. Conclusion: Reducing CBCT scan length and increasing exposure did not have a significant effect on IOEs. To reduce imaging dose, a reduction in CBCT scan length could be considered without increasing the uncertainty in prostate registration. Precision of CBCT verification of prostate radiotherapy is affected by IOE and should be quantified prior to implementation. Advances in knowledge: This study shows the importance

  13. Continuous Monitoring of Greenland Outlet Glaciers Using an Autonomous Terrestrial LiDAR Scanning System: Design, Development and Testing at Helheim Glacier

    NASA Astrophysics Data System (ADS)

    LeWinter, A. L.; Finnegan, D. C.; Hamilton, G. S.; Stearns, L. A.; Gadomski, P. J.

    2014-12-01

    Greenland's fast-flowing tidewater outlet glaciers play a critical role in modulating the ice sheet's contribution to sea level rise. Increasing evidence points to the importance of ocean forcing at the marine margins as a control on outlet glacier behavior, but a process-based understanding of glacier-ocean interactions remains elusive in part because our current capabilities for observing and quantifying system behavior at the appropriate spatial and temporal scales are limited. A recent international workshop on Greenland's marine terminating glaciers (US CLIVAR, Beverly, MA, June 2013) recommended the establishment of a comprehensive monitoring network covering Greenland's largest outlet glacier-fjord systems to collect long-term time series of critical in situ glaciological, oceanographic and atmospheric parameters needed to understand evolving relationships between different climate forcings and glacier flow. Given the remote locations and harsh environments of Greenland's glacial fjords, the development of robust autonomous instrumentation is a key step in making the observing networks a reality. This presentation discusses the design and development of a fully-autonomous ground-based Light Detection and Ranging (LiDAR) system for monitoring outlet glacier behavior. Initial deployment of the system is planned for spring 2015 at Helheim Glacier in southeast Greenland. The instrument will acquire multi-dimensional point-cloud measurements of the mélange, terminus, and lower-reaches of the glacier. The heart of the system is a long-range, 1064 nm wavelength Terrestrial Laser Scanner (TLS) that we have previously used in campaign-style surveys at Helheim Glacier and at Hubbard Glacier in Alaska. We draw on this experience to design and fabricate the power and enclosure components of the new system, and use previously acquired data from the instrument, collected August 2013 and July 2014 at Helheim, to optimize our data collection strategy and design the data

  14. Cloud detection by lidar extinction calculations

    NASA Technical Reports Server (NTRS)

    Lentz, W. J.

    1986-01-01

    A new lidar method of measuring cloud ceiling height using the Klett solution to the lidar equation was developed. This simple technique will find cloud ceiling height for clouds that rangefinder-like lidars cannot theoretically detect. In addition, the noise signals that do not correspond to clouds removed by using the convergence of the Klett solution to discriminate between signal changes and broader signal changes due to clouds. Clouds above rain or light fog can be detected without error, and it is possible to discriminate against haze layers by the magnitude of their maximum extinction.

  15. CALIPSO lidar ratio retrieval over the ocean.

    PubMed

    Josset, Damien; Rogers, Raymond; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali; Zhai, Peng-Wang

    2011-09-12

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type. PMID:21935239

  16. CALIPSO Lidar Ratio Retrieval Over the Ocean

    NASA Technical Reports Server (NTRS)

    Josset, Damien B.; Rogers, Raymond R.; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali H.; Zhai, Peng-Wang

    2011-01-01

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type

  17. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  18. Atmospheric lidar predevelopment program (ATLID)

    NASA Astrophysics Data System (ADS)

    Morancais, Didier; Marini, Andrea E.

    1997-09-01

    The Atmospheric Lidar (ATLID) is the backscatter lidar instrument developed for ESA, under the prime contractorship of MATRA MARCONI SPACE France. This kind of lidar has been selected for flight on an ESA Earth Explorer satellite, and will be based on ATLID concept and technologies. It is part of a multi-payload mission, named Earth Radiation, dedicated to the Earth radiative transfer study for climatology. The lidar will provide information on the atmosphere, such as cloud cover, top height of all cloud types and planetary boundary layer, thin cloud extent, optical depth and polarization. The instrument features a pulsed diode-pumped Nd-YAG laser (1.06 micrometers wavelength) together with a one-axis scanning 60 cm lightweight telescope. A technology pre-development program has been performed in order to raise the maturity of the instrument design. Elegant breadboard models have been realised and submitted to environmental tests. The laser transmitter, the laser thermal control subsystem (capillary-pumped two-phase loop), the diode laser power supply, the avalanche photodiode detection chain, the narrow-band filter, the scan mechanism, and the telescope lightweight primary mirror (C-SiC) have been breadboarded in the frame of the programme. The instrument design and performance have also been consolidated with regards to the successful hardware results.

  19. Small-footprint, waveform-resolving lidar estimation of submerged and sub-canopy topography in coastal environments

    USGS Publications Warehouse

    Nayegandhi, A.; Brock, J.C.; Wright, C.W.

    2009-01-01

    The experimental advanced airborne research lidar (EAARL) is an airborne lidar instrument designed to map near-shore submerged topography and adjacent land elevations simultaneously. This study evaluated data acquired by the EAARL system in February 2003 and March 2004 along the margins of Tampa Bay, Florida, USA, to map bare-earth elevations under a variety of vegetation types and submerged topography in shallow, turbid water conditions. A spatial filtering algorithm, known as the iterative random consensus filter (IRCF), was used to extract ground elevations from a point cloud of processed last-surface EAARL returns. Filtered data were compared with acoustic and field measurements acquired in shallow submerged (0-2.5 m water depth) and sub-canopy environments. Root mean square elevation errors (RMSEs) ranged from 10-14 cm for submerged topography to 16-20 cm for sub-canopy topography under a variety of vegetation communities. The effect of lidar sampling angles and global positioning system (GPS) satellite configuration on accuracy was investigated. Results show high RMSEs for data acquired during periods of poor satellite configuration and at large sampling angles along the edges of the lidar scan. The results presented in this study confirm the cross-environment capability of a green-wavelength, waveform-resolving lidar system, making it an ideal tool for mapping coastal environments.

  20. Automating the Purple Crow Lidar

    NASA Astrophysics Data System (ADS)

    Hicks, Shannon; Sica, R. J.; Argall, P. S.

    2016-06-01

    The Purple Crow LiDAR (PCL) was built to measure short and long term coupling between the lower, middle, and upper atmosphere. The initial component of my MSc. project is to automate two key elements of the PCL: the rotating liquid mercury mirror and the Zaber alignment mirror. In addition to the automation of the Zaber alignment mirror, it is also necessary to describe the mirror's movement and positioning errors. Its properties will then be added into the alignment software. Once the alignment software has been completed, we will compare the new alignment method with the previous manual procedure. This is the first among several projects that will culminate in a fully-automated lidar. Eventually, we will be able to work remotely, thereby increasing the amount of data we collect. This paper will describe the motivation for automation, the methods we propose, preliminary results for the Zaber alignment error analysis, and future work.

  1. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  2. Lidar Approach in Estimating Particulate Mass Emissions from a Poultry Production Facility

    NASA Astrophysics Data System (ADS)

    Lewandowski, P. A.; Eichinger, W. E.; Prueger, J. H.; Hatfield, J.

    2009-12-01

    The current conventional particulate and mass emission measurements from livestock facilities rely primarily on point indoor/outdoor measurements. These measurements combined with assumed outflow rates from a building lead to emission rates and emission factors from the building. This approach, well established in the literature, poses accuracy and representation issues. To overcome the limitations of point measurement emission estimates, a new remote sensing approach is proposed. A scanning elastic lidar was used to estimate the spatially resolved extinction coefficient associated with particulates originating from a poultry production building. Particulate size distribution and wind co-measurements were combined with the lidar extinction coefficient data to estimate particulate mass fluxes and the emission factor from the building. The particulate size distribution was measured continuously since the size distribution changes significantly during the day. Assumptions of constant size distributions may result in errors of a factor of two in derived quantities. The data analysis from the study showed that the average particulate mass emission value from the poultry production building was 0.13±0.04 g/s (460±150 g/h) and the respective emission factor was 3.0±1.0 g/h AU (per animal unit, 500 kg live weight). The lidar estimated values are lower than the values found in the literature from point measurement studies. The study demonstrates a new innovative method in measuring emissions using scanning lidar technique. As presented in the study, the method can successfully address the need for a better tool for emission measurements in agricultural applications. The outlined measurement approach can be also applied, with careful considerations, to any non-point particulate emissions measurement needs in industry or in urban environment. Lidar, particle sizer and wind anemometer data processing flowchart leading to the particulate mass emission estimates

  3. Lidar postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  4. Benchmarking of a treatment planning system for spot scanning proton therapy: Comparison and analysis of robustness to setup errors of photon IMRT and proton SFUD treatment plans of base of skull meningioma

    SciTech Connect

    Harding, R.; Trnková, P.; Lomax, A. J.; Weston, S. J.; Lilley, J.; Thompson, C. M.; Cosgrove, V. P.; Short, S. C.; Loughrey, C.; Thwaites, D. I.

    2014-11-01

    Purpose: Base of skull meningioma can be treated with both intensity modulated radiation therapy (IMRT) and spot scanned proton therapy (PT). One of the main benefits of PT is better sparing of organs at risk, but due to the physical and dosimetric characteristics of protons, spot scanned PT can be more sensitive to the uncertainties encountered in the treatment process compared with photon treatment. Therefore, robustness analysis should be part of a comprehensive comparison between these two treatment methods in order to quantify and understand the sensitivity of the treatment techniques to uncertainties. The aim of this work was to benchmark a spot scanning treatment planning system for planning of base of skull meningioma and to compare the created plans and analyze their robustness to setup errors against the IMRT technique. Methods: Plans were produced for three base of skull meningioma cases: IMRT planned with a commercial TPS [Monaco (Elekta AB, Sweden)]; single field uniform dose (SFUD) spot scanning PT produced with an in-house TPS (PSI-plan); and SFUD spot scanning PT plan created with a commercial TPS [XiO (Elekta AB, Sweden)]. A tool for evaluating robustness to random setup errors was created and, for each plan, both a dosimetric evaluation and a robustness analysis to setup errors were performed. Results: It was possible to create clinically acceptable treatment plans for spot scanning proton therapy of meningioma with a commercially available TPS. However, since each treatment planning system uses different methods, this comparison showed different dosimetric results as well as different sensitivities to setup uncertainties. The results confirmed the necessity of an analysis tool for assessing plan robustness to provide a fair comparison of photon and proton plans. Conclusions: Robustness analysis is a critical part of plan evaluation when comparing IMRT plans with spot scanned proton therapy plans.

  5. Lidar Analyses

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1995-01-01

    A brief description of enhancements made to the NASA MSFC coherent lidar model is provided. Notable improvements are the addition of routines to automatically determine the 3 dB misalignment loss angle and the backscatter value at which the probability of a good estimate (for a maximum likelihood estimator) falls to 50%. The ability to automatically generate energy/aperture parametrization (EAP) plots which include the effects of angular misalignment has been added. These EAP plots make it very easy to see that for any practical system where there is some degree of misalignment then there is an optimum telescope diameter for which the laser pulse energy required to achieve a particular sensitivity is minimized. Increasing the telescope diameter above this will result in a reduction of sensitivity. These parameterizations also clearly show that the alignment tolerances at shorter wavelengths are much stricter than those at longer wavelengths. A brief outline of the NASA MSFC AEOLUS program is given and a summary of the lidar designs considered during the program is presented. A discussion of some of the design trades is performed both in the text and in a conference publication attached as an appendix.

  6. Advances in Raman Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.

  7. Lidar Based Particulate Flux Measurements of Agricultural Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-wavelength portable scanning lidar system was developed to derive information on particulate spatial aerosol distribution over remote distances. The lidar system and retrieval approach has been tested during several field campaigns measuring agricultural emissions from a swine feeding operat...

  8. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  9. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  10. Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (LIght Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. AGLITE is a three-wavelength portable scanning lidar system built at the Space Dynamic Laboratory (SDL) to measure the spatial...

  11. Aglite Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aglite Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of Aglite is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural and other sources. Aglite uses a high-repetition rate low-pulse energy...

  12. AGLITE Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AGLITE Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of AGLITE is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural sources. AGLITE uses a high-repetition rate low-pulse-energy 3-wavelen...

  13. AGLITE Lidar: Calibration and Retrievals of Well Characterized Aerosols from Agricultural Operations using a Three-wavelength Elastic Lidar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (Light Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. AGLITE is a three-wavelength portable scanning lidar system developed at the Space Dynamic Laboratory (SDL) to measure the spa...

  14. Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area.

    PubMed

    Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In

    2016-01-01

    Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m. PMID:27517936

  15. Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2009-12-01

    Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point

  16. Atmospheric Science Research Using Raman Lidar at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    A broad overview of the research that is taking place in the Code 924 Raman Lidar group will be presented. The measurement capabilities of two instruments, the Scanning Raman Lidar (SRL) and the Raman Airborne Spectroscopic Lidar (RASL), will be discussed. Case studies to be presented include: 1) high resolution measurements of water vapor during a boundary layer bore wave event; 2) a study of the influence of thin cirrus clouds on satellite retrievals of water vapor; 3) the retrieval of warm cloud properties such as droplet radius and number density; and 4) remote aerosol characterization using multiwavelength lidar and others.

  17. 4D Terrestrial LiDAR Data Collection: Geomorphic and Hydraulic Applications (Invited)

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.; Kinzel, P. J.; Draut, A. E.; Logan, J.

    2013-12-01

    Terrestrial LiDAR, also known as T-LiDAR, ground-based LiDAR, or Terrestrial Laser Scanning, can provide great insights into some types of geomorphic and hydraulic studies, particularly when collected repeatedly over time. Because T-LiDAR collects a large amount of data on a set grid, oftentimes processes are inadvertently captured that are not part of the initial research question but can be important factors in their own right. In addition, though T-LiDAR is most often used at relatively small sites for high-precision scanning, it also can be used for relatively rapid meso-scale site measurements, albeit typically with less precision. Using examples from the Elwha River dam removals, WA, a canal experiment in NE, and several small river restoration sites in CA, we highlight several important and innovative uses of T-LiDAR measurements, including quick temporal scale changes in water surface features and larger temporal- and spatial-scale changes in reservoir deltaic deposits and longitudinal profile features. Also discussed will be some considerations for improving T-LiDAR error estimation and a comparison to other data collection techniques, including aerial LiDAR, structure-from-motion photogrammetry, and UAV- and plane-captured photogrammetry.

  18. Spaceborne lidar measurement accuracy - Simulation of aerosol, cloud, molecular density, and temperature retrievals

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Browell, E. V.

    1982-01-01

    In connection with studies concerning the use of an orbiting optical radar (lidar) to conduct aerosol and cloud measurements, attention has been given to the accuracy with which lidar return signals could be measured. However, signal-measurement error is not the only source of error which can affect the accuracy of the derived information. Other error sources are the assumed molecular-density and atmospheric-transmission profiles, and the lidar calibration factor (which relates signal to backscatter coefficient). The present investigation has the objective to account for the effects of all these errors sources for several realistic combinations of lidar parameters, model atmospheres, and background lighting conditions. In addition, a procedure is tested and developed for measuring density and temperature profiles with the lidar, and for using the lidar-derived density profiles to improve aerosol retrievals.

  19. Lidar base specification

    USGS Publications Warehouse

    Heidemann, Hans Karl.

    2012-01-01

    Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  20. Ozone Differential Absorption Lidar Algorithm Intercomparison

    NASA Astrophysics Data System (ADS)

    Godin, Sophie; Carswell, Allen I.; Donovan, David P.; Claude, Hans; Steinbrecht, Wolfgang; McDermid, I. Stuart; McGee, Thomas J.; Gross, Michael R.; Nakane, Hideaki; Swart, Daan P. J.; Bergwerff, Hans B.; Uchino, Osamu; von der Gathen, Peter; Neuber, Roland

    1999-10-01

    An intercomparison of ozone differential absorption lidar algorithms was performed in 1996 within the framework of the Network for the Detection of Stratospheric Changes (NDSC) lidar working group. The objective of this research was mainly to test the differentiating techniques used by the various lidar teams involved in the NDSC for the calculation of the ozone number density from the lidar signals. The exercise consisted of processing synthetic lidar signals computed from simple Rayleigh scattering and three initial ozone profiles. Two of these profiles contained perturbations in the low and the high stratosphere to test the vertical resolution of the various algorithms. For the unperturbed profiles the results of the simulations show the correct behavior of the lidar processing methods in the low and the middle stratosphere with biases of less than 1% with respect to the initial profile to as high as 30 km in most cases. In the upper stratosphere, significant biases reaching 10% at 45 km for most of the algorithms are obtained. This bias is due to the decrease in the signal-to-noise ratio with altitude, which makes it necessary to increase the number of points of the derivative low-pass filter used for data processing. As a consequence the response of the various retrieval algorithms to perturbations in the ozone profile is much better in the lower stratosphere than in the higher range. These results show the necessity of limiting the vertical smoothing in the ozone lidar retrieval algorithm and questions the ability of current lidar systems to detect long-term ozone trends above 40 km. Otherwise the simulations show in general a correct estimation of the ozone profile random error and, as shown by the tests involving the perturbed ozone profiles, some inconsistency in the estimation of the vertical resolution among the lidar teams involved in this experiment.

  1. 3D Modeling of Landslide in Open-pit Mining on Basis of Ground-based LIDAR Data

    NASA Astrophysics Data System (ADS)

    Hu, H.; Fernandez-Steeger, T. M.; Azzam, R.; Arnhardt, C.

    2009-04-01

    Slope stability is not only an important problem which is related to production and safety in open-pit mining, but also very complex task. There are three main reasons which affect the slope stability as follows: geotechnical factors: Geological structure, lithologic characteristics, water, cohesion, friction, etc.; climate factors: Rainfall and temperature; and external factors: Open-pit mining process, explosion vibration, dynamic load, etc.. The 3rd reason, as a specially one in open-pit mining, not only causes some dynamic problems but also induces the fast geometry changing which must be considered in the following research using numerical simulation and stability analysis. Recently, LIDAR technology has been applied in many fields and places in the world wide. Ground-based LIDAR technology with high accuracy up to 3mm increasingly accommodates to monitoring landslides and detecting changing. LIDAR data collection and preprocessing research have been carried out by Department of Engineering Geology and Hydrogeology at RWTH Aachen University. LIDAR data, so-called a point-cloud of mass data in high density can be obtained in short time for the sensitive open-pit mining area by using ground-based LIDAR. To obtain a consistent surface model, it is necessary to set up multiple scans with the ground-based LIDAR. The framework of data preprocessing which can be implemented by Poly-Works is introduced as follows: gross error detection and elimination, integration of reference frame, model fusion of different scans (re-sampled in overlap region), data reduction without removing the useful information which is a challenge and research front in LIDAR data processing. After data preprocessing, 3D surface model can be directly generated in Poly-Works or generated in other software by building the triangular meshes. The 3D surface landslide model can be applied to further researches such as: real time landslide geometry monitoring due to the fast data collection and

  2. Quantifying riparian zone structure from airborne LiDAR: Vegetation filtering, anisotropic interpolation, and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Brazier, Richard

    2012-06-01

    SummaryAdvances in remote sensing technology, notably in airborne Light Detection And Ranging (LiDAR), have facilitated the acquisition of high-resolution topographic and vegetation datasets over increasingly large areas. Whilst such datasets may provide quantitative information on surface morphology and vegetation structure in riparian zones, existing approaches for processing raw LiDAR data perform poorly in riparian channel environments. A new algorithm for separating vegetation from topography in raw LiDAR data, and the performance of the Elliptical Inverse Distance Weighting (EIDW) procedure for interpolating the remaining ground points, are evaluated using data derived from a semi-arid ephemeral river. The filtering procedure, which first applies a threshold (either slope or elevation) to classify vegetation high-points, and second a regional growing algorithm from these high-points, avoids the classification of high channel banks as vegetation, preserving existing channel morphology for subsequent interpolation (2.90-9.21% calibration error; 4.53-7.44% error in evaluation for slope threshold). EIDW, which accounts for surface anisotropy by converting the remaining elevation points to streamwise co-ordinates, can outperform isoptropic interpolation (IDW) on channel banks, however, performs less well in isotropic conditions, and when local anisotropy is different to that of the main channel. A key finding of this research is that filtering parameter uncertainty affects the performance of the interpolation procedure; resultant errors may propagate into the Digital Elevation Model (DEM) and subsequently derived products, such as Canopy Height Models (CHMs). Consequently, it is important that this uncertainty is assessed. Understanding and developing methods to deal with such errors is important to inform users of the true quality of laser scanning products, such that they can be used effectively in hydrological applications.

  3. Synthetic vision helicopter flights using high resolution LIDAR terrain data

    NASA Astrophysics Data System (ADS)

    Sindlinger, A.; Meuter, M.; Barraci, N.; Güttler, M.; Klingauf, U.; Schiefele, J.; Howland, D.

