Science.gov

Sample records for scattering angular distribution

  1. Angular distribution of light scattered from heavily doped silica fibres

    SciTech Connect

    Alekseev, V V; Likhachev, M E; Bubnov, M M; Salganskii, M Yu; Khopin, V F; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-10-31

    This paper describes an experimental setup for precision measurements of the angular distribution of light scattered by optical fibres in a wide angular range and demonstrates that the models of anomalous scattering proposed to date need to be refined. We have found and interpreted a discrepancy between the Rayleigh scattering coefficients measured by different techniques.

  2. Anion Photoelectron Angular Distributions: Electron Scattering Resonances in Photodetachment

    NASA Astrophysics Data System (ADS)

    Mabbs, Richard

    2012-06-01

    To a large degree the photoelectron angular distributions (PAD) of anionic species represent signatures of the bound parent orbital. However, these angular distributions are also influenced by interaction of the outgoing electron with the neutral (atomic, molecular or cluster) residue. The electron kinetic energy evolution (eKE) of the PAD is presented for a number of different species (from molecular to cluster anion), showing the often striking effect of excitation of temporary excited anionic states. These cases highlight the influence of different types of electron-molecule scattering resonances in photodetachment dynamics. Additionally, the possibility of using the eKE evolution of the PAD for structural elucidation is discussed.

  3. Seemingly anomalous angular distributions in H + D₂ reactive scattering.

    PubMed

    Jankunas, Justin; Zare, Richard N; Bouakline, Foudhil; Althorpe, Stuart C; Herráez-Aguilar, Diego; Aoiz, F Javier

    2012-06-29

    When a hydrogen (H) atom approaches a deuterium (D(2)) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D(2) → HD(v' = 4, j') + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j' HD products to become backward scattered. PMID:22745425

  4. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  5. Measurement of aggregates' size distribution by angular light scattering

    NASA Astrophysics Data System (ADS)

    Caumont-Prim, Chloé; Yon, Jérôme; Coppalle, Alexis; Ouf, François-Xavier; Fang Ren, Kuan

    2013-09-01

    A novel method is introduced for in situ determination of the size distribution of submicronic fractal aggregate particles by unique measurement of angular scattering of light. This method relies on the dependence of a new defined function Rg⋆ on the polydispersity of the aggregates' size distribution. The function Rg⋆ is then interpreted by the use of iso-level charts to determine the parameters of the log-normal soot size distribution. The main advantage of this method is its independence of the particle optical properties and primary sphere diameter. Moreover, except for the knowledge of fractal dimension, this method does not require any additional measurement. It is validated on monodisperse particles selected by a differential mobility analyzer and polydisperse soot from ethylene diffusion flame whose size distribution is independently determined by Transmission Electron Microscopy. Finally, the size distribution of soot generated by a commercial apparatus is measured by the proposed method and the comparison to that given by a commercial granulometer shows a good agreement.

  6. Theoretical modeling for neutron elastic scattering angular distribution in the fast energy range

    SciTech Connect

    Kawano, Toshihiko

    2010-12-07

    One of the major issues of neutron scattering modeling in the fast energy range is the contribution of compound elastic and inelastic scattering to the total scattering process. The compound component may become large at very low energies where the angular distribution becomes 90-degree symmetric in the center-of-mass system. Together with the shape elastic component, the elastic scattering gives slightly forward-peaked angular distributions in the fast energy range. This anisotropic angular distribution gives high sensitivities to many important nuclear reactor characteristics, such as criticality and neutron shielding. In this talk we describe how the anisotropic angular distributions are calculated within the statistical model framework, including the case where strongly coupled channels exist, by combining the coupled-channels theory with the Hauser-Feshbach model. This unique capability extension will have significant advantages in understanding the neutron scattering process for deformed nuclei, like uranium or plutonium, on which advanced nuclear energy applications center.

  7. Sensitivity of the Shielding Benchmarks on Variance-covariance Data for Scattering Angular Distributions

    NASA Astrophysics Data System (ADS)

    Jouanne, C.

    2014-04-01

    This article is intended to present the use of the covariance matrices of cross section and of angular distributions for 56Fe scattering reactions using a benchmark on neutron propagation in an iron bulk.

  8. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    SciTech Connect

    Zhou, Yun Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  9. Total reaction cross sections from elastic {alpha}-nucleus scattering angular distributions around the Coulomb barrier

    SciTech Connect

    Mohr, P.; Galaviz, D.; Fueloep, Zs.; Gyuerky, Gy.; Kiss, G. G.; Somorjai, E.

    2010-10-15

    The total reaction cross section {sigma}{sub reac} is a valuable measure for the prediction of {alpha}-induced reaction cross sections within the statistical model and for the comparison of scattering of tightly bound projectiles to weakly bound and exotic projectiles. Here we provide the total reaction cross sections {sigma}{sub reac} derived from our previously published angular distributions of elastic {alpha}-nucleus scattering on {sup 89}Y, {sup 92}Mo, {sup 112,124}Sn, and {sup 144}Sm at energies around the Coulomb barrier.

  10. Energy and angular distributions of hyperthermal-energy Li{sup +} scattered from Cu(001)

    SciTech Connect

    Behringer, E.R.; McLean, J.G.; Cooper, B.H.

    1996-03-01

    We have measured the in-plane energy and angular distributions of scattered Li{sup +} ions that result when Li{sup +} ion beams with incident energies {ital E}{sub {ital i}}=100 and 400 eV impinge on Cu(001) with an incident angle {theta}{sub {ital i}}=65{degree} and along the {l_angle}100{r_angle} azimuth. By comparing the energy and angular distributions with those generated by classical trajectory simulations, we extract information about the ion-surface interaction potential. A model ion-surface potential consisting of a sum of Hartree-Fock pair potentials and an attractive term produces good agreement with the measured distributions at both incident energies, while the universal potential of Ziegler, Biersack, and Littmarck does so only for {ital E}{sub {ital i}} = 400 eV. Analysis of the simulated distributions enables us to correlate different types of scattering events with features of the measured distributions (e.g., rainbows) and so obtain a detailed understanding of the scattering of Li{sup +}, which is more complex than has been previously observed for heavier alkali ions (e.g., Na{sup +} and K{sup +}). We find that the energy loss of the Li{sup +} ions can be mostly accounted for by momentum transfer to the surface atoms and that inelastic losses are small but significant for this system at these incident energies. We also find that the thermal vibrations of the surface atoms have dramatic effects on the simulated energy and angular distributions. {copyright} {ital 1996 The American Physical Society.}

  11. DESIGN OF A MOLECULAR BEAM SURFACE SCATTERING APPARATUS FOR VELOCITY AND ANGULAR DISTRIBUTION MEASUREMENTS

    SciTech Connect

    Ceyer, S. T.; Siekhaus, W. J.; Somorjai, G. A.

    1980-11-01

    A molecular beam surface scattering apparatus designed for the study of corrosion and catalyticsurfacereactions is described. The apparatus incorporates two molecular or atomic beams aimed at a surface characterized by low energy electron diffraction (LEED) and Auger electron spectroscopy (AES), a rotatable, differentially pumped quadrupole mass spectrometer, and a versatile manipulator. Angular distributions and energy distributions as a funcion of angle and independent of the surface residence time can be measured. Typical data for the oxidation of deuterium to D{sub 2}O on a Pt(lll) crystal surface are presented.

  12. Angular intensity distribution of a molecular oxygen beam scattered from a graphite surface.

    PubMed

    Oh, Junepyo; Kondo, Takahiro; Arakawa, Keitaro; Saito, Yoshihiko; Hayes, W W; Manson, J R; Nakamura, Junji

    2011-06-30

    The scattering of the oxygen molecule from a graphite surface has been studied using a molecular beam scattering technique. The angular intensity distributions of scattered oxygen molecules were measured at incident energies from 291 to 614 meV with surface temperatures from 150 to 500 K. Every observed distribution has a single peak at a larger final angle than the specular angle of 45° which indicates that the normal component of the translation energy of the oxygen molecule is lost by the collision with the graphite surface. The amount of the energy loss by the collision has been roughly estimated as about 30-41% based on the assumption of the tangential momentum conservation during the collision. The distributions have also been analyzed with two theoretical models, the hard cubes model and the smooth surface model. These results indicate that the scattering is dominated by a single collision event of the particle with a flat surface having a large effective mass. The derived effective mass of the graphite surface for the incoming oxygen is 9-12 times heavier than that of a single carbon atom, suggesting a large cooperative motion of the carbon atoms in the topmost graphene layer. PMID:21446680

  13. Multiple-scattering distributions and angular dependence of the energy loss of slow protons in copper and silver

    NASA Astrophysics Data System (ADS)

    Cantero, E. D.; Lantschner, G. H.; Eckardt, J. C.; Lovey, F. C.; Arista, N. R.

    2010-04-01

    Measurements of angular distributions and of the angular dependence of the energy loss of 4-, 6-, and 9-keV protons transmitted through thin Cu and Ag polycrystalline foils are presented. By means of standard multiple-scattering model calculations it is found that a V(r)∝r-2.8 potential leads to significantly better fits of the angular distributions than the standard Thomas Fermi, Lenz-Jensen, or Ziegler-Biersack-Littmark potentials. A theoretical model for the angular dependence of the energy loss based on considering geometric effects on a frictional inelastic energy loss plus an angular-dependent elastic contribution and the effects of foil roughness reproduces the experimental data. This agrees with previous results in Au and Al, therefore extending the applicability of the model to other metallic elements.

  14. Multiple-scattering distributions and angular dependence of the energy loss of slow protons in copper and silver

    SciTech Connect

    Cantero, E. D.; Lantschner, G. H.; Eckardt, J. C.; Lovey, F. C.; Arista, N. R.

    2010-04-15

    Measurements of angular distributions and of the angular dependence of the energy loss of 4-, 6-, and 9-keV protons transmitted through thin Cu and Ag polycrystalline foils are presented. By means of standard multiple-scattering model calculations it is found that a V(r){proportional_to}r{sup -2.8} potential leads to significantly better fits of the angular distributions than the standard Thomas Fermi, Lenz-Jensen, or Ziegler-Biersack-Littmark potentials. A theoretical model for the angular dependence of the energy loss based on considering geometric effects on a frictional inelastic energy loss plus an angular-dependent elastic contribution and the effects of foil roughness reproduces the experimental data. This agrees with previous results in Au and Al, therefore extending the applicability of the model to other metallic elements.

  15. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    SciTech Connect

    Ganezer, K; Krmar, M; Cvejic, Z; Rakic, S; Pajic, B

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profile usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.

  16. Angular and charge state distributions of highly charged ions scattered during low energy surface-channeling interactions with Au(110)

    SciTech Connect

    Meyer, F.W.; Folkerts, L.; Schippers, S.

    1994-10-01

    The authors have measured scattered projectile angular and charge state distributions for 3.75 keV/amu O{sup q+} (3 {le} q {le} 8) and 1.2 keV/amu Ar{sup 1+} (3 {le} q {le} 14) ions grazingly incident along the [110] and [100] directions of a Au(110) single crystal target. Scattered projectile angular distribution characteristic of surface channeling are observed. For both incident species, the dominant scattered charge fraction is neutral, which varies only by a few percent as a function of incident charge state. Significant O{sup {minus}} formation is observed, which manifests a distinct velocity threshold. For incident Ar projectiles with open L-shells, the positive scattered charge fractions, while always less than about 10%, increase linearly with increasing number of initial L-shell vacancies.

  17. A Markov Chain-based quantitative study of angular distribution of photons through turbid slabs via isotropic light scattering

    NASA Astrophysics Data System (ADS)

    Li, Xuesong; Northrop, William F.

    2016-04-01

    This paper describes a quantitative approach to approximate multiple scattering through an isotropic turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering for optical diagnostic purposes; however, existing methods are either inaccurate or computationally expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering angular distribution (AD) that can accurately calculate AD while significantly reducing computational cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering research and deterministic reconstruction algorithm development with AD measurements.

  18. The Angular Distribution of Neutrons Scattered from Deuterium below 2 MeV

    NASA Astrophysics Data System (ADS)

    Nankov, N.; Plompen, A. J. M.; Kopecky, S.; Kozier, K. S.; Roubtsov, D.; Rao, R.; Beyer, R.; Grosse, E.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Yakorev, D.; Wagner, A.; Stanoiu, M.; Canton, L.; Nolte, R.; Röttger, S.; Beyer, J.; Svenne, J.

    2014-05-01

    Neutron elastic scattering measurements were carried out at the nELBE neutron time-of-flight facility at a 6 m flight path. Energies below 2 MeV were studied using a setup consisting of eight 6Li-glass detectors placed at nominal angles of 15∘ and 165∘ with respect to the incident neutron beam. A deuterated polyethylene sample with 99.999% enrichment in deuterium was used. These angles were chosen since an earlier study showed that the ratio of the differential cross section at these angles is the most sensitive to differences in evaluated files and model calculations. Accurate 165∘/15∘ angle ratios were obtained. Above 1 MeV these are somewhat larger than given by ENDF/B-VII. Simultaneously the early day experiments using a proportional counter to infer angular distributions from deuterium recoil pulse height distributions are being studied through a new experiment with such a device at the Physikalisch-Technische Bundesanstalt (PTB). At 500 keV this experiment favors ENDF/B-VII over JENDL-4.0, while at lower energies agreement with the data is similar.

  19. Angular distributions of electrons photoemitted from core levels of oriented diatomic molecules: Multiple scattering theory in non-spherical potentials

    SciTech Connect

    Diez Muino, R.; Rolles, D.; Garcia de Abajo, F.J.; Fadley, C.S.; Van Hove, M.A.

    2001-09-06

    We use multiple scattering in non-spherical potentials (MSNSP) to calculate the angular distributions of electrons photoemitted from the 1s-shells of CO and N2 gas-phase molecules with fixed-in-space orientations. For low photoelectron kinetic energies (E<50 eV), as appropriate to certain shape-resonances, the electron scattering must be represented by non-spherical scattering potentials, which are naturally included in our formalism. Our calculations accurately reproduce the experimental angular patterns recently measured by several groups, including those at the shape-resonance energies. The MSNSP theory thus enhances the sensitivity to spatial electronic distribution and dynamics, paving the way toward their determination from experiment.

  20. Effect of the third π ∗ resonance on the angular distributions for electron-pyrimidine scattering

    NASA Astrophysics Data System (ADS)

    Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2016-07-01

    We present a detailed analysis of the effect of the well known third π∗ resonance on the angular behaviour of the elastic cross section in electron scattering from pyrimidine. This resonance, occurring approximately at 4.7 eV, is of mixed shape and core-excited character. Experimental and theoretical results show the presence of a peak/dip behaviour in this energy range, that is absent for other resonances. Our investigations show that the cause of the peak/dip is an interference of background p-wave to p-wave scattering amplitudes with the amplitudes for resonant scattering. The equivalent resonance in pyrazine shows the same behaviour and the effect is therefore likely to appear in other benzene-like molecules. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  1. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    NASA Astrophysics Data System (ADS)

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  2. Differences in forward angular light scattering distributions between M1 and M2 macrophages.

    PubMed

    Halaney, David L; Zahedivash, Aydin; Phipps, Jennifer E; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E; Feldman, Marc D

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture. PMID:26538329

  3. Directional Stand-off Detection of Fast Neutrons and Gammas Using Angular Scattering Distributions

    SciTech Connect

    Vanier P. e.; Dioszegi, I.; Salwen, C.; Forman, L.

    2009-10-25

    We have investigated the response of a DoubleScatter Neutron Spectrometer (DSNS) for sources at long distances (gr than 200 meters). We find that an alternative method for analyzing double scatter data avoids some uncertainties introduced by amplitude measurements in plastic scintillators.Time of flight is used to discriminate between gamma and neutron events, and the kinematic distributions of scattering angles are assumed to apply. Non-relativistic neutrons are most likely to scatter at 45°, while gammas with energies greater than 2 MeV are most likely to be forward scattered. The distribution of scattering angles of fission neutrons arriving from a distant point source generates a 45° cone, which can be back-projected to give the source direction. At the same time, the distribution of Compton-scattered gammas has a maximum in the forward direction, and can be made narrower by selecting events that deposit minimal energy in the first scattering event. We have further determined that the shape of spontaneous fission neutron spectra at ranges gr than 110 m is still significantly different from thecosmic ray background.

  4. Angular distribution of scattered electrons associated with collimated bremsstrahlung and the tagging technique

    NASA Astrophysics Data System (ADS)

    Maximon, L. C.; Ahrens, J.; Dugger, M.

    2009-05-01

    We investigate the angular correlation between a bremsstrahlung photon and its corresponding post-bremsstrahlung electron within the context of a magnetic tagging spectrometer with the aim of improving the instrument's efficiency. Our results are given in terms of angular distributions of the post-bremsstrahlung electron associated with photons that pass through a circular collimator centered in the forward direction. We start from the fully differential Bethe-Heitler (first Born approximation) cross-section, including the Molière screening correction, which is then integrated over the photon azimuthal angle and over the photon polar angle defined by the collimator. These integrations are performed analytically, making no high energy or small angle approximations. To obtain numerical values from the results of these integrations a multiprecision program is used to avoid severe problems of cancellations, especially at high energies (above 1 GeV). Making use of the angular correlation between the electron and the photon, we show that it is possible to increase the usable photon flux if we avoid the detection of electrons with large angles that have no photon partner passing the collimator. This can be accomplished by limiting the size of the electron detectors in the plane perpendicular to the bend plane.

  5. CDCC calculations of elastic scattering for the systems 6Li+144Sm and 6Li+208Pb. Effect of resonances of 6Li on elastic scattering angular distributions

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.

    2015-01-01

    Calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with targets 144Sm and 208Pb at energies above the barrier, are performed with the Continuum Discretized Coupled-Channel method (CDCC). Ground, resonant and nonresonant continuum states of 6Li are included up to some maximum energy epsilonmax for which convergence is achieved. In the three-body system, global interactions are used for the α-target and d - target sub-systems. The effect of continuum resonant states of 6Li, i.e., l = 2, jπ = 3+, 2+ and 1+ on elastic scattering angular distributions is investigated by extracting these states from the continuum space. It is found that the calculated elastic scattering angular distributions are in good agreement with the measurements for most of the cases studied where consideration of couplings to continuum states is essential. It is also found that the resonance character of the continuum states is in some cases important to obtain agreement with the data.

  6. Resonance and non-resonance effect of continuum states of 6Li on elastic scattering angular distributions

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.

    2016-07-01

    CDCC calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with targets 28Si and 58Ni at energies around the Coulomb barrier are presented. Special emphasis is given to account for the effect of couplings from 6Li resonance states l = 2, J π = 3+, 2+, 1+. Similarly, the effect produced by non-resonant state couplings is studied. The convergent calculations are carried out with global α-target and d-target interactions. The calculated elastic scattering angular distributions are in general in good agreement with the measurements for the systems considered in this work. It is found that the calculations with only resonance states are very similar to that with all couplings (resonance+non-resonance). So, the absence of these states have a strong effect on elastic scattering (non-resonance states calculation). It is shown that the effects increase as the collision energy increases. An interpretation of the strength of the different effects is given in terms of the polarization potentials that emerge from the different couplings.

  7. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  8. Angular distributions of 5eV atomic oxygen scattered from solid surfaces on the LDEF satellite

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Peters, Palmer N.

    1992-01-01

    The angular distribution of 5eV atomic oxygen scattered off several smooth solid surfaces was measured by experiment A0114 which flew on board the Long Duration Exposure Facility (LDEF). Target surfaces were silver, vitreous carbon, and lithium fluoride crystal. The apparatus was entirely passive. It used the property of silver surfaces to absorb oxygen atoms with high efficiency; the silver is converted to optically transmissive silver oxide. A collimated beam of oxygen atoms is allowed to fall on the target surface at some pre-set angle. Reflected atoms are then intercepted by a silver film placed so that it subtends a considerable solid angle from the primary beam impact on the target surface. The silver films are evaporated onto flexible optically-clear polycarbonate sheets which are scanned later to determine oxygen uptake. While the silver detector cannot measure atom velocity or energy, its physical configuration allows easy coverage of large angular space both in the beam-plane (that which includes the incident beam and the surface normal), and in the azimuthal plane of the target surface.

  9. Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(001) surface.

    PubMed

    Schüller, A; Winter, H

    2008-03-01

    Fast atoms with keV energies are scattered under a grazing angle of incidence from a clean and flat LiF(001) surface. For scattering along low index azimuthal directions within the surface plane ("axial surface channeling") we observe pronounced peak structures in the angular distributions for scattered projectiles that are attributed to "supernumerary rainbows." This phenomenon can be understood in the framework of quantum scattering only and is observed here up to projectile energies of 20 keV. We demonstrate that the interaction potential and, in particular, its corrugation for fast atomic projectiles at surfaces can be derived with a high accuracy. PMID:18352749

  10. Measurement of the n-p elastic scattering angular distribution at E{sub n}=14.9 MeV

    SciTech Connect

    Boukharouba, N.; Bateman, F. B.; Carlson, A. D.; Brient, C. E.; Grimes, S. M.; Massey, T. N.; Haight, R. C.; Carter, D. E.

    2010-07-15

    The relative differential cross section for the elastic scattering of neutrons by protons was measured at an incident neutron energy E{sub n}=14.9 MeV and for center-of-mass scattering angles ranging from about 60 deg. to 180 deg. Angular distribution values were obtained from the normalization of the integrated data to the n-p total elastic scattering cross section. Comparisons of the normalized data to the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and with the ENDF/B-VII.0 evaluation are sensitive to the value of the total elastic scattering cross section used to normalize the data. The results of a fit to a first-order Legendre polynomial expansion are in good agreement in the backward scattering hemisphere with the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and to a lesser extent, with the ENDF/B-VII.0 evaluation. A fit to a second-order expansion is in better agreement with the ENDF/B-VII.0 evaluation than with the other predictions, in particular when the total elastic scattering cross section given by Arndt et al. and the Nijmegen group is used to normalize the data. A Legendre polynomial fit to the existing n-p scattering data in the 14 MeV energy region, excluding the present measurement, showed that a best fit is obtained for a second-order expansion. Furthermore, the Kolmogorov-Smirnov test confirms the general agreement in the backward scattering hemisphere and shows that significant differences between the database and the predictions occur in the angular range between 60 deg. and 120 deg. and below 20 deg. Although there is good overall agreement in the backward scattering hemisphere, more precision small-angle scattering data and a better definition of the total elastic cross section are needed for an accurate determination of the shape and magnitude of the angular distribution.

  11. Angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Grozdanov, D. N.; Zontikov, A. O.; Kopach, Yu. N.; Rogov, Yu. N.; Ruskov, I. N.; Sadovsky, A. B.; Skoy, V. R.; Barmakov, Yu. N.; Bogolyubov, E. P.; Ryzhkov, V. I.; Yurkov, D. I.

    2016-07-01

    The work is devoted to measuring the angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei. A portable ING-27 neutron generator (designed and fabricated at VNIIA, Moscow) with a built-in 64-pixel silicon α-detector was used as a source of tagged neutrons. The γ-rays of characteristic nuclear radiation from 12C were detected with a spectrometric system that consisted of 22 γ-detectors based on NaI(Tl) crystals arranged around the carbon target. The measured angular distribution of 4.43-MeV γ-rays is analyzed and compared with the results of other published experimental works.

  12. Precompound nucleon angular distributions in the continuum

    SciTech Connect

    Blann, M.; Scobel, W.; Plechaty, E.

    1985-08-01

    Angular distributions for nucleon induced reactions (incident energies 14 to 90 MeV) leading to precompound nucleon emission in the continuum (emitted particle energies 9-70 MeV) are calculated based on nucleon-nucleon scattering kinematics for an incident nucleon on a Fermi gas. Analytic expressions due to Kikuchi and Kawai are used for the single scattering kernel. The geometry dependent hybrid model is used to generate the differential cross sections for first, second, etc. order scattering, these weightings being used to fold the single scattering kernel. Results are found to reproduce all experimental angular distributions quite well at angles in the 20/sup 0/ to 90/sup 0/ range. Ad-hoc modifications to approximate quantal effects and Coulomb deflections are explored, but the results do not seem to offer a consistent means of reproducing back angle yields, and give generally poorer results at very forward angles.

  13. Angular description for 3D scattering centers

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Raynal, Ann Marie; Ling, Hao; Moore, John; Velten, Vincent J.

