Science.gov

Sample records for scanning tunneling microscopic

  1. Femtosecond scanning tunneling microscope

    SciTech Connect

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  2. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  3. A Student-Built Scanning Tunneling Microscope

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  4. Scanning Tunneling Microscope For Use In Vacuum

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1993-01-01

    Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.

  5. Scanning tunneling microscope assembly, reactor, and system

    DOEpatents

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  6. High temperature electrochemical scanning tunneling microscope instrument

    NASA Astrophysics Data System (ADS)

    Shkurankov, Andrei; Endres, Frank; Freyland, Werner

    2002-01-01

    We present a novel construction of a scanning tunneling microscope (STM) for investigations of fluid/solid interfaces and, in particular, for in situ electrochemical measurements at elevated temperatures. A special feature of this instrument is a vacuum tight connection of the electrochemical cell with the STM scanner via a flexible metal bellow. This enables measurements with highly reactive and volatile fluids at high temperatures. Details of the mechanical and electronic parts of this setup are described. Test measurements on the electrodeposition of metals from molten salt electrolytes have been performed. The Ag deposition has been studied in an acidic room temperature molten salt composed of 1-butyl-3-methyl-imidazoliumchloride and AlCl3 up to 355 K. As a second example the Al deposition from molten AlCl3-NaCl has been tested up to 500 K. First results of these experiments are briefly presented.

  7. Compact, single-tube scanning tunneling microscope with thermoelectric cooling

    NASA Astrophysics Data System (ADS)

    Jobbins, Matthew M.; Agostino, Christopher J.; Michel, Jolai D.; Gans, Ashley R.; Kandel, S. Alex

    2013-10-01

    We have designed and built a scanning tunneling microscope with a compact inertial-approach mechanism that fits inside the piezoelectric scanner tube. Rigid construction allows the microscope to be operated without the use of external vibration isolators or acoustic enclosures. Thermoelectric cooling and a water-ice bath are used to increase temperature stability when scanning under ambient conditions.

  8. Compact, single-tube scanning tunneling microscope with thermoelectric cooling.

    PubMed

    Jobbins, Matthew M; Agostino, Christopher J; Michel, Jolai D; Gans, Ashley R; Kandel, S Alex

    2013-10-01

    We have designed and built a scanning tunneling microscope with a compact inertial-approach mechanism that fits inside the piezoelectric scanner tube. Rigid construction allows the microscope to be operated without the use of external vibration isolators or acoustic enclosures. Thermoelectric cooling and a water-ice bath are used to increase temperature stability when scanning under ambient conditions. PMID:24182120

  9. Regular Scanning Tunneling Microscope Tips can be Intrinsically Chiral

    SciTech Connect

    Tierney, Heather L.; Murphy, Colin J.; Sykes, E. Charles H.

    2011-01-07

    We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.

  10. Extremely low-noise potentiometry with a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Pelz, J. P.; Koch, R. H.

    1989-03-01

    Novel ac biasing and detection techniques have been developed to allow a scanning tunneling microscope (STM) to measure spatial variations in electric potential on metallic surfaces with sub-μV sensitivity. When implemented with a room-temperature STM operating with minimal electrical shielding and no vibration isolation, the voltage sensitivity was limited by the thermal (Johnson) noise of the tunneling resistance.

  11. Automatic rough approximation system for a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Chornik, B.; Aravena, R.; Grahmann, C.; Venegas, R.; Gaete, L.

    1991-07-01

    An automatic initial approximation system for a scanning tunneling microscope is presented. The device includes a dc motor that is fed by pulses, so that it performs as a stepping motor. A full description of the circuit is given. It is much simpler than the circuit for a true stepping motor, and it is designed to stop motion as soon as a tunneling current appears, thereby avoiding a tip crash.

  12. Design and calibration of a vacuum compatible scanning tunneling microscope

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1990-01-01

    A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.

  13. Scanning Capacitace Microscope/Atomic Force Microscope/Scanning Tunneling Microscope Study of Ion-Implanted Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Tomiye, Hideto; Kawami, Hiroshi; Izawa, Michiyoshi; Yoshimura, Masamichi; Yao, Takafumi

    1995-06-01

    We have investigated the local electrical properties of ion-implanted Si using a combined scanning capacitance microscope (SCaM)/atomic force microscope (AFM)/scanning tunneling microscope (STM) with special attention paid to the effect of annealing. The STM image shows that the as-implanted area is insulating, while the unimplanted area is conductive, in an unannealed sample. Both STM and SCaM images clearly indicate that the implanted area is conductive with n-type behavior after annealing. However, the unimplanted area did not show p-type behavior but slightly n-type behavior due to the diffusion of P impurities during annealing.

  14. Atomic and molecular manipulation with the scanning tunneling microscope.

    PubMed

    Stroscio, J A; Eigler, D M

    1991-11-29

    The prospect of manipulating matter on the atomic scale has fascinated scientists for decades. This fascination may be motivated by scientific and technological opportunities, or from a curiosity about the consequences of being able to place atoms in a particular location. Advances in scanning tunneling microscopy have made this prospect a reality; single atoms can be placed at selected positions and structures can be built to a particular design atom-by-atom. Atoms and molecules may be manipulated in a variety of ways by using the interactions present in the tunnel junction of a scanning tunneling microscope. Some of these recent developments and some of the possible uses of atomic and molecular manipulation as a tool for science are discussed. PMID:17773601

  15. DNA observation with scanning tunneling microscope using a solution

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroshi; Hokonohara, Hitomi; Sugita, Tomoe; Takagi, Akihiko; Suzuki, Kohji; Matsumoto, Takuya; Kawai, Tomoji

    2011-02-01

    This paper investigates the roles of a solution (decane) in deoxyribonucleic acid (DNA) observation with a scanning tunneling microscope. Our study indicates that decane prevents continuous water adsorption from air and subsequent ionization of the water to create specific conditions for DNA observation. Analysis of the tunneling current reveals that the current with decane became twice as stable in deviation and the current is sustained 1 nm further in the z-direction than without decane. The apparent barrier height with decane is also decreased by a factor of 0.18. These properties enable us to measure bulky DNA (4 nm) at the highest success ratio ever attained.

  16. Scanning Tunneling Microscope Data Acquistion and Control System

    Energy Science and Technology Software Center (ESTSC)

    1995-02-01

    SHOESCAN is a PC based code that acquires and displays data for Scanning Tunneling Microscopes (STM). SHOESCAN interfaces with the STM through external electronic feedback and raster control circuits that are controlled by I/O boards on the PC bus. Data is displayed on a separate color monitor that is interfaced to the PC through an additional frame-grabber board. SHOESCAN can acquire a wide range of surface topographic information as well as surface electronic structure information.

  17. Construction of silicon nanocolumns with the scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Ostrom, R. M.; Tanenbaum, D. M.; Gallagher, Alan

    1992-08-01

    Voltage pulses to a scanning tunneling microscope (STM) are used to construct silicon columns of 30-100 Å diameter and up to 200 Å height on a silicon surface and on the end of a tungsten probe. These nanocolumns have excellent conductivity and longevity, and they provide an exceptional new ability to measure the shapes of nanostructures with a STM. This construction methodology and these slender yet robust columns provide a basis for nanoscale physics, lithography, and technology.

  18. A scanning tunneling microscope for a dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Marz, M.; Goll, G.; Löhneysen, H. v.

    2010-04-01

    We present the main features of a home-built scanning tunneling microscope that has been attached to the mixing chamber of a dilution refrigerator. It allows scanning tunneling microscopy and spectroscopy measurements down to the base temperature of the cryostat, T ≈30 mK, and in applied magnetic fields up to 13 T. The topography of both highly ordered pyrolytic graphite and the dichalcogenide superconductor NbSe2 has been imaged with atomic resolution down to T ≈50 mK as determined from a resistance thermometer adjacent to the sample. As a test for a successful operation in magnetic fields, the flux-line lattice of superconducting NbSe2 in low magnetic fields has been studied. The lattice constant of the Abrikosov lattice shows the expected field dependence ∝1/√B and measurements in the scanning tunneling spectroscopy mode clearly show the superconductive density of states with Andreev bound states in the vortex core.

  19. Ultrahigh vacuum scanning electron microscope system combined with wide-movable scanning tunneling microscope

    SciTech Connect

    Kaneko, A.; Homma, Y.; Hibino, H.; Ogino, T.

    2005-08-15

    A surface analysis system has been newly developed with combination of ultrahigh vacuum scanning electron microscope (SEM) and wide-movable scanning tunneling microscope (STM). The basic performance is experimentally demonstrated. These SEM and STM images are clear enough to obtain details of surface structures. The STM unit moves horizontally over several millimeters by sliding motion of PZT actuators. The motion resolution is proved to be submicrometers. The STM tip mounted on another PZT scanner can be guided to a specific object on the sample surface during SEM observation. In the observation of a Si(111) surface rapidly cooled from high temperature, the STM tip was accurately guided to an isolated atomic step and slightly moved along it during SEM observation. The STM observation shows an asymmetry of the (7x7)-transformed region along the step between the upper and lower terraces. (7x7) bands continuously formed along the edge of terraces, while (7x7) domains distributed on the terraces slightly far from the step. These experiments show the wide-movable STM unit resolves a gap of observation area between SEM and STM and the system enables a specific object found in the SEM image to be observed easily by STM.

  20. A high stability and repeatability electrochemical scanning tunneling microscope

    SciTech Connect

    Xia, Zhigang; Wang, Jihao; Lu, Qingyou; Hou, Yubin

    2014-12-15

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO{sub 4}{sup 2−} image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  1. Design and performance of a beetle-type double-tip scanning tunneling microscope

    SciTech Connect

    Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard; Voigtlaender, Bert

    2006-09-15

    A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip.

  2. Laser-induced thermal expansion of a scanning tunneling microscope tip measured with an atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Huber, R.; Koch, M.; Feldmann, J.

    1998-10-01

    We investigate the transient thermal expansion of a scanning tunneling microscope tip after excitation with intense femtosecond laser pulses. The expansion dynamics are measured electrically by monitoring the time-resolved tunneling current and mechanically by use of an atomic force microscope. The tip expansion reaches values as high as 15 nm and exceeds the typical working distance of a scanning tunneling microscope by far. This results in a mechanical contact between tunneling tip and surface leading to surface modifications on a nanometer scale. Our findings clarify the mechanism of the recently proposed focusing of laser radiation in the near field of a tip technique [J. Jersch and K. Dickmann, Appl. Phys. Lett. 68, 868 (1996)] for nanostructuring.

  3. Note: Long-range scanning tunneling microscope for the study of nanostructures on insulating substrates

    SciTech Connect

    Molina-Mendoza, Aday J.; Rodrigo, José G.; Rubio-Bollinger, Gabino; Island, Joshua; Burzuri, Enrique; Zant, Herre S. J. van der; Agraït, Nicolás

    2014-02-15

    The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.

  4. Electronic Single Molecule Measurements with the Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Im, Jong One

    Richard Feynman said "There's plenty of room at the bottom". This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with

  5. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging

    NASA Astrophysics Data System (ADS)

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80to700K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000K and their cooldown time from room temperature to 80K is 15min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8×8μm2. The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  6. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy.

    PubMed

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    2016-06-01

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world. PMID:27370453

  7. A cryogen-free variable temperature scanning tunneling microscope capable for inelastic electron tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    While low temperature scanning tunneling microscope (STM) has become an indispensable research tool in surface science, its versatility is yet limited by the shortage or high cost of liquid helium. The makeshifts include the use of alternative cryogen (such as liquid nitrogen) at higher temperature or the development of helium liquefier system usually at departmental or campus wide. The ultimate solution would be the direct integration of a cryogen-free cryocooler based on GM or pulse tube closed cycle in the STM itself. However, the nasty mechanical vibration at low frequency intrinsic to cryocoolers has set the biggest obstacle because of the known challenges in vibration isolation required to high performance of STM. In this talk, we will present the design and performance of our home-built cryogen-free variable temperature STM at Fudan University. This system can obtain atomically sharp STM images and high resolution dI/dV spectra comparable to state-of-the-art low temperature STMs, but with no limitation on running hours. Moreover, we demonstrated the inelastic tunneling spectroscopy (STM-IETS) on a single CO molecule with a cryogen-free STM for the first time.

  8. Superconducting phonon spectroscopy using a low-temperature scanning tunneling microscope

    NASA Technical Reports Server (NTRS)

    Leduc, H. G.; Kaiser, W. J.; Hunt, B. D.; Bell, L. D.; Jaklevic, R. C.

    1989-01-01

    The low-temperature scanning tunneling microscope (STM) system described by LeDuc et al. (1987) was used to observe the phonon density of states effects in a superconductor. Using techniques based on those employed in macroscopic tunneling spectroscopy, electron tunneling current-voltage (I-V) spectra were measured for NbN and Pb, and dI/dV vs V spectra were measured using standard analog derivative techniques. I-V measurements on NbN and Pb samples under typical STM conditions showed no evidence for multiparticle tunneling effects.

  9. Seeing - and sometimes moving - atoms. Scanning tunneling microscopes are opening up atomic landscapes

    SciTech Connect

    Rotman, D.

    1988-05-01

    Less than two years after the scanning and tunneling microscope won the Nobel prize for its inventors, scientists Gerd Binnig and Heinrich Rohrer at IBM's Zurich Research Center, the technique appears to be on the brink of changing how physicists and chemists see - and interact with - the atomic landscape of many surfaces. The promise of scanning tunneling microscopy (STM) is immense. Unlike any other instrument, the microscope can produce three-dimensional or real-space images of single atoms on a surface. Moreover, it obtains such resolution in ultrahigh vacuum (UHV), air, and a variety of liquids, including water.

  10. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Kawai, Tomoji

    2009-08-01

    The scanning tunnelling microscope is capable of the real-space imaging and spectroscopy of molecules on an atomic scale. Numerous attempts have been made to use the scanning tunnelling microscope to sequence single DNA molecules, but difficulties in preparing samples of long-chain DNA molecules on surfaces, and problems in reproducing results have limited these experiments. Here, we report single-molecule DNA sequencing with a scanning tunnelling microscope by using an oblique pulse-injection method to deposit the molecules onto a copper surface. First, we show that guanine bases have a distinct electronic state that allows them to be distinguished from the other nucleic acid bases. Then, by comparing data on M13mp18, a single-stranded phage DNA, with a known base sequence, the `electronic fingerprint' of guanine bases in the DNA molecule is identified. These results show that it is possible to sequence individual guanine bases in real long-chain DNA molecules with high-resolution scanning tunnelling microscope imaging and spectroscopy.

  11. A cryogenic Quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research

    SciTech Connect

    Kim, T.-H.; Wang Zhouhang; Wendelken, John F.; Weitering, Hanno H.; Li Wenzhi; Li Anping

    2007-12-15

    We describe the development and the capabilities of an advanced system for nanoscale electrical transport studies. This system consists of a low temperature four-probe scanning tunneling microscope (STM) and a high-resolution scanning electron microscope coupled to a molecular-beam epitaxy sample preparation chamber. The four STM probes can be manipulated independently with subnanometer precision, enabling atomic resolution STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Additionally, an integrated energy analyzer allows for scanning Auger microscopy to probe chemical species of nanostructures. Some testing results are presented.

  12. A Cryogenic Quadraprobe Scanning Tunneling Microscope System with Fabrication Capability for Nano-transport Research

    SciTech Connect

    Kim, Tae Hwan; Wang, Zhouhang; Wendelken, J F; Li, Wenzhi; Li, An-Ping; Bryant, Tracy H

    2007-01-01

    We describe the development and the capabilities of a Quadraprobe system, consisting of a low temperature four-probe scanning tunneling microscope (STM) and a high resolution scanning electron microscope (SEM), coupled to a molecular-beam epitaxy sample preparation chamber. The four STM probes can be manipulated independently with sub-nanometer precision, enabling atomic resolution STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Additionally, the four scanning probes with automated motion controls allow for atom assembly to perform "bottom-up" fabrication of nanostructures. Some testing results are presented.

  13. Correlation of scanning-tunneling-microscope image profiles and charge-density-wave amplitudes

    NASA Astrophysics Data System (ADS)

    Giambattista, B.; Johnson, A.; McNairy, W. W.; Slough, C. G.; Coleman, R. V.

    1988-08-01

    Scanning-tunneling-microscope (STM) studies of 4Hb-TaS2 and 4Hb-TaSe2 at 4.2 K show systematic correlation between the charge-density-wave (CDW) amplitude and the STM deflection. The 4Hb phases have both weak and strong CDW's in the trigonal prismatic and octahedral sandwiches, respectively. Scans on opposite faces of the same cleave allow a comparison of the STM response to the two types of CDW.

  14. Selective scanning tunneling microscope light emission from rutile phase of VO2.

    PubMed

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-28

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes. PMID:27460183

  15. Selective scanning tunneling microscope light emission from rutile phase of VO2

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-01

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes.

  16. Probing electron transport and structural properties of nanostructures on Si with a quadraprobe scanning tunneling microscope

    SciTech Connect

    Kim, Tae Hwan; Wendelken, J F; Li, An-Ping

    2008-01-01

    The electron transport and structural properties of nanostructured materials have been examined with a newly developed low temperature quadraprobe scanning tunneling microscope (STM) system. The quadraprobe STM system, as a "nano" version of a four-probe station provides an integrated research platform with a low temperature four-probe STM, a molecular-beam epitaxy growth chamber, a high resolution scanning electron microscope, and a scanning Auger microscope. The four STM probes can be driven independently with sub-nanometer precision, enabling conventional STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Self-assembled nanostructures grown on Si by doping with metal atoms (Au, Gd, Ag) have been fabricated and characterized in situ.

  17. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    SciTech Connect

    Steurer, Wolfram Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  18. X-ray-excited photoelectron detection using a scanning tunneling microscope

    SciTech Connect

    Rose, V.; Freeland, J. W.; Gray, K. E.; Streiffer, S. K.

    2008-05-12

    Detection of x-ray-enhanced electrons emitted by synchrotron radiation with the tip of a scanning tunneling microscope has the potential to open a path to high-resolution microscopy with chemical sensitivity. Nonresonant photoejected electrons typically yield a current background of a few hundred picoamperes at a bare tip. Coating the tip with an insulating boron nitride film can effectively reduce this background. In this configuration, we have quantitatively studied the bias dependent photoelectron collection for tip/sample separations of 400-1600 nm, where quantum mechanical tunneling does not contribute.

  19. Dual-probe scanning tunneling microscope for study of nanoscale metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Yi, W.; Kaya, I. I.; Altfeder, I. B.; Appelbaum, I.; Chen, D. M.; Narayanamurti, V.

    2005-06-01

    Using a dual-probe scanning tunneling microscope, we have performed three-terminal ballistic electron emission spectroscopy on Au /GaAs(100) by contacting the patterned metallic thin film with one tip and injecting ballistic electrons with another tip. The collector current spectra agree with a Monte-Carlo simulation based on modified planar tunneling theory. Our results suggest that it is possible to study nanoscale metal-semiconductor interfaces without the requirement of an externally-contacted continuous metal thin film.