    2006-05-01

    Helicopters are widely used for operations close to terrain such as rescue missions; therefore all-weather capabilities are highly desired. To minimize or even avoid the risk of collision with terrain and obstacles, Synthetic Vision Systems (SVS) could be used to increase situational awareness. In order to demonstrate this, helicopter flights have been performed in the area of Zurich, Switzerland A major component of an SVS is the three-dimensional (3D) depiction of terrain data, usually presented on the primary flight display (PFD). The degree of usability in low level flight applications is a function of the terrain data quality. Today's most precise, large scale terrain data are derived from airborne laser scanning technologies such as LIDAR (light detection and ranging). A LIDAR dataset provided by Swissphoto AG, Zurich with a resolution of 1m was used. The depiction of high resolution terrain data consisting of 1 million elevation posts per square kilometer on a laptop in an appropriate area around the helicopter is challenging. To facilitate the depiction of the high resolution terrain data, it was triangulated applying a 1.5m error margin making it possible to depict an area of 5x5 square kilometer around the helicopter. To position the camera correctly in the virtual scene the SVS had to be supplied with accurate navigation data. Highly flexible and portable measurement equipment which easily could be used in most aircrafts was designed. Demonstration flights were successfully executed in September, October 2005 in the Swiss Alps departing from Zurich.

  4. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  5. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure

    NASA Astrophysics Data System (ADS)

    Kotchenova, Svetlana Y.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Davis, Anthony B.; Dubayah, Ralph; Myneni, Ranga B.

    2003-08-01

    Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the modeling of the lower portions of recorded waveforms in the near-infrared spectrum. In this study we apply time-dependent stochastic radiative transfer (RT) theory to model the propagation of lidar pulses through forest canopies. A time-dependent stochastic RT equation is formulated and solved numerically. Such an approach describes multiple scattering events, allows for realistic representation of forest structure including foliage clumping and gaps, simulates off-nadir and multiangular observations, and has the potential to provide better approximations of return waveforms. The model was tested with field data from two conifer forest stands (southern old jack pine and southern old black spruce) in central Canada and two closed canopy deciduous forest stands (with overstory dominated by tulip poplar) in eastern Maryland. Model-simulated signals were compared with waveforms recorded by the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) over these regions. Model simulations show good agreement with SLICER signals having a slow decay of the waveform. The analysis of the effects of multiple scattering shows that multiply scattered photons magnify the amplitude of the reflected signal, especially that originating from the lower portions of the canopy.

  6. Calculating LiDAR Point Cloud Uncertainty and Propagating Uncertainty to Snow-Water Equivalent Data Products

    NASA Astrophysics Data System (ADS)

    Gadomski, P. J.; Deems, J. S.; Glennie, C. L.; Hartzell, P. J.; Butler, H.; Finnegan, D. C.

    2015-12-01

    The use of high-resolution topographic data in the form of three-dimensional point clouds obtained from laser scanning systems (LiDAR) is becoming common across scientific disciplines.However little consideration has typically been given to the accuracy and the precision of LiDAR-derived measurements at the individual point scale.Numerous disparate sources contribute to the aggregate precision of each point measurement, including uncertainties in the range measurement, measurement of the attitude and position of the LiDAR collection platform, uncertainties associated with the interaction between the laser pulse and the target surface, and more.We have implemented open-source software tools to calculate per-point stochastic measurement errors for a point cloud using the general LiDAR georeferencing equation.We demonstrate the use of these propagated uncertainties by applying our methods to data collected by the Airborne Snow Observatory ALS, a NASA JPL project using a combination of airborne hyperspectral and LiDAR data to estimate snow-water equivalent distributions over full river basins.We present basin-scale snow depth maps with associated uncertainties, and demonstrate the propagation of those uncertainties to snow volume and snow-water equivalent calculations.

  7. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  8. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  9. Gluing for Raman lidar systems using the lamp mapping technique.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis. PMID:25608203

  10. Data Fusion of LIDAR Into a Region Growing Stereo Algorithm

    NASA Astrophysics Data System (ADS)

    Veitch-Michaelis, J.; Muller, J.-P.; Storey, J.; Walton, D.; Foster, M.

    2015-05-01

    Stereo vision and LIDAR continue to dominate standoff 3D measurement techniques in photogrammetry although the two techniques are normally used in competition. Stereo matching algorithms generate dense 3D data, but perform poorly on low-texture image features. LIDAR measurements are accurate, but imaging requires scanning and produces sparse point clouds. Clearly the two techniques are complementary, but recent attempts to improve stereo matching performance on low-texture surfaces using data fusion have focused on the use of time-of-flight cameras, with comparatively little work involving LIDAR. A low-level data fusion method is shown, involving a scanning LIDAR system and a stereo camera pair. By directly imaging the LIDAR laser spot during a scan, unique stereo correspondences are obtained. These correspondences are used to seed a regiongrowing stereo matcher until the whole image is matched. The iterative nature of the acquisition process minimises the number of LIDAR points needed. This method also enables simple calibration of stereo cameras without the need for targets and trivial coregistration between the stereo and LIDAR point clouds. Examples of this data fusion technique are provided for a variety of scenes.

  11. Building a LiDAR point cloud simulator: Testing algorithms for high resolution topographic change

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Abellán, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel

    2014-05-01

    Terrestrial laser technique (TLS) is becoming a common tool in Geosciences, with clear applications ranging from the generation of a high resolution 3D models to the monitoring of unstable slopes and the quantification of morphological changes. Nevertheless, like every measurement techniques, TLS still has some limitations that are not clearly understood and affect the accuracy of the dataset (point cloud). A challenge in LiDAR research is to understand the influence of instrumental parameters on measurement errors during LiDAR acquisition. Indeed, different critical parameters interact with the scans quality at different ranges: the existence of shadow areas, the spatial resolution (point density), and the diameter of the laser beam, the incidence angle and the single point accuracy. The objective of this study is to test the main limitations of different algorithms usually applied on point cloud data treatment, from alignment to monitoring. To this end, we built in MATLAB(c) environment a LiDAR point cloud simulator able to recreate the multiple sources of errors related to instrumental settings that we normally observe in real datasets. In a first step we characterized the error from single laser pulse by modelling the influence of range and incidence angle on single point data accuracy. In a second step, we simulated the scanning part of the system in order to analyze the shifting and angular error effects. Other parameters have been added to the point cloud simulator, such as point spacing, acquisition window, etc., in order to create point clouds of simple and/or complex geometries. We tested the influence of point density and vitiating point of view on the Iterative Closest Point (ICP) alignment and also in some deformation tracking algorithm with same point cloud geometry, in order to determine alignment and deformation detection threshold. We also generated a series of high resolution point clouds in order to model small changes on different environments

  12. Development of a differential absorption lidar for identification of carbon sequestration site leakage

    NASA Astrophysics Data System (ADS)

    Johnson, William Eric

    This thesis describes the development and deployment of a near-infrared scanning micropulse differential absorption lidar (DIAL) system for monitoring carbon dioxide sequestration site integrity. The DIAL utilizes a custom-built lidar (light detection and ranging) transmitter system based on two commercial tunable diode lasers operating at 1.571 microm, an acousto-optic modulator, fiber optic switches, and an Erbium-doped fiber amplifier to generate 65 microJ 200 ns pulses at a 15 kHz repetition rate. Backscattered laser transmitter light is collected with an 11 inch Schmidt-Cassegrain telescope where it is optically filtered to reduce background noise. A fiber-coupled photomultiplier tube operating in the photon counting mode is then used to monitor the collected return signal. Averaging over periods typically of one hour permit range-resolved measurements of carbon dioxide from 1 to 2.5 km with a typical error of 40 ppm. For monitoring a field site, the system scans over a field area by pointing the transmitter and receiver with a computer controlled motorized commercial telescope base. The system has made autonomous field measurements in an agricultural field adjacent to Montana State University and at the Kevin Dome carbon sequestration site in rural northern Montana. Comparisons have been made with an in situ sensor showing agreement between the two measurements to within the 40 error of the DIAL. In addition to the work on the 1.57 micron DIAL, this thesis also presents work done at NASA Langley Research Center on the development and deployment of a 2 micron integrated path differential absorption (IPDA) lidar. The 2 micron system utilizes a low repetition rate 140 mJ double pulsed Ho:Tm:YLF laser developed at NASA Langley.

  13. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry.

    PubMed

    Wood, C R; Pauscher, L; Ward, H C; Kotthaus, S; Barlow, J F; Gouvea, M; Lane, S E; Grimmond, C S B

    2013-01-01

    Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65-0.68 ms(-1)) as comparisons between sonic anemometers (0.35-0.73 ms(-1)). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12-1.63 ms(-1)) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. PMID:23201607

  14. Lidar windshear detection for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1991-01-01

    As part of the NASA/FAA National Integrated Windshear Program, a measurable windshear hazard index that can be remotely sensed from an aircraft is presented. This will provide a pilot information about the wind conditions he will experience at some later time if he continues along the present flight path. The technology analysis and end-to-end performance simulation, which measured S/N and resulting wind velocity errors for competing lidar systems, demonstrated that a Ho:YAG lidar at a wavelength of 2.1 microns and a CO2 lidar at 10.6 microns can give the pilot data about the line-of-sight component of a windshear threat in an area extending from his present position to two to four km in front of the aircraft.

  15. Evaluating lidar point densities for effective estimation of aboveground biomass

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  16. Modelling rating curves using remotely sensed LiDAR data

    USGS Publications Warehouse

    Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.

    2012-01-01

    Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote

  17. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  18. Lidar uncertainty and beam averaging correction

    NASA Astrophysics Data System (ADS)

    Giyanani, A.; Bierbooms, W.; van Bussel, G.

    2015-05-01

    Remote sensing of the atmospheric variables with the use of Lidar is a relatively new technology field for wind resource assessment in wind energy. A review of the draft version of an international guideline (CD IEC 61400-12-1 Ed.2) used for wind energy purposes is performed and some extra atmospheric variables are taken into account for proper representation of the site. A measurement campaign with two Leosphere vertical scanning WindCube Lidars and metmast measurements is used for comparison of the uncertainty in wind speed measurements using the CD IEC 61400-12-1 Ed.2. The comparison revealed higher but realistic uncertainties. A simple model for Lidar beam averaging correction is demonstrated for understanding deviation in the measurements. It can be further applied for beam averaging uncertainty calculations in flat and complex terrain.

  19. Calibration Technique for Polarization-Sensitive Lidars

    NASA Technical Reports Server (NTRS)

    Alvarez, J. M.; Vaughan, M. A.; Hostetler, C. A.; Hung, W. H.; Winker, D. M.

    2006-01-01

    Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).

  20. LIDAR-based outcrop characterisation - joint classification, surface and block size distribution

    NASA Astrophysics Data System (ADS)

    Tanner, David C.; Dietrich, Patrick; Krawczyk, Charlotte M.

    2013-04-01

    Outcrops, in the first instance, only offer at best a 2-2.5D view of the available geological information, such as joints and fractures. In order to study geodynamic processes, it is necessary to calculate true values of, for example, fracture densities and block dimensions. We show how LIDAR-generated point-cloud data of outcrops can be used to delineate such geological surfaces. Our methods do not require the point-set to be meshed; instead we work with the original point cloud, thus avoiding meshing errors. In a first step we decompose the point-cloud into tiny volumes; in each volume we calculate the best fitting plane. An expert can then decide which of the planes are important (in an interactive density pole diagram) and classify them. Actual block surfaces are identified by applying a clustering algorithm to the mini-planes. Subsequently, we calculate the size of these surfaces. Finally we estimate the block size distribution within the outcrop by projecting the block surfaces into the rock volume. To assess the reproducibility of our results we show to which extent they depend on various parameters, such as the resolution of the LIDAR scan and algorithm parameters. In theory the results can be calculated at the site of measurement to ensure the LIDAR scan resolution is sufficient and if necessary rerun the scan with different parameters. We demonstrate our methods with LIDAR data that we produced in a sandstone quarry in Germany. The part of the outcrop which we measured with the LIDAR was out-of-reach for measurements with a geological compass, but our results correlate well with compass measurements from a different outcrop in the same quarry. Three main surfaces could be delineated from the point cloud: the bedding, and two major joint types. The three fabrics are almost orthogonal. Our statistical results suggest that blocks with a volume of several hundred liters can be expected regularly within the quarry. The results can be directly used to

  1. High-resolution processing of long-pulse-lidar data

    NASA Technical Reports Server (NTRS)

    Gurdev, L. L.; Dreischuh, T. N.; Stoyanov, D. V.

    1992-01-01

    The purpose of this work is to demonstrate the performance of the Fourier-deconvolution technique developed to improve the resolution of the long-pulse coherent lidar power profile, and to take into account the multiplicative fluctuations. The behavior of the error due to the power fluctuations and a method to reduce it are analyzed theoretically and simulated numerically. A processing of real data obtained from the National Oceanic and Atmospheric Administration (NOAA) ground-based Doppler lidar is also presented. Similar problems were investigated using a different approach based on introducing a correction function to the lidar equation.

  2. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  3. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  4. Potential for lidar measurements of temperature from space

    NASA Astrophysics Data System (ADS)

    Marichev, V. N.; Bochkovskii, D. A.

    2014-11-01

    Potential for lidar measurements of temperature from space by the method of elastic molecular light scattering is investigated. Errors of lidar temperature measurements are calculated. A solid-state Nd: YAG laser generating the 3rd and 4th harmonics with wavelengths of 353 and 266 nm was used as a transmitter. Results of analysis demonstrate high efficiency of sensing in the UV range at a wavelength of 353 nm.

  5. Study on evaluation of photoelectric jamming effectiveness on ranging lidar

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Yang, Haiqiang; Gao, Bo

    2015-11-01

    Lidar (Light Detection and Range) is a brand-new field and research hotspot. Ranging lidar is studied in this paper. Specifically, its basic working principle and photoelectric jamming mechanism are introduced. Then, the ranging error jamming success rate rule is developed for laser distance deception jamming. And the effectiveness evaluation of laser blinding jamming is based on the influence level on ranging accuracy and ranging function. The results have some reference value to evaluation of jamming test effectiveness.

  6. Fiber-based lidar for atmospheric water-vapor measurements.

    PubMed

    Little, L M; Papen, G C

    2001-07-20

    The design and evaluation of a prototype fiber-based lidar system for autonomous measurement of atmospheric water vapor are presented. The system components are described, along with current limitations and options for improvement. Atmospheric measurements show good agreement with modeled signal returns from 400 to 1000 m but are limited below 400 m as a result of errors in signal processing caused by violation of the assumptions used in the derivation of the differential absorption lidar equation. PMID:18360367

  7. Low-Pass Parabolic FFT Filter for Airborne and Satellite Lidar Signal Processing

    PubMed Central

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-01-01

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing. PMID:26473881

  8. Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.

    PubMed

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-01-01

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing. PMID:26473881

  9. On-site sensor recalibration of a spinning multi-beam LiDAR system using automatically-detected planar targets.

    PubMed

    Chen, Chia-Yen; Chien, Hsiang-Jen

    2012-01-01

    This paper presents a fully-automated method to establish a calibration dataset from on-site scans and recalibrate the intrinsic parameters of a spinning multi-beam 3-D scanner. The proposed method has been tested on a Velodyne HDL-64E S2 LiDAR system, which contains 64 rotating laser rangefinders. By time series analysis, we found that the collected range data have random measurement errors of around ±25 mm. In addition, the layered misalignment of scans among the rangefinders, which is identified as a systematic error, also increases the difficulty to accurately locate planar surfaces. We propose a temporal-spatial range data fusion algorithm, along with a robust RANSAC-based plane detection algorithm to address these issues. Furthermore, we formulate an alternative geometric interpretation of sensory data using linear parameters, which is advantageous for the calibration procedure. The linear representation allows the proposed method to be generalized to any LiDAR system that follows the rotating beam model. We also confirmed in this paper, that given effective calibration datasets, the pre-calibrated factory parameters can be further tuned to achieve significantly improved performance. After the optimization, the systematic error is noticeable lowered, and evaluation shows that the recalibrated parameters outperform the factory parameters with the RMS planar errors reduced by up to 49%. PMID:23202019

  10. On-Site Sensor Recalibration of a Spinning Multi-Beam LiDAR System Using Automatically-Detected Planar Targets

    PubMed Central

    Chen, Chia-Yen; Chien, Hsiang-Jen

    2012-01-01

    This paper presents a fully-automated method to establish a calibration dataset from on-site scans and recalibrate the intrinsic parameters of a spinning multi-beam 3-D scanner. The proposed method has been tested on a Velodyne HDL-64E S2 LiDAR system, which contains 64 rotating laser rangefinders. By time series analysis, we found that the collected range data have random measurement errors of around ±25 mm. In addition, the layered misalignment of scans among the rangefinders, which is identified as a systematic error, also increases the difficulty to accurately locate planar surfaces. We propose a temporal-spatial range data fusion algorithm, along with a robust RANSAC-based plane detection algorithm to address these issues. Furthermore, we formulate an alternative geometric interpretation of sensory data using linear parameters, which is advantageous for the calibration procedure. The linear representation allows the proposed method to be generalized to any LiDAR system that follows the rotating beam model. We also confirmed in this paper, that given effective calibration datasets, the pre-calibrated factory parameters can be further tuned to achieve significantly improved performance. After the optimization, the systematic error is noticeable lowered, and evaluation shows that the recalibrated parameters outperform the factory parameters with the RMS planar errors reduced by up to 49%. PMID:23202019

  11. Monolithic high peak-power coherent Doppler lidar system

    NASA Astrophysics Data System (ADS)

    Kotov, Leonid V.; Töws, Albert; Kurtz, Alfred; Bobkov, Konstantin K.; Aleshkina, Svetlana S.; Bubnov, Mikhail M.; Lipatov, Denis S.; Guryanov, Alexey N.; Likhachev, Mikhail

    2016-03-01

    In this work we present a monolithic lidar system, based on a newly-developed double-clad large mode area (LMA) polarization-maintaining Er-doped fiber and specially designed LMA passive components. Optimization of the fiber designs resulted in as high as 100 W of SBS limited peak power. The amplifier and its passive components (circulator and collimator) were integrated in an existing lidar system. The enhanced lidar system provides three times increase of scanning range compared to one based on standard telecom-grade amplifiers.

  12. Fluorescence imaging of historical buildings by lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Raimondi, Valentina; Weibring, Petter K. A.; Cecchi, Giovanna; Edner, Hans; Johansson, Thomas; Pantani, Luca; Sundner, Barbro; Svanberg, Sune

    1998-10-01

    This paper reports on the first lidar imaging experiments carried out on a historical monument. The measurements were carried out by scanning the northern facade of the Lund cathedral from a distance of at least 60 m with a mobile fluorescence lidar. Two different arrangements were used for the receiver: an optical multi-spectral analyzer or two photomultipliers equipped with interference filters. Depending on the wavelength the fluorescence images allow the mapping of biodirection colonization or of the different stony materials. To our knowledge these were the first images of a historical building detected by a fluorescence lidar.

  13. Similarity and Complementarity of Airborne and Terrestrial LiDAR Data in High Mountain Regions

    NASA Astrophysics Data System (ADS)

    Kamp, Nicole; Glira, Philipp; Pfeifer, Norbert

    2013-04-01

    airborne to the terrestrial data (or vice versa) without introducing systematic errors caused by the above mentioned differences. A workflow for this analysis is established with command line processing of the point clouds using OPALS (Orientation and Processing of Airborne Laser Scanning data, Vienna University of Technology). For further processing of the data, it is necessary to adjust the different scans by using least squares matching of surfaces to improve the orientation of the ALS and TLS data. Handling of the terrestrial LiDAR data with its very high point density and the data filtering to minimize errors and artefacts turned out to be the biggest challenges. After a relative and absolute orientation of the TLS scans with the help of GNSS spheres (see P. Glira, ESSI1.5), the data are processed in order to make it comparable with the airborne LiDAR scans. Different ranges and consequential different footprint sizes and a big variance of the point densities have to be considered. Therefore the application of different filter and interpolation methods is important to get the best results and in further consequence to calculate an ideal Digital Terrain Model (DTM), which provides a good input dataset for future modelling of the geomorphic processes in the PROSA study area around the Gepatschferner.

  14. Lidar Measurements of Ozone in the Upper Troposphere - Lower Stratosphere at Siberian Lidar Station in Tomsk

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Dolgii, S. I.; Burlakov, V. D.; Nevzorov, A. A.; Nevzorov, A. V.

    2016-06-01

    The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors.