    2006-05-01

    The electromagnetic scattered field from an electrically large target can often be well modeled as if it is emanating from a discrete set of scattering centers (see Fig. 1). In the scattering center extraction tool we developed previously based on the shooting and bouncing ray technique, no correspondence is maintained amongst the 3D scattering center extracted at adjacent angles. In this paper we present a multi-dimensional clustering algorithm to track the angular and spatial behaviors of 3D scattering centers and group them into features. The extracted features for the Slicy and backhoe targets are presented. We also describe two metrics for measuring the angular persistence and spatial mobility of the 3D scattering centers that make up these features in order to gather insights into target physics and feature stability. We find that features that are most persistent are also the most mobile and discuss implications for optimal SAR imaging.

  14. Synthetic aperture methods for angular scatter imaging

    NASA Astrophysics Data System (ADS)

    Guenther, Drake A.; Ranganathan, Karthik; McAllister, Michael J.; Rigby, K. W.; Walker, William F.

    2004-04-01

    Angular scatter offers a new source of tissue contrast and an opportunity for tissue characterization in ultrasound imaging. We have previously described the application of the translating apertures algorithm (TAA) to coherently acquire angular scatter data over a range of scattering angles. While this approach works well at the focus, it suffers from poor depth of field (DOF) due to a finite aperture size. Furthermore, application of the TAA with large focused apertures entails a tradeoff between spatial resolution and scattering angle resolution. While large multielement apertures improve spatial resolution, they encompass many permutations of transmit/receive element pairs. This results in the simultaneous interrogation of multiple scattering angles, limiting angular resolution. We propose a synthetic aperture imaging scheme that achieves both high spatial resolution and high angular resolution. In backscatter acquisition mode, we transmit successively from single transducer elements, while receiving on the same element. Other scattering angles are interrogated by successively transmitting and receiving on different single elements chosen with the appropriate spatial separation between them. Thus any given image is formed using only transmit/receive element pairs at a single separation. This synthetic aperture approach minimizes averaging across scattering angles, and yields excellent angular resolution. Likewise, synthetic aperture methods allow us to build large effective apertures to maintain a high spatial resolution. Synthetic dynamic focusing and dynamic apodization are applied to further improve spatial resolution and DOF. We present simulation results and experimental results obtained using a GE Logiq 700MR system modified to obtain synthetic aperture TAA data. Images of wire targets exhibit high DOF and spatial resolution. We also present a novel approach for combining angular scatter data to effectively reduce grating lobes. With this approach we have

  15. Determination of concentration and size distribution of black carbon in submicron aerosol from data of nephelometric measurements of angular scattering coefficients

    NASA Astrophysics Data System (ADS)

    Kozlov, Valerii S.; Rakhimov, Rustam F.; Shmargunov, Vladimir P.

    2015-11-01

    The possibility of determining the Black Carbon (BC) concentration and its size distribution in submicron aerosol from data of polarization spectronephelometric measurements of angular aerosol scattering is demonstrated for the first time. The data of simultaneous nephelometric and aethalometric measurements of BC concentration in wood smoke are compared. The inverse problem is solved from measurements of 40 polarization components of spectral coefficients of angular scattering, and aerosol filling factors and the imaginary part of the complex refractive indexes are determined for subfractions of ultrafine- (radii of 30-100 nm), fine- (100-430 nm), and coarse-disperse (430-770 nm) particles. Then the total BC concentration, its size distribution, and BC fraction are estimated in the approximation of homogeneous volume internal mixture of BC and nonabsorbing matter. The analysis shows that at the long evolution of smoke aerosol, nephelometric and aethalometric estimates of the BC concentrations are in a good agreement. The discrepancy averages about 16% for concentrations varying in a range 30-1000 μg/m3.

  16. Sensitivity of MCNP5 calculations for a spherical numerical benchmark problem to the angular scattering distributions for deuterium

    SciTech Connect

    Kozier, K. S.

    2006-07-01

    This paper examines the sensitivity of MCNP5 k{sub eff} results to various deuterium data files for a simple benchmark problem consisting of an 8.4-cm radius sphere of uranium surrounded by an annulus of deuterium at the nuclide number density corresponding to heavy water. This study was performed to help clarify why {Delta}k{sub eff} values of about 10 mk are obtained when different ENDF/B deuterium data files are used in simulations of critical experiments involving solutions of high-enrichment uranyl fluoride in heavy water, while simulations of low-leakage, heterogeneous critical lattices of natural-uranium fuel rods in heavy water show differences of <1 mk. The benchmark calculations were performed as a function of deuterium reflector thickness for several uranium compositions using deuterium ACE files derived from ENDF/B-VII.b1 (release beta 1), ENDF/B-VI.4 and JENDL-3.3, which differ primarily in the energy/angle distributions for elastic scattering <3.2 MeV. Calculations were also performed using modified ACE files having equiprobable cosine bin values in the centre-of-mass reference frame in a progressive manner with increasing energy. It was found that the {Delta}k{sub eff} values increased with deuterium reflector thickness and uranium enrichment. The studies using modified ACE files indicate that most of the reactivity differences arise at energies <1 MeV; hence, this energy range should be given priority if new scattering distribution measurements are undertaken. (authors)

  17. Determination of the gluon distribution function of the nucleon using energy-energy angular pattern in deep-inelastic muon-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H. J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1996-03-01

    We have used the energy-energy angular pattern of hadrons in inelastic muon-deuteron scattering to study perturbative QCD effects and to extract the gluon distribution function ηG( η) of the nucleon, where η is the fractional momentum carried by the gluon. The data were taken with the E665 spectrometer using the Fermilab Tevatron muon beam with a mean beam energy of 490 GeV. We present ηG( η) for 0.005< η<0.05 and at an average Q 2 of 8 GeV2 using this new technique. We find that ηG( η) in this region can be described by ηG( η) α ηλ with λ=-0.87±0.09( stat.)±{0.37/0.32}( sys.). We compare our results to expectations from various parametrizations of the parton distribution function and also to results from HERA.

  18. Phenomenology of preequilibrium angular distributions

    SciTech Connect

    Kalbach, C.; Mann, F.M.

    1980-05-01

    The systematics of continuum angular distributions from a wide variety of light ion nuclear reactions have been studied. To first order, the shape of the angular distributions have been found to depend only on the energy of the outgoing particle and on the division of the cross section into multi-step direct and multi-step compound parts. The angular distributions can be described in terms of Legendre polynomials with the reduced polynomial coefficients exhibiting a simple dependence on the outgoing particle energy. Two integer and four continuous parameters with universal values are needed to describe the coefficients for outgoing energies of 2 to 60 MeV in all the reaction types studied. This parameterization combined with a modified Griffin model computer code permits the calculation of double differential cross sections for light ion continuum reactions where no data is available.

  19. Time-dependent photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang

    1999-09-01

    I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.

  20. Peculiarities of Angular Distribution of Electrons at Si <100> Channeling

    NASA Astrophysics Data System (ADS)

    Bogdanov, O. V.; Pivovarov, Yu L.; Takabayashi, Y.; Tukhfatullin, T. A.

    2012-05-01

    The properties of both angular and spatial distribution of 255 MeV electrons at <100> channeling in silicon crystal has been investigated experimentally at the linac injector of SAGA light source and by computer simulations. The simulation of trajectories, angular and spatial distributions of electrons on the screen monitor has been performed taking into account initial spatial as well as angular beam divergence of electron beam. Both experimental data and simulations show the brilliant effect of so-called "doughnut scattering".

  1. The Far-Field Angular Distribution of High-Order Harmonics Produced in Light Scattering from a Thin Low - Gas Target

    NASA Astrophysics Data System (ADS)

    Peatross, Justin Bruce

    The far-field angular distributions of high-order optical harmonics have been measured. Harmonics up to the 41st order were observed in the light scattered from noble gas targets subjected to very intense pulses of laser radiation with wavelength 1053nm. The experimental conditions minimized collective effects such as phase-mismatch due to propagation or refractive index effects caused, for example, by free electrons arising in the ionization of the target Ar, Kr, or Xe atoms. The angular distributions of many harmonic orders, ranging from the low teens to the upper thirties, all of which emerge collinear to the laser beam, could be distinguished and recorded simultaneously. Gaussian laser pulses, 1.25 -times-diffraction-limited and 1.4ps duration, were focused to intensities ranging from 1times 10^ {13} W/cm^2 to 5times 10^{14} W/cm ^2 using f/70 optics. A novel gas target localized the gas distribution to a thickness of about 1mm, less than one tenth of the laser confocal parameter, at pressures of 1 Torr and less. The narrow and low-density gas distribution employed in these experiments allows the harmonics to be thought of as emerging from atoms lying in a single plane in the interaction region. This is in contrast with previously reported harmonic generation experiments in which propagation effects played strong roles. At these pressures, an order of magnitude below pressures used in other experiments, free electrons created by ionization of target atoms had a negligible effect on the far-field harmonic profiles. We have found that the far-field distributions of nearly all of the harmonics exhibit a narrow central peak surrounded by broad wings of about the same width as the emerging laser beam. The relative widths and strengths of the wings have been found to vary with harmonic order, laser intensity, and atomic species. Since the intensity varies radially across the laser beam in the atomic source plane, an intensity-dependent phase variation among the

  2. Derivation of breakup probabilities of weakly bound nuclei from experimental elastic and quasi-elastic scattering angular distributions

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Diaz-Torres, A.; Gomes, P. R. S.; Lenske, H.

    2015-11-01

    We present a simple method to derive breakup probabilities of weakly bound nuclei by measuring only elastic (or quasi-elastic) scattering for the system under investigation and a similar tightly bound system. When transfer followed by breakup is an important process, one can derive only the sum of breakup and transfer probabilities.

  3. Limitations of fitting angular scattering from single cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xing; Cannaday, Ashley E.; Berger, Andrew J.

    2016-04-01

    The literature contains several reports of Mie-like fits to angular-domain elastic scattering measurements from multiple cells or isolated mitochondria. In these studies, the sampling volume typically contains hundreds or thousands of mitochondria, allowing for the size distribution of mitochondria to be modeled as a smooth function, (e.g. Gaussian or log-normal) with a small number of free parameters. In the case of a single-cell volume containing significantly fewer mitochondria, the true size distribution will no longer be as smooth. Increasing the number of free parameters can lead to unstable fits, however, as the forward-directed angular scattering pattern from such a population illuminated with 785 nm light is a monotonically decaying radial function with few distinct features. Using simulations, we have investigated the limitations of modeling single-cell mitochondrial scattering using smooth population distributions of Mie scatterers. In different instances, the fidelity of the estimated size information can be limited by the number of organelles, the angular detection range, or the non-ideality of the data (both speckle and shot noise). We will describe the conditions under which each of these effects dominates. We will also discuss whether mean and standard deviation are the best sizes to report from such Mie modeling, or if there are other size parameters that have greater fidelity to the true, non-smooth size distributions.

  4. A detection system with broad angular acceptance for particle identification and angular distribution measurements

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Arazi, A.; Fernández Niello, J. O.; Capurro, O. A.; Cardona, M. A.; de Barbará, E.; Figueira, J. M.; Hojman, D.; Martí, G. V.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.

    2013-10-01

    A new detection system for time-optimized heavy-ion angular distribution measurements has been designed and constructed. This device is composed by an ionization chamber with a segmented-grid anode and three position-sensitive silicon detectors. This particular arrangement allows identifying reaction products emitted within a 30° wide angular range with better than 1° angular resolution. As a demonstration of its capabilities, angular distributions of the elastic scattering cross-section and the production of alpha particles in the 7Li+27Al system, at an energy above the Coulomb barrier, are presented.

  5. Measurement of the H(n,n)H Elastic Scattering Angular Distribution at En = 15 MeV

    SciTech Connect

    Bateman, F.B.; Carlson, A.D.; Al-Quraishi, S.I.; Brient, C.E.; Carter, D.E.; Grimes, S.M.; Massey, T.N.; Wheeler, R.T.; Boukharouba, N.; Haight, R.C.

    2005-05-24

    We have undertaken an experiment to measure the relative differential cross section for neutron scattering from hydrogen at a neutron energy of 15 MeV, for center-of-mass scattering angles from 60 degrees to 180 degrees. A total of eleven E-{delta}E telescopes were used to detect the scattered protons at laboratory angles of 0, {+-}12, {+-}24, {+-}36, {+-}48, and {+-}60 degrees. This experiment is intended to extend the earlier work performed by this group at 10.04 MeV. To avoid possible dead-time problems and amplifier summing noise a unique approach to data acquisition was taken The data acquisition is based on eleven individual data-acquisition boards, one for each detector telescope, installed in separate personal computers, each running independently. In this way, no multiplexing of the detector signals is required, and the noise associated with the summing of the signals is eliminated. Also an additional acquisition board and personal computer are used for a neutron detector, with gamma-ray discrimination, as a neutron monitor. A detailed description of the data-acquisition system will be given, and results from preliminary experiments will be presented.

  6. Angular distributions of neutron-nucleus collisions

    SciTech Connect

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2011-06-15

    We derive the total and the differential cross sections with respect to angle for neutron-induced reactions from an analytical model having a simple functional form to demonstrate the quantitative agreement with the measured cross sections. The energy dependence of the neutron-nucleus interaction cross sections are estimated successfully for energies ranging from 5 to 600 MeV. In this work, the effect of the imaginary part of the nuclear potential is treated more appropriately compared to our earlier work. The angular distributions for neutron scattering also agree reasonably well with the experimental data at forward angles.

  7. Angular width of the Cherenkov radiation with inclusion of multiple scattering

    NASA Astrophysics Data System (ADS)

    Zheng, Jian

    2016-06-01

    Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.

  8. Atmospheric particulate analysis using angular light scattering

    NASA Technical Reports Server (NTRS)

    Hansen, M. Z.

    1980-01-01

    Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.

  9. Comparison of Ramsauer and Optical Model Neutron Angular Distributions

    SciTech Connect

    McNabb, D P; Anderson, J D; Bauer, R W; Dietrich, F S; Grimes, S M; Hagmann, C A

    2004-04-20

    In a recent paper it has been shown that the nuclear Ramsauer model does not do well in representing details of the angular distribution of neutron elastic scattering for incident energies of less than 60 MeV for {sup 208}Pb. We show that the default angular bin dispersion most widely used in Monte Carlo transport codes is such that the observed differences in angular shapes are on too fine a scale to affect transport calculations. The effect of increasing the number of Monte Carlo angle bins is studied to determine the dispersion necessary for calculations to be sensitive to the observed discrepancies in angular distributions. We also show that transport calculations are sensitive to differences in the elastic scattering cross section given by recent fits of {sup 208}Pb data compared with older fits.

  10. Comparison of Ramsauer and Optical Model Neutron Angular Distributions

    SciTech Connect

    McNabb, D P; Anderson, J D; Bauer, R W; Dietrich, F S; Grimes, S M; Hagmann, C A

    2004-09-30

    The nuclear Ramsauer model is a semi-classical, analytic approximation to nucleon-nucleus scattering that reproduces total cross section data at the 1% level for A > 40, E{sub n} = 5-60 MeV with 7-10 parameters. A quick overview of the model is given, demonstrating the model's utility in nuclear data evaluation. The Ramsauer model predictions for reaction cross section, elastic cross section, and elastic scattering angular distributions are considered. In a recent paper it has been shown that the nuclear Ramsauer model does not do well in predicting details of the angular distribution of neutron elastic scattering for incident energies of less than 60 MeV for {sup 208}Pb. However, in this contribution it is demonstrated that the default angular bin dispersion most widely used in Monte Carlo transport codes is such that the observed differences in angular shapes are on too fine a scale to affect transport calculations. Simple studies indicate that 512-2048 bins are necessary to achieve the dispersion required for calculations to be sensitive to the observed discrepancies in angular distributions.

  11. Comparison of Ramsauer and Optical Model Neutron Angular Distributions

    SciTech Connect

    McNabb, D.P.; Anderson, J.D.; Bauer, R.W.; Dietrich, F.S.; Hagmann, C.A.; Grimes, S.M.

    2005-05-24

    The nuclear Ramsauer model is a semi-classical, analytic approximation to nucleon-nucleus scattering that reproduces total cross-section data at the 1% level for A > 40, En = 5-60 MeV with 7-10 parameters. A quick overview of the model is given, demonstrating the model's utility in nuclear data evaluation. The Ramsauer model predictions for reaction cross section, elastic cross section, and elastic scattering angular distributions are considered. In a recent paper it has been shown that the nuclear Ramsauer model does not do well in predicting details of the angular distribution of neutron elastic scattering for incident energies of less than 60 MeV for 208Pb. However, in this contribution it is demonstrated that the default angular bin dispersion most widely used in Monte Carlo transport codes is such that the observed differences in angular shapes are on too fine a scale to affect transport calculations. Simple studies indicate that 512-2048 bins are necessary to achieve the dispersion required for calculations to be sensitive to the observed discrepancies in angular distributions.

  12. The angular and energy distribution of the primary electron beam.

    PubMed

    Keall, P J; Hoban, P W

    1994-09-01

    The angular distribution for electron beams produced by the Siemens KD-2 linear accelerator has been found by simulating electron transport through the scattering foils and air using two methods: Fermi-Eyges multiple Coulomb scattering calculations, and EGS4 Monte Carlo simulations. Fermi-Eyges theory gives solutions where both the angular and spatial fluence distributions are Gaussian, with the angular standard deviation being invariant with off-axis distance. The EGS4 results show slightly non-Gaussian angular and lateral distributions as a result of the use of Moliére theory rather than Fermi-Eyges multiple scattering theory, as well as the simulation of discrete bremsstrahlung and Møller interactions. However, the results from both methods are very similar. The angular standard deviations obtained by these methods agree very closely with those found experimentally. The similar shape of the Monte Carlo and Fermi-Eyges results indicate that a Gaussian approximation to the incident angular distribution will be adequate for use in treatment planning algorithms. Furthermore, the angular standard deviation may be determined using Fermi-Eyges theory as an alternative to experimental methods. Both Monte Carlo simulations, and Fermi-Eyges theory predict that the mean electron angle is proportional to off axis distance for all useful field sizes. For a 15 MeV electron beam, an effective source position of 99 cm and 98 cm from the nominal 100 SSD plane was obtained from Fermi-Eyges and Monte Carlo results respectively for a 15 MeV beam. The effective source position found experimentally for this energy was 98 cm.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7980200

  13. Sizing of individual aerosol particles using TAOS (Two-dimensional Angular Optical Scattering) pattern total intensity

    NASA Astrophysics Data System (ADS)

    Zallie, J. T.; Aptowicz, K. B.; Martin, S.; Pan, Y.

    2015-12-01

    The morphology of single aerosol particles has been explored previously using the TAOS (Two-dimensional Angular Optical Scattering) technique, which captures angularly resolved scattering patterns. Particle size is known to strongly influence the light scattering properties of aerosols and therefore is a critical parameter to discern from the TAOS patterns. In this work, T-matrix simulation of light scattering from spherical and spheroidal particles is used to explore the possibility of sizing particles from the total light scattering signal detected using the TAOS technique. Scattering patterns were calculated for particles that span various particle sizes, spheroidal shapes, complex refractive indices and particles orientations representative of atmospheric aerosol distributions. A power law relationship between particle size and total scattering intensity was found that could crudely size particles but with significant error.

  14. Angular distribution of emission from hyperbolic metamaterials

    PubMed Central

    Gu, Lei; Livenere, J. E.; Zhu, G.; Tumkur, T. U.; Hu, H.; Cortes, C. L.; Jacob, Z.; Prokes, S. M.; Noginov, M. A.

    2014-01-01

    We have studied angular distribution of emission of dye molecules deposited on lamellar metal/dielectric and Si/Ag nanowire based metamaterials with hyperbolic dispersion. In agreement with the theoretical prediction, the emission pattern of dye on top of lamellar metamaterial is similar to that on top of metal. At the same time, the effective medium model predicts the emission patterns of the nanowire array and the dye film deposited on glass to be nearly identical to each other. This is not the case of our experiment. We tentatively explain the nearly Lambertian (∝cosθ) angular distribution of emission of the nanowire based sample by a surface roughness. PMID:25476126

  15. Angular distribution of turbulence in wave space

    NASA Technical Reports Server (NTRS)

    Coleman, G.; Ferziger, J. H.; Bertoglio, J. P.

    1987-01-01

    An alternative to the one-point closure model for turbulence, the large eddy simulation (LES), together with its more exact relative, direct numerical simulation (DNS) are discussed. These methods are beginning to serve as partial substitutes for turbulence experiments. The eddy damped quasi-normal Markovian (EDQNM) theory is reviewed. Angular distribution of the converted data was examined in relationship to EDQNM.

  16. Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    NASA Astrophysics Data System (ADS)

    Fields, Brian D.; Hochmuth, Kathrin A.

    2006-12-01

    Decays of radionuclides throughout the earth’s interior produce geothermal heat, but also are a source of antineutrinos; these geoneutrinos are now becoming observable in experiments such as KamLAND. The (angle-integrated) geoneutrino flux has been shown to provide a unique probe of geothermal heating due to decays, and an integral constraint on the distribution of radionuclides in the earth. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radial distribution of terrestrial radionuclides. We develop the general formalism for the neutrino angular distribution. We also present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the earth’s interior, but offer a direct measure of the radioactive earth, both revealing the earth’s inner structure as probed by radionuclides, and allowing a complete determination of the radioactive heat generation as a function of radius. Turning to specific models, we emphasize the very useful approximation in which the earth is modeled as a series of shells of uniform density. Using this multishell approximation, we present the geoneutrino angular distribution for the favored earth model which has been used to calculate the geoneutrino flux. In this model the neutrino generation is dominated by decays of potassium, uranium, and thorium in the earth’s mantle and crust; this leads to a very “peripheral” angular distribution, in which 2/3 of the neutrinos come from angles θ ≳ 60° away from the nadir. We note that a measurement of the neutrino intensity in peripheral directions leads to a strong lower limit to the central intensity. We briefly discuss the challenges facing experiments to measure the geoneutrino angular distribution. Currently available techniques using inverse beta decay of protons require a (for now

  17. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  18. Erratum: Measurement of the n-p elastic scattering angular distribution at E{sub n}=10 MeV [Phys. Rev. C 65, 014004 (2001)

    SciTech Connect

    Boukharouba, N.; Bateman, F. B.; Carlson, A. D.; Wasson, O. A.; Brient, C. E.; Grimes, S. M.; Massey, T. N.; Haight, R. C.

    2010-09-15

    The reported data are given for the mean angles measured rather than for the central angles. The data are normalized to the most recent Evaluated Nuclear Data File evaluated angle-integrated elastic-scattering cross section and refitted with a Legendre polynomial expansion.

  19. Axions and the galactic angular momentum distribution

    NASA Astrophysics Data System (ADS)

    Banik, N.; Sikivie, P.

    2013-12-01

    We analyze the behavior of axion dark matter before it falls into a galactic gravitational potential well. The axions thermalize sufficiently fast by gravitational self-interactions that almost all go to their lowest-energy state consistent with the total angular momentum acquired from tidal torquing. That state is a state of rigid rotation on the turnaround sphere. It predicts the occurrence and detailed properties of the caustic rings of dark matter for which observational evidence had been found earlier. We show that the vortices in the axion Bose-Einstein condensate (BEC) are attractive, unlike those in superfluid He4 and dilute gases. We expect that a large fraction of the vortices in the axion BEC join into a single big vortex along the rotation axis of the galaxy. The resulting enhancement of caustic rings explains the typical size of the rises in the Milky Way rotation curve attributed to caustic rings. We show that baryons and ordinary cold dark matter particles are entrained by the axion BEC and acquire the same velocity distribution. The resulting baryonic angular momentum distribution gives a good qualitative fit to the distributions observed in dwarf galaxies. We give estimates of the minimum fraction of dark matter that is composed of axions.

  20. Practical scaling law for photoelectron angular distributions

    SciTech Connect

    Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.

    2003-10-01

    A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u{sub p}{identical_to}U{sub p}/({Dirac_h}/2{pi}){omega}, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) {epsilon}{sub b}{identical_to}E{sub b}/({Dirac_h}/2{pi}){omega}, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested.

  1. Molecular-frame photoelectron angular distributions Molecular-frame photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Stolow, Albert

    2012-10-01

    Angle-resolved photoelectron measurements in molecular ionization continue to grow in importance due to their sensitivity to molecular dynamics combined with their avoidance of deleterious averaging over molecular orientation. This special issue contains only regularly refereed articles and provides an account of current experimental and theoretical studies of such molecular-frame photoelectron angular distributions (MFPADs). Recent experimental activity in this field has been stimulated by advances in light sources such as x-ray free electron lasers, attosecond XUV laser pulses and phase-stable ultrashort strong laser fields. This effort is further amplified by recent developments in coincidence detection and molecular-frame alignment/orientation techniques. Beyond perturbative light-matter interactions, strong field processes such as tunnel ionization, above threshold ionization and rescattering phenomena such as high harmonic generation and laser-induced electron diffraction are beginning to probe molecular-frame photoelectron-molecule scattering dynamics. Theoretical developments are playing an equally important role in furthering molecular-frame photoelectron science. This issue contains several purely theoretical papers that aim to provide insight into possible schemes for using MFPADs in the study of molecular dynamics. Because the details of the electron-molecule scattering dynamics are important to the interpretation of experimental data, significant progress is made by a close collaboration between theory and experiment. There are a number of such contributions in this issue that combine theory and experiment to obtain a detailed understanding of the observed processes. One recurring theme is the use of measured MFPADs as probes of the molecular state and to uncover information about the dynamics of molecular systems. Contributions in this issue consider using MFPADs to investigate molecular geometry or the rotational, vibrational or electronic state of a

  2. Angularly-resolved elastic light scattering of micro-particles

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.

    From microbiology to astrophysics, the scientific community has long embraced elastic light scattering from small particles as a diagnostic tool. Elastic light scattering has an extremely large scattering cross-section, allowing for single particle interrogation. This is critical in applications where trace amounts of suspect particles are to be detected in a diverse background of natural aerosols. By angularly-resolving the elastically scattered light, features can be detected in these patterns that are sensitive to a particle's morphology (shape, size, internal structure, and composition). An apparatus to collect LA TAOS (Large-Angle Two-dimensional Angular Optical Scattering) patterns from single particles in-situ and in real-time was designed and constructed. The setup utilizes a cross-beam trigger system to minimize the effects of the aberration coma stemming from the main collection optic, an ellipsoidal mirror. LA TAOS patterns of ambient aerosols were collected and analyzed. Approximately 15% of the ambient aerosol had a sphere-like shape. The refractive index of these spheres was estimated by curve-fitting to Lorenz-Mie theory. In addition, the island features prevalent in the LA TAOS pattern were analyzed. Metrics generated from these were used to get partial discrimination between clusters of Bacillus subtilis spores (a simulant for anthrax) and aerosol particles found in the ambient atmosphere. A novel experimental setup for collecting simultaneously LA TAOS patterns at two wavelengths in the mid-infrared was also implemented. With this setup, the relative strength of single-particle absorption could be discerned at the two illuminating wavelengths.

  3. Vibrational branching ratios and photoelectron angular distributions in 5σ photoionisation of CO

    SciTech Connect

    Stephens, J. A.; Dill, Dan; Dehmer, Joseph L.

    1981-10-28

    Vibrationally resolved photoelectron angular distributions have been calculated for the 5σ photoionisation channel of CO using the multiple-scattering method. Vibrational branching ratios and vibrationally unresolved integrated cross sections and photoelectron angular distributions are also reported and compared with available measurements. Both angular distributions and branching ratios exhibit striking non-Franck-Condon behaviour caused primarily by the f-wave shape resonance in the sigma photoionisation continuum. Significant discrepancies between theory and experiment exist for the weaker vf=2,3 vibrational levels and interaction with nearby two-electron excitation is proposed as a likely cause.

  4. Integrated Raman and angular scattering of single biological cells

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.

    2009-12-01

    Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the

  5. Incoherent source angular domain imaging through complex three-dimensional scattering structures

    NASA Astrophysics Data System (ADS)

    Cheng, Rongen L. K.; Chiang, Gary; Chapman, Glenn H.

    2012-03-01

    Scattering of photons in biological imaging is a known factor of degrading image resolution and quality. Angular Domain Imaging (ADI) is a technique which utilizes the angular distribution of photons to filter out multiple-scattering photons and accept only photons with small angular deviation from their original trajectories. The advantage of ADI is that it does not require a high optical quality, coherent, or pulsed source to acquire quality image. Initial experiments with Spatialfrequency Filter (SFF) ADI on simple liquid scattering test phantom showed good results as it can image through media with scattering ratio (SR) of 106:1. Previous work with complex 3D aquatic species eliminated scattering but showed optical interference patterns from the coherent laser sources. With SFF ADI, our target is to image through a complex 3D scattering structure with multilayer of different refractive indices and scattering coefficient from an Intralipid-infused polymer/agar, and a small species called Branchiostoma lanceolatum, a lancelet that is 5-8cm long and ~5mm thick. To remove interference, several narrow wavelength-band LEDs were used as illumination sources with one peaks at 630nm and the other peaks at 415nm. The LEDs are collimated and illuminates the 3D structure/lancelet in a water-filler container while a SFF removes the scattered photons before the imager. This allows us to reduce the optical interference and to study the impact of switching from coherent laser source into an incoherent narrow wavelength-band source. Hence, it allows us to investigate the enhancement of imaging the internal structures using the incoherent narrow wavelength-band source.

  6. Angular and spectral light scattering from complex multidielectric coatings

    NASA Astrophysics Data System (ADS)

    Grèzes-Besset, Catherine; Torricini, Didier; Krol, Hélène; Zerrad, Myriam; Lequime, Michel; Amra, Claude

    2011-09-01

    Due to the improvement of deposition technologies and polishing techniques, light scattering has been considerably reduced in optical coatings these last decades, with the result of high quality dense optical filters with minimal losses. However such improvements coupled with modern monitoring techniques have also allowed designing and producing more complex coatings with layer numbers exceeding several hundred in some situations. Within this framework light scattering must again be revisited and analysed in detail, including global loss levels together with angular and spectral analysis. This paper is devoted to the optical balance of sophisticated components for Earth Observation, where the same scene is observed simultaneously in several adjacent wavebands. Self-blocking multilayer stacks are involved to eliminate out-of band harmonics in the instrument but the filter performances are degraded due to an increase of cross talk originating from light scattering. To address this problem we use the theories of light scattering from surface roughness and bulk heterogeneity, which allows to quantity cross-talk levels and choose more adequate filters. A special emphasis is given to the case of hyperspectral filters assemblies located in the focal plane for image filtering.

  7. Construction of an integrated Raman- and angular-scattering microscope.

    PubMed

    Smith, Zachary J; Berger, Andrew J

    2009-04-01

    We report on the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum(2) region in both epi- and transillumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of the chemistry and morphology of a living sample without the need for exogenous dyes or labels, thus allowing measurements to be made longitudinally in time on the same sample as it evolves naturally. A sample is illuminated either from above or below with a focused 785 nm TEM(00) mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a charge-coupled device (CCD) array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD array. Postprocessing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. PMID:19405678

  8. Effect of angular spread on the intensity distribution of arbitrarily shaped electron beams

    SciTech Connect

    Mohan, R.; Chui, C.S.; Fontenla, D.; Han, K.; Ballon, D.

    1988-03-01

    Knowledge of the relative intensity distribution at the patient's surface is essential for pencil beam calculations of three-dimensional dose distributions for arbitrarily shaped electron beams. To calculate the relative intensity distribution, the spatial spread resulting from angular spread is convolved with a two-dimensional step function whose shape corresponds to the applicator aperture. Two different approaches to obtain angular spread or the equivalent spatial spread are investigated. In the first method, the pencil beam angular spread is assumed to be Gaussian in shape. The angular spread constants (sigma theta) are then obtained from the slopes of measured intensity profiles. In the second method, the angular spread, in the form of an array of numerical values, is obtained by the deconvolution of measured intensity profiles. After obtaining the angular spread, the calculation for convolution is done in a number of parallel planes normal to the central axis at various distances from the electron collimator. Intensity at any arbitrary point in space is computed by interpolating between intensity distributions in adjacent planes on either side of the point. The effects of variations in angular spread as a function of field size for two treatment machines, one with a scanned electron beam and the other with a scattering foil, have been studied. The consequences of assuming angular spread to be of Gaussian shape are also examined. The electron intensity calculation techniques described in this paper apply primarily to methods of dose calculations that employ pencil beams generated using Monte Carlo simulations.

  9. Distinction between shadow and edge effects in heavy-ion elastic angular distributions

    SciTech Connect

    Silveira, R. da; Leclercq-Willain, Ch.

    2004-10-01

    We propose a model independent method which allows us to distinguish between shadow and edge or surface effects in the angular distributions of heavy-ion elastic scattering, showing regular patterns of marked oscillations. The method is illustrated with a few experimental results where this undulatory behavior is present.

  10. Light Scattering by Fractal Dust Aggregates. I. Angular Dependence of Scattering

    NASA Astrophysics Data System (ADS)

    Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko

    2016-06-01

    In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.

  11. Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements

    NASA Astrophysics Data System (ADS)

    Shao, Bing; Jaffe, Jules S.; Chachisvilis, Mirianas; Esener, Sadik C.

    2006-12-01

    In order to assess the capability to optically identify small marine microbes, both simulations and experiments of angular resolved light scattering (ARLS) were performed. After calibration with 30-nm vesicles characterized by a nearly constant scattering distribution for vertically polarized light (azimuthal angle=90°), ARLS from suspensions of three types of marine picoplankton (two prokaryotes and one eukaryote) in seawater was measured with a scattering device that consisted of an elliptical mirror, a rotating aperture, and a PMT. Scattered light was recorded with adequate signal-to-noise in the 40-140°. Simulations modeled the cells as prolate spheroids with independently measured dimensions. For the prokaryotes, approximated as homogeneous spheroids, simulations were performed using the RM (Rayleigh-Mie) - I method, a hybrid of the Rayleigh-Debye approximation and the generalized Lorentz-Mie theory. For the picoeukaryote, an extended RM - I method was developed for a coated spheroid with different shell thickness distributions. The picoeukaryote was then modeled as a coated sphere with a spherical core. Good overall agreements were obtained between simulations and experiments. The distinctive scattering patterns of the different species hold promise for an identification system based on ARLS.

  12. Quantum optimal control of photoelectron spectra and angular distributions

    NASA Astrophysics Data System (ADS)

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  13. Angular and spectrally resolved investigations of yeast cells by light scattering microscopy and goniometric measurements

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Müller, Dennis; Nothelfer, Steffen; Kienle, Alwin

    2015-07-01

    Spectrally and angular resolved light scattering from yeast cells was studied with a scattering microscope and a goniometer. Different cell models were investigated with help of analytical solutions of Maxwell's equations. It was found that extraction of precise morphological and optical cellular properties from the measured scattering patterns and phase functions requires more sophisticated cell models than standard Mie theory.

  14. Simultaneous two-color, two-dimensional angular optical scattering patterns from airborne particulates: Scattering results and exploratory analysis

    NASA Astrophysics Data System (ADS)

    Holler, Stephen; Fuerstenau, Stephen D.; Skelsey, Charles R.

    2016-07-01

    Light scattering from non-spherical particles and aggregates exhibits complex structure that is revealed only when observed in two angular dimensions (θ, ϕ). However, due to variations in shape, packing, and orientation of such aerosols, the structure of two-dimensional angular optical scattering (TAOS) patterns varies among particles. The spectral dependence of scattering contributes further to the observed complexity, but offers another facet to consider. By leveraging multispectral TAOS data from flowing aerosols, we have identified novel morphological descriptors that may be employed in multivariate statistical algorithms for "unknown" particle classification.

  15. Experimental results and theoretical model to describe angular dependence of light scattering by monolayer of nematic droplets

    NASA Astrophysics Data System (ADS)

    Loiko, V. A.; Krakhalev, M. N.; Konkolovich, A. V.; Prishchepa, O. O.; Miskevich, A. A.; Zyryanov, V. Ya.

    2016-07-01

    Light scattering by a monolayer of bipolar nematic droplets encapsulated in polymer film is examined both experimentally and theoretically. A method for the simulation of the angular distribution of scattered light is based on the anomalous diffraction and interference approximations taking into account the director configuration within liquid crystal droplets and their bipolar axes orientation. The director configuration in nematic droplets is calculated using the relaxation method of the free energy minimization. The characteristics of the sample, including distribution of droplet sizes and shape anisometry, are measured in details. The experimental results and theoretical data agree closely with each other.

  16. Narrowly peaked forward light scattering on particulate media: II. Angular spreading of light scattered by polystyrene microspheres

    NASA Astrophysics Data System (ADS)

    Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia

    2008-07-01

    The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.

  17. Comparison of DTR spectral-angular characteristics of divergent beam of relativistic electrons in scattering geometry of Laue and Bragg

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Koskova, T. V.; Ligidov, A. Z.; Noskov, A. V.

    2016-07-01

    Diffracted transition radiation (DTR) generated by a divergent beam of relativistic electrons crossing a single-crystal plate in different (Laue, Bragg) scattering geometry has been considered for the general case of asymmetric reflection of the electron coulomb field relative to the entrance target surface. The expressions for spectral-angular density of DTR and parametric X-ray Radiation (PXR) has been derived. Then DTR and PXR has been considered in case of a thin target, when multiple scattering of electron is negligibly small, which is important for divergence measurement in real time regime. Numerical calculation of spectral-angular density of DTR by a beam of relativistic electrons has been made using averaging over the bivariate Gauss distribution as angular distribution of relativistic electrons in the beam. It has been shown that in Bragg scattering geometry the angular density of DTR is bigger, than in Laue geometry, which can be explained by the existence of the frequency range, in which the incident wave propagation vector takes complex value even under absence of absorption. In this range, all of photons are reflected in Bragg direction. It means that the range of total reflection defines the width of DTR spectrum.

  18. Energy distribution of elastically scattered electrons from double layer samples

    NASA Astrophysics Data System (ADS)

    Tőkési, K.; Varga, D.

    2016-02-01

    We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.

  19. Equilibrium Tail Distribution Due to Touschek Scattering

    SciTech Connect

    Nash,B.; Krinsky, S.

    2009-05-04

    Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.

  20. THE ANGULAR DISTRIBUTION OF Ly{alpha} RESONANT PHOTONS EMERGING FROM AN OPTICALLY THICK MEDIUM

    SciTech Connect

    Yang Yang; Shu Chiwang; Roy, Ishani; Fang Lizhi

    2013-07-20

    We investigate the angular distribution of Ly{alpha} photons scattering or emerging from an optically thick medium. Since the evolution of specific intensity I in frequency space and angular space are coupled with each other, we first develop the WENO numerical solver to find the time-dependent solutions of the integro-differential equation of I in frequency and angular space simultaneously. We first show that the solutions with the Eddington approximation, which assume that I is linearly dependent on the angular variable {mu}, yield similar frequency profiles of the photon flux as those without the Eddington approximation. However, the solutions of the {mu} distribution evolution are significantly different from those given by the Eddington approximation. First, the angular distribution of I is found to be substantially dependent on the frequency of the photons. For photons with the resonant frequency {nu}{sub 0}, I contains only a linear term of {mu}. For photons with frequencies at the double peaks of the flux, the {mu}-distribution is highly anisotropic; most photons are emitted radially forward. Moreover, either at {nu}{sub 0} or at the double peaks, the {mu} distributions actually are independent of the initial {mu} distribution of photons of the source. This is because the photons with frequencies either at {nu}{sub 0} or the double peaks undergo the process of forgetting their initial conditions due to resonant scattering. We also show that the optically thick medium is a collimator of photons at the double peaks. Photons from the double peaks form a forward beam with a very small opening angle.

  1. The Angular Distribution of Lyα Resonant Photons Emerging from an Optically Thick Medium

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Roy, Ishani; Shu, Chi-Wang; Fang, Li-Zhi

    2013-07-01

    We investigate the angular distribution of Lyα photons scattering or emerging from an optically thick medium. Since the evolution of specific intensity I in frequency space and angular space are coupled with each other, we first develop the WENO numerical solver to find the time-dependent solutions of the integro-differential equation of I in frequency and angular space simultaneously. We first show that the solutions with the Eddington approximation, which assume that I is linearly dependent on the angular variable μ, yield similar frequency profiles of the photon flux as those without the Eddington approximation. However, the solutions of the μ distribution evolution are significantly different from those given by the Eddington approximation. First, the angular distribution of I is found to be substantially dependent on the frequency of the photons. For photons with the resonant frequency ν0, I contains only a linear term of μ. For photons with frequencies at the double peaks of the flux, the μ-distribution is highly anisotropic; most photons are emitted radially forward. Moreover, either at ν0 or at the double peaks, the μ distributions actually are independent of the initial μ distribution of photons of the source. This is because the photons with frequencies either at ν0 or the double peaks undergo the process of forgetting their initial conditions due to resonant scattering. We also show that the optically thick medium is a collimator of photons at the double peaks. Photons from the double peaks form a forward beam with a very small opening angle.

  2. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  3. Angular distribution of photoelectrons at 584A using polarized radiation

    NASA Technical Reports Server (NTRS)

    Hancock, W. H.; Samson, J. A. R.

    1975-01-01

    Photoelectron angular distributions for Ar, Xe, N2, O2, CO, CO2, and NH3 were obtained at 584 A by observing the photoelectrons at a fixed angle and simply rotating the plane of polarization of a highly polarized photon source. The radiation from a helium dc glow discharge source was polarized (84%) using a reflection type polarizer.

  4. Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; Chapman, Glenn H.; Chan, Paulman; Kaminska, Bozena; Pfeiffer, Nick

    2008-02-01

    Imaging structures within a turbid medium using Angular Domain Imaging (ADI) employs angular filter array aligned to a laser source to separate ballistic and quasi-ballistic photons from the highly scattered light by means of angular filtration. The angular filter consists of a high aspect ratio linear array of silicon micromachined tunnels, 51 micron wide by 10mm long with a 0.29 degree acceptance angle. At heavy scattering ratios of >1E7 image detectability declines due to the non-uniform scattered background light fraction still within the acceptance angle. This scattered signal can be separated out by introducing a wedge prism to deviate the laser source where it enters the medium by an angle slightly larger than the acceptance angle. This creates a second image consisting of pure scattering photons with the filtration characteristics of the angular filter, and a pixel by pixel correspondence to the fully scattered illumination emitted from the medium. Experiments used an 808 nm laser diode, collimated to an 8×1 mm line of light, entering a 5cm thick medium with a scattering ratio of > 1E6, with a wedge prism creating a 0.44 degree deviation. Digitally subtracting the deviated scattered signal from the original image significantly reduced the scattered background and enhanced image contrast. We can have about images at least 40 times more of our previous scattering limits. Depending on test phantom object location, the contrast level can be increased from 4% of the total dynamic range to over 50% which results in higher definition and visibility of our micro-scale test structures in the turbid medium.

  5. Theory and imaging applications of the angular correlation of multiply-scattered optical fields

    NASA Astrophysics Data System (ADS)

    Hoover, Brian Gilday

    Through analysis of the field angular correlation the scattering of quasimonochromatic optical fields is considered as a coherence-based process well into the multiple scattering regime. Coherence analysis leads to the prediction of coherent effects in multiply-scattered light that can be applied to perform computed amplitude- phase imaging through turbid media and noninvasive laser material characterization. With the incentive of improved imaging through turbid media an experiment is described that directly compares the degradations, with the number of scattering mean free paths, of the field angular correlation and the correlation of the scattered wave with an unscattered reference wave, both of which can be used to form gates for imaging techniques in scattered light. Results for 20μ m polymer spheres show that the former correlation is consistently larger well into the multiple scattering regime (up to 10 mean free paths) for wavevector separations less than at least 50mm -1, and that the two correlations tend to merge in this scattering regime for larger wavevector separations. The implications of the results for imaging applications are considered. Complementary theoretical formulations of coherence effects in multiply-scattered fields are presented. Relations of the spatial coherence properties to the angular characteristics of the scattered field are established. A coherence-based model of multiple scattering processes is derived. The model predicts radiative-transfer-like behavior for restricted observational parameters, but also shows that the coherence-based process is required for an accurate description of the scattered field over an observational parameters. The applicability of the model to noninvasive laser material characterization is emphasized. A wavefront-sensor method is presented for measurement of the complex field angular correlation function of a three-dimensional turbid medium. The angular correlation function is measured at a series of

  6. Orbital angular momentum and generalized transverse momentum distribution

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Liu, Keh-Fei; Yang, Yi-Bo

    2016-03-01

    We show that, when boosted to the infinite momentum frame, the quark and gluon orbital angular momentum operators defined in the nucleon spin sum rule of Chen et al. are the same as those whose matrix elements correspond to the moments of generalized transverse momentum distributions. This completes the connection between the infinite momentum limit of each term in that sum rule and experimentally measurable observables. We also show that these orbital angular momentum operators can be defined locally and discuss the strategies of calculating them in lattice QCD.

  7. Theoretical study of asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2

    SciTech Connect

    Rescigno, Thomas N; Miyabe, S.; McCurdy, C.W.; Orel, A.E.

    2009-02-18

    We report the results of ab initio calculations of cross sections and molecular-frame photoelectron angular distributions for C 1s ionization of CO2, and propose a mechanism for the recently observed asymmetry of those angular distributions with respect to the CO^+and O^+ions produced by subsequent Auger decay. The fixed-nuclei, photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. We have also carried out electronic structure calculations which identify a dissociative state of the CO2^++ dication that is likely populated following Auger decay and which leads to O^+ + CO^+ fragment ions. We show that a proper accounting of vibrational motion in the computation of the photoelectron angular distributions, along with reasonable assumptions about the nuclear dissociation dynamics, gives results in good agreement with recent experimental observations. We also demonstrate that destructive interference between different partial waves accounts for sudden changes with photon energy in the observed angular distributions.

  8. Angular distributions and cross-sections of projectile-like fragments in the 19F + 159Tb reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Tripathi, R.; Sodaye, S.; Sudarshan, K.; Pujari, P. K.

    2013-01-01

    The angular distribution of projectile-like fragments (PLFs) in the 19F + 159Tb reaction have been measured at beam energy equal to 98MeV. Angular distributions of PLFs showed a systematic change with increasing mass transfer, starting from the peaking at grazing angle for heavier PLFs to very forward peaked angular distributions for lighter PLFs. Cross-sections of the different PLFs were obtained by integrating their centre-of-mass angular distributions. The PLF cross-sections have been compared with the incomplete fusion cross-sections obtained from the earlier measurement of the evaporation residue cross-section. Reduced cross-sections for lighter PLFs were observed to be higher compared to those observed in 19F + 66Zn reaction at similar values of E cm/ V b. Also, elastic scattering measurements were carried out to get information about the grazing angle and total reaction cross-section.

  9. Analytical derivation of higher-order terms of Molière's series and accuracy of Molière's angular distribution of fast charged particles

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Takao; Okei, Kazuhide; Takahashi, Naoya

    2013-09-01

    Molière's series functions of higher orders describing angular distributions of charged particle under the multiple scattering process are solved by exactly evaluating Cauchy integral with poles within the contour of integration. The functions of Molière's series giving higher-order terms are evaluated accurately by Poisson series expansion, both for spatial and projected angular distributions. Molière's series for the integrated angular distributions are also derived. Accuracy of the Molière's series expansion of higher orders is examined by comparing the reconstructed angular distributions with those derived exactly through the numerical Hankel transforms.

  10. Characterization of the angular memory effect of scattered light in biological tissues.

    PubMed

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers. PMID:26074598

  11. Correlations among angular wave component amplitudes in elastic multiple-scattering random media.

    PubMed

    Hoover, Brian G; Deslauriers, Louis; Grannell, Shawn M; Ahmed, Rizwan E; Dilworth, David S; Athey, Brian D; Leith, Emmett N

    2002-02-01

    The propagation of scalar waves through random media that provide multiple elastic scattering is considered by derivation of an expression for the angular correlation of the scattered wave amplitudes. Coherent wave transmission is shown to occur through a mechanism similar to that responsible for coherent backscattering. While the properties of the scattered wave are generally consistent with radiative-transfer theory for sufficiently small incident and scattering angles, coherent transmission provides corrections to radiative-transfer results at larger angles. The theoretical angular correlation curves are fit, by specifying the probability densities of two random variables that correspond to material parameters, to measured data of laser light scattering from various polymer microsphere suspensions. PMID:11863685

  12. Graviton scattering and matter distribution.

    PubMed

    Britten, R J

    1992-05-01

    In this model gravitation results from the emission and absorption of quanta (gravitons) that are scattered a few times in crossing a typical galaxy. Many features of the universe can be explained in terms of this model, although theoretical justification for the scattering of gravitons is lacking. Gravitons follow a random walk and diffuse through the outer regions of a galaxy. As a result the force of attraction follows a 1/R law, matching observed galactic rotation curves and explaining galactic dynamics without the need of dark matter. The model makes predictions regarding early stages in the expansion of the universe and the establishment of the mass distribution. It may be assumed that a nearly uniform expanding cloud of gas was present that was subject to collapse under gravitational forces. The 1/R law of attraction due to graviton diffusion is orders of magnitude more effective for initiation of collapse than the inverse square law, and it applies to blocks of gas larger than the graviton mean free path. Delay in the spread of gravitational attraction by diffusion sets a time-dependent range beyond which the attractive force is zero. In the model this causes arrays of matter to collapse locally into zones with a spacing set by the length of the range of the attractive force. An initial examination indicates that under these conditions the background radiation could have been released from a nearly uniform distribution at the time of decoupling of radiation and matter, followed by gravitational collapse into blocks of galactic mass. In the model the diffusion of gravitons continued and collapse became possible on a larger scale, initiating the formation of galactic clusters and still larger structures. The slow rate of diffusion then prevented the largest structures from attracting each other and permitted the formation of the voids on a very large scale. The model predicts that on the largest scale there is a three-dimensional repeated array of structures

  13. Dijet angular distributions in direct and resolved photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staino, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Frisken, W. R.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    Jet photoproduction, where the two highest transverse energy ( ETjet) jets have ETjet above 6 GeV and a jet-jet invariant mass above 23 GeV, has been studied with the ZEUS detector at the HERA ep collider. Resolved and direct photoproduction samples have been separated. The cross section as a function of the angle between the jet-jet axis and the beam direction in the dijet rest frame has been measured for the two samples. The measured angular distributions differ markedly from each other. They agree with the predictions of QCD calculations, where the different angular distributions reflect the different spins of the quark and gluon exchanged in the hard subprocess.

  14. A Novel Microsensor for Measuring Angular Distribution of Radiative Intensity.

    PubMed

    Murphy, Thomas E; Pilorz, Stuart; Prufert-Bebout, Leslie; Bebout, Brad

    2015-01-01

    This article presents the design, construction and characterization of a novel type of light probe for measuring the angular radiance distribution of light fields. The differential acceptance angle (DAA) probe can resolve the directionality of a light field in environments with steep light gradients, such as microbial mats, without the need to remove, reorient, and reinsert the probe, a clear advantage over prior techniques. The probe consists of an inner irradiance sensor inside a concentric, moveable light-absorbing sheath. The radiative intensity in a specific zenith direction can be calculated by comparing the irradiance onto the sensor at different acceptance angles. We used this probe to measure the angular radiance distribution of two sample light fields, and observed good agreement with a conventional radiance probe. The DAA probe will aid researchers in understanding light transfer physics in dense microbial communities and expedite validation of numerical radiative transfer models for these environments. PMID:25763775

  15. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    SciTech Connect

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  16. Statistical mechanics of collisionless orbits. IV. Distribution of angular momentum

    SciTech Connect

    Williams, Liliya L. R.; Hjorth, Jens; Wojtak, Radosław E-mail: jens@dark-cosmology.dk

    2014-03-01

    It has been shown in previous work that DARKexp, which is a theoretically derived, maximum entropy, one shape parameter model for isotropic collisionless systems, provides very good fits to simulated and observed dark matter halos. Specifically, it fits the energy distribution, N(E), and the density profiles, including the central cusp. Here, we extend DARKexp N(E) to include the distribution in angular momentum, L {sup 2}, for spherically symmetric systems. First, we argue, based on theoretical, semi-analytical, and simulation results, that while dark matter halos are relaxed in energy, they are not nearly as relaxed in angular momentum, which precludes using maximum entropy to uniquely derive N(E, L {sup 2}). Instead, we require that when integrating N(E, L {sup 2}) over squared angular momenta one retrieves the DARKexp N(E). Starting with a general expression for N(E, L {sup 2}) we show how the distribution of particles in L {sup 2} is related to the shape of the velocity distribution function, VDF, and velocity anisotropy profile, β(r). We then demonstrate that astrophysically realistic halos, as judged by the VDF shape and β(r), must have linear or convex distributions in L {sup 2}, for each separate energy bin. The distribution in energy of the most bound particles must be nearly flat, and become more tilted in favor of radial orbits for less bound particles. These results are consistent with numerical simulations and represent an important step toward deriving the full distribution function for spherically symmetric dark matter halos.

  17. Effect of photodynamic therapy on single cancer cells studied by integrated Raman and angular scattering microscopy

    NASA Astrophysics Data System (ADS)

    Shipp, Dustin W.; Mitra, Soumya; Foster, Thomas H.; Berger, Andrew J.

    2012-01-01

    Using integrated Raman and angular scattering microscopy (IRAM), we follow the response of EMT6 cancer cells to photodynamic therapy (PDT) treatment. The study combines two non-labelling light scattering techniques to extract chemical information and organelle sizes from single cells. Each cell is measured repeatedly over several hours to follow changes in these parameters as the cell responds to the PDT treatment. An automated algorithm identifies which parameters are changing in time. Size parameters extracted from angular scattering measurements show a decrease in the size of 1-micron-diameter scatterers in treated cells. Treated cells also exhibit trends in several Raman peaks, denoting changes in chemical concentrations of proteins, nucleic acids, and lipids. Each of these parameters - acquired from both measurement modalities - can be monitored on a cell-by-cell basis. The ability to track these chemical and structural changes over time allows access to greater knowledge of biological processes.

  18. Angular Distribution and Angular Dispersion in Collision of 19F+27Al at 114 MeV

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Yu-Chuan; Li, Song-Lin; Duan, Li-Min; Xu, Hu-Shan; Xu, Hua-Gen; Chen, Ruo-Fu; Wu, He-Yu; Han, Jian-Long; Li, Zhi-Chang; Lu, Xiu-Qin; Zhao, Kui; Liu, Jian-Cheng; Sergey, Yu-Kun

    2004-10-01

    Angular distributions of fragments B, C, N, O, F, Ne, Na, Mg and Al induced by the collision of 19F+27Al at 114 MeV have been measured. Angular dispersion parameters are extracted from the experimental data and compared with the theoretical ones. The dynamic dispersions for dissipative products depend strongly on the charge number Z of the fragments.

  19. Angular scattering of light by a homogeneous spherical particle in a zeroth-order Bessel beam and its relationship to plane wave scattering.

    PubMed

    Preston, Thomas C; Reid, Jonathan P

    2015-06-01

    The angular scattering of light from a homogeneous spherical particle in a zeroth-order Bessel beam is calculated using a generalized Lorenz-Mie theory. We investigate the dependence of the angular scattering on the semi-apex angle of the Bessel beam and discuss the major features of the resulting scattering plots. We also compare Bessel beam scattering to plane wave scattering and provide criterion for when the difference between the two cases can be considered negligible. Finally, we discuss a method for characterizing spherical particles using angular light scattering. This work is useful to researchers who are interested in characterizing particles trapped in optical beams using angular dependent light scattering measurements. PMID:26367038

  20. Angular Distribution of Particles Emerging from a Diffusive Region and its Implications for the Fleck-Canfield Random Walk Algorithm for Implicit Monte Carlo Radiation Transport

    SciTech Connect

    Cooper, M.A.

    2000-07-03

    We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.

  1. Siegert pseudostate formulation of scattering theory: Nonzero angular momenta in the one-channel case

    SciTech Connect

    Batishchev, Pavel A.; Tolstikhin, Oleg I.

    2007-06-15

    The Siegert pseudostate (SPS) formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A, 58, 2077 (1998)] for s-wave scattering in a spherically symmetric finite-range potential, is generalized to nonzero angular momenta. The orthogonality and completeness properties of SPSs are established and SPS expansions for the outgoing-wave Green's function, physical states, and scattering matrix are obtained. The present formulation completes the theory of SPSs in the one-channel case, making its application to three-dimensional problems possible. The results are illustrated by calculations for several model potentials.

  2. Neutron angular distribution in plutonium-240 spontaneous fission

    NASA Astrophysics Data System (ADS)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  3. Probes of initial-state interactions in dilepton angular distributions

    SciTech Connect

    Ralston, J.P.; Pire, B.

    1982-01-01

    We discuss the angular distribution of dileptons d sigma/d/sup 4/Qd OMEGA, emphasizing phase sensitivity as a probe of initial-state interactions in QCD. The coherent nature of Sudakov effects is discussed, along with the presence of imaginary parts related by analyticity. Angular-distribution structure functions which describe interference between longitudinal and transverse virtual photons, e.g., can be used to probe phase differences that depend on large momenta. These evolve according to exp(ic ln ln(Q/sup 2//lambda/sub QCD/sup 2/)) where Q/sup 2/ is a large scale. We report on a complete calculation at O(..cap alpha../sub s//sup 2/) of the q anti q ..-->.. ..gamma..* + gluons channel which confirms the cancellation of small (cutoff) scales, and describe a complementary experiment involving spin. We discuss the limit x ..-->.. 1 of the distribution d sigma/dQ/sup 2/dxdcos theta, and point out an unusual and interesting effect that a momentum-dependent phase can produce here.

  4. THE ANGULAR BROADENING OF THE GALACTIC CENTER PULSAR SGR J1745-29: A NEW CONSTRAINT ON THE SCATTERING MEDIUM

    SciTech Connect

    Bower, Geoffrey C.; Deller, Adam; Falcke, Heino; Demorest, Paul; Brunthaler, Andreas; Eatough, Ralph; Kramer, Michael; Lee, K. J.; Spitler, Laura

    2014-01-01

    The pulsed radio emission from the Galactic Center (GC) pulsar SGR J1745-29 probes the turbulent, magnetized plasma of the GC hyperstrong scattering screen through both angular and temporal broadening. We present measurements of the angular size of SGR J1745-29, obtained with the Very Long Baseline Array and the phased Very Large Array at 8.7 and 15.4 GHz. The source sizes are consistent with the scatter-broadened size of Sagittarius A* at each frequency, demonstrating that SGR J1745-29 is also located behind the same scattering medium. Combining the angular broadening with temporal scattering obtained from pulsar observations provides a complete picture of the scattering properties. A best-fit solution for the distance of a single thin screen is Δ = 5.8 ± 0.3 kpc, consistent with being located in the Scutum spiral arm. The scattering is also consistent with a uniform scattering medium or a series of thin screens distributed between the GC and the Earth. This result is a substantial revision of the previously held model in which the scattering screen is located very close to the GC. As also discussed in Spitler et al., these results suggest that GC searches can detect millisecond pulsars gravitationally bound to Sgr A* with observations at ≳ 10 GHz and ordinary pulsars at even lower frequencies.

  5. Determination of atmospheric particle size distribution from forward scattering data.

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1973-01-01

    Description of an analytic method of reconstructing the particle size distribution of atmospheric aerosols when no a priori information is available regarding the refractive index of the particles, the analytic form of the distribution, the size range, and the size extremal values. The method applies in principle to angle-dependent scattering data at a fixed wave number, or to wave-number-dependent scattering data at a fixed angle, or to a combination of the two. Some results of an angular scan study of the aureole are presented to illustrate the effectiveness of the method. In conclusion, an analysis is made of the efficiency and accuracy of the method, the uniqueness of the inverse solutions, and the stability of the method relative to experimental noise.

  6. Stray, swing and scatter: angular momentum evolution of orbits and streams in aspherical potentials

    NASA Astrophysics Data System (ADS)

    Erkal, Denis; Sanders, Jason L.; Belokurov, Vasily

    2016-09-01

    In aspherical potentials orbital planes continuously evolve. The gravitational torques impel the angular momentum vector to precess, that is to slowly stray around the symmetry axis, and nutate, i.e. swing up and down periodically in the perpendicular direction. This familiar orbital pole motion - if detected and measured - can reveal the shape of the underlying gravitational potential, the quantity only crudely gauged in the Galaxy so far. Here we demonstrate that the debris poles of stellar tidal streams show a very similar straying and swinging behaviour, and give analytic expressions to link the amplitude and the frequency of the pole evolution to the flattening of the dark matter distribution. While these results are derived for near-circular orbits, we show they are also valid for eccentric orbits. Most importantly, we explain how the differential orbital plane precession leads to the broadening of the stream and show that streams on polar orbits ought to scatter faster. We provide expressions for the stream width evolution as a function of the axisymmetric potential flattening and the angle from the symmetry plane and prove that our models are in good agreement with streams produced in N-body simulations. Interestingly, the same intuition applies to streams whose progenitors are on short- or long-axis loops in a triaxial potential. Finally, we present a compilation of the Galactic cold stream data, and discuss how the simple picture developed here, along with stream modelling, can be used to constrain the symmetry axes and flattening of the Milky Way.

  7. Results on angular distributions of thermal dileptons in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Usai, Gianluca; NA60 Collaboration

    2009-11-01

    The NA60 experiment at the CERN SPS has studied dimuon production in 158 AGeV In-In collisions. The strong pair excess above the known sources found in the mass region 0.2angular distributions for M<1GeV, as measured in the Collins-Soper reference frame, are presented. The structure function parameters λ, μ, ν are consistent with zero and the projected polar and azimuth angle distributions are uniform. The absence of any polarization is consistent with the interpretation of the excess dimuons as thermal radiation from a randomized system.

  8. Evidence for the distribution of angular velocity inside the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing the distribution of angular velocity inside the sun and stars.

  9. Spin O decay angular distribution for interfering mesons in electroproduction

    SciTech Connect

    Funsten, H.; Gilfoyle, G.

    1994-04-01

    Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.

  10. DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS

    SciTech Connect

    Tanigawa, Takayuki; Ohtsuki, Keiji; Machida, Masahiro N.

    2012-03-01

    We investigate gas accretion flow onto a circumplanetary disk from a protoplanetary disk in detail by using high-resolution three-dimensional nested-grid hydrodynamic simulations, in order to provide a basis of formation processes of satellites around giant planets. Based on detailed analyses of gas accretion flow, we find that most of gas accretion onto circumplanetary disks occurs nearly vertically toward the disk surface from high altitude, which generates a shock surface at several scale heights of the circumplanetary disk. The gas that has passed through the shock surface moves inward because its specific angular momentum is smaller than that of the local Keplerian rotation, while gas near the midplane in the protoplanetary disk cannot accrete to the circumplanetary disk. Gas near the midplane within the planet's Hill sphere spirals outward and escapes from the Hill sphere through the two Lagrangian points L{sub 1} and L{sub 2}. We also analyze fluxes of accreting mass and angular momentum in detail and find that the distributions of the fluxes onto the disk surface are well described by power-law functions and that a large fraction of gas accretion occurs at the outer region of the disk, i.e., at about 0.1 times the Hill radius. The nature of power-law functions indicates that, other than the outer edge, there is no specific radius where gas accretion is concentrated. These source functions of mass and angular momentum in the circumplanetary disk would provide us with useful constraints on the structure and evolution of the circumplanetary disk, which is important for satellite formation.

  11. Angular Distributions of Fe/O From Wind: New Insight Into SEP Transport

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Ng, C. K.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We examine the angular distributions of He, O, and Fe in large solar energetic particle (SEP) events measured on the Wind spacecraft. We report for the first time, that in a fixed velocity interval, Fe/O is often larger for particles flowing sunward along the magnetic field than for particles flowing outward from the Sun in many SEP events. This occurs because the anisotropy for O exceeds that for Fe, even though both species are streaming outward. There are no examples of events for which the outward Fe/O dominates. The behavior of Fe and O conflicts with the expectations of simple diffusion theory, that angular distributions should be independent of species. It also seems to conflict with the idea that energetic Fe scatters less than O of the same velocity. However, preliminary modeling suggests that the presence of a reflecting magnetic boundary beyond 1 AU, together with the increased scattering of O over Fe due to proton generated Alfven waves, can explain the direction and magnitude of the effect. These observations add a new dimension to the study of SEP transport.

  12. Angular dependence of multiple scattered photons and saturation thickness for certain elements by gamma scattering method

    NASA Astrophysics Data System (ADS)

    Kiran, K. U.; Ravindraswami, K.; Eshwarappa, K. M.; Somashekarappa, H. M.

    2016-02-01

    Multiple scattering of gamma photons obtained from 0.215 GBq 137Cs source in both forward and backward hemisphere for 4 elements viz., carbon, aluminium, iron and copper are detected by a 76 mm ×76 mm NaI(Tl) scintillation detector. The variation of saturation thicknesses of 4 elements are studied experimentally at 60°, 80°, 90°, 100°, 120° and 135°. Monte Carlo N-Particle (MCNP) simulation of multiple scattering and variation in saturation thicknesses is carried out for 40°, 60°, 80°, 90°, 100°, 120°, 135°, 160° and 180° for four elements. The variation of the intensity of multiple scattered photons in different scattering angles is found to be different in forward and backward hemispheres. The intensity of multiple scattered photons is found to be minimum at around 90°. Saturation thicknesses for 40° and 60° are found to be less than saturation thicknesses for 80°, 90°, 100°, 120°, 135°, 160° and 180° in spite of the fact that the scattered energy is more for lower scattering angles. The behaviour of variation of saturation thicknesses as a function of scattering angles obtained from MCNP simulation agrees well with experimentally obtained values.

  13. Angular dependence of optical scattering in mixed nematic-cholesteric liquid crystals.

    NASA Technical Reports Server (NTRS)

    Oron, N.; Yu, J. L.; Labes, M. M.

    1973-01-01

    The basic ternary cholesteric mixture used in the investigations reported contained by weight 1.1 parts of cholesteryl chloride, 0.9 parts of cholesteryl nonanoate, and 2.0 parts cholesteryl oleyl carbonate. Samples were prepared by adding a nematic dopant to the cholesteric mixture. Measurements of the wavelength of maximum scattering at different angles for the doped samples show that the angular color distortion is reduced with increasing concentrations of nematic dopant.

  14. Capillary-scale direct measurement of hemoglobin concentration of erythrocytes using photothermal angular light scattering.

    PubMed

    Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin

    2015-12-15

    We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. PMID:26176206

  15. Angular distributions in the decay B→K*l+l-

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Tico, J. Garra; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Höcker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; George, K. A.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Biesiada, J.; Lau, Y. P.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Baracchini, E.; Cavoto, G.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2009-02-01

    We use a sample of 384×106 B Bmacr events collected with the BABAR detector at the PEP-II e+e- collider to study angular distributions in the rare decays B→K*ℓ+ℓ-, where ℓ+ℓ- is either e+e- or μ+μ-. For low dilepton invariant masses, mℓℓ<2.5GeV/c2, we measure a lepton forward-backward asymmetry AFB=0.24-0.23+0.18±0.05 and K* longitudinal polarization FL=0.35±0.16±0.04. For mℓℓ>3.2GeV/c2, we measure AFB=0.76-0.32+0.52±0.07 and FL=0.71-0.22+0.20±0.04.

  16. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions

    SciTech Connect

    Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.

    2009-02-12

    Photoelectrons emitted from multiply charged anions (MCAs) carry information of the intramolecular Coulomb repulsion (ICR), which is dependent on molecular structures. Using photoelectron imaging, we observed the effects of ICR on photoelectron angular distributions (PAD) of the three isomers of benzene dicarboxylate dianions C6H4(CO2)22– (o-, m- and p-BDC2–). Photoelectrons were observed to peak along the laser polarization due to the ICR, but the anisotropy was the largest for p-BDC2–, followed by the m- and o-isomer. The observed anisotropy is related to the direction of the ICR or the detailed molecular structures, suggesting that photoelectron imaging may allow structural information to be obtained for complex multiply charged anions.

  17. Multispectral angular domain optical tomography in scattering media with argon and diode laser sources

    NASA Astrophysics Data System (ADS)

    Chan, Paulman K. Y.; Vasefi, Fartash; Chapman, Glenn H.; Kaminska, Bozena; Pfeiffer, Nick

    2007-02-01

    Angular Domain Imaging (ADI) within highly scattering media employs micromachined angular filter tunnels to detect nonscattered photons which pass through the tunnels unattenuated while scattered photons collide with the tunnel walls. Each tunnel is micromachined approximately 51 μm wide by 10 mm long in silicon, giving a maximum acceptance angle of 0.29 degrees. The ADI technique is inherently independent of wavelength, and thus multispectral laser sources can be incorporated. Previous ADI experiments employed a 488-514 nm Argon ion laser source. This paper describes the construction of a new imaging system utilizing a high-power (up to 0.5 W) laser diode at the 670 nm wavelength, along with an aspheric and cylindrical lens system for shaping the beam into a collimated line of light. ADI results of biological samples (i.e. chicken breast tissue) are also presented. Image resolution is 204 μm or better in compressed chicken breast tissue approximately 3.8 mm in thickness. Digital image processing techniques are employed to improve image contrast, definition, and detectability of test structures. Because silicon is 40% reflective, scattered light at up to three times the acceptance angle is not sufficiently absorbed by the angular filter tunnels and contributes significant background noise, thus decreasing image contrast and detectability. Roughening of the tunnel surface using a NH4OH etchant solution scatters light hitting the walls, thus allowing it to be absorbed. Images after roughening show dramatic reductions in background scattered light levels between tunnels, suggesting that further experiments will make progress towards improved contrast and detectability of structures.

  18. Threshold photoneutron angular distribution and polarization studies of nuclei

    SciTech Connect

    Holt, R.J.

    1980-01-01

    The photoneutron method was applied to the study of: (1) deuteron photodisintegration; (2) giant magnetic dipole resonances in heavy nuclei; (3) mechanism of radiative capture in light nuclei; and (4) isospin splitting of the giant dipole resonance in /sup 60/Ni. These studies were performed with the pulsed bremsstrahlung beam and high-resolution spectrometer available at the Argonne high-current electron linac. A threshold photoneutron polarization method was developed in order to search for the giant M1 resonance in heavy nuclei. A surprisingly small amount of M1 strength was found in /sup 208/Pb. Furthermore, the M1 strength for the 5.08-MeV excitation in /sup 17/O, the best example of a single-particle M1 resonance in nuclei, was found to be strongly quenched. In addition, the /sup 17/O(..gamma..,n/sub 0/)/sup 16/O reaction was found to provide an ideal example of the Lane-Lynn theory of radiative capture. The interplay among the three components of the theory, internal, channel and potential capture, were evident from the data. An electron beam transport system was developed which allows the bremsstrahlung to impinge on the photoneutron target on an axis perpendicular to the usual reaction plane. This system provides an accurate method for the measurement of relative angular distributions in (..gamma..,n) reactions. This system was applied to a high-accuracy measurement of the relative angular distribution for the D(..gamma..,n)H reaction. The question of isospin-splitting of the giant dipole resonance in /sup 60/Ni was studied by using the unique pico-pulse from the accelerator and the newly installed 25-m, neutron flight paths. The results provide clear evidence for the effect of isospin splitting.

  19. Tomographic imaging of the angular-dependent coherent-scatter cross section.

    PubMed

    Westmore, M S; Fenster, A; Cunningham, I A

    1997-01-01

    A new special-purpose computed tomographic (CT) imaging system is described which produces images based on measurements of the low-angle (0-10 degrees) x-ray diffraction properties of an object. Low-angle scatter in the diagnostic x-ray energy range is dominated by coherent scatter, and the system uses first-generation CT geometry to acquire a diffraction pattern for each pencil beam. The patterns are used to reconstruct a series of images which represent the coherent-scatter intensity at a series of scatter angles. To demonstrate the potential of coherent-scatter CT (CSCT), the scanner has been built and used to image a phantom consisting of a water-filled Lucite cylinder containing rods of polyethylene, Lucite, polycarbonate, and nylon. In this paper, the system is described and a sequence of CSCT images of this phantom is shown. Coherent-scatter cross sections of these materials are generated for each pixel from this sequence of images and compared with cross sections measured separately. The resulting excellent agreement shows that the angular-dependent coherent-scatter cross section can be accurately imaged in a tomographic slice through an object. These cross sections give material-specific information about the object. The long-term goal of this research is to make measurements of bone-mineral content for every pixel in a tomographic slice. PMID:9029536

  20. The distribution of mass and angular momentum in the solar system

    SciTech Connect

    Marochnik, L.S.; Mukhin, L.M.; Sagdeev, R.Z. )

    1989-01-01

    This book describes the contribution of the comets in the Oort cloud to the angular momentum of the solar system. Topics covered include: Nuclear mass of the new comets observed, Mass of the Oort cloud, Mass distribution in the solar system, Zone of comet formation, Angular momentum of the Oort cloud, and Angular momentum of the Hills cloud.

  1. Angular distributions of photon stimulated desorption in a vacuum duct observed by using a unidirectional detector

    SciTech Connect

    Kobayashi, M.; Matumoto, M.; Ueda, S.

    1987-07-01

    Pressures in the vacuum duct of the electron storage rings depend on photodesorption. A multicapillary-type mass spectrometer was applied to observe local outgassing rates in the duct, in which the duct surfaces were irradiated by directly incident photons and/or by scattered photons. Local outgassing rates were nonuniform along the periphery of the duct. The desorption rates at the directly incident point were higher than at the other surfaces when photon dose was less than 200 mA h. At over 9000 mA h the rates at that point decreased more, while the desorption rates at the other surfaces decreased less. Angular distributions of photocurrent were also measured. The distributions were almost uniform except near the directly incident point.

  2. Time-lapsed integrated Raman and angular scattering microscopy of single cells

    NASA Astrophysics Data System (ADS)

    Shipp, Dustin W.; Berger, Andrew J.

    2011-03-01

    Integrated Raman- and Angular-scatteringMicroscopy (IRAM) combines two light scattering techniques to make chemical and morphological measurements of intact, single cells without the use of external labeling. IRAM has previously demonstrated its ability to differentiate between activated and non-activated CD8+ T cells based on both chemical and morphological differences. Activated cells showed an increase in protein and lipid content as well as an increase in the size and number of 0.5-1.0 μm diameter scatterers (likely lysosomes). Recent improvements to the IRAM system enable studies over an extended period of time. The applications of IRAM to chemical and structural changes of single cells during biological processes and treatments will be discussed.

  3. Photoelectron angular distributions as a probe of anisotropic electron-ion interactions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Manson, S. T.; Starace, A. F.

    1974-01-01

    Expressions are given for atomic photoelectron angular distributions in LS coupling in which the role of anisotropic final state electron-ion interactions emerges explicitly. Calculations of photoelectron angular distributions for atomic sulfur are presented in which these anisotropic interactions produce clear deviations from the predictions of the Cooper-Zare model. Such effects are expected to be a general feature of photoelectron angular distributions for most open-shell atoms.

  4. Photoelectron angular distributions as a probe of anisotropic electron-ion interactions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Manson, S. T.; Starace, A. F.

    1974-01-01

    Expressions are given for atomic photoelectron angular distributions in LS coupling in which the role of anisotropic final state electron-ion interactions emerges explicitly. Calculations of photoelectron angular distributions for atomic sulfur are presented in which these anisotropic interactions produce pronounced deviations from the predictions of the Cooper-Zare model. Such effects are expected to be a general feature of photoelectron angular distributions for most open shell atoms.

  5. Angular distribution anisotropy of fragments ejected from methyl iodide clusters: Dependence on fs laser intensity

    NASA Astrophysics Data System (ADS)

    Karras, G.; Kosmidis, C.

    2010-10-01

    The angular distribution of the fragment ions ejected from the interaction of methyl iodide clusters with 20 fs strong laser pulses is studied by means of a mass spectrometer. Three types of angular distributions, one isotropic and two anisotropic, have been observed and their dependence on the laser intensity has been studied. There is strong evidence that the ions exhibiting anisotropic angular distribution with a maximum in the direction parallel to the laser polarization vector are produced via an electron impact ionization process.

  6. The measurement of angular differential cross sections at the SSL Atomic Scattering Facility

    NASA Technical Reports Server (NTRS)

    Kvale, Thomas J.

    1988-01-01

    The design of the SSL Atomic Scattering Facility (ASF) located at the NASA/Marshall Space Flight Center as well as some of the initial experiments to be performed with it, are covered. The goal is to develop an apparatus capable of measuring angular differential cross sections (ADCS) for the scattering of 2 to 14 eV atomic oxygen from various gaseous targets. At present little is known about atomic oxygen scattering with kinetic energies of a few eV. This apparatus is designed to increase the understanding of collisions in this energy region. Atomic oxygen scattering processes are of vital interest to NASA because the space shuttle as well as other low earth orbit satellites will be subjected to a flux of 5 eV atomic oxygen on the ram surfaces while in orbit. The primary experiments will involve the measurements of ADCS for atomic oxygen scattering from gaseous targets (in particular, molecular nitrogen). These, as well as the related initial experiments involving thermal He scattering from N2 and O2 targets will be described.

  7. Method for improving the angular resolution of a neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  8. Angular oscillation of solid scatterers in response to progressive planar acoustic waves: do fish otoliths rock?

    PubMed

    Krysl, Petr; Hawkins, Anthony D; Schilt, Carl; Cranford, Ted W

    2012-01-01

    Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves. A simple mechanical model, which predicts both translational and angular oscillation, is formulated. The responses of simple shapes (sphere and hemisphere) are analyzed with an acoustic finite element model. The hemispherical scatterer is found to oscillate both in the direction of the propagation of the progressive waves and also in the plane of the wavefront as a result of angular motion. The models predict that this characteristic will be shared by other irregularly-shaped scatterers, including fish otoliths, which could provide the fish hearing mechanisms with an additional component of oscillation and therefore one more source of acoustical cues. PMID:22912710

  9. Angular Oscillation of Solid Scatterers in Response to Progressive Planar Acoustic Waves: Do Fish Otoliths Rock?

    PubMed Central

    Krysl, Petr; Hawkins, Anthony D.; Schilt, Carl; Cranford, Ted W.

    2012-01-01

    Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves. A simple mechanical model, which predicts both translational and angular oscillation, is formulated. The responses of simple shapes (sphere and hemisphere) are analyzed with an acoustic finite element model. The hemispherical scatterer is found to oscillate both in the direction of the propagation of the progressive waves and also in the plane of the wavefront as a result of angular motion. The models predict that this characteristic will be shared by other irregularly-shaped scatterers, including fish otoliths, which could provide the fish hearing mechanisms with an additional component of oscillation and therefore one more source of acoustical cues. PMID:22912710

  10. Influence of the angular scattering of electrons on the runaway threshold in air

    NASA Astrophysics Data System (ADS)

    Chanrion, O.; Bonaventura, Z.; Bourdon, A.; Neubert, T.

    2016-04-01

    The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare the outcome of different Fokker-Planck and Monte Carlo models with increasing complexity in the description of the scattering. The results show that the inclusion of the stochastic nature of collisions smooths the probability to run away around the threshold. Furthermore, we observe that a significant number of electrons diffuse out of the runaway regime when we take into account the diffusion in angle due to the scattering. Those results suggest using a runaway threshold energy based on the Fokker-Planck model assuming the angular equilibrium that is 1.6 to 1.8 times higher than the one proposed by [1, 2], depending on the magnitude of the ambient electric field. The threshold also is found to be 5 to 26 times higher than the one assuming forward scattering. We give a fitted formula for the threshold field valid over a large range of electric fields. Furthermore, we have shown that the assumption of forward scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation.

  11. Angular distributions of sequentially emitted particles and gamma rays in deep inelastic processes

    SciTech Connect

    Moretto, L.G.

    1981-01-01

    A general theory for the angular distribution of sequentially emitted particles and gamma rays is developed. Comparison with experimental data allows one to obtain information on the fragment spin and misalignment. Angular distributions of sequentially emitted gammas, alphas, and fission fragments are discussed in detail. It is shown that the experimental data are consistent with the thermal excitation of angular momentum-bearing modes. The anomaly of sequential fission suggests the presence of a prompt or direct fission component. 13 figures.

  12. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  13. On the angular dependence and scattering model of polar mesospheric summer echoes at VHF

    NASA Astrophysics Data System (ADS)

    Sommer, Svenja; Stober, Gunter; Chau, Jorge L.

    2016-01-01

    We present measurements of the angular dependence of polar mesospheric summer echoes (PMSE) with the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). Our results are based on multireceiver and multibeam observations using beam pointing directions with off-zenith angles up to 25° as well as on spatial correlation analysis (SCA) from vertical beam observations. We consider a beam filling effect at the upper and lower boundaries of PMSE in tilted beams, which determines the effective mean angle of arrival. Comparing the average power of the vertical beam to the oblique beams suggests that PMSE are mainly not as aspect sensitive as in contrast to previous studies. However, from SCA, times of enhanced correlation are found, indicating aspect sensitivity or a localized scattering mechanism. Our results suggest that PMSE consist of nonhomogeneous isotropic scattering and previously reported aspect sensitivity values might have been influenced by the inhomogeneous nature of PMSE.

  14. Strong oscillations in the nondipole corrections to the photoelectron angular distributions from C{sub 60}

    SciTech Connect

    Toffoli, Daniele; Decleva, Piero

    2010-06-15

    Nondipolar corrections to the photoelectron angular distributions from C{sub 60} have been calculated for the highest occupied molecular orbital (HOMO), HOMO-1, and HOMO-2 photoemission bands. The computational method employed takes advantage of a parallel algorithm that uses a multicentric expansion of bound- and scattering-wave functions and a density-functional theory one-particle Hamiltonian. First-order nondipolar asymmetry parameters have been calculated from thresholds of up to 160 eV of photon energy. Strong oscillations, reminiscent of those found in the ratio of the HOMO and HOMO-1 partial cross sections, have been observed in the nondipolar asymmetry parameters as well. The oscillations have the same period, but a different phase, compared to the ones that characterize the HOMO-HOMO-1 intensity ratio.

  15. Angular distributions in J / ψ → p p bar π0 (η) decays

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. F.; Milstein, A. I.; Salnikov, S. G.

    2016-09-01

    The differential decay rates of the processes J / ψ → p p bar π0 and J / ψ → p p bar η close to the p p bar threshold are calculated with the help of the N N bar optical potential. The same calculations are made for the decays of ψ (2 S). We use the potential which has been suggested to fit the cross sections of N N bar scattering together with N N bar and six pion production in e+e- annihilation close to the p p bar threshold. The p p bar invariant mass spectrum is in agreement with the available experimental data. The anisotropy of the angular distributions, which appears due to the tensor forces in the N N bar interaction, is predicted close to the p p bar threshold. This anisotropy is large enough to be investigated experimentally. Such measurements would allow one to check the accuracy of the model of N N bar interaction.

  16. Theoretical study of asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO{sub 2}

    SciTech Connect

    Miyabe, S.; McCurdy, C. W.; Orel, A. E.; Rescigno, T. N.

    2009-05-15

    We report the results of ab initio calculations of cross sections and molecular-frame photoelectron angular distributions for C 1s ionization of CO{sub 2} and propose a mechanism for the recently observed asymmetry of those angular distributions with respect to the CO{sup +} and O{sup +} ions produced by subsequent Auger decay. The fixed-nuclei, photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. We have also carried out electronic structure calculations which identify a dissociative state of the CO{sub 2}{sup 2+} dication that is likely populated following Auger decay and which leads to O{sup +}+CO{sup +} fragment ions. We show that a proper accounting of vibrational motion in the computation of the photoelectron angular distributions, along with reasonable assumptions about the nuclear dissociation dynamics, gives results in good agreement with recent experimental observations. We also demonstrate that destructive interference between different partial waves accounts for sudden changes with photon energy in the observed angular distributions.

  17. The Evolution of the Angular Momentum Distribution during Star Formation.

    PubMed

    Tomisaka

    2000-01-01

    If the angular momentum of the molecular cloud core were conserved during the star formation process, a newborn star would rotate much faster than its fission speed. This constitutes the angular momentum problem of newborn stars. In this Letter, the angular momentum transfer in the contraction of a rotating magnetized cloud is studied with axisymmetric MHD simulations. Because of the large dynamic range covered by the nested-grid method, the structure of the cloud in the range from 10 AU to 0.1 pc is explored. First, the cloud experiences a runaway collapse, and a disk forms perpendicularly to the magnetic field, in which the central density increases greatly in a finite timescale. In this phase, the specific angular momentum j of the disk decreases to about one-third of the initial cloud. After the central density of the disk exceeds approximately 1010 cm-3, the infall on to the central object develops. In this accretion stage, the rotation motion and thus the toroidal magnetic field drive the outflow. The angular momentum of the central object is transferred efficiently by the outflow as well as by the effect of the magnetic stress. In 7000 yr from the core formation, the specific angular momentum of the central 0.17 M middle dot in circle decreases a factor of 10-4 from the initial value (i.e., from 1020 to 1016 cm2 s-1). PMID:10587491

  18. Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films

    NASA Astrophysics Data System (ADS)

    Schroer, M. A.; Gutt, C.; Grübel, G.

    2014-07-01

    Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.

  19. Two-dimensional angular optical scattering patterns of aerosol particles in the mid-infrared: measurements designed to obtain particle absorption

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.; Pan, Yong-Le; Pinnick, Ronald G.; Hill, Steven C.; Tober, Richard L.; Chang, Richard K.; Bronk, Burt V.

    2004-03-01

    Real-time and in-situ detection and discrimination of aerosol particles, especially bio-aerosols, continues to be an important challenge. The technique labeled TAOS (Two-dimensional Angular Optical Scattering) characterizes particles based upon the angular distribution of elastically scattered light. The detected angular distribution of light, labeled the TAOS pattern, depends upon the particle"s shape, size, surface features, and its complex refractive index. Thus, the absorptive properties of a particle affect the TAOS pattern. Furthermore, we expect to use this change in the TAOS pattern, which occurs when the particle absorption band includes the input wavelength, to characterize the strength of the absorption. Thus, by illuminating a particle in the mid-infrared wavelength range, high frequency vibrational modes that are unique to the aerosol can be reached and quantified. Spherical aerosol particles (in the diameter range of 50-60 micrometers) were generated via a droplet generator and illuminated by an Interband Cascade (IC) laser designed to emit in the 3-5 micrometers wavelength range. The TAOS pattern of the elastically scattered light was detected with an InSb-focal-plane-array infrared camera.

  20. Elastic and inelastic angular distributions of the 7Li+120Sn system for energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Zagatto, V. A. B.; Oliveira, J. R. B.; Gasques, L. R.; Alcántara-Núñez, J. A.; Duarte, J. G.; Aguiar, V. P.; Medina, N. H.; Seale, W. A.; Pires, K. C. C.; Freitas, A.; Lubian, J.; Shorto, J. M. B.; Genezini, F. A.; Rossi, E. S., Jr.

    2016-06-01

    The reaction of 7Li+120Sn has been measured at bombarding energies of 21, 24 and 27 MeV. The {2}+\\to {0}+ γ -ray transition in 120Sn was observed and the angular distribution for the 2+ excited state was obtained. Coupled channels and coupled-reaction channels calculations, including the dynamical polarization potential due to the projectile break-up, obtained from continuum discretized coupled channel calculations, were performed. The comparison between the existing experimental elastic angular distribution with the coupled-reaction channels calculations indicates that the 1n stripping transfer is the most intense channel to be coupled and the 2n stripping reaction occurs sequentially rather than directly, however, further data must be analyzed to confirm this indication. The experimental elastic and inelastic scattering data were well described by the calculations, but some discrepancies in these channels may indicate the need for corrections to the nuclear potential and/or the necessity to incorporate further channels.

  1. K-shell photoionization of CO: I. Angular distributions of photoelectrons from fixed-in-space molecules

    NASA Astrophysics Data System (ADS)

    Motoki, S.; Adachi, J.; Hikosaka, Y.; Ito, K.; Sano, M.; Soejima, K.; Yagishita, A.; Raseev, G.; Cherepkov, N. A.

    2000-10-01

    Angular distributions of photoelectrons from both C and O K-shells of the fixed-in-space CO molecule have been measured using the angle-resolved photoelectron-photoion coincidence technique. The measurements have been performed at several photon energies from the ionization thresholds up to about 30 eV above them, where the σ* shape resonances occur. Experimental results are compared with the multiple-scattering calculations of Dill et al (1976 J. Chem. Phys. 65 3158) and with our new calculations in the relaxed-core Hartree-Fock approximation. Our calculations are in a better agreement with the experimental data though numerical discrepancies remain. The experimental angular distributions are fitted by the expansion in Legendre polynomials containing up to ten terms and the extracted parameters are compared with the corresponding theoretical values.

  2. A new low-complexity angular spread estimator in the presence of line-of-sight with angular distribution selection

    NASA Astrophysics Data System (ADS)

    Bousnina, Inès; Stéphenne, Alex; Affes, Sofiène; Samet, Abdelaziz

    2011-12-01

    This article treats the problem of angular spread (AS) estimation at a base station of a macro-cellular system when a line-of-sight (LOS) is potentially present. The new low-complexity AS estimator first estimates the LOS component with a moment-based K-factor estimator. Then, it uses a look-up table (LUT) approach to estimate the mean angle of arrival (AoA) and AS. Provided that the antenna geometry allows it, the new algorithm can also benefit from a new procedure that selects the angular distribution of the received signal from a set of possible candidates. For this purpose, a nonlinear antenna configuration is required. When the angular distribution is known, any antenna structure could be used a priori; hence, we opt in this case for the simple uniform linear array (ULA). We also compare the new estimator with other low-complexity estimators, first with Spread Root-MUSIC, after we extend its applicability to nonlinear antenna array structures, then, with a recently proposed two-stage algorithm. The new AS estimator is shown, via simulations, to exhibit lower estimation error for the mean AoA and AS estimation.

  3. Drell-Yan lepton angular distributions in perturbative QCD

    NASA Astrophysics Data System (ADS)

    Lambertsen, Martin; Vogelsang, Werner

    2016-06-01

    We present a comprehensive comparison of the available experimental data for the Drell-Yan lepton angular coefficients λ and ν to calculations at leading and next-to-leading order of perturbative QCD. To obtain the next-to-leading order corrections, we make use of publicly available numerical codes that allow us to compute the Drell-Yan cross section at second order in perturbation theory and from which the contributions we need can be extracted. Our comparisons reveal that perturbative QCD is able to describe the experimental data overall rather well, especially at colliders, but also in the fixed-target regime. On the basis of the angular coefficients alone, there appears to be little (if any) convincing evidence for effects that go beyond fixed-order collinear factorized perturbation theory, although the presence of such effects is not ruled out.

  4. The angular distribution of solar wind ˜20-200 keV superhalo electrons at quiet times

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Wang, Linghua; Li, Gang; He, Jiansen; Salem, Chadi S.; Tu, Chuanyi; Wimmer-Schweingruber, Robert F.; Bale, Stuart D.

    2016-03-01

    We present a comprehensive study of the angular distribution of ˜20-200 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet times from 1995 January through 2005 December. According to the interplanetary magnetic field, we re-bin the observed electron pitch angle distributions to obtain the differential flux, Jout (Jin), of electrons traveling outward from (inward toward) the Sun, and define the anisotropy of superhalo electrons as A =2/(Jo u t-Ji n) Jo u t+Ji n at a given energy. We found that for out in ˜96% of the selected quiet-time samples, superhalo electrons have isotropic angular distributions, while for ˜3% (˜1%) of quiet-time samples, superhalo electrons are outward-anisotropic (inward-anisotropic). All three groups of angular distributions show no correlation with the local solar wind plasma, interplanetary magnetic field and turbulence. Furthermore, the superhalo electron spectral index shows no correlation with the spectral index of local solar wind turbulence. These quiet-time superhalo electrons may be accelerated by nonthermal processes related to the solar wind source and strongly scattered/ reflected in the interplanetary medium, or could be formed due to the electron acceleration through the interplanetary medium.

  5. Molecular above-threshold-ionization angular distributions with attosecond bichromatic intense XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-01-01

    Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization in a prealigned molecular ion H2+ produces clear MATI spectra which show a forward-backward asymmetry in angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time delay Δτ between the two laser pulses, and the photoelectron kinetic energies Ee. The features of the asymmetry in MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences of continuum electron wave functions can be extracted from the CEP φ and time delay Δτ dependent ionization asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum electron wavelengths are less than the internuclear distance.

  6. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent. PMID:23005546

  7. Photoionization cross section and angular distribution calculations of carbon tetrafluoride.

    PubMed

    Toffoli, D; Stener, M; Fronzoni, G; Decleva, P

    2006-06-01

    Correlation in the photoionization dynamics of carbon tetrafluoride is studied in the framework of the time-dependent density-functional theory (TDDFT) approach by employing a multicentric basis set expansion of the scattering wave function linear combination of atomic orbitals (LCAO) TDDFT. Results obtained with the statistical average of orbital potentials and LB94 exchange-correlation (xc) potentials are compared with photoabsorption, photoionization, and electron-scattering experiments as well as with past theoretical calculations. Inadequacies in both the V(xc) parametrizations employed have been suggested from the analysis of the intensity plots for the D2A1 ionization. The formation of resonant scattering states in selected continuum channels has been studied through the analysis of the dipole-prepared scattering wave function; our findings are then compared with results of electron-scattering calculations. Overall, the LCAO-TDDFT results highlight the effectiveness of the approach for the calculation of the unbound spectrum of fairly large molecules. PMID:16774413

  8. A New Rainbow: Angular Scattering of the F + H2(vi = 0, ji = 0) → FH(vf = 3, jf = 3) + H Reaction

    NASA Astrophysics Data System (ADS)

    Xiahou, Chengkui; Connor, J. N. L.

    2009-11-01

    The angular scattering of a state-to-state chemical reaction contains fundamental information on its dynamics. Often the angular distributions are highly structured and the physical interpretation of this structure is an important and difficult problem. Here, we report a surprising finding for the benchmark F + H2 → FH + H reaction, when the product molecule FH is in a vibrational state with quantum number = 3 and a rotational state with quantum number = 3. We demonstrate that the differential cross section (DCS) is an example of (attractive) rainbow scattering, being characterized by an Airy function and its derivative. The rainbow reveals its presence in the DCS by interference with the repulsive (or nearside) scattering producing characteristic diffraction oscillations. The rainbow is broad, which explains why it has not been recognized in the many earlier theoretical and experimental investigations of this reaction. There is an angular region in the DCS where the rainbow dominates, but with the unusual property that the DCS is less intense than in adjoining angular regions. The reaction investigated is F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H, where vi, ji, mi and vf, jf, mf are initial and final vibrational, rotational and helicity quantum numbers, respectively. The relative translational energy is 0.119 eV. We use rigorous semiclassical (asymptotic) techniques that provide physical insight as well as a mathematically sound and numerically accurate description of the angular scattering. The semiclassical DCS agrees very closely with the exact quantum DCS. The semiclassical scattering amplitude is used to assess the physical effectiveness of the Fuller nearside-farside decomposition for the partial wave series of the F + H2 reaction, including the effect of one resummation. We also compare the semiclassical and exact quantum nearside, farside, and full local angular momenta and find good agreement. Although our new rainbow has unusual

  9. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1975-01-01

    A summary of the angular momentum transfer formulation of the differential photoionization cross section is presented and photoionization amplitudes in LS coupling are considered. The application of the theoretical concepts and relations developed is illustrated with the aid of an example involving the calculation of the angular distribution of photoelectrons ionized from atomic sulfur according to a certain reaction. The investigation shows that anisotropic electron-ion interactions in atomic sulfur lead to measurable differences between photoelectron angular distribution asymmetry parameters corresponding to alternative ionic term levels.

  10. Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5 and 3 GeV

    SciTech Connect

    M. Mirazita; F. Ronchetti; P. Rossi; E. De Sanctis; CLAS Collaboration

    2004-07-12

    Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10{sup o}-160{sup o}. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.

  11. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections

    SciTech Connect

    Bootsma, G. J.; Verhaegen, F.; Jaffray, D. A.

    2013-11-15

    Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6 cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture

  12. Angular distribution of evaporated protons from 50-MeV-range proton-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuji; Uozumi, Yusuke; Nakano, Masahiro

    2016-06-01

    The angular distribution of compound reactions at bombarding energies lower than 10 MeV is known to be 90˚ symmetry. At the higher incident energies, 50-MeV range, the quantization axis tilts from the beam axis due to the particle emission in the cascade or the pre-equilibrium process. Therefore, it is necessary to know the tilted quantization axis for the angular distribution calculation of the evaporated protons from (p, p'x) reactions. In the present work, we applied the intranuclear cascade (INC) model to determine the tilted quantization axis by a classical vector analysis. The proton evaporation was calculated by the generalized evaporation model (GEM). By fitting calculations to experimental angular distributions, we deduced the angular momentum transfer from the equilibrium state.

  13. The Effect of Weak Gravitational Lensing on the Angular Distribution of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Williams, L. L. R.

    1996-12-01

    If gamma-ray bursts (GRBs) are cosmologically distributed standard candles and are associated with the luminous galaxies, then the observed angular distribution of all GRBs is altered as a result of weak gravitational lensing of bursts by density inhomogeneities. The amplitude of the effect is generally small. For example, if the current catalogs extend to z_max_ ~ 1 and we live in a flat {OMEGA} = 1 universe, the angular autocorrelation function of GRBs will be enhanced by ~8% as a result of lensing, on all angular scales. For an extreme case of z_max_ = 1.5 and ({OMEGA}, {LAMBDA}) = (0.2, 0.8), an enhancement of ~33% is predicted. If the observed distribution of GRBs is used in the future to derive power spectra of mass density fluctuations on large angular scales, the effect of weak lensing should probably be taken into account.

  14. Dynamic light scattering and angular dissymmetry for the in situ measurement of silicon dioxide particle synthesis in flames.

    PubMed

    Zachariah, M R; Chin, D; Semerjian, H G; Katz, J L

    1989-02-01

    Particle size measurements have been made of silica formation in a counterflow diffusion flame reactor utilizing dynamic light scattering and angular dissymmetry methods. The results suggest that the techniques compare quite favorably in conditions of high signal to noise. However, the dynamic light scattering technique degrades rapidly as the signal strength declines, resulting in erroneously small particle diameters. As a general rule dynamic light scattering does not seem to possess the versatility and robustness of the classical techniques as a possible on-line diagnostic for process control. The drawbacks and limitations of the two techniques are also discussed. PMID:20548515

  15. Predicting inelastic rovibrational state distributions from an energy constrained angular momentum mechanism

    NASA Astrophysics Data System (ADS)

    Marsh, R. J.; McCaffery, A. J.

    2001-06-01

    We present a quantitative version of the velocity-angular momentum plots of Besley et al. that we have used extensively to represent the key processes at work in collisional transfer mechanisms. Rotational state distributions are obtained by incorporating probability distributions of the relevant variables, and the Monte Carlo (MC) trajectory technique is used to sample these distributions. The method is illustrated with the case of weakly quasi-resonant vibration rotation transfer in A( 1Σ u+) Li2+ Ne collisions. The results show excellent agreement with published experimental data, indicating the apparent dominance of the factors governing angular momentum (AM) conversion in shaping rovibrational distributions.

  16. Angular Scattering Dynamics of the CH4 + Cl → CH3 + HCl Reaction Using Nearside-Farside, Local Angular Momentum, and Resummation Theories.

    PubMed

    Totenhofer, A J; Connor, J N L; Nyman, Gunnar

    2016-03-01

    The differential cross section (DCS) for the CH4 + Cl → CH3 + HCl reaction is studied at six total energies where all of the species are in their ground states. The scattering (S) matrix elements have been calculated by the rotating line umbrella method for a dual-level ab initio analytic potential energy surface. We make the first application to this reaction of nearside-farside (NF) and local angular momentum (LAM) techniques, including resummation orders (r) of 0, 1, 2, and 3 for the partial-wave series representation of the full scattering amplitude. We find that resummation usually cleans the NF r = 0 DCSs of unphysical oscillations, especially at small angles. This cleaning effect is typically most pronounced when changing from no resummation (r = 0) to r = 1; further resummations from r = 1 to r = 2 and from r = 2 to r = 3 have smaller effects. The NF DCS analyses show that the reaction is N-dominated at sideward and large angles, whereas at small angles there are oscillations caused by NF interference. The NF LAM analysis provides consistent and complementary information, in particular for the total angular momenta that contribute to the reaction at different scattering angles. The NF analyses also provide justification for simpler N-dominant dynamical theories such as the semiclassical optical model, which provides an explanation for the distorted mirror image effect for the moduli of the S matrix elements and the DCSs, as well as the use of a hard-sphere DCS over limited angular ranges. PMID:26625096

  17. Energy spreading and angular distribution of a beam of electrons in molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Green, A. E. S.

    1975-01-01

    A Monte Carlo approach is used to obtain the energy spreading and angular distribution of initially monoenergetic and monodirectional beams of electron incident on a gas of molecular hydrogen. Several beams of primary electrons and the resultant secondaries are degraded in a step-by-step procedure which utilizes a detailed set of cross sections, together with reasonable approximations for the creation of secondary electrons. Particular attention is paid to the initial angular distribution of secondary electrons. An analytic function which characterizes current experimental differential cross-section data is used to provide realistic inputs into our calculations. The results for energy distribution as a function of distance and angular distribution at selected energies and distances are illustrated.

  18. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  19. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    SciTech Connect

    Chen, Hong; Duan, Lian; Lan, Hui; Wang, Xinbing Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  20. Angular distributions of molecular Auger electrons: The case of C 1s Auger emission in CO

    SciTech Connect

    Semenov, S. K.; Kuznetsov, V. V.; Cherepkov, N. A.; Bolognesi, P.; Feyer, V.; Lahmam-Bennani, A.; Casagrande, M. E. Staicu; Avaldi, L.

    2007-03-15

    The results of a study of the Auger-electron-photoelectron angular correlations in the case of the C 1s ionization of the CO molecule are presented and compared with theoretical calculations in the Hartree-Fock approximation based on the two-step model. The measurements have been performed at two photon energies, 305 and 318 eV, respectively, and at three angles of photoelectron emission relative to the light polarization vector: namely, 0 degree sign , 30 degree sign , and 60 degree sign . A general agreement is found between theory and experiment for the coincidence angular distributions and the relative magnitudes of the Auger-electron-photoelectron angular correlations. However, both experiment and theory show that the Auger-electron-photoelectron angular correlations are not sufficiently sensitive to the details of the Auger-electron wave function to allow a 'complete' Auger experiment in molecules. On the other hand, our calculations demonstrate that the Auger-electron angular distribution measured in the molecular frame is very sensitive to the individual contributions of different partial waves of the Auger electron. Therefore we conclude that the complete experiment for the Auger decay in molecules can be realized only measuring the Auger-electron angular distributions in the molecular frame.

  1. Molecular-Frame Angular Distributions of Resonant CO:C(1s) Auger Electrons

    SciTech Connect

    Rolles, D.; Pesic, Z. D.; Dumitriu, I.; Pruemper, G.; Fukuzawa, H.; Liu, X.-J.; Ueda, K.; Fink, R. F.; Grum-Grzhimailo, A. N.; Berrah, N.

    2008-12-31

    The molecular-frame angular distributions of resonantly excited CO:C(1s){yields}{pi}* Auger electrons were determined using angle-resolved electron-ion coincidence spectroscopy in combination with a novel transformation procedure. Our new methodology yields full three-dimensional electron angular distributions with high energy resolution from the measurement of electrons at only two angles. The experimentally determined distributions are well reproduced by calculations performed in a simple one-center approximation, allowing an unambiguous identification of several overlapping Auger lines.

  2. Detection of lung nodules in chest digital tomosynthesis (CDT): effects of the different angular dose distribution

    NASA Astrophysics Data System (ADS)

    Jo, Byungdu; Lee, Youngjin; Kim, Dohyeon; Lee, Dong-Hoon; Jin, Seong-Soo; Mu, Shou-Chih; Kim, Hye-Mi; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) is a recently introduced new imaging modality for better detection of high- and smallcontrast lung nodules compared to conventional X-ray radiography. In CDT system, several projection views need to be acquired with limited angular range. The acquisition of insufficient number of projection data can degrade the reconstructed image quality. This image degradation easily affected by acquisition parameters such as angular dose distribution, number of projection views and reconstruction algorithm. To investigate the imaging characteristics, we evaluated the impact of the angular dose distribution on image quality by simulation studies with Geant4 Application for Tomographic Emission (GATE). We designed the different angular dose distribution conditions. The results showed that the contrast-to-noise ratio (CNR) improves when exposed the higher dose at central projection views than peripheral views. While it was found that increasing angular dose distribution at central views improved lung nodule detectability, although both peripheral regions slightly suffer from image noise due to low dose distribution. The improvements of CNR by using proposed image acquisition technique suggest possible directions for further improvement of CDT system for lung nodule detection with high quality imaging capabilities.

  3. Cross Section Sensitivity and Uncertainty Analysis Including Secondary Neutron Energy and Angular Distributions.

    Energy Science and Technology Software Center (ESTSC)

    1991-03-12

    Version 00 SUSD calculates sensitivity coefficients for one- and two-dimensional transport problems. Variance and standard deviation of detector responses or design parameters can be obtained using cross-section covariance matrices. In neutron transport problems, this code can perform sensitivity-uncertainty analysis for secondary angular distribution (SAD) or secondary energy distribution (SED).

  4. Intensity and polarization of light scattered by size distributions of randomly oriented nonspherical particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, M. I.; Travis, L. D.

    1993-01-01

    Calculations of light scattering by small particles are important in many diverse fields of science and engineering. In many cases of practical interest, scattering particles are nonspherical and are distributed over sizes and orientations. However, accurate light scattering computations for ensembles of nonspherical particles are difficult and time-consuming, and the literature in which such calculations are reported is rather scarce. In this paper, the T-matrix approach, as extended recently to randomly oriented particles, is used to calculate rigorously light scattering by size distributions of randomly oriented axially symmetric particles. To model the variation of particle sizes in real ensembles, we use a power law distribution typical of some terrestrial aerosols. Contour plots of intensity and degree of linear polarization for polydisperse prolate and oblate spheroids of different aspect ratios and effective equivalent-sphere size parameters from 0 to 10 are calculated and compared with calculations for equivalent spheres. The angular scattering behavior of nonspherical polydispersions is found to be greatly different from that of spheres, while the scattering properties of oblate and prolate spheroids of the same aspect ratio are similar. With increasing particle size, both intensity and polarization become more shape-dependent. In general, nonspherical particles are stronger side scatterers and weaker backscatterers than equivalent spheres. With increasing aspect ratio of nonspherical particles polarization tends to be predominantly positive. Possible effects of particle nonsphericity on optical remote sensing of atmospheric aerosols are discussed.

  5. O(1D) Reaction with Methane Studied by State Resolved Scattering Distribution Measurements of Methyl Radicals

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshinori

    2014-06-01

    The scattering distributions of state-selected methyl radicals are measured for the O(^1D_2) reaction with methane using a crossed molecular beam ion imaging method at collision energies of 0.9 - 6.8 kcal/mol. The results are compared with the reaction with deuterated methane to examine the isotope effects. The scattering distributions exhibit contributions from both the insertion and abstraction pathways respectively on the ground and excited-state potential energy surfaces. Insertion is the main pathway, and it provides a strongly forward-enhanced angular distribution of methyl radicals. Abstraction is a minor pathway, causing backward scattering of methyl radicals with a discrete speed distribution. From the collision energy dependence of the abstraction/insertion ratio, the barrier height for the abstraction pathway is estimated for O(^1D_2) with CH_4 and CD_4, respectively. The insertion pathway of the O(^1D_2) reaction with CH_4 has a narrower angular width in the forward scattering and a larger insertion/abstraction ratio than the reaction with CD_4, which indicate that the insertion reaction with CH_4 has a larger cross section and a shorter reaction time than the reaction with CD_4. Additionally, while the insertion reaction with CD_4 exhibits strong angular dependence of the CD_3 speed distribution, CH_3 exhibits considerably smaller dependence. The result suggests that, although intramolecular vibrational redistribution (IVR) within the lifetime of the methanol intermediate is restrictive in both isotopomers, relatively more extensive IVR occurs in CD_3OD than CH_3OH, presumably due to the higher vibrational state density.

  6. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  7. Angular structure of radiation scattered by a dispersive layer with a high concentration of optically soft particles

    SciTech Connect

    Berdnik, V V; Loiko, V A

    2006-11-30

    A method describing the propagation of radiation in concentrated dispersive media with optically soft particles is developed. The results of analysis of the angular structure of radiation scattered in the forward and backward semispheres depending on the direction of layer illumination, its optical thickness, concentration and the size of optically soft particles, are presented. The transport theory is used to describe the propagation of radiation. The equation of radiation transport is solved by the doubling method with the help of spline approximation averaged over the azimuth of scattering indicatrix in a unit volume. The parameters of the unit volume were determined by using the Mie theory and the interference approximation taking into account the collective scattering effects at a high concentration of particles. (special issue devoted to multiple radiation scattering in random media)

  8. Two-dimensional angular optical scattering patterns of microdroplets in the mid infrared with strong and weak absorption

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.; Pan, Yong-Le; Chang, Richard K.; Pinnick, Ronald G.; Hill, Steven C.; Tober, Richard L.; Goyal, Anish; Jeys, Thomas; Bronk, Burt V.

    2004-09-01

    Two-dimensional angular optical scattering (TAOS) patterns of droplets composed of a mixture of H2O and D2O are detected in the mid infrared. First, a lens is used in the Abbé sine condition to collect a small solid angle of light, where the scattering pattern matches well numerical simulations based on Mie theory. Next, TAOS patterns from droplets spanning a large (almost equal to 2pi sr) solid angle are captured simultaneously at two wavelengths. The effects of absorption are evident in the patterns and are discernible without the need for curve matching by Mie theory.

  9. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  10. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  11. Angular distribution in the dissociation of H2O by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Stolterfoht, N.; Öhrn, Y.; Deumens, E.; Sabin, J. R.

    2006-05-01

    In this work, we present calculations of the angular distribution of the products of the dissociation of water molecules when bombarded with He^q+ for projectile energies between 1 and 5 keV. Here q=0,1,2 is the charge of the incoming ion. Our theoretical results are based on the Electron-Nuclear Dynamics formalism (END). We present results for the dissociation cross section, charge transfer cross section, the stopping cross section (nuclear and electronic) for the projectiles, and the angular distribution of He^q+, H, OH, and O. E. Deumens, A. Diz, R. Longo, and Y. "Ohrn, Rev. Mod. Phys. 66, 917 (1994).

  12. Molecular above-threshold-ionization angular distributions with intense circularly polarized attosecond XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-05-01

    Photoionization of aligned and fixed nuclei three-dimensional H2+ and two-dimensional H2 by intense circularly polarized attosecond extreme ultraviolet laser pulses is investigated from numerical solutions of the time-dependent Schrödinger equation. Molecular above-threshold-ionization angular distributions are found to be rotated with respect to the two laser perpendicular polarizations or, equivalently the symmetry axes of the molecule. The angle of rotation is critically sensitive to laser wavelength λ, photoelectron energy Een, and molecular internuclear distance R. The correlated interaction of the two electrons in H2 is shown to also influence such angular distribution rotations in different electronic states.

  13. Resonance Regge poles and the state-to-state F + H2 reaction: QP decomposition, parametrized S matrix, and semiclassical complex angular momentum analysis of the angular scattering

    NASA Astrophysics Data System (ADS)

    Connor, J. N. L.

    2013-03-01

    Three new contributions to the complex angular momentum (CAM) theory of differential cross sections (DCSs) for chemical reactions are reported. They exploit recent advances in the Padé reconstruction of a scattering (S) matrix in a region surrounding the {Renolimits} J axis, where J is the total angular momentum quantum variable, starting from the discrete values, J = 0, 1, 2, …. In particular, use is made of Padé continuations obtained by Sokolovski, Castillo, and Tully [Chem. Phys. Lett. 313, 225 (1999), 10.1016/S0009-2614(99)01016-7] for the S matrix of the benchmark F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H reaction. Here vi, ji, mi and vf, jf, mf are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. The three contributions are: (1) A new exact decomposition of the partial wave (PW) S matrix is introduced, which is called the QP decomposition. The P part contains information on the Regge poles. The Q part is then constructed exactly by subtracting a rapidly oscillating phase and the PW P matrix from the input PW S matrix. After a simple modification, it is found that the corresponding scattering subamplitudes provide insight into the angular-scattering dynamics using simple partial wave series (PWS) computations. It is shown that the leading n = 0 Regge pole contributes to the small-angle scattering in the centre-of-mass frame. (2) The Q matrix part of the QP decomposition has simpler properties than the input S matrix. This fact is exploited to deduce a parametrized (analytic) formula for the PW S matrix in which all terms have a direct physical interpretation. This is a long sort-after goal in reaction dynamics, and in particular for the state-to-state F + H2 reaction. (3) The first definitive test is reported for the accuracy of a uniform semiclassical (asymptotic) CAM theory for a DCS based on the Watson transformation. The parametrized S matrix obtained in contribution (2) is used in both

  14. Discontinuity induced angular distribution of photon plasmon coupling

    SciTech Connect

    Brissinger, D; Lereu, Aude; Salomon, L; Charvolin, T; Cluzel, B; Dumas, C; Passian, Ali; de Fornel, F

    2011-01-01

    Metal-dielectric transitions are important structures that can display a host of optical characteristics including excitation of plasmons. Metal-dielectric discontinuities can furthermore support plasmon excitation without a severe condition on the incident angle of the exciting photons. Using a semi-infinite thin gold film, we study surface plasmon (SP) excitation and the associated electromagnetic near-field distribution by recording the resulting plasmon interference patterns. In particular, we measure interference periods involving SPs at the scanable metal/air interface and the buried metal/glass one. Supported by optical near-field simulations and experiments, we demonstrate that the metal/glass surface plasmon is observable over a wide range of incident angles encompassing values above and below the critical incident angle. As a result, it is shown that scanning near-field microscopy can provide quantitative evaluation of the real part of the buried surface plasmon wavevector.

  15. Angular Distributions of Drell-Yan Dimuons at Fermilab E-906/SeaQuest

    NASA Astrophysics Data System (ADS)

    Ramson, Bryan; Fermilab E-906/SeaQuest Collaboration

    2015-10-01

    Transverse momentum dependent (TMD) parton distribution functions (PDF), fragmentation functions, and their necessary theoretical framework provide a rich foundation from which to build a more descriptive, quantitative understanding of QCD and hadron structure. Fortuitously, TMD sensitive analyses of leptonic angular distributions have been a fixture in Drell-Yan experiments since the π+W CERN NA-10 of the 1980's, with particular focus on the violation of the Lam-Tung relation through a non-zero cos (2 ϕ) modulation in the angular distributions of the final-state leptons. The cos (2 ϕ) modulation is sensitive to the correlation between the motion and spin of transversely polarized (anti)quarks within their encompassing unpolarized hadron, described by the Boer-Mulders TMD PDF. In the mid-1990's, Fermilab E-866/NuSea investigated angular distributions of p+p and p+d Drell-Yan and found that the relative strength of the cos (2 ϕ) modulation, as compared to pion-induced Drell-Yan, is reduced. Fermilab E-906/SeaQuest provides an ideal laboratory in which to measure the cos (2 ϕ) modulation at a higher target xBj than possible with E-866. Recent progress in the analysis of the angular distributions from SeaQuest Drell-Yan dimuons will be shown.

  16. Fission fragment angular distribution for the 19F+197Au fusion-fission reaction at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.; Reddy, A. V.; Mahata, K.; Goswami, A.

    2005-04-01

    Angular distribution of fission fragments have been measured for 19F+197Au reaction at bombarding energies from 91 to 110 MeV. Fission fragment angular distributions have been calculated by transition state model with the transmission coefficients obtained using the coupled-channels theory. The calculated angular anisotropies are in good agreement with the experimental anisotropies. The experimental fission cross sections have also been reproduced on the basis of the coupled-channels theory. The results of angular distribution measurement do not show any significant contribution from quasifission as was reported in the literature based on the measurement of evaporation residues and mass distribution.

  17. Evolution of the angular distribution of laser-generated fast electrons due to resistive self-collimation

    SciTech Connect

    Robinson, A. P. L. Schmitz, H.

    2015-10-15

    The evolution of the angular distribution of laser-generated fast electrons propagating in dense plasmas is studied by 3D numerical simulations. As resistively generated magnetic fields can strongly influence and even pinch the fast electron beam, the question of the effect on the angular distribution is of considerable interest. It was conjectured that in the limit of strong collimation, there will only be minimal changes to the angular distribution, whereas the largest reduction in the angular distribution will occur where there is only modest pinching of the fast electron beam and the beam is able to expand considerably. The results of the numerical simulations indicate this conjecture.

  18. Distributions of off-diagonal scattering matrix elements: Exact results

    SciTech Connect

    Nock, A. Kumar, S. Sommers, H.-J. Guhr, T.

    2014-03-15

    Scattering is a ubiquitous phenomenon which is observed in a variety of physical systems which span a wide range of length scales. The scattering matrix is the key quantity which provides a complete description of the scattering process. The universal features of scattering in chaotic systems is most generally modeled by the Heidelberg approach which introduces stochasticity to the scattering matrix at the level of the Hamiltonian describing the scattering center. The statistics of the scattering matrix is obtained by averaging over the ensemble of random Hamiltonians of appropriate symmetry. We derive exact results for the distributions of the real and imaginary parts of the off-diagonal scattering matrix elements applicable to orthogonally-invariant and unitarily-invariant Hamiltonians, thereby solving a long standing problem. -- Highlights: •Scattering problem in complex or chaotic systems. •Heidelberg approach to model the chaotic nature of the scattering center. •A novel route to the nonlinear sigma model based on the characteristic function. •Exact results for the distributions of off-diagonal scattering-matrix elements. •Universal aspects of the scattering-matrix fluctuations.

  19. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    SciTech Connect

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-07-28

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  20. Ion extraction optics with tunable ion angular distribution of ribbon beams

    NASA Astrophysics Data System (ADS)

    Biloiu, Costel; Distaso, Daniel; Campbell, Christopher; Singh, Vikram; Renau, Anthony

    2015-09-01

    The characteristics of the ion angular distribution (IAD) of an extracted ion beam are determined by the shape, location, and orientation of the plasma meniscus. We describe an electrostatic lens that allows modification of plasma meniscus topology and as a result in situ control of the IAD of extracted ribbon ion beams, i.e., control of ion mean angle and angular spread. The ion extraction optics supposes the use of an electrode immersed in the plasma which is located adjacent to the extraction slit. By electrically biasing the electrode relative to the plasma, the meniscus topology and its orientation relative to the wafer plane can be controlled. Thus, 300 mm wide ribbon ion beams with characteristic mean angle spanning from 0° to 50° and angular spread as low as 4°can be obtained. Ion angular distribution can be tuned in terms of mean angle and angular spread for different ion beam energies and beam currents. In addition, being made of conductive material, the extraction optics is insensitive to the possible conductive deposits resulting from byproducts of ion beam bombardment of the wafer surface.

  1. Angular distribution of molecular K-shell Auger electrons: Spectroscopy of photoabsorption anisotropy

    SciTech Connect

    Dill, D.; Swanson, J.R.; Wallace, S.; Dehmer, J.L.

    1980-10-27

    The angular distribution of Auger electrons emitted in the decay of molecular K-shell vacancies created by photoabsorption is predicted to be a direct probe of the anisotropy of molecular photoabsorption. The sigma..--> pi.. discrete absorption of the sigma..-->..sigma f-wave shape resonance in N/sub 2/ and CO are given as examples.

  2. Interpretation of perturbed angular distribution results for19F implanted into diamond

    NASA Astrophysics Data System (ADS)

    Connell, S.; Sellschop, J. P. F.; Stemmet, M. C.; Appel, H.; Bharuth-Ram, K.; Verwoerd, W. S.

    1990-08-01

    Perturbed Angular Distribution measurements have been made on natural diamond using recoil implanted fluorine ions as probes. Two distinct lattice sites for fluorine in diamond were found. Site identifications prompted by theoretical cluster calculations are presented. The PAD data are well described by a texture theory, though the origin of the texture effects is presently not known.

  3. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Greenberg, P. S.

    1994-01-01

    Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

  4. Laser-produced relativistic electron energy and angular distributions in thin foils

    SciTech Connect

    Rastunkov, V.S.; Krainov, V.P.

    2006-02-15

    Energy and angular distributions are obtained for electrons at the rear surface of thin foils irradiated by an oblique relativistic laser pulse. Vacuum heating at the front surface in the summary field of incident and reflected laser waves is considered as a main mechanism of electron heating up to relativistic ponderomotive energies.

  5. Dependence of electric potentials at trench surfaces on ion angular distribution in plasma etching processes

    NASA Astrophysics Data System (ADS)

    Palov, A. P.; Mankelevich, Yu A.; Rakhimova, T. V.; Baklanov, M. R.

    2016-03-01

    Ion-stimulated etching of dielectrics in radio frequency plasma results in positive charging of a trench bottom because of the significant difference in the angular distribution functions of ions and electrons. They are anisotropic for ions and quasi-isotropic for electrons. The charging leads to a decrease in the energy of the ions bombarding the trench bottom and to undesirable sputtering of the walls near the trench bottom because of the curving of the ion trajectories. This process is normally investigated by Monte Carlo methods in the absence of experimental data. In this paper the analytical dependence of the ion flux bombarding the trench bottom on a trench aspect ratio and ion angular distribution function is obtained. Numerical calculations of the electric potential on the trench bottom for a set of trench aspect ratios and angles of the ion angular distribution function were performed based on a Monte Carlo method to demonstrate the ion flux and electric potential correlated well with each other. The proposed formula for an ion flux is suggested to be helpful for analyzing charging the trenches with different aspect ratios in plasma with an arbitrary angular ion distribution function.

  6. Angular 21 cm power spectrum of a scaling distribution of cosmic string wakes

    SciTech Connect

    Hernández, Oscar F.; Wang, Yi; Brandenberger, Robert; Fong, José E-mail: wangyi@physics.mcgill.ca E-mail: jose.fong@ens-lyon.fr

    2011-08-01

    Cosmic string wakes lead to a large signal in 21 cm redshift maps at redshifts larger than that corresponding to reionization. Here, we compute the angular power spectrum of 21 cm radiation as predicted by a scaling distribution of cosmic strings whose wakes have undergone shock heating.

  7. Two-dimensional angular light-scattering in aqueous NaCl single aerosol particles during deliquescence and efflorescence.

    PubMed

    Braun, C; Krieger, U

    2001-03-12

    We present a new method to analyze two--dimensional angular light--scattering patterns of single aerosol particles by image processing. An asymmetry parameter can be calculated to determine the solid--to--liquid partitioning in micron sized composite particles similar to using temporal light--scattering intensity fluctuations. We use the scattering patterns of the deliquescence of a NaCl crystal to prove the feasibility of the method. In addition we show that even fast processes like the efflorescence from a supersaturated solution droplet can be analyzed where temporal fluctuation analysis fails. We find that efflorescence cannot be described as a time reversed deliquescence. There is indication that during efflorescence a solid shell grows at the surface of the liquid droplet which finally collapses due to mechanical stress. PMID:19417821

  8. Helicity-dependent angular distributions in double-charged-pion photoproduction

    SciTech Connect

    Steffen Strauch

    2003-05-01

    Two-pion photoproduction in the reaction {gamma}p {yields} p{pi}{sup +} {pi}{sup -} has been studied at Jefferson Lab Hall B using a circularly-polarized tagged photon beam in the energy range between 0.6 GeV and 2.3 GeV. Owing to the large angular acceptance of the CLAS detector, complete beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics of the reaction and provide valuable information on the reaction dynamics. Preliminary results are presented.

  9. Angularly-resolved elastic scatter from single particles collected over a large solid angle and with high resolution

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.; Chang, Richard K.

    2005-01-01

    Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90° < θ < 165° and 0° < phi < 360°) and with high angular resolution (1024 pixels in θ and 512 pixels in phi). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(θ,phi), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 μm). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method.

  10. Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine

    SciTech Connect

    Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.

    2007-01-01

    Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37 kV with a stored energy of 4.8 kJ and a deuterium filling pressure of 2.75 torr. Distributions of protons and neutrons are measured with CR-39 Lantrack registered nuclear track detectors, on 1.8x0.9 cm{sup 2} chips, 500 {mu}m thick. A set of detectors was placed on a semicircular Teflon registered holder, 13 cm away from the plasma column, and covered with 15 {mu}m Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after {+-}40 deg. , the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.

  11. Instability in the dense supernova neutrino gas with flavor-dependent angular distributions.

    PubMed

    Mirizzi, Alessandro; Serpico, Pasquale Dario

    2012-06-01

    The usual description of self-induced flavor conversions for neutrinos (ν's) in supernovae is based on the simplified assumption that all the ν's of the different species are emitted "half-isotropically" by a common neutrinosphere, in analogy to a blackbody emission. However, realistic supernova simulations show that ν angular distributions at decoupling are far from being half-isotropic and, above all, are flavor dependent. We show that flavor-dependent angular distributions may lead to crossing points in the angular spectra of different ν species (where F(ν(e))=F(ν(x)) and F(ν(e))=F(ν(x))) around which a new multiangle instability can develop. To characterize this effect, we carry out a linearized flavor stability analysis for different supernova neutrino angular distributions. We find that this instability can shift the onset of the flavor conversions toward low radii and produce a smearing of the splitting features found with trivial ν emission models. As a result the spectral differences among ν's of different flavors could be strongly reduced. PMID:23003940

  12. On the non-uniform distribution of the angular elements of near-Earth objects

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu

    2014-02-01

    We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω‾=111°; approximately 53% of NEOs have Ω values within ±90° of Ω‾. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ω, and longitudes of perihelion ϖ. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ω due to secular dynamics associated with inclination-eccentricity-ω coupling, and the Amors’ ϖ distribution is peaked towards the secularly forced eccentricity vector. The Apollos’ ω distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55% of the Apollos’ ω values. The Amors’ ϖ distribution peaks near ϖ‾=4°; 61% of Amors have ϖ within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter’s. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.

  13. Energy dependence of fission fragment angular distributions for 19F, 24Mg and 28Si induced reactions on 208Pb

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Utsunomiya, H.; Gelbke, C. K.; Lynch, W. G.; Back, B. B.; Saini, S.; Baisden, P. A.; McMahan, M. A.

    1983-09-01

    The energy dependence of fission fragment angular distributions was measured for reaction induced by 19F, 24Mg, and 28Si on 208Pb over the range of incident energies of {E}/{A} = 5.6-10 MeV. For all three systems the angular distributions are inconsistent with the saddle point deformations of the rotating liquid drop model.

  14. Angular distributions of surface produced H{sup −} ions for reflection and desorption processes

    SciTech Connect

    Wada, M. Kasuya, T.; Kenmotsu, T.; Sasao, M.

    2014-02-15

    A numerical simulation code, Atomic Collision in Amorphous Target, has been run to clarify the effects due to the incident angle of hydrogen flux onto surface collision cascade in the subsurface region of a Cs covered Mo plasma grid. The code has taken into account the threshold energy for negative hydrogen (H{sup −}) ions to leave the surface. This modification has caused the shift of energy distribution functions of H{sup −} from that of hydrogen atoms leaving the surface. The results have shown that large incident angle of hydrogen particle tilt the angular distribution of reflection component, while it caused a small effect onto the angular distribution of desorption component. The reflection coefficient has increased, while the desorption yield has decreased for increased angle of incidence measured from the surface normal.

  15. Ion energy and angular distributions in inductively driven RF discharges in chlorine

    SciTech Connect

    Woodworth, J.R.; Riley, M.E.; Hamilton, T.W.

    1996-03-01

    In this paper, the authors report values of ion energy distributions and ion angular distributions measured at the grounded electrode of an inductively-coupled discharge in pure chlorine gas. The inductive drive in the GEC reference cell produced high plasma densities (10{sup 11}/cm{sup 3} electron densities) and stable plasma potentials. As a result, ion energy distributions typically consisted of a single peak well separated from zero energy. Mean ion energy varied inversely with pressure, decreasing from 13 to 9 eV as the discharge pressure increased from 20 to 60 millitorr. Half-widths of the ion angular distributions in these experiments varied from 6 to 7.5 degrees, corresponding to transverse energies from 0.13 to 0.21 eV. Ion energies gradually dropped with time, probably due to the buildup of contaminants on the chamber walls. Cell temperature also was an important variable, with ion fluxes to the lower electrode increasing and the ion angular distribution narrowing as the cell temperature increased. Plasmas discharges are widely used to etch semiconductors, oxides and metals in the fabrication of integrated circuits.

  16. Ion energy and angular distributions in inductively coupled Argon RF discharges

    SciTech Connect

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10{sup 12}/cm{sup 3} electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased.

  17. Correlation of angular and lateral distributions of electrons in extensive air showers

    NASA Astrophysics Data System (ADS)

    Giller, Maria; Śmiałkowski, Andrzej; Legumina, Remigiusz

    2016-08-01

    The aim of this paper is to explain the weak correlation of the angular and lateral deflections of electrons in extensive air showers in the primary energy range 1016-1019 eV, when compared with that in some models of electron propagation. We derive analytical formulae for the correlation coefficient in the multiple scattering model with energy losses and show a strong role of the ionisation in diminishing the correlation. By considering a Heitler-like model of an electromagnetic cascade we show also that the presence of photons, parent to electrons, causes a decrease of the correlation, roughly explaining quantitatively the small correlation in air showers.

  18. Angular distribution X-ray photoelectron spectroscopy studies on compacted lead ion selective membrane powers

    SciTech Connect

    Young, V.; McCaslin, P.C.

    1985-04-01

    Changes in the distribution of species in the near surface region of compacted lead ion selective membrane powders, as revealed by angular distribution XPS, are reported. Scanning electron micrographs of pellets pressed at pressures ranging from a low of 7 lb/in./sup 2/ to a high of 15,000 lb/in./sup 2/ reveal surfaces of almost undistorted, compacted spheres with an average diameter of 0.25 ..mu..m. For untreated membranes, angular distribution XPS reveals the stratification of the near surface region of the surface layer of spheres. Scanning electron micrographs of EDTA and HClO/sub 4/ treated pellets show that an erosion of the surfaces occurs and angular distribution XPS analysis reveals the stratification of the near surface region of the new surfaces. Profilometry has been used to measure the surface topography of the pellets, and the data have been used to assess the effect of roughness on XPS intensity ratios. 47 references, 8 figures, 4 tables.

  19. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    NASA Astrophysics Data System (ADS)

    Bogdanov, O. V.; Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-01

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  20. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    SciTech Connect

    Bogdanov, O. V. Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  1. Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.

  2. Effects of graded distribution of scattering centers on ballistic transport

    SciTech Connect

    Mitran, T. L.; Nemnes, G. A.; Ion, L.; Dragoman, Daniela

    2014-09-28

    The transmission coefficient of a two dimensional scattering region connected to ideal leads was calculated for the case of electrons interacting with an inhomogeneous distribution of repulsive or attractive scattering centers. The scattering centers with Gaussian profiles were positioned at regular intervals perpendicular to the transport direction, but were spaced according to a power law along this direction. The transmission function was obtained using a scattering formalism based on the R-matrix method. The simulations revealed that although, overall, the transmission coefficient decreases and becomes almost monotonously dependent on energy as the inhomogeneity of both attractive and repulsive scattering centers increases, the redistribution of transmission between open channels depends on the type of scattering centers.

  3. Analysis of angular distribution of fragments in relativistic heavy-ion collisions by quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ogawa, Tatsuhiko; Sato, Tatsuhiko; Hashimoto, Shintaro; Niita, Koji

    2016-05-01

    To predict angular distribution of fragments produced in nucleusnucleus collisions, JAERI quantum molecular dynamics model (JQMD) was improved. Because JQMD underestimated fragments in the forward angle, which were mainly produced by peripheral collisions, JQMD was revised so as to simulate peripheral collisions accurately. Density-dependent in-medium effect and relativistic effect on nucleonnucleon interactions were incorporated for this purpose. The revised version of JQMD coupled with a statistical decay model was used to calculate differential fragment production cross sections measured in earlier studies. Comparison of the measured data and calculation by the revised and old JQMD showed that the revised JQMD can predict fragment angular distribution better than old JQMD. Particularly, agreement of fragment yield in the forward angle is substantially improved.

  4. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.; Kadmensky, S. G.; Kadmensky, S. S.

    2008-11-01

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a nonevaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  5. Angular distribution of ejected electrons at the laser-cluster interactions

    NASA Astrophysics Data System (ADS)

    Gets, A. V.; Krainov, V. P.

    2007-06-01

    The histograms of deflection angles of electrons ejected from Xe clusters irradiated by femtosecond super-intense laser pulses are presented. The dependence of the angular distribution on the peak laser intensity, the pulse duration, and the cluster position is considered. A clear relationship between the final electron energy and the deflection angle is shown. The deflection angles are calculated by solving the relativistic equation of motion taking into account the Lorentz force and the Coulomb field of the ionized cluster. The ions in the cluster undergo sequential multiple ionization up to charge multiplicity Z = 26. The measurements of the electron angular distributions allow us to reproduce the imaging dynamics of outer ionization of the cluster at the leading edge of the relativistic femtosecond laser pulse.

  6. Measurement of the angular distribution in anti-p p ---> psi(2S) ---> e+ e-

    SciTech Connect

    Ambrogiani, M.; Andreotti, M.; Argiro, S.; Bagnasco, S.; Baldini, W.; Bettoni, D.; Borreani, G.; Buzzo, A.; Calabrese, R.; Cester, R.; Cibinetto, G.; Dalpiaz, P.; Fan, X.; Garzoglio, G.; Gollwitzer, K.E.; Graham, M.; Hahn, A.; Hu, M.; Jin, S.; Joffe, D.; Kasper, J.; /Fermilab /INFN, Ferrara /Ferrara U. /INFN, Genoa /Genoa U. /INFN, Turin /Turin U. /Northwestern U. /UC, Irvine /Minnesota U.

    2004-12-01

    The authors present the first measurement of the angular distribution for the exclusive process {bar p}p {yields} {psi}(2S) {yields} e{sup +}e{sup -} based on a sample of 6844 events collected by the Fermilab E835 experiment. They find that the angular distribution is well described by the expected functional form dN/d cos {theta}* {proportional_to} 1 + {lambda} cos{sup 2} {theta}*, where {theta}* is the angle between the antiproton and the electron in the center of mass frame, with {lambda} = 0.67 {+-} 0.15(stat.) {+-} 0.04(sys.). The measured value for {lambda} implies a small but non zero {psi}(2S) helicity 0 formation amplitude in {bar p}p, comparable to what is observed in J/{psi} decays to baryon pairs.

  7. Predicting photoemission intensities and angular distributions with real-time density-functional theory

    NASA Astrophysics Data System (ADS)

    Dauth, M.; Kümmel, S.

    2016-02-01

    Photoemission spectroscopy is one of the most frequently used tools for characterizing the electronic structure of condensed matter systems. We discuss a scheme for simulating photoemission from finite systems based on time-dependent density-functional theory. It allows for the first-principles calculation of relative electron binding energies, ionization cross sections, and anisotropy parameters. We extract these photoemission spectroscopy observables from Kohn-Sham orbitals propagated in real time. We demonstrate that the approach is capable of estimating photoemission intensities, i.e., peak heights. It can also reliably predict the angular distribution of photoelectrons. For the example of benzene we contrast calculated angular distribution anisotropy parameters to experimental reference data. Self-interaction free Kohn-Sham theory yields meaningful outer valence single-particle states in the right energetic order. We discuss how to properly choose the complex absorbing potential that is used in the simulations.

  8. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    PubMed

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation. PMID:12382811

  9. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  10. Sideways-peaked angular distributions in hadron-induced multifragmentation: Shock waves, geometry, or kinematics?

    SciTech Connect

    Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E.; Yoder, N.R.; Korteling, R.G.; Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J.; Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H.; Breuer, H.; Morley, K.B.; Gushue, S.; Remsberg, L.P.; Friedman, W.A.; Botvina, A.

    1998-07-01

    Exclusive studies of sideways-peaked angular distributions for intermediate-mass fragments (IMFs) produced in hadron-induced reactions have been performed with the Indiana silicon sphere (ISiS) detector array. The effect becomes prominent for beam momenta above about 10thinspGeV/c. Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward peaked to nearly isotropic as the fragment energy decreases. Fragment-fragment correlation studies show no evidence for a preferred angle that might signal a fast dynamic breakup mechanism. Moving-source and intranuclear cascade simulations suggest a possible kinematic origin arising from significant transverse momentum imparted to the recoil nucleus during the fast cascade. A two-step cascade and statistical multifragmentation calculation is consistent with the data. {copyright} {ital 1998} {ital The American Physical Society}

  11. Semiclassical complex angular momentum theory and Pade reconstruction for resonances, rainbows, and reaction thresholds

    SciTech Connect

    Sokolovski, D.; Msezane, A.Z.

    2004-09-01

    A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.

  12. Angular and spectral distribution of infrared synchrotron radiation emitted by an undulator and its edges

    NASA Astrophysics Data System (ADS)

    Nucara, Alessandro; Cestelli Guidi, Mariangela; Marcouille, Oliver; Roy, Pascale; Calvani, Paolo; Giura, P.; Paolone, A.; Mathis, Yves-Laurent

    1999-10-01

    Both the angular and the spectral distribution of the Infrared Synchrotron Radiation emitted by an undulator of Super-ACO have been measured. Structures due to undulator edges, as well as contributions from the edge emission of a bending magnet placed behind the undulator, have been observed. Detailed calculations including all these sources are in excellent agreement with the measurements, provided that both velocity and acceleration terms are considered.

  13. Electron angular distributions of noble gases in sequential two-photon double ionization

    NASA Astrophysics Data System (ADS)

    Braune, M.; Hartmann, G.; Ilchen, M.; Knie, A.; Lischke, T.; Reinköster, A.; Meissner, A.; Deinert, S.; Glaser, L.; Al-Dossary, O.; Ehresmann, A.; Kheifets, A. S.; Viefhaus, J.

    2016-02-01

    We present an angle resolved study of photoelectrons emitted from ions of the noble gases neon, argon and krypton by means of time-of-flight spectroscopy. The ionic targets are generated in a sequential two-photon process induced by the free-electron laser FLASH. Values of the anisotropy parameters ? and ? are derived from electron angular distribution measurements in the photon energy range from 38 to 91 eV and compared with recent theoretical calculations.

  14. Quantum Features of PXRC Angular Distributions From Relativistic Channeled Electrons in a Crystal

    NASA Astrophysics Data System (ADS)

    Korotchenko, K. B.; Pivovarov, Yu L.

    2014-05-01

    We predict quantum features in angular distributions of parametric X-radiation from channeled relativistic electrons (PXRC). The effect is connected with the number of quantum states of channeled electrons, form-factors of the transverse quantum channeling states and initial populations of these quantum states. The main motivation of this work is theoretical prediction for the future experiment at the SAGA-LS facility.

  15. Angular distribution of characteristic photons after radiative electron capture at strong central fields

    SciTech Connect

    Drukarev, E. G.; Ma, X.; Mikhailov, A. I.; Mikhailov, I. A.; Mokler, P. H.

    2006-08-15

    We investigate the difference in the angular distribution of Ly-{alpha}{sub 1} and K{alpha}{sub 1} photons from hydrogenlike and heliumlike ions of uranium after radiative electron capture to the L shell. The strong anisotropy in the former case is changed to a very small one in the latter case. Our calculations support the observation. The effect takes place even in the limiting case of noninteracting electrons, being caused by the Pauli principle.

  16. Retrieving orbital angular momentum distribution of light with plasmonic vortex lens

    PubMed Central

    Zhou, Hailong; Dong, Jianji; Zhang, Jihua; Zhang, Xinliang

    2016-01-01

    We utilize a plasmonic vortex lens (PVL) to retrieve the orbital angular momentum (OAM) distribution of light. The OAM modes are coupled to the surface plasmon polaritons (SPPs) in the form of various Bessel functions respectively. By decomposing the interference pattern of SPPs into these Bessel functions, we can retrieve the relative amplitude and the relative phase of input OAM modes simultaneously. Our scheme shows advantage in integration and can measure hybrid OAM states by one measurement. PMID:27255406

  17. Angular velocity distribution of a granular planar rotator in a thermalized bath.

    PubMed

    Piasecki, J; Talbot, J; Viot, P

    2007-05-01

    The kinetics of a granular planar rotator with a fixed center undergoing inelastic collisions with bath particles is analyzed both numerically and analytically by means of the Boltzmann equation. The angular velocity distribution evolves from quasi-Gaussian in the Brownian limit to an algebraic decay in the limit of an infinitely light particle. In addition, we compare this model to that of a planar rotator with a free center and discuss the prospects for experimental confirmation of these results. PMID:17677054

  18. High energy angular distribution measurements of the exclusive deuteron photodisintegration reaction

    SciTech Connect

    Elaine Schulte; et. Al.

    2002-10-01

    The first complete measurements of the angular distributions of the two-body deuteron photodisintegration differential cross section at photon energies above 1.6 GeV were performed at the Thomas Jefferson National Accelerator Facility. The results show a persistent forward-backward asymmetry up to Egamma = 2.4 GeV, the highest-energy measured in this experiment. The Hard Rescattering and the Quark-Gluon string models are in fair agreement with the results.

  19. Retrieving orbital angular momentum distribution of light with plasmonic vortex lens.

    PubMed

    Zhou, Hailong; Dong, Jianji; Zhang, Jihua; Zhang, Xinliang

    2016-01-01

    We utilize a plasmonic vortex lens (PVL) to retrieve the orbital angular momentum (OAM) distribution of light. The OAM modes are coupled to the surface plasmon polaritons (SPPs) in the form of various Bessel functions respectively. By decomposing the interference pattern of SPPs into these Bessel functions, we can retrieve the relative amplitude and the relative phase of input OAM modes simultaneously. Our scheme shows advantage in integration and can measure hybrid OAM states by one measurement. PMID:27255406

  20. Retrieving orbital angular momentum distribution of light with plasmonic vortex lens

    NASA Astrophysics Data System (ADS)

    Zhou, Hailong; Dong, Jianji; Zhang, Jihua; Zhang, Xinliang

    2016-06-01

    We utilize a plasmonic vortex lens (PVL) to retrieve the orbital angular momentum (OAM) distribution of light. The OAM modes are coupled to the surface plasmon polaritons (SPPs) in the form of various Bessel functions respectively. By decomposing the interference pattern of SPPs into these Bessel functions, we can retrieve the relative amplitude and the relative phase of input OAM modes simultaneously. Our scheme shows advantage in integration and can measure hybrid OAM states by one measurement.

  1. On the fragment ion angular distributions arising from the tetrahedral molecule CH3I

    NASA Astrophysics Data System (ADS)

    Graham, P.; Ledingham, K. W. D.; Singhai, R. P.; Hankin, S. M.; McCanny, T.; Fang, X.; Kosmidis, C.; Tzallas, P.; Taday, P. F.; Langley, A. J.

    2001-10-01

    The mass spectra for both horizontal and vertical polarizations and the angular distributions of fragment ions arising from Coulomb explosion of tetrahedral methyl iodide (CH3I) ions, obtained at a laser intensity of 1016 W cm-2 are presented. All fragment ion distributions are peaked along the direction corresponding to collinearity of the laser electric field with the time-of-flight mass spectrometer axis. The In + ion (n≤7) angular distributions from the dissociation of the parent ions are all of similar widths, which would imply a geometric, as opposed to dynamic, alignment. Additionally, the lower-charged I ions have an isotropic component that decreases as the charge state increases. Measurements of the CHm+ (m≤3), Cp + (p≤4) and H+ ion distributions show that these are also maximal along the polarization direction. Furthermore, there is also a CH22+ ion peak present in the CHm group, which has a distribution similar to those measured for the other ions. This mass peak is the prominent multi-charged ion in this group. As the CH3I molecule is initially tetrahedral, these results suggest that the molecular structure undergoes a change such that the H-C and C-I bonds tend to lie along the field. Several authors have described work which first aligned CH3I molecules with a nanosecond laser and then photodissociated with a femtosecond laser, to produce fragment ion distributions. This is the first time that the angular distributions from a tetrahedral molecule have been presented using femtosecond laser pulses only and in the case of CH3I, for fragments other than CH3+ and I+. The fragment energetics from the single CH3I molecule have been compared with those from recent work dealing with the Coulomb explosion of CH3I clusters.

  2. Inner engine shutdown from transitions in the angular momentum distribution in collapsars

    NASA Astrophysics Data System (ADS)

    Batta, Aldo; Lee, William H.

    2016-06-01

    For the collapsar scenario to be effective in the production of gamma ray bursts (GRBs), the infalling star's angular momentum J(r) must be larger than the critical angular momentum needed to form an accretion disc around a black hole (BH), namely Jcrit = 2rgc for a Schwarzschild BH. By means of 3D smoothed particle hydrodynamics simulations, here we study the collapse and accretion on to BHs of spherical rotating envelopes, whose angular momentum distribution has transitions between supercritical (J > Jcrit) and subcritical (J < Jcrit) values. Contrary to results obtained in previous 2D hydrodynamical simulations, we find that a substantial amount of subcritical material fed to the accretion disc, lingers around long enough to contribute significantly to the energy loss rate. Increasing the amount of angular momentum in the subcritical material increases the time spent at the accretion disc, and only when the bulk of this subcritical material is accreted before it is replenished by a massive outermost supercritical shell, the inner engine experiences a shutdown. Once the muffled accretion disc is provided again with enough supercritical material, the shutdown will be over and a quiescent time in the long GRB produced afterwards could be observed.

  3. Angular distribution, kinetic energy distributions, and excitation functions of fast metastable oxygen fragments following electron impact of CO2

    NASA Technical Reports Server (NTRS)

    Misakian, M.; Mumma, M. J.; Faris, J. F.

    1975-01-01

    Dissociative excitation of CO2 by electron impact was studied using the methods of translational spectroscopy and angular distribution analysis. Earlier time of flight studies revealed two overlapping spectra, the slower of which was attributed to metastable CO(a3 pi) fragments. The fast peak is the focus of this study. Threshold energy, angular distribution, and improve time of flight measurements indicate that the fast peak actually consists of five overlapping features. The slowest of the five features is found to consist of metastable 0(5S) produced by predissociation of a sigma u + state of CO2 into 0(5S) + CO(a3 pi). Oxygen Rydberg fragments originating directly from a different sigma u + state are believed to make up the next fastest feature. Mechanisms for producing the three remaining features are discussed.

  4. A Comprehensive Theoretical Analysis of 6,7Li + 64Zn Elastic Scattering in a Wide Angular Range Around the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Ibraheem, Awad A.; Aygun, M.