  20. Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Xu, Chen

    With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.

  1. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function

    SciTech Connect

    Higuchi, Seiji; Kuramochi, Hiromi; Machida, Shinichi; Aono, Masakazu; Laurent, Olivier; Komatsubara, Takashi; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-15

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  2. Four-probe measurements with a three-probe scanning tunneling microscope

    SciTech Connect

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  3. Very low thermally induced tip expansion by vacuum ultraviolet irradiation in a scanning tunneling microscope junction

    NASA Astrophysics Data System (ADS)

    Riedel, D.; Delacour, C.; Mayne, A. J.; Dujardin, G.

    2009-10-01

    The thermal and photoelectronic processes induced when a vacuum ultraviolet (VUV) laser irradiates the junction of a scanning tunneling microscope (STM) are studied. This is performed by synchronizing the VUV laser shots with the STM scan signal. Compared to other wavelengths, the photoinduced thermal STM-tip expansion is not observed when the VUV radiation is freed from spurious emissions. Furthermore, we demonstrate that the purified VUV photoinduced transient signal detected in the tunnel current is entirely due to photoelectronic emission and not combined with thermionic processes. The ensuing photoelectron emission is shown to be independent of the tip-surface distance while varying linearly with the pure VUV laser intensity. These results illustrate a strong decoupling between phonons and photoelectrons which allows a very weak STM-tip expansion.

  4. Variable-temperature independently driven four-tip scanning tunneling microscope

    SciTech Connect

    Hobara, Rei; Nagamura, Naoka; Hasegawa, Shuji; Matsuda, Iwao; Yamamoto, Yuko; Miyatake, Yutaka; Nagamura, Toshihiko

    2007-05-15

    The authors have developed an ultrahigh vacuum (UHV) variable-temperature four-tip scanning tunneling microscope (STM), operating from room temperature down to 7 K, combined with a scanning electron microscope (SEM). Four STM tips are mechanically and electrically independent and capable of positioning in arbitrary configurations in nanometer precision. An integrated controller system for both of the multitip STM and SEM with a single computer has also been developed, which enables the four tips to operate either for STM imaging independently and for four-point probe (4PP) conductivity measurements cooperatively. Atomic-resolution STM images of graphite were obtained simultaneously by the four tips. Conductivity measurements by 4PP method were also performed at various temperatures with the four tips in square arrangement with direct contact to the sample surface.

  5. Low thermal power electron beam annealing of scanning tunneling microscope tips

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Agne, M.; Breitenstein, O.; Jenniches, H.

    1997-08-01

    An add-on unit was developed that allows the cleaning of scanning tunneling microscope tips by electron beam annealing even if they cannot be disconnected from the piezo scanner in situ. The whole scanner tip combination, which is attached to a linear motion stage, is subjected to a pulsed annealing treatment. The heat impact is focused on the outermost tip by sticking the tip through a hole in a grounded Mo screening plate with the cathode mounted on the opposite side. Tungsten tips attached to the scanner of the Omicron ultrahigh vacuum Multiscan Lab were annealed to achieve atomic resolution of ultrahigh vacuum cleaved GaAs (110) faces. A highly doped superlattice package grown on semi-insulating GaAs was also able to be investigated on the cleaved (110) face due to the ability of exact tip positioning with a scanning electron microscope.

  6. A low temperature scanning tunneling microscope for electronic and force spectroscopy

    SciTech Connect

    Smit, R. H. M.; Grande, R.; Lasanta, B.; Riquelme, J. J.; Rubio-Bollinger, G.; Agraiet, N.

    2007-11-15

    In this article, we describe and test a novel way to extend a low temperature scanning tunneling microscope with the capability to measure forces. The tuning fork that we use for this is optimized to have a high quality factor and frequency resolution. Moreover, as this technique is fully compatible with the use of bulk tips, it is possible to combine the force measurements with the use of superconductive or magnetic tips, advantageous for electronic spectroscopy. It also allows us to calibrate both the amplitude and the spring constant of the tuning fork easily, in situ and with high precision.

  7. A scanning tunneling microscope break junction method with continuous bias modulation.

    PubMed

    Beall, Edward; Yin, Xing; Waldeck, David H; Wierzbinski, Emil

    2015-09-28

    Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule. PMID:26308622

  8. Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope

    SciTech Connect

    Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard

    2015-12-14

    The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.

  9. Shot noise from single atom contacts in a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Burtzlaff, Andreas; Schneider, Natalia L.; Weismann, Alexander; Berndt, Richard

    2016-01-01

    The shot noise of the current through single-atom contacts has been measured in a scanning tunneling microscope at a temperature of 5 K. Electrical measurements at frequencies up to 120 kHz were performed on Au, Fe, and Co atoms on Au(111) using Au tips. The data from Fe and Co indicate spin polarized transmission through a single conductance channel. Optical measurements at sub-petahertz frequencies were carried out on Cu adatoms on Cu(111) using Cu tips. The data are consistent with previous observations from coinage metal contacts.

  10. Scanning tunneling microscope with three-dimensional interferometer for surface roughness measurement

    NASA Astrophysics Data System (ADS)

    Fujii, Toru; Yamaguchi, Masataka; Suzuki, Masatoshi

    1995-03-01

    The scanning tunneling microscope (STM) has been known for its high lateral resolution, but its unreliable vertical accuracy has prevented it from being widely used as a profiler for roughness and step height measurements. An STM equipped with an optical interferometer to calibrate STM tip feedback controlled motion in the Z direction along with interferometers for monitoring X and Y raster scanning has been developed. The resolution of the interferometer was 0.12 nm rms. Maximum line scanning distance is 250 μm and the motion in this direction is secured by a parallel spring mechanism. Step height and pitch measurements on a surface topography standard agree in nanometer scale with the certified value of the standard. The result of high accuracy roughness measurement with the STM supports the common observation that STM measurement gives larger roughness than interferometric measurement.

  11. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  12. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope.

    PubMed

    Burgess, Jacob A J; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-01-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface. PMID:26359203

  13. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    PubMed Central

    Burgess, Jacob A.J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-01-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface. PMID:26359203

  14. Scanning tunneling microscope light emission: Effect of the strong dc field on junction plasmons

    NASA Astrophysics Data System (ADS)

    Kalathingal, Vijith; Dawson, Paul; Mitra, J.

    2016-07-01

    The observed energies of the localized surface plasmons (LSPs) excited at the tip-sample junction of a scanning tunneling microscope, as identified by spectral peaks in the light output, are very significantly redshifted with respect to calculations that use standard optical data for the tip and sample material, gold in this case. We argue that this anomaly depends on the extreme field in the sub-nm tunneling proximity of the tip and the sample, across which a dc bias (1-2 V) is applied. Finite element modeling analysis is presented of a gold nanosphere-plane (NS-P) combination in tunneling proximity and, crucially, in the presence of a high static electric field (˜109V /m ). It is argued that the strong dc field induces nonlinear corrections to the dielectric function of the gold via the effect of a large background polarizability through the nonlinear, χ(3 ) susceptibility contribution. When fed into the model system the modified optical data alters the LSP cavity modes of the NS-P system to indeed reveal a large redshift in energy compared to those of the virgin gold NS-P system. The net outcome may be regarded as equivalent to lowering the bulk plasmon energy, the physical interpretation being that the intense field of the tunneling environment leads to surface charge screening, effectively reducing the density of free electrons available to participate in the plasmon oscillations.

  15. Construction of a Dual-Tip Scanning Tunneling Microscope: a Prototype Nanotechnology Workstation.

    NASA Astrophysics Data System (ADS)

    Voelker, Mark Alan

    1993-01-01

    This dissertation describes the construction and performance of a dual-tip scanning tunneling microscope (STM). The microscope was built as a prototype nanotechnology workstation, a general purpose instrument designed to give a researcher the ability to investigate and manipulate nanometer scale structures. Chapter One describes the genesis and development of the concept of nanotechnology, from the atomic hypothesis of Democritus to modern developments in synthetic chemistry. Nanometer scale electronics (molecular electronics) is introduced and the state of the art in this field is described. The dual-tip scanning probe microscope is proposed as a way to address individual molecular electronic devices, a key goal in realizing nanometer scale electronic technology. Investigation of microtubules, a proposed nanometer scale intracellular biological information processing system, is also discussed. Chapter Two reviews the history and fundamental physics of STM, along with the related techniques of Field Ion Microscopy (FIM) and Ballistic Electon Emission Microscopy (BEEM). BEEM is used to introduce the physics of the dual -tip STM. Other dual-probe systems are also described. Chapter Three covers the design and construction of the dual-tip STM. Both hardware and software are described in detail. Chapter Four presents the results obtained with the dual-tip STM, including dual-tip images and noise measurements for the electronic circuitry. The last chapter, Chapter Five, contains suggested design changes for improving the performance of the dual -tip microscope and descriptions of experiments that can be performed with an improved instrument. Design and use of a nanotechnology workstation in the fields of semiconductor electronics, molecular electronics and cellular biology is discussed. Investigation of neurons grown on a silicon chip with a dual-tip STM system is proposed. Four Appendices present a noise model of the STM tunneling gap and preamplifier, describe

  16. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam. PMID:27587179

  17. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  18. Scanning tunneling microscope design with a confocal small field permanent magnet.

    SciTech Connect

    Messina, P.; Pearson, J.; Vasserman, I.; Sasaki, S.; Moog, E.; Fradin, F.

    2008-09-01

    The field of ultra-sensitive measurements with scanning probes requires the design and construction of novel instruments. For example, the combination of radio frequency detection and scanning probe can be exploited to measure thermal properties and mechanical resonances at a very low scale. Very recent results by Komeda and Manassen (2008 Appl. Phys. Lett. 92 212506) on the detection of spin noise with the scanning tunneling microscopy (STM) have further expanded previous results reported by one of the authors of this manuscript (Messina et al 2007 J. Appl. Phys. 101 053916). In a previous publication, one of the authors used a new STM instrument (Messina et al J. Appl. Phys. 2007 101 053916 and Mannini et al 2007 Inorg. Chim. Acta 360 3837-42) to obtain the detection of electron spin noise (ESN) from individual paramagnetic adsorbates. The magnetic field homogeneity at the STM tip-sample region was limited. Furthermore, vacuum operation of the STM microscope was limited by the heat dissipation at the electromagnet and the radio frequency (RF) recovery electronics. We report here on a new STM head that incorporates a specially designed permanent magnet and in-built RF amplification system. The magnet provides both a better field homogeneity and freedom to operate the instrument in vacuum. The STM microscope is vacuum compatible, and vertical stability has been improved over the previous design (Messina et al 2007 J. Appl. Phys. 101 053916), despite the presence of a heat dissipative RF amplifier in the close vicinity of the STM tip.

  19. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    NASA Astrophysics Data System (ADS)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  20. Calibration of tip and sample temperature of a scanning tunneling microscope using a superconductive sample

    SciTech Connect

    Stocker, Matthias; Pfeifer, Holger; Koslowski, Berndt

    2014-05-15

    The temperature of the electrodes is a crucial parameter in virtually all tunneling experiments. The temperature not only controls the thermodynamic state of the electrodes but also causes thermal broadening, which limits the energy resolution. Unfortunately, the construction of many scanning tunneling microscopes inherits a weak thermal link between tip and sample in order to make one side movable. Such, the temperature of that electrode is badly defined. Here, the authors present a procedure to calibrate the tip temperature by very simple means. The authors use a superconducting sample (Nb) and a standard tip made from W. Due to the asymmetry in the density of states of the superconductor (SC)—normal metal (NM) tunneling junction, the SC temperature controls predominantly the density of states while the NM controls the thermal smearing. By numerically simulating the I-V curves and numerically optimizing the tip temperature and the SC gap width, the tip temperature can be accurately deduced if the sample temperature is known or measureable. In our case, the temperature dependence of the SC gap may serve as a temperature sensor, leading to an accurate NM temperature even if the SC temperature is unknown.

  1. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator.

    PubMed

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities. PMID:27370458

  2. All low voltage lateral junction scanning tunneling microscope with very high precision and stability

    NASA Astrophysics Data System (ADS)

    Hou, Yubin; Wang, Jihui; Lu, Qingyou

    2008-11-01

    We describe the first lateral junction and fully low voltage scanning tunneling microscope, featuring very high precision, stability, compactness, and image quality (highly oriented pyrolytic graphite atomic resolution images). In its core, the tip and sample each sit on one of two parallel-mounted piezoelectric tube scanners so that the tip-sample gap is regulated along the scanners' pairing direction. The scanner's large lateral deflection provides a large gap regulation range even under low voltages, allowing exclusively using only low voltage (less than ±15 V) operational amplifiers to precisely implement the coarse (inertial slider) and fine approach, feedback control, and hence the entire electronics. Because the scanners are identical and adjacent, thermal drifts are minimal.

  3. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope.

    PubMed

    Celotta, Robert J; Balakirsky, Stephen B; Fein, Aaron P; Hess, Frank M; Rutter, Gregory M; Stroscio, Joseph A

    2014-12-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach. PMID:25554264

  4. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Celotta, Robert J.; Balakirsky, Stephen B.; Fein, Aaron P.; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A.

    2014-12-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  5. Scanning tunneling microscope based nanoscale optical imaging of molecules on surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Chen, Liuguo; Zhang, Rui; Dong, Zhenchao

    2015-08-01

    We provide an overview of the development of a merged system of low-temperature ultrahigh-vacuum scanning tunneling microscope (STM) with photon collection and detection units for optical imaging at the nanoscale. Focusing on our own work over the past ten years, the paper starts from a brief introduction of the STM induced luminescence (STML) technique and the challenge for nanoscale optical imaging, and then describes the design and instrumentation on the photon collection and detection system. The powerful potentials of the technique are illustrated using several selected examples from STML to tip enhanced Raman scattering that are mainly related to photon mapping. Such photon maps could reveal not only the local electromagnetic properties and the nature of optical transitions in the junction, but also exhibit spatial imaging resolution down to sub-molecular and sub-nanometer scale. The paper is concluded with a brief overlook on the future development of the STML technique.

  6. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    DOEpatents

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  7. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.

  8. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    SciTech Connect

    Celotta, Robert J. E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A. E-mail: joseph.stroscio@nist.gov; Balakirsky, Stephen B.; Fein, Aaron P.

    2014-12-15

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  9. Imaging sequential dehydrogenation of methanol on Cu(110) with a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Y.; Shiotari, A.; Okuyama, H.; Hatta, S.; Aruga, T.

    2011-05-01

    Adsorption of methanol and its dehydrogenation on Cu(110) were studied by using a scanning tunneling microscope (STM). Upon adsorption at 12 K, methanol preferentially forms clusters on the surface. The STM could induce dehydrogenation of methanol sequentially to methoxy and formaldehyde. This enabled us to study the binding structures of these products in a single-molecule limit. Methoxy was imaged as a pair of protrusion and depression along the [001] direction. This feature is fully consistent with the previous result that it adsorbs on the short-bridge site with the C-O axis tilted along the [001] direction. The axis was induced to flip back and forth by vibrational excitations with the STM. Two configurations were observed for formaldehyde, whose structures were proposed based on their characteristic images and motions.

  10. A scanning tunneling microscope break junction method with continuous bias modulation

    NASA Astrophysics Data System (ADS)

    Beall, Edward; Yin, Xing; Waldeck, David H.; Wierzbinski, Emil

    2015-09-01

    Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule.Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule. Electronic supplementary information (ESI) available: Additional current-time traces recorded for mesitylene, 2,4-dichlorotoluene, and 3,4-dichlorotoluene under different bias modulation frequencies, determined solvent capacitance values, and traces recorded under various geometrical constraints in the experimental cell. See DOI: 10.1039/c5nr04649a

  11. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    SciTech Connect

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V.; Ulrich, Stefan

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  12. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope

    SciTech Connect

    Hagedorn, Till; Ouali, Mehdi El; Paul, William; Oliver, David; Miyahara, Yoichi; Gruetter, Peter

    2011-11-15

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p {<=}10{sup -10} mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

  13. Modeling of Electronic Transport in Scanning Tunneling Microscope Tip-Carbon Nanotube Systems

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Kwak, Dochan (Technical Monitor)

    2000-01-01

    A model is proposed for two observed current-voltage (I-V) patterns in a recent experiment with a scanning tunneling microscope tip and a carbon nanotube. We claim that there are two mechanical contact modes for a tip (metal) -nanotube (semiconductor) junction (1) with or (2) without a tiny vacuum gap (0.1 - 0.2 nm). With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube; the Schottky mechanism in (2) would result in I does not equal 0 only with V < 0 for an n-nanotube, and the bias polarities would be reversed for a p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type.

  14. Rotational Excitation Spectroscopy with the Scanning Tunneling Microscope - Distinction of Nuclear Spin States

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2014-03-01

    The appeal of inelastic electron tunneling spectroscopy with the scanning tunneling microscope (STM) stems from its unmatched spatial resolution and the ability to measure the magnetic, electronic and vibrational properties of individual atoms and molecules. Rotational excitations of molecules could provide additional information of surface processes but have hitherto remained elusive. Here we demonstrate rotational excitation spectroscopy (RES) with the STM for hydrogen and its isotopes on graphene and hexagonal boron nitride. Since the Pauli principle imposes restrictions on the allowed rotational levels J for molecules with identical nuclei, a certain alignment of the nuclear spins entails a specific set of rotational levels. Conversely, measuring the rotational levels allows characterizing the molecular nuclear spin state. We measured excitation energies at 44 meV and 21 meV, corresponding to rotational transitions J = 0 --> 2 for hydrogen and deuterium. We thereby identify the nuclear spin isomers para-H2 and ortho-D2. For HD, we observe J = 0 --> 1 and J = 0 --> 2 transitions, as expected for heteronuclear diatomics. Our measurements demonstrate the potential of STM-RES in the study of nuclear spin states with unprecedented spatial resolution. We acknowledge funding from the Swiss National Science Foundation under Projects No. 140479 and No. 148891.

  15. Imaging superconducting vortex cores and lattices with a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Suderow, H.; Guillamón, I.; Rodrigo, J. G.; Vieira, S.