  15. Coherent lidar design and performance verification

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    The verification of LAWS beam alignment in space can be achieved by a measurement of heterodyne efficiency using the surface return. The crucial element is a direct detection signal that can be identified for each surface return. This should be satisfied for LAWS but will not be satisfied for descoped LAWS. The performance of algorithms for velocity estimation can be described with two basic parameters: the number of coherently detected photo-electrons per estimate and the number of independent signal samples per estimate. The average error of spectral domain velocity estimation algorithms are bounded by a new periodogram Cramer-Rao Bound. Comparison of the periodogram CRB with the exact CRB indicates a factor of two improvement in velocity accuracy is possible using non-spectral domain estimators. This improvement has been demonstrated with a maximum-likelihood estimator. The comparison of velocity estimation algorithms for 2 and 10 micron coherent lidar was performed by assuming all the system design parameters are fixed and the signal statistics are dominated by a 1 m/s rms wind fluctuation over the range gate. The beam alignment requirements for 2 micron are much more severe than for a 10 micron lidar. The effects of the random backscattered field on estimating the alignment error is a major problem for space based lidar operation, especially if the heterodyne efficiency cannot be estimated. For LAWS, the biggest science payoff would result from a short transmitted pulse, on the order of 0.5 microseconds instead of 3 microseconds. The numerically errors for simulation of laser propagation in the atmosphere have been determined as a joint project with the University of California, San Diego. Useful scaling laws were obtained for Kolmogorov atmospheric refractive turbulence and an atmospheric refractive turbulence characterized with an inner scale. This permits verification of the simulation procedure which is essential for the evaluation of the effects of

  16. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry

    NASA Astrophysics Data System (ADS)

    Wang, Chisheng; Li, Qingquan; Liu, Yanxiong; Wu, Guofeng; Liu, Peng; Ding, Xiaoli

    2015-03-01

    Due to the low-cost and lightweight units, single-wavelength LiDAR bathymetric systems are an ideal option for shallow-water (<12 m) bathymetry. However, one disadvantage of such systems is the lack of near-infrared and Raman channels, which results in difficulties in extracting the water surface. Therefore, the choice of a suitable waveform processing method is extremely important to guarantee the accuracy of the bathymetric retrieval. In this paper, we test six algorithms for single-wavelength bathymetric waveform processing, i.e. peak detection (PD), the average square difference function (ASDF), Gaussian decomposition (GD), quadrilateral fitting (QF), Richardson-Lucy deconvolution (RLD), and Wiener filter deconvolution (WD). To date, most of these algorithms have previously only been applied in topographic LiDAR waveforms captured over land. A simulated dataset and an Optech Aquarius dataset were used to assess the algorithms, with the focus being on their capability of extracting the depth and the bottom response. The influences of a number of water and equipment parameters were also investigated by the use of a Monte Carlo method. The results showed that the RLD method had a superior performance in terms of a high detection rate and low errors in the retrieved depth and magnitude. The attenuation coefficient, noise level, water depth, and bottom reflectance had significant influences on the measurement error of the retrieved depth, while the effects of scan angle and water surface roughness were not so obvious.

  17. LiDAR Analysis of Hector Mine Fault Scarp Degradation

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Hudnut, K. W.; Glennie, C. L.; Sousa, F.; Stock, J. M.; Akciz, S. O.

    2014-12-01

    The Mw 7.1 right-lateral strike-slip Hector Mine earthquake occurred on 10/16/1999 and generated an approximately 48 km long surface rupture. The Lavic Lake fault and the central section of the Bullion fault and several lesser faults ruptured, characterized by maximum strike slip of 5.25 ±0.85 m [Treiman, 2002]. As a very remote and un-populated area of the Mojave Desert, southern California, the study area is highly favorable for fault degradation studies with essentially no influence from vegetation or human activity. Airborne LiDAR (light detection and ranging) data and terrestrial laser scanning (TLS) are used to evaluate the form and rate of degradation of scarps along the Hector Mine fault rupture, California, USA. Airborne LiDAR data were acquired in 2000 and 2012 and these data were differenced using a newly developed algorithm for point cloud matching, which is improved over prior methods by accounting for scan geometry error sources. Using the bi-temporal data (scrutinizing profiles from 2000 & 2012), parameters for a fault scarp diffusion model are estimated and then a simulation result is generated to predict the evolved landform shape at the time of the 2014 TLS data set. Results are checked against TLS 2014 data collected at five key sites within the maximum slip field study area. In the past, scarp degradation has been mostly investigated using traditional survey methods (e.g., measuring elevations of points in a line perpendicular to the scarp) that require time-consuming field work and tend to introduce bias and variance due to data limitations. Airborne, mobile and terrestrial LiDAR data offer great potential to precisely document and rigorously determine morphologic degradation of fault scarps [Hilley et al., 2010]. In the present study, a unique set of data have been acquired at three points in time across several classic types of fault scarps and offset fault zone features. This allows progress in assessing the fitting of functions and

  18. Tele-Operated Lunar Rover Navigation Using Lidar

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Allan, Mark B.; Utz, Hans, Heinrich; Deans, Matthew C.; Bouyssounouse, Xavier; Choi, Yoonhyuk; Fluckiger, Lorenzo; Lee, Susan Y.; To, Vinh; Loh, Jonathan; Bluethmann, William; Burridge, Robert R.; Graf, Jodi; Hambuchen, Kimberly

    2012-01-01

    Near real-time tele-operated driving on the lunar surface remains constrained by bandwidth and signal latency despite the Moon s relative proximity. As part of our work within NASA s Human-Robotic Systems Project (HRS), we have developed a stand-alone modular LIDAR based safeguarded tele-operation system of hardware, middleware, navigation software and user interface. The system has been installed and tested on two distinct NASA rovers-JSC s Centaur2 lunar rover prototype and ARC s KRex research rover- and tested over several kilometers of tele-operated driving at average sustained speeds of 0.15 - 0.25 m/s around rocks, slopes and simulated lunar craters using a deliberately constrained telemetry link. The navigation system builds onboard terrain and hazard maps, returning highest priority sections to the off-board operator as permitted by bandwidth availability. It also analyzes hazard maps onboard and can stop the vehicle prior to contacting hazards. It is robust to severe pose errors and uses a novel scan alignment algorithm to compensate for attitude and elevation errors.

  19. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  20. Canopy fuels inventory and mapping using large-footprint lidar

    NASA Astrophysics Data System (ADS)

    Peterson, Birgit Ellen

    resolution of the lidar-based inputs confirmed that FARSITE outputs are affected by the spatial variability of the input data. Furthermore, a sensitivity analysis demonstrated that FARSITE is sensitive to potential errors in the canopy structure input grids. The results of this dissertation show that lidar can be used effectively to predict CBD and CBH for the purpose of fire behavior modeling and that investment in these lidar-based canopy structure data is worthwhile, especially for forests characterized by significant heterogeneity. This work affirms that lidar is a useful tool for future canopy fuels inventory and mapping.

  1. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    altitude. The measurements showed -1 ppm random errors for 8-10 km altitudes and -30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2 lidar on the NASA DC-8 and added an O2 lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected -linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. The seven flights in the 2011 Ascends campaign were flown over a wide variety of surface and cloud conditions in the US, which produced a wide variety of lidar signal conditions. Details of the lidar measurements and their analysis will be described in the presentation.

  2. Estimation of shoreline position and change using airborne topographic lidar data

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A.

    2002-01-01

    A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

  3. Combining OPAC and lidar

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Talianu, Camelia; Radu, Cristian; Stefan, Sabina

    2007-10-01

    The properties of aerosol particles are highly variable, both in time and space. This refers to the number density, the microphysical properties (size distribution, refractive index, effective radius), and to the height distribution. In most cases the actual properties are not known. Using lidar data together with models can help improve the knowledge regarding the particulate atmospheric constituents which affect local radiative forcing, the radiation balance of the earth, and thus climate. This paper presents an attempt to integrate elastic backscatter lidar data in OPAC software package in order to find the most realistic aerosol vertical distribution and their optical and microphysical characteristics. The necessity to reduce the variability of naturally occurring aerosols to typical cases, but without neglecting possible fluctuations, is achieved in OPAC by the use of a dataset of typical internally mixed aerosol components. In addition, any mixtures of the basic components can be used to calculate the overall optical parameters. Experimental or modeled meteorological profiles (temperature, pressure, relative humidity) in complementary to experimental lidar data are used to calculate the solutions of lidar equation that fits, in an iterative manner, to the output of the model. Two type of uncertainties are diminished in this way: first, the modeled profiles of lidar ratio are used in lidar data processing instead of a constant value; second, aerosol height profiles are no longer being assumed in the model, but directly measured. This procedure was applied to synthetic lidar signals in order to test its advantages and limitation.

  4. Doppler Lidar Wind Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  5. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  6. Using lidar to characterize particles from point and diffuse sources in an agricultural field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (LIght Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. Aglite is a three-wavelength portable scanning lidar system built at the Energy Dynamics Laboratory (EDL) to measure the spati...

  7. Influence of coherent mesoscale structures on satellite-based Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    1985-01-01

    The influence of coherent mesoscale structures on satellite based Doppler lidar wind measurements was investigated. Range dependent weighting functions and the single shot SNR of scan angle are examined and a space shuttle lidar experiment which used a fixed beam and rotating shuttle is simulated.

  8. Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Valencia, Sandra; Welton, Ellsworth J.; Spinhirne, James D.

    2005-01-01

    The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track.

  9. Design and Calibration of Autonomous Coherent Doppler Lidar for Space Missions

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod G.; Kavaya, Michael (Technical Monitor)

    2001-01-01

    Developed a new algorithm for the simulation of three dimensional homogeneous turbulent velocity fields. For typical atmospheric conditions it is impossible to produce a simulated velocity field that simultaneously satisfy a given spatial correlation and the corresponding spatial spectrum because of spectral aliasing. The new algorithms produce a turbulent velocity field which has accurate spatial correlations which is required for performance predictions from space-based systems. Developed a new algorithm for extracting the spatial statistics of the atmospheric velocity field using coherent Doppler lidar. The performance of the algorithm was compared with past methods and the new algorithm produces useful results for space-based data, which was not possible before. Developed new methods for verification of the errors in ground-based and space-based Doppler lidar wind measurements. These new methods do not require independent in situ data. This is an important issue for the verification of space-based Doppler lidar measurements of the global wind field. The performance of the new algorithm was compared with past results for both space-based and ground-based operation. The new algorithm has the best performance and is the only algorithm that performed satisfactory for spacebased operation. The performance of coherent Doppler lidar for a space missions with various scanning geometries was determined using computer simulation which contained the effects of random instrumental velocity errors, wind shear, wind variability along the range-gate and from shot-to-shot, and random variations in atmospheric aerosol backscatter over the measurement volume. The bias in the velocity estimates was small and the accuracy in the is typically less than 0.5 m/s for high signal conditions. For a large number of shot per velocity estimate, the threshold signal level for acceptable estimates is proportional to the number of shots to the minus one half power. This agrees with previous

  10. Lidar profiling by long rectangular-like chopped laser pulses

    NASA Astrophysics Data System (ADS)

    Stoyanov, Dimitar V.; Gurdev, Ljuan L.; Kolarov, Georgi; Vankov, O. I.

    2000-06-01

    A novel, simple method is developed and tested (experimentally and by simulations) for effective, high- resolution retrieving of time-resolved lidar profiles for long rectangular-like laser pulses with arbitrary shapes of their leading and trailing edges. Such pulses are typically created by chopping cw optical radiation. The processing algorithm is based on differentiation and iteration procedures and avoids the use of divisions or deconvolutions that are often responsible for some errors and increases in the noise. Comparisons with pulsed and pseudo-random noise modulation lidar methods are given. The method enables a simplification of the entire lidar hardware. No powerful pulsed supplies, high driving pulsed voltages, complicated optical modulations, etc. are required. It could be very attractive for high-resolution, wide-spectral-band lidar measurements in the atmosphere, ocean, etc., using arbitrary optical emitters, especially for closer distances.

  11. Geoscience Applications of Airborne and Spaceborne Lidar Altimetry

    NASA Technical Reports Server (NTRS)

    Harding David J.

    1999-01-01

    Recent advances in lidar altimetry technology have enabled new methods to describe the vertical structure of the Earth's surface with great accuracy. Application of these methods in several geoscience disciplines will be described. Airborne characterization of vegetation canopy structure will be illustrated, including a validation of lidar-derived Canopy Height Profiles for closed-canopy, broadleaf forests. Airborne detection of tectonic landforms beneath dense canopy will also be illustrated, with an application mapping active fault traces in the Puget Lowland of Washington state for earthquake hazard assessment purposes. Application of data from the first and second flights of the Shuttle Laser Altimeter will also be discussed in an assessment of global digital elevation model accuracy and error characteristics. Two upcoming space flight missions will be described, the Vegetation Canopy Lidar (VCL) and the Ice, Cloud and Land Elevation Mission (ICESat), which will provide comprehensive lidar altimeter observations of the Earth's topography and vegetation cover.

  12. Initial Tests and Accuracy Assesment of a Compact Mobile Laser Scanning System

    NASA Astrophysics Data System (ADS)

    Julge, K.; Ellmann, A.; Vajakas, T.; Kolka, R.

    2016-06-01

    Mobile laser scanning (MLS) is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  13. Scanning, Scanning, Everywhere.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia; Myers, Brenda

    1997-01-01

    Discusses uses of scanning (process of copying or converting text, images, and objects into information that the computer can recognize and manipulate) in schools and notes possible desktop publishing projects. Describes popular scanners and ways to edit a scanned image. A sidebar gives costs and telephone numbers for nine scanners. (AEF)

  14. Lidar wind shear detection for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Bowles, Roland L.

    1991-08-01

    National attention has focused on the critical problem of detecting and avoiding windshear since the crash on August 2, 1985, of a Lockheed L-1011 at Dallas/Fort Worth International Airport. As part of The NASA/FAA National Integrated Windshear Program, the authors have defined a measurable windshear hazard index that can be remotely sensed from an aircraft, to give the pilot information about the wind conditions he will experience at some later time if he continues along the present flight path. The technology analysis and end- to-end performance simulation, which measures signal-to-noise ratios and resulting wind velocity errors for competing coherent lidar systems, shows that a Ho:YAG lidar at a wavelength of 2.1 micrometers and a CO2 lidar at 10.6 micrometers can give the pilot information about the line-of-sight component of a windshear threat in a region extending from his present position to 2 to 4 km in front of the aircraft. This constitutes a warning time of 20 to 40 s, even under conditions of moderately heavy precipitation. Using these results, a Coherent Lidar Airborne Shear Sensor (CLASS), using a Q-switched CO2 laser at 10.6 micrometers , is being designed and developed for flight evaluation in early 1992.

  15. Doppler lidar sampling strategies and accuracies: Regional scale

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    1985-01-01

    It has been proposed that a Doppler lidar be placed in a polar orbit and scanned to provide estimates of lower tropospheric winds twice per day and with a spatial resolution of 300 km. Initial feasibility studies conducted primarily by NOAA and NASA presented an optimistic outlook for a space based lidar. The technology appeared within reach and initial computer simulations suggested that acceptable accuracies could be obtained. Those early studies exposed, however, several potential problem areas which included: (1) the algorithms for computing the wind vectors did not perform well when there were coherent gradients in the wind fields; and (2) the lifetime and power requirements of the lidar put severe restrictions on the pulse repetition frequency (PRF). These two basic problems are currently being addressed by a Doppler lidar simulation study focussed upon three primary objectives: (1) to develop optimum scan parameters and shot patterns for a satellite-based Doppler lidar; (2) to develop robust algorithms for computing wind vectors from lidar returns; and (3) to evaluate the impact of coherent mesoscale structures (wind gradients, clouds, aerosols) on up-scale wind estimates. An overview is provided of the simulation efforts with particular emphasis upon rationale and methodology. Since this research is currently underway, any results shown are meant only as evidence of progress.

  16. Doppler lidar measurement of profiles of turbulence and momentum flux

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Cupp, Richard E.; Healy, Kathleen R.

    1989-01-01

    A short-pulse CO2 Doppler lidar with 150-m range resolution measured vertical profiles of turbulence and momentum flux. Example measurements are reported of a daytime mixed layer with strong mechanical mixing caused by a wind speed of 15 m/sec, which exceeded the speed above the capping inversion. The lidar adapted an azimuth scanning technique previously demonstrated by radar. Scans alternating between two elevation angles allow determination of mean U-squared, V-squared, and W-squared. Expressions were derived to estimate the uncertainty in the turbulence parameters. A new processing method, partial Fourier decomposition, has less uncertainty than the filtering used earlier.

  17. Phoenix Lidar Operation Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Space Lidar and Applications

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Smith, David E. (Technical Monitor)

    2001-01-01

    With advances in lasers and electro-optic technology, lidar is becoming an established technique for remote sensing of the Earth and planets from space. Some of the earliest space-based lidar measurements were made in the early 1970s from lunar orbit using the laser altimeter on the Apollo 15 mission. Space lidar instruments in active use today include the MOLA instrument aboard the Mars Global Surveyor mission and the Near Laser Rangefinder on the Near Earth Asteroid Rendezvous (NEAR) Mission. This talk will review laser remote sensing techniques, critical technologies, and some results from past and present NASA missions. It will also review near term plans for NASA's ICESat and Picasso missions and summarize some concepts for lidar on future missions.

  19. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    NASA Astrophysics Data System (ADS)

    Cherukuru, N. W.; Calhoun, R.

    2016-06-01

    Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  20. Lidar Detection of Explosive Vapors in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, S. M.; Vorozhtsov, A. B.; Gorlov, E. V.; Zharkov, V. I.; Maksimov, E. M.; Panchenko, Yu. N.; Sakovich, G. V.

    2016-01-01

    The paper presents results of studying the feasibility of remote detection of explosive vapors in the atmosphere based on the lidar principle using the method of laser fragmentation/laser-induced fluorescence. A project of the mobile, automated, fast-response scanning UV lidar for explosives detection at distances of 10-50 m is presented. Experimental data on the detection of trinitrotoluene (TNT), hexogen (RDX), and Composition B (CompB) vapors at a distance of 13 m are given. The threshold sensitivity of the lidar detector of explosive vapors is estimated. For TNT vapors, the threshold sensitivity of the lidar detector is estimated to be 1•10-12 g/cm-3 for the detection probability P = 97%.

  1. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  2. Refractive Errors

    MedlinePlus

    ... and lens of your eye helps you focus. Refractive errors are vision problems that happen when the ... cornea, or aging of the lens. Four common refractive errors are Myopia, or nearsightedness - clear vision close ...

  3. Autonomous integrated navigation method based on the strapdown inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Lin, Zhili; Zhang, Chunxi

    2014-07-01

    An integrated navigation method based on the strapdown inertial navigation system (SINS) and Doppler Lidar was presented and its validity is demonstrated by practical experiments. A very effective and independent integrated navigation mode is realized that both an inertial navigation system (INS) and Lidar are not interfered with or screened by electromagnetic waves. In our work, the SINS error model was first introduced, and the velocity error model was transformed into body reference coordinates. Then the expression for measurement model of SINS/Lidar integrated navigation was deduced under Lidar reference coordinates. For application of land or vehicle navigation, the expression for the measurement model was simplified, and observation analysis was carried out. Finally, numerical simulation and vehicle test results were carried out to validate the availability and utility of the proposed SINS/Lidar integrated navigation method for land navigation.

  4. Two-wavelength backscattering lidar for stand off detection of aerosols

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt; Zygmunt, Marek; Gawlikowski, Andrzej; Gietka, Andrzej; Kaszczuk, Miroslawa; Knysak, Piotr; Mlodzianko, Andrzej; Muzal, Michal; Piotrowski, Wiesław; Wojtanowski, Jacek

    2008-10-01

    Following article presents LIDAR for stand off detection of aerosols which was constructed in Institute of Optoelectronics in Military University of Technology. LIDAR is a DISC type system (DIfferential SCattering) and is based on analysis of backscattering signal for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) - the first and the second harmonic of Nd:YAG laser. Optical receiving system is consisted of aspherical mirror lens, two additional mirrors and a system of interference filters. In detection system of LIDAR a silicon avalanche photodiode and two different amplifiers were used. Whole system is mounted on a specialized platform designed for possibility of LIDAR scanning movements. LIDAR is computer controlled. The compiled software enables regulation of the scanning platform work, gain control, and control of data processing and acquisition system. In the article main functional elements of LIDAR are shown and typical parameters of system work and construction are presented. One presented also first results of research with use of LIDAR. The aim of research was to detect and characterize scattering aerosol, both natural and anthropogenic one. For analyses of natural aerosols, cumulus cloud was used. For analyses of anthropogenic aerosols one used three various pyrotechnic mixtures (DM11, M2, M16) which generate smoke of different parameters. All scattering centers were firstly well described and theoretical analyses were conducted. Results of LIDAR research were compared with theoretical analyses and general conclusions concerning correctness of LIDAR work and its application were drawn.

  5. Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2012-01-01

    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.

  6. Small-Footprint Lidar Estimations of Sagebrush Canopy Characteristics

    SciTech Connect

    Matthew Anderson; Ryan Hruska; Jessica Mitchell; Nancy Glenn

    2011-05-01

    Separating lidar returns for use in determining canopy height and shape in low-height vegetation is difficult because the vegetation canopy return is often close to the ground return in time and space. In addition, height underestimation is likely exacerbated in sparsely vegetated shrub ecosystems. This study compares lidar point-cloud data to sagebrush canopy characteristics measured in the field. It was determined that cumulative prediction error could account for as much as 35.6% of the average height and 37.4% of the average canopy area of shrubs sampled. When scaling from the individual shrub scale to coarser scales, prediction error averaged over a number of shrubs decreases as observation numbers increase. High density (in this case an average of 9.46 returns per m2), small footprint lidar (in this case a footprint diameter of 18 cm at nadir) may provide sufficient accuracy for characterizing sagebrush structure and cover and estimating biomass across landscapes.