    2016-06-01

    In this paper, the elastic scattering angular distributions of 6,7Li on 64Zn have been investigated by using various nuclear potentials. For this, we use the phenomenological Woods-Saxon potential, the real double folding potential with the density-independent M3Y effective interaction supplemented with an imaginary part in Woods-Saxon form and the double folding potentials multiplied with a normalization factor of the real and imaginary parts via the density-independent and CDM3Y6 density-dependent versions of the M3Y effective interaction have been used. The results have been compared with each other as well as with the experimental data. It has been observed that the agreement between the theoretical results and earlier reported data is perfect. Finally, the change of the total reaction cross sections with energy has been investigated.

  5. A Comprehensive Theoretical Analysis of 6,7Li + 64Zn Elastic Scattering in a Wide Angular Range Around the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Ibraheem, Awad A.; Aygun, M.

    2016-08-01

    In this paper, the elastic scattering angular distributions of 6,7Li on 64Zn have been investigated by using various nuclear potentials. For this, we use the phenomenological Woods-Saxon potential, the real double folding potential with the density-independent M3Y effective interaction supplemented with an imaginary part in Woods-Saxon form and the double folding potentials multiplied with a normalization factor of the real and imaginary parts via the density-independent and CDM3Y6 density-dependent versions of the M3Y effective interaction have been used. The results have been compared with each other as well as with the experimental data. It has been observed that the agreement between the theoretical results and earlier reported data is perfect. Finally, the change of the total reaction cross sections with energy has been investigated.

  6. Development of a standard method for nanoparticle sizing by using the angular dependence of dynamic light scattering.

    PubMed

    Takahashi, Kayori; Kato, Haruhisa; Kinugasa, Shinichi

    2011-01-01

    A standard method for nanoparticle sizing based on the angular dependence of dynamic light scattering was developed. The dependences of the diffusion coefficients for aqueous suspensions of polystyrene latex on the concentration and scattering angle were accurately measured by using a high-resolution dynamic light-scattering instrument. Precise measurements of the short-time correlation function at seven scattering angles and five concentrations were made for suspensions of polystyrene latex particles with diameters from 30 to 100 nm. The apparent diffusion coefficients obtained at various angles and concentrations showed properties characteristic of polystyrene latex particles with electrostatic interactions. A simulation was used to calculate a dynamic structure factor representing the long-range interactions between particles. Extrapolations to infinite dilution and to low angles gave accurate particle sizes by eliminating the effects of long-range interactions. The resulting particle sizes were consistent with those measured by using a differential mobility analyzer and those obtained by pulsed-field gradient nuclear magnetic resonance measurements. PMID:21747185

  7. Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Wang, Jyh-Chiang E.; Quataert, Sally A.; Berger, Andrew J.

    2010-05-01

    Integrated Raman and angular-scattering microscopy (IRAM) is a multimodal platform capable of noninvasively probing both the chemistry and morphology of a single cell without prior labeling. Using this system, we are able to detect activation-dependent changes in the Raman and elastic-scattering signals from CD8+ T cells stimulated with either Staphylococcal enterotoxin B (SEB) or phorbol myristate acetate (PMA). In both cases, results obtained from the IRAM instrument correlate well with results obtained from traditional fluorescence-based flow cytometry for paired samples. SEB-mediated activation was distinguished from resting state in CD8+ T cells by an increase in the number and mean size of small (~500-nm) elastic scatterers as well as a decrease in Raman bands, indicating changes in nuclear content. PMA-mediated activation induced a different profile in CD8+ T cells from SEB, showing a similar increase in small elastic scatterers but a different Raman change, with elevation of cellular protein and lipid bands. These results suggest the potential of this multimodal, label-free optical technique for studying processes in single cells.

  8. Angular ion species distribution in droplet-based laser-produced plasmas

    SciTech Connect

    Giovannini, Andrea Z.; Gambino, Nadia; Rollinger, Bob; Abhari, Reza S.

    2015-01-21

    The angular distribution of the ion species generated from a laser irradiated droplet target is measured. The employed instrument was an electrostatic energy analyzer with differential pumping. Singly and doubly charged ions were detected at an argon ambient gas pressure of 2 × 10{sup −2} mbar. The amount of Sn{sup +} and Sn{sup 2+} and their kinetic energy is measured from 45° to 120° from the laser axis. Sn{sup +} expands approximately isotropically, and Sn{sup 2+} expansion is peaked towards the incoming laser radiation. The singly charged ion kinetic energy is close to constant over the measurement range, while it decreases by around 30% for Sn{sup 2+}. A calibrated model of the ion expansion that includes recombinations correctly predicts the mean ion charge distribution. The model is able to qualitatively estimate the influence of the laser wavelength on the mean ion charge distribution. The results show a more pronounced isotropic distribution for shorter wavelengths, and a more forward-peaked distribution for longer wavelengths. The ion charge distribution expected without the ambient gas is estimated through the measured ion kinetic energy. The presence of the ambient gas results in a decrease of the mean ion charge state and a decrease in angular anisotropy.

  9. Theoretical insights into highly transparent multi-sized conducting films with high-haze and wide-angular scattering for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Bai, Lisha; Liu, Bofei; Chen, Ze; Huang, Qian; Li, Baozhang; Zhang, Dekun; Sun, Jian; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2015-11-01

    Recent advances in light trapping schemes open up new gateways for enhancing the absorption of solar energy that approaches and overcomes the Yablonovitch 4n2 limit based on isotropic Lambertian scatterers. Achieving wide-angular scattering while maintaining a strong scattering intensity is the key to realize a Lambertian-like scatterer that may have a great potential to approach the absorption upper limit. However, few current light trapping strategies can experimentally extend the scattering angular domains in absorbers while maintaining a high scattering intensity. In this paper, we theoretically and experimentally investigate multi-sized transparent conducting oxide (TCO) films, which are comprised of micro-sized, magnetron-sputtered and chemically etched aluminum-doped zinc oxide (ZnO:Al), coated with metal organic chemical vapor deposition (MOCVD) deposited nano-sized, boron-doped zinc oxide (ZnO:B) pyramids. We demonstrate that the multi-sized TCOs in this study can efficiently increase the total transmittance in the visible spectral range, enhance the scattering intensity, successfully extend the scattering angular domains to 90°, and improve the short-circuit current density and power output of solar cells. The combination of these factors endows the TCOs with the significant potential for realizing a Lambertian-like scatterer. Accordingly, the multi-sized architecture may inspire fresh ideas for realizing more innovative light-trapping architectures.

  10. Study of the angular distributions of X-rays emitted following L3 ionization of gold atoms by electron impact

    NASA Astrophysics Data System (ADS)

    Wright, I.; Sestric, G.; Ferguson, S.; Williams, S.

    2015-03-01

    Theoretical work suggests that when an atomic inner-shell vacancy with total angular momentum j greater than 1/2 is created by interaction with a photon or charged particle the vacancy will be aligned due to the magnetic sublevels of the ion having nonstatistical populations. The experiments we performed, testing this theory, involved measurements of the angular distributions of gold Lα, Lβ, and Ll X-rays at forward angles in the range 0 degrees to 25 degrees emitted after being bombarded with 15-keV electrons. After corrections for absorption of the characteristic X-rays within the gold target, our results suggest that the angular distributions of the Lα and Lβ X-rays are essentially isotropic, as no angular dependence was observed in our data outside of experimental uncertainties. However, the results of our experiments suggest that the angular distribution of the gold Ll X-rays may be weakly anisotropic.

  11. Proximal distributions from angular correlations: A measure of the onset of coarse-graining

    PubMed Central

    Dyer, Kippi M.; Pettitt, B. Montgomery

    2013-01-01

    In this work we examine and extend the theory of proximal radial distribution functions for molecules in solution. We point out two formal extensions, the first of which generalizes the proximal distribution function hierarchy approach to the complete, angularly dependent molecular pair distribution function. Second, we generalize from the traditional right-handed solute-solvent proximal distribution functions to the left-handed distributions. The resulting neighbor hierarchy convergence is shown to provide a measure of the coarse-graining of the internal solute sites with respect to the solvent. Simulation of the test case of a deca-alanine peptide shows that this coarse-graining measure converges at a length scale of approximately 5 amino acids for the system considered. PMID:24320368

  12. Proximal distributions from angular correlations: A measure of the onset of coarse-graining

    NASA Astrophysics Data System (ADS)

    Dyer, Kippi M.; Pettitt, B. Montgomery

    2013-12-01

    In this work we examine and extend the theory of proximal radial distribution functions for molecules in solution. We point out two formal extensions, the first of which generalizes the proximal distribution function hierarchy approach to the complete, angularly dependent molecular pair distribution function. Second, we generalize from the traditional right-handed solute-solvent proximal distribution functions to the left-handed distributions. The resulting neighbor hierarchy convergence is shown to provide a measure of the coarse-graining of the internal solute sites with respect to the solvent. Simulation of the test case of a deca-alanine peptide shows that this coarse-graining measure converges at a length scale of approximately 5 amino acids for the system considered.

  13. Angular anisotropy parameters and recoil-ion momentum distribution in two-photon double ionization of helium

    SciTech Connect

    Kheifets, A. S.; Ivanov, I. A.; Bray, Igor

    2007-08-15

    We present convergent-close-coupling (CCC) calculations of the angular anisotropy parameters {beta}{sub 2},{beta}{sub 4} and the recoil ion momentum distribution d{sigma}/dp in two-photon double ionization (TPDI) of helium. In a stark contrast to single-photon double ionization (SPDI), where the {beta}{sub 2} parameter varies widely changing the angular distribution from isotropic to nearly dipole for slow and fast photoelectrons, respectively, the {beta} parameters for TPDI show very little change. The angular distribution of the recoil ion is fairly isotropic in TPDI as opposed to a strong alignment with the polarization of light in SPDI.

  14. Angular distributions and polarization fractions of helium resonance radiation (n 1P - 1 1S) in the extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Misakian, M.; Jackson, W. M.; Faris, J. L.

    1973-01-01

    Angular intensity distributions of helium (n 1P - 1 1S) resonance photons with respect to the exciting electron beam are presented. The angular intensity distributions were measured at selected electron impact energies from 25 eV (near threshold) to 150 eV. Polarization fractions (Pi) were obtained by analyzing the data in terms of the theoretical relation between angular intensity distribution and Pi, i.e. Iota (theta) = Iota (90) (1 - Pi sq cos theta). The experimental values for Pi are compared with recent theoretical results and with previous experimental values for the (3 1P - 2 1S) transition.

  15. Stochastic model of angular distributions of fragments originating from the fission of excited compound nuclei

    SciTech Connect

    Hiryanov, R. M.; Karpov, A. V.; Adeev, G. D.

    2008-08-15

    The anisotropy of angular distributions of fission fragments and the average multiplicity of prescission neutrons were calculated within a stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations. This approach was combined with a Monte Carlo algorithm for the degree of freedom K (projection of the total angular momentum I onto the fission axis). The relaxation time {tau}{sub K} in the coordinate K was considered as a free parameter of the model; it was estimated on the basis of a fit to experimental data on the anisotropy of angular distributions. Specifically, the relaxation time {tau}{sub K} was estimated at 2 x 10{sup -21} s for the compound nuclei {sup 224}Th and {sup 225}Pa and at 4 x 10{sup -21} s for the heavier nuclei {sup 248}Cf, {sup 254}Fm, and {sup 264}Rf. The potential energy was calculated on the basis of the liquid-drop model with allowance for finiteness of the range of nuclear forces and for the diffuseness of the nuclear surface. A modified one-body viscosity mechanism featuring a coefficient k{sub s} that takes into account the reduction of the contribution from the wall formula was used to describe collective-energy dissipation. The coefficient k{sub s} was also treated as a free parameter and was estimated at 0.5 on the basis of a fit to experimental data on the average prescission multiplicity of neutrons.

  16. Modeling fluorescent light distributions in scattering media

    NASA Astrophysics Data System (ADS)

    Phillips, Kevin G.; Jacques, Steven L.

    2010-02-01

    It is hoped that the non-invasive optical characterization of physiological features of normal and diseased epithelia can be assessed through the fluorescent emission of such tissues. With a high percentage of cancers arising in the epithelium, the characterization of carcinogenesis in such tissues is imperative. Fluorescent emission from the epithelium, e.g. oral mucosa, has been shown to be sensitive to physiological features, such as cellular morphology, and the amount and types of biochemical agents present in the tissue. Efforts to distinguish the spectral signatures of diseased and healthy states of tissues from fluorescence have been confounded by the distortion of the intrinsic fluorescent signature as a result of wavelength dependent absorption and scattering within the tissue. Theoretical models of light propagation in biological media are required for understanding the distortion of the intrinsic fluorescence arising from compromised tissues. In this work we model the distortion of the intrinsic fluorescence emitted from a tissue with wavelength dependent optical properties, arising from varying blood and water content, using the radiative transport equation. As an example, we demonstrate the ability of blood and water content to distort the signal of a white light source as it is embedded deeper into a tissue.

  17. New Statistical Results on the Angular Distribution of Gamma-Ray Bursts

    SciTech Connect

    Balazs, Lajos G.; Horvath, Istvan; Vavrek, Roland

    2008-05-22

    We presented the results of several statistical tests of the randomness in the angular sky-distribution of gamma-ray bursts in BATSE Catalog. Thirteen different tests were presented based on Voronoi tesselation, Minimal spanning tree and Multifractal spectrum for five classes (short1, short2, intermediate, long1, long2) of gamma-ray bursts, separately. The long1 and long2 classes are distributed randomly. The intermediate subclass, in accordance with the earlier results of the authors, is distributed non-randomly. Concerning the short subclass earlier statistical tests also suggested some departure from the random distribution, but not on a high enough confidence level. The new tests presented in this article suggest also non-randomness here.

  18. Angular distribution of bremsstrahlung produced by electrons with initial energies in the range from 10 to 20 keV incident on thick Ag

    NASA Astrophysics Data System (ADS)

    Gonzales, Daniel; Cavness, Brandon; Williams, Scott

    2012-03-01

    Experimental results are presented comparing the intensities of the thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag, measured at forward angles in the range of 0 to 55 degrees. When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E0. The results of our experiments suggest that, as k/E0->0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. Comparison to the theory of Kissel et al. [At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E0 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program PENELOPE.

  19. Angular emission distributions of neutrals and ions in laser ablated particle beams

    NASA Astrophysics Data System (ADS)

    Thum-Jager, Andrea; Rohr, Klaus

    1999-11-01

    The present work represents investigations of angular emission distributions in laser-produced particle beams resolved for the different ion groups (up to q=4) and the neutral particle component. The measurements are for a spectrum of target masses: 12 C, 27Al, 48 Ti, 59Ni, 96Mo and 181Ta. The plasma was produced by obliquely incident Q-switched pulses (TAU=5~ns and LAMBDA=1.06~MU m) of a Nd-YAG laser focused to energy densities ranging from about 20 to 180~J~cm-2. For the first time the results reveal in detail that the emission distributions systematically depend on the degree of ionization of the particles in the cloud. While for the neutral particles the angular emission is always dominated by a broad background with an additional, but less pronounced, peaked component, the background component rapidly but continuously diminishes with the increasing charge state of the ions. If, in the usual way, the emission distribution is approximated by the superposition of a cosine and a cosn fit function, the distribution of ions with qgeq 2 can already be well fitted by a cosn function alone. It seems highly probable, that this behaviour essentially is a result of the recombination dynamics during the expansion. It was found that the effect holds for all atomic masses investigated, whereby the mass dependence of the exponent n for all species behaves alike, approximately following a A3/4 law.

  20. Approximate angular distribution and spectra for geomagnetically trapped protons in low-Earth orbit

    SciTech Connect

    Watts, J.W.; Parnell, T.A. ); Heckman, H.H. )

    1989-05-15

    The highly anisotropic nature of the radiation in the low-Earth orbit has been ignored for most spacecraft shielding calculations made to date because the standard environmental models describe the omnidirectional flux only, because the varying attitude of the spacecraft in the environment is assumed to average out the effect and because of the added complexity of the calculation. The Space Station is planned to be stabilized with respect to the velocity vector and local vertical. Thus it will pass through the South Atlantic Anomaly where most of the radiation flux is encountered in much the same attitude on each pass. Any calculation including a complex shielding geometry should thus consider the angular distribution of the incident radiation. An approximate trapped proton angular distribution is presented which includes both the pan caked'' distribution relative to the magnetic field direction and the east-west effect which is energy dependent. This distribution is then used with a planar shielding geometry to obtain an estimate of the effect of the anisotropy on radiation dose rates in spacecraft.

  1. An investigation of the angular distributions of fragment ions arising from the linear CS2 and CO2 molecules

    NASA Astrophysics Data System (ADS)

    Graham, P.; Ledingham, K. W. D.; Singhal, R. P.; McCanny, T.; Hankin, S. M.; Fang, X.; Smith, D. J.; Kosmidis, C.; Tzallas, P.; Langley, A. J.; Taday, P. F.

    1999-12-01

    The nonlinear interaction of the triatomic molecules CS2 and CO2 with the intense field of a linearly polarized laser beam of femtosecond (fs) pulse duration, was used to study the ionization and dissociation of the parent molecule. The fragment ion angular distributions arising from the Coulomb explosion of the parent ions were also measured. For CS2, the angular distributions of CS2+, CS22+, CS23+, CS+, CS2+, Sn+ (nicons/Journals/Common/le" ALT="le" ALIGN="TOP"/>6) and Cm+ (micons/Journals/Common/le" ALT="le" ALIGN="TOP"/>4) ions are presented for a laser intensity of 1 × 1016 W cm-2 at a wavelength of 790 nm and pulse duration of 50 fs. The angular distributions of the parent molecular ions are all isotropic. The Sn+ fragments are peaked along the time-of-flight (TOF) axis, whereas the Cm+ fragments explode perpendicularly to this. Similar results for CO2 are also presented for comparison. The S ion distributions do not narrow as their ionic charge increases, and it is argued that the angular distributions for CS2 are due mainly to the angular dependence of the ionization probability. On the other hand, the distributions from the lighter CO2 molecule are thought to be at least partly due to alignment via dipole moments induced by the laser, as in this case the On+ angular distributions are seen to narrow as their charge increases. The conclusion of these results is that the laser pulse may be too short for the CS2 molecule to align in the pulse. Angular distributions are also presented for varying laser pulse durations, in the range of 50 fs to 300 ps. The dynamics of the ionization/dissociation mechanism are discussed in the context of the TOF mass spectra and angular distributions recorded for CS2.

  2. Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption

    NASA Astrophysics Data System (ADS)

    Tan, Hairen; Sivec, Laura; Yan, Baojie; Santbergen, Rudi; Zeman, Miro; Smets, Arno H. M.

    2013-04-01

    We show experimentally that the photocurrent of thin-film hydrogenated microcrystalline silicon (μc-Si:H) solar cells can be enhanced by 4.5 mA/cm2 with a plasmonic back reflector (BR). The light trapping performance is improved using plasmonic BR with broader angular scattering and lower parasitic absorption loss through tuning the size of silver nanoparticles. The μc-Si:H solar cells deposited on the improved plasmonic BR demonstrate a high photocurrent of 26.3 mA/cm2 which is comparable to the state-of-the-art textured Ag/ZnO BR. The commonly observed deterioration of fill factor is avoided by using μc-SiOx:H as the n-layer for solar cells deposited on plasmonic BR.

  3. An experimental investigation of the angular scattering and backscattering behaviors of the simulated clouds of the outer planets

    NASA Technical Reports Server (NTRS)

    Sassen, K.

    1984-01-01

    A cryogenic, 50 liter volume Planetary Cloud Simulation Chamber has been constructed to permit the laboratory study of the cloud compositions which are likely to be found in the atmospheres of the outer planets. On the basis of available data, clouds composed of water ice, carbon dioxide, and liquid and solid ammonia and methane, both pure and in various mixtures, have been generated. Cloud microphysical observations have been permitted through the use of a cloud particle slide injector and photomicrography. Viewports in the lower chamber have enabled the collection of cloud backscattering data using 633 and 838 nm laser light, including linear depolarization ratios and complete Stokes parameterization. The considerable technological difficulties associated with the collection of angular scattering patterns within the chamber, however, could not be completely overcome.

  4. Alpha-Particle Angular Distributions of At and Rn Isotopes and Their Relation to Nuclear Structure

    SciTech Connect

    NICOLE Collaboration and ISOLDE Collaboration

    1996-12-01

    We report on an extensive on-line nuclear orientation study of the angular distribution of {alpha} particles emitted in the favored decay of neutron deficient At and Rn nuclei near the {ital N}=126 shell closure. Surprisingly large anisotropies were observed, showing pronounced changes from one isotope to another. Comparing these data with several theoretical models shows that anisotropic {alpha} emission in favored decays from near-spherical nuclei can well be explained within the shell model, implying that it is mainly determined by the structure of the decaying nucleus. {copyright} {ital 1996 The American Physical Society.}

  5. A Large-alphabet Quantum Key Distribution Protocol Using Orbital Angular Momentum Entanglement

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Mei; Gong, Long-Yan; Li, Yong-Qiang; Yang, Hua; Sheng, Yu-Bo; Cheng, Wei-Wen

    2013-06-01

    We experimentally demonstrate a quantum key distribution protocol using entangled photon pairs in orbital angular momentum (OAM). Here Alice uses a fixed phase hologram to modulate her OAM state on one photon with a spatial light modulator (SLM), while Bob uses the designed N different phase holograms for his N-based keys on the other photon with his SLM. With coincidences, Alice can fully retrieve the keys sent by Bob without reconciliation. We report the experiment results with N = 3 and OAM eigenmodes |l = ±1>, and discuss the security from the light path and typical attacks.

  6. Angular distribution of positrons in coherent pair production in deformed crystals

    NASA Astrophysics Data System (ADS)

    Parazian, V. V.

    2009-05-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.

  7. Molecular photoelectron angular distributions with intense attosecond circularly polarized UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.

    2014-01-01

    We investigate effects of intermediate resonant electronic states on molecular photoelectron angular distributions (MPADs) by intense circularly polarized attosecond UV laser pulses. Simulations are performed on aligned H2+ by numerically solving the corresponding three dimensional time dependent Schrödinger equations. MPADs exhibit signature of rotations, which is shown to be critically sensitive to the symmetry of the intermediate resonant electronic state and the pulse intensity. This sensitivity is attributed to the coherent population transfer in the initial and intermediate resonant states, thus suggesting a method to control molecular photoionization on attosecond time scale.

  8. Photoelectron angular distributions in negative-ion photodetachment from mixed sp states.

    PubMed

    Grumbling, Emily R; Sanov, Andrei

    2011-10-28

    We describe an approach for constructing analytical models for the energy-dependence of photoelectron angular distributions in the one-electron, non-relativistic approximation. We construct such a model for electron emission from an orbital described as a superposition of s- and p-type functions, using linearly polarized light. In the limits of pure s or pure p electron photodetachment or photoionization, the model correctly reproduces the familiar Cooper-Zare formula. The model predictions are compared to experimental results for strongly solvated H(-) and NH(2)(-), corresponding to predominantly s and predominantly p character parent states, respectively. PMID:22047234

  9. Photoelectron angular distributions in negative-ion photodetachment from mixed sp states

    NASA Astrophysics Data System (ADS)

    Grumbling, Emily R.; Sanov, Andrei

    2011-10-01

    We describe an approach for constructing analytical models for the energy-dependence of photoelectron angular distributions in the one-electron, non-relativistic approximation. We construct such a model for electron emission from an orbital described as a superposition of s- and p-type functions, using linearly polarized light. In the limits of pure s or pure p electron photodetachment or photoionization, the model correctly reproduces the familiar Cooper-Zare formula. The model predictions are compared to experimental results for strongly solvated H- and NH2-, corresponding to predominantly s and predominantly p character parent states, respectively.

  10. Fission fragment angular distributions for the system 19F+232Th

    NASA Astrophysics Data System (ADS)

    Kailas, S.; Navin, A.; Chatterjee, A.; Singh, P.; Choudhury, R. K.; Saxena, A.; Nadkarni, D. M.; Kapoor, S. S.; Ramamurthy, V. S.; Nayak, B. K.; Suryanarayana, S. V.

    1991-03-01

    The fission fragment angular distributions for the system 19F+232Th have been measured at several bombarding energies between 94 and 108 MeV. Even though the anisotropy values measured in the present work are considerably smaller than the ones reported by Zhang et al. for the same system at similar energies, they are still anomalous when compared with the predictions of the standard saddle-point statistical model and fit into the systematics of entrance-channel dependence of fission anisotropies reported by us earlier.