    2014-06-01

    The observation of vortices in superconductors was a major breakthrough in developing the conceptual background for superconducting applications. Each vortex carries a flux quantum, and the magnetic field decreases radially from the center. Techniques used to make magnetic field maps, such as magnetic decoration, give vortex lattice images in a variety of systems. However, strong type II superconductors allow penetration of the magnetic field over large distances, of the order of the magnetic penetration depth λ. Superconductivity survives up to magnetic fields where, for imaging purposes, there is no magnetic contrast at all. Static and dynamic properties of vortices are largely unknown at such high magnetic fields. Reciprocal space studies using neutron scattering have been employed to obtain insight into the collective behavior. But the microscopic details of vortex arrangements and their motion remain difficult to obtain. Direct real-space visualization can be made using scanning tunneling microscopy and spectroscopy (STM/S). Instead of using magnetic contrast, the electronic density of states describes spatial variations of the quasiparticle and pair wavefunction properties. These are of the order of the superconducting coherence length ξ, which is much smaller than λ. In principle, individual vortices can be imaged using STM up to the upper critical field where vortex cores, of size ξ, overlap. In this review, we describe recent advances in vortex imaging made with scanning tunneling microscopy and spectroscopy. We introduce the technique and discuss vortex images that reveal the influence of the Fermi surface distribution of the superconducting gap on the internal structure of vortices, the collective behavior of the lattice in different materials and conditions, and the observation of vortex lattice melting. We consider challenging lines of work, which include imaging vortices in nanostructures, multiband and heavy fermion superconductors, single layers

  16. Nonlinearity, resonance, charging, and motion at the atomic scale studied with scanning tunneling microscopes

    NASA Astrophysics Data System (ADS)

    Tu, Xiuwen

    2008-10-01

    Several novel phenomena at the single-atom and single-molecule level occurring on the surfaces of single crystals were studied with home-built low temperature scanning tunneling microscopes. The results revealed intriguing properties of single atoms and single molecules, including nonlinearity, resonance, charging, and motion. First, negative differential resistance (NDR) was observed in the dI/dV spectra for single copper-phthalocyanine (CuPc) molecules adsorbed on one- and two-layer sodium bromide (NaBr), but not for single CuPc molecules adsorbed on three-layer NaBr, all grown on a NiAl(110) surface. This transition from NDR to the absence of NDR was explained as the result of competing effects in the double-barrier tunnel junction (DBTJ) and was reproduced in a calculation based on a resonant-tunneling model. Second, the nonlinearity of the STM junction due to a single manganese (Mn) atom or MnCO molecule adsorbed on a NiAl(110) surface was used to rectify microwave irradiation. The resulting rectification current was shown to be sensitive to the spin-splitting of the electronic states of the Mn atom and to the vibrations of the MnCO molecule. Next, the ordering of cesium (Cs) atoms adsorbed on a Au(111) surface and a NiAl(110) surface was imaged in real space. Because of charge transfer to the substrates, Cs adatoms were positively charged on both surfaces. Even at 12 K, Cs adatoms were able to move and adjust according to coverage. On Au(111), the Cs first layer had a quasi-hexagonal lattice and islands of the second Cs layer did not appear until the first was completed. On NiAl(110), a locally disordered Cs first layer was observed before a locally ordered layer appeared at higher coverages. The cation-pi interactions were then studied at the single molecular level. We were able to form cation-pi complexes such as Cs···DSB, Cs···DSB···Cs, Rb···DSB, and Rb···ZnEtiol controllably by manipulation with the STM tip. We could also separate these

  17. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.

    PubMed

    Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV. PMID:24784617

  18. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    SciTech Connect

    Roychowdhury, Anita; Gubrud, M. A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-04-15

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  19. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability.

    PubMed

    Kim, Jungdae; Nam, Hyoungdo; Qin, Shengyong; Kim, Sang-ui; Schroeder, Allan; Eom, Daejin; Shih, Chih-Kang

    2015-09-01

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening. PMID:26429448

  20. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability

    SciTech Connect

    Kim, Jungdae; Nam, Hyoungdo; Schroeder, Allan; Shih, Chih-Kang; Qin, Shengyong; Kim, Sang-ui; Eom, Daejin

    2015-09-15

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.

  1. Scanning tunnelling microscope fabrication of arrays of phosphorus atom qubits for a silicon quantum computer

    NASA Astrophysics Data System (ADS)

    O'Brien, J. L.; Schofield, S. R.; Simmons, M. Y.; Clark, R. G.; Dzurak, A. S.; Curson, N. J.; Kane, B. E.; McAlpine, N. S.; Hawley, M. E.; Brown, G. W.

    2002-10-01

    Recognition of the potentially massive computational power of a quantum computer has driven a considerable experimental effort to build such a device. Of the various possible physical implementations, silicon-based architectures are attractive for the long spin relaxation times involved, their scalability, and ease of integration with existing silicon technology. However, their fabrication requires construction at the atomic scale - an immense technological challenge. Here we outline a detailed strategy for the construction of a phosphorus in silicon quantum computer and demonstrate the first significant step towards this goal - the fabrication of atomically precise arrays of single phosphorus bearing molecules on a silicon surface. After using a monolayer hydrogen resist to passivate a silicon surface we apply pulsed voltages to a scanning tunnelling microscope tip to selectively desorb individual hydrogen atoms with atomic resolution. Exposure of this surface to the phosphorus precursor phosphine results in precise placement of single phosphorus atoms on the surface. We also describe preliminary studies into a process to incorporate these surface phosphorus atoms into the silicon crystal at the array sites.

  2. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability

    NASA Astrophysics Data System (ADS)

    Kim, Jungdae; Nam, Hyoungdo; Qin, Shengyong; Kim, Sang-ui; Schroeder, Allan; Eom, Daejin; Shih, Chih-Kang

    2015-09-01

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.

  3. A New Scanning Tunneling Microscope Reactor Used for High Pressure and High Temperature Catalysis Studies

    SciTech Connect

    Tao, Feng; Tang, David C.; Salmeron, Miquel; Somorjai, Gabor A.

    2008-05-12

    We present the design and performance of a home-built high-pressure and high-temperature reactor equipped with a high-resolution scanning tunneling microscope (STM) for catalytic studies. In this design, the STM body, sample, and tip are placed in a small high pressure reactor ({approx}19 cm{sup 3}) located within an ultrahigh vacuum (UHV) chamber. A sealable port on the wall of the reactor separates the high pressure environment in the reactor from the vacuum environment of the STM chamber and permits sample transfer and tip change in UHV. A combination of a sample transfer arm, wobble stick, and sample load-lock system allows fast transfer of samples and tips between the preparation chamber, high pressure reactor, and ambient environment. This STM reactor can work as a batch or flowing reactor at a pressure range of 10{sup -13} to several bars and a temperature range of 300-700 K. Experiments performed on two samples both in vacuum and in high pressure conditions demonstrate the capability of in situ investigations of heterogeneous catalysis and surface chemistry at atomic resolution at a wide pressure range from UHV to a pressure higher than 1 atm.

  4. Studies of the epitaxial monolayer NbSe2 by ultra-low-temperature scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Ji, Shuai-Hua

    Monolayer NbSe2 has been successfully synthesized by molecular beam epitaxy on the graphitized SiC(0001) surface. Wide substrate temperature window from 200°C to 650°C for the epitaxial growth has been observed. The polycrystalline nature of the epitaxial sheet, which is caused by the weak Van der Waals interaction with substrate, has been evidenced by reflection high-energy electron diffraction and locally by scanning tunnelling microscope. Under the high temperature growth condition, grain size could reach as large as hundreds of nanometers. The shape of grain boundary is strongly depended on the misaligned angle between adjacent grains. Mainly, three type grain boundaries have been identified at the atomic scale by the local scanning probe. The BCS-like superconducting gap and the spatial fluctuation of order parameter have been revealed by ultra-low temperature scanning tunnelling microscope in the sub-Kelvin range.

  5. Scanning tunneling microscope-induced modification of Cu(100) surfaces and Ag nanowire arrays

    NASA Astrophysics Data System (ADS)

    Leibsle, Fred; York, Mike; Aurongzeb, Deeder

    2001-03-01

    We have used scanning tunneling microscopy to selectively modify areas of Cu(100) surfaces. By scanning repeatedly over areas with extremely low bias voltages and high tunneling currents, we can create nanometer-scale pits several layers deep. The atoms removed from these pits form nearby islands. The evolution of these pits and islands is also studied with images showing changes in shape, coalescence and both rapid and gradual decay. We also demonstrate how we can selectively modify segments of Ag nanowire arrays grown on atomic nitrogen-modified Cu(100) surfaces.

  6. Note: A simple, convenient, and reliable method to prepare gold scanning tunneling microscope tips

    SciTech Connect

    Qian Guoguang; Saha, Swatilekha; Lewis, K. M.

    2010-01-15

    A simple method to prepare gold tips for scanning tunneling microscopy has been introduced. In this method, electrochemical etching without a hazardous electrolyte was employed. The setup uses basic laboratory instrumentation to control the etching process. This avoids purchasing complicated, expensive, and dedicated equipment for tip preparation. A procedure to optimize the etching parameters by setting the current limit is described. Etched tips were checked with both optical and scanning electron microscopy.

  7. Design and properties of a cryogenic dip-stick scanning tunneling microscope with capacitive coarse approach control.

    PubMed

    Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C

    2014-01-01

    We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields. PMID:24517774

  8. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10-7 Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  9. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies. PMID:27036755

  10. Development of Near-Field Microwave Microscope with the Functionality of Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Machida, Tadashi; Gaifullin, Marat B.; Ooi, Shuuich; Kato, Takuya; Sakata, Hideaki; Hirata, Kazuto

    2010-11-01

    We describe the details of an original near-field scanning microwave microscope, developed for simultaneous measurements of local density-of-states (LDOS) and local ohmic losses (LOL). Improving microwave detection systems, we have succeeded in distinguishing the LDOS and LOL even between two low resistance materials; gold and highly orientated pyrolitic graphite. The experimental data indicate that our microscope holds a capability to investigate both LDOS and LOL in nanoscale.

  11. Luminescence of Quantum Dots by Coupling with Nonradiative Surface Plasmon Modes in a Scanning Tunneling Microscope

    SciTech Connect

    Romero, M. J.; van de Lagemaat, J.

    2009-01-01

    The electronic coupling between quantum dots (QDs) and surface plasmons (SPs) is investigated by a luminescence spectroscopy based on scanning tunneling microscopy (STM). We show that tunneling luminescence from the dot is excited by coupling with the nonradiative plasmon mode oscillating at the metallic tunneling gap formed during the STM operation. This approach to the SP excitation reveals aspects of the SP-QD coupling not accessible to the more conventional optical excitation of SPs. In the STM, luminescence from the dot is observed when and only when the SP is in resonance with the fundamental transition of the dot. The tunneling luminescence spectrum also suggests that excited SP-QD hybrid states can participate in the excitation of QD luminescence. Not only the SP excitation regulates the QD luminescence but the presence of the dot at the tunneling gap imposes restrictions to the SP that can be excited in the STM, in which the SP cannot exceed the energy of the fundamental transition of the dot. The superior SP-QD coupling observed in the STM is due to the tunneling gap acting as a tunable plasmonic resonator in which the dot is fully immersed.

  12. Layer by layer removal of Au atoms from passivated Au(111) surfaces using the scanning tunneling microscope: Nanoscale ``paint stripping''

    NASA Astrophysics Data System (ADS)

    Keel, J. M.; Yin, J.; Guo, Q.; Palmer, R. E.

    2002-04-01

    Layer by layer removal of gold atoms from the (111) surface of gold has been performed using the scanning tunneling microscope. The process is made possible by a chemisorbed self-assembled monolayer (SAM) of dodecanethiol molecules on the surface, which gives rise to a reduced bonding strength between the top two layers of gold atoms. The gold atoms and associated adsorbed molecules are peeled off and displaced laterally by the STM tip, and the size of the modified area (down to ˜10×10 nm) is more or less determined by the scan size.

  13. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    PubMed

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface. PMID:26026532

  14. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    SciTech Connect

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng E-mail: jfjia@sjtu.edu.cn

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  15. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    SciTech Connect

    Wu, S. W.; Ho, W.

    2010-08-15

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  16. Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle

    NASA Astrophysics Data System (ADS)

    Le Moal, Eric; Marguet, Sylvie; Canneson, Damien; Rogez, Benoît; Boer-Duchemin, Elizabeth; Dujardin, Gérald; Teperik, Tatiana V.; Marinica, Dana-Codruta; Borisov, Andrey G.

    2016-01-01

    The inelastic tunnel current in the junction formed between the tip of a scanning tunneling microscope (STM) and the sample can electrically generate optical signals. This phenomenon is potentially of great importance for nano-optoelectronic devices. In practice, however, the properties of the emitted light are difficult to control because of the strong influence of the STM tip. In this work, we show both theoretically and experimentally that the sought-after, well-controlled emission of light from an STM tunnel junction may be achieved using a nonplasmonic STM tip and a plasmonic nanoparticle on a transparent substrate. We demonstrate that the native plasmon modes of the nanoparticle may be used to engineer the light emitted in the substrate. Both the angular distribution and intensity of the emitted light may be varied in a predictable way by choosing the excitation position of the STM tip on the particle.

  17. Ultrafast scanning tunneling microscopy

    SciTech Connect

    Botkin, D.A. |

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  18. Scanning tunneling microscopic analysis of Cu(In,Ga)Se{sub 2} epitaxial layers

    SciTech Connect

    Mayer, Marie A.; Hebert, Damon; Rockett, Angus A.; Ruppalt, Laura B.; Lyding, Joseph

    2010-02-15

    Scanning tunneling microscopy (STM) measurements have been made on single-crystal epitaxial layers of CuInSe{sub 2} grown on GaAs substrates. Results were obtained for as-grown, air-exposed, and cleaned surfaces; in situ cleaved surfaces; surfaces sputtered and annealed in the STM system; and samples prepared by a light chemical etch. Conventional constant-current topographs, current-voltage curves, and current imaging tunneling spectroscopy (CITS) scans were obtained. Topographic images show that the surfaces appear rough on the atomic scale and often exhibit regular features consistent with a previously proposed surface ad-dimer reconstruction. CITS scans show a spatially varying energy gap consistent with band-edge fluctuations on a scale of a few atomic spacings. Energy variations were observed in both band edges. Although quantitative description of the magnitude of these fluctuations is difficult, the fluctuations on the atomic scale appear much larger than observed by methods such as photoluminescence, which average over larger volumes.

  19. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    SciTech Connect

    Wang, Qi; Wang, Junting; Lu, Qingyou; Hou, Yubin

    2013-11-15

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d{sub 31} coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  20. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  1. Imaging of biological samples by a collection-mode photon scanning tunneling microscope with an apertured probe

    NASA Astrophysics Data System (ADS)

    Naya, Masayuki; Mononobe, Shuji; Uma Maheswari, R.; Saiki, Tosiharu; Ohtsu, Motoichi

    1996-02-01

    We report on high resolution imaging by a collection-mode photon scanning tunneling microscope (c-mode PSTM). In our PSTM system, we have used a novel probe with a nanometric protrusion formed from a metal coated sharpened fiber. By using this probe, flagellar filaments of salmonella of diameter 25 nm could be imaged to have a full width at half maximum of 50 nm. Obtained images strongly depended on the separation of the sample to the probe, the diameter of the aperture, and polarization of the irradiated light. Comments on the origins of these dependencies are given.

  2. Chain polymerization of diacetylene compound multilayer films on the topmost surface initiated by a scanning tunneling microscope tip.

    PubMed

    Takajo, Daisuke; Okawa, Yuji; Hasegawa, Tsuyoshi; Aono, Masakazu

    2007-05-01

    Chain polymerizations of diacetylene compound multilayer films on graphite substrates were examined with a scanning tunneling microscope (STM) at the liquid/solid interface of the phenyloctane solution. The first layer grew very quickly into many small domains. This was followed by the slow formation of the piled up layers into much larger domains. Chain polymerization on the topmost surface layer could be initiated by applying a pulsed voltage between the STM tip and the substrate, usually producing a long polymer of submicrometer length. In contrast, polymerizations on the underlying layer were never observed. This can be explained by a conformation model in which the polymer backbone is lifted up. PMID:17432888

  3. Note: Automated electrochemical etching and polishing of silver scanning tunneling microscope tips.

    PubMed

    Sasaki, Stephen S; Perdue, Shawn M; Rodriguez Perez, Alejandro; Tallarida, Nicholas; Majors, Julia H; Apkarian, V Ara; Lee, Joonhee

    2013-09-01

    Fabrication of sharp and smooth Ag tips is crucial in optical scanning probe microscope experiments. To ensure reproducible tip profiles, the polishing process is fully automated using a closed-loop laminar flow system to deliver the electrolytic solution to moving electrodes mounted on a motorized translational stage. The repetitive translational motion is controlled precisely on the μm scale with a stepper motor and screw-thread mechanism. The automated setup allows reproducible control over the tip profile and improves smoothness and sharpness of tips (radius 27 ± 18 nm), as measured by ultrafast field emission. PMID:24089884

  4. Layer-by-layer nanometer scale etching of two-dimensional substrates using the scanning tunneling microscope

    SciTech Connect

    Parkinson, B. )

    1990-10-10

    The scanning tunneling microscope can be used to sequentially etch single molecular layers from the surface of two-dimensional materials (i.e., SnSe{sub 2}, TiSe{sub 2}, and NbSe{sub 2}). Etching occurs by the nucleation and growth of holes in the region of the sample rastered by the tip under normal conditions of tunneling bias and current. In the case of etching NbSe{sub 2}, triangular etch pits are formed in the initial etching stages. The mechanism for the etching process is unknown at this point although four reasonable mechanisms are proposed. Several submicron complex structures have been prepared as well as a structure as small as 25 x 25 x 1.2 nm.

  5. Development of a Millikelvin dual-tip Josephson scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Anita

    In this thesis, I first describe the design and construction of a dual-tip millikelvin STM system. The STM is mounted on a dilution refrigerator and the setup includes vibration isolation, rf-filtered wiring, an ultra high vacuum (UHV) sample preparation chamber and sample transfer mechanism. Next I describe a novel superconducting tip fabrication technique. My technique involves dry-etching sections of 250 mum diameter Nb wire with an SF6 plasma in a reactive ion etcher. I present data taken with these tips on various samples at temperatures ranging from 30 mK to 9 K. My results demonstrate that the tips are superconducting, achieve good spectroscopic energy resolution, are mechanically robust over long time periods, and are atomically sharp. I also show data characterizing the performance of our system. This data is in the form of atomic resolution images, spectroscopy, noise spectra and simultaneous scans taken with both tips of the STM. I used these to examine the tip-sample stability, cross talk between the two tips, and to extract the effective noise temperature (˜185 mK) of the sample by fitting the spectroscopy data to a voltage noise model. Finally, I present spectroscopy data taken with a Nb tip on a Nb(100) sample at 30 mK. The enhanced spectroscopic resolution at this temperature allowed me to resolve peaks in the fluctuation-dominated supercurrent at sub-gap voltages. My analysis indicates that these peaks are due to the incoherent tunneling of Cooper pairs at resonant frequencies of the STM's electromagnetic environment. By measuring the response of the STM junction to microwaves, I identified the charge carriers in this regime as Cooper pairs with charge 2e. The amplitude of the response current scales as the square of the Bessel functions, indicating that the pair tunneling originates from photon assisted tunneling in the incoherent regime, rather than the more conventionally observed Shapiro steps in the coherent regime.