  7. LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Carter, W. E.; Slatton, K. C.

    2009-12-01

    Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the

  8. Accuracy of wind measurements using an airborne Doppler lidar

    NASA Technical Reports Server (NTRS)

    Carroll, J. J.

    1986-01-01

    Simulated wind fields and lidar data are used to evaluate two sources of airborne wind measurement error. The system is sensitive to ground speed and track angle errors, with accuracy required of the angle to within 0.2 degrees and of the speed to within 1 knot, if the recovered wind field is to be within five percent of the correct direction and 10 percent of the correct speed. It is found that errors in recovered wind speed and direction are dependent on wind direction relative to the flight path. Recovery of accurate wind fields from nonsimultaneous sampling errors requires that the lidar data be displaced to account for advection so that the intersections are defined by air parcels rather than fixed points in space.

  9. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    measurements showed 1 ppm random errors for 8-10 km altitudes and 30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2lidar on the NASA DC-8 and added an 02lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. We demonstrated measurements over the California Central Valley, to stratus cloud tops over the Pacific Ocean, over mountain regions with snow, and over several areas with broken clouds. Details of the lidar measurements and their analysis will be described in the presentation.

  10. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption during the ASCENDS 2009-2011 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G.; Hasselbrack, W.; Browell, E. V.

    2011-12-01

    altitude. The measurements showed ~1 ppm random errors for 8-10 km altitudes and ~30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2 lidar on the NASA DC-8 and added an O2 lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected ~linear change of DOD with altitude. For measurements at altitudes > 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. To date we have demonstrated measurements over the California Central Valley and to and through stratus clouds over the Pacific Ocean. Details of the lidar measurements and their analysis will be described in the presentation.

  11. Horizontal Wind Measurements using the HARLIE Holographic Lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas; Andrus, Ionio; Sanders, Jason; Schwemmer, Geary; Miller, David; Guerra, David; Starr, David OC. (Technical Monitor)

    2001-01-01

    We report the results of three campaigns in which the horizontal wind vector at cloud altitudes was measured using the holographic, conical-scan lidar HARLIE in its nadir-viewing mode. Measurements were made during the HOLO-1 and -2 tests in Utah and New Hampshire in March and June 1999, respectively, and at the DoE-ARM site in Oklahoma in September/October 2000. A novel algorithm facilitates the wind vector analysis of the HARLIE data. Observed wind velocity and direction were compared with radiosonde records and with other data obtained from video cloud imagery and independent lidar ranging. The results demonstrate good agreement between HARLIE data and the results of other methods. The conically scanning holographic lidar opens up new possibilities for obtaining the vertical profile of horizontal winds.

  12. CRYSTAL-FACE Polarization Lidar Research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    2005-01-01

    The University of Alaska Fairbanks (UAF) Polarization Diversity Lidar (PDL, Sassen 1994) participated in the July 2002 CRYSTAL-FACE field campaign, shortly after the PI moved from the University of Utah to UAF. The truck-mounted PDL is an advanced dual wavelength (1.06 and 0.532 micron), high resolution (0.1-s by 1.5-m), scanning lidar system designed as a testbed for evaluating laser backscatter depolarization techniques for the study of clouds and aerosols in the atmosphere. The main goals identified in our proposal for the CRYSTAL-FACE experiment were, i) the characterization of Florida thunderstorm anvil macrophysical and microphysical properties from lidar backscattering and depolarization, ii) the study of thin to subvisual tropopause-topped subtropical cirrus, iii) the search for indirect cloud effects of trans- Atlantic advected Saharan dust storm aerosols on clouds, and iv) the investigation of melting layer effects on lidar and multi-wavelength Doppler radar measurements in precipitation. Although we experienced adversity in the field during the campaign, sufficient data was collected to begin addressing these topics, and several conference presentations, three journal articles, and one book chapter have resulted from the data analysis effort supported by this grant. (PDL operations were delayed by FAA concerns over the initial sighting at the Kendall-Tamiami Airport, and a brief but major laser breakdown was experienced during the re- setup at the remote Ochopee Everglades site that also supported the N-POL radar.) All lidar data collected by the PDL system were processed and quality checked, and submitted to the CRYSTAL-FACE data archive in a timely manner.

  13. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  14. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  15. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  16. A comparison of Lagrangian model estimates to light detection and ranging (LIDAR) measurements of dust plumes from field tilling.

    PubMed

    Wang, Junming; Hiscox, April L; Miller, David R; Meyer, Thomas H; Sammis, Ted W

    2009-11-01

    A Lagrangian particle model has been adapted to examine human exposures to particulate matter < or = 10 microm (PM10) in agricultural settings. This paper reports the performance of the model in comparison to extensive measurements by elastic LIDAR (light detection and ranging). For the first time, the LIDAR measurements allowed spatially distributed and time dynamic measurements to be used to test the predictions of a field-scale model. The model outputs, which are three-dimensional concentration distribution maps from an agricultural disking operation, were compared with the LIDAR-scanned images. The peak cross-correlation coefficient and the offset distance of the measured and simulated plumes were used to quantify both the intensity and location accuracy. The appropriate time averaging and changes in accuracy with height of the plume were examined. Inputs of friction velocity, Monin-Obukhov length, and wind direction (1 sec) were measured with a three-axis sonic anemometer at a single point in the field (at 1.5-m height). The Lagrangian model of Wang et al. predicted the near-field concentrations of dust plumes emitted from a field disking operation with an overall accuracy of approximately 0.67 at 3-m height. Its average offset distance when compared with LIDAR measurements was approximately 38 m, which was 6% of the average plume moving distance during the simulation periods. The model is driven by weather measurements, and its near-field accuracy is highest when input time averages approach the turbulent flow time scale (3-70 sec). The model accuracy decreases with height because of smoothing and errors in the input wind field, which is modeled rather than measured at heights greater than the measurement anemometer. The wind steadiness parameter (S) can be used to quantify the combined effects of wind speed and direction on model accuracy. PMID:19947118

  17. Measuring Oscillating Walking Paths with a LIDAR

    PubMed Central

    Teixidó, Mercè; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi

    2011-01-01

    This work describes the analysis of different walking paths registered using a Light Detection And Ranging (LIDAR) laser range sensor in order to measure oscillating trajectories during unsupervised walking. The estimate of the gait and trajectory parameters were obtained with a terrestrial LIDAR placed 100 mm above the ground with the scanning plane parallel to the floor to measure the trajectory of the legs without attaching any markers or modifying the floor. Three different large walking experiments were performed to test the proposed measurement system with straight and oscillating trajectories. The main advantages of the proposed system are the possibility to measure several steps and obtain average gait parameters and the minimum infrastructure required. This measurement system enables the development of new ambulatory applications based on the analysis of the gait and the trajectory during a walk. PMID:22163891

  18. LOSA-M2 aerosol Raman lidar

    SciTech Connect

    Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V

    2011-10-31

    The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

  19. Cotton phenotyping with lidar from a track-mounted platform

    NASA Astrophysics Data System (ADS)

    French, Andrew N.; Gore, Michael A.; Thompson, Alison

    2016-05-01

    High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at <1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). Scanning data mapped the canopy heights and widths, and detected cotton bolls.

  20. Errors in prenatal diagnosis.

    PubMed

    Anumba, Dilly O C

    2013-08-01

    Prenatal screening and diagnosis are integral to antenatal care worldwide. Prospective parents are offered screening for common fetal chromosomal and structural congenital malformations. In most developed countries, prenatal screening is routinely offered in a package that includes ultrasound scan of the fetus and the assay in maternal blood of biochemical markers of aneuploidy. Mistakes can arise at any point of the care pathway for fetal screening and diagnosis, and may involve individual or corporate systemic or latent errors. Special clinical circumstances, such as maternal size, fetal position, and multiple pregnancy, contribute to the complexities of prenatal diagnosis and to the chance of error. Clinical interventions may lead to adverse outcomes not caused by operator error. In this review I discuss the scope of the errors in prenatal diagnosis, and highlight strategies for their prevention and diagnosis, as well as identify areas for further research and study to enhance patient safety. PMID:23725900

  1. Accuracy evaluation of 3D lidar data from small UAV

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav

    2015-10-01

    A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.

  2. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  3. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  4. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  5. Wind turbine wake detection with a single Doppler wind lidar

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.

    2015-06-01

    Using scanning lidar wind turbine wakes can be probed in three dimensions to produce a wealth of temporally and spatially irregular data that can be used to characterize the wakes. Unlike data from a meteorological mast or upward pointing lidar, the spatial coordinates of the measurements are not fixed and the location of the wake also varies in three dimensions. Therefore the challenge is to provide automated detection algorithms to identify wakes and quantify wake characteristics from this type of dataset. Here an algorithm is developed and evaluated on data from a large wind farm in the Midwest. A scanning coherent Doppler wind lidar was configured to measure wind speed in the wake of a continuously yawing wind turbine for two days during the experiment and wake profiles were retrieved with input of wind direction information from the nearby meteorological mast. Additional challenges to the analysis include incomplete coverage of the entire wake due to the limited scanning domain, and large wind shear that can contaminate the wake estimate because of the height variation along the line-of-sight. However, the algorithm developed in this paper is able to automatically capture wakes in lidar data from Plan Position Indicator (PPI) scans and the resultant wake statistics are consistent with previous experiment's results.

  6. Mapping Urban Forest Leaf Area Index Using Lidar: A Comparison of Gap Fraction Inversion and Allometric Methods

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Bookhagen, B.; McFadden, J. P.; Sun, A.; Roberts, D. A.

    2014-12-01

    In urban areas leaf area index (LAI) is a key ecosystem structural attribute with implications for energy and water balance, gas exchange, and anthropogenic energy use. Typically, citywide LAI estimates are extrapolated from those made on forest inventory sample plots through intensive crown measurement and allometric scaling. This is a time- and labor-intensive process yielding coarse spatial resolution results. In this study we generate spatially explicit estimates of LAI using high-point density airborne lidar throughout our study area in downtown Santa Barbara, CA. We implement two theoretically distinct modeling approaches. First, based on hemispherical photography at our 71 field plots, we estimate effective LAI using scan-angle corrected lidar laser penetration metrics (LPM). For our second approach, we adapt existing allometric equations for use with a suite of crown structural metrics (e.g., tree height, crown base height) measured with lidar. This approach allows for estimates of LAI to be made at the individual tree crown scale (ITC). This is important for evaluating fine-scale interactions between canopy and urban surfaces. The LPM method resulted in good agreement with field estimates (r2 = 0.80) and a slope of near unity (β = 0.998) using a model that assumed a spherical leaf angle distribution. Within ITC segments that were automatically delineated using watershed segmentation, lidar estimates of crown structure closely paralleled field measurements (r2=0.87 for crown length). LAI estimates based on the lidar structural variables corresponded well with estimates from field measurements (r2 = 0.84). Agreement between the LPM and allometric lidar methods was also strong across the 71 validation plots (r2 = 0.88) and among 450 sample points (r2 = 0.72) randomly distributed throughout the citywide maps. This is notably higher than the agreement between the hemiphoto and allometric ground-based estimates (r2 = 0.56). The allometric approach generally

  7. Micropulse Lidar (MPL) Handbook

    SciTech Connect

    Mendoza, A; Flynn, C

    2006-05-01

    The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

  8. Modeling Lidar Multiple Scattering

    NASA Astrophysics Data System (ADS)

    Sato, Kaori; Okamoto, Hajime; Ishimoto, Hiroshi

    2016-06-01

    A practical model to simulate multiply scattered lidar returns from inhomogeneous cloud layers are developed based on Backward Monte Carlo (BMC) simulations. The estimated time delay of the backscattered intensities returning from different vertical grids by the developed model agreed well with that directly obtained from BMC calculations. The method was applied to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite data to improve the synergetic retrieval of cloud microphysics with CloudSat radar data at optically thick cloud grids. Preliminary results for retrieving mass fraction of co-existing cloud particles and drizzle size particles within lowlevel clouds are demonstrated.

  9. Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar

    SciTech Connect

    Shokair, I.R.

    1997-09-01

    This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.

  10. Lidar detection of carbon dioxide in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  11. Statistical-uncertainty-based adaptive filtering of lidar signals

    SciTech Connect

    Fuehrer, P. L.; Friehe, C. A.; Hristov, T. S.; Cooper, D. I.; Eichinger, W. E.

    2000-02-10

    An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometerological humidity data were used to calibrate the ratio of the lidar gains of the H{sub 2}O and the N{sub 2} photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem. (c) 2000 Optical Society of America.

  12. Analysis of measurements for solid state laser remote lidar system

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1995-01-01

    The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.

  13. Tracking aerosol plumes: lidar, modeling, and in situ measurement

    NASA Astrophysics Data System (ADS)

    Calhoun, Ron J.; Heap, Robert; Sommer, Jeffrey; Princevac, Marko; Peccia, Jordan; Fernando, H.

    2004-09-01

    The authors report on recent progress of on-going research at Arizona State University for tracking aerosol plumes using remote sensing and modeling approaches. ASU participated in a large field experiment, Joint Urban 2003, focused on urban and suburban flows and dispersion phenomena which took place in Oklahoma City during summer 2003. A variety of instruments were deployed, including two Doppler-lidars. ASU deployed one lidar and the Army Research deployed the other. Close communication and collaboration has produced datasets which will be available for dual Doppler analysis. The lidars were situated in a way to provide insight into dynamical flow structures caused by the urban core. Complementary scanning by the two lidars during the July 4 firework display in Oklahoma City demonstrated that smoke plumes could be tracked through the atmosphere above the urban area. Horizontal advection and dispersion of the smoke plumes were tracked on two horizontal planes by the ASU lidar and in two vertical planes with a similar lidar operated by the Army Research Laboratory. A number of plume dispersion modeling systems are being used at ASU for the modeling of plumes in catastrophic release scenarios. Progress using feature tracking techniques and data fusion approaches is presented for utilizing single and dual radial velocity fields from coherent Doppler lidar to improve dispersion modeling. The possibility of producing sensor/computational tools for civil and military defense applications appears worth further investigation. An experiment attempting to characterize bioaerosol plumes (using both lidar and in situ biological measurements) associated with the application of biosolids on agricultural fields is in progress at the time of writing.

  14. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  15. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  16. Increasing the Efficiency of LiDAR Based Forest Inventories: A Novel Approach for Integrating Variable Radius Inventory Plots with LiDAR Data.

    NASA Astrophysics Data System (ADS)

    Falkowski, M. J.; Fekety, P.; Silva, C. A.; Hudak, A. T.

    2015-12-01

    LiDAR data are increasingly applied to support forest inventory and assessment across a variety of spatial scales. Typically this is achieved by integrating LiDAR data with forest inventory collected at fixed radius forest inventory plots. A well-designed forest inventory, one that covers the full range of structural and compositional variation across the forest of interest, is costly especially when collecting fixed radius plot data. Variable radius plots offer an alternative inventory protocol that is more efficient in terms of both time and money. However, integrating variable radius plot data with LiDAR data is problematic because the plots have unknown sizes that vary with variation in tree size. This leads to a spatial mismatch between LiDAR metrics (e.g., mean height, canopy cover, density, etc.) and plot data, which ultimately translates into errors in LiDAR derived forest inventory predictions. We propose and evaluate and novel approach for integrating variable radius plot data into a LiDAR based forest inventories in two different forest systems, one in the inland northwest and another in the northern lakes states of the USA. The novel approach calculates LiDAR metrics by weighting the point cloud proportional to return height, mimicking the way in which variable radius plot data weights tree measurements by tree size. This could increase inventory sampling efficiency, allowing for the collection of a greater number of inventory plots, and ultimately improve the performance of LiDAR based inventories.

  17. Lidar-based Research and Innovation at DTU Wind Energy - a Review

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.

    2014-06-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars

  18. EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Amodeo, A.; Mattis, I.; Freudenthaler, V.; Pappalardo, G.

    2015-10-01

    In this paper we describe an automatic tool for the pre-processing of lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. The ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, the ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. The ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of the ELPP module, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of the ELPP module is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of the ELPP module. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. The ELPP module has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.

  19. EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data

    NASA Astrophysics Data System (ADS)

    D'Amico, Giuseppe; Amodeo, Aldo; Mattis, Ina; Freudenthaler, Volker; Pappalardo, Gelsomina

    2016-02-01

    In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.

  20. Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.

    2011-01-01

    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection

  1. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  2. Innovative Solutions for Pulsed Wind Lidar Accuracy in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Boquet, M.

    2010-12-01

    Accuracy of Lidar remote sensors for wind energy has been previously reported. Coherent Doppler lidars have shown very high correlation with calibrated cup anemometers in flat terrain, both onshore and offshore. However, in more complex terrain, not only more turbulent air flow but also loss of flow homogeneity occurs, and remote sensors measurement process needs to be closely examined. We compare and simulate cup’s point and lidar’s volume measurements to understand and explain for the two sensor’s response. We emphasize the main error term in the horizontal and vertical wind speed retrieval. Geometrical optimizations of pulsed Lidar measurement process are also investigated to get more reliable wind speed estimations, such as finding the right cone angle to reduce the error. We show our conclusions and results of the CFD simulation performed on a Spanish complex terrain case. We see that there is at least one possibility to strongly reduce the relative error between Lidar and anemometer measurements. Indeed, accessing to the vertical wind speed variations leads to a considerable improvement in the linear correlation and dispersion.

  3. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  4. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  5. Error suppression and correction for quantum annealing

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel

    While adiabatic quantum computing and quantum annealing enjoy a certain degree of inherent robustness against excitations and control errors, there is no escaping the need for error correction or suppression. In this talk I will give an overview of our work on the development of such error correction and suppression methods. We have experimentally tested one such method combining encoding, energy penalties and decoding, on a D-Wave Two processor, with encouraging results. Mean field theory shows that this can be explained in terms of a softening of the closing of the gap due to the energy penalty, resulting in protection against excitations that occur near the quantum critical point. Decoding recovers population from excited states and enhances the success probability of quantum annealing. Moreover, we have demonstrated that using repetition codes with increasing code distance can lower the effective temperature of the annealer. References: K.L. Pudenz, T. Albash, D.A. Lidar, ``Error corrected quantum annealing with hundreds of qubits'', Nature Commun. 5, 3243 (2014). K.L. Pudenz, T. Albash, D.A. Lidar, ``Quantum annealing correction for random Ising problems'', Phys. Rev. A. 91, 042302 (2015). S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar, ``Mean Field Analysis of Quantum Annealing Correction''. arXiv:1510.07709. W. Vinci et al., in preparation.

  6. Medication Errors

    MedlinePlus

    ... to reduce the risk of medication errors to industry and others at FDA. Additionally, DMEPA prospectively reviews ... List of Abbreviations Regulations and Guidances Guidance for Industry: Safety Considerations for Product Design to Minimize Medication ...

  7. Medication Errors

    MedlinePlus

    Medicines cure infectious diseases, prevent problems from chronic diseases, and ease pain. But medicines can also cause harmful reactions if not used ... You can help prevent errors by Knowing your medicines. Keep a list of the names of your ...

  8. Imaging doppler lidar for wind turbine wake profiling

    DOEpatents

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  9. Modeling loblolly pine dominant height using airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Maceyka, Andy

    The dominant height of 73 georeferenced field sample plots were modeled from various canopy height metrics derived by means of a small-footprint laser scanning technology, known as light detection and ranging (or just LiDAR), over young and mature forest stands using regression analysis. LiDAR plot metrics were regressed against field measured dominant height using Best Subsets Regression to reduce the number of models. From those models, regression assumptions were evaluated to determine which model was actually the best. The best model included the 1st and 90th height percentiles as predictors and explained 95% of the variance in average dominant height.

  10. Multipath estimation in urban environments from joint GNSS receivers and LiDAR sensors.

    PubMed

    Ali, Khurram; Chen, Xin; Dovis, Fabio; De Castro, David; Fernández, Antonio J

    2012-01-01

    In this paper, multipath error on Global Navigation Satellite System (GNSS) signals in urban environments is characterized with the help of Light Detection and Ranging (LiDAR) measurements. For this purpose, LiDAR equipment and Global Positioning System (GPS) receiver implementing a multipath estimating architecture were used to collect data in an urban environment. This paper demonstrates how GPS and LiDAR measurements can be jointly used to model the environment and obtain robust receivers. Multipath amplitude and delay are estimated by means of LiDAR feature extraction and multipath mitigation architecture. The results show the feasibility of integrating the information provided by LiDAR sensors and GNSS receivers for multipath mitigation. PMID:23202177

  11. Multipath Estimation in Urban Environments from Joint GNSS Receivers and LiDAR Sensors

    PubMed Central

    Ali, Khurram; Chen, Xin; Dovis, Fabio; De Castro, David; Fernández, Antonio J.

    2012-01-01

    In this paper, multipath error on Global Navigation Satellite System (GNSS) signals in urban environments is characterized with the help of Light Detection and Ranging (LiDAR) measurements. For this purpose, LiDAR equipment and Global Positioning System (GPS) receiver implementing a multipath estimating architecture were used to collect data in an urban environment. This paper demonstrates how GPS and LiDAR measurements can be jointly used to model the environment and obtain robust receivers. Multipath amplitude and delay are estimated by means of LiDAR feature extraction and multipath mitigation architecture. The results show the feasibility of integrating the information provided by LiDAR sensors and GNSS receivers for multipath mitigation. PMID:23202177

  12. WBC scan

    MedlinePlus

    ... in the body. It is a type of nuclear scan . How the Test is Performed Blood will ... radiation. Due to the slight radiation exposure, most nuclear scans (including WBC scan) are not recommended for ...

  13. CT scan

    MedlinePlus

    CAT scan; Computed axial tomography scan; Computed tomography scan ... Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, et al. eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ...

  14. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  15. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of

  16. New fiber laser for lidar developments in disaster management

    NASA Astrophysics Data System (ADS)

    Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.

    2014-10-01

    Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.

  17. Improvements in Raman Lidar Measurements Using New Interference Filter Technology

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Veselovskii, Igor; Cadirola, Martin; Rush, Kurt; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultra-violet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground-based, upward-looking tests. Measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary and mixed layer profiling of water vapor mixing ratio up to an altitude of approximately 4 h is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction-to-backscatter ratio measurements are made using 1 -minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. A description of the filter technology developments is provided followed by examples of the improved Raman lidar measurements.

  18. Lidar simulation. [measurement of atmospheric water vapor via optical radar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of measuring atmospheric water vapor via orbital lidar is estimated. The calculation starts with laser radar equations representing backscatter with and without molecular line absorption; the magnitudes of off-line backscatter are demonstrated. Extensive prior data on water line strengths are summarized to indicate the available sensitivity to water vapor concentration. Several lidar situations are considered starting with uniform and perturbed atmospheres at 0, 3, 10 and 20 kM (stratosphere) altitudes. These simulations are indicative of results to be obtained in ground truth measurements (ground-based and airborne). An approximate treatment of polar observations is also given. Vertical atmospheric soundings from orbit and from ground stations are calculated. Errors are discussed as regards their propagation through the lidar equation to render the measured water vapor concentration imprecise; conclusions are given as to required laser energy and feasible altitude resolution.

  19. Single-Photon LIDAR for Vegetation Analysis

    NASA Astrophysics Data System (ADS)

    Rosette, J.; Field, C.; Nelson, R. F.; Decola, P.; Cook, B. D.; Degnan, J. J.

    2011-12-01

    Lidar is now an established and recognised technology which has been widely applied to assist forest inventory, monitoring and management. Small footprint lidar systems produce dense 'point clouds' from intercepted surfaces which, after classification of ground and vegetation returns, can be related to important forest biophysical parameters such as biomass or carbon. Within the context of NASA's Carbon Monitoring System (CMS) initiative (NASA, 2010), the prototype 100 beam, single-photon, scanning lidar, developed by Sigma Space Corporation, USA, is tested to assess the potential of this sensor for vegetation analysis. This emerging lidar technology is currently generally operated at green wavelengths (532 nm) and, like more conventional discrete return NIR lidar sensors, produces point clouds of intercepted surfaces. However, the high pulse repetition rate (20 kHz) and multibeam approach produces an unprecedented measurement rate (up to 2 Million pixels per second) and a correspondingly high point density. Furthermore, the single photon sensitivity enables the technique to be more easily extended to high altitudes and therefore larger swath widths. Additionally, CW diode laser pumping and a low laser pulse energy (6 μJ at 532 nm) favour an extended laser lifetime while the much lower energy per beamlet (~50nJ) ensures eye safety despite operating at a visible wavelength. Furthermore, the short laser pulse duration (0.7ns) allows the surface to be located with high vertical precision. Although the 532 nm green wavelength lies near the peak of the solar output, the spatial and temporal coherence of the surface returns, combined with stringent instrument specifications (small detector field of view and narrow optical band-pass filter), allow solid surfaces to be distinguished from the solar background during daylight operations. However, for extended volumetric scatterers such as tree canopies, some amount of solar noise is likely to be mixed in with valid biomass

  20. NDSC and JPL stratospheric lidars

    NASA Technical Reports Server (NTRS)

    McDermid, I. Stuart

    1995-01-01

    The Network for the Detection of Stratospheric Change is an international cooperation providing a set of high-quality, remote-sensing instruments at observing stations around the globe. A brief description of the NDSC and its goals is presented. Lidar has been selected as the NDSC instrument for measurements of stratospheric profiles of ozone, temperature, and aerosol. The Jet Propulsion Laboratory has developed and implemented two stratospheric lidar systems for NDSC. These are located at Table Mountain, California, and at Mauna Loa, Hawaii. These systems, which utilize differential absorption lidar, Rayleigh lidar, raman lidar, and backscatter lidar, to measure ozone, temperature, and aerosol profiles in the stratosphere are briefly described. Examples of results obtained for both long-term and individual profiles are presented.

  1. Quantifying Ecosystem Structural Components with Highly Portable Lidar

    NASA Astrophysics Data System (ADS)

    Schaaf, C.; Paynter, I.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    Terrestrial laser scanners (TLS), which utilize light detection and ranging (lidar) have demonstrated the ability to produce accurate reconstructions of ecosystems, including spatially complex systems such as forests. Reconstructions at the object or plot scale can be used to interpret or simulate satellite observations, particularly for lidar instruments such as those involved in the forthcoming GEDI and ICESat 2 missions. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The rapid scanning of the CBL and similar highly portable TLS improve acquisition of 3D surfaces such as canopy height models and digital elevation models derived from point clouds. This is due to the ability to capture additional scanning points within the window of temporal stability for the ecosystem, mitigating the rapid loss of information density associated with distance and occlusion. Utilizing terrestrial lidar in tandem with airborne lidar profiles vertically distributed structural components of ecosystems, such as the canopy of forests. We will present 3D surfaces documenting the growth of vegetation species including the invasive Phragmites australis over the 2015 growing season at Plum Island Long Term Ecological Research sites, derived from CBL. Additionally we will show vertical structure profiles from voxelization analyses in tropical forest (La Selva, Costa Rica) and temperate forest (Harvard Forest, MA, USA). We will discuss and present results from emerging point cloud reconstruction methods, including the Quantitative Structure Model (QSM) for tree modeling, and their implications particularly for GEDI-related calibration and validation studies.

  2. Advances and perspectives in bathymetry by airborne lidar

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Wang, Chenxi; Li, Mingyan; Wang, Yuefeng; Ye, Siqi; Han, Caiyun

    2015-12-01

    In this paper, the history of the airborne lidar and the development stages of the technology are reviewed. The basic principle of airborne lidar and the method of processing point-cloud data were discussed. At present, single point laser scanning method is widely used in bathymetric survey. Although the method has high ranging accuracy, the data processing and hardware system is too much complicated and expensive. For this reason, this paper present a kind of improved dual-frequency method for bathymetric and sea surface survey, in this method 176 units of 1064nm wavelength laser has been used by push-broom scanning and due to the airborne power limits still use 532nm wavelength single point for bathymetric survey by zigzag scanning. We establish a spatial coordinates for obtaining the WGS-84 of point cloud by using airborne POS system.

  3. Effect of ephemeris errors on the accuracy of the computation of the tangent point altitude of a solar scanning ray as measured by the SAGE 1 and 2 instruments

    NASA Technical Reports Server (NTRS)

    Buglia, James J.

    1989-01-01

    An analysis was made of the error in the minimum altitude of a geometric ray from an orbiting spacecraft to the Sun. The sunrise and sunset errors are highly correlated and are opposite in sign. With the ephemeris generated for the SAGE 1 instrument data reduction, these errors can be as large as 200 to 350 meters (1 sigma) after 7 days of orbit propagation. The bulk of this error results from errors in the position of the orbiting spacecraft rather than errors in computing the position of the Sun. These errors, in turn, result from the discontinuities in the ephemeris tapes resulting from the orbital determination process. Data taken from the end of the definitive ephemeris tape are used to generate the predict data for the time interval covered by the next arc of the orbit determination process. The predicted data are then updated by using the tracking data. The growth of these errors is very nearly linear, with a slight nonlinearity caused by the beta angle. An approximate analytic method is given, which predicts the magnitude of the errors and their growth in time with reasonable fidelity.

  4. Retrieval of Vegetation Structure and Carbon Balance Parameters Using Ground-Based Lidar and Scaling to Airborne and Spaceborne Lidar Sensors

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Ni-Meister, W.; Woodcock, C. E.; Li, X.; Jupp, D. L.; Culvenor, D.

    2006-12-01

    This research uses a ground-based, upward hemispherical scanning lidar to retrieve forest canopy structural information, including tree height, mean tree diameter, basal area, stem count density, crown diameter, woody biomass, and green biomass. These parameters are then linked to airborne and spaceborne lidars to provide large-area mapping of structural and biomass parameters. The terrestrial lidar instrument, Echidna(TM), developed by CSIRO Australia, allows rapid acquisition of vegetation structure data that can be readily integrated with downward-looking airborne lidar, such as LVIS (Laser Vegetation Imaging Sensor), and spaceborne lidar, such as GLAS (Geoscience Laser Altimeter System) on ICESat. Lidar waveforms and vegetation structure are linked for these three sensors through the hybrid geometric-optical radiative-transfer (GORT) model, which uses basic vegetation structure parameters and principles of geometric optics, coupled with radiative transfer theory, to model scattering and absorption of light by collections of individual plant crowns. Use of a common model for lidar waveforms at ground, airborne, and spaceborne levels facilitates integration and scaling of the data to provide large-area maps and inventories of vegetation structure and carbon stocks. Our research plan includes acquisition of Echidna(TM) under-canopy hemispherical lidar scans at North American test sites where LVIS and GLAS data have been or are being acquired; analysis and modeling of spatially coincident lidar waveforms acquired by the three sensor systems; linking of the three data sources using the GORT model; and mapping of vegetation structure and carbon-balance parameters at LVIS and GLAS resolutions based on Echidna(TM) measurements.

  5. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    PubMed

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532

  6. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar

    PubMed Central

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V.; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532

  7. The Lidar In-Space Technology Experiment (LITE)

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1986-01-01

    A spaceborne lidar system is presently being constructed for flight aboard the U. S. Space Shuttle in early 1991. The experiment, Lidar In Space Technology Experiment (LITE), utilizes a neodymium:YAG laser and 0.85 meter effective diameter Cassegranian-configured telescope receiver for making elastic backscatter measurements. The laser will be frequency doubled and tripled simulataneously producing a 10 Hz rate of 200 mJ at 1064 nm, 400 mJ at 532 nm, and 150 mJ at 355 nm. The technological objectives of LITE are to evaluate lidar system operations in space, lidar techniques in space, and to provide a test bed for new lidar technologies in later flights. The measurement objectives include the determination of cloud top and planetary boundary layer heights, the measurement of tropospheric and stratospheric aerosols, and the measurement of temperature and density between 10 to 40 km altitude. Detailed simulations will be presented showing the errors associated with each of these measurement objectives. In addition, the experiment scenario will be described including measurement times, data flow, processing and archival, and initial plans for validation of the LITE data set with correlative measurements.

  8. PET scan

    MedlinePlus

    You may feel a sharp sting when the needle with the tracer is placed into your vein. A PET scan causes no pain. The table may be ... The amount of radiation used in a PET scan is about the same amount as used in most CT scans. These scans use ...

  9. Lidar instruments proposed for Eos

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    1990-01-01

    Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.

  10. Advanced Photodetectors for Space Lidar

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Krainak, Michael A.; Abshire, James B.

    2014-01-01

    The detector in a space lidar plays a key role in the instrument characteristics and performance, especially in direct detection lidar. The sensitivity of the detector is usually the limiting factor when determining the laser power and the receiver aperture size, which in turn determines the instrument complexity and cost. The availability of a suitable detector is often a deciding factor in the choice of lidar wavelengths. A direct detection lidar can achieve the highest receiver performance, or the quantum limit, when its detector can detect signals at the single photon

  11. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  12. Impacts of Tree Height-Dbh Allometry on Lidar-Based Tree Aboveground Biomass Modeling

    NASA Astrophysics Data System (ADS)

    Fang, R.

    2016-06-01

    Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.

  13. Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering.

    PubMed

    Witschas, Benjamin; Lemmerz, Christian; Reitebuch, Oliver

    2014-04-01

    In this Letter, we report on a novel method for measuring atmospheric temperature profiles by lidar during daytime for heights of 2-15.3 km, with a vertical resolution of 0.3-2.2 km, using Rayleigh-Brillouin scattering. The measurements are performed by scanning a laser (λ=355 nm) over a 12 GHz range and using a Fabry-Pérot interferometer as discriminator. The temperature is derived by using a new analytical line shape model assuming standard atmospheric pressure conditions. Two exemplary temperature profiles resulting from measurements over 14 and 27 min are shown. A comparison with radiosonde temperature measurements shows reasonable agreement. In cloud-free conditions, the temperature difference reaches up to 5 K within the boundary layer, and is smaller than 2.5 K above. The statistical error of the derived temperatures is between 0.15 and 1.5 K. PMID:24686652

  14. Flash Lidar Data Processing

    NASA Astrophysics Data System (ADS)

    Bergkoetter, M. D.; Ruppert, L.; Weimer, C. S.; Ramond, T.; Lefsky, M. A.; Burke, I. C.; Hu, Y.

    2009-12-01

    Late last year, a prototype Flash LIDAR instrument flew on a series of airborne tests to demonstrate its potential for improved vegetation measurements. The prototype is a precursor to the Electronically Steerable Flash LIDAR (ESFL) currently under development at Ball Aerospace and Technology Corp. with funding from the NASA Earth Science Technology Office. ESFL may soon significantly expand our ability to measure vegetation and forests and better understand the extent of their role in global climate change and the carbon cycle - all critical science questions relating to the upcoming NASA DESDynI and ESA BIOMASS missions. In order to more efficiently exploit data returned from the experimental Flash Lidar system and plan for data exploitation from future flights, Ball funded a graduate student project (through the Ball Summer Intern Program, summer 2009) to develop and implement algorithms for post-processing of the 3-Dimensional Flash Lidar data. This effort included developing autonomous algorithms to resample the data to a uniform rectangular grid, geolocation of the data, and visual display of large swaths of data. The resampling, geolocation, surface hit detection, and aggregation of frame data are implemented with new MATLAB code, and the efficient visual display is achieved with free commercial viewing software. These efforts directly support additional tests flights planned as early as October 2009, including possible flights over Niwot Ridge, CO, for which there is ICESat data, and a sea-level coastal area in California to test the effect of higher altitude (above ground level) on the divergence of the beams and the beam spot sizes.

  15. Integrated navigation method based on inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi

    2016-04-01

    An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.

  16. Development of an effective lidar retrieval algorithm using lidar measurements during 2008 China-US joined dust field campaign

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.

    2009-12-01

    In this study, an effective algorithm was developed to retrieve aerosol optical properties and vertical profile using ground-based lidar measurements. The advantage of this algorithm is that aerosol optical depth retrieving from lidar measurements do not need so-called lidar ratio for same quality retrieved by Sun photometer of AERONET. Also, errors were apparently reduced when retrieving other optical properties using obtained-AOD as constraint. This effective algorithm was applied to retrieve the dust aerosol vertical profiles measured by three MPL-net Micro-Pulse Lidar system, which are located at one permanent site (Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL)) (located in Yuzhong, 35.95N/104.1E), one SACOL’s Mobile Facility (SMF) (deployed in Jintai, 37.57N/104.23E) and the U.S. Department of Energy Atmospheric Radiation Measurements(ARM) Ancillary Facility (AAF mobile laboratories, SMART-COMMIT) (deployed in Zhangye, 39.08N/100.27E)., during 2008 China-US joined dust field campaign (March-June 2008). A dust storm case which widely influenced Northwest China for 2 May, 2008 was studied using the three ground-based lidar and satellite-borne instruments measurements. The results show the different aerosol vertical structures at each site. Characteristics of aerosol vertical structure in spring over Northwest China were also investigated using the new method.

  17. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  18. Comparison of Two Independent Lidar-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.; Wright, A. D.; Jonkman, B.; Kelley, N.; Simley, E.

    2012-01-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. One uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. The other uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  19. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  20. Measurement of Spray Drift with a Specifically Designed Lidar System.

    PubMed

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-01-01

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift. PMID:27070613

  1. Measurement of Spray Drift with a Specifically Designed Lidar System

    PubMed Central

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R.

    2016-01-01

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R2 > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift. PMID:27070613

  2. AGLITE: a multiwavelength lidar for aerosol size distributions, flux, and concentrations

    NASA Astrophysics Data System (ADS)

    Wilkerson, Thomas D.; Zavyalov, Vladimir V.; Bingham, Gail E.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

    2006-05-01

    We report on the design, construction and operation of a new multiwavelength lidar developed for the Agricultural Research Service of the United States Department of Agriculture and its program on particle emissions from animal production facilities. The lidar incorporates a laser emitting simultaneous, pulsed Nd laser radiation at 355, 532 and 1064 nm at a PRF of 10 kHz. Lidar backscatter and extinction data are modeled to extract the aerosol information. All-reflective optics combined with dichroic and interferometric filters permit all the wavelength channels to be measured simultaneously, day or night, using photon counting by PMTs, an APD, and high speed scaling. The lidar is housed in a transportable trailer for all-weather operation at any accessible site. The laser beams are directed in both azimuth and elevation to targets of interest. We describe application of the lidar in a multidisciplinary atmospheric study at a swine production farm in Iowa. Aerosol plumes emitted from the hog barns were prominent phenomena, and their variations with temperature, turbulence, stability and feed cycle were studied, using arrays of particle samplers and turbulence detectors. Other lidar measurements focused on air motion as seen by long duration scans of the farm region. Successful operation of this lidar confirms the value of multiwavelength, eye-safe lidars for agricultural aerosol measurements.

  3. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    USGS Publications Warehouse

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  4. Development of an Online Archive for Terrestrial Lidar Data

    NASA Astrophysics Data System (ADS)

    Crosby, C.; Lowry, B. W.; McWhirter, J.; Phillips, D. A.; Meertens, C. M.

    2012-12-01

    important for scan reoccupations and repeat scanning for geodetic studies. Each RAMADDA service logs its processing workflow and related parameters to retain provenance and allow for constraints on error budgets and transparent reprocessing by future investigators. In addition to storing the L0 raw scan data in proprietary format, the TLS repository will also host UNAVCO's standard L1 data product, a merged, aligned point cloud in an open format (LAS or ASCII). This product is the most accessible and useful starting point for supported investigators conducting TLS-based science. While directly accessible to the UNAVCO community, the RAMADDA system also provides service-level access, enabling an external client such as the OpenTopography lidar data facility to display metadata and directly access data from the UNAVCO-based repository.

  5. Polarization lidar measurements of honey bees in flight for locating land mines

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.; Seldomridge, Nathan L.; Dunkle, Dustin L.; Nugent, Paul W.; Spangler, Lee H.; Bromenshenk, Jerry J.; Henderson, Colin B.; Churnside, James H.; Wilson, James J.

    2005-07-01

    A scanning polarized lidar was used to detect flying honey bees trained to locate buried land mines through odor detection. A lidar map of bee density shows good correlation with maps of chemical plume strength and bee density determined by visual and video counts. The co-polarized lidar backscatter signal was found to be more effective than the crosspolarized signal for detecting honey bees in flight. Laboratory measurements show that the depolarization ratio of scattered light is near zero for bee wings and up to 30% for bee bodies.

  6. Polarization lidar measurements of honey bees in flight for locating land mines.

    PubMed

    Shaw, Joseph; Seldomridge, Nathan; Dunkle, Dustin; Nugent, Paul; Spangler, Lee; Bromenshenk, Jerry; Henderson, Colin; Churnside, James; Wilson, James

    2005-07-25

    A scanning polarized lidar was used to detect flying honey bees trained to locate buried land mines through odor detection. A lidar map of bee density shows good correlation with maps of chemical plume strength and bee density determined by visual and video counts. The co-polarized lidar backscatter signal was found to be more effective than the crosspolarized signal for detecting honey bees in flight. Laboratory measurements show that the depolarization ratio of scattered light is near zero for bee wings and up to 30% for bee bodies. PMID:19498590

  7. Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1997-01-01

    This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.

  8. Dugway test grid lidar project

    NASA Astrophysics Data System (ADS)

    Johnson, D. W.; Leonard, D. A.