  6. Strong-coupling superconductivity revealed by scanning tunneling microscope in tetragonal FeS

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Du, Zengyi; Du, Guan; Gu, Qiangqiang; Lin, Hai; Fang, Delong; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2016-07-01

    We investigate the electronic properties of the tetragonal FeS superconductor by using scanning tunneling microscopy/spectroscopy. It is found that the typical tunneling spectrum on the top layer of sulfur can be nicely fitted with an anisotropic s wave or a combination of two superconducting components in which one may have a highly anisotropic or nodal-like superconducting gap. The fittings lead to the superconducting gap of about Δmax≈0.90 meV , which yields a ratio of 2 Δmax/kBTc≈ 4.65. This value is larger than that of the predicted value 3.53 by the BCS theory in the weak-coupling limit, indicating a strong-coupling superconductivity. Two kinds of defects are observed on the surface, which can be assigned to the defects on the S sites (fourfold image) and Fe sites (dumbbell shape). Impurity-induced resonance states are found only for the defects on the S sites and stay at zero-bias energy.

  7. A New Interpretation of the Scanning Tunneling Microscope Image of Graphite

    SciTech Connect

    Zeinalipour-Yazdi, Constantinos D.; Pullman, David P.

    2008-06-02

    In this work, highly-resolved scanning tunneling microscopy images of graphite basal plane are obtained and theoretical computations are performed to explain the resolution of only half the atoms in STM images of graphite. Our experimental and computational findings indicate that the bright elliptical spots observed in trigonal STM images of graphite may not correspond to carbon positions but to p-states localized above alternate carbon–carbon bonds. This interpretation is based on STM experiments that suggest that the elliptical shape of the bright spots may not be a tip artifact and on simulated STM images of a graphite using orthorhombic unit cells that are in excellent agreement with experimentally obtained images.

  8. Scanning tunneling microscope observation of the phosphatidylserine domains in the phosphatidylcholine monolayer.

    PubMed

    Matsunaga, Soichiro; Yamada, Taro; Kobayashi, Toshihide; Kawai, Maki

    2015-05-19

    A mixed monolayer of 1,2-dihexanoyl-sn-glycero-3-phospho-l-serine (DHPS) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) on an 1-octanethiol-modified gold substrate was visualized on the nanometer scale using in situ scanning tunneling microscopy (STM) in aqueous solution. DHPS clusters were evident as spotty domains. STM enabled us to distinguish DHPS molecules from DHPC molecules depending on their electronic structures. The signal of the DHPS domains was abolished by neutralization with Ca(2+). The addition of the PS + Ca(2+)-binding protein of annexin V to the Ca(2+)-treated monolayer gave a number of spots corresponding to a single annexin V molecule. PMID:25913903

  9. Detection Improvement for Electron Energy Spectra for Surface Analysis Using a Field Emission Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Hirade, Masato; Arai, Toyoko; Tomitori, Masahiko

    2003-07-01

    For identification of the atomic species on a sample surface with high spatial resolution, we developed a field emission scanning tunneling microscopy (FE-STM) combined with an energy analyzer to perform surface electron spectroscopy: the primary electrons are field-emitted from the STM tip to excite sample surfaces. The energy spectra of backscattered electrons obtained using this combined instrument exhibited the elemental features, though the energy peaks and their signal height in the spectra were affected by the electric field between the tip and the sample. In the present study, we have examined and improved the electric shield of an STM tip holder. The metal parts of the holder at a high voltage, which face the gap left for electrons to pass through, were shielded to reduce the electric field. We have successfully demonstrated the effect of the field reduction for surface electron spectroscopy with the FE-STM.

  10. Comparative Surface Studies at Atomic Resolution with Ultrahigh Vacuum Variable-Temperature Atomic Force and Scanning Tunneling Microscopes.

    PubMed

    Iwatsuki; Suzuki; Kitamura; Kersker

    1999-05-01

    : With the ultrahigh vacuum variable-temperature scanning tunneling microscope (UHV-VT-STM), atomic-level observation has been achieved. An ultrahigh vacuum atomic force microscope (UHV-AFM) has also been developed, with success in obtaining atom images where observation in noncontact (NC) mode with a frequency modulation (FM) detection method was attempted. Using the FM detection method in the constant oscillation amplitude of the cantilever excitation mode, we have obtained atomic-resolution images of Si(111) 7 x 7 structures and Si(100) 2 x 1 structures and other structures together with STM images in an ultrahigh vacuum environment. Also shown here are contact potential difference (CPD) images using the NC-AFM method. PMID:10383993

  11. Comparative Surface Studies at Atomic Resolution with Ultrahigh Vacuum Variable-Temperature Atomic Force and Scanning Tunneling Microscopes

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Masashi; Suzuki, Kazuyuki; Kitamura, Shin-Ich; Kersker, Mike

    1999-05-01

    With the ultrahigh vacuum variable-temperature scanning tunneling microscope (UHV-VT-STM), atomic-level observation has been achieved. An ultrahigh vacuum atomic force microscope (UHV-AFM) has also been developed, with success in obtaining atom images where observation in noncontact (NC) mode with a frequency modulation (FM) detection method was attempted. Using the FM detection method in the constant oscillation amplitude of the cantilever excitation mode, we have obtained atomic-resolution images of Si(111) 7 × 7 structures and Si(100) 2 × 1 structures and other structures together with STM images in an ultrahigh vacuum environment. Also shown here are contact potential difference (CPD) images using the NC-AFM method.

  12. Development of an ion beam alignment system for real-time scanning tunneling microscope observation of dopant-ion irradiation

    SciTech Connect

    Kamioka, Takefumi; Sato, Kou; Kazama, Yutaka; Watanabe, Takanobu; Ohdomari, Iwao

    2008-07-15

    An ion beam alignment system has been developed in order to realize real-time scanning tunneling microscope (STM) observation of 'dopant-ion' irradiation that has been difficult due to the low emission intensity of the liquid-metal-ion-source (LMIS) containing dopant atoms. The alignment system is installed in our original ion gun and STM combined system (IG/STM) which is used for in situ STM observation during ion irradiation. By using an absorbed electron image unit and a dummy sample, ion beam alignment operation is drastically simplified and accurized. We demonstrate that sequential STM images during phosphorus-ion irradiation are successfully obtained for sample surfaces of Si(111)-7x7 at room temperature and a high temperature of 500 deg. C. The LMIS-IG/STM equipped with the developed ion beam alignment system would be a powerful tool for microscopic investigation of the dynamic processes of ion irradiation.

  13. The Scanning Optical Microscope.

    ERIC Educational Resources Information Center

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  14. Scanning tunneling microscope observation of plasmid DNA under electron irradiation at 8-40 eV

    SciTech Connect

    Mochiji, K.; Hashimoto, H.; Tanaka, Y.; Ninomiya, N.; Takeo, M.

    2007-03-01

    The structural changes in plasmid DNA adsorbed onto graphite following low-energy electron irradiation were investigated. Using a scanning tunneling microscope (STM), we observed networks or islands of DNA consisting of entangled molecules and compared the shapes of the DNA before and after electron irradiation at 8-40 eV field emitted from the tip of the STM. The shape of the DNA changed depending on the electron energy. Electrons with very low energy, such as 8 or 13 eV, extended the area of a DNA island, while the electrons at 18 or 38 eV degraded it. Both types of changes tend to saturate as the electron dose increases. We also discuss the above results in terms of the chemical reactions, such as strand breaks or molecular dissociation, induced by low-energy electrons.

  15. A low-temperature spin-polarized scanning tunneling microscope operating in a fully rotatable magnetic field.

    PubMed

    Meckler, S; Gyamfi, M; Pietzsch, O; Wiesendanger, R

    2009-02-01

    A new scanning tunneling microscope for spin-polarized experiments has been developed. The microscope is operated at 4.7 K in a superconducting triple axis vector magnet providing the possibility for measurements depending on the direction of the magnetic field. In single axis mode the maximum field is 5 T perpendicular to the sample plane and 1.3 T in the sample plane, respectively. In cooperative mode fields are limited to 3.5 T perpendicular and 1 T in plane. The microscope is operated in an ultrahigh vacuum system providing optimized conditions for the self-assembled growth of magnetic structures at the atomic scale. The available temperature during growth ranges from 10 up to 1100 K. The performance of the new instrument is illustrated by spin-polarized measurements on 1.6 atomic layers Fe/W(110). It is demonstrated that the magnetization direction of ferromagnetic Fe and Gd tips can be adjusted using the external magnetic field. Atomic resolution is demonstrated by imaging an Fe monolayer on Ru(0001). PMID:19256654

  16. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    SciTech Connect

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  17. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    PubMed

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface. PMID:23556826

  18. High-sensitivity noncontact atomic force microscope/scanning tunneling microscope (nc AFM/STM) operating at subangstrom oscillation amplitudes for atomic resolution imaging and force spectroscopy

    NASA Astrophysics Data System (ADS)

    Oral, A.; Grimble, R. A.; Özer, H. Ö.; Pethica, J. B.

    2003-08-01

    We describe a new, highly sensitive noncontact atomic force microscope/scanning tunneling microscope (STM) operating in ultrahigh vacuum (UHV) with subangstrom oscillation amplitudes for atomic resolution imaging and force-distance spectroscopy. A novel fiber interferometer with ˜4×10-4 Å/√Hz noise level is employed to detect cantilever displacements. Subangstrom oscillation amplitude is applied to the lever at a frequency well below the resonance and changes in the oscillation amplitude due to tip-sample force interactions are measured with a lock-in amplifier. Quantitative force gradient images can be obtained simultaneously with the STM topography. Employment of subangstrom oscillation amplitudes lets us perform force-distance measurements, which reveal very short-range force interactions, consistent with the theory. Performance of the microscope is demonstrated with quantitative atomic resolution images of Si(111)(7×7) and force-distance curves showing short interaction range, all obtained with <0.25 Å lever oscillation amplitude. Our technique is not limited to UHV only and operation under liquids and air is feasible.

  19. Atomic-Scale Characterization and Manipulation of Freestanding Graphene Using Adapted Capabilities of a Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Barber, Steven

    Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.

  20. Design and calibration of a scanning tunneling microscope for large machined surfaces

    SciTech Connect

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    During the last year the large sample STM has been designed, built and used for the observation of several different samples. Calibration of the scanner for prope dimensional interpretation of surface features has been a chief concern, as well as corrections for non-linear effects such as hysteresis during scans. Several procedures used in calibration and correction of piezoelectric scanners used in the laboratorys STMs are described.

  1. Design and performance of a cryogenic scanning tunneling microscope in high magnetic field for 2D layered materials study

    NASA Astrophysics Data System (ADS)

    Chuang, Tien-Ming; Chung, Pei-Fang; Guan, Syu-You; Yu, Shan-An; Liu, Che-An; Hsu, Chia-Sheng; Su, Chih-Chuan; Sankar, Raman; Chou, Fang-Cheng

    2015-03-01

    We will describe the design and performance of a cryogenic scanning tunneling microscope (STM) system in a high magnetic field. A Pan-type STM is mounted on a homemade low vibration 4He pot refrigerator, which can be operated in continuous flow mode at T ~ 1.6K and in a magnetic field of up to 9 Tesla. A cleavage device at T =4.2K stage is used to cleave the 2D layered materials before inserting into STM as well as functioning as the radiation shield. The liquid helium boil rate of 4.6 liters per day is achieved due to our careful design, which allows the measurement at base temperature up to 10 days. We will demonstrate its capability of measuring atomically registered energy resolved spectroscopic maps in both real space and momentum space by our recent results on Rashba BiTeI. This work is supported by Ministry of Science and Technology, Taiwan and Kenda Foundation, Taiwan.

  2. Scanning tunneling microscopic studies of laser-induced modifications of Si(001)-(2 x 1) surface

    SciTech Connect

    Yasui, Kosuke; Kanasaki, Jun'ichi

    2011-11-15

    Scanning tunneling microscopic studies of Si(001)-2 x 1 surfaces excited with 532-nm laser pulses of intensities below melting and ablation thresholds have revealed two different modes of structural modifications, strongly depending on the intensity of laser lights. The excitation below 100 mJ/cm{sup 2} causes bond rupture at individual dimer-sites leading to the formation of vacancies selectively on the outermost layer. The bond rupture, which shows a strongly site-sensitive rate, forms efficiently vacancy-strings elongated along the surface dimer-rows. Selective removal of surface dimers results in the exposure of flat and defect-less underlying layer as reported previously, which is resistive to the excitation at this range of intensity. At intensities above 100 mJ/cm{sup 2}, on the other hand, the excitation forms not only vacancies but also ad-dimers on terraces. The number density of ad-dimers is in proportion to the square of that for vacancies, indicating strongly that silicon atoms released by laser-induced bond rupture are associated with each other to form ad-dimers. The repeated irradiations at this range of intensities induce anisotropic growth of ad-dimer islands and of vacancy clusters on terrace regions, leading to multiply terraced structure. The primary processes of the structural modifications are discussed based on the quantitative analyses of the growth of vacancy and ad-dimer under excitation.

  3. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies

    NASA Astrophysics Data System (ADS)

    Feng Tao, Franklin; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ˜10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  4. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies

    NASA Astrophysics Data System (ADS)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ~10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  5. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified. PMID:23556828

  6. Contact magnetoresistance of multilayered cobalt/copper nanostructures measured by scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Morrow, Paul-Shane

    Giant magnetoresistance (GMR) is the change in resistance of a series of ferromagnetic/nonmagnetic (F/N) layers in an applied magnetic field. Due to its potential in magnetic sensing and data storage applications, GMR has been a topic of intense research since its discovery 20 years ago. When the source current is passed perpendicular to the planes (CPP geometry) of the F/N layers, wire- or column-shaped nanostructures are preferred over conventional planar films because their reduced lateral dimension results in a larger resistance, allowing measurements at room temperature. F/N nanostructures previously implemented to exhibit CPP-GMR require extensive postdeposition modifications, specialized substrates, or use microfabrication techniques that are not vacuum-based. For the first time oblique angle deposition (OAD) is used to create a new F/N system that exhibits CPP-GMR at room temperature. OAD is a long-known physical vapor deposition technique in which nanostructure growth is achieved through a shadowing effect that occurs when the substrate is tilted to highly glancing angles relative to the incident flux. The samples grown for this study are slanted or vertical multilayered Co/Cu nanocolumns deposited by dual source thermal evaporation. For the vertical columns, the Co and Cu layer thicknesses tl were equal with t l = 4 nm and the bilayer number M = 34, while for the slanted nanocolumns tl = 4, 7, and 16 nm, with bilayer number M = 50, 42, and 21, respectively. The physical structure of these nanocolumns was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron energy-loss spectroscopy (EELS). The vertical columns had larger diameter (˜100 nm) and showed more branching on their outer surface due to the substrate rotation. The slanted columns had a smaller diameter (˜50 nm), possessed a smoother exterior surface, and showed a clear multilayered Co/Cu structure from EELS imaging. X-ray diffraction (XRD) pole

  7. Manipulation of subsurface carbon nanoparticles in Bi2Sr2CaCu2O8+δ using a scanning tunneling microscope

    DOE PAGESBeta

    Stollenwerk, A. J.; Hurley, N.; Beck, B.; Spurgeon, K.; Kidd, T. E.; Gu, G.

    2015-03-19

    In this study, we present evidence that subsurface carbon nanoparticles in Bi₂Sr₂CaCu₂O8+δ can be manipulated with nanometer precision using a scanning tunneling microscope. High resolution images indicate that most of the carbon particles remain subsurface after transport observable as a local increase in height as the particle pushes up on the surface. Tunneling spectra in the vicinity of these protrusions exhibit semiconducting characteristics with a band gap of approximately 1.8 eV, indicating that the incorporation of carbon locally alters the electronic properties near the surface.

  8. Coupling scanning tunneling microscope and supersonic molecular beams: A unique tool for in situ investigation of the morphology of activated systems

    NASA Astrophysics Data System (ADS)

    Smerieri, M.; Reichelt, R.; Savio, L.; Vattuone, L.; Rocca, M.

    2012-09-01

    We report here on a new experimental apparatus combining a commercial low temperature scanning tunneling microscope with a supersonic molecular beam. This setup provides a unique tool for the in situ investigation of the topography of activated adsorption systems and opens thus new interesting perspectives. It has been tested towards the formation of the O/Ag(110) added rows reconstruction and of their hydroxylation, comparing data recorded upon O2 exposure at thermal and hyperthermal energies.

  9. Thermal radiation scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    de Wilde, Yannick; Formanek, Florian; Carminati, Rémi; Gralak, Boris; Lemoine, Paul-Arthur; Joulain, Karl; Mulet, Jean-Philippe; Chen, Yong; Greffet, Jean-Jacques

    2006-12-01

    In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical `stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a `thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.

  10. Room temperature electron transport properties of single C{sub 60} studied using scanning tunneling microscope and reak junctions.

    SciTech Connect

    Cheng, R.; Carvell, J.; Fradin, F. Y.; Indiana Univ.-Purdue Univ. at Indianapolis

    2010-09-15

    We report the measurements of the electron transport of an individual C{sub 60} molecule through the combination of two experimental efforts. The nanometer-sized junctions were fabricated using electromigration combined with electron beam lithography and shadow effect evaporation. We performed the scanning tunneling microscopy/spectroscopy measurements of dispersed C{sub 60} molecules which were deposited on a highly ordered pyrolytic graphite substrate. The single electron tunneling through a single C{sub 60} molecule due to the Coulomb blockage effect is observed at room temperature.

  11. Scanning tunneling microscopy imaging of nanotubes

    SciTech Connect

    Antonenko, S. V. Malinovskaya, O. S.; Mal'tsev, S. N.

    2007-07-15

    Samples of carbon paper containing multiwalled carbon nanotube films are produced by current annealing. A scanning tunneling microscope is used to examine the structure of the modified carbon paper. X-, Y-, and V-shaped nanotubes are found.

  12. Forensic Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  13. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    PubMed

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces. PMID:21639503

  14. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    PubMed

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field. PMID:24182125

  15. The study of in situ scanning tunnelling microscope characterization on GaN thin film grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Yang, R.; Krzyzewski, T.; Jones, T.

    2013-03-18

    The epitaxial growth of GaN by Plasma Assisted Molecular Beam Epitaxy was investigated by Scanning Tunnelling Microscope (STM). The GaN film was grown on initial GaN (0001) and monitored by in situ Reflection High Energy Electron Diffraction and STM during the growth. The STM characterization was carried out on different sub-films with increased thickness. The growth of GaN was achieved in 3D mode, and the hexagonal edge of GaN layers and growth gradient were observed. The final GaN was of Ga polarity and kept as (0001) orientation, without excess Ga adlayers or droplets formed on the surface.