    1985-05-01

    The primary objective of this project is to design and build a differential absorption lidar (DIAL) system to support field tests involving chemical releases at Dugway Proving Grounds. The design goals are to create a system capable of + or - 10% accuracy measurements of agent or simulant concentrations of 0.1 to 500 mg/sub m. The desired spatial resolution is 2 m (radial, with respect to the chemical release point) and 20 m (azimuthal) with simultaneous temporal resolution of 10 sec or less over the entire plume. In addition, system performance should not be degraded significantly by the presence of dust, munitions by-products, obscurants, and other interferents. The current conceptual design calls for a pair of 100 pulse/sec, 100 mJ/pulse CO2 lasers with computer-controlled frequency agility and scanning capability. The receiving optics have not been precisely specified, but will likely be 30 to 40 cm in diameter. Direct detection and digitization of the returned waveforms at 12-bit accuracy or better is also planned. Soft targets (wire screen in an open frame) are being considered for the test grid.

  9. Electronically-Scanned Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  10. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6  μm.

    PubMed

    Wagner, Gerd A; Plusquellic, David F

    2016-08-10

    A ground-based, integrated path, differential absorption light detection and ranging (IPDA LIDAR) system is described and characterized for a series of nighttime studies of CO2, CH4, and H2O. The transmitter is based on an actively stabilized, continuous-wave, single-frequency external-cavity diode laser (ECDL) operating from 1.60 to 1.65 μm. The fixed frequency output of the ECDL is microwave sideband tuned using an electro-optical phase modulator driven by an arbitrary waveform generator and filtered using a confocal cavity to generate a sequence of 123 frequencies separated by 300 MHz. The scan sequence of single sideband frequencies of 600 ns duration covers a 37 GHz region at a spectral scan rate of 10 kHz (100 μs per scan). Simultaneously, an eye-safe backscatter LIDAR system at 1.064 μm is used to monitor the atmospheric boundary layer. IPDA LIDAR measurements of the CO2 and CH4 dry air mixing ratios are presented in comparison with those from a commercial cavity ring-down (CRD) instrument. Differences between the IPDA LIDAR and CRD concentrations in several cases appear to be well correlated with the atmospheric aerosol structure from the backscatter LIDAR measurements. IPDA LIDAR dry air mixing ratios of CO2 and CH4 are determined with fit uncertainties of 2.8 μmol/mol (ppm) for CO2 and 22 nmol/mol (ppb) for CH4 over 30 s measurement periods. For longer averaging times (up to 1200 s), improvements in these detection limits by up to 3-fold are estimated from Allan variance analyses. Two sources of systematic error are identified and methods to remove them are discussed, including speckle interference from wavelength decorrelation and the seed power dependence of amplified spontaneous emission. Accuracies in the dry air retrievals of CO2 and CH4 in a 30 s measurement period are estimated at 4 μmol/mol (1% of ambient levels) and 50

  11. Near-Field Deformation Associated with the South Napa Earthquake (M 6.0) Using Differential Airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Glennie, C. L.; Brooks, B. A.; Hauser, D. L.; Ericksen, T.; Boatwright, J.; Rosinski, A.; Dawson, T. E.; Mccrink, T. P.; Mardock, D. K.; Hoirup, D. F., Jr.; Bray, J.

    2014-12-01

    Pre-earthquake airborne LiDAR coverage exists for the area impacted by the M 6.0 South Napa earthquake. The Napa watershed data set was acquired in 2003, and data sets were acquired in other portions of the impacted area in 2007, 2010 and 2014. The pre-earthquake data are being assessed and are of variable quality and point density. Following the earthquake, a coalition was formed to enable rapid acquisition of post-earthquake LiDAR. Coordination of this coalition took place through the California Earthquake Clearinghouse; consequently, a commercial contract was organized by Department of Water Resources that allowed for the main fault rupture and damaged Browns Valley area to be covered 16 days after the earthquake at a density of 20 points per square meter over a 20 square kilometer area. Along with the airborne LiDAR, aerial imagery was acquired and will be processed to form an orthomosaic using the LiDAR-derived DEM. The 'Phase I' airborne data were acquired using an Optech Orion M300 scanner, an Applanix 200 GPS-IMU, and a DiMac ultralight medium format camera by Towill. These new data, once delivered, will be differenced against the pre-earthquake data sets using a newly developed algorithm for point cloud matching, which is improved over prior methods by accounting for scan geometry error sources. Proposed additional 'Phase II' coverage would allow repeat-pass, post-earthquake coverage of the same area of interest as in Phase I, as well as an addition of up to 4,150 square kilometers that would potentially allow for differential LiDAR assessment of levee and bridge impacts at a greater distance from the earthquake source. Levee damage was reported up to 30 km away from the epicenter, and proposed LiDAR coverage would extend up to 50 km away and cover important critical lifeline infrastructure in the western Sacramento River delta, as well as providing full post-earthquake repeat-pass coverage of the Napa watershed to study transient deformation.

  12. LiDAR Vegetation Investigation and Signature Analysis System (LVISA)

    NASA Astrophysics Data System (ADS)

    Höfle, Bernhard; Koenig, Kristina; Griesbaum, Luisa; Kiefer, Andreas; Hämmerle, Martin; Eitel, Jan; Koma, Zsófia

    2015-04-01

    Our physical environment undergoes constant changes in space and time with strongly varying triggers, frequencies, and magnitudes. Monitoring these environmental changes is crucial to improve our scientific understanding of complex human-environmental interactions and helps us to respond to environmental change by adaptation or mitigation. The three-dimensional (3D) description of the Earth surface features and the detailed monitoring of surface processes using 3D spatial data have gained increasing attention within the last decades, such as in climate change research (e.g., glacier retreat), carbon sequestration (e.g., forest biomass monitoring), precision agriculture and natural hazard management. In all those areas, 3D data have helped to improve our process understanding by allowing quantifying the structural properties of earth surface features and their changes over time. This advancement has been fostered by technological developments and increased availability of 3D sensing systems. In particular, LiDAR (light detection and ranging) technology, also referred to as laser scanning, has made significant progress and has evolved into an operational tool in environmental research and geosciences. The main result of LiDAR measurements is a highly spatially resolved 3D point cloud. Each point within the LiDAR point cloud has a XYZ coordinate associated with it and often additional information such as the strength of the returned backscatter. The point cloud provided by LiDAR contains rich geospatial, structural, and potentially biochemical information about the surveyed objects. To deal with the inherently unorganized datasets and the large data volume (frequently millions of XYZ coordinates) of LiDAR datasets, a multitude of algorithms for automatic 3D object detection (e.g., of single trees) and physical surface description (e.g., biomass) have been developed. However, so far the exchange of datasets and approaches (i.e., extraction algorithms) among LiDAR users

  13. Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment

    NASA Astrophysics Data System (ADS)

    Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.

    2013-12-01

    When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only

  14. Low-level atmospheric flows studied by pulsed Doppler lidar

    NASA Technical Reports Server (NTRS)

    Banta, Robert M.; Olivier, Lisa D.; Hardesty, R. Michael

    1992-01-01

    A pulsed Doppler radar gains a tremendous advantage in studying atmospheric flows when it has the ability to scan. The Wave Propagation Laboratory (WPL) has been operating a scanning, 10.59 micron CO2 system for over 10 years. Recently, the WPL lidar has been a featured instrument in several investigations of mesoscale wind fields in the lowest 3-4 km of the atmosphere. These include four experiments: a study of the initiation and growth of the sea breeze off the coast of California, a study of the snake column of a prescribed forest fire, a study of the nighttime flow over the complex terrain near Rocky Flats, Colorado as it affects the dispersion of atmospheric contaminants, and a study of the wind flow in the Grand Canyon. We have analyzed much data from these experiments, and we have found that the lidar provides new insight into the structure of these flows. Many of these studies took place in rugged or mountainous terrain, thus using one of the major benefits of the lidar: the narrow, 90 microrad beam of the lidar makes it an ideal instrument for studying flow close to topography.

  15. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2001-01-01

    A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.

  16. A decade of sea ice thickness mapping by airborne lidar between Greenland and the North Pole

    NASA Astrophysics Data System (ADS)

    Hvidegaard, S. M.; Forsberg, R.; Skourup, H.; Stenseng, L.; Hanson, S.

    2007-12-01

    Airborne laser altimetry provides a direct measurement of sea ice freeboard, when combined with a precise geoid model and a lowest-level filtering algorithm to take into account residual errors in GPS-positioning, ocean dynamic topography, tides etc. Using swath laser scanning, the method additionally gives detailed information on the geometry of leads, ridges and the distribution of thin ice and open water. The conversion of sea ice freeboard heights to thickness is based on the assumption of equilibrium, with major errors sources relating to snow depth and density of sea ice. In the paper we describe results of measurements with airborne laser north of Greenland, Ellesmere Island and in the Fram Strait region, carried out on a yearly basis since 1998, in the first years using a single beam laser, and since 2001 using swath laser scanning giving a resolution of approximately 1 m in the ice features. The campaigns have mostly been done in the spring period, typically in connection with airborne gravity surveys or CryoSat calibration and validation activities. Observed secular changes in the sea ice freeboard heights are masked by limited spatial and temporal extent of campaigns, as well as interannual variability in the sea ice regime of the region. To address the error sources in the lidar thickness determination, a number of in-situ and helicopter EM comparisons have been carried out, e.g latest in April 2007 around the Tara drifting station beyond the North Pole, as part of the Damocles project. In cooperation with ESA and APL, coincident Ku-band radar and laser systems have also been flown, giving a unique opportunity for airborne measurement of snow depth as well.

  17. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  18. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  19. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...

  20. Thyroid scan

    MedlinePlus

    ... Read More Anaplastic thyroid cancer Cancer Goiter - simple Hyperthyroidism Multiple endocrine neoplasia (MEN) II PET scan Skin ... A.M. Editorial team. Related MedlinePlus Health Topics Hyperthyroidism Hypothyroidism Nuclear Scans Thyroid Cancer Thyroid Diseases Thyroid ...

  1. Bone scan

    MedlinePlus

    A bone scan is an imaging test used to diagnose bone diseases and find out how severe they are. ... A bone scan involves injecting a very small amount of radioactive material (radiotracer) into a vein. The substance travels through ...

  2. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  3. Gallium scan

    MedlinePlus

    Liver gallium scan; Bony gallium scan ... You will get a radioactive material called gallium injected into your vein. The gallium travels through the bloodstream and collects in the bones and certain organs. Your health care provider will ...

  4. Hydrologic enforcement of lidar DEMs

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  5. Bone scanning.

    PubMed

    Greenfield, L D; Bennett, L R

    1975-03-01

    Scanning is based on the uptake of a nuclide by the crystal lattice of bone and is related to bone blood flow. Cancer cells do not take up the tracer. Normally, the scan visualizes the highly vascular bones. Scans are useful and are indicated in metastatic bone disease, primary bone tumors, hematologic malignancies and some non-neoplastic diseases. The scan is more sensitive than x-ray in the detection of malignant diseases of the skeleton. PMID:1054210

  6. Standards - An Important Step for the (Public) Use of Lidars

    NASA Astrophysics Data System (ADS)

    Althausen, Dietrich; Emeis, Stefan; Flentje, Harald; Guttenberger, Josef; Jäckel, Simon; Lehmann, Volker; Mattis, Ina; Münkel, Christoph; Peters, Gerhard; Ritter, Christoph; Wiegner, Matthias; Wille, Holger

    2016-06-01

    Lidar standards are needed to ensure quality and lidar product control at the interface between lidar manufacturers and lidar users. Meanwhile three lidar standards have been published by German and international standardization organizations. This paper describes the cooperation between the lidar technique inventors, lidar instrument constructors, and lidar product users to establish useful standards. Presently a backscatter lidar standard is elaborated in Germany. Key points of this standard are presented here. Two German standards were already accepted as international standards by the International Organization for Standardization (ISO). Hence, German and international organizations for the establishment of lidar standards are introduced to encourage a cooperative work on lidar standards by lidar scientists.

  7. Making lidar more photogenic: creating band combinations from lidar information

    USGS Publications Warehouse

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  8. Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.

    2012-12-01

    Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were

  9. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  10. Eye-Safe Lidar

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Laser infrared radar (lidar) undergoing development harmless to human eyes, consists almost entirely of solid-state components, and offers high range resolution. Operates at wavelength of about 2 micrometers. If radiation from such device strikes eye, almost completely absorbed by cornea without causing damage, even if aimed directly at eye. Continuous-wave light from laser oscillator amplified and modulated for transmission from telescope. Small portion of output of oscillator fed to single-mode fiber coupler, where mixed with return pulses. Intended for remote Doppler measurements of winds and differential-absorption measurements of concentrations of gases in atmosphere.

  11. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  12. Spaceborne lidar investigations of the atmosphere

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.

    1984-01-01

    Atmospheric investigations with a spaceborne lidar system are discussed. Measurements of aerosols, O3, and H2O with the NASA/LaRC airborne DIAL system are presented as examples of data obtained from space. The NASA/CNES study of an autonomous differential absorption lidar system is described. This system is a precursor to a spaceborne lidar system. Simulations of spaceborne lidar experiments are reviewed, and laser requirements for a spaceborne lidar system are presented.

  13. Three-dimensional lidar point-cloud visualization and analysis of coseismic deformation using LidarViewer

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Kreylos, O.; Banesh, D.; Hamann, B.; Gold, P. O.; Elliott, A. J.; Hinojosa, A.; Kellogg, L. H.

    2012-12-01

    We summarize new point-cloud analysis techniques, and results obtained from lidar data collected from the 2010 El Mayor-Cucapah earthquake surface rupture, using LidarViewer, an open-source software platform developed at the UC Davis KeckCAVES. Imaging of earthquake deformation with multi-resolution and multi-temporal lidar presents several challenges for visualization and analysis. Instruments, data resolution, and even the geodetic reference frame may change significantly between surveys. Grid-based techniques fail to adequately represent fully 3-D features, such as scarps and vegetation, and introduce aliasing artifacts that are especially troublesome when the deformation signal sought is less than the point spacing. Once obtained, the resulting dense field of 3-D vectors derived from differential lidar are difficult to visualize together with the terrain, limiting interpretation of these results. Points are the native, resolution-independent format of lidar, but working with massive point data sets can overwhelm system memory. LidarViewer overcomes these challenges using hierarchal data storage, view-dependent rendering, and an efficient, recursive data analysis framework. Pre-earthquake airborne lidar, collected as part of a regional survey, are very sparse (0.013 pts/m2) compared to the post-earthquake survey (9 pts/m2). A simple, \\chi2 minimization approach to matching these data sets takes advantage of this dramatic resolution difference to extract 3-D ground motion. We visualize the resulting displacement field in a 3-D environment using streamline-based approaches, colored by elevation change, and superimposed on the post-earthquake topography. This fused data product encourages exploration and assessment of the deformation signal and its relationship to landscape features, such as fault scarps, vegetation, and topographic relief. Terrestrial lidar scans collected within two weeks of the earthquake reveal the surface rupture at centimeter resolution

  14. Note: Statistical errors estimation for Thomson scattering diagnostics

    SciTech Connect

    Maslov, M.; Beurskens, M. N. A.; Flanagan, J.; Kempenaars, M.; Collaboration: JET-EFDA Contributors

    2012-09-15

    A practical way of estimating statistical errors of a Thomson scattering diagnostic measuring plasma electron temperature and density is described. Analytically derived expressions are successfully tested with Monte Carlo simulations and implemented in an automatic data processing code of the JET LIDAR diagnostic.

  15. Assessment of Surface-Layer Coherent Structure Detection in Dual-Doppler Lidar Data Based on Virtual Measurements

    NASA Astrophysics Data System (ADS)

    Stawiarski, C.; Träumner, K.; Kottmeier, C.; Knigge, C.; Raasch, S.

    2015-09-01

    Dual-Doppler lidar has become a useful tool to investigate the wind-field structure in two-dimensional planes. However, lidar pulse width and scan duration entail significant and complex averaging in the resulting retrieved wind-field components. The effects of these processes on the wind-field structure remain difficult to investigate with in situ measurements. Based on high resolution large-eddy simulation (LES) data for the surface layer, we performed virtual dual-Doppler lidar measurements and two-dimensional data retrievals. Applying common techniques (integral length scale computation, wavelet analysis, two-dimensional clustering of low-speed streaks) to detect and quantify the length scales of the occurring coherent structures in both the LES and the virtual lidar wind fields, we found that, (i) dual-Doppler lidar measurements overestimate the correlation length due to inherent averaging processes, (ii) the wavelet analysis of lidar data produces reliable results, provided the length scales exceed a lower threshold as a function of the lidar resolution, and (iii) the low-speed streak clusters are too small to be detected directly by the dual-Doppler lidar. Furthermore, we developed and tested a method to correct the integral scale overestimation that, in addition to the dual-Doppler lidar, only requires high-resolution wind-speed variance measurements, e.g. at a tower or energy balance station.

  16. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    NASA Astrophysics Data System (ADS)

    Eberhard, Wynn L.

    1992-11-01

    Techniques for extraction of boundary layer parameters from measurements of a short pulse (~0.4 μs) CO2 Doppler lidar (λ=10.6 μm) are described. The lidar is operated by the National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL). The measurements are those collected during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). The recorded radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz it is possible to perform scannings in two perpendicular vertical planes (x-z and y-z) in approximately 72 s. By continuously operating the lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, we have estimated the mean wind, its standard deviations, and the momentum fluxes. We have estimated the first, second, and, third moments of the vertically velocity from the vertical pointing beam. Spectral analysis of the radial velocities is also performed, from which (by examining the amplitude of the power spectrum at the inertial range) we have deduced the kinetic energy dissipation. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. With the exception of the vertically pointing beam an individual radial velocity estimate is accurate only to +/-0.7 ms-1. Combining many measurements would normally reduce the error, provided that it is unbiased and uncorrelated. The nature of some of the algorithms, however, is such that biased and correlated errors may be generated even though the ``raw'' measurements are not. We have developed data processing procedures that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is

  17. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    NASA Astrophysics Data System (ADS)

    Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn L.

    1992-11-01

    Techniques for extraction of boundary layer parameters from measurements of a short pulse (≈0.4 μs) CO2 Doppler lidar (λ = 10.6 μm) are described. The lidar is operated by the National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL). The measurements are those collected during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). The recorded radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz it is possible to perform scannings in two perpendicular vertical planes (x-z and y-z) in approximately 72 s. By continuously operating the lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, we have estimated the mean wind, its standard deviations, and the momentum fluxes. We have estimated the first, second, and, third moments of the vertical velocity from the vertically pointing beam. Spectral analysis of the radial velocities is also performed, from which (by examining the amplitude of the power spectrum at the inertial range) we have deduced the kinetic energy dissipation. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. With the exception of the vertically pointing beam an individual radial velocity estimate is accurate only to ±0.7 m s-1. Combining many measurements would normally reduce the error, provided that it is unbiased and uncorrelated. The nature of some of the algorithms, however, is such that biased and correlated errors may be generated even though the "raw" measurements are not. We have developed data processing procedures that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is

  18. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  19. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  20. Performance Assessment of Mobile Rayleigh Doppler Lidars for Middle Atmosphere Research

    NASA Astrophysics Data System (ADS)

    Han, Yuli; Zhao, Ruocan; Sun, Dongsong

    2016-06-01

    Recently, two sets of mobile Rayleigh Doppler lidars were implemented in University of Science and Technology of China (USTC) for atmospheric gravity waves research. One of them works in a step stare scanning mode with azimuths corresponding to four cardinal points, while the other one consists of three fixed subassemblies: one points to the zenith and the two others are titled at 30° from the zenith with east and north pointings, respectively. They both operate at eye-safe wavelength 354.7 nm and adopt a triple Fabry-Perot interferometer (FPI) as frequency discriminator. In order to assess the performance of the Doppler lidars, comparison experiments were performed between them. Perhaps, it is the first time to make direct comparison between scanning and non-scanning Rayleigh Doppler lidars.

  1. Simulating full-waveform lidar

    NASA Astrophysics Data System (ADS)

    Kim, Angela M.; Olsen, Richard C.; Borges, Carlos F.

    2010-04-01

    A simple Monte Carlo model of laser propagation through a tree is presented which allows the simulation of fullwaveform LIDAR signatures. The model incorporates a LIDAR system and a 'natural' scene, including an atmosphere, tree and ground surface. The PROSPECT leaf reflectance model is incorporated to determine leaf radiometric properties. Changes in the scene such as varying material reflectance properties, sloped vs. flat ground, and comparisons of tree 'leaf-on' vs. 'leaf-off' conditions have been analyzed. Changes in the LIDAR system have also been studied, including the effects of changing laser wavelength, shape and length of transmitted pulses, and angle of transmission. Results of some of these simulations are presented.

  2. Lidar applications to pollution studies.

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Fuller, W. H., Jr.

    1971-01-01

    This paper discusses the application of lidar (laser radar) to the measurement of air pollution. Lidar techniques and instrumentation utilizing elastic, Raman, and fluorescence scattering are discussed. Data showing measurements of the mixing of particulate pollutants in the atmosphere are presented. These data include: simultaneous two-wavelength results, isopleths showing the temporal dynamics of particulate mixing, measurements of the top of the earth's mixing layer, and measurements in a valley with restricted circulation and mixing. All measurements are compared with simultaneous radiosonde and/or aircraft-mounted temperature probe support. In addition, a second generation lidar system presently under development is described.

  3. High-resolution measurements of humidity and temperature with lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  4. Underwater Chaotic Lidar using Blue Laser Diodes

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Luke K.

    cavity. The possibility of overcoming this limit by increasing optical feedback strength is discussed. 2. Power scaling in the blue-green spectrum using no optical frequency doubler. Synchronization of two 462 nm blue InGaN laser diodes by bi-directional optical injection is demonstrated for the first time in laboratory experiments. The improvement in chaotic intensity modulation signal strength is demonstrated to be 2.5x over the single-diode case. The signal strength is again shown to be limited by the onset of internal cavity lasing. The synchronized-laser arrangement is shown to be theoretically equivalent to a single-diode scenario in which the optical feedback is amplified by 2x, supporting the idea that increased optical feedback strength can be used to scale optical chaotic modulation of InGaN diodes to high powers. 3. Underwater impulse response measurements using a calibrated chaotic lidar system. An underwater chaotic lidar system using two synchronized diodes as transmitters is demonstrated in laboratory experiments for the first time. Reflective impulse response measurements using the lidar system are made in free space, and in a variety of clear and turbid water conditions, using a quasi-monostatic (i.e. co-located transmitter and receiver) arrangement. A calibration routine is implemented that increases accuracy and instantaneous dynamic range of the impulse response measurement, resulting in a baseline temporal resolution of 750 ps and a PSLR of over 10 dB. The calibrated system is shown to be able to simultaneously measure localized and distributed reflections, and to allow separation of the localized ( i.e. surface and target) reflections from the distributed ( i.e. backscatter) returns in several domains. Accurate range measurement with sub-inch typical error is demonstrated in laboratory water tank tests, which show accurate measurement through >6 feet of turbid water, as limited by the experimental water tank setup. Strong performance to the limit of

  5. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories

    NASA Astrophysics Data System (ADS)

    Tao, Shengli; Wu, Fangfang; Guo, Qinghua; Wang, Yongcai; Li, Wenkai; Xue, Baolin; Hu, Xueyang; Li, Peng; Tian, Di; Li, Chao; Yao, Hui; Li, Yumei; Xu, Guangcai; Fang, Jingyun

    2015-12-01

    The rapid development of light detection and ranging (LiDAR) techniques is advancing ecological and forest research. During the last decade, numerous single tree segmentation techniques have been developed using airborne LiDAR data. However, accurate crown segmentation using terrestrial or mobile LiDAR data, which is an essential prerequisite for extracting branch level forest characteristics, is still challenging mainly because of the difficulties posed by tree crown intersection and irregular crown shape. In the current work, we developed a comparative shortest-path algorithm (CSP) for segmenting tree crowns scanned using terrestrial (T)-LiDAR and mobile LiDAR. The algorithm consists of two steps, namely trunk detection and subsequent crown segmentation, with the latter inspired by the well-proved metabolic ecology theory and the ecological fact that vascular plants tend to minimize the transferring distance to the root. We tested the algorithm on mobile-LiDAR-scanned roadside trees and T-LiDAR-scanned broadleaved and coniferous forests in China. Point-level quantitative assessments of the segmentation results showed that for mobile-LiDAR-scanned roadside trees, all the points were classified to their corresponding trees correctly, and for T-LiDAR-scanned broadleaved and coniferous forests, kappa coefficients ranging from 0.83 to 0.93 were obtained. We believe that our algorithm will make a contribution to solving the problem of crown segmentation in T-LiDAR scanned-forests, and might be of interest to researchers in LiDAR data processing and to forest ecologists. In addition, our research highlights the advantages of using ecological theories as guidelines for processing LiDAR data.

  6. Pure Rotational Raman Lidar for Temperature Measurements from 5-40 Km Over Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Yajuan; Song, Shalei; Yang, Yong; Li, Faquan; Cheng, Xuewu; Chen, Zhenwei; Liu, Linmei; McCormick, M. Patrick; Gong, Shunsheng

    2016-06-01

    In this paper a pure rotational Raman lidar (PRR) was established for the atmospheric temperature measurements from 5 km to 40 km over Wuhan, China (30.5°N, 114.5°E). To extract the expected PRR signals and simultaneously suppress the elastically backscattered light, a high-spectral resolution polychromator for light splitting and filtering was designed. Observational results revealed that the temperature difference measured by PRR lidar and the local radiosonde below 30 km was less than 3.0 K. The good agreement validated the reliability of the PRR lidar. With the 1-h integration and 150-m spatial resolution, the statistical temperature error for PRR lidar increases from 0.4 K at 10 km up to 4 K at altitudes of about 30 km. In addition, the whole night temperature profiles were obtained for study of the long-term observation of atmospheric fluctuations.

  7. Retrieval of integral parameters of tropospheric aerosol from two-wavelength lidar sounding

    NASA Astrophysics Data System (ADS)

    Korshunov, V. A.

    2007-10-01

    A scheme of interpreting the data of two-wavelength lidar sounding is proposed. The scheme is based on functional relationships between the lidar ratios and between some integral characteristics of aerosol and the ratio of the backscattering coefficients at the sounding wavelengths. The AERONET data, results of contact aerosol measurements and multiwavelength lidar sounding, and the OPAC aerosol model are used to find these functional relationships, which are statistical in character. Analysis of data is made separately for continental, dust, oceanic, and smoke aerosols. Backscattering for mineral aerosol fractions are calculated for a model of randomly oriented spheroids. A numerical experiment shows that the errors in determining a number of integral parameters of aerosol (extinction coefficient, characteristic radius of particles, volume concentrations) that are due to the statistical straggling of lidar ratios and other specified integral characteristics are no greater than 32% if the optical thickness of the sounding layer is no greater than 1.

  8. Tree Scanning

    PubMed Central

    Templeton, Alan R.; Maxwell, Taylor; Posada, David; Stengård, Jari H.; Boerwinkle, Eric; Sing, Charles F.

    2005-01-01

    We use evolutionary trees of haplotypes to study phenotypic associations by exhaustively examining all possible biallelic partitions of the tree, a technique we call tree scanning. If the first scan detects significant associations, additional rounds of tree scanning are used to partition the tree into three or more allelic classes. Two worked examples are presented. The first is a reanalysis of associations between haplotypes at the Alcohol Dehydrogenase locus in Drosophila melanogaster that was previously analyzed using a nested clade analysis, a more complicated technique for using haplotype trees to detect phenotypic associations. Tree scanning and the nested clade analysis yield the same inferences when permutation testing is used with both approaches. The second example is an analysis of associations between variation in various lipid traits and genetic variation at the Apolipoprotein E (APOE) gene in three human populations. Tree scanning successfully identified phenotypic associations expected from previous analyses. Tree scanning for the most part detected more associations and provided a better biological interpretative framework than single SNP analyses. We also show how prior information can be incorporated into the tree scan by starting with the traditional three electrophoretic alleles at APOE. Tree scanning detected genetically determined phenotypic heterogeneity within all three electrophoretic allelic classes. Overall, tree scanning is a simple, powerful, and flexible method for using haplotype trees to detect phenotype/genotype associations at candidate loci. PMID:15371364

  9. Automated Probabilistic LiDAR Swath Registration

    NASA Astrophysics Data System (ADS)

    Jalobeanu, A.; Gonçalves, G. R.

    2014-12-01

    We recently developed a new point cloud registration algorithm. Compared to Iterated Closest Point (ICP) techniques, it is robust to noise and outliers, and easier to use, as it is less sensitive to initial conditions. It minimizes the entropy of the joint point cloud (including intensity attributes to help register areas with poor relief), uses a voxel space and B-Spline interpolation to accelerate computation. A natural application of registration is swath alignment in airborne light detection and ranging (LiDAR). Indeed, due to uncertainty in the inertial navigation system (INS), attitude angles are subject to time-dependent errors. Such errors can be understood as a sum of three terms: 1) a global term, or boresight error, which can be addressed using several existing techniques; 2) a low-frequency term, which is modeled as a constant attitude error for regions several hundred meters along-track; 3) a high-frequency term, responsible for corduroy artifacts (not addressed here). We propose to use the new registration algorithm to correct the low-frequency attitude variations. Relative geometric errors are significantly reduced, as pairs of swaths are registered onto each other local corrections. Absolute geometric errors are reduced during a second step, by applying all the corrections together to the entire dataset. We used a test area of 200 km2 in Portugal, with a density of 3-4 pts/m2. The point clouds were derived from waveform data, and include predictive range uncertainties estimated within a Bayesian framework. The data collection was supported by FCT and FEDER as part of the AutoProbaDTM research project (2009-2012). Modeling and reducing geometric error helps build consistent uncertainty maps. After correction, residual errors are taken into account in the final 3D error budget. For gridded elevation models a vertical uncertainty map is computed. Finally, it is possible to use the inter-swath registration parameters to estimate the distribution of

  10. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  11. Resolving ranges of layered objects using ground vehicle LiDAR

    NASA Astrophysics Data System (ADS)

    Hollinger, Jim; Kutscher, Brett; Close, Ryan

    2015-06-01

    Lidar systems are well known for their ability to measure three-dimensional aspects of a scene. This attribute of Lidar has been widely exploited by the robotics community, among others. The problem of resolving ranges of layered objects (such as a tree canopy over the forest floor) has been studied from the perspective of airborne systems. However, little research exists in studying this problem from a ground vehicle system (e.g., a bush covering a rock or other hazard). This paper discusses the issues involved in solving this problem from a ground vehicle. This includes analysis of extracting multi-return data from Lidar and the various laser properties that impact the ability to resolve multiple returns, such as pulse length and beam size. The impacts of these properties are presented as they apply to three different Lidar imaging technologies: scanning pulse Lidar, Geiger-mode flash Lidar, and Time-of-Flight camera. Tradeoffs associated with these impacts are then discussed for a ground vehicle Lidar application.

  12. Low-power ultraviolet lidar for standoff detection of BW agents

    NASA Astrophysics Data System (ADS)

    Prasad, Coorg R.; Huang, Wen; Bufton, Jack; Achey, Alexander; Dawson, Jeffrey; Serino, Robert M.; Shi, Wenhui

    2004-08-01

    A compact ultraviolet lidar stand-off sensor was recently developed and field-tested for detection of bio warfare (BW) agent stimulant aerosols and interferents. It employed a low-power (~5mW), continuous-wave, 375nm semiconductor ultraviolet optical source (SUVOS) laser diode that was modulated at high-speed with a pseudo-random (PR) code to provide range-resolved lidar detection of both aerosol elastic scattering and fluorescence. The sensor incorporated a 150mm diameter receiver telescope and 3 photon-counting detection channels centered at 375nm, 440nm, and 550nm. Aerosol elastic and fluorescence lidar profiles were obtained by correlating the signal photon-counts with the PR code. Tests of the lidar were performed first with simulants released in the Large Aerosol Chamber at Edgewood Chemical and Biological Center, MD at a lidar range of only 7.5m. The second phase of testing was done at Dugway Proving Ground, UT. Here the lidar was continuously scanned (+/- 13°) in a horizontal plane to detect downwind simulant and interferent aerosol disseminations at ranges of several hundred meters. Preliminary analyses of these tests show that the lidar detected fluorescence from the BW simulants at ranges up to 100m, and elastic scattering from aerosols up to 350m.

  13. Hyperspectral-LIDAR system and data product integration for terrestrial applications

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cheng, Yen-Ben; Middleton, Elizabeth M.; Parker, Geoffrey G.; Huemmrich, K. Fred; Campbell, Petya K. E.

    2009-08-01

    This manuscript details the development and validation of a unique forward thinking instrument and methodology for monitoring terrestrial carbon dynamics through synthesis of existing hyperspectal sensing and Light Detection and Ranging (LIDAR) technologies. This technology demonstration is directly applicable to linking target mission concepts identified as scientific priorities in the National Research Council (NRC, 2007) Earth Science Decadal Survey; namely, DESDynI and HyspIRI. The primary components of the Hyperspec-LIDAR system are the ruggedized imaging spectrometer and a small footprint LIDAR system. The system is mounted on a heavy duty motorized pan-tilt unit programmed to support both push-broom style hyperspectral imaging and 3-D canopy LIDAR structural profiling. The integrated Hyperspec-LIDAR sensor system yields a hypserspectral data cube with up to 800 bands covering the spectral range of 400 to 1000 nm and a 3-D scanning LIDAR system accurately measuring the vertical distribution of intercepted surfaces within a range of 150 m with an accuracy of 15 mm. Preliminary field tests of the Hyperspec-LIDAR sensor system were conducted at a mature deciduous mixed forest tower site located at the Smithsonian Environmental Research Center in Edgewater, MD. The goal of this research is to produce integrated science and data products from ground observations that will support satellite-based hybrid spectral/structural profile linked through appropriate models to monitor Net Ecosystem Exchange and related parameters such as ecosystem Light Use Efficiency.

  14. Input/output error analyzer

    NASA Technical Reports Server (NTRS)

    Vaughan, E. T.

    1977-01-01

    Program aids in equipment assessment. Independent assembly-language utility program is designed to operate under level 27 or 31 of EXEC 8 Operating System. It scans user-selected portions of system log file, whether located on tape or mass storage, and searches for and processes 1/0 error (type 6) entries.

  15. Towards an operational lidar network across the UK

    NASA Astrophysics Data System (ADS)

    Adam, Mariana; Horseman, Andrew; Turp, Myles; Buxmann, Joelle; Sugier, Jacqueline

    2015-04-01

    The Met Office has been operating a ceilometer network since 2012. This network consists of 11 Jenoptik Nimbus ceilometers (operating at 1064 nm) and 32 Vaisala ceilometers (25 CL31, operating at 910 nm and 7 CT25 operating at 905 nm). The data are available in near real time (NRT) (15 min for Jenoptik and 1 h for Vaisala). In 2014, six additional stations from Met Éireann (Ireland) were added to the network (5 CL31 and 1 CT25). Visualisation of attenuated backscatter and cloud base height are available from http://www.metoffice.gov.uk/public/lidarnet/lcbr-network.html. The main customers are the Met Office Hazard Centre which provides a quick response to customers requiring forecast information to manage a wide variety of environmental incidents and the London Volcanic Ash Advisory Centre (VAAC), also based at the Met Office, which monitor volcanic ash events. As a response to the strong impact of the Eyjafjallajökull eruption in 2010, the UK Civil Aviation Authority (CAA) financed a lidar - sunphotometer network for NRT monitoring of the volcanic ash. This new network will consist of nine fixed sites and one mobile unit, each equipped with a lidar and a sunphotometer. The sunphotometers were acquired from Cimel Electronique (CE318-NE DPS9). The lidars were acquired from Raymetrics. They operate at 355 nm and have receiving channels at 355 nm (parallel and perpendicular polarization) and 387 nm (N2 Raman). The first two lidar systems were deployed in November 2014 at Camborne (SW England) and the data are under evaluation. The network is planned to be operational in 2016. Initially, the NRT data will consist of quick look plots of the total range corrected signal and volume depolarization ratio from lidar and aerosol optical depth from sunphotometer (including 355nm, through interpolation). During EGU presentation, the following features will be emphasized: IT considerations for the operational network, data quality assurance (including error estimates) for the

  16. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures. PMID:23736241

  17. Special Relativity Corrections for Space-Based Lidars

    NASA Technical Reports Server (NTRS)

    RaoGudimetla, Venkata S.; Kavaya, Michael J.

    1999-01-01

    The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.

  18. Relativity effects for space-based coherent lidar experiments

    NASA Technical Reports Server (NTRS)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  19. Special relativity corrections for space-based lidars.

    PubMed

    Gudimetla, V S; Kavaya, M J

    1999-10-20

    The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated. The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system. PMID:18324167

  20. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  1. Uncovering archaeological landscapes at Angkor using lidar

    PubMed Central

    Evans, Damian H.; Fletcher, Roland J.; Pottier, Christophe; Chevance, Jean-Baptiste; Soutif, Dominique; Tan, Boun Suy; Im, Sokrithy; Ea, Darith; Tin, Tina; Kim, Samnang; Cromarty, Christopher; De Greef, Stéphane; Hanus, Kasper; Bâty, Pierre; Kuszinger, Robert; Shimoda, Ichita; Boornazian, Glenn

    2013-01-01

    Previous archaeological mapping work on the successive medieval capitals of the Khmer Empire located at Angkor, in northwest Cambodia (∼9th to 15th centuries in the Common Era, C.E.), has identified it as the largest settlement complex of the preindustrial world, and yet crucial areas have remained unmapped, in particular the ceremonial centers and their surroundings, where dense forest obscures the traces of the civilization that typically remain in evidence in surface topography. Here we describe the use of airborne laser scanning (lidar) technology to create high-precision digital elevation models of the ground surface beneath the vegetation cover. We identify an entire, previously undocumented, formally planned urban landscape into which the major temples such as Angkor Wat were integrated. Beyond these newly identified urban landscapes, the lidar data reveal anthropogenic changes to the landscape on a vast scale and lend further weight to an emerging consensus that infrastructural complexity, unsustainable modes of subsistence, and climate variation were crucial factors in the decline of the classical Khmer civilization. PMID:23847206

  2. Uncovering archaeological landscapes at Angkor using lidar.

    PubMed

    Evans, Damian H; Fletcher, Roland J; Pottier, Christophe; Chevance, Jean-Baptiste; Soutif, Dominique; Tan, Boun Suy; Im, Sokrithy; Ea, Darith; Tin, Tina; Kim, Samnang; Cromarty, Christopher; De Greef, Stéphane; Hanus, Kasper; Bâty, Pierre; Kuszinger, Robert; Shimoda, Ichita; Boornazian, Glenn

    2013-07-30

    Previous archaeological mapping work on the successive medieval capitals of the Khmer Empire located at Angkor, in northwest Cambodia (∼9th to 15th centuries in the Common Era, C.E.), has identified it as the largest settlement complex of the preindustrial world, and yet crucial areas have remained unmapped, in particular the ceremonial centers and their surroundings, where dense forest obscures the traces of the civilization that typically remain in evidence in surface topography. Here we describe the use of airborne laser scanning (lidar) technology to create high-precision digital elevation models of the ground surface beneath the vegetation cover. We identify an entire, previously undocumented, formally planned urban landscape into which the major temples such as Angkor Wat were integrated. Beyond these newly identified urban landscapes, the lidar data reveal anthropogenic changes to the landscape on a vast scale and lend further weight to an emerging consensus that infrastructural complexity, unsustainable modes of subsistence, and climate variation were crucial factors in the decline of the classical Khmer civilization. PMID:23847206

  3. ATLID: the European backscatter lidar development program

    NASA Astrophysics Data System (ADS)

    Hueber, Martin F.

    1994-12-01

    ATLID (ATmospheric LIDar) is the ESA backscatter lidar instrument, prime candidate to be flown on a future European Earth observation mission. It will provide information on features of the Earth's atmosphere, such as top height of all cloud types and Planetary Boundary Layer aerosols, thin cloud extent, optical depth and depolarization. Based on the results of a pre- phase-A and two subsequent parallel phase-A studies, ESA decided in 1991 to initiate the ATLID Instrument Technology Predevelopment Program. It is broken into two stages: The first stage is devoted to concept selection, instrument design and breadboarding of critical technologies. The second stage will cover the design, development, assembly and testing of an advanced ATLID demonstration model. The first stage is further divided into a Phase 1, concept selection and preliminary design, which has been finished end of 1993, and a Phase 2, currently in progress, comprising the breadboarding of critical technologies and a final instrument design update. The selected instrument architecture is based on a one-axis scanning 60 cm telescope and a pulsed diode-pumped Nd:YAG laser transmitter. The estimated instrument volume, mass and power are 1.4 m X 1.6 m X 1.1 m, 200 kg and 450 W, respectively.

  4. Detecting tropical forest biomass dynamics from repeated airborne Lidar measurements

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Saatchi, S. S.; Chave, J.; Dalling, J.; Bohlman, S.; Fricker, G. A.; Robinson, C.; Neumann, M.