  16. Probing the limits of Si:P δ-doped devices patterned by a scanning tunneling microscope in a field-emission mode

    SciTech Connect

    Rudolph, M.; Carr, S. M.; Ten Eyck, G.; Dominguez, J.; Carroll, M. S.; Bussmann, E.; Subramania, G.; Lilly, M. P.; Pluym, T.

    2014-10-20

    Recently, a single atom transistor was deterministically fabricated using phosphorus in Si by H-desorption lithography with a scanning tunneling microscope (STM). This milestone in precision, achieved by operating the STM in the conventional tunneling mode, typically utilizes slow (∼10{sup 2} nm{sup 2}/s) patterning speeds. By contrast, using the STM in a high-voltage (>10 V) field-emission mode, patterning speeds can be increased by orders of magnitude to ≳10{sup 4} nm{sup 2}/s. We show that the rapid patterning negligibly affects the functionality of relatively large micron-sized features, which act as contacting pads for these devices. For nanoscale structures, we show that the resulting electrical transport is consistent with the donor incorporation chemistry constraining the electrical dimensions to a scale of 10 nm even though the pattering spot size is 40 nm.

  17. Construction of Scanning Tunneling Microscope and Analysis of Vicinal SILICON(111) Surfaces with STM (SILICON(111), Vicinal Silicon(iii))

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Sen

    1990-01-01

    Scanning Tunneling Microscopy (STM) has become a powerful technique in surface study. In this dissertation, basic theoretical and instrumentational aspects of STM are reviewed; the construction and testing of a UHV STM are described in detail. The structure of vicinal Si(111) surfaces were statistically investigated with this STM system. The surface morphology is strongly affected by the interaction between terrace and step structures. The (7 x 7) reconstruction domains are correlated across steps on thermally equilibrated surfaces. Energetic step repulsive interaction has been observed in addition to the entropic "repulsion" between wandering steps. This energetic repulsion is an important factor causing the ratio of the triple - to single-layer steps to increase with the misorientation angle. The height correlation measurement indicate that the surfaces can be categorized as "rough" surfaces. The Surface structure is also strongly affected by the annealing processes.

  18. Observation of deviation of electronic behaviour of indium tin oxide film at grain boundary using Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Kasiviswanathan, S.; Srinivas, V.; Kar, A. K.; Mathur, B. K.; Chopra, K. L.

    1997-03-01

    Scanning Tunneling Microscopy and Spectroscopy investigations have been carried out on electron beam deposited indium tin oxide films. The STM images reveal a rather smooth surface, which appears to have been formed due to the coalescence of islands with different shapes. The spectroscopic data, in general, exhibit characteristics typical of metal-insulator-semiconductor structures, with a heavily doped semiconductor. From the I- V curves, a band gap of ≈3.5 eV is obtained, which is very close to the bulk value. The I- V studies at some grain boundary interfaces suggest the presence of regions showing electronic characteristics, that differ significantly from what is observed on the rest of the film surface.

  19. Probing Dirac fermion dynamics in topological insulator Bi2Se3 films with a scanning tunneling microscope.

    PubMed

    Song, Can-Li; Wang, Lili; He, Ke; Ji, Shuai-Hua; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2015-05-01

    Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi2Se3 ultrathin films. At the two-dimensional limit, bulk electrons become quantized and the quantization can be controlled by the film thickness at a single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of the phase relaxation length lϕ and inelastic scattering lifetime τ of topological surface-state electrons. We find that τ exhibits a remarkable (E - EF)(-2) energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states. PMID:25978246

  20. "We Actually Saw Atoms with Our Own Eyes": Conceptions and Convictions in Using the Scanning Tunneling Microscope in Junior High School

    ERIC Educational Resources Information Center

    Margel, Hannah; Eylon, Bat-Sheva; Scherz, Zahava

    2004-01-01

    The feasibility and the potential contribution of the scanning tunneling microscopy (STM) in junior high school (JHS) as an instructional tool for learning the particulate nature of matter is described. The use and power of new technologies can probably be demonstrated by the scanning tunneling microscopy (STM).

  1. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals

    SciTech Connect

    Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P.

    2013-12-15

    We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe{sub 2} single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

  2. Development of liquid-metal-ion source low-energy ion gun/high-temperature ultrahigh vacuum scanning tunneling microscope combined system

    SciTech Connect

    Uchigasaki, M.; Kamioka, T.; Hirata, T.; Shimizu, T.; Lin, F.; Shinada, T.; Ohdomari, I.

    2005-12-15

    A liquid-metal-ion source low-energy ion gun/high-temperature ultrahigh vacuum scanning tunneling microscope combined system (LMIS-IG/STM) has been developed in order to investigate the ion beam modification process in situ based on our previous ion gun/STM combined system (IG/STM). Various kinds of metal ions can be irradiated with low acceleration energy of 0.01-5 keV during STM observation at 400-600 deg. C. As an example, real-time STM observation of Si(111)7x7 surface irradiated with Si{sup 2+} ions is demonstrated. The STM results have shown that the surface defects generated by Si{sup 2+} ion irradiation exhibit similar behavior of surface defects induced by Ar{sup +} irradiation with IG/STM.

  3. Scanning tunneling microscopy on graphite and gold

    NASA Astrophysics Data System (ADS)

    Guichar, G. M.; Han, B.; Morand, M.; Belkaid, M. S.

    1993-03-01

    A compact, UHV-compatible scanning tunneling microscope has been built together with the necessary controlling electronics. We report on the design, development and evaluation of this setup. Some experimental results performed on highly oriented pyrolitic graphite and gold evaporated on stainless steel samples are presented.

  4. A scanning cavity microscope

    PubMed Central

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W.; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm2; we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  5. A scanning cavity microscope.

    PubMed

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm(2); we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  6. Line-scanning, stage scanning confocal microscope

    NASA Astrophysics Data System (ADS)

    Carucci, John A.; Stevenson, Mary; Gareau, Daniel

    2016-03-01

    We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.

  7. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  8. A low temperature ultrahigh vacuum scanning tunneling microscope with high-NA optics to probe optical interactions at the atomic scale

    NASA Astrophysics Data System (ADS)

    Zhang, Haigang; Smerdon, Joseph; Suzer, Ozgun; Kersell, Heath; Guest, Jeffrey

    2015-03-01

    The optical and photophysical properties of single molecules/atoms, defects, and nanoscale structures at surfaces hinge on structure at the atomic scale. In order to characterize and control this structure and unravel these correlations, we are developing a low temperature (LT) laser-coupled ultrahigh vacuum (UHV) scanning tunneling microscope (LT Laser UHV STM) based on the Pan-style STM scanner with integrated high-numerical-aperture (NA) optics for single particle spectroscopy measurements under the STM tip. Using slip-stick inertial piezo steppers, the sample stage can be coarsely translated in X and Y directions. For optical measurements, high-NA optics behind and above the sample focus laser excitation on and collect photons emitted from the tip-sample junction. The STM is cooled by a liquid helium bath surrounded by a liquid nitrogen jacket for operation near 5 K; two separate ultrahigh vacuum chambers are used for sample preparation and STM measurements, respectively. We will describe our progress in demonstrating this instrument and plans for experiments studying the correlation between structure and optical function in nanoscale systems. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  9. Energy-gap spectroscopy of superconductors using a tunneling microscope

    NASA Technical Reports Server (NTRS)

    Le Duc, H. G.; Kaiser, W. J.; Stern, J. A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 100-1000 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory.

  10. Radio-frequency scanning tunnelling microscopy.

    PubMed

    Kemiktarak, U; Ndukum, T; Schwab, K C; Ekinci, K L

    2007-11-01

    The scanning tunnelling microscope (STM) relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems--ranging from semiconductors to superconductors to atomic and molecular nanosystems. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor-capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This approximately 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching approximately 15 fm Hz(-1/2). This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements. PMID:17972882

  11. PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Zandvliet, Harold J. W.; Lin, Nian

    2010-07-01

    Scanning tunnelling microscopy has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. The strength of this technique lies in its imaging capabilities, since for many scientists 'seeing is believing'. However, scanning tunnelling microscopy also suffers from a severe limitation, namely its poor time resolution. Recording a scanning tunnelling microscopy image typically requires a few tens of seconds for a conventional scanning tunnelling microscope to a fraction of a second for a specially designed fast scanning tunnelling microscope. Designing and building such a fast scanning tunnelling microscope is a formidable task in itself and therefore, only a limited number of these microscopes have been built [1]. There is, however, another alternative route to significantly enhance the time resolution of a scanning tunnelling microscope. In this alternative method, the tunnelling current is measured as a function of time with the feedback loop switched off. The time resolution is determined by the bandwidth of the IV converter rather than the cut-off frequency of the feedback electronics. Such an approach requires a stable microscope and goes, of course, at the expense of spatial information. In this issue, we have collected a set of papers that gives an impression of the current status of this rapidly emerging field [2]. One of the very first attempts to extract information from tunnel current fluctuations was reported by Tringides' group in the mid-1990s [3]. They showed that the collective diffusion coefficient can be extracted from the autocorrelation of the time-dependent tunnelling current fluctuations produced by atom motion in and out of the tunnelling junction. In general, current-time traces provide direct information on switching/conformation rates and distributions of residence times. In the case where these processes are thermally induced it is rather straightforward to map

  12. Scanned optical fiber confocal microscope

    NASA Astrophysics Data System (ADS)

    Dickensheets, David L.; Kino, Gordon S.

    1994-04-01

    The size and weight of conventional optical microscopes often makes them inconvenient for use on the human body or for in-situ examination during materials processing. We describe a new fiber-optic scanning confocal optical microscope which could have a total outside diameter as small as 1 mm, and should lend itself to applications in endoscopy or to optical in vivo histology. The first experimental device utilizes a single-mode optical fiber for illumination and detection. The scanning element is a mechanically resonant fused silica cantilever 1.5 cm long and 0.8 mm across, with a micromachined two-phase zone plate objective mounted at one end. The cantilever is electrostatically scanned near resonance in two dimensions, generating a Lissajous pattern which is scan converted to conventional video for real time display or digitization. The objective lens has N.A. equals 0.25 at (lambda) equals 0.6328 micrometers , with a measured spot size of 1.8 micrometers FWHM.

  13. Tracking and stepping control of the tip position of a scanning tunneling microscope by referring to atomic points and arrays on a regular crystalline surface

    NASA Astrophysics Data System (ADS)

    Aketagawa, Masato; Takada, Koji; Minao, Yoshihisa; Oka, Yuki; Lee, Jong-Doo

    1999-04-01

    In this article tracking and stepping control of the tip position of a scanning tunneling microscope (STM) by referring to atomic points and arrays on a regular crystalline surface which is used as a two-dimensional reference scale is described. Highly oriented pyrolytic graphite (HOPG) crystal, whose lattice spacing is approximately 0.25 nm, was used as the reference. To utilize the topographic features on the crystalline surface as a reference, a method for determining two-dimensional lateral gradient signals, i.e., the X, and Y axes gradient signals, of the crystalline surface was applied to the control. A rigid STM consisting of a tip scanner and a sample XY stage, and control instruments were developed. The X and Y axes gradient signals were obtained simultaneously using two-phase lock-in modulations of a tunneling current modulated with circular dither motion applied to the tip XY scanner. Modulation frequency and amplitude of the tip were 1 kHz and less than 0.04 nm, respectively. The sample XY stage was controlled for tip positioning by feedback of the X and Y axis gradient signals. First, the tracking control of the STM tip onto an atomic point of the HOPG surface for a maximum duration of about 10 min was performed. Second, tracking and motion control of the STM tip along a crystalline axis of the HOPG surface was demonstrated. The STM tip continued "back and forth" motion along the crystalline axis of the HOPG surface for a maximum duration of 200 s with a maximum tip speed of 6 nm/s. The maximum displacement deviation from the crystalline axis was less than 1/3 lattice spacing (˜0.08 nm). Third, the quantized stepping of the STM tip with lattice spacing stepping with a repetitive rate of 0.5 Hz along the crystalline axis was examined. The maximum displacement deviation from the crystalline axis was less than 1/2 lattice spacing (˜0.12 nm). The feasibility of tracking and stepping control of the STM tip position by referring to atomic points and arrays

  14. C_60 Nanotips for Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Halas, N. J.

    1997-03-01

    Individual C_60 molecules are shown to provide stable conductive molecular tunneling sites, or nanotips, on the probe tip of a scanning tunneling microscope (STM). The chemisorptive attachment and subsequent imaging of discrete single molecules on an STM tip apex have been previously reported.(K. F. Kelly, D. Sarkar, S. Prato, J. S. Resh, G. D. Hale, and N. J. Halas, J. Vac. Sci. Tech. B14), 593 (1996). Functionalizing an STM tip with a C_60 molecular adsorbate alters the density of states near the Fermi energy of the tip tunneling site and modifies its imaging characteristics. These tips have permitted the observation of threefold symmetric electron scattering surrounding point defects on graphite surfaces, an effect which could not be observed using bare metal tips.(K. F. Kelly, D. Sarkar, G. D. Hale, S. J. Oldenburg, and N. J. Halas, Science 273), 1371 (1996).

  15. Scanning Tunneling Optical Resonance Microscopy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the

  16. Laser lithography by photon scanning tunneling microscopy

    SciTech Connect

    Lee, I.; Warmack, R.J.; Ferrell, T.L.

    1993-06-01

    We have investigated the possibility of using a photon scanning tunneling microscope (PSTM) for laser lithography. A contrast enhancement material (CEM) is coated onto a sample slide and coupled to the prism of a PSTM. The CEM becomes transparent above a laser (HeCd at a wavelength of 442 nm) intensity threshold attained due to the proximity of the probe tip. The same surface can then be inspected using the given experimental configuration by replacing the HeCd laser line with a non-exposing 633-nm HeNe laser line. Direct patterns can be produced by varying the exposure time and the shape of the probe tip.

  17. Scanning tunneling microscopy for ultracold atoms

    SciTech Connect

    Kollath, Corinna; Giamarchi, Thierry; Koehl, Michael

    2007-12-15

    We propose a versatile experimental probe for cold atomic gases analogous to the scanning tunneling microscope (STM) in condensed matter. This probe uses the coherent coupling of a single particle to the system. Depending on the measurement sequence, our probe allows us to obtain either the local density and spatial density correlations, with a resolution on the nanometer scale, or the single particle correlation function in real time. We discuss applications of this scheme to the various possible phases for a two dimensional Hubbard system of fermions in an optical lattice.

  18. The Scanning TMR Microscope for Biosensor Applications.

    PubMed

    Vyas, Kunal N; Love, David M; Ionescu, Adrian; Llandro, Justin; Kollu, Pratap; Mitrelias, Thanos; Holmes, Stuart; Barnes, Crispin H W

    2015-06-01

    We present a novel tunnel magnetoresistance (TMR) scanning microscope set-up capable of quantitatively imaging the magnetic stray field patterns of micron-sized elements in 3D. By incorporating an Anderson loop measurement circuit for impedance matching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3D rastering a mounted TMR sensor over our magnetic barcodes, we are able to characterize the complex domain structures by displaying the real component, the amplitude and the phase of the sensor's impedance. The modular design, incorporating a TMR sensor with an optical microscope, renders this set-up a versatile platform for studying and imaging immobilised magnetic carriers and barcodes currently employed in biosensor platforms, magnetotactic bacteria and other complex magnetic domain structures of micron-sized entities. The quantitative nature of the instrument and its ability to produce vector maps of magnetic stray fields has the potential to provide significant advantages over other commonly used scanning magnetometry techniques. PMID:25849347

  19. The Scanning TMR Microscope for Biosensor Applications

    PubMed Central

    Vyas, Kunal N.; Love, David M.; Ionescu, Adrian; Llandro, Justin; Kollu, Pratap; Mitrelias, Thanos; Holmes, Stuart; Barnes, Crispin H. W.

    2015-01-01

    We present a novel tunnel magnetoresistance (TMR) scanning microscope set-up capable of quantitatively imaging the magnetic stray field patterns of micron-sized elements in 3D. By incorporating an Anderson loop measurement circuit for impedance matching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3D rastering a mounted TMR sensor over our magnetic barcodes, we are able to characterise the complex domain structures by displaying the real component, the amplitude and the phase of the sensor’s impedance. The modular design, incorporating a TMR sensor with an optical microscope, renders this set-up a versatile platform for studying and imaging immobilised magnetic carriers and barcodes currently employed in biosensor platforms, magnetotactic bacteria and other complex magnetic domain structures of micron-sized entities. The quantitative nature of the instrument and its ability to produce vector maps of magnetic stray fields has the potential to provide significant advantages over other commonly used scanning magnetometry techniques. PMID:25849347

  20. Nanoscale Proximity Effect in the High-Temperature Superconductor Bi2Sr2CaCu2O8+δ Using a Scanning Tunneling Microscope

    SciTech Connect

    Parker, C.V.; Gu, G.; Pushp, A.; Pasupathy, A.N.; Gomes, K.K.; Wen, J.; Xu, Z.; Ono, S.; Yazdani, A.

    2010-03-15

    High-temperature cuprate superconductors exhibit extremely local nanoscale phenomena and strong sensitivity to doping. While other experiments have looked at nanoscale interfaces between layers of different dopings, we focus on the interplay between naturally inhomogeneous nanoscale regions. Using scanning tunneling microscopy to carefully track the same region of the sample as a function of temperature, we show that regions with weak superconductivity can persist to elevated temperatures if bordered by regions of strong superconductivity. This suggests that it may be possible to increase the maximum possible transition temperature by controlling the distribution of dopants.

  1. Nanoscale Proximity Effect in the High-Temperature Superconductor Bi2Sr2CaCu2O8+δ Using a Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Parker, Colin V.; Pushp, Aakash; Pasupathy, Abhay N.; Gomes, Kenjiro K.; Wen, Jinsheng; Xu, Zhijun; Ono, Shimpei; Gu, Genda; Yazdani, Ali

    2010-03-01

    High-temperature cuprate superconductors exhibit extremely local nanoscale phenomena and strong sensitivity to doping. While other experiments have looked at nanoscale interfaces between layers of different dopings, we focus on the interplay between naturally inhomogeneous nanoscale regions. Using scanning tunneling microscopy to carefully track the same region of the sample as a function of temperature, we show that regions with weak superconductivity can persist to elevated temperatures if bordered by regions of strong superconductivity. This suggests that it may be possible to increase the maximum possible transition temperature by controlling the distribution of dopants.

  2. Synchrotron radiation induced Si-H dissociation on H-Si(111)-1x1 surfaces studied by in situ monitoring in the undulator-scanning tunneling microscope system

    SciTech Connect

    Nonogaki, Y.; Urisu, T.

    2005-09-15

    Irradiation effects of the synchrotron radiation (SR) have been investigated on the hydrogen terminated- (H-) Si (111) surfaces by using the undulator beam and the in situ scanning tunneling microscope (STM). The small protrusions (SPs) generated by the undulator beam irradiation were assigned to the rest atoms with missing H. From the observed relation among the SP density, photon energy of the undulator beam and the total photon flux, it has been concluded that the main mechanism of the Si-H bond dissociation by the undulator beam irradiation is valence electron excitations of the Si-H bond by incident photons.

  3. Nonlocal desorption of chlorobenzene molecules from the Si(111)-(7×7) surface by charge injection from the tip of a scanning tunneling microscope: remote control of atomic manipulation.

    PubMed

    Sloan, P A; Sakulsermsuk, S; Palmer, R E

    2010-07-23

    We report the nonlocal desorption of chlorobenzene molecules from the Si(111)-(7×7) surface by charge injection from the laterally distant tip of a scanning tunneling microscope and demonstrate remote control of the manipulation process by precise selection of the atomic site for injection. Nonlocal desorption decays exponentially as a function of radial distance (decay length ∼100  A) from the injection site. Electron injection at corner-hole and faulted middle adatoms sites couples preferentially to the desorption of distant adsorbate molecules. Molecules on the faulted half of the unit cell desorb with higher probability than those on the unfaulted half. PMID:20867889

  4. Scanning Tunneling Optical Resonance Microscopy Developed

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.; Lau, Janis E.; Jenkins, Phillip P.; Castro, Stephanie L.; Tin, Padetha; Wilt, David M.; Pal, Anna Maria; Fahey, Stephen D.

    2004-01-01

    The ability to determine the in situ optoelectronic properties of semiconductor materials has become especially important as the size of device architectures has decreased and the development of complex microsystems has increased. Scanning Tunneling Optical Resonance Microscopy, or STORM, can interrogate the optical bandgap as a function of its position within a semiconductor micro-structure. This technique uses a tunable solidstate titanium-sapphire laser whose output is "chopped" using a spatial light modulator and is coupled by a fiber-optic connector to a scanning tunneling microscope in order to illuminate the tip-sample junction. The photoenhanced portion of the tunneling current is spectroscopically measured using a lock-in technique. The capabilities of this technique were verified using semiconductor microstructure calibration standards that were grown by organometallic vapor-phase epitaxy. Bandgaps characterized by STORM measurements were found to be in good agreement with the bulk values determined by transmission spectroscopy and photoluminescence and with the theoretical values that were based on x-ray diffraction results.

  5. Probing the thermal decomposition behaviors of ultrathin HfO2 films by an in situ high temperature scanning tunneling microscope.

    PubMed

    Xue, Kun; Wang, Lei; An, Jin; Xu, Jianbin

    2011-05-13

    The thermal decomposition of ultrathin HfO(2) films (∼0.6-1.2 nm) on Si by ultrahigh vacuum annealing (25-800 °C) is investigated in situ in real time by scanning tunneling microscopy. Two distinct thickness-dependent decomposition behaviors are observed. When the HfO(2) thickness is ∼ 0.6 nm, no discernible morphological changes are found below ∼ 700 °C. Then an abrupt reaction occurs at 750 °C with crystalline hafnium silicide nanostructures formed instantaneously. However, when the thickness is about 1.2 nm, the decomposition proceeds gradually with the creation and growth of two-dimensional voids at 800 °C. The observed thickness-dependent behavior is closely related to the SiO desorption, which is believed to be the rate-limiting step of the decomposition process. PMID:21430314

  6. Fast scanning mode and its realization in a scanning acoustic microscope.

    PubMed

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope. PMID:22462966

  7. Fast scanning mode and its realization in a scanning acoustic microscope

    SciTech Connect

    Ju Bingfeng; Bai Xiaolong; Chen Jian

    2012-03-15

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  8. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  9. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Boyle, Michael G.; Mitra, J.; Dawson, P.

    2009-06-01

    Electromagnetic radiation originating with localized surface plasmons in the metal-tip/metal-sample nanocavity of a scanning tunneling microscope is demonstrated to extend to a wavelength λ of at least 1.7 μm. Progressive spectral extension beyond λ ˜1.0 μm occurs for increasing tip radius above ˜15 nm, reaching λ ˜1.7 μm for tip radius ˜100 nm; these observations are corroborated by use of a simple physical model that relates the discrete plasmon mode frequencies to the tip radius. This spectral extension opens up a new regime for scanning tunneling microscope-based optical spectroscopy.

  11. First results for custom-built low-temperature (4.2 K) scanning tunneling microscope/molecular beam epitaxy and pulsed laser epitaxy system designed for spin-polarized measurements

    NASA Astrophysics Data System (ADS)

    Foley, Andrew; Alam, Khan; Lin, Wenzhi; Wang, Kangkang; Chinchore, Abhijit; Corbett, Joseph; Savage, Alan; Chen, Tianjiao; Shi, Meng; Pak, Jeongihm; Smith, Arthur

    2014-03-01

    A custom low-temperature (4.2 K) scanning tunneling microscope system has been developed which is combined directly with a custom molecular beam epitaxy facility (and also including pulsed laser epitaxy) for the purpose of studying surface nanomagnetism of complex spintronic materials down to the atomic scale. For purposes of carrying out spin-polarized STM measurements, the microscope is built into a split-coil, 4.5 Tesla superconducting magnet system where the magnetic field can be applied normal to the sample surface; since, as a result, the microscope does not include eddy current damping, vibration isolation is achieved using a unique combination of two stages of pneumatic isolators along with an acoustical noise shield, in addition to the use of a highly stable as well as modular `Pan'-style STM design with a high Q factor. First 4.2 K results reveal, with clear atomic resolution, various reconstructions on wurtzite GaN c-plane surfaces grown by MBE, including the c(6x12) on N-polar GaN(0001). Details of the system design and functionality will be presented.

  12. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  13. Three-dimensional scanning confocal laser microscope

    DOEpatents

    Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind

    1999-01-01

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  14. Energy gaps measured by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Giambattista, B.; Slough, C. G.; Coleman, R. V.; Subramanian, M. A.

    1990-11-01

    A scanning tunneling microscope (STM) has been used to measure energy gaps in the charge-density-wave (CDW) phases of the layer-structure dichalcogenides and in the high-temperature superconductor Bi2Sr2CaCu2O8. Measured values of ΔCDW at 4.2 K for 2H-TaSe2, 2H-TaS2, and 2H-NbSe2 are 80, 50, and 34 meV giving values of 2ΔCDW/kBTc equal to 15.2, 15.4, and 23.9, indicating strong coupling in these CDW systems. Measured values of ΔCDW at 4.2 K in 1T-TaSe2 and 1T-TaS2 are ~150 meV for both materials giving 2ΔCDW/kBTc~=5.8. STM scans of Bi2Sr2CaCu2O8 at 4.2 K resolve atoms on the BiOx layer and show possible variations in electronic structure. The energy gap determined from I versus V and dI/dV versus V curves is in the range 30-35 meV giving values of 2Δ/kBTc~=8. Spectroscopy measurements with the STM can exhibit large zero-bias anomalies which complicate the analysis of the energy-gap structure, but adequate separation has been accomplished.

  15. An interchangeable scanning Hall probe/scanning SQUID microscope

    SciTech Connect

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  16. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  17. Scanning scene tunnel for city traversing.

    PubMed

    Zheng, Jiang Yu; Zhou, Yu; Milli, Panayiotis

    2006-01-01

    This paper proposes a visual representation named scene tunnel for capturing urban scenes along routes and visualizing them on the Internet. We scan scenes with multiple cameras or a fish-eye camera on a moving vehicle, which generates a real scene archive along streets that is more complete than previously proposed route panoramas. Using a translating spherical eye, properly set planes of scanning, and unique parallel-central projection, we explore the image acquisition of the scene tunnel from camera selection and alignment, slit calculation, scene scanning, to image integration. The scene tunnels cover high buildings, ground, and various viewing directions and have uniformed resolutions along the street. The sequentially organized scene tunnel benefits texture mapping onto the urban models. We analyze the shape characteristics in the scene tunnels for designing visualization algorithms. After combining this with a global panorama and forward image caps, the capped scene tunnels can provide continuous views directly for virtual or real navigation in a city. We render scene tunnel dynamically by view warping, fast transmission, and flexible interaction. The compact and continuous scene tunnel facilitates model construction, data streaming, and seamless route traversing on the Internet and mobile devices. PMID:16509375

  18. Vertically aligned nanostructure scanning probe microscope tips

    SciTech Connect

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  19. Macroscopic model of scanning force microscope

    DOEpatents

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  20. A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Jäck, Berthold; Eltschka, Matthias; Assig, Maximilian; Hardock, Andreas; Etzkorn, Markus; Ast, Christian R.; Kern, Klaus

    2015-01-01

    Using the AC Josephson effect in the superconductor-vacuum-superconductor tunnel junction of a scanning tunneling microscope (STM), we demonstrate the generation of GHz radiation. With the macroscopic STM tip acting as a λ/4-monopole antenna, we first show that the atomic scale Josephson junction in the STM is sensitive to its frequency-dependent environmental impedance in the GHz regime. Further, enhancing Cooper pair tunneling via excitations of the tip eigenmodes, we are able to generate high-frequency radiation. We find that for vanadium junctions, the enhanced photon emission can be tuned from about 25 GHz to 200 GHz and that large photon flux in excess of 1020 cm-2 s-1 is reached in the tunnel junction. These findings demonstrate that the atomic scale Josephson junction in an STM can be employed as a full spectroscopic tool for GHz frequencies on the atomic scale.

  1. A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy

    SciTech Connect

    Jäck, Berthold Eltschka, Matthias; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R.; Hardock, Andreas; Kern, Klaus

    2015-01-05

    Using the AC Josephson effect in the superconductor-vacuum-superconductor tunnel junction of a scanning tunneling microscope (STM), we demonstrate the generation of GHz radiation. With the macroscopic STM tip acting as a λ/4-monopole antenna, we first show that the atomic scale Josephson junction in the STM is sensitive to its frequency-dependent environmental impedance in the GHz regime. Further, enhancing Cooper pair tunneling via excitations of the tip eigenmodes, we are able to generate high-frequency radiation. We find that for vanadium junctions, the enhanced photon emission can be tuned from about 25 GHz to 200 GHz and that large photon flux in excess of 10{sup 20 }cm{sup −2} s{sup −1} is reached in the tunnel junction. These findings demonstrate that the atomic scale Josephson junction in an STM can be employed as a full spectroscopic tool for GHz frequencies on the atomic scale.

  2. Improved controlled atmosphere high temperature scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Hansen, K. V.; Wu, Y.; Jacobsen, T.; Mogensen, M. B.; Theil Kuhn, L.

    2013-07-01

    To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface potential. The improved CAHT-SPM, therefore, holds a great potential for local sub-micron analysis of high-temperature and gas induced changes of a wide range of materials.

  3. Molecular structure of DNA by scanning tunneling microscopy.

    PubMed

    Cricenti, A; Selci, S; Felici, A C; Generosi, R; Gori, E; Djaczenko, W; Chiarotti, G

    1989-09-15

    Uncoated DNA molecules marked with an activated tris(l-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 to 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed. PMID:2781279

  4. Molecular Structure of DNA by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Cricenti, A.; Selci, S.; Felici, A. C.; Generosi, R.; Gori, E.; Djaczenko, W.; Chiarotti, G.

    1989-09-01

    Uncoated DNA molecules marked with an activated tris(1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 and 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed.

  5. Scanning electron microscopic autoradiography of lung

    SciTech Connect

    Lauhala, K.E.; Sanders, C.L.; McDonald, K.E.

    1988-09-01

    Scanning electron microscopic (SEM) autoradiography of the lung is being used to determine the distribution of inhaled, alpha particle-emitting, plutonium dioxide particles. SEM autoradiography provides high visual impact views of alpha activity. Particles irradiating the bronchiolar epithelium were detected both on the bronchiolar surface and in peribronchiolar alveoli. The technique is being used to obtain quantitative data on the clearance rates of plutonium particles from bronchi and bronchioles.

  6. Seamless stitching of tile scan microscope images.

    PubMed

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. PMID:25787148

  7. Scanning tunneling microscopy: Energetics from statistical analysis

    SciTech Connect

    Feibelman, P.J.

    1995-10-15

    The attraction between two Fe atoms adsorbed on Fe(100) should be much too weak to produce the 0.5--0.7-eV bond that has been deduced by analyzing scanning tunneling micrographs. The assumption that adatom diffusion proceeds by the same mechanism at high and low temperatures may be the source of the discrepancy.

  8. Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy

    SciTech Connect

    Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

    2011-05-26

    We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

  9. Nanofabrication with the Scanning Tunneling Microscope

    SciTech Connect

    Shedd, G.M.; Russell, P.E.

    1988-12-01

    The Precision Engineering Center has recently begun a research program into applications of STM to Nanotechnology. Few tools permit humans to control events and processes at the manometer level, and of those, the STM is the most well-suited to the task. A versatile new ultra-high-vacuum (UHV) STM is being built to study the use of STM for the manipulation of nanometer-scale particles. Part of the STM`s usefulness will be due to its being positioned directly beneath the focused ion beam (FIB). The interface of the STM with the FIB will allow the STM to take advantage of the FIB for long-range imaging and as a particle source; the FIB can in turn use the STM for in situ, high-resolution imaging of micromachined features.

  10. The poor man's scanning force microscope

    NASA Astrophysics Data System (ADS)

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2002-03-01

    The Macroscope (Zypman F R and Guerra-Vela C 2001 Eur. J. Phys. 22 17-30), an educational large-scale version of a scanning force microscope's cantilever-tip system, is used in the presence of nonlinear forces. This paper presents quantitative experimental evidence confirming the validity of the beam model (BM) (Eppel S J, Todd B A and Zypman F R 2000 Materials Issues and Modeling for Device Nanofabrication ed L Merhari et al (Pittsburgh, PA: Materials Research Society) pp 584, 189) as a proper reconstruction algorithm. As a teaching laboratory experiment, the force measurements are first done directly with a variety of dynamometer-like setups. Subsequently, the measurements are performed indirectly with the Macroscope from the cantilever resonant frequency shifts and the BM algorithm. Two central results of this work lie in its ability to compare forces obtained by traditional algorithms with known forces, and to illustrate in a hands-on fashion the principles behind the working of a scanning force microscope.

  11. Manipulation of subsurface carbon nanoparticles in Bi2Sr2CaCu2O8+δ using a scanning tunneling microscope

    SciTech Connect

    Stollenwerk, A. J.; Hurley, N.; Beck, B.; Spurgeon, K.; Kidd, T. E.; Gu, G.

    2015-03-19

    In this study, we present evidence that subsurface carbon nanoparticles in Bi₂Sr₂CaCu₂O8+δ can be manipulated with nanometer precision using a scanning tunneling microscope. High resolution images indicate that most of the carbon particles remain subsurface after transport observable as a local increase in height as the particle pushes up on the surface. Tunneling spectra in the vicinity of these protrusions exhibit semiconducting characteristics with a band gap of approximately 1.8 eV, indicating that the incorporation of carbon locally alters the electronic properties near the surface.

  12. Heterodyne Interferometry with a Scanning Optical Microscope.

    NASA Astrophysics Data System (ADS)

    Hobbs, Philip Charles Danby

    The design and implementation of a confocal optical microscope which functions as an electronically scanned heterodyne interferometer are described. Theoretical models based on Fourier optics for general samples and on exact series solution of the scalar Helmholtz equation for a class of trench structures are developed and compared with experimental data. Good agreement is obtained. The associated data acquisition system, also described, enables the system to measure both the amplitude (to 12 bits) and the phase (to 0.1^circ) of a returned optical beam, at a continuous rate of 30,000 points per second. The microscope system uses a wide-band tellurium dioxide acousto-optic cell for electronic scanning, frequency shifting, and beam splitting/combining. It uses a stationary reference beam on the sample for vibration cancellation, which results in a system of great vibration immunity. It can measure relief ranging from a few tenths of a micron down to a few Angstroms, and line widths down to well below 0.4 micron, using light of 0.5 micron wavelength. Angstrom resolution can be achieved in a single full-speed scan, without special vibration isolation equipment, providing that folding mirrors are avoided. A signal processing algorithm based on Fourier deconvolution is presented; it takes advantage of the extra bandwidth of a confocal system and the availability of both amplitude and phase, to improve the lateral resolution by approximately a factor of two. Experimental results are shown, which demonstrate phase edge resolution (10%-90%) of 0.45 lambda (raw data), and 0.18 lambda (after filtering), in excellent agreement with the Fourier optics prediction. The exact scalar theory calculates the response of the microscope as it scans over an infinitely long rectangular trench in a plane boundary on which Dirichlet boundary conditions apply. An expansion in cavity modes inside the trench is used to match the field and its derivatives across the mouth of the trench to get

  13. Sensitivity Improvement and Cryogenic Application of Scanning Microwave Microscope

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2015-03-01

    The technique to probe the spatial distribution of electric properties has been more important in modern material science. Scanning near-field microwave microscope (SMM) can be a powerful tool to study inhomogeneous materials. Recently we have developed scanning tunneling/microwave microscope (STM/SMM) with high sensitivity. The SMM probe is a modified coaxial resonator whose resonant frequency is 10.7 GHz and Q-factor is 1200-1300 at room temperature. It is applicable to measurements at cryogenic environment. By downsizing the resonator probe, we achieved stable operation down to liquid helium temperature. Q-factor is enhanced to 2000-3000 below 77 K. As an example of application of our STM-SMM, we present the study on inhomogeneous iron-based superconductor KxFeySe2. We successfully observed the characteristic mesoscopic phase separation of the metallic phase and the semiconducting phase by two different scanning modes; constant current mode and constant Q-factor mode. The spatial resolution is no worse than 200nm, which is comparable to curvature radius of a probe tip.

  14. Scanning tunneling microscopy of organic conductors and superconductors

    SciTech Connect

    Fainchtein, R. )

    1992-06-01

    The paper summarizes results of previous investigations made in TTF-TCNQ and related compounds as well as in kappa-/(ET)2/+/Cu(NCS)2/-. The scanning tunneling microscope has been successfully employed to study the structure and the electron density of states of organic conductors and superconductors, as well as the effects of low dimensionality in the electron density of states of these materials. The STM can directly reveal the presence of electron density distortions which have a strong effect on the electrical behavior of the materials. 47 refs.

  15. Scanning tunneling microscopy on rough surfaces-quantitative image analysis

    NASA Astrophysics Data System (ADS)

    Reiss, G.; Brückl, H.; Vancea, J.; Lecheler, R.; Hastreiter, E.

    1991-07-01

    In this communication, the application of scanning tunneling microscopy (STM) for a quantitative evaluation of roughnesses and mean island sizes of polycrystalline thin films is discussed. Provided strong conditions concerning the resolution are satisfied, the results are in good agreement with standard techniques as, for example, transmission electron microscopy. Owing to its high resolution, STM can supply a better characterization of surfaces than established methods, especially concerning the roughness. Microscopic interpretations of surface dependent physical properties thus can be considerably improved by a quantitative analysis of STM images.

  16. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  17. Characterizing wear with the scanning electron microscope

    SciTech Connect

    Lee, R.H.

    1991-07-01

    The Scanning Electron Microscope (SEM) is used extensively to characterize and analyze wear mechanisms and coatings on material. Wear mechanisms and severity can be identified by the characteristic scars on sample surfaces and by examining wear debris. Backscattered electron imaging is very useful in identifying oxidized materials and locations where coatings have worn thin. These images are compared with spectra from energy-dispersive X-ray spectroscopy or wavelength-dispersive spectroscopy data to verify the identifications. Micrographs of typical wear mechanisms are presented and techniques for analysis of wear surfaces are discussed. Examples of the evaluation of coatings are also presented and an ultramicrohardness tester installed in the SEM to evaluate coating hardness and fracture toughness is described. 3 refs., 15 figs.

  18. Computer-controlled optical scanning tile microscope.

    PubMed

    Wang, C; Shumyatsky, P; Zeng, F; Zevallos, M; Alfano, R R

    2006-02-20

    A new type of computer-controlled optical scanning, high-magnification imaging system with a large field of view is described that overcomes the commonly believed incompatibility of achieving both high magnification and a large field of view. The new system incorporates galvanometer scanners, a CCD camera, and a high-brightness LED source for the fast acquisition of a large number of a high-resolution segmented tile images with a magnification of 800x for each tile. The captured segmented tile images are combined to create an effective enlarged view of a target totaling 1.6 mm x 1.2 mm in area. The speed and sensitivity of the system make it suitable for high-resolution imaging and monitoring of a small segmented area of 320 microm x 240 microm with 4 microm resolution. Each tile segment of the target can be zoomed up without loss of the high resolution. This new microscope imaging system gives both high magnification and a large field of view. This microscope can be utilized in medicine, biology, semiconductor inspection, device analysis, and quality control. PMID:16523776

  19. Conductivity map from scanning tunneling potentiometry.

    PubMed

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X-G

    2016-08-01

    We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity. PMID:27587126

  20. Conductivity map from scanning tunneling potentiometry

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X.-G.

    2016-08-01

    We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.

  1. Scanning tunneling microscopy studies of diamond films and optoelectronic materials

    NASA Technical Reports Server (NTRS)

    Perez, Jose M.

    1993-01-01

    In this report, we report on progress achieved from 12/1/92 to 10/1/93 under the grant entitled 'Scanning Tunneling Microscopy Studies of Diamond Films and Optoelectronic Materials'. We have set-up a chemical vapor deposition (CVD) diamond film growth system and a Raman spectroscopy system to study the nucleation and growth of diamond films with atomic resolution using scanning tunneling microscopy (STM). A unique feature of the diamond film growth system is that diamond films can be transferred directly to the ultrahigh vacuum (UHV) chamber of a scanning tunneling microscope without contaminating the films by exposure to air. The University of North Texas (UNT) provided $20,000 this year as matching funds for the NASA grant to purchase the diamond growth system. In addition, UNT provided a Coherent Innova 90S Argon ion laser, a Spex 1404 double spectrometer, and a Newport optical table costing $90,000 to set-up the Raman spectroscopy system. The CVD diamond growth system and Raman spectroscopy system will be used to grow and characterize diamond films with atomic resolution using STM as described in our proposal. One full-time graduate student and one full-time undergraduate student are supported under this grant. In addition, several graduate and undergraduate students were supported during the summer to assist in setting-up the diamond growth and Raman spectroscopy systems. We have obtained research results concerning STM of the structural and electronic properties of CVD grown diamond films, and STM and scanning tunneling spectroscopy of carbon nanotubes. In collaboration with the transmission electron microscopy (TEM) group at UNT, we have also obtained results concerning the optoelectronic material siloxene. These results were published in refereed scientific journals, submitted for publication, and presented as invited and contributed talks at scientific conferences.

  2. Development and Application of Multiple-Probe Scanning Probe Microscopes

    SciTech Connect

    Nakayama, T.; Kubo, O.; Shingaya, Y.; Higuchi, S.; Hasegawa, T.; Jiang, C. S.; Okuda, T.; Kuwahara, Y.; Takami, K.; Aono, M.

    2012-04-03

    the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  3. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    SciTech Connect

    Oberbeck, Lars; Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y. E-mail: michelle.simmons@unsw.edu.au; Schofield, Steven R.; Curson, Neil J. E-mail: michelle.simmons@unsw.edu.au

    2014-06-23

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  4. The Tunneling Microscope: A New Look at the Atomic World.

    ERIC Educational Resources Information Center

    Golovchenko, J. A.

    1986-01-01

    A new instrument called the tunneling microscope has recently been developed that is capable of generating real-space images of surfaces showing atomic structure. Discusses current capabilities, limitations, and the physics involved in the technique. Includes results from a study of silicon crystal surfaces. (JN)

  5. Fundamental quantum noise mapping with tunnelling microscopes tested at surface structures of subatomic lateral size

    NASA Astrophysics Data System (ADS)

    Herz, Markus; Bouvron, Samuel; Ćavar, Elizabeta; Fonin, Mikhail; Belzig, Wolfgang; Scheer, Elke

    2013-09-01

    We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events.We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02216a

  6. Scanning tunneling microscopy of sulfide surfaces

    SciTech Connect

    Eggleston, C.M.; Hochella, M.F. Jr. )

    1990-05-01

    A fundamental understanding of reactions that occur at mineral surfaces, many of which have bearing on important environmental issues, requires knowledge of atomic surface structures. Scanning tunneling microscopy (STM) is a new technique which can be used to image atomic surface structures in real space. We briefly review STM theory and interpret STM images of galena (PbS) and pyrite (FeS{sub 2}) surfaces by comparing the bias-voltage dependence of the images to the electronic structures of the materials. This approach amounts to a form of tunneling spectroscopy which may ultimately be used to identify individual atoms on mineral surfaces. STM imaging was accomplished on fresh fracture surfaces as well as on surfaces that had been exposed to air for long periods of time. For galena, the Pb and S sites are distinguishable, and the S sites appear to be imaged preferentially. A galena surface which had been oxidized in air for several months was imaged, suggesting either that oxidation products are very thin, occur in local patches on the surface, or are both non-conductive and not coherently bound to the galena surface. Iron appears to be imaged preferentially on fresh fracture surfaces of pyrite. Atomic positions on a pyrite growth surface were not those expected for a termination of the bulk pyrite structure; it is likely that a surface oxidation product was imaged.

  7. A novel multimodal laser scanning microscope control system

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; Karasek, Stephen; McLean, James; Zhang, Xi; DiMarzio, Charles; Yin, Jihao; Xiong, Daxi

    2015-03-01

    Traditional laser scanning microscopes require complex control systems to synchronize and control image acquisition. The control system is especially cumbersome in the multimodal laser scanning microscope. We have developed a novel multimodal laser scanning microscope control system based on a National Instruments multifunction data acquisition device (DAQ), which serves as both a data acquisition device and a programmable signal generator. The novel control system is low-cost and easy-to-build, with all components off-the-shelf. We have applied the control system in a multimodal laser scanning microscope. The control system has not only significantly decreased the complexity of the microscope, but also increased the system flexibility. We have demonstrated that the system can be easily customized for various applications.

  8. Investigating Intermolecular Interactions via Scanning Tunneling Microscopy: An Experiment for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pullman, David; Peterson, Karen I.

    2004-01-01

    A scanning tunneling microscope (STM) project designed as a module for the undergraduate physical chemistry laboratory is described. The effects of van der Waals interactions on the condensed-phase structure are examined by the analysis of the pattern of the monolayer structures.

  9. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    DOEpatents

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  10. Observing PAH Hydrogenation with Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Cassidy, A. M.; Nilsson, L.; Balog, R.; Thrower, J.; Jorgensen, B.; Hornekaer, L.

    2011-05-01

    The interaction between thin films of polycyclic aromatic hydrocarbons (PAHs) and atomic H has been studied using scanning tunneling microscopy (STM). Observational evidence suggests that hydrogenated PAHs are located in regions of the interstellar medium (ISM) where there are high concentrations of molecular hydrogen (H2)1. It has previously been postulated that hydrogenated PAHs act as catalysts for the formation of H22. While many studies have focused on the role of ionic PAHs in the formation of H23, here we consider the role of neutral species. Neutral PAHs are expected to be stable and to condense on grain surfaces present in dense interstellar clouds, in regions of low UV flux4. PAH molecules were deposited in thin films under ultra high vacuum (UHV) conditions. Monolayer films were subsequently characterised using STM, at liquid N2 temperatures. The films were then exposed to thermally-cracked atomic H and were again characterised using STM. Contrast in the STM images showed submolecular changes to the electronic structure of the PAH molecules only after exposure to atomic H. This suggests the formation of superhydrogenated species. DFT calculations have predicted that such superhydrogenated species are stable and can act as catalysts for the formation of H2 through abstraction reactions5. Complimentary thermal desorption experiments support these findings.

  11. Confocal scanning beam laser microscope/macroscope: applications in fluorescence

    NASA Astrophysics Data System (ADS)

    Dixon, Arthur E.; Damaskinos, Savvas; Ribes, Alfonso

    1996-03-01

    A new confocal scanning beam laser microscope/macroscope is described that combines the rapid scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. This instrument combines an infinity-corrected confocal scanning laser microscope with a scanning laser macroscope that uses a telecentric f*(Theta) laser scan lens to produce a confocal imaging system with a resolution of 0.25 microns at a field of view of 25 microns and 5 microns at a field of view of 75,000 microns. The frame rate is 5 seconds per frame for a 512 by 512 pixel image, and 25 seconds for a 2048 by 2048 pixel image. Applications in fluorescence are discussed that focus on two important advantages of the instrument over a confocal scanning laser microscope: an extremely wide range of magnification, and the ability to image very large specimens. Examples are presented of fluorescence and reflected-light images of high quality printing, fluorescence images of latent fingerprints, packaging foam, and confocal autofluorescence images of a cricket.

  12. Spin excitations and correlations in scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Ternes, Markus

    2015-06-01

    In recent years inelastic spin-flip spectroscopy using a low-temperature scanning tunneling microscope has been a very successful tool for studying not only individual spins but also complex coupled systems. When these systems interact with the electrons of the supporting substrate correlated many-particle states can emerge, making them ideal prototypical quantum systems. The spin systems, which can be constructed by arranging individual atoms on appropriate surfaces or embedded in synthesized molecular structures, can reveal very rich spectral features. Up to now the spectral complexity has only been partly described. This manuscript shows that perturbation theory enables one to describe the tunneling transport, reproducing the differential conductance with surprisingly high accuracy. Well established scattering models, which include Kondo-like spin-spin and potential interactions, are expanded to enable calculation of arbitrary complex spin systems in reasonable time scale and the extraction of important physical properties. The emergence of correlations between spins and, in particular, between the localized spins and the supporting bath electrons are discussed and related to experimentally tunable parameters. These results might stimulate new experiments by providing experimentalists with an easily applicable modeling tool.

  13. Scanning Tunneling Microscopy of Layered Materials

    NASA Astrophysics Data System (ADS)

    Qin, Xiaorong

    This dissertation describes studies of the surfaces of layered materials, including graphite intercalation compounds, transition-metal-dichalcogenides, and single layers of MoS_2. with scanning tunneling microscopy (STM). In order to understand how tunneling images reflect the atomic nature of sample surfaces, the electronic and structural properties of intercalated graphite surfaces imaged with STM have been investigated theoretically. The corrugation amplitude (CA) and carbon site asymmetry (CSA) are sensitive to the number of graphite layers covering the first intercalate layer, to the amount and distribution of the charge transferred from intercalate to host and to the surface subband structure. The CA and CSA can be used to map the stage domains across a freshly cleaved surface. The STM images of the surfaces of both donor and acceptor graphite intercalation compounds are discussed. The theory successfully explained the available experimental results, and yielded some predictions which have been verified in recent experiments. A STM system for operation in air was assembled. The crystalline surfaces of graphite and three transition-metal -dichalcogenides (2H-MoS_2, WTe _2 and ReSe_2) have been studied with the STM system. Single layers of MoS_2 can be obtained by the exfoliation of lithium-intercalated MoS_2 powder in water and in several alcohols. In the STM observations, the samples were prepared by depositing either an aqueous or butanol suspension of single-layer MoS_2 on graphite substrates to form restacked films with two monolayers of solvent molecules included between the layers of MoS_2 . The real-space images obtained from the films all showed the existence of an approximate 2 x 1 superstructure on the surfaces, although the 2 x 1 pattern can be modulated by the interface interaction between the MoS_2 layer and the solvent molecules. These results, in conjunction with existing x-ray diffraction and Raman results, imply that the single layers of MoS_2

  14. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  15. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  16. The Scanning Electron Microscope and the Archaeologist

    ERIC Educational Resources Information Center

    Ponting, Matthew

    2004-01-01

    Images from scanning electron microscopy are now quite common and they can be of great value in archaeology. Techniques such as secondary electron imaging, backscattered electron imaging and energy-dispersive x-ray analysis can reveal information such as the presence of weevils in grain in Roman Britain, the composition of Roman coins and the…

  17. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    SciTech Connect

    Khotkevych, V. V.; Bending, S. J.; Milosevic, M. V.

    2008-12-15

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial {sup 3}He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6x6x7 mm{sup 3} space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields {>=}10 mG/Hz{sup 1/2}. The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  18. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    NASA Astrophysics Data System (ADS)

    Khotkevych, V. V.; Milošević, M. V.; Bending, S. J.

    2008-12-01

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial H3e-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6×6×7 mm3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields ⩾10 mG/Hz1/2. The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  19. Advances in Atomic Force Microscopy and Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Albrecht, Thomas Robert

    The scanning tunneling microscope (STM) and the more recently developed atomic force microscope (AFM) are high resolution scanning probe microscopes capable of three dimensional atomic-scale surface profiling. In the AFM, minute forces acting between the tip of a flexible cantilever stylus and the surface of the sample cause deflections of the cantilever which are detected by a tunneling or optical sensor with subangstrom sensitivity. The AFM work presented here involves surface profiling via repulsive contact forces between 10^{-6} and 10^{-9} N in magnitude. In this contact profiling (repulsive) mode the AFM is capable of atomic resolution on both electrically conducting and insulating surfaces (unlike the STM). AFM instrumentation for room temperature and low temperature operation is discussed. The critical component of the AFM is the cantilever stylus assembly, which should have a small mass. Several microfabrication processes have been developed to produce thin film SiO_2 and Si_3N_4 microcantilevers with integrated sharp tips. Atomic resolution has been achieved with the AFM in air on a number of samples, including graphite, MoS _2, TaSe_2, WTe_2, TaS_2, and BN (the first insulator imaged with atomic resolution by any means). Various organic and molecular samples have been imaged with nanometer resolution. The difference between STM and AFM response is shown in images of TaS _2 (a charge density wave material), and in simultaneous STM/AFM images of lattice defects and adsorbates on graphite and MoS_2. A number of artifacts make STM and AFM image interpretation subtle, such as tip shape effects, frictional effects, and tracking in atomic grooves. STM images of moire patterns near grain boundaries confirm the importance of tip shape effects. Various surface modification and lithography techniques have been demonstrated with the STM and AFM, including an STM voltage pulse technique which reproducibly creates 40 A diameter holes on the surface of graphite, and a

  20. Flexible and modular virtual scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Tracey, John; Federici Canova, Filippo; Keisanen, Olli; Gao, David Z.; Spijker, Peter; Reischl, Bernhard; Foster, Adam S.

    2015-11-01

    Non-contact Atomic Force Microscopy (NC-AFM) is an experimental technique capable of imaging almost any surface with atomic resolution, in a wide variety of environments. Linking measured images to real understanding of system properties is often difficult, and many studies combine experiments with detailed modelling, in particular using virtual simulators to directly mimic experimental operation. In this work we present the PyVAFM, a flexible and modular based virtual atomic force microscope capable of simulating any operational mode or set-up. Furthermore, the PyVAFM is fully expandable to allow novel and unique set-ups to be simulated, finally the PyVAFM ships with fully developed documentation and tutorial to increase usability.

  1. Atomic-Scale Imaging and Spectroscopy Using Scanning Tunneling Microscopy.

    NASA Astrophysics Data System (ADS)

    Youngquist, Michael George

    Advances in scanning tunneling microscopy (STM) instrumentation and applications are presented. An ultrahigh vacuum (UHV) scanning tunneling microscope incorporating computer-controlled two-dimensional sample translation and in vacuo tip and sample transfer was developed. Its performance is documented through large-area and atomic -resolution imaging of highly stepped Si(111) 7 x 7 reconstructed surfaces and physisorbed clusters on graphite. An STM with automated approach and intra-Dewar spring suspension was developed for operation in cryogenic liquids. A high performance digital signal processor (DSP) based control system was constructed, and software with advanced spectroscopic imaging and data processing capabilities was developed. The feasibility of individual-molecule vibrational spectroscopy via STM-detected inelastic electron tunneling is assessed. In preliminary experiments, a low-temperature STM was used for energy gap and phonon spectroscopy of superconducting Pb films. The first STM observation of phonon density of states effects in a superconductor is reported. A systematic UHV STM imaging and spectroscopy study of 2H-MoS_2 was conducted. Atom -resolved images from three distinct imaging modes are presented. Occasional appearance of negative differential resistance (NDR) in I vs. V measurements is traced to changing tip electronic structure rather than localized surface states. Other potential NDR mechanisms are discussed including electron trap charging and resonant tunneling through a double-barrier quantum well structure arising from layer separation in the MoS_2 crystal. DNA was imaged at atomic resolution with a UHV STM. Images show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles have atom-for-atom correlation with the A-DNA van der Waals surface. This work demonstrates the potential of the STM for characterization of large biomolecular structures. Impurity-pinned steps on silicon and gold surfaces

  2. Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapor.

    PubMed

    Scudiero, L; Barlow, D E; Mazur, U; Hipps, K W

    2001-05-01

    Thin films of vapor-deposited Ni(II) and Co(II) complexes of tetraphenylporphyrin (NiTPP and CoTPP) were studied supported on gold and embedded in Al-Al(2)O(3)-MTPP-Pb tunnel diodes, where M = Ni or Co. Thin films deposited onto polycrystalline gold were analyzed by ultraviolet photoelectron spectroscopy (UPS) using He I radiation. Scanning tunneling microscopy (STM) and orbital-mediated tunneling spectroscopy (STM-OMTS) were performed on submonolayer films of CoTPP and NiTPP supported on Au(111). Inelastic electron tunneling spectroscopy (IETS) and OMTS were measured in conventional tunnel diode structures. The highest occupied pi molecular orbital of the porphyrin ring was seen in both STM-OMTS and UPS at about 6.4 eV below the vacuum level. The lowest unoccupied pi molecular orbital of the porphyrin ring was observed by STM-OMTS and by IETS-OMTS to be located near 3.4 eV below the vacuum level. The OMTS spectra of CoTPP had a band near 5.2 eV (below the vacuum level) that was attributed to transient oxidation of the central Co(II) ion. That is, it is due to electron OMT via the half-filled d(z)(2) orbital present in Co(II) of CoTPP. The NiTPP OMTS spectra show no such band, consistent with the known difficulty of oxidation of the Ni(II) ion. The STM-based OMTS allowed these two porphyrin complexes to be easily distinguished. The present work is the first report of the observation of STM-OMTS, tunnel junction OMTS, and UPS of the same compounds. Scanning tunneling microscope-based orbital-mediated tunneling provides more information than UPS or tunnel junction-based OMTS and does so with molecular-scale resolution. PMID:11457159

  3. Simulating imaging with the scanning ion-conductance microscope.

    PubMed

    Adenle, Omolabake; Fitzgerald, William

    2005-01-01

    The Scanning Ion-Conductance Microscope (SICM) is a member of the family of Scanned Probe Microscopes (SPM). Examples include the Scanning Electrochemical Microscope (SECM) and Atomic Force Microscope (AFM). SICM uses the ion-concentration field at the tip of a micropipette filled with an electrolyte solution as a probe to generate images of sample topography. As with other members of the SPM family, the probe geometry determines the observed image. This paper presents mathematical models for simulating the SICM in its different operating modes with the intent of creating a framework within which the effect of probe-geometry can be studied. We validate our model by comparing simulated approach-curves with empirical data. Finally, we show simulated images of a Gaussian-bump substrate under the different operating modes of the SICM. PMID:17280955

  4. Atomic-scale imaging of DNA using scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Driscoll, Robert J.; Youngquist, Michael G.; Baldeschwieler, John D.

    1990-07-01

    THE scanning tunnelling microscope (STM) has been used to visualize DNA1 under water2, under oil3 and in air4-6. Images of single-stranded DNA have shown that submolecular resolution is possible7. Here we describe atomic-resolution imaging of duplex DNA. Topographic STM images of uncoated duplex DNA on a graphite substrate obtained in ultra-high vacuum are presented that show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles show excellent correlation with atomic contours of the van der Waals surface of A-form DNA derived from X-ray crystallography. A comparison of variations in the barrier to quantum mechanical tunnelling (barrier-height) with atomic-scale topography shows correlation over the phosphate-sugar backbone but anticorrelation over the base pairs. This relationship may be due to the different chemical characteristics of parts of the molecule. Further investigation of this phenomenon should lead to a better understanding of the physics of imaging adsorbates with the STM and may prove useful in sequencing DNA. The improved resolution compared with previously published STM images of DNA may be attributable to ultra-high vacuum, high data-pixel density, slow scan rate, a fortuitously clean and sharp tip and/or a relatively dilute and extremely clean sample solution. This work demonstrates the potential of the STM for characterization of large biomolecular structures, but additional development will be required to make such high resolution imaging of DNA and other large molecules routine.

  5. Fundamental quantum noise mapping with tunnelling microscopes tested at surface structures of subatomic lateral size.

    PubMed

    Herz, Markus; Bouvron, Samuel; Ćavar, Elizabeta; Fonin, Mikhail; Belzig, Wolfgang; Scheer, Elke

    2013-10-21

    We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events. PMID:23989889

  6. Structurally induced FEES from nanotips: implications for scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, N.; Binh, Vu Thien; Purcell, S. T.

    1993-08-01

    Recent theoretical studies and experimental data show the existence of energy levels at the apex atom of nanotips. We report here experimental measurements, by field emission electron spectroscopy (FEES), of strong modifications of the local density of states for varying atomic configurations of the nanotips. The local density of states specific to each protrusion must then be considered in interpreting scanning tunneling microscopy and scanning tunneling spectroscopy experiments with atomic resolution instead of the commonly used free-electron model.

  7. Structurally induced FEES from nanotips: implications for scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, N.; Binh, Vu Thien; Purcell, S. T.

    Recent theoretical studies and experimental data show the existence of energy levels the apex atom of nanotips. We report here experimental measurements, by field emission electron spectroscopy (FEES), of strong modifications of the local density of states for varying atomic configurations of the nanotips. The local density of states specific to each protrusion must then be considered in interpreting scanning tunneling microscopy and scanning tunneling spectroscopy experiments with atomic resolution instead of the commonly used free-electron model.

  8. Multi-perspective scanning microscope based on Talbot effect

    NASA Astrophysics Data System (ADS)

    Sun, Yangyang; Pang, Shuo

    2016-01-01

    We report a multi-perspective scanning microscope based on the Talbot effect of a periodic focal spot array. Talbot illumination decouples the lateral scanning and the focal spots tuning. Large field of view fluorescence Talbot Microscope has been demonstrated by globally changing the incident wavefront gradient. Here, we explore the design freedom of adjusting the wavefront locally within each period and thus engineer the point spread function of the focal spots. We demonstrate an imaging system capable of reconstructing multi-perspective microscopic images in both bright field and fluorescence mode. With the multi-perspective imaging capability, we envision a more robust microscopic imaging system for large field of view fluorescence microscopy applications. This method is also suitable for compact imaging systems for multi-layer microfluidic systems.

  9. Influence of mechanical noise inside a scanning electron microscope

    SciTech Connect

    Gaudenzi de Faria, Marcelo; Haddab, Yassine Le Gorrec, Yann; Lutz, Philippe

    2015-04-15

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.

  10. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F.

    2015-11-01

    Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.

  11. Performance of automatic scanning microscope for nuclear emulsion experiments

    SciTech Connect

    Güler, A. Murat; Altınok, Özgür

    2015-12-31

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  12. Point Scanning Microscope with Adaptive Illumination Beam Intensity

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, B. R.

    2011-10-01

    In this paper we describe a point scanning optical microscope where the illumination beam can be programmably controlled in real time using a liquid crystal spatial light modulator (LCSLM). With an appropriate pattern displayed on the LCSLM, the device can be made to act as a binary diffraction hologram. In the proposed microscope the illumination beam is in fact the +1 order beam diffracted from the binary hologram. By displaying a sequence of binary holograms it is possible to make a beam scanning, similar to a conventional scanning microscope. Here we use a computer generated holography technique to compute the binary holograms which facilitate complete control of the amplitude and phase profile of the illumination beam. In a number of microscopy applications using reflected light, the reflectivity of the sample plane may differ from region to region. Therefore if a single illumination beam intensity is used for the whole sample plane, then the regions with less reflectivity will be imaged with poor signal to noise ratio. In our proposed microscope the sample plane is first imaged to determine the regions of weak reflectivity. Holograms are then computed to make the illumination beam adapt to the reflectivity variations in the given sample plane. The image obtained with the modified set of holograms have superior signal to noise ratio all over, relative to a conventional point scanning microscope with a fixed intensity illumination beam. In this paper we present some preliminary results using the proposed setup.

  13. Material characterization with a simple laser scanning microscope.

    PubMed

    Krug, R; Würfel, P; Ruppel, W

    1993-11-10

    The design of a computer-controlled laser scanning microscope is described. It is capable of inspecting a 1 mm × 1 mm area in less than 1 s with an optical resolution of 2 µm. Three applications of the laser scanning microscope are presented: the observation of the ferroelectric-domain structure of sodium nitrite layers, the observation of the spatial distribution of the photocurrent in polycrystalline solar cells, and the observation of the lateral distribution of thermoelectric currents in a thermal IR detector for the determination of the thermal properties of its absorber foil.

    PACS: 0760P, 7240, 7780D.

    PMID:20856484

  14. Scanning tunneling spectroscopy of single-wall carbon nanotubes on a polymerized gold substrate

    NASA Astrophysics Data System (ADS)

    Shao, F.; Zha, F. X.; Pan, C. B.; Shao, J.; Zhao, X. L.; Shen, X. C.

    2014-02-01

    The physics picture on scanning tunneling spectroscopy of single-wall carbon nanotubes (SWCNTs) was revisited recently [H. Lin et al., Nat. Mater. 9, 235 (2010), 10.1038/nmat2771] with an image potential model under the framework of the many-body theory whose description is different from that of conventional one-particle tight-binding theory. The model is explored further in the present study of SWCNTs with an ultrahigh-vacuum scanning tunneling microscope. In the experiments, two types of samples were measured. In one sample, the nanotubes were in intimate contact with the gold surface and the observed tunneling gaps of semiconductor nanotubes fit the prediction of the one-particle model. In the other sample, the nanotubes were isolated by a thin polymer (4-vinylpyridine) layer from the gold surface. The semiconducting SWCNTs in the latter sample show tunneling gaps several hundreds of milli-electron volts larger than the prediction of the one-particle model. The results can, however, be interpreted by the modified image potential model, which takes into account the surface dielectric mechanism. The consistent picture of the tunneling gaps of the different samples provides insight into the scanning tunneling spectroscopy of SWCNTs from the standpoint of many-body theory.

  15. Images of a lipid bilayer at molecular resolution by scanning tunneling microscopy.

    PubMed Central

    Smith, D P; Bryant, A; Quate, C F; Rabe, J P; Gerber, C; Swalen, J D

    1987-01-01

    The molecular structure of a fatty acid bilayer has been recorded with a scanning tunneling microscope operating in air. The molecular film, a bilayer of cadmium icosanoate (arachidate), was deposited onto a graphite substrate by the Langmuir-Blodgett technique. The packing of the lipid film was found to be partially ordered. Along one axis of the triclinic unit cell the intermolecular distance varied randomly around a mean of 5.84 A with a SD of 0.24 A. Along the other axis the mean distance was 4.1 A and appeared to vary monotonically over several intermolecular distances, indicating that a superstructure of longer range may exist. The molecular density was one molecular per 19.4 A2. The surprising ability of the scanning tunneling microscope to image the individual molecular chains demonstrates that electrons from the graphite can be transferred along the molecular chains for a distance of 50 A. Images PMID:3103128

  16. Planar Projection of Mobile Laser Scanning Data in Tunnels

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. A.; Mendes, R.; Araújo, E.; Oliveira, A.; Boavida, J.

    2012-07-01

    Laser scanning is now a common technology in the surveying and monitoring of large engineering infrastructures, such as tunnels, both in motorways and railways. Extended possibilities exist now with the mobile terrestrial laser scanning systems, which produce very large data sets that need efficient processing techniques in order to facilitate their exploitation and usability. This paper deals with the implementation of a methodology for processing and presenting 3D point clouds acquired by laser scanning in tunnels, making use of the approximately cylindrical shape of tunnels. There is a need for a 2D presentation of the 3D point clouds, in order to facilitate the inspection of important features as well as to easily obtain their spatial location. An algorithm was developed to treat automatically point clouds obtained in tunnels in order to produce rectified images that can be analysed. Tests were carried with data acquired with static and mobile Riegl laser scanning systems, by Artescan company, in highway tunnels in Portugal and Spain, with very satisfactory results. The final planar image is an alternative way of data presentation where image analysis tools can be used to analyze the laser intensity in order to detect problems in the tunnel structure.

  17. Graphene grain boundary resistivity revealed by scanning tunneling potentiometry

    NASA Astrophysics Data System (ADS)

    Durand, Corentin; Clark, Kendal W.; Zhang, Xiaoguang; Vlassiouk, Ivan V.; Li, An-Ping; Oak Ridge National Lab Team

    2014-03-01

    All large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we study grain boundary (GB) resistivity in CVD graphene on Cu subsequently transferred to a SiO2 substrate. By using a scanning tunneling potentiometry (STP) setup with a cryogenic four-probe STM, the spatial variation of the local electrochemical potential is resolved across individual GBs on a graphene surface in the presence of a current. The 2D distributions of electric field and conductivity were then numerically extracted by solving conduction equations. The derived conductivity of individual grains was compared to that measured with microscopic four-probe STM method to provide a model-independent determination of conductivity map for specific type of defect in graphene. The resistance of a GB is found to change with the width of the disordered transition region between adjacent grains. A quantitative modeling of boundary resistance reveals the increased electron Fermi wave vector within the boundary region, possibly due to boundary induced charge density variation.

  18. Smart align -- A new tool for robust non-rigid registration of scanning microscope data

    DOE PAGESBeta

    Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; Marshall, Matthew S. J.; Van Aert, Sandra; Browning, Nigel D.; Castell, Martin R.; Nellist, Peter D.

    2015-07-10

    Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less

  19. Smart align -- A new tool for robust non-rigid registration of scanning microscope data

    SciTech Connect

    Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; Marshall, Matthew S. J.; Van Aert, Sandra; Browning, Nigel D.; Castell, Martin R.; Nellist, Peter D.

    2015-07-10

    Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.

  20. Improved coating and fixation methods for scanning electron microscope autoradiography.

    PubMed

    Weiss, R L

    1984-01-01

    A simple apparatus for emulsion coating is described. The apparatus is inexpensive and easily assembled in a standard glass shop. Emulsion coating for scanning electron microscope autoradiography with this apparatus consistently yields uniform layers. When used in conjunction with newly described fixation methods, this new approach produces reliable autoradiographs of undamaged specimens. PMID:6234956

  1. Scanning Transmission X-ray Microscope Control Program

    Energy Science and Technology Software Center (ESTSC)

    2005-08-05

    User Interface and control software or C++ to run on specifically equipped computer running Windows Operating Systems. Program performs specific control functions required to operate Interferometer controlled scanning transmission X-ray microscopes at ALS beamlines 532 and 11.0.2. Graphical user interface facilitates control, display images and spectra.

  2. Focal depth measurement of scanning helium ion microscope

    SciTech Connect

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-07-14

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  3. Development of scanning electron and x-ray microscope

    NASA Astrophysics Data System (ADS)

    Matsumura, Tomokazu; Hirano, Tomohiko; Suyama, Motohiro

    2016-01-01

    We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and soft materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.

  4. Laser scan microscope and infrared laser scan microcope: two important tools for device testing

    NASA Astrophysics Data System (ADS)

    Ziegler, Eberhard

    1991-03-01

    The optical beam induced current (OBIC) produced in devices by a laser scan microscope (LSM) is used to localize hot spots, leakage currents, electrostatic discharge defects and weak points. The LSM also allows photoluminescence measurements with high spatial and energy resolution. Using the infrared laser scan microscope (IR LSM), defects in the metallization and latch-up sensitive region could be detected from the back of the device.

  5. Chemical imaging of surfaces with the scanning electrochemical microscope.

    PubMed

    Bard, A J; Fan, F R; Pierce, D T; Unwin, P R; Wipf, D O; Zhou, F

    1991-10-01

    Scanning electrochemical microscopy is a scanning probe technique that is based on faradaic current changes as a small electrode is moved across the surface of a sample. The images obtained depend on the sample topography and surface reactivity. The response of the scanning electrochemical microscope is sensitive to the presence of conducting and electroactive species, which makes it useful for imaging heterogeneous surfaces. The principles and instrumentation used to obtain images and surface reaction-kinetic information are discussed, and examples of applications to the study of electrodes, minerals, and biological samples are given. PMID:17739954

  6. 4.2K Cryocooled Scanning SQUID Microscope

    NASA Astrophysics Data System (ADS)

    Kwon, S. P.; Knauss, L.; Lettsome, N.; Cawthorne, A.; Lobb, C. J.; Wellstood, F. C.

    2003-03-01

    We have assembled a scanning SQUID microscope using a Nb SQUID and a cryocooler. The Nb SQUID is contained within a vacuum jacket while material being scanned is at room temperature and normal atmospheric pressure. A 25 micron thick sapphire window separates the SQUID in vacuum from the scanned material. The Nb DC SQUID, fabricated by Hypres Inc., has an inner dimension of 10 microns by 10 microns and the Josephson Junctions are resistively shunted. Cooling is provided by a Pulse Tube Cryocooler from Cryomech Inc. Temperatures as low as 3.8 K have been obtained while operating the SQUID microscope. Due to radiation heating, the temperature of the SQUID has been estimated to be 1.0 K to 1.5 K higher than sensor values. Flux-Locked-Loop electronics are used to take magnetic field data. Preliminary measurements of the flux noise indicated resolution to better than 10 micro Flux Quantum for one second averaging time.

  7. Analysis of scanning probe microscope images using wavelets.

    PubMed

    Gackenheimer, C; Cayon, L; Reifenberger, R

    2006-03-01

    The utility of wavelet transforms for analysis of scanning probe images is investigated. Simulated scanning probe images are analyzed using wavelet transforms and compared to a parallel analysis using more conventional Fourier transform techniques. The wavelet method introduced in this paper is particularly useful as an image recognition algorithm to enhance nanoscale objects of a specific scale that may be present in scanning probe images. In its present form, the applied wavelet is optimal for detecting objects with rotational symmetry. The wavelet scheme is applied to the analysis of scanning probe data to better illustrate the advantages that this new analysis tool offers. The wavelet algorithm developed for analysis of scanning probe microscope (SPM) images has been incorporated into the WSxM software which is a versatile freeware SPM analysis package. PMID:16439061

  8. Substrate effects on the surface topography of evaporated gold films—A scanning tunnelling microscopy investigation

    NASA Astrophysics Data System (ADS)

    Vancea, J.; Reiss, G.; Schneider, F.; Bauer, K.; Hoffmann, H.

    1989-08-01

    Direct observation of surface roughness on metal films is a longstanding problem in thin film characterization. In this work the high quality of scanning tunnelling microscopy (STM) was used for investigation of evaporated gold films. A scanning tunnelling microscope able to scan areas up to 0.8 × 0.8 micro m with high reproducibility is presented. The topography of 80 nm thick gold films grown under identical evaporation conditions was investigated as a function of the selected substrate material (Corning glass, silicon, NaCl, mica and highly oriented pyrolitic graphite (HOPG)). The incipient growth mechanism on the substrate is the primary reason for the surface roughness. The real space images of the surface topography correlate very well with knowledge achieved from former growth experiments given in the literature. Moreover, very flat gold surfaces on HOPG allowed the observation of atomic corrugations in air environments.

  9. Scanning tunneling spectroscopy of chemical vapor deposition grown graphene

    NASA Astrophysics Data System (ADS)

    Cormode, Daniel; Reynolds, Collin; Leroy, Brian

    2011-03-01

    The electronic properties of CVD grown graphene were investigated by scanning tunneling microscopy. Mono and multi layered samples were prepared by growth on copper and transferred to 300 nm Si O2 substrates. Raman spectroscopy mapping was used to determine the thickness of the samples as well as characterize regions of higher disorder as evidenced by an increased D peak. The samples were then measured in ultra high vacuum by scanning tunneling spectroscopy at 5 K. The type and density of defects measured with the STM were compared with measured D peak intensity. We have examined the correlation between changes in the local density of states and disorder in monolayer graphene.

  10. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    ERIC Educational Resources Information Center

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…