    2013-02-01

    Reducing uncertainty of terrestrial carbon cycle depends strongly on the accurate estimation of changes of global forest carbon stock. However, this is a challenging problem from either ground surveys or remote sensing techniques in tropical forests. Here, we examine the feasibility of estimating changes of tropical forest biomass from two airborne Lidar measurements acquired about 10 yr apart over Barro Colorado Island (BCI), Panama from high and medium resolution airborne sensors. The estimation is calibrated with the forest inventory data over 50 ha that was surveyed every 5 yr during the study period. We estimated the aboveground forest biomass and its uncertainty for each time period at different spatial scales (0.04, 0.25, 1.0 ha) and developed a linear regression model between four Lidar height metrics and the aboveground biomass. The uncertainty associated with estimating biomass changes from both ground and Lidar data was quantified by propagating measurement and prediction errors across spatial scales. Errors associated with both the mean biomass stock and mean biomass change declined with increasing spatial scales. Biomass changes derived from Lidar and ground estimates were largely (36 out 50 plots) in the same direction at the spatial scale of 1 ha. Lidar estimation of biomass was accurate at the 1 ha scale (R2 = 0.7 and RMSEmean = 28.6 Mg ha-1). However, to predict biomass changes, errors became comparable to ground estimates only at about 10-ha or more. Our results indicate that the 50-ha BCI plot lost a~significant amount of biomass (-0.8 ± 2.2 Mg ha-1 yr-1) over the past decade (2000-2010). Over the entire island and during the same period, mean AGB change is -0.4 ± 3.7 Mg ha-1 yr-1. Old growth forests lost biomass (-0.7 ± 3.5 Mg ha-1 yr-1), whereas the secondary forests gained biomass (+0.4 ± 3.4 Mg ha-1 yr-1). Our analysis demonstrates that repeated Lidar surveys, even with two different sensors, is able to estimate biomass changes in old

  5. Direct Detection Doppler Lidar Wind Measurements Obtained During the 2002 International H2O Project (IHOP)

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Li, Steven; Chen, Huai-Lin; Comer, Joseph; Mathur, Savyasachee; Bobler, Jeremy

    2005-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system that uses direct detection techniques for profiling winds in the troposphere and lower stratosphere. In May and June of 2002 GLOW was deployed to the Southern Great Plains of the US to participate in the International H2O Project (IHOP). GLOW was located at the Homestead profiling site in the Oklahoma panhandle about 15 km east of the SPOL radar. Several other Goddard lidars, the Scanning Raman Lidar (SRL) and HARLIE, as well as radars and passive instruments were permanently operated from the Homestead site during the IHOP campaign providing a unique cluster of observations. During the IHOP observation period (May 14, 2002 to June 25, 2002) over 240 hours of wind profile measurements were obtained with GLOW. In this paper we will describe the GLOW instrument as it was configured for the IHOP campaign and we will present examples of wind profiles obtained.

  6. Airborne lidar measurements of pollution transport in central and southern California during CalNEX 2010

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Alvarez, R. J., II; Hardesty, R.; Langford, A. O.; Banta, R. M.; Brewer, A.; Davies, F.; Sandberg, S.; Marchbanks, R.; Weickmann, A.

    2010-12-01

    During the CalNEX experiment from May through July 2010, we co-deployed NOAA’s airborne ozone and aerosol lidar TOPAZ and the University of Leeds scanning Doppler wind lidar on a Twin Otter aircraft. We flew a total of 46 missions over central and southern California, focusing primarily on the Los Angeles Basin and Sacramento areas. The downward-looking lidars provided highly resolved measurements of ozone concentration, aerosol backscatter, and wind speed and direction in the boundary layer and lower free troposphere. We will use the airborne lidar data to characterize transport of ozone and aerosols on regional and local scales. In particular, we will focus on pollutant transport between air basins and the role of flow patterns in complex terrain, such as gap flows and orographic lifting and venting along mountain slopes, on pollutant distribution.

  7. Application of the lamp mapping technique for overlap function for Raman lidar systems.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu

    2016-04-01

    Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap. PMID:27139656

  8. Impact Assesment of a Doppler Wind Lidar for NPOESS/OSSE

    NASA Astrophysics Data System (ADS)

    Masutani, M.; Lord, S. J.; Woollen, J. C.; Derber, J. C.; Emmitt, D.; Wood, S. A.; Greco, S.; Terry, J.; Atlas, R.; Kleespies, T.; Sun, H.

    2002-05-01

    technology neutral potential impact. Scanning: wavelength; data sampling strategies: various error characterizations are tested through the bracketing OSSE. The initial results show the impact is sensitive to error assignment. The results show that scanning is most important particularly in upper atmosphere. Penetration important in lower troposphere. Designing systematic errors, various representativeness errors, and large scale correlated errors for both existing instruments and DWL are being developed. . OSSEs for atmospheric infrared sounder (AIRS) and cloud motion vectors are under preparation. OSSE for other instruments such as cross track infrared sounder (CrIS), conically scanning microwave imager/sounder (CMIS), advanced technology microwave sounder (ATMS) are also being considered. Through OSSEs at operational centers, the operational data assimilation systems will be ready to handle new data in time for the launch. This process involves the evaluation of the operational load, the development of the data base and data-processing, and a quality control system. All of this development will accelerate the operational use of data from the future instruments.

  9. Airborne lidar imaging of salmon.

    PubMed

    Churnside, James H; Wilson, James J

    2004-02-20

    Lidar images of adult salmon are presented. The lidar system is built around a pulsed green laser and a gated intensified CCD camera. The camera gating is timed to collect light scattered from the turbid water below the fish to produce shadows in the images. Image processing increases the estimated contrast-to-noise ratio from 3.4 in the original image to 16.4 by means of a matched filter. PMID:15008549

  10. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based Lidar scanner

    SciTech Connect

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsass, Martin; Wright, Alan; Cheng, Po Wen

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.

  11. Cirrus Cloud Optical and Microphysical Property Measurements with Raman Lidar

    NASA Astrophysics Data System (ADS)

    Demoz, B.; Wang, Z.; Whiteman, D.

    2006-12-01

    To improve our understanding of the impact of cirrus clouds on the current and future climate, improved knowledge of cirrus cloud optical and microphysical properties is needed. However, long-term studies of the problem indicate that accurate cirrus cloud measurements are challenging, especially in the low ice water content regime most frequent in the tropical cirrus layers. Recent advances in Raman lidar techniques have demonstrated that Raman lidar is an excellent tool to provide reliable cirrus cloud optical and microphysical properties, which are important to study cirrus clouds as well as to validate satellite cirrus cloud measurements. Based on elastic and nitrogen Raman signals, cirrus cloud optical depth and extinction to backscatter ratio can be quantified. By utilizing the Raman scattered intensities from ice crystals, a new method to remotely sense cirrus ice water content and general effective radius profiles has been demonstrated with NASA/GSFC Scanning Raman Lidar (SRL) measurements. Since the intensity of Raman scattering is fundamentally proportional to the number of molecules involved, this method provides a more direct way of measuring the ice water content compared with other schemes. Based on the SRL measurements, these Raman lidar capabilities will be illustrated.

  12. Increased Capabilities for Conventional Lidars using Holographic Optics

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.; Hammond, Marc; Wickwar, Vincent B.

    1998-01-01

    While the field of holographic optics is relatively new, and numerous applications are still being devised and tested, there are good prospects that the use of holographic optical elements (HOEs) may revolutionize the design and applications of optical systems in various fields. This paper is not a review of HOE developments, but rather an account of a particular application, namely the extension of the scanning capabilities of conventional telescopes-in particular, lidar receivers-by means of special holographic accessories. As originally described and in a patent, and in several subsequent publications the HOE lidar was based on the concept of building into the holographic element (either a transmitting one or a reflecting one) all the optical power needed to focus a lidar return to a detector at the HOE's focal point, as well as subjecting the lidar return to both angular deflection and wavelength selection. Results will be reported on the use of Holographic Transmission Gratings (HTGs) at 532 nm and 770 nm at 45 deg. cone angle, both in the laboratory and in the atmosphere at Utah State University.

  13. Doppler lidar observations of plume dynamics from large wildfires

    NASA Astrophysics Data System (ADS)

    Lareau, N.; Clements, C. B.

    2014-12-01

    Novel Doppler lidar observations of smoke plumes from large wildfires are made from a mobile atmospheric profiling system. Few quantitative observations exist that resolve the plume dynamics of active wildfires. Our observations elucidate three important and poorly understood aspects of convective columns: (1) column rotation, (2) penetrative convection, and (3) deep pyrocumulus clouds. Our first observational case examines vigorus anti-cyclonic rotation that occurred in a rapidly developing wildfire. The convective column was first purely convergent, then as the fire intensified, the column acquired strong (+/- 15 m s-1) anticyclonic rotation. The Doppler lidar recorded the vortex structure, strength, and evolution, including the merger of smaller vorticies into a single long-lived vortex. The second case examines the interaction of the convective plumes with shear layers and capping stable layers. These data show explosive convective growth as fire-induced buoyancy penetrated into the free troposphere. Observations of entrainment into the plumes is expecitly resolved in the lidar scans. The final case examines rarely observed deep pyrocumulus clouds associated with an intense forest fire. The lidar data reveal plume structure, including t the height of the lifted condensation level and the full height of the plume top which was in excess of 8 km AGL.

  14. Water Measurements using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; Wang, Z.; Veselovskii, I.; Evans, K.; DiGirolamo, P.

    2002-01-01

    The research record for the usefulness of Raman Lidar in addressing a broad range of important atmospheric research topics is well established. Raman lidar technology has been used to measure tropospheric aerosols, stratospheric aerosols and cirrus clouds. Arguably the most important measurements offered by Raman lidar for both dynamic and radiative studies, however, is that of water vapor. We will describe large improvements in Raman lidar measurements of water vapor made possible through recent technology upgrades. Furthermore, we will present the use of Raman lidar to study liquid water in the atmosphere and describe current research into the use of Raman lidar measurements to estimate ice water content of cirrus clouds.

  15. Relating WorldView-2 data to pine plantation lidar metrics

    NASA Astrophysics Data System (ADS)

    Trinder, J. C.; Shamsoddini, A.; Turner, R.

    2013-10-01

    Over last decades, different types of remotely sensed data including lidar, radar and optical data were investigated for forest studies. Undoubtedly, lidar data is one of the promising tools for these purposes; however, the accessibility and cost of this data are the main limitations. In order to overcome these limitations, optical data have been considered for modelling lidar metrics and their use for inferring lidar metrics over areas with no lidar coverage. WorldView-2 (WV-2) data as a high resolution optical data offer 8 bands including four traditional bands, blue, green, red, and infrared, and four new bands including coastal blue, yellow, red edge and a new infrared band whose relationships with lidar metrics were investigated in this study. For this purpose, band reflectance, band ratios, and principal components (PCs) of WV-2 multispectral data along with 23 vegetation indices were extracted. Moreover, the grey level co-occurrence matrix (GLCM) indices of bands, band ratios and PCs were also calculated for different window sizes and orientations. Spectral derivatives and textural attributes of WV-2 were provided for a stepwise multiple-linear regression to model 10 lidar metrics including maximum, mean, variance, 10th, 30th, 60th and 90th height percentiles, standard error of mean, kurtosis and skewness for a Pinus radiata plantation, in NSW, Australia. The results indicated that the textural-based models are significantly more efficient than spectral-based models for predicting lidar metrics. Moreover, the integration of spectral derivatives with textural attributes cannot improve the results derived from textural-based models. The study demonstrates that WV-2 data are efficient for predicting lidar metrics.

  16. Lidar Luminance Quantizer

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George

    2011-01-01

    This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events

  17. Raman Lidar (RL) Handbook

    SciTech Connect

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  18. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  19. Comparing the Accuracy of Aboveground Biomass Estimates and Forest Structure Metrics at Large Footprint Level: Satellite Waveform Lidar vs. Discrete-Return Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Popescu, S. C.; Zhao, K.; Gatziolis, D.

    2009-12-01

    The overall goal of this paper was to compare biomass estimates and forest structure metrics obtained by processing ICESat waveform data and spatially coincident discrete-return airborne lidar data over varied terrain conditions. For mostly flat-terrain conditions, we investigated lidar data over forests in east Texas, which are characteristics for most of the south-eastern United States, thus allowing terrain to be largely excluded as a source of error. For sloped-terrain, we used lidar data over forests in Oregon. With biomass estimates derived from waveform height metrics, we also compared ground elevation measurements and canopy parameters. Specific objectives were to: compare ground elevations and canopy height parameters derived from ICESat and airborne lidar; (2) investigate above ground biomass estimates; (3) develop a 3D ray-tracing model to simulate lidar waveforms over forests with sloped terrain; and (4) test model performance with real lidar data over terrain with varied topography. Over flat terrain, results indicated a very strong correlation for terrain elevations between ICESat and airborne lidar, with R-square values of 0.98 and sub-meter RMSE. ICESat height variables were able to explain 80% of the variance associated with the reference biomass derived from airborne lidar, with an RMSE of 37.7 Mg/ha. Most of the models for height metrics had R-square values above 0.9. Results from ongoing investigations for sloped-terrain are expected to establish practical procedures for improving analysis of waveform data in vegetation studies.

  20. Modular lidar systems for high-resolution 4-dimensional measurements of water vapor, temperature, and aerosols

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wagner, Gerd; Petrova, Anna; Shiler, Max; Pal, Sandip; Schaberl, Thorsten; Wulfmeyer, Volker

    2005-01-01

    Three lidar systems are currently in development at University of Hohenheim. A water vapor lidar based on the differential absorption lidar (DIAL) technology working near 815 or 935 nm, a temperature and aerosol lidar employing the rotational Raman technique at 355 nm, and an aerosol lidar working with eye-safe laser radiation near 1.5 μm. The transmitters of these three systems are based on an injection-seeded, diode laser pumped Nd:YAG laser with an average power of 100 W at 1064 nm and a repetition rate of 250 Hz. This laser emits a nearly Gaussian-shaped beam which permits frequency-doubling and tripling with high efficiencies. The frequency-doubled 532-nm radiation is employed for pumping a Ti:Sapphire ring-resonator which will be used for DIAL water vapor measurements. In a second branch, a Cr4+:YAG crystal is pumped with the 1064-nm radiation to reach 1400 to 1500 nm for eye-safe monitoring of aerosol particles and clouds. The 532 and 1064 nm radiation are also used for backscatter lidar observations. Frequency tripling gives 355-nm radiation for measurements of temperature with the rotational Raman technique and particle extinction and particle backscattering coefficients in the UV. High transmitter power and effective use of the received signals will allow scanning operation of these three lidar systems. The lidar transmitters and detectors are designed as modules which can be combined for simultaneous measurements with one scanning telescope unit in a ground-based mobile container. Alternatively, they can be connected to different Nd:YAG pump lasers and to telescope units on separate platforms.

  1. Accuracy assessment of a mobile terrestrial lidar survey at Padre Island National Seashore

    USGS Publications Warehouse

    Lim, Samsung; Thatcher, Cindy A.; Brock, John C.; Kimbrow, Dustin R.; Danielson, Jeffrey J.; Reynolds, B.J.

    2013-01-01

    The higher point density and mobility of terrestrial laser scanning (light detection and ranging (lidar)) is desired when extremely detailed elevation data are needed for mapping vertically orientated complex features such as levees, dunes, and cliffs, or when highly accurate data are needed for monitoring geomorphic changes. Mobile terrestrial lidar scanners have the capability for rapid data collection on a larger spatial scale compared with tripod-based terrestrial lidar, but few studies have examined the accuracy of this relatively new mapping technology. For this reason, we conducted a field test at Padre Island National Seashore of a mobile lidar scanner mounted on a sport utility vehicle and integrated with a position and orientation system. The purpose of the study was to assess the vertical and horizontal accuracy of data collected by the mobile terrestrial lidar system, which is georeferenced to the Universal Transverse Mercator coordinate system and the North American Vertical Datum of 1988. To accomplish the study objectives, independent elevation data were collected by conducting a high-accuracy global positioning system survey to establish the coordinates and elevations of 12 targets spaced throughout the 12 km transect. These independent ground control data were compared to the lidar scanner-derived elevations to quantify the accuracy of the mobile lidar system. The performance of the mobile lidar system was also tested at various vehicle speeds and scan density settings (e.g. field of view and linear point spacing) to estimate the optimal parameters for desired point density. After adjustment of the lever arm parameters, the final point cloud accuracy was 0.060 m (east), 0.095 m (north), and 0.053 m (height). The very high density of the resulting point cloud was sufficient to map fine-scale topographic features, such as the complex shape of the sand dunes.

  2. Lidar measurements carried out during the 28 February 2013 lava fountain event at Mt. Etna, in Italy

    NASA Astrophysics Data System (ADS)

    Scollo, Simona; Boselli, Antonella; Coltelli, Mauro; Leto, Giuseppe; Pisani, Gianluca; Spinelli, Nicola; Wang, Xuan; Zanmar Sanchez, Ricardo

    2015-04-01

    Mt. Etna, in Italy, is one of the most active volcanoes in the world. Since 2011, the New South East Crater produced lava fountains that formed eruption columns rising up to several kilometers above sea level and fine ash dispersed hundreds kilometers away from the central craters. One of these events occurred during the 28 February 2013. The volcanic plume was directed toward the E and reached, during the climax phase, an height greater than 9 km above sea level. Lidar measurements were performed immediately after the lava fountain activity by a new portable Raman scanning Lidar system that is operating in Catania since 2013. The Lidar is operated at the Serra La Nave station, only 7 km away far from the Etna summits, and, during the winter seasons, at the INAF-Astrophysical Observatory in Catania. The Lidar named AMPLE is a portable multiwavelength scanning lidar system with depolarization measurement capability, able to carry out high quality 3D map of particle optical and microphysical properties. The laser source is a doubled and tripled diode pumped Nd:YAG laser, with a repetition rate of 1KHz. The Lidar system detects the elastic Lidar returns at 355nm and the N2 Raman Lidar echoes at 386nm. Each signal is acquired with a raw spatial resolution varying from 30cm to 30m. Results of the measurements performed on 28 February 2013 show different layers: the first layer below 1.5 km corresponds to smaller not depolarizing particles of local origin while the layer up to 7 km, is related to volcanic ash coming from Etna. A discrimination between spherical and non-spherical particles in the volcanic plume is clear from the aerosol depolarization values in the atmospheric column interested by the volcanic plume. Some differences in the aerosol size and typology are also highlighted by the Lidar Ratio values. Lidar measurements presented here show new insights on the plume dynamics during Etna lava fountain events.

  3. CELiS (Compact Eyesafe Lidar System), a portable 1.5 μm elastic lidar system for rapid aerosol concentration measurement: Part 2, Retrieval of Particulate Matter Concentration

    NASA Astrophysics Data System (ADS)

    Moore, K. D.; Bird, A. W.; Wojcik, M.; Lemon, R.; Hatfield, J.

    2014-12-01

    An elastic backscatter light detection and ranging (Lidar) system emits a laser pulse and measures the return signal from molecules and particles along the path. It has been shown that particulate matter mass concentrations (PM) can be retrieved from Lidar data using multiple wavelengths. In this paper we describe a technique that allows for semi-quantitative PM determination under a set of guiding assumptions using only one laser wavelength. The Space Dynamics Laboratory has designed an eye-safe (1.5 μm) single wavelength elastic Lidar system called CELiS (Compact Eye-safe Lidar System), which is described in a companion paper, to which this technique is applied. Data utilized in the PM retrieval include the Lidar return signal, ambient temperature, ambient humidity, barometric pressure, particle size distribution, particle chemical composition, and PM measurements. Particle size distribution is measured with an optical particle counter. PM is measured with filter-based measurements. Chemical composition is determined through multiple analyses on exposed filter samples. Particle measurements are made both inside and outside of the plume of interest and collocated with the lidar beam for calibration. The meteorological and particle measurements are used to estimate the total extinction (σ) and backscatter (β) for background and plume aerosols. These σ and β values are used in conjunction with the lidar return signal in an inversion technique based on that of Klett (1985, Appl. Opt., 1638-1643). Variable σ/β ratios over the lidar beam path are used to estimate the values of σ and β at each lidar bin. A relationship between β and PM mass concentrations at calibration points is developed, which then allows the β values derived over the lidar beam path to be converted to PM. A PM-calibrated, scanning Lidar system like CELiS can be used to investigate PM concentrations and emissions over a large volume, a task that is very difficult to accomplish with typical

  4. Registration Procedures for Terrestrial Laser Scanning in Geomorphologic Studies

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Kayen, R.; Minasian, D.

    2006-12-01

    Terrestrial based laser scanning, from either vehicle or tripod mounts allows the collection of geomorphologic data at previously unprecedented detail and volume. However, despite the ease of collecting this data in many settings, post-processing datasets collected without laser-visible reflectors within individual scans can lead to difficulties in both registration and georeferencing procedures. We have been actively involved in gathering data sets from a number of different environments and have been developing various techniques to post-process the data using surface registration methods. These methods use the point cloud or model surface to find a best-fit of the three-dimensional terrain. Recently, we have collected laser scan data of levee breaches in New Orleans following Hurricane Katrina, a glacial cirque basin in the Canadian Rockies, a deep-seated landslide mass in Ventura County, California, rapidly evolving coastal bluffs in Central California, and sand bars and archeological sites in Grand Canyon National Park, Arizona. In each of these projects, setting up accurately surveyed reflectors was impractical due to the locations dynamic and fairly inaccessible setting. Robust surface registration procedures were therefore needed to provide accurate terrain models. We have used laser scanning results from these projects to assess the efficiency of the various post- processing methodologies for obtaining final registered and georeferenced point clouds and surface models. We compared registration results obtained both with and without accurate GPS coordinates for the laser scanner origin (Ventura and coastal landslides), use of a supporting total station unit (Grand Canyon), and collection of DGPS data on targets imaged in the LIDAR data after the scanning process (Katrina Levees). In many of these settings, the model fit improved by four times, from a root mean square error of 20 cm to 5cm when accurately surveyed coordinates were utilized for the laser scan

  5. Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar

    NASA Astrophysics Data System (ADS)

    Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimatin