Science.gov

Sample records for school science curriculum

  1. A Vocationalized School Science Curriculum?

    NASA Astrophysics Data System (ADS)

    Bell, Jacqueline; Donnelly, Jim

    2006-10-01

    This article is concerned with the meaning and legitimacy of the view that the secondary science curriculum can be given a vocational emphasis, and with a current attempt to create such a curriculum. Although this perspective on the science curriculum has a long history, in recent decades it has received little attention. This article examines recent research into the vocational and work-related aspects of secondary school science, and the historical and policy background. Its empirical focus is a late secondary course with the title “Applied Science”, which was introduced into schools in England and Wales in 2002. It draws on the preliminary findings of a research study focusing on the origins and implementation of this course. Overall, the article provides an overview of the major issues and research agenda associated with the notion of a vocational or applied school science curriculum, focusing ultimately on the key issues of educational purpose, pedagogy, and status.

  2. A Vocationalized School Science Curriculum?

    ERIC Educational Resources Information Center

    Bell, Jacqueline; Donnelly, Jim

    2006-01-01

    This article is concerned with the meaning and legitimacy of the view that the secondary science curriculum can be given a vocational emphasis, and with a current attempt to create such a curriculum. Although this perspective on the science curriculum has a long history, in recent decades it has received little attention. This article examines

  3. A Vocationalized School Science Curriculum?

    ERIC Educational Resources Information Center

    Bell, Jacqueline; Donnelly, Jim

    2006-01-01

    This article is concerned with the meaning and legitimacy of the view that the secondary science curriculum can be given a vocational emphasis, and with a current attempt to create such a curriculum. Although this perspective on the science curriculum has a long history, in recent decades it has received little attention. This article examines…

  4. Forensic Science Curriculum for High School Students

    NASA Astrophysics Data System (ADS)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  5. MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT. (TITLE SUPPLIED).

    ERIC Educational Resources Information Center

    VAN DEVENTER, W.C.

    REPORTED ARE THE RESULTS OF A CURRICULUM RESEARCH PROJECT OF THE MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT FOR USE IN TEACHING JUNIOR HIGH SCHOOL UNIFIED SCIENCE. THE COMMITTEE USED PREVIOUS RESEARCH DATA, PARTICULARLY IN THE AREA OF INSTRUCTION AND INQUIRY TRAINING, TO DEVELOP 13 UNITS INCLUDING 55 OPEN-ENDED LABORATORY…

  6. School Teachers' Experiences of Science Curriculum Reform

    ERIC Educational Resources Information Center

    Ryder, Jim; Banner, Indira

    2013-01-01

    We examine teachers' experiences of a major reform of the school science curriculum for 14-16-year olds in England. This statutory reform enhances the range of available science courses and emphasises the teaching of socio-scientific issues and the nature of science, alongside the teaching of canonical science knowledge. This paper examines

  7. School Teachers' Experiences of Science Curriculum Reform

    ERIC Educational Resources Information Center

    Ryder, Jim; Banner, Indira

    2013-01-01

    We examine teachers' experiences of a major reform of the school science curriculum for 14-16-year olds in England. This statutory reform enhances the range of available science courses and emphasises the teaching of socio-scientific issues and the nature of science, alongside the teaching of canonical science knowledge. This paper examines…

  8. General Science [Sahuarita High School Career Curriculum Project.

    ERIC Educational Resources Information Center

    Christensen, Larry; Lane, Robert

    This unit entitled "General Science" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. The package is subtitled "Physical Science in General Science" and consists of sections dealing with mechanics, electricity and light. A list of 41 behavioral objectives is stated…

  9. Inquiry-Based Science Education: A Scenario on Zambia's High School Science Curriculum

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2012-01-01

    This paper is aimed at elucidating the current state of inquiry-based science education (IBSE) in Zambia's high school science curriculum. Therefore, we investigated Zambian teachers' conceptions of inquiry; determined inquiry levels in the national high school science curriculum materials, which include syllabi, textbooks and practical exams; and…

  10. Science. Elementary and Middle School Curriculum Objectives.

    ERIC Educational Resources Information Center

    Boston Public Schools, MA.

    This document lists science objectives for Boston elementary and middle school students. All objectives are presented in two columns. The left-hand column states each objective in general terms and gives an idea of its scope. The right-hand column, giving a specific example of what students should be able to do when the objective is achieved,

  11. ELEMENTARY SCIENCE OUTLINE, A GUIDE TO SUGGESTED CURRICULUM PRACTICES IN ELEMENTARY SCHOOL SCIENCE.

    ERIC Educational Resources Information Center

    KARTSOTIS, A. THOMAS; MESSERSCHMIDT, RALPH M.

    THE COMMITTEE ON ELEMENTARY SCHOOL SCIENCE OF THE LEHIGH VALLEY SCHOOL STUDY COUNCIL REPORTS THEIR WORK ON SUGGESTED CURRICULUM FOR GRADES 1-6. THE BELIEF IS THAT SCIENCE IS A MAJOR STUDY AREA IN ELEMENTARY SCHOOL, AND SHOULD BE TAUGHT TO ALL PUPILS IN A PLANNED LEARNING SEQUENCE, WITH DUE CONSIDERATION BEING GIVEN TO THE MATURITY OF THE CHILD.…

  12. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    ERIC Educational Resources Information Center

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an

  13. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    ERIC Educational Resources Information Center

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  14. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    ERIC Educational Resources Information Center

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  15. Investigating the Transition Process when Moving from a Spiral Curriculum Alignment into a Field-Focus Science Curriculum Alignment in Middle School

    ERIC Educational Resources Information Center

    Alwardt, Randi Kay

    2011-01-01

    This investigation examined the transition from a spiral science curriculum to a field-focus science curriculum in middle school. A spiral science curriculum focuses on a small part of each field of science during each middle school year, more of a general science concept. In contrast to that, the base of a field-focus curriculum is that each

  16. Investigating the Transition Process when Moving from a Spiral Curriculum Alignment into a Field-Focus Science Curriculum Alignment in Middle School

    ERIC Educational Resources Information Center

    Alwardt, Randi Kay

    2011-01-01

    This investigation examined the transition from a spiral science curriculum to a field-focus science curriculum in middle school. A spiral science curriculum focuses on a small part of each field of science during each middle school year, more of a general science concept. In contrast to that, the base of a field-focus curriculum is that each…

  17. Building Potemkin Schools: Science Curriculum Reform in a STEM School

    ERIC Educational Resources Information Center

    Teo, Tang Wee

    2012-01-01

    "Potemkin schools" is used as the phrase to capture what a US science, technology, engineering, and mathematics (STEM) public speciality high school becomes as a result of its institutional branding. By way of an examination of the efforts of one teacher drawn into school branding through his "inquiry-based reform" of an Advanced Chemistry course,…

  18. Political Science and Business School Curriculum.

    ERIC Educational Resources Information Center

    Matasar, Ann B.

    In the business community an understanding of the workings of government is essential. Most undergraduate business curricula do not include political science courses even though the subject can make major contributions to the student's education. Three areas of the business core would be particularly enriched by political science: organization…

  19. Indian River School District Science Curriculum Guidelines.

    ERIC Educational Resources Information Center

    Banks, Dennis E.; And Others

    This monograph includes guidelines for science courses in grades seven, eight, and nine, and for biology, chemistry and physics. Seventh grade Environmental Life Science is lab-oriented and based on a variety of student experiences. Course objectives are presented as well as the course outline. A multitext approach, with a suggested textbook list,…

  20. Restructuring High School Science Curriculum: A Program Evaluation

    NASA Astrophysics Data System (ADS)

    Robertson, Cathy Jean

    One rural Midwestern high school discovered a discrepancy among school, state, and national science skill attainment, verified by ACT scores. If students do not acquire vital science skills, they may not perform proficiently on science tests, thus impacting future college options. Inquiry based instruction and constructivism provided the basis for the theoretical framework. This study questioned associations between ACT scores, inquiry science technique usage, and ACT standard usage (Phase 1), and teachers' views on science instruction (Phase 2). This sequential explanatory mixed methods program evaluation included 469 ACT scores, surveys sent to 9 science teachers, and 8 interviews. Phase 1 used the inquiry science implementation scale survey and an ACT college readiness standards workbook to determine proportional associations between datasets. Descriptive statistics, one-sample t tests, and binomial tests were used to analyze Phase 1 data. Phase 2 interviews augmented Phase 1 data and were disassembled, reassembled, and interpreted for parallel viewpoints. Phase 1 data indicated that teachers use a slightly above average amount of inquiry and science ACT standards in the classroom; however, most science students did not test above the curriculum and there were inconsistencies in standards covered. Phase 2 data revealed teachers need time to collaborate and become skilled in inquiry methods to rectify the inconsistencies. The project was an evaluation report. This study will foster positive social change by giving the district a plan: adapt the science curriculum by integrating more ACT and inquiry standards and participate in more professional development that applies inquiry as a tool to increase science skill proficiency, thus generating locally competitive students for college and the workforce.

  1. Integrating the history of science into a middle school science curriculum

    NASA Astrophysics Data System (ADS)

    Huybrechts, Jeanne Marie

    This study examined the effect of incorporating the history of science into a middle school physical science curriculum on student attitudes toward science and the work of scientists. While there is wide support for including some science history in middle school science lessons within both the science and science-education communities, there is little curriculum designed to meet that objective. A series of five lessons was written specifically for the study. Each lesson included a brief biography of a scientist whose work was of historical significance, and a set of directions for duplicating one or more of the experiments done by that scientist. A thirty-question, Likert scale survey of the attitudes of middle school students toward science and the work of scientists was also written for this study. The survey was administered to two groups of students in a single middle school: One group---the experimental group---subsequently used the science history curriculum; the second (control) group did not. The same attitude survey was readministered to both groups of students after study of the science-history curriculum was completed. The results of the study indicate that there was no statistically significant difference between the pretest and posttest scores of either the experimental or control group students. Further analysis was done to determine whether there were differences between the pretest and posttest scores of boys and girls, or between "regular" or "honors" students. In both cases no statistically significant difference was found.

  2. Moral Values and Science Teaching: A Malaysian School Curriculum Initiative

    NASA Astrophysics Data System (ADS)

    Tan, Sok Khim

    Implicit in teaching science has been the teaching of a set of values. However, its presence has remained unacknowledged because of assumptions made that its products are value-free and that work of science involves positive values. Malaysian schools have introduced a set of noble values to be taught as a subject called moral education while at the same time expecting all subjects, including the sciences to actively inculcate these noble values in their lessons. A search for values related to science included studies from science education curriculums, studies by scientists and philosophers of science, feminist and Indian critics of science. These values could be categorized into four categories representing epistemological values, supporting values, societal and moral values and power-oriented values. While some categories compliment each other, others are in contention. This paper argues for the inclusion of societal and moral values in the science classrooms. A compassionate scientist should be a reality. The task for Malaysian science educators is to find a way to raise awareness of these values.

  3. Complementary Social Sciences Courses in the Alberta High School Curriculum: A Conceptual Review

    ERIC Educational Resources Information Center

    Staszenski, Donna; Smits, Hans

    2008-01-01

    In keeping with Alberta Education's goals and responsibilities to develop and evaluate curriculum and to set standards and assess outcomes, the Ministry is reviewing the status and purpose of social sciences courses as part of the high school curriculum. The present social sciences curriculum was revised in 1985. As part of the social sciences…

  4. The Science Curriculum. The Report of the National Forum for School Science (Crystal City, Virginia, November 14-15, 1986). This Year in School Science 1986.

    ERIC Educational Resources Information Center

    Champagne, Audrey B., Ed.; Hornig, Leslie E., Ed.

    The outgrowth of a conference on how science education can best meet the needs and expectations of society, this volume is designed to provide a source of information and ideas about the future of the school science curriculum. It contains 15 papers, including: "Critical Questions and Tentative Answers for the School Science Curriculum" (Audrey B.…

  5. The New Jersey Core Curriculum Content Science Standards influence on the scope and sequence of the high school science curriculum

    NASA Astrophysics Data System (ADS)

    Wright, Tena R.

    This study describes changes to the secondary science curriculum for college preparatory students as a consequence of the implementation of the New Jersey Core Content Curriculum Standards (NJCCCS) in Science. The study compares curriculum changes by the district's socio-economic status (DFG) and participation in the New Jersey Statewide Systemic Initiative (NJSSI), a systemic science reform effort of the National Science Foundation. A 26-question survey was mailed to 285 secondary school districts in New Jersey. A total of 132 districts returned the survey, resulting in a response rate of 48%. The study finds that some curriculum changes have taken place since the inception of the NJCCS Science standards; although few were found to be statistically significant certain trends did appear. One trend suggested by the data is that more curricular change took place in Grade 9 than in any other grade. Another trend indicates that the Biology/Chemistry sequence remains intact, with many districts now offering Biology in Grade 9 and Chemistry in Grade 10; this is particularly common in upper-income districts. While the state mandates a third year of science for graduation, Physics is not a requirement. Forty-four districts reported no changes to their curriculum. The most frequently reported change was a change in text. The second most frequent change reported was creating a new Grade 9 course; moving Biology to Grade 9 was the third most commonly reported change. Chemistry and physics were added to courses in Grades 9 and 10. Participation in NJSSI did not appear to be significant. Overall, upper-income districts reported making the greatest change, while middle-income districts reported the greatest change in Grade 9. Very few districts reported changes in the scope of Chemistry and Physics. The changes reported by the school districts reflect the conservative nature of high school education and the perseverance of the "layer-cake" curriculum indigenous to American high school science.

  6. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    NASA Astrophysics Data System (ADS)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to outcomes of science curriculum change improvements with the consideration but not the dictation of the larger school community and state agendas. Thus, the study's results work to fuse previously separated research on general PLCs and curriculum change efforts into a cohesive understanding of the unexplored potential of a science PLC and school-based science curriculum change.

  7. Teaching Evolution in New Zealand's Schools--Reviewing Changes in the New Zealand Science Curriculum

    ERIC Educational Resources Information Center

    Campbell, Alison; Otrel-Cass, Kathrin

    2011-01-01

    New Zealand has had a national school science curriculum for more than 80 years. In the past the evolution content of this document has varied, and has at times been strongly influenced by creationist lobby groups. The "new" science curriculum, to be fully implemented in 2010, places much greater emphasis than before on understanding evolution,

  8. Veterinary Science Technology: A Suggested Two-Year Post High School Curriculum.

    ERIC Educational Resources Information Center

    State Univ. of New York, Delhi. Agricultural and Technical Coll.

    Designed to aid States in planning and developing two-year post-high school programs in veterinary science technology, the curriculum guide presents a suggested curriculum for a training program in veterinary science technology, with an option in meat inspection and regulatory technology effective in the fourth semester of the training period.…

  9. THE ROLE OF HIGH SCHOOL TEACHERS IN DISSEMINATING NEW ELEMENTARY SCIENCE CURRICULUMS. FINAL REPORT.

    ERIC Educational Resources Information Center

    HOFFART, ERVIN H.

    REPORTED ARE TWO STUDIES OF THE NEWTON, MASSACHUSETTS EDUCATION DEVELOPMENT CENTER. IN ONE STUDY DATA ON WORKSHOPS TO ACQUAINT HIGH SCHOOL PHYSICS TEACHERS WITH NEW SCIENCE CURRICULUM MATERIALS ARE REPORTED. THE WORKSHOPS WERE HELD AT 23 AREA MEETINGS AND ATTENDED BY 755 HIGH SCHOOL SCIENCE TEACHERS DURING THE 1966-67 SCHOOL YEAR. THE WORKSHOPS…

  10. Comparative Study on Romanian School Science Curricula and the Curriculum of TIMSS 2007 Testing

    ERIC Educational Resources Information Center

    Ciascai, Liliana

    2009-01-01

    The results of Romanian school students in Science PISA and TIMSS testings have been and continue to be systematically slack. In the present paper we intend to do a comparative analysis of Science curriculum TIMSS 2007 and Romanian Science school curricula of 4th and 8th grades. This analysis, based on Bloom's taxonomy of cognitive domain,…

  11. New Mexico State Secondary School Science-Based Nutrition Curriculum.

    ERIC Educational Resources Information Center

    Ecklund, Susan, Ed.; Smalley, Katherine, Ed.

    This curriculum guide provides instructional materials for a 10-unit secondary-level science-based nutrition course. Each unit contains some or all of the following components: a summary sheet for each function, including generalizations with corresponding objectives, additional learning activities, and additional resources; unit outline; pretest;

  12. New Mexico State Secondary School Science-Based Nutrition Curriculum.

    ERIC Educational Resources Information Center

    Ecklund, Susan, Ed.; Smalley, Katherine, Ed.

    This curriculum guide provides instructional materials for a 10-unit secondary-level science-based nutrition course. Each unit contains some or all of the following components: a summary sheet for each function, including generalizations with corresponding objectives, additional learning activities, and additional resources; unit outline; pretest;…

  13. Towards a More Authentic Science Curriculum: The Contribution of Out-of-School Learning

    ERIC Educational Resources Information Center

    Braund, Martin; Reiss, Michael

    2006-01-01

    In many developed countries of the world, pupil attitudes to school science decline progressively across the age range of secondary schooling while fewer students are choosing to study science at higher levels and as a career. Responses to these developments have included proposals to reform the curriculum, pedagogy, and the nature of pupil…

  14. Towards a More Authentic Science Curriculum: The Contribution of Out-of-School Learning

    ERIC Educational Resources Information Center

    Braund, Martin; Reiss, Michael

    2006-01-01

    In many developed countries of the world, pupil attitudes to school science decline progressively across the age range of secondary schooling while fewer students are choosing to study science at higher levels and as a career. Responses to these developments have included proposals to reform the curriculum, pedagogy, and the nature of pupil

  15. Clarendon Alternative School. Japanese Bilingual Bicultural Program. Curriculum Sampler II: Science.

    ERIC Educational Resources Information Center

    Choy, V. Kanani, Ed.; And Others

    A sampler of thematic science lessons from the Japanese bilingual/bicultural education program of the Clarendon Alternative School, a California elementary school, is presented. The lessons are designed to integrate Japanese instruction with the core science curriculum. Each lesson contains this information: the grade level, teacher(s), and…

  16. Clarendon Alternative School. Japanese Bilingual Bicultural Program. Curriculum Sampler II: Science.

    ERIC Educational Resources Information Center

    Choy, V. Kanani, Ed.; And Others

    A sampler of thematic science lessons from the Japanese bilingual/bicultural education program of the Clarendon Alternative School, a California elementary school, is presented. The lessons are designed to integrate Japanese instruction with the core science curriculum. Each lesson contains this information: the grade level, teacher(s), and

  17. Employability Standards: Inclusion in Family and Consumer Science Middle School Curriculum

    ERIC Educational Resources Information Center

    Smith, Bettye P.

    2007-01-01

    The purpose of this study was to determine the extent that the Georgia Quality Core Curriculum (QCC) employability standards were included in the family and consumer sciences (FCS) curriculum. The 149 middle school teachers in this study were asked to indicate on a 4-point Likert type scale whether they considered each of the 25 employability…

  18. Biological Sciences Curriculum Study Newsletter 34, The Middle School.

    ERIC Educational Resources Information Center

    Clark, George M.

    Reported are guidelines which are the outgrowth of six conferences on the teaching of life science in the middle school. The membership of each conference was by invitation consisting of experienced middle school science teachers, biologists from universities, the BSCS staff, and observers. The guidelines were developed to provide direction in

  19. An exploratory curriculum analysis of thirteen virtual schools, online homeschools and online curriculum providers' science curriculum from kindergarten through twelfth grade

    NASA Astrophysics Data System (ADS)

    Jones, Dussy L.

    2007-12-01

    The purpose of this study is to describe and examine various Internet-based science curricula in terms of their educational value and comprehensiveness. Thirteen online homeschool providers' science curricula were analyzed through an examination of the content and organization of instruction and through a comparison with the seven National Science Education Standards (NSES) in order to assess the pedagogical and developmental appropriateness of online science curriculum, to find the ideological perspectives exhibited by each curriculum, and to identify implications for the future of homeschooling regarding children who use an online science curriculum as the basis of their science education. The results reveal that only a few online schools incorporate all seven NSES in their science curriculum; most online schools' content and instruction have a traditional/behavioral perspective; and the Systematizer theoretical perspective was prevalent in online schools' science curricula. This study investigates the issue of whether online homeschooling can accurately be termed homeschooling. A discussion of education and schooling according to Holt (1976), Illich (1972), and Moore and Moore (1975) explore this issue. The findings from this discussion suggest that the online homeschool movement may be an undiscovered form of "schooling" and that parents, educators, researchers, curriculum developers, and specialists should be aware of the implications online homeschooling has on homeschooling's philosophy of education.

  20. An Analysis of the Secondary School Science Curriculum and Directions for Action in the 1980's. 1982 AETS Yearbook.

    ERIC Educational Resources Information Center

    Staver, John R., Ed.

    The 1982 Yearbook of the Association for the Education of Teachers in Science (AETS) is the second in a series of three AETS yearbooks in which Ralph Tyler's 1949 curriculum rationale is used to analyze science curriculum. This publication is focused on the secondary school science curriculum (the 1981 yearbook was concerned with teaching science…

  1. Sources of Differential Participation Rates in School Science: The Impact of Curriculum Reform

    ERIC Educational Resources Information Center

    Homer, Matt; Ryder, Jim; Donnelly, Jim

    2013-01-01

    School science courses have widely varying participation rates across a range of student characteristics. One of the stated aims of the 2006 Key Stage 4 science curriculum reforms in England was to improve social mobility and inclusion. To encourage students to study more science, this reform was followed by the introduction in 2008 of an

  2. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    ERIC Educational Resources Information Center

    Kulo, Violet; Bodzin, Alec

    2013-01-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade

  3. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    ERIC Educational Resources Information Center

    Kulo, Violet; Bodzin, Alec

    2013-01-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade…

  4. Developing a Regionally-Based "Next Generation" High School Climate Science Curriculum

    NASA Astrophysics Data System (ADS)

    Bell, M.; Clark, J.; Getty, S. R.; Marks, J.; Hungate, B. A.; Kaufman, D. S.; Coles, R.; Haden, C.; Cooley, N.

    2012-12-01

    Colorado Plateau Carbon Connections is a regionally relevant, culturally responsive, technology-rich high school climate science curriculum for the Colorado Plateau/Four Corners region. Funded by an NSF Climate Change Education Partnership grant, the 10-lesson curriculum supplement is the result of collaboration between Northern Arizona University climate scientists, social scientists and educators and the NASA-funded Biological Sciences Curriculum Study Carbon Connections project. The curriculum includes disciplinary core ideas in Earth Science from A Framework for K-12 Science Education. It integrates cross-cutting relationships and science and engineering practices. Students are introduced to regional and global effects of climate change, and build their understanding of climate science using simulations and climate models. The models are based on authentic data and allow students to explore the roles of carbon dioxide, volcanic forcing, El Niño effects, solar variability, and anthropogenic inputs to the climate system. Students also negate climate misconceptions using climate science, and analyze personal connections to the climate system. They examine their own carbon footprints and propose regionally based solutions for mitigating the effects of climate change. The curriculum was field tested in Spring 2012 with 384 students and ten teachers in seven schools. The evaluation shows strong student engagement and increased knowledge of climate science and solutions. This curriculum also serves as a model for integrating regional issues into climate science education.

  5. Formative Evaluation of Elementary School Pre-Service Science Curriculum.

    ERIC Educational Resources Information Center

    Horak, Willis J.; Blecha, Milo K.

    Evaluations of the preservice science education program for elementary school teachers at the University of Arizona, Tucson, are discussed. The evaluations of the program are in the areas of course structure and organization, and students' attitudes and overall knowledge of the science processes. (CP)

  6. A Suggested Approach to the Elementary School Science Curriculum.

    ERIC Educational Resources Information Center

    Lipson, Joseph I.

    The author describes a comprehensive science program for the elementary school. The program should include six components: (1) The story of the great generalizing constructs of science, such as the atom, the universe, the layers of the earth, and evolution--even though the students do not have the observational evidence to support the constructs;…

  7. Predominant Teaching Strategies in Schools: Implications for Curriculum Implementation in Mathematics, Science and Technology

    ERIC Educational Resources Information Center

    Achuonye, Keziah Akuoma

    2015-01-01

    This descriptive survey is hinged on predominant teaching strategies in schools, implications for curriculum implementation in Mathematics, Science and Technology. Target population consisted of teachers in primary, secondary and tertiary schools. However, purposive sample of 900 respondents was drawn from the six BRACED states namely Bayelsa,

  8. Predominant Teaching Strategies in Schools: Implications for Curriculum Implementation in Mathematics, Science and Technology

    ERIC Educational Resources Information Center

    Achuonye, Keziah Akuoma

    2015-01-01

    This descriptive survey is hinged on predominant teaching strategies in schools, implications for curriculum implementation in Mathematics, Science and Technology. Target population consisted of teachers in primary, secondary and tertiary schools. However, purposive sample of 900 respondents was drawn from the six BRACED states namely Bayelsa,…

  9. Fueling the Car of Tomorrow: An Alternative Fuels Curriculum for High School Science Classes

    ERIC Educational Resources Information Center

    Schumack, Mark; Baker, Stokes; Benvenuto, Mark; Graves, James; Haman, Arthur; Maggio, Daniel

    2010-01-01

    It is no secret that many high school students are fascinated with automobiles. The activities in "Fueling the Car of Tomorrow"--a free high school science curriculum, available online--(see "On the web")--capitalize on this heightened awareness and provide relevant learning opportunities designed to reinforce basic physics, chemistry, biology,…

  10. Fueling the Car of Tomorrow: An Alternative Fuels Curriculum for High School Science Classes

    ERIC Educational Resources Information Center

    Schumack, Mark; Baker, Stokes; Benvenuto, Mark; Graves, James; Haman, Arthur; Maggio, Daniel

    2010-01-01

    It is no secret that many high school students are fascinated with automobiles. The activities in "Fueling the Car of Tomorrow"--a free high school science curriculum, available online--(see "On the web")--capitalize on this heightened awareness and provide relevant learning opportunities designed to reinforce basic physics, chemistry, biology,

  11. Examining the Effect of Teachers' Adaptations of a Middle School Science Inquiry-Oriented Curriculum Unit on Student Learning

    ERIC Educational Resources Information Center

    Fogleman, Jay; McNeill, Katherine L.; Krajcik, Joseph

    2011-01-01

    Reform based curriculum offer a promising avenue to support greater student achievement in science. Yet teachers frequently adapt innovative curriculum when they use them in their own classrooms. In this study, we examine how 19 teachers adapted an inquiry-oriented middle school science curriculum. Specifically, we investigate how teachers'…

  12. Examining the Effect of Teachers' Adaptations of a Middle School Science Inquiry-Oriented Curriculum Unit on Student Learning

    ERIC Educational Resources Information Center

    Fogleman, Jay; McNeill, Katherine L.; Krajcik, Joseph

    2011-01-01

    Reform based curriculum offer a promising avenue to support greater student achievement in science. Yet teachers frequently adapt innovative curriculum when they use them in their own classrooms. In this study, we examine how 19 teachers adapted an inquiry-oriented middle school science curriculum. Specifically, we investigate how teachers'

  13. Project Exploration's personalized curriculum: Fostering access and equity in science out-of-school

    NASA Astrophysics Data System (ADS)

    Lyon, Gabrielle Helena

    Participation and achievement in science by students of color and girls remains inequitable despite decades of initiatives aimed at leveling the playing field. Science in out-of-school-time is a strategy that emphasizes the role of informal education, however, robust descriptions of learning environments which effectively recruit and retain historically underrepresented populations to science are lacking. Greater understanding of the potential of such efforts for increasing access and equity in science is needed. In 1999, I co-founded Project Exploration, a science education organization, to increase access to science for minority youth and girls through personalized experiences with science and scientists. This dissertation explores the personalized curriculum at the heart of Project Exploration's approach to science out-of-school, and contextualizes this approach in terms of the historic and present-day landscape of out-of-school efforts intended to increase the diversity of participation in science. This thesis is intended to be a contribution to an intellectual and practical curriculum conversation about how to effectively engage and retain minorities and girls to science. Ultimately I hope this study will raise questions about the hidden curriculum of a national competitiveness framework and offer an alternative way to value science in---and out---of school.

  14. Middle school integrated science, mathematics and technology curriculum. Final report, September 30, 1991--December 31, 1993

    SciTech Connect

    Brecher, K.

    1994-03-01

    The Project ``Middle School Integrated Science, Mathematics and Technology Curriculum`` had two goals: (1) to survey the literature of energy education; and (2) to develop a theme for a possible integrated middle school energy based curriculum. We aimed to respond to the challenge of developing thematic integrated curricula as advocated by the NSTA, AAAS and other organizations analyzing the future of American science and mathematics education. The survey of middle school energy curriculum materials has been completed. A list of the resources surveyed are included in this report. Though many energy based curriculum materials have been produced, none of them appears to be broadly disseminated throughout the country. Some energy based curriculum materials are far less well developed than others. We found that an integrated set of modular materials concerning the energy based theme of light and optics does not now exist. If they were developed, they could be broadly disseminated throughout middle school courses in the physical and biological sciences, as well as in new integrated science courses proposed as part of the current science education reform movement. These types of modular materials could also provide a powerful means of student exploration of new technologies such as microcomputers.

  15. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    NASA Astrophysics Data System (ADS)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  16. Science literacy in high school students: A comparison of achievement in two curriculum approaches

    NASA Astrophysics Data System (ADS)

    McAlister, Diane C.

    2009-12-01

    Academic achievement as measured by the Florida Comprehensive Assessment Test (FCAT) in science for 367 students in two science curriculum options, integrated science and the traditional subject-specific courses, in one central Florida high school were compared. A multivariate analysis of covariance (MANCOVA) of science curriculum choice was analyzed for three variables, total FCAT score, earth science subscore, and scientific thinking subscore. Covariate of academic ability as defined by grade point average (GPA) and academic focus as defined by post secondary plans were considered for use. Analysis of statistically significant results was completed through analysis of covariance (ANCOVA). While statistically significant results were found in favor of the traditional curriculum group, additional statistical analysis of the curriculum groups for differences in socioeconomic status (SES), gender, and instructional level led to a logistic regression to explore the ability of these variables, GPA, and total FCAT score to predict curriculum group membership. GPA, level of instruction and FCAT score were found to be statistically significant predictors. Final conclusions to the study indicated a significant difference in scientific literacy for the two groups in favor of the traditional curriculum. However, logistic regression results indicated that due to significant differences in SES, gender, GPA, and level of instruction for the groups, the differences in academic achievement were probably due to factors other than curriculum design. Limitations of the study and suggestions for further research were presented.

  17. Implementing a New Science National Curriculum for England: How Trainee Teachers See the "How Science Works" Strand in Schools

    ERIC Educational Resources Information Center

    Toplis, Rob; Golabek, Charles; Cleaves, Anna

    2010-01-01

    This article reports empirical work conducted by three university teacher education providers into how a major revision of the science curriculum in England, the "How Science Works" strand, has been translated into practice for 14-16 year olds in schools. Data were collected from pre-service teachers about their understanding, experiences,…

  18. CURRICULUM MATTERS: Authentic science in schools? - an evidence-based rationale

    NASA Astrophysics Data System (ADS)

    Woolnough, Brian E.

    2000-07-01

    Students can, and should, do open-ended projects in their school science education. This article draws together findings from a series of research investigations into students' research projects in schools. It finds that they are effective in developing core skills in students, especially problem-solving, communication and interpersonal skills; that they improve the attitudes of students towards science and technology and the likelihood that they will enter careers in these areas; and that they allow students to experience and develop one important type of authentic science in schools. It suggests that we now have a rationale for the inclusion of student research projects into the science curriculum and evidence that school science will be enriched and revived by the introduction of such authentic science.

  19. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    NASA Astrophysics Data System (ADS)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  20. Inquiry Learning of High School Students through a Problem-Based Environmental Health Science Curriculum

    ERIC Educational Resources Information Center

    Kang, Nam-Hwa; DeChenne, Sue Ellen; Smith, Grant

    2012-01-01

    The purpose of this study was to examine the degree to which high school students improved their inquiry capabilities in relation to scientific literacy through their experience of a problem-based environmental health science curriculum. The two inquiry capabilities studied were scientific questioning and approaches to inquiry into their own…

  1. Hidden Student Voice: A Curriculum of a Middle School Science Class Heard through Currere

    ERIC Educational Resources Information Center

    Crooks, Kathleen Schwartz

    2012-01-01

    Students have their own lenses through which they view school science and the students' views are often left out of educational conversations which directly affect the students themselves. Pinar's (2004) definition of curriculum as a "complicated conversation" implies that the class' voice is important, as important as the teacher's voice, to the

  2. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    ERIC Educational Resources Information Center

    Lee, Yew-Jin; Chue, Shien

    2013-01-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research…

  3. Fort Benton Science Curriculum Outline.

    ERIC Educational Resources Information Center

    Fort Benton Public Schools, MT.

    The science curriculum for the Fort Benton school system was developed with funds under Title III of the Elementary and Secondary Education Act to give students the background of a modern and forward-looking program in science taught in an imaginative, investigative, and inquiry-oriented fashion. The science curriculum guide outlines a planned…

  4. Exploring the middle school science achievement gap: Influences of curriculum, instruction and students' perceptions

    NASA Astrophysics Data System (ADS)

    Winning, Rosalie Anne

    Students' science achievement has been subject to scrutiny and criticism in the United States. The decline in rankings on standardized international assessments has been the focus of concern for educators, policy makers, parents and society at large. This study, designed as an action research, explored the factors contributing to the decrease in the number of students attaining advanced proficiency in science learning as measured by state assessments in grades four and eight in a New Jersey school district. Specifically, this study addressed the degree to which the middle school curriculum reflected the national science framework standards for 21st century leaning and the New Jersey Core Curriculum Content Standards; the pedagogical approaches regularly planned and implemented in the middle school science classrooms; and the students' perceptions of their science learning. Research data were collected by teacher and student surveys, focus group discussions, student interviews, document reviews of written curricula, and classroom observations. An important disparity emerged between the document analysis of the local curriculum and the teachers' views that 21st century learning skills are reflected in the written curriculum and classroom pedagogy. Further, classroom observations revealed the prevalence of a traditional pedagogy, focused on repetition of teacher-disseminated information and featuring limited differentiation, inquiry-based or constructivist learning strategies. The students expressed a value for discovery and collaboration with peers in order to develop, share and refine their understanding of science. The research concluded with recommendations for a revised curriculum process, sustained and collaborative professional development, on-going formative assessments of student learning and the formal integration of an online student science blog as a means of encouraging the co-construction of deep and enduring science knowledge.

  5. Towards a More Authentic Science Curriculum: The contribution of out-of-school learning

    NASA Astrophysics Data System (ADS)

    Braund, Martin; Reiss, Michael

    2006-10-01

    In many developed countries of the world, pupil attitudes to school science decline progressively across the age range of secondary schooling while fewer students are choosing to study science at higher levels and as a career. Responses to these developments have included proposals to reform the curriculum, pedagogy, and the nature of pupil discussion in science lessons. We support such changes but argue that far greater use needs to be made of out-of-school sites in the teaching of science. Such usage will result in a school science education that is more valid and more motivating. We present an “evolutionary model” of science teaching that looks at where learning and teaching take place, and draws together thinking about the history of science and developments in the nature of learning over the past 100 years or so. Our contention is that laboratory-based school science teaching needs to be complemented by out-of-school science learning that draws on the actual world (e.g., through fieldtrips), the presented world (e.g., in science centres, botanic gardens, zoos and science museums), and the virtual worlds that are increasingly available through information technologies.

  6. Science curriculum effects in high school: A quantitative synthesis

    NASA Astrophysics Data System (ADS)

    Weinstein, Thomas; Boulanger, F. David; Walberg, Herbert J.

    To assess the impact of the innovative precollege science curricula of the past twenty years on learning, a search was conducted using the computer-assisted Bibliographic Retrieval System (BRS), the ERIC Annual Summaries of Research in Science Education, and Dissertation Abstracts International. A total of 151 effect sizes were obtained from 33 studies representing 19,149 junior and senior high school students in the United States, Great Britain, and Israel. Study-weighted analysis yielded an overall mean effect size of 0.31 significantly favorable to the innovative curricula [t(25) = 2.183, p < 0.05] on all outcomes. Student performance in innovative curricula averaged in the 62nd percentile relative to the control norm. Tabulation of signed comparisons indicated that sixty-four out of eighty-one unweighted outcomes were favorable to the innovative curricula. Separate analyses for test content bias, methodological rigor, type of learning, and student characteristics showed no significant differences across these categories.

  7. Science Curriculum Framework. Revised.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents the revised Arkansas Science Curriculum Framework (1999), which replaces the Science Curriculum Framework of 1994. Three strands--physical science systems, life science systems, and Earth science/space science systems--were identified using an integrated approach to provide guidance in the science curriculum. A glossary and…

  8. Small Schools Science Curriculum, K-3: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Learning objectives and suggested activities, monitoring procedures and resources for the Washington K-3 Small Schools Science Curriculum are based on the rationale that "young children need the opportunity to observe, classify, predict, test ideas again and again in a variety of contexts, ask questions, explain, discuss ideas, fail, and succeed.…

  9. Professional Development School Support of the Elementary GLOBE Curriculum A Facilitated Adaptation of Inquiry Science

    NASA Astrophysics Data System (ADS)

    High, Vance D.

    This qualitative study focused on identifying barriers and remedies to those barriers found when teaching elementary school science. The Elementary GLOBE Program (2006) was the curriculum selected when doing the 18 month study. The researcher asked what made Elementary GLOBE (EG) easy and/or difficult to use. The researcher also wished to ascertain what impact did the adoption of EG have on the delivery of science instruction in the K-4 grade classrooms participating in this study. Two professional developments schools (PDS), located in a Mid Atlantic state were the sites for the study. Both schools are in an urban setting and affiliated with a nearby land grant university. The main purpose of this study was to investigate how elementary teachers integrate inquiry-based science in their classrooms. This was accomplished by providing an inservice workshop on an elementary science curriculum (EG) to six teachers. Then teachers were observed instructing with the newly learned curriculum. During the course of the study, teachers kept journals about their experiences teaching science. Later, they gave interviews about their classroom and school environments while teaching science. To ascertain trustworthiness, a member check in the form of a questionnaire was given to the participating teachers to determine the reliability of the findings at the conclusion of the study. Seven out of seven teachers agreed that EG changed the way their students experienced science. Five out of seven participants felt EG increased their confidence to teach science. Time management was identified as the major barrier to teaching science with six out seven teachers agreeing with this finding. Although accommodation was identified as a barrier, four out of seven agreed to this finding even though there was a high prevalence of diversity in the studied schools and EG was not presented in the any language other than English. Five of the seven participants preferred teaching science with EG over the approved textbook used by the schools. There is a dearth of primary level earth system science materials, so the findings from this study provide evidence for an engaging curriculum promoting science and literacy.

  10. Transformative Multicultural Science curriculum: A case study of middle school robotics

    NASA Astrophysics Data System (ADS)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  11. The Lamprey River Curriculum: A Teacher-Written, Teacher-Tested Social Studies Curriculum with a Science Component for Elementary, Middle and High School Students.

    ERIC Educational Resources Information Center

    McNelly, Deborah; Hoff, Douglas

    This social studies curriculum with a science component contains two sections. The first section targets elementary schools and includes six lessons. The second section is intended for middle schools and high schools and contains four units. These two sections overlap with each other and can be used by teachers from any grade level. The content of…

  12. Validity and Worth in the Science Curriculum: Learning School Science Outside the Laboratory

    ERIC Educational Resources Information Center

    Braund, Martin; Reiss, Michael

    2006-01-01

    It is widely acknowledged that there are problems with school science in many developed countries of the world. Such problems manifest themselves in a progressive decline in pupil enthusiasm for school science across the secondary age range and by the fact that fewer students are choosing to study the physical sciences at higher levels and as…

  13. Validity and Worth in the Science Curriculum: Learning School Science Outside the Laboratory

    ERIC Educational Resources Information Center

    Braund, Martin; Reiss, Michael

    2006-01-01

    It is widely acknowledged that there are problems with school science in many developed countries of the world. Such problems manifest themselves in a progressive decline in pupil enthusiasm for school science across the secondary age range and by the fact that fewer students are choosing to study the physical sciences at higher levels and as

  14. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    NASA Astrophysics Data System (ADS)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  15. Hidden student voice: A curriculum of a middle school science class heard through currere

    NASA Astrophysics Data System (ADS)

    Crooks, Kathleen Schwartz

    Students have their own lenses through which they view school science and the students' views are often left out of educational conversations which directly affect the students themselves. Pinar's (2004) definition of curriculum as a 'complicated conversation' implies that the class' voice is important, as important as the teacher's voice, to the classroom conversation. If the class' voice is vital to classroom conversations, then the class, consisting of all its students, must be allowed to both speak and be heard. Through a qualitative case study, whereby the case is defined as a particular middle school science class, this research attempts to hear the 'complicated conversation' of this middle school science class, using currere as a framework. Currere suggests that one's personal relationship to the world, including one's memories, hopes, and dreams, should be the crux of education, rather than education being primarily the study of facts, concepts, and needs determined by an 'other'. Focus group interviews were used to access the class' currere: the class' lived experiences of science, future dreams of science, and present experiences of science, which was synthesized into a new understanding of the present which offered the class the opportunity to be fully educated. The interview data was enriched through long-term observation in this middle school science classroom. Analysis of the data collected suggests that a middle school science class has rich science stories which may provide insights into ways to engage more students in science. Also, listening to the voice of a science class may provide insight into discussions about science education and understandings into the decline in student interest in science during secondary school. Implications from this research suggest that school science may be more engaging for this middle school class if it offers inquiry-based activities and allows opportunities for student-led research. In addition, specialized academic and career advice in early middle school may be able to capitalize on this class' positive perspective toward science. Further research may include using currere to hear the voices of middle school science classes with more diverse demographic qualities.

  16. Development and Evaluation of an Experimental Curriculum for the New Quincy (Mass.) Vocational-Technical School. The Science Curriculum.

    ERIC Educational Resources Information Center

    Champagne, Audrey; Albert, Anne

    Activities concerning the development of the science curriculum of Project ABLE are summarized. The science curriculum attempts to relate science content to vocational areas where applicable, but emphasizes generalizations which the student will apply in his specific vocational field. Intended for 10th, 11th, and 12th grade students, the…

  17. Elementary Science Curriculum Guide 1983.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This curriculum guide provides: (1) information on the philosophy of the elementary school science program in Alberta; (2) a list of eight general objectives for science education; (3) 11 statements which identify the desirable characteristics of an elementary science program; (4) a discussion of inquiry in elementary science, considering process…

  18. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    NASA Astrophysics Data System (ADS)

    Fensham, Peter J.

    2016-04-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context, knowledge of alternatives, and the needs of students, are now all very different from the corresponding conditions and contexts in the 1960s. To explore what alternative futures may succeed, the scenarios of prediction, precedent, possibility, preference, and promise are used to review past successes and failures at changing the direction of science education. From these scenarios, some assertions are made about what may, and may not, develop as new directions, and what institutions and groups of persons could be the initiating sources.

  19. Mothering and Moralism during the Progressive Era: How Women's Associations Reinterpreted Science To Shape the School Curriculum.

    ERIC Educational Resources Information Center

    Woyshner, Christine

    The history of the early 20th century public school curriculum has established a narrative that investigates the transition from an emphasis on the liberal arts to a more functional, or useful, curriculum. This history details the influence of the developing social sciences and scientific thinking in debates among various interest groups to…

  20. Media Literacy Ignored: A Qualitative Call for the Introduction of Media Studies Across the High School Social Science Curriculum.

    ERIC Educational Resources Information Center

    Sneed, Don; And Others

    Noting that America is behind several countries in media studies and that efforts to introduce systematic study and use of media in the curriculum has been sporadic, this paper calls for the introduction of media studies in the social science curriculum of American high schools. Two projects are examined as possible means of helping spread media…

  1. Science, Curriculum, and Society: Trends in Science Curriculum.

    ERIC Educational Resources Information Center

    Sabar, Naama

    1979-01-01

    Presents pattern of trends in science curriculum reform for elementary and secondary schools that blossomed in the middle of the 1960s. A brief review is also included to show how the society has affected the different stages of the curriculum movement. (HM)

  2. A Curriculum for a Three Year High School Science Research Program

    NASA Astrophysics Data System (ADS)

    Darytichen, F.; Danch, J.

    2003-12-01

    A three-year high school science research program has been taught in Woodbridge Township School District - Woodbridge, New Jersey, since 1987. The program's focus is to foster originial science research projects for high school students that have shown an aptitude and an interest in science. Students are instructed in basic research skills, including developing and conducting original research projects, statistical analysis, scientific writing, and presentation of research at local and national symposia, and science fairs. Upon completion of the third year all students are required to submit a paper, suitable for journal publication, detailing their research. Participating students have gone on to win awards with Westinghouse, Intel, The National Junior Science and Humanities Symposium, the International Science and Engineering Fair, New Jersey Academy of Sciences, and local and regional science fairs and symposia. Participating teachers have been recoginized by the Sigma Xi Research Society of Rutgers University for excellence in science teaching. New Jersey awarded the curriulum a Best Practice Award for 2003. Goals and strategies of the curriculum are detailed in a guide written for the courses. Professional development for the courses and resources for mentoring programs are the responsibility of the District Science Supervisor, and have been fostered over the years with the assistance of local colleges and universities including Rutgers Univesity, Monmouth University, University of Medicine and Dentistry of New Jersey, Liberty Science Center of New Jersey's Partners in Science Program, as well as local industries including Hatco Corporation, Merck Corporation, Englehard Corporation, and Lucent Technologies. Science Research teachers have conducted developmental workshops for school districts interested in implementing similar curricula.

  3. A New Core Curriculum for Engineering and Science Programs at the Colorado School of Mines.

    ERIC Educational Resources Information Center

    Olds, Barbara M.; Middleton, Nigel T.; Trefny, John U.

    The Colorado School of Mines is in the 4th year of a comprehensive curriculum revision process. After refining the mission statement and graduate profile, the school has developed and begun to implement a new undergraduate curriculum which features design-across-the-curriculum, a sequence of "systems" courses, an enhanced and integrated humanities…

  4. The development and implementation of an integrated curriculum at an elementary math, science, and technology magnet school

    NASA Astrophysics Data System (ADS)

    McKenna, James Corey

    The purpose of this study was to compare and contrast the intended and implemented integrated curriculum at an elementary magnet school in order to understand both how and why the integrated curriculum was developed and changed over time. Participants were four elementary school teachers from the same small magnet school in California. Each participant was a case study. Data sources included classroom observations; grade level and school-wide in-service observations; interviews; field notes; Discovery mathematics, science, and reading curricula; supplemental curriculum materials; grade-level curriculum guides; and lesson plans. Within-case and cross-case analyses were employed. A description of the intended curriculum was formulated from an analysis of curriculum documents related to the magnet program at Discovery. A description of the implemented curriculum was generated from data collected during classroom observations and interviews. The results indicated that the implemented curriculum was comparable to the intended, although there were limits and some discrepancies. Findings also indicated that participants had different views for what the intended curriculum was, how it was implemented in Discovery classrooms, and how their views evolved over time.

  5. Responding to a Relevance Imperative in School Science and Mathematics: Humanising the Curriculum Through Story

    NASA Astrophysics Data System (ADS)

    Darby-Hobbs, Linda

    2013-02-01

    There has been a recent push to reframe curriculum and pedagogy in ways that make school more meaningful and relevant to students' lives and perceived needs. This `relevance imperative' is evident in contemporary rhetoric surrounding quality education, and particularly in relation to the junior secondary years where student disengagement with schooling continues to abate. This paper explores how teachers translate this imperative into their mathematics and science teaching. Interview data and critical incidents from classroom practice are used to explore how six teachers attempted to make the subject matter meaningful for their students. Four `Categories of Meaning Making' emerged, highlighting key differences in how the nature of science and mathematics content constrained or enabled linkages between content and students' lifeworlds. While the teachers demonstrated a commitment to humanising the subject at some level, this analysis has shown that expecting teachers to make the curriculum relevant is not unproblematic because the meaning of relevance as a construct is complex, subject-specific, and embedded in understanding the human dimensions of learning, using, and identifying with, content. Through an examination of the construct of relevance and a humanistic turn in mathematics and science literature I argue for an expanded notion of relevance.

  6. Curriculum Package: Junior High - Middle School Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    ERIC Educational Resources Information Center

    Squires, Frances H.

    This science curriculum was written for teachers of children in junior high or middle school. It contains science activities for the following lessons: (1) Anemometers and Wind Speed; (2) Up! Up! and Away; (3) Jet Lag--Time Zones; (4) Inventors; (5) Model Rocketry; (6) Geometry and Kites; and (7) Super Savers. In lesson one, students construct an…

  7. "Keeping it Real -High School Science Curriculum"- Hurricane Katrina and BP Oil Spill inspire creative curriculum by Dave Jungblut, Oakcrest High School Science Teacher, Mays Landing, NJ

    NASA Astrophysics Data System (ADS)

    Jungblut, D.

    2011-12-01

    After Hurricane Katrina devastated Gulf Coast homes in 2005, Oakcrest High School science teacher and geologist, Dave Jungblut, traveled from Gulfport to Ocean Springs, Mississippi and conducted research to determine whether property damage was caused by wind or water. Jungblut wrote several studies, " Katrina Straight- Line Wind Field Study", "Applying Research to Practical Use for Hurricane Katrina Homeowners", and "Hurricane Katrina Wind Study" proving wind damage. Jungblut's research, done pro bono, helped thousands of homeowner's in the Mississippi area be reimbursed by insurance companies for wind damage caused by Hurricane Katrina http://www.hurricanekatrinastudy.com/ Jungblut incorporated his extensive data, in a high school curriculum that is now part of the science program he teaches each year. In January 2010, Jungblut presented "Hurricane Forensics" curriculum at the Rutgers Center for Mathematics, Science and Computer January 2009 Workshop http://www.dimacs.rutgers.edu/wst/. Through labs and creative hands-on activities, Jungblut challenged his students to analyze the photographic evidence, and data he collected, for themselves. Jungblut taught his students how to use geologic and forensic inquiry techniques to discover the difference between straight-line winds from microburst activity. The students applied the concept of the Geological Principle of Relative Dating, to determine the sequence of events that happened during Hurricane Katrina. They built model structures, which were subjected to wind and water forces to better understand the effects of these phenomena, Finally, the students evaluated local and worldwide environmental issues, such as land use risks and benefits, in the face of global warming, In the spring of 2010 when the BP Oil Spill occurred, Jungblut realized, another opportunity to bring real world issues into the classroom. After exploring scientific concepts relating to this environmental crisis, Jungblut challenged his students to devise creative solutions to stop the leak. This project was profiled on June 4th, 2010 on the CBS National News with Katie Couric, "Kids Solution to the BP Oil Spill" http://www.cbsnews.com/video/watch/?id=6549408n&tag=contentMain;contentBody Jungblut continues seeking creative ways to inspire real solutions to real world problems in his classroom as the Japan's earthquake, tsunami and nuclear disaster became a group learning activities for his students.

  8. Elementary Science Curriculum, Grade 3.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level, an overview of the topic, a list…

  9. Elementary Science Curriculum, Grade 6.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  10. Elementary Science Curriculum, Grade 5.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  11. Elementary Science Curriculum, Grade 4.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  12. Science Research 4: A New Curriculum Providing Student Mentorship and Teacher Training Facilitated by High School Students

    NASA Astrophysics Data System (ADS)

    Danch, J. M.; Aker, K.

    2013-12-01

    As part of a continuing comprehensive plan to include authentic scientific research in the science curricula of the Woodbridge Township School District, a new curriculum was developed to expanding the current 3-year Science Research Program to include a 4th year class. As with the previous 3 levels, the objectives of this curriculum include the development, implementation and dissemination of authentic scientific research by students. New objectives make use of the students advanced knowledge of the methods of science and electronic laboratory technology to provide mentorship to students performing scientific research or other inquiry-based science activities. Mentored students include those enrolled in high school Science Research 1, 8th Grade Honors Geoscience, and other high school science classes where scientific methods, inquiry-based learning and electronic data acquisition tools are utilized. Student mentors will also assist in the facilitation of a district-wide K-12 science symposium. The curriculum also calls for the creation of educational materials by students to enhance the teaching of scientific research and inquiry-based learning. Finally, students enrolled in Science Research 4 will conduct teacher-training sessions where their advanced expertise in the utilization of electronic sensors and data acquisition and analysis devices will be used to expand the use of such technology by teachers not only involved in research-based courses, but all areas of science education throughout the school district.

  13. An evaluative study of the impact of the "Curriculum Alignment Toolbox" on middle school science achievement

    NASA Astrophysics Data System (ADS)

    Jones, Carol L.

    The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated they enjoyed. Additionally, as best-practice, the questioning in all the gaming within CAT did not allow a student to continue until he/she had given the correct answer, thus reinforcing the correct response.

  14. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    NASA Astrophysics Data System (ADS)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each individual criterion across the elementary, middle, and high school levels. The National Science Education Standards were created with the input of thousands of people and over twenty scientific and educational societies. The standards were tested in numerous classrooms and showed an increase in science literacy for the students. With the No Child Left Behind legislation and Project 2061, the attainment of a science literate society will be helped by the adoption of the NSES standards and the STS themes into the American classrooms.

  15. The effect of an integrated high school science curriculum on student achievement, knowledge retention, and science attitudes

    NASA Astrophysics Data System (ADS)

    Smith, Kimberly A.

    The research study investigates the effectiveness of an integrated high school science curriculum on student achievement, knowledge retention and science attitudes using quantitative and qualitative research. Data was collected from tenth grade students, in a small urban high school in Kansas City, Missouri, who were enrolled in a traditional Biology course or an integrated Environmental Science course. Quantitative data was collected in Phase 1 of the study. Data collected for academic achievement included pretest and posttest scores on the CTBS MATN exam. Data collected for knowledge retention included post-posttest scores on the CTBS MATN exam. Data collected for science attitudes were scores on a pretest and posttest using the TOSRA. SPSS was used to analyze the data using independent samples t-tests, one-way ANCOVA's and paired samples statistics. Qualitative data was collected in Phase 2 of the study. Data included responses to open-ended interview questions using three focus groups. Data was analyzed for common themes. Data analysis revealed the integrated Environmental Science course had a statistically significant impact on academic achievement, knowledge retention and positive science attitudes. Gender and socioeconomic status did not influence results. The study also determined that the CTBS MATN exam was not an accurate predictor of scores on state testing as was previously thought.

  16. K-6 Science Curriculum Guide. Bulletin 1613.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, encompasses those standards that must be included in the elementary school (kindergarten to grade 6) science program. It consists of: (1) a rationale for an effective elementary school science program; (2) a list and…

  17. National Curriculum: Compulsory School Science--Is It Improving Scientific Literacy?

    ERIC Educational Resources Information Center

    Murphy, Colette; Beggs, Jim; Hickey, Ivor; O'Meara, Jim; Sweeney, John

    2001-01-01

    British students who had compulsory science in the National Curriculum from ages 11-16 (n=115) had significantly higher scores on a science test than those for whom secondary science had been optional (n=30). Almost all had very low scores on questions related to the circulatory system and sound and light, regardless of their science background.…

  18. Science K-12, Conservation of Matter. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, general science, physical science) and grade level. The focus of grades K-6 is an acquaintance of the student to: (1) the study of matter, its states, characteristics and properties, (2) structure of the atom,…

  19. Science K-12, Conservation of Energy. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (Grades K-12), often subheaded according to science area (physical sciences, physics, biology, chemistry, general science) and grade level. Objectives that relate characteristics and forms of energy to energy conservation are stressed in the primary grades (K-6). In grade 7, the…

  20. The Development and Evaluation of Physical Science Curriculum Materials Designed to Improve the Attitudes of the Secondary School Slow Learner.

    ERIC Educational Resources Information Center

    Milson, James Lee

    The purpose of this study was to develop and evaluate physical science curriculum materials suitable for secondary school age slow learners. A unit on measuring heat and temperature was developed, using guidelines based on a study of the characteristics of students of below-average intelligence (I.Q. between 75 to 90) and reading ability at or…

  1. The Development and Evaluation of Physical Science Curriculum Materials Designed to Improve the Attitudes of the Secondary School Slow Learner.

    ERIC Educational Resources Information Center

    Milson, James Lee

    The purpose of this study was to develop and evaluate physical science curriculum materials suitable for secondary school age slow learners. A unit on measuring heat and temperature was developed, using guidelines based on a study of the characteristics of students of below-average intelligence (I.Q. between 75 to 90) and reading ability at or

  2. Secondary Science: Alaska Curriculum Guide. First Edition.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    This curriculum guide lists science topics and concepts, learning outcomes, and sample learning objectives (in three columns) for these secondary school science courses in Alaska: (1) general science (grades 7-12); (2) life science (grades 7-12); (3) physical science (grades 7-12); (4) earth science (grades 8-10); (5) biology (grades 10-12); (6)…

  3. REORGANIZED SCIENCE CURRICULUM, 7B.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE THIRTEENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SEVENTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THIS SECOND VOLUME 7B, THE SEVENTH GRADE SUPPLEMENT, CONTAINS THE FOLLOWING SECTIONS--(1)

  4. Fire Science Curriculum Guide.

    ERIC Educational Resources Information Center

    Oregon State Board of Education, Salem.

    This curriculum guide, developed in cooperation with the State Advisory Committee on Fireman Training for Post-High School Preparatory Programs, summarizes the need for formal training programs in fire protection and offers guidelines for their establishment. It is also a practical handbook for the planning of fire protection curriculums and…

  5. Moving Women from School to Work in Science: Curriculum Demands/adult Identities. And Life Transitions

    NASA Astrophysics Data System (ADS)

    Eisenhart, Margaret

    This article proposes that the organization of some college curriculum programs as well as some workplaces presents special and perhaps unnecessary obstacles to women who might pursue science or engineering. The article begins with a framework for thinking about connections between school and work in various fields. This section reveals important differences in the way college degree programs are organized and in their implications for the transition to work. Some programs, such as in physics, construct a "tight" link between school and work; others, such as in sociology, construct much looser links. The article proceeds by reviewing results of previous ethnographic research about women's actual experiences in college and work. This section suggests that during the period of transition from college to work, women face special cultural demands that interfere with their pursuit of degrees in tight programs. Joining the lessons from the two preceding sections, the argument is made that the tight organization of some college and workplace environments asks more of women than they can give and helps explain why women continue to be under represented in some fields. The argument has testable Implications for the design of curricularprogramsana'workplace environments that might attract more women (and perhaps more minorities and men) to science and engineering.

  6. Astronomical Approach to Physical Science Curriculum

    NASA Astrophysics Data System (ADS)

    Manning, H. L. K.; Churukian, A. D.

    2004-11-01

    The Astronomical Approach to Physical Science Curriculum (AAPS Curriculum) is an innovative curriculum that incorporates an astronomy theme into an inquiry-based physical science curriculum for pre-service, elementary school teachers. Many physical science courses are a non-cohesive collection of topics required for the state teaching license. Through the use of astronomy and space science examples, the AAPS Curriculum will have a coherent theme that ties the wide variety of physical science topics together and provides many real world applications for the topics covered in the course. This new curriculum will incorporate the applications of knowledge to complete the learning cycle-exploration, concept introduction, application. Astronomy and space science applications will be emphasized throughout the curriculum. The theme of astronomy was chosen to prepare elementary school teachers for teaching astronomy and space science in their classroom, as this is a topic in which many school children are consistently interested. Since astronomy is a topic that can be used as a springboard to teach many other areas of study, we want teachers who are knowledgeable in topics of astronomy so they are capable of preparing creative lessons throughout their entire curriculum that are exciting to their students. The AAPS Curriculum will train college students to become teachers who are comfortable with physical science and astronomy topics and who are excited to teach these topics in their classroom. Funding for this work is provided by the IDEAS grant program of the Space Telescope Science Institute.

  7. The "Nature of Science" in the School Curriculum: The Great Survivor

    ERIC Educational Resources Information Center

    Jenkins, Edgar W.

    2013-01-01

    This paper explores the ways in which the "nature of science" (NoS) has been interpreted, accommodated and justified within school curricula since science was first schooled in the mid-nineteenth century. It explores how different interpretations of "the NoS" have been invoked by those seeking to reform school science education…

  8. Reinventing the Science Curriculum

    ERIC Educational Resources Information Center

    Bybee, Rodger W.; Van Scotter, Pamela

    2007-01-01

    For many, the dominant model of curriculum development in science includes generating a topic, clarifying science content, identifying activities associated with the topic, and figuring out an assessment. Unfortunately, this approach tends to overemphasize activities and underemphasize mastery of science concepts and the process of scientific

  9. Reinventing the Science Curriculum

    ERIC Educational Resources Information Center

    Bybee, Rodger W.; Van Scotter, Pamela

    2007-01-01

    For many, the dominant model of curriculum development in science includes generating a topic, clarifying science content, identifying activities associated with the topic, and figuring out an assessment. Unfortunately, this approach tends to overemphasize activities and underemphasize mastery of science concepts and the process of scientific…

  10. Massachusetts Science and Technology Engineering Curriculum Framework

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2006

    2006-01-01

    This 2006 "Massachusetts Science and Technology/Engineering Curriculum Framework" provides a guide for teachers and curriculum coordinators regarding specific content to be taught from PreK through high school. Following this "Organization" chapter, the "Framework" contains the following sections: (1) Philosophy and Vision; (2) Science and…

  11. Elementary School Curriculum Reform in Turkey

    ERIC Educational Resources Information Center

    Koc, Yusuf; Isiksal, Mine; Bulut, Safure

    2007-01-01

    This paper aims to examine the nature of the new elementary school curriculum in Turkey. In particular, the authors provide a coherent picture of the fundamentals, basic elements and the classroom implications of the new curriculum development initiative in five content areas: mathematics, science, social science, life science, and Turkish. This…

  12. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  13. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic

  14. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    NASA Astrophysics Data System (ADS)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts lesson structure, (d) meaning of model/modeling, and (e) Which comes first?--science content learning or science exhibit exploration. These challenges were considered and discussed as opportunities for personal growth. The third space allowed for participant reflection and transformation in formal-informal collaboration and communication. In article two, teacher-students' classroom discourse transcripts corresponding to the workbook lessons from the IQWST Physics Unit were analyzed. Four instructional events were selected for discourse analysis: focusing on the inquiry process; understanding about kinetic energy; formulating scientific explanations; and translating energy transformation. The discourse-excerpts representing the aforementioned instructional events revealed four teacher behaviors: teacher-posed questions, teacher-explanations, teacher responses, and teacher reference to past learning. Of these teacher behaviors, teacher-posed questions dominated and these consist of fill-in-the-blank, affirmation, second-order, descriptive, and explanatory. Article three represented the results of the IQWST Unit Achievement Test (IUAT) and students' understanding of the concepts of energy and energy transformation. The IUAT indicated that students (N=37) in the experimental group taught with the science center exhibits augmented IQWST curriculum unit achieved scores (p<0.001) about the same as students in the control group (N=31) taught only with the IQWST curriculum unit. However, the experimental (Deltapost-pre = 4.78) and control (Deltapost-pre = 4.04) groups revealed significant gains (p<0.001) from pre-test scores to post-test scores. These findings confirm that underserved urban students' learning can be enhanced with an augmented standards-based curriculum unit. The students also can realize significant achievement gains when professionally developed and administration supported teachers use standards-driven science curriculum whether or not augmented with science exhibits. The three qualitative analyses of data in article three indicated that students had reasonable understandings of the forms and transformation of energy. They were also able to explain the working of science exhibits using their understandings of the energy concepts developed in class. The first study (article 1) implies that a third space allows for participant reflection and transformation in formal-informal collaboration and communication. The second study (article 1) implies the following: (a) the teacher's struggle with dialogic discourse, a communicative approach that fosters common knowledge through a social process; and (b) the need for professional development that fosters dialogic discourse. The third study (article three) implies an integrated curriculum with both formal and informal components can be successfully enacted to achieve content mastery when teachers are given professional development on how to develop students' knowledge using science exhibits, time to develop concepts with students using exhibits, and support from administration to modify the time required to cover certain topics in the curriculum with more time spent on those topics such as energy that require creative teaching methods to assist students' science learning. Overall, the study implies that the science center exhibits can provide a context to observe whether students are able to translate classroom constructed knowledge at the intersection of formal-informal instruction.

  15. Earth and Beyond. Teacher Support for Science in the National Curriculum for Primary and Middle Schools.

    ERIC Educational Resources Information Center

    Pickwick, Alan

    The material in this book was devised in answer to a need expressed by many teachers, especially in primary (elementary) schools, for support in the teaching of astronomy. These projects and activities are aimed at fulfilling the requirements of the National Curriculum in England and Wales and the 5-14 Guidelines in Scotland. Each activity gives…

  16. Earth and Beyond. Teacher Support for Science in the National Curriculum for Primary and Middle Schools.

    ERIC Educational Resources Information Center

    Pickwick, Alan

    The material in this book was devised in answer to a need expressed by many teachers, especially in primary (elementary) schools, for support in the teaching of astronomy. These projects and activities are aimed at fulfilling the requirements of the National Curriculum in England and Wales and the 5-14 Guidelines in Scotland. Each activity gives

  17. Responding to a Relevance Imperative in School Science and Mathematics: Humanising the Curriculum through Story

    ERIC Educational Resources Information Center

    Darby-Hobbs, Linda

    2013-01-01

    There has been a recent push to reframe curriculum and pedagogy in ways that make school more meaningful and relevant to students' lives and perceived needs. This "relevance imperative" is evident in contemporary rhetoric surrounding quality education, and particularly in relation to the junior secondary years where student disengagement with…

  18. Impacts of a Place-Based Science Curriculum on Student Place Attachment in Hawaiian and Western Cultural Institutions at an Urban High School in Hawai'i

    ERIC Educational Resources Information Center

    Kuwahara, Jennifer L. H.

    2013-01-01

    This study investigates how students' participation in a place-based science curriculum may influence their place attachment (dependence and identity). Participants attend an urban high school in Hawai'i and are members of different cultural institutions within the school. Students are either enrolled in an environmental science class within the…

  19. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional…

  20. Better Science: Choosing Content. Curriculum Guide 2.

    ERIC Educational Resources Information Center

    Watts, Mike, Comp.; Michell, Mick, Comp.

    The intention of this guide is to consider the concepts, skills, facts, and attitudes of science which are taught in school; explore how content might be chosen; argue for a reduction in curriculum content; suggest major topics for science teaching; use examples to illustrate aspects of science content; and consider some of the implications of

  1. Science Curriculum. Kindergarten through Grade Twelve.

    ERIC Educational Resources Information Center

    Fitchburg State Coll., MA. Dept. of Special Education.

    This science curriculum guide provides a framework for science teachers of grades K-12 in the Leominster Public School System, Massachusetts. It represents the efforts of teachers and higher education faculty. An introductory section provides a philosophical statement on the nature of science and perspectives in the learning and teaching of…

  2. Biological Sciences Curriculum Study

    SciTech Connect

    Biological Sciences Curriculum Study

    1999-11-29

    The product, which culminates a two-year curriculum development project is a 152-page curriculum module dealing with genes, environment, and human behavior for use in high school biology classrooms. BSCS began the Project in January 1997 with funding from the U.S. Department of Energy. Development work included the input of an external advisory committee, external reviewers, a panel of writers, and national field testing. BSCS printed 20,000 copies of the module. To date, over 11,000 teachers have requested and received copies of the module free of charge. The curriculum exposes students to methods used to study behavioral genetics and examines the impact if this research on society.

  3. The entomologist as a science partner and curriculum advisor: The Earth School model for grades 6--8

    NASA Astrophysics Data System (ADS)

    Marshall, Bethany Johnston

    The Earth School model for creation of partnerships between university scientists and public schools began with a traditional research project involving the study of macroinvertebrate recolonization of agriculturally based restored wetlands. From fieldwork designed to address hypotheses of community composition over time, protocols and equipment evolved for application in middle-school classrooms. In addition to classroom teachers guiding their students in replicating active scientific research, the inclusion of a science partner was key to the success of this model. To ensure that the classroom teachers were themselves comfortable as researchers, monthly staff development workshops were conducted as a component of the Earth School model. The use of entomology as a unifying theme for educational scientific investigation lets the student explore virtually every other system in the biosphere. Because of the unparalleled survivability and adaptability of insects, we can find examples from all biomes, all time references and all disciplines. Over the course of long-term continuous exploration, learners become familiar with relationships and patterns evident in natural situations. These same patterns of birth, growth and decay are much more vividly demonstrated in the field than in textbooks. Similarly, concrete examples of feeding relationships between organisms are plentiful in nearly any outdoor situation. The following model incorporates current research from multiple scientific disciplines but focuses on the many and varied research activities offered by the entomological community. Teachers and students in a primarily urban setting made extensive use of the materials developed through the course of this model's development. Their feedback as the materials were integrated into an established curriculum allowed for the fine-tuning of activity development. A conversion template has evolved that gives teachers, curriculum directors, parents and other educators a simple mechanism for adapting the work of leading researchers into activities suitable for all age levels and all learning abilities. As public schools rally to change the course of science education, they are met with a seemingly never-ending supply of materials promoted as hands-on learning. To the extent that the manipulation of tangible objects and materials supports identified outcome objectives, these materials fulfill their promise. Although there is merit in offering these types of kinesthetic experiences to reinforce theories and principles of science, this approach does not address the same goal as activities that promote 'doing science' through investigation and discovery using a process that includes observation, inquiry, design and collaboration. The active recruiting of and collaboration with science partners from universities offers public school teachers and their students an alternative for curriculum enrichment as the nation strives to reach literacy goals in the sciences.

  4. Transformative Multicultural Science Curriculum: A Case Study of Middle School Robotics

    ERIC Educational Resources Information Center

    Grimes, Mary Katheryn

    2012-01-01

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a

  5. Transformative Multicultural Science Curriculum: A Case Study of Middle School Robotics

    ERIC Educational Resources Information Center

    Grimes, Mary Katheryn

    2012-01-01

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a…

  6. Township of Ocean School District Contemporary Science. Curriculum Guide, September 1987.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    This guide was prepared for a program designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course,…

  7. Mathematical Knowledge and Skills Expected by Higher Education in Engineering and the Social Sciences: Implications for High School Mathematics Curriculum

    ERIC Educational Resources Information Center

    Basaran, Mehmet; zalp, Glmser; Kalender, Ilker; Alacaci, Cengiz

    2015-01-01

    One important function of school mathematics curriculum is to prepare high school students with the knowledge and skills needed for university education. Identifying them empirically will help making sound decisions about the contents of high school mathematics curriculum. It will also help students to make informed choices in course selection at

  8. Mathematical Knowledge and Skills Expected by Higher Education in Engineering and the Social Sciences: Implications for High School Mathematics Curriculum

    ERIC Educational Resources Information Center

    Basaran, Mehmet; Özalp, Gülümser; Kalender, Ilker; Alacaci, Cengiz

    2015-01-01

    One important function of school mathematics curriculum is to prepare high school students with the knowledge and skills needed for university education. Identifying them empirically will help making sound decisions about the contents of high school mathematics curriculum. It will also help students to make informed choices in course selection at…

  9. Small Schools Reading Curriculum, K-3: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts which do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains reading curriculum materials for grades K-3. The objectives listed are correlated to the Goals

  10. Small Schools Reading Curriculum, 4-6: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts which do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains reading curriculum materials for grades 4-6. The objectives listed are correlated to the Goals

  11. Small Schools Reading Curriculum, 7-8: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts which do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains reading curriculum materials for grades 7 and 8. The objectives listed are correlated to the

  12. Benefits of a High School Core Curriculum

    ERIC Educational Resources Information Center

    ACT, Inc., 2006

    2006-01-01

    Since the publication of "A Nation at Risk", ACT has recommended that students take a core curriculum in high school in order to be prepared for college-level work. ACT's recommended core curriculum consists of four years of English and three years each of mathematics, science, and social studies. The benefits to students of taking the right…

  13. Outdoor Education Expands Small School Curriculum.

    ERIC Educational Resources Information Center

    Floyd, James; And Others

    1984-01-01

    Describes how the Violet Hill, Arkansas K-12 school district developed a new curriculum through outdoor education. Describes how the district's alternative energy agricultural complex (including a windmill, solar greenhouse, and farm plots, and gardens) will be incorporated into the curriculum via math, business, science, agriculture, economics,…

  14. Science K-12, Living Things in Continuous Change. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, general science, physical science, earth science) and grade level. In grades K-6, objectives for topics of science study include conditions for plants and animals to live, adaptation, conservation,…

  15. Curriculum Profiles: A Resource of the EDC K-12 Science Curriculum Dissemination Center

    ERIC Educational Resources Information Center

    Education Development Center, Inc, 2005

    2005-01-01

    The purpose of this document is to provide useful information for teachers and school systems engaged in the process of examining and choosing science curriculum materials appropriate for their settings. The curriculum profiles include summaries of selected programs available for K?12 science curriculum programs. Each profile describes a number of…

  16. Aerospace Science Education, A Curriculum Guide.

    ERIC Educational Resources Information Center

    Hilburn, Paul

    This curriculum guide was developed by the Alaska State Department of Education for the purpose of aiding elementary and secondary school teachers in incorporating elements of aerospace science in the classroom. The section of the guide designed for elementary school teachers includes chapters under the headings: Aircraft, Airports, Weather,…

  17. Family and Consumer Sciences Curriculum Review Report.

    ERIC Educational Resources Information Center

    North Allegheny School District, Pittsburgh, PA.

    This document describes a review of the North Allegheny (Pennsylvania) School District's Family and Consumer Sciences curriculum in order to develop a program that will meet students' needs to integrate family, work, and citizenship. Through intensive research, site visits to other school districts around the country, survey data, resource…

  18. School Curriculum in Japan

    ERIC Educational Resources Information Center

    Nakayasu, Chie

    2016-01-01

    This article examines Japanese education system especially relevant to the school curriculum, which might support Japanese high performance in the OECD's Programme for International Student Assessment (PISA), mainly through Japanese policy documents. The Japanese education systems have been constructed by the local context of society and politics,…

  19. Improving the Science Curriculum with Bioethics.

    ERIC Educational Resources Information Center

    Lundmark, Cathy

    2002-01-01

    Explains the importance of integrating bioethics into the science curriculum for student learning. Introduces a workshop designed for middle and high school science teachers teaching bioethics, its application to case studies, and how teachers can fit bioethics into their classroom. (YDS)

  20. Outreach and education in urban Los Angeles Schools: integration of research into middle and high school science curriculum through the NSF GK-12 SEE-LA program

    NASA Astrophysics Data System (ADS)

    Daniel, J. C.; Hogue, T. S.; Moldwin, M. B.; Nonacs, P.

    2012-12-01

    A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/ ) partners UCLA faculty and graduate students (fellows) with urban middle and high school science teachers and their students to foster programs of science and engineering exploration that bring the environment of Los Angeles into the classroom. UCLA science and engineering graduate fellows serve as scientists-in-residence at four partner schools to integrate inquiry-based science lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop three "major" lessons, including one based on their PhD research at UCLA. During the first four years of the project, the SEE-LA fellows have developed a range of research-based activities, including lessons on sustainable fisheries, ecosystems and remote sensing, earthquakes, urban water quality including invertebrate observations, and post-fire soil chemistry, among others. This presentation will provide an overview of the SEE-LA GK-12 program and development of research lessons that also address California State Science Standards. We also discuss potential sustainability of GK-12 type outreach and education programs. The SEE-LA program has provided development of graduate student communication and teaching skills while also contributing significantly to the integration of science education into K-12 curriculum in Los Angeles schools.

  1. Citizenship Education in the Social Science Subjects: An Analysis of the Teacher Education Curriculum for Secondary Schools

    ERIC Educational Resources Information Center

    Sigauke, Aaron T.

    2013-01-01

    Citizenship education is widely acknowledged as a necessary part of the school curriculum for various reasons. For young people, it is assumed that citizenship can best be learnt through the school curriculum. This means that teachers need to thoroughly understand what citizenship means and how to pass this knowledge on to students. This paper…

  2. Teachers and Students Perceptions of the Active Science Curriculum: Incorporating Physical Activity into Middle School Science Classrooms

    ERIC Educational Resources Information Center

    Finn, Kevin E.; McInnis, Kyle J.

    2014-01-01

    Many children get little to no regular physical education during the school day. National recommendations call for schools to offer physical activity as part of planned academic lessons that teach math, language arts, science, and other subjects through movement. The purpose of this study was to analyze the student and teacher perceptions of the

  3. Teachers and Students Perceptions of the Active Science Curriculum: Incorporating Physical Activity into Middle School Science Classrooms

    ERIC Educational Resources Information Center

    Finn, Kevin E.; McInnis, Kyle J.

    2014-01-01

    Many children get little to no regular physical education during the school day. National recommendations call for schools to offer physical activity as part of planned academic lessons that teach math, language arts, science, and other subjects through movement. The purpose of this study was to analyze the student and teacher perceptions of the…

  4. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    ERIC Educational Resources Information Center

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate

  5. Free Teaching Materials: Classroom and Curriculum Aids for Elementary School Science.

    ERIC Educational Resources Information Center

    Raimist, Roger J.; Mester, Rose A.

    Free teaching materials suitable for elementary school science available from 168 agencies and companies are listed. Materials include booklets, teacher's source books and guides, charts and posters, and concrete materials such as mineral samples. Suggestions and materials for student activities range from experiments to song sheets. Topics…

  6. Analyzing Breadth and Depth of a Virtual Charter School's Science Curriculum

    ERIC Educational Resources Information Center

    Vick, Matthew

    2012-01-01

    This case study analyzes five science courses of a United States virtual charter school. Online quizzes and exams are provided by the corporate partner, while local teachers have selected report topics, virtual labs and at-home labs for students to complete. These assessments were coded for their correlation to the cognitive levels of the revised…

  7. Learning To Teach Science: The Curriculum of Student Teaching in Hiroshima "Attached" Schools.

    ERIC Educational Resources Information Center

    Tippins, Deborah J.; Kemp, Andy; Ogura, Yasushi

    2000-01-01

    Intends to fill the gap in the literature on science teacher preparation in Japan by focusing on the form, content, and processes of the student teaching experience associated with K-12 "attached" schools at Hiroshima University. Captures and describes processes that are central to Japanese models of teacher preparation. (SAH)

  8. Long-Term Self-Regulation of Biology Learning Using Standard Junior High School Science Curriculum

    ERIC Educational Resources Information Center

    Eilam, Billie; Reiter, Shoshi

    2014-01-01

    In today's world of information explosion, independent lifelong self-regulated learning (SRL) is becoming a necessity. However, opportunities in schools to experience such learning modes are relatively rare. This long-term explorative field study examined students' SRL of science. Changes in students' self-reported and enacted SRL…

  9. Solar Energy in the School Curriculum: Giving New Life to Old Science.

    ERIC Educational Resources Information Center

    Hibbert, Oliver D.

    1984-01-01

    Describes some simple solar energy experiments, reviews real life examples of solar energy, and lists areas where solar energy can fit into existing school science curricula. Instructions for making equipment needed, a discussion of recent developments in thermal systems and photovoltaics, and a bibliography are included. (JN)

  10. Implementing Inquiry Kit Curriculum: Obstacles, Adaptations, and Practical Knowledge Development in Two Middle School Science Teachers

    ERIC Educational Resources Information Center

    Jones, Mark T.; Eick, Charles J.

    2007-01-01

    Two elementary certified middle school science teachers are studied for changes in practical knowledge supporting the implementation of kit-based inquiry as part of a schoolwide reform effort. Emphasis is placed on studying how these two pilot teachers enact guided inquiry within their unique pedagogical and curricular interests, and what

  11. How Well Do Middle School Science Programs Measure Up? Findings from Project 2061's Curriculum Review.

    ERIC Educational Resources Information Center

    Kesidou, Sofia; Roseman, Jo Ellen

    2002-01-01

    Reports on a study that examines how well middle school programs support the attainment of key scientific ideas specified in the national science standards. Identifies the typical strengths and weaknesses of these programs using research-based criteria. (Contains 88 references.) (DDR)

  12. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    ERIC Educational Resources Information Center

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  13. The Biological Sciences Curriculum Study: Its Present Status as Perceived by Certain Biology Teachers in Florida High Schools.

    ERIC Educational Resources Information Center

    Coley, John Wesley

    Two problems were studied: (1) the relationship between current programs of Biological Sciences Curriculum Study (BSCS) Biology as perceived by certain classroom teachers in Florida and the proposed BSCS program as presented by individuals associated with the Biological Sciences Curriculum Study, and (2) the relationship between certain variables,…

  14. Elementary School Teachers as "Targets and Agents of Change": Teachers' Learning in Interaction with Reform Science Curriculum

    ERIC Educational Resources Information Center

    Metz, Kathleen E.

    2009-01-01

    This article examines teachers' perspectives on the challenges of using a science reform curriculum, as well as their learning in interaction with the curriculum and parallel professional development program. As case studies, I selected 4 veteran teachers of 2nd or 3rd grade, with varying science backgrounds (including 2 with essentially none).…

  15. Science K-12, Continuous Change in the Universe. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, earth science, physical science) and grade level. The objectives for grades K-8 include areas of study in earth science that can be used as examples of the scientific concept of change. Grade 10 includes…

  16. Curriculum for a Democratic School.

    ERIC Educational Resources Information Center

    Diessner, Rhett; And Others

    At Orchards Elementary School (Idaho), curriculum inquiry is focusing on the nature of a democratic school. As democracy is more of a process than a specific content, the Orchards faculty have concentrated more on changes in methods of delivering curriculum than on changing specific items of curriculum. Questions of worth and value have all

  17. Planning a Creative Science Curriculum

    ERIC Educational Resources Information Center

    Iiyambo, Rebekah

    2005-01-01

    A group of science coordinators in the London Borough of Newham decided that they wanted to create an exciting, stimulating and creative curriculum for teaching science across key stages 1 and 2 (5-11 year-olds). They were motivated to do this because they were concerned about an overloaded curriculum, dominated by literacy and numeracy, with…

  18. Computer Related Mathematics and Science Curriculum Materials - A National Science Foundation Cooperative College-School Science Program in Computing Science Education.

    ERIC Educational Resources Information Center

    Feng, Chuan C.

    Reported is the Cooperative College-School Science Program in Computing Science Education which was conducted by the University of Colorado Department of Civil Engineering in the summer of 1967. The program consisted of two five-week terms. The course work was composed of two formal lecture courses in Computer Related Mathematics and Computer…

  19. Law and the School Curriculum

    ERIC Educational Resources Information Center

    Van Geel, Tyll

    1975-01-01

    Summarizes recent legislation and court decisions affecting the discretion of local school districts to determine school curriculum and argues that such legal constraints will increasingly reduce local control over the school program. (JG)

  20. Hydromania: Summer Science Camp Curriculum.

    SciTech Connect

    Moura, Joan

    1995-07-01

    In 1992, Bonneville Power Administration (BPA) and the US Department of Energy (DOE) began a collaborative pilot project with the Portland Parks and Recreation Community Schools Program and others to provide summer science camps to children in Grades 4--6. Camps run two weeks in duration between late June and mid-August. Sessions are five days per week, from 9 a.m. to 3 p.m. In addition to hands-on science and math curriculum, at least three field trips are incorporated into the educational learning experience. The purpose of the BPA/DOE summer camps is to make available opportunities for fun, motivating experiences in science to students who otherwise would have difficulty accessing them. This includes inner city, minority, rural and low income students. Public law 101-510, which Congress passed in 1990, authorizes DOE facilities to establish collaborative inner-city and rural partnership programs in science and math. A primary goal of the BPA summer hands on science camps is to bring affordable science camp experiences to students where they live. It uses everyday materials to engage students` minds and to give them a sense that they have succeeded through a fun hands-on learning environment.

  1. Curriculum Implementation and Reform: Teachers' Views about Kuwait's New Science Curriculum

    ERIC Educational Resources Information Center

    Alshammari, Ahmad

    2013-01-01

    The MoE (Ministry of Education) in the state of Kuwait is starting to reform the science curriculum in all school academic stages: primary (1-5) grades, intermediate (6-9) grades, and secondary (10-12) grades. The purpose of this study was to explore the opinions of science teachers about Kuwait's new sixth and seventh grade science curriculum,

  2. A Comparative Study of Effect of New and Old Science Curriculum on Chinese Junior High School Students' Abstract Thinking

    ERIC Educational Resources Information Center

    Hu, Weiping; Chen, Ming

    2008-01-01

    "Teenagers' abstract thinking ability test" was designed in accordance with the structure and performance of teenagers' ability to think abstractly. 138 Chinese junior high school students who learned New curriculum and old curriculum separately were measured. A comparison between the two kinds of students shows that abstract thinking ability of…

  3. Small Schools Mathematics Curriculum, 4-6: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    The Washington grade 4-6 mathematics curriculum is organized according to the Small Schools Materials format which lists the sequence of learning objectives related to a specific curriculum area, recommends a teaching and mastery grade placement, and identifies activities, monitoring procedures and possible resources used in teaching to the

  4. Surviving the Implementation of a New Science Curriculum

    NASA Astrophysics Data System (ADS)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  5. Managing Curriculum Change in Schools.

    ERIC Educational Resources Information Center

    Jones, Cheryl; Potter, Mary; Ebrahim, Nazir

    This document is intended to assist teachers and managers in England's schools sector in their efforts to introduce an effective and flexible curriculum at Key stage 4 (ages 14-16) that extends to work-related learning. The first two-thirds of the document discusses the following steps in managing curriculum change: (1) make curriculum change a…

  6. REORGANIZED SCIENCE CURRICULUM, 9, NINTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE FIFTEENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE NINTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MENNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THERE IS A BRIEF SUMMARY OF SUBJECT MATTER CONTENT FOR GRADE 9, AND A CHART OF GRADE CONTENT

  7. REORGANIZED SCIENCE CURRICULUM, 8, GRADE EIGHT SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE FOURTEENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE EIGHTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPT BRIEF SUMMARY OF SUBJECT MATTER CONTENT FOR GRADE 8, AND A CHART OF THE GRADE CONTENT FOR

  8. REORGANIZED SCIENCE CURRICULUM, 2, GRADE TWO SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE THIRD IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SECOND GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPTS TO BE TAUGHT IN GRADES K-3, IN EACH OF THE FOUR AREAS AROUND WHICH THE PROGRAM…

  9. REORGANIZED SCIENCE CURRICULUM, 3, GRADE THREE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE FOURTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE THIRD GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPTS TO BE TAUGHT IN GRADES K-3 FOR EACH OF THE FOUR AREAS AROUND WHICH THE PROGRAM…

  10. REORGANIZED SCIENCE CURRICULUM, 1, GRADE ONE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE SECOND IN A SERIES OF17 VOLUMES, THIS VOLUME PROVIDES THE FIRST GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPT TO BE TAUGHT IN GRADES K-3 FOR EACH OF THE FOUR AREAS AROUND WHICH THE PROGRAM…

  11. REORGANIZED SCIENCE CURRICULUM, K, KINDERGARTEN SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THIS VOLUME PROVIDES THE KINDERGARTEN TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPTS TO BE TAUGHT IN GRADES K-3 FOR EACH OF THE FOUR AREAS AROUND WHICH THE PROGRAM IS DESIGNED. THE AREAS ARE (1) THE…

  12. Consumer Education in the Science Curriculum.

    ERIC Educational Resources Information Center

    Kowalski, Stephen W.

    In this monograph, the implementation of consumer education topics into the science curriculum of secondary schools is advocated. Not only is the need for such activities explained, but several suggested instructional topics are provided. One area of recommended study is that of product comparison. A model outline of operation is provided, along…

  13. Science. A Guide to Curriculum Development.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford.

    The purpose of this guide is to aid K-12 curriculum planners in the development and implementation of well-defined programs of study in science suitable for their local school districts. Among the national trends reflected in this guide are the interdisciplinary approach; the use of performance-based student assessments; the utilization of diverse…

  14. Middle School Students' Conceptual Learning from the Implementation of a New NSF Supported Curriculum: Interactions in Physical Science[TM

    ERIC Educational Resources Information Center

    Eick, Charles J.; Dias, Michael; Smith, Nancy R. Cook

    2009-01-01

    A new National Science Foundation supported curriculum, Interactions in Physical Science[TM], was evaluated on students' conceptual change in the twelve concept areas of the national physical science content standard (B) for grades 5-8. Eighth grade students (N = 66) were evaluated pre and post on a 31-item multiple-choice test of conceptual…

  15. Middle School Students' Conceptual Learning from the Implementation of a New NSF Supported Curriculum: Interactions in Physical Science[TM

    ERIC Educational Resources Information Center

    Eick, Charles J.; Dias, Michael; Smith, Nancy R. Cook

    2009-01-01

    A new National Science Foundation supported curriculum, Interactions in Physical Science[TM], was evaluated on students' conceptual change in the twelve concept areas of the national physical science content standard (B) for grades 5-8. Eighth grade students (N = 66) were evaluated pre and post on a 31-item multiple-choice test of conceptual

  16. Geology at Our Doorstep: Building a Partnership for Standards-Based Curriculum and Professional Development in Middle School Earth Science

    NASA Astrophysics Data System (ADS)

    Laursen, S.; Lester, A.; Cannon, E.; Forrest, A.; Bencivengo, B.; Hunter, K.

    2003-12-01

    Geology at Our Doorstep is a collaboration between a science outreach program (CIRES Outreach), students and faculty in a university geology department (U. Colorado at Boulder), and a local school district (St. Vrain Valley) to develop locally relevant geology classroom resources for use by the district's middle-school teachers. The project grew out of direct conversations with teachers about their ideas and needs and was explicitly based on district and state standards in Earth science and scientific thinking, drawing on close work with the district on standards implementation and assessment over the past two years. We intended to draw on existing curriculum resources and substitute local geologic examples to construct a "place-based" teaching resource. However, we found that generic, national-level curricula did not effectively match the rich geologic resources of our area, and instead developed a rather more substantial set of original materials, including classroom collections of regional rocks, reference materials on local geology, classroom activities, and media resources, all shared with teachers at a series of professional development workshops. While the original project was small in scale, a number of spin-off projects have evolved. This project models several important features in the development of university-K12 partnerships: consultation with districts, piloting of small projects, and the role of outreach programs in facilitating participation of university faculty and students.

  17. The Curriculum Development for Science Teachers' Training: The Action Lesson Focusing on Science Process Skills

    ERIC Educational Resources Information Center

    Khayotha, Jesda; Sitti, Somsong; Sonsupap, Kanyarat

    2015-01-01

    The objectives of this research were to develop innovation curriculum and study the effect of curriculum usage in science teachers' training in establishing the supplementary subject curriculum for action lesson. It focuses on science process skills with 10 teachers for 4 days, and 236 Grade 9 students from 10 schools during the first semester of…

  18. Writing in the Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2012-01-01

    There are a plethora of opportunities for pupils to write across the curriculum. Each academic discipline may well provide chances for pupils to develop skill in writing, science being no exception. The science teacher needs to develop pupil knowledge in science as well as using the contents in written work. Learning to write and writing to learn

  19. Physical Science Curriculum Support Document

    ERIC Educational Resources Information Center

    Elliott, Carolyn C.; Brown, Tim; Harris, Jeff; Lovin, Pamela

    2004-01-01

    This document was developed in response to the expressed need of physical science teachers for materials designed to facilitate and enhance the teaching of the 1999 North Carolina Standard Course of Study for Physical Science. The materials provide a guide to translating the goals and objectives of the Physical Science curriculum into good…

  20. A case study of collaboration in science education: Integrating informal learning experiences into the school curriculum

    NASA Astrophysics Data System (ADS)

    Robertson, Amy Michelle

    This is a study of a collaboration between multiple stakeholders in science education for the purpose of creating educational field trip experiences. The collaboration involves four major facets of science education: formal education at the elementary and university levels, informal education, and educational research. The primary participants in the collaboration include two elementary school teachers, a scientist from a local university, an informal educator from an environmental education site, and the researcher acting as a participant observer. The coming together of these different sides of science education provided a unique opportunity to explore the issues and experiences that emerged as such a partnership was formed and developed. Strongly influenced by action research, this study is a qualitative case study. The data was collected by means of observation, semi-structured interviews, and written document review, in order to provide both a descriptive and an interpretive account of this collaboration. The final analysis integrates a description of the participants' experiences as evidenced in the data with the issues that arose from these experiences. The evolution of the collaborators' roles was examined, as was the development of shared vision. In this study, there were several factors that significantly affected the progress towards a shared vision and a successful collaboration. These factors include time, communication, understanding others' perspectives, dedication and ownership, as well as the collaborative environment. Each collaborator benefited both professionally and personally from their participation in the collaboration. In addition, the students gained cognitively, affectively, and socially from the educational experiences created through the collaboration. Steps, such as working towards communication and understanding others' perspectives, should continue to be taken to ensure the collaboration continues beyond the term of the current key participants.

  1. Perceptions of the National Agriscience Teacher Ambassador Academy toward Integrating Science into School-Based Agricultural Education Curriculum

    ERIC Educational Resources Information Center

    Myers, Brian E.; Thoron, Andrew C.; Thompson, Gregory W.

    2009-01-01

    The purpose of this study was to determine perceptions of participants in the 2007 National Agriscience Teacher Ambassador Academy (NATAA) toward integrating science into the agricultural education curriculum. NATAA participants felt that students are more motivated to learn, better prepared in science, provided more opportunities to solve…

  2. Energy Education in Elementary Science: Science Curriculum Improvement Study.

    ERIC Educational Resources Information Center

    Lind, Jackie; Premo, Joe

    This looseleaf teacher's manual is designed to facilitate using Science Curriculum Improvement Study (SCIS) for energy education in elementary schools. It is intended to be used with the SCIS Teacher's Guide as a supplement. The format of this manual matches a main SCIS concept with a closely related energy concept. Matrices show matched concepts…

  3. Human Growth: Guide to a Healthier You. A Middle School Science Curriculum. Instructor's Manual.

    ERIC Educational Resources Information Center

    Huba, Jeanne C.; Crow, Tracy L.

    This instructor's manual contains information and activities related to human growth processes. The curriculum focuses on choices students can make for a healthy lifestyle and is based on the most up-to-date research about human growth and development. Students generate and test their hypotheses throughout each of five modules which include…

  4. The USAF School of Health Care Sciences PLATO IV Project: A Mini-Curriculum for PAs

    ERIC Educational Resources Information Center

    Stutz, David R.; Steinkerchner, Raymond E.

    1976-01-01

    Describes the experimental problem-oriented curriculum implemented via an advanced computer-based educational system for training physician's assistants (PA) regarding "The Respiratory System and Its Diseases," constituting one-tenth of the year-long PA course. All lessons are on-line and students work independently at their own pace. Project

  5. Applied Science in the English School Curriculum: The Meaning and Significance of "Vocationalization"

    ERIC Educational Resources Information Center

    Bell, Jacqueline; Donnelly, James

    2009-01-01

    This paper is concerned with a specific example of an emerging international tendency within secondary education: the process of "vocationalization". It begins with an account of the wider international and historical context and then focuses on an empirical study of a recent reform of the late-secondary curriculum in England: the creation of…

  6. The USAF School of Health Care Sciences PLATO IV Project: A Mini-Curriculum for PAs

    ERIC Educational Resources Information Center

    Stutz, David R.; Steinkerchner, Raymond E.

    1976-01-01

    Describes the experimental problem-oriented curriculum implemented via an advanced computer-based educational system for training physician's assistants (PA) regarding "The Respiratory System and Its Diseases," constituting one-tenth of the year-long PA course. All lessons are on-line and students work independently at their own pace. Project…

  7. Small Schools Mathematics Curriculum, K-3: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Developed during 1975-76 by 40 primary teachers and 10 elementary principals from 12 small school districts in 2 Washington counties and first used during 1976-77 in more than 20 districts, this K-3 mathematics curriculum is designed to assist district compliance with Washington's Student Learning Objectives (SLO) Law, which requires

  8. Challenging Traditional Assumptions of High School Science through the Physics and Everyday Thinking Curriculum

    ERIC Educational Resources Information Center

    Ross, Michael J.

    2013-01-01

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others

  9. Should Intelligent Design Be Included in Today's Public School Curriculums?

    ERIC Educational Resources Information Center

    Costley, Kevin C.; Killins, Pam

    2010-01-01

    The controversial concept of evolution makes up only a small part of the science curriculum stated in Arkansas. During the past few years, the curriculum topic of "Intelligent Design" has caught the attention of many science teachers in the public schools. The Intelligent Design Movement has been successful in attracting the attention of the…

  10. Integration of technology in the school curriculum

    NASA Astrophysics Data System (ADS)

    Treagust, David F.

    1990-01-01

    This paper describes, chronologically, the deliberations of a school staff in their decision-making to place technology education in their school. The outcome of these deliberations is a curriculum model whereby objectives of technology awareness, technological literacy, technological capability and transferable skills are integrated with all subjects in the school. The desired outcome is that students at this school will gain a technological education by, for example, attending classes in English, Home Economics, Mathematics, Social Studies, Science and Art. The implementation process is ongoing, is being evaluated and has already experienced senior staff changes and industrial disruption without loss of vigour or intent.

  11. Being Professional: Accountability and Authority in Teachers' Responses to Science Curriculum Reform

    ERIC Educational Resources Information Center

    Ryder, Jim

    2015-01-01

    The science curriculum is a focus of repeated reform in many countries. However, the enactment of such reforms within schools rarely reflects the intended outcomes of curriculum designers. This review considers what we know about the experiences and reflections of teachers in the enactment of externally driven school science curriculum reform.

  12. Being Professional: Accountability and Authority in Teachers' Responses to Science Curriculum Reform

    ERIC Educational Resources Information Center

    Ryder, Jim

    2015-01-01

    The science curriculum is a focus of repeated reform in many countries. However, the enactment of such reforms within schools rarely reflects the intended outcomes of curriculum designers. This review considers what we know about the experiences and reflections of teachers in the enactment of externally driven school science curriculum reform.…

  13. Learning Science by Designing Artifacts (LSDA)--A Case Study of the Development of a Design-Based Science Curriculum.

    ERIC Educational Resources Information Center

    Mamlok, Rachel; Dershimer, Charles; Fortus, David; Krajcik, Joe; Marx, Ron

    The purpose of this study was to document the iterative development of a design-based science curriculum called Learning Science by Designing Artifacts (LSDA). The study refers to the enactment of the Safer Cell Phones curriculum in a high school located in the Midwest. The curriculum was a 5- or 9-week unit in an 18-week science elective course.…

  14. Food Science 7075. Curriculum Guide.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational and Technical Education Services.

    This curriculum guide was developed as a resource for teachers to use in planning and implementing a competency-based instructional program on food science in the 11th and 12th grades. It contains materials for a 2-semester course, based on the North Carolina Program of Studies (revised 1992); it is designed to help students learn about the…

  15. BIOLOGICAL SCIENCES CURRICULUM STUDY NEWSLETTER.

    ERIC Educational Resources Information Center

    MAYER, WILLIAM V.; AND OTHERS

    RESEARCH STUDIES CONCERNED WITH THE APPROPRIATENESS AND EFFECTIVE UTILIZATION OF BIOLOGICAL SCIENCE CURRICULUM STUDY (BSCS) MATERIALS ARE DESCRIBED IN THIS NEWSLETTER. BSCS TESTS WERE ANALYZED AND RELATED TO OTHER TESTING INSTRUMENTS USED IN CONNECTION WITH THE BSCS PROGRAMS. DATA COLLECTED FOR THE ESTABLISHMENT OF TEST NORMS WERE ALSO USED IN A

  16. Surviving the Implementation of a New Science Curriculum

    ERIC Educational Resources Information Center

    Lowe, Beverly; Appleton, Ken

    2015-01-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2years getting to know the new

  17. The Contribution of Practical Work to the Science Curriculum

    ERIC Educational Resources Information Center

    Needham, Richard

    2014-01-01

    Practical work is viewed by many as essential to the school science curriculum. It continues to be specified in many curriculum statements, with a wide range of claims being used to justify its inclusion. Currently, practical work is facing a number of challenges, including that it is not effective in promoting learning. An analysis of a specific

  18. Champions or Helpers: Leadership in Curriculum Reform in Science

    ERIC Educational Resources Information Center

    Johnson, Elizabeth D.; Bird, Fiona L.; Fyffe, Jeanette; Yench, Emma

    2012-01-01

    This study describes the perceptions of embedded teaching and learning leadership teams working on curriculum reform in science teaching departments. The teams combined a formally recognised leader, School Director of Learning and Teaching, with a project-based, more junior academic, Curriculum Fellow, to better leverage support for curriculum…

  19. Surviving the Implementation of a New Science Curriculum

    ERIC Educational Resources Information Center

    Lowe, Beverly; Appleton, Ken

    2015-01-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new…

  20. Pairing New Science Curriculum with Professional Learning Increases Student Achievement. Lessons from Research

    ERIC Educational Resources Information Center

    Killion, Joellen

    2016-01-01

    A randomized trial study, conducted over two school years in 18 high schools in Washington, finds that "An Inquiry Approach," a three-year, educative curriculum for high school science, has a positive impact on student achievement, teacher practice, and fidelity of implementation of the curriculum when the curriculum is paired with…

  1. Science, Levels 7-12. Secondary Core Curriculum Standards.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City. Div. of Curriculum and Instruction.

    This document presents the core science curriculum standards which must be completed by all students as a requisite for graduation from Utah's secondary schools. Contained within are the elementary and secondary school program of studies and high school graduation requirements. Each course entry for grades 7-12 contains: course title, unit of…

  2. Cultural resources of minority and marginalised students should be included in the school science curriculum

    NASA Astrophysics Data System (ADS)

    Chigeza, Philemon

    2011-06-01

    This paper responds to Schademan's "What does playing cards have to do with science? A resource—rich view of African American young men", and takes a resource-rich view to explore the notion of agency and elements of cultural resources that minority and marginalised students bring to the classroom. The paper examines the deficit model, the need to adopt capacity building perspective, and a classroom study, which sought to contextualise capacity building with a group of Australian indigenous students in a science class. As science educators, we need to reject the deficit model by developing capacity building pedagogies that affirm minority and marginalised students' lived languages, experiences and knowledge in their learning.

  3. Differentiated Curriculum Enhancement in Inclusive Middle School Science: Effects on Classroom and High-Stakes Tests

    ERIC Educational Resources Information Center

    Mastropieri, Margo A.; Scruggs, Thomas E.; Norland, Jennifer J.; Berkeley, Sheri; McDuffie, Kimberly; Tornquist, Elizabeth Halloran; Connors, Nicole

    2006-01-01

    This investigation compared quantitative outcomes associated with class-wide peer tutoring using differentiated hands-on activities vs. teacher-directed instruction for students with mild disabilities in inclusive 8th-grade science classes. Thirteen classes of 213 students (109 males; 104 females), of whom 44 were classified with disabilities,…

  4. Life Sciences: Curriculum Resources and Activities for School Librarians and Teachers.

    ERIC Educational Resources Information Center

    Bain, Amy; Richer, Janet; Weckman, Janet

    This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art

  5. Water Watchers: Water Conservation Curriculum for Junior High School Science and Social Studies Classes.

    ERIC Educational Resources Information Center

    Massachusetts State Water Resources Authority, Boston.

    Water is precious. It is also easy to take for granted. Many people recognize that water is scarce in desert areas, but it is harder to realize that places like Massachusetts could face a shortage of pure drinking water. This guide is designed for seventh and eighth grade science and social studies teacher. The lessons require 5 to 10 class…

  6. Physical Sciences: Curriculum Resources and Activities for School Librarians and Teachers.

    ERIC Educational Resources Information Center

    Bain, Amy; Richer, Janet; Weckman, Janet

    This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art

  7. Physical Sciences: Curriculum Resources and Activities for School Librarians and Teachers.

    ERIC Educational Resources Information Center

    Bain, Amy; Richer, Janet; Weckman, Janet

    This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art…

  8. Cultural Resources of Minority and Marginalised Students Should Be Included in the School Science Curriculum

    ERIC Educational Resources Information Center

    Chigeza, Philemon

    2011-01-01

    This paper responds to Schademan's "What does playing cards have to do with science? A resource-rich view of African American young men", and takes a resource-rich view to explore the notion of agency and elements of cultural resources that minority and marginalised students bring to the classroom. The paper examines the deficit model, the need to…

  9. Global Citizenship Education, School Curriculum and Games: Learning Mathematics, English and Science as a Global Citizen

    ERIC Educational Resources Information Center

    Lim, Cher Ping

    2008-01-01

    Based on an account of how two classes of primary five students in Singapore engage in the learning of English, Mathematics and Science by playing the role of global citizens, the paper suggests an alternative but realistic approach to teaching global citizenship education. Set against the back story of Atlantis facing ecological, social and

  10. Life Sciences: Curriculum Resources and Activities for School Librarians and Teachers.

    ERIC Educational Resources Information Center

    Bain, Amy; Richer, Janet; Weckman, Janet

    This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art…

  11. Exploring the Middle School Science Achievement Gap: Influences of Curriculum, Instruction and Students' Perceptions

    ERIC Educational Resources Information Center

    Winning, Rosalie Anne

    2012-01-01

    Students' science achievement has been subject to scrutiny and criticism in the United States. The decline in rankings on standardized international assessments has been the focus of concern for educators, policy makers, parents and society at large. This study, designed as an action research, explored the factors contributing to the decrease

  12. Secondary School Students' Attitudes to Nanotechnology: What Are the Implications for Science Curriculum Development?

    ERIC Educational Resources Information Center

    Murcia, Karen

    2013-01-01

    Nanotechnology is guided by the assumption that with the ability to shape or re-shape at the molecular level, we could manipulate the physical world. Some speculate that this ability will be the beginning of the next technological revolution. Hence, an aim of secondary science education should be the development of scientifically literate citizens…

  13. Exploring the Middle School Science Achievement Gap: Influences of Curriculum, Instruction and Students' Perceptions

    ERIC Educational Resources Information Center

    Winning, Rosalie Anne

    2012-01-01

    Students' science achievement has been subject to scrutiny and criticism in the United States. The decline in rankings on standardized international assessments has been the focus of concern for educators, policy makers, parents and society at large. This study, designed as an action research, explored the factors contributing to the decrease…

  14. Earth Sciences: Curriculum Resources and Activities for School Librarians and Teachers.

    ERIC Educational Resources Information Center

    Bain, Amy; Richer, Janet; Weckman, Janet

    This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art

  15. Global Citizenship Education, School Curriculum and Games: Learning Mathematics, English and Science as a Global Citizen

    ERIC Educational Resources Information Center

    Lim, Cher Ping

    2008-01-01

    Based on an account of how two classes of primary five students in Singapore engage in the learning of English, Mathematics and Science by playing the role of global citizens, the paper suggests an alternative but realistic approach to teaching global citizenship education. Set against the back story of Atlantis facing ecological, social and…

  16. Earth Sciences: Curriculum Resources and Activities for School Librarians and Teachers.

    ERIC Educational Resources Information Center

    Bain, Amy; Richer, Janet; Weckman, Janet

    This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art…

  17. Environment in the science curriculum: the politics of change in the Pan-Canadian science curriculum development process

    NASA Astrophysics Data System (ADS)

    Hart, Paul

    2002-11-01

    This paper draws on the experience of the Pan-Canadian science curriculum development process as an instance of the more general problem of integrating science and environmental education. It problematizes the issue of incorporation of social and environmental dimensions within the science curriculum in terms of both policy and practice. The agenda of environmental education, as eco-philosophical and eco-political, provides a radically different base from which to explore the impact of change on science teachers and schools. Thus, the very idea of environmental education as an educational policy goal must be examined in light of conflicting agendas of science and environmental education. This paper argues that transforming structures and processes of school science to enable different teacher and student roles involves closing the gap between curriculum (policy) development and professional development as well as reconceptualizing science education, but from more overtly open moral value and political perspectives than have been considered in the literature of science education.

  18. Symposium: The Role of Biological Sciences in the Optometric Curriculum.

    ERIC Educational Resources Information Center

    And Others; Rapp, Jerry

    1980-01-01

    Papers from a symposium probing some of the curricular elements of the program in biological sciences at a school or college of optometry are provided. The overall program sequence in the biological sciences, microbiology, pharmacology, and the curriculum in the biological sciences from a clinical perspective are discussed. (Author/MLW)

  19. Integration of Basic-Clinical Sciences, PBL, CBL, and IPE in U.S. Dental Schools' Curricula and a Proposed Integrated Curriculum Model for the Future.

    PubMed

    Elangovan, Satheesh; Venugopalan, Shankar Rengasamy; Srinivasan, Sreedevi; Karimbux, Nadeem Y; Weistroffer, Paula; Allareddy, Veerasathpurush

    2016-03-01

    The integration of basic and clinical sciences in dental curricula enhances the application of basic science principles to clinical decision making and improves students' critical thinking. The aim of this study was to define the characteristics of U.S. dental schools' curricula with regard to level of course integration and degree of incorporation of problem-based and case-based learning. A second aim was to propose a dental curriculum that supports effective integration of courses and addresses some of the concerns facing academic dentistry. A survey was sent to 58 academic deans in U.S. dental schools. The survey included questions about integrating courses in the schools' curricula and major changes in curricular structure or teaching pedagogy that respondents anticipated in the immediate future. A total of 31 schools responded to the survey, for a 53.4% response rate. The results showed that three-quarters of the responding schools still teach basic and clinical sciences separately, although 61.3% reported having an integrated curriculum. Among the responding schools, 16 had a PBL component integrated into their curricula (two had integrated PBL in all courses and 14 used a hybrid PBL approach). Two schools had CBL integrated in all courses, and ten had CBL integrated in >75% of courses. Only slightly more than half agreed that their curricula foster students' thinking "outside the box." Faculty shortages and lack of protected time and resources were the most frequent reasons given for a lack of integrated courses. The integrated model proposed in this article has the potential to provide a low stress environment for students and to address important issues like faculty shortages. PMID:26933103

  20. Dissecting local design: Instructional leadership, curriculum and science education

    NASA Astrophysics Data System (ADS)

    Clifford, Matthew Aaron

    Local instructional design describes the process of customization that naturally occurs when curriculum innovations interface with local classrooms and schools. Describing the practice of local instructional design can help to explain how curriculum is adapted to local conditions and provides insight on how instructional leaders mediate curriculum, teaching, and school conditions to allow for reform-oriented curriculum to occur. Research on local design has tended to focus on the intersection of curriculum, teachers, and students. This case-based dissertation study documents the process of local instructional design in the context of high school science education through a distributed leadership perspective. The study develops a model of instructional design, points to the important roles of administrators, parents, and university consultants in leading local design, and suggests instructional reform advocates consider the role of school leadership and community when further studying local instructional design.

  1. Leading Change in the Primary Science Curriculum

    ERIC Educational Resources Information Center

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to

  2. Leading Change in the Primary Science Curriculum

    ERIC Educational Resources Information Center

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…

  3. Fidelity of implementation to instructional strategies as a moderator of curriculum unit effectiveness in a large-scale middle school science quasi-experiment

    NASA Astrophysics Data System (ADS)

    O'Donnell, Carol Lynn

    This study examined whether fidelity of implementation to reform-based instructional strategies embedded in a middle school physical science curriculum unit developed by the Harvard-Smithsonian Center for Astrophysics moderated the causal relationship between curriculum condition and classroom mean achievement in a quasi-experiment testing the effectiveness of the unit. The study sample included 48 6th grade science classrooms selected randomly from 8 Montgomery County Public Schools middle schools, assigned randomly to either the treatment or comparison condition in the Scaling up Curriculum for Achievement, Learning, and Equity Project (SCALE-0) quasi-experiment of The George Washington University. This dissertation was a secondary analysis of SCALE-uP's 2005-2006 fidelity of implementation data collected with the Instructional Strategies Classroom Observation Protocol (ISCOP), which captured whether the Project 2061 instructional strategies rated Satisfactory or Excellent in the ARIES: Exploring Motion and Forces (M&F) treatment unit were present during implementation in treatment and comparison classrooms. ISCOP Likert-like scores for each classroom were subjected to Rasch analysis; rating scale diagnostics, category collapsing, and fit statistics were used to develop a reliable continuous fidelity of implementation measure for each classroom. Results from hierarchical multiple regression analysis performed on the fidelity of implementation measures indicated that when controlling for prior knowledge, fidelity of implementation to the Project 2061 instructional strategies rated Satisfactory or Excellent in M&F moderated the causal relationship between science curriculum condition and classroom mean achievement. Follow-up post hoc analyses at two select fidelity measures indicated that treatment classrooms with High Fidelity were predicted to have higher classroom mean achievement than comparison classrooms with High Fidelity to the same set of instructional strategies, and this difference was statistically significant (p <.05); however, there was no statistically significant difference in classroom mean achievement between treatment and comparison classrooms with Low Fidelity. Although reform-based instructional practices were present in both treatment and comparison classrooms, these practices were related positively to outcomes only in classrooms supported by the treatment unit. This dissertation showed that effects on student achievement are enhanced when teachers use reform-based science curriculum materials and have high fidelity of implementation to the instructional strategies embedded in these materials.

  4. Science and Technology Educators' Enacted Curriculum: Areas of Possible Collaboration for an Integrative STEM Approach in Public Schools

    ERIC Educational Resources Information Center

    Brown, Josh; Brown, Ryan; Merrill, Chris

    2012-01-01

    Science, Technology, Engineering, and Mathematics (STEM) teachers teach multiple concepts that lend themselves to possible collaboration on a daily basis. Much like Metz's (2009) insightful discussion about the importance of science educators creating partnerships in the community "outside the school walls," integrative STEM teaching also requires…

  5. Small Schools Mathematics Curriculum, Grades 7-8: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Developed during the 1976-77 school year to assist Washington grade 7-8 teachers in small school districts with the improvement of curriculum and instruction, this learning-objective-based curriculum suggests activities, monitoring procedures and resources for mathematics. Introductory materials describe the organization of Small School materials,…

  6. A Retrospective View of a Study of Middle School Science Curriculum Materials: Implementation, Scale-up, and Sustainability in a Changing Policy Environment

    ERIC Educational Resources Information Center

    Lynch, Sharon Jo; Pyke, Curtis; Grafton, Bonnie Hansen

    2012-01-01

    This article provides an extended, comprehensive example of how teachers, schools, districts, and external factors (e.g., parental pressure and policy mandates) shape curriculum research in the U.S. It retrospectively examines how three different middle school curriculum units were implemented and scaled-up in a large, diverse school system. The

  7. Curriculum Management for Schools, Colleges, Business.

    ERIC Educational Resources Information Center

    English, Fenwick W.

    What works and does not work in school systems, colleges, and businesses is discussed with a focus on curriculum in the schools and other organizations. Organizational studies were completed in several school systems nationwide. Ten chapters look at the following: (1) curriculum management (the case of the academy, what curriculum is, the nature…

  8. The effect of curriculum changes and instructional techniques on science-reasoning skills among high school students

    NASA Astrophysics Data System (ADS)

    Newman, Joan T.

    Any change, particularly on a large scale like a sequence change in a district with 75,000 students, is difficult. However, with the advent of the new TAKS science test and the new requirements for high school graduation in the state of Texas, educators and students alike are engaged in innovative educational approaches to meet these requirements. This study investigated a different, non-traditional science sequence to investigate relationships among secondary core-science course sequencing, student science-reasoning performance, and classroom pedagogy. The methodology adopted in the study led to a deeper understanding of the successes and challenges faced by teachers in teaching conceptual physics and chemistry to 8 th and 9th grade students. The qualitative analysis suggested a difference in pedagogy employed by middle and high school science teachers and a need for secondary science teachers to enhance their content knowledge and pedagogical skills, as well as change their underlying attitudes and beliefs about the abilities of students. The study examined scores of 495 randomly chosen students following three different matriculation patterns within one large independent school district. The study indicated that students who follow a sequence with 9th grade IPC generally increase their science-reasoning skills as demonstrated on the 10th grade TAKS science test when these scores are compared with those of students who do not have 9th grade IPC in the science sequence.

  9. Evaluating the Effects of Medical Explorers a Case Study Curriculum on Critical Thinking, Attitude Toward Life Science, and Motivational Learning Strategies in Rural High School Students

    NASA Astrophysics Data System (ADS)

    Brand, Lance G.

    2011-12-01

    The purpose of this study was three-fold: to measure the ability of the Medical Explorers case-based curriculum to improve higher order thinking skills; to evaluate the impact of the Medical Explorers case-based curriculum to help students be self directed learners; and to investigate the impact of the Medical Explorers case-based curriculum to improve student attitudes of the life sciences. The target population for this study was secondary students enrolled in advanced life science programs. The resulting sample (n = 71) consisted of 36 students in the case-based experimental group and 35 students in the control group. Furthermore, this study employed an experimental, pretest-posttest control group research design. The treatment consisted of two instructional strategies: case-based learning and teacher-guided learning. Analysis of covariance indicated no treatment effect on critical thinking ability or Motivation and Self-regulation of Learning. However, the Medical Explorers case-based curriculum did show a treatment effect on student attitudes toward the life sciences. These results seem to indicate that case-based curriculum has a positive impact on students' perspectives and attitudes about the study of life science as well as their interest in life science based careers. Such outcomes are also a good indicator that students enjoy and perceive the value to use of case studies in science, and because they see value in the work that they do they open up their minds to true learning and integration. Of additional interest was the observationthat on average eleventh graders showed consistently stronger gains in critical thinking, motivation and self-regulation of learning strategies, and attitudes toward the life sciences as compared to twelfth grade students. In fact, twelfth grade students showed a pre to post loss on the Watson-Glaser and the MSLQ scores while eleventh grade students showed positive gains on each of these instruments. This decline in twelfth grade performance is an endemic indicator of underlying problems that exists in this transitional year of education and supports the need to strengthen the transitional connections between high schools and institutions of higher learning.

  10. Field Test of an Epidemiology Curriculum for Middle School Students

    ERIC Educational Resources Information Center

    Kaelin, Mark A.; Huebner, Wendy W.; Nicolich, Mark J.; Kimbrough, Maudellyn L.

    2007-01-01

    The purpose of this study was to test the effectiveness of a middle school epidemiology curriculum called Detectives in the Classroom. The curriculum presents epidemiology as the science of public health, using health-related issues that capture the interest of young students and help prepare them to make evidence-based health-related decisions.…

  11. Science through Engineering in Elementary School: Comparing Three Enactments of an Engineering-Design-Based Curriculum on the Science of Sound

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke

    2011-01-01

    This research illustrates how varying enactments of an engineering-design-based science curriculum shaped the development of students' domain-specific scientific ideas and practices. In this comparative case study rooted in the analytical perspectives of activity theory and learning environments, student and teacher participants in three

  12. Science through Engineering in Elementary School: Comparing Three Enactments of an Engineering-Design-Based Curriculum on the Science of Sound

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke

    2011-01-01

    This research illustrates how varying enactments of an engineering-design-based science curriculum shaped the development of students' domain-specific scientific ideas and practices. In this comparative case study rooted in the analytical perspectives of activity theory and learning environments, student and teacher participants in three…

  13. Occasional Paper Series, Science Paper 5, Models and Research in Science Education Curriculum Development. Science Education Information Reports.

    ERIC Educational Resources Information Center

    Tanner, James R.

    This paper, fifth in a series produced by the Science and Mathematics Education Information Analysis Center, is based on an address given at the 44th Annual Meeting of the National Association for Research in Science Teaching by an Assistant Superintendent of the Cleveland Public Schools. Curriculum developers have tended to view curriculum as…

  14. Mechanics. Secondary Schools. Curriculum Guide.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This document, a curriculum guide for auto mechanics for secondary students, is one of six guides developed for inservice teachers at Marianas High School in Saipan. The guide provides the rationale, description, goals, and objectives of the program; the program of studies and performance objectives by levels; samples of lesson plans for effective…

  15. Collaborative professional development and curriculum enactment: Teacher reflection to inform inquiry-based discussions in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Alozie, Nonyelum M.

    Professional development for practicing science teachers has been a goal in education for the last two decades. Studies have shown that the quality of teacher instruction may be linked to teacher participation and involvement in professional development programs (Fishman, Marx, Best, & Tal, 2003). Furthermore, reflection during professional development has been emphasized as an important aspect of teacher learning (Birman, Desimone, Porter, & Garet, 2000; Dinkleman, 2003). However, we have yet to fully understand how teacher reflection and the components of professional development can be linked to changes in classroom instruction (Fendler, 2003). This study incorporated a variety of resources, including AAAS criteria, research-based discussion strategies, educative curriculum materials, a common curriculum, and in particular, a committed researcher, video artifacts and science education research articles, to provide teachers with opportunities to engage in an iterative process of reflection and instruction to bring about instructional change; a process of self-examination and experimentation that was fostered in a small group, collaborative, and sustained professional development program. I also show that the role of the researcher is a key element in connecting professional development and classroom instruction. This study used interviews, professional development workshops, and teacher enactment to show that the design of professional development can foster a teacher learning community of reflective practice that promotes instructional change in inquiry-based science when resources are used to support and complement each other.

  16. Water Pollution, Environmental Science Curriculum Guide Supplement.

    ERIC Educational Resources Information Center

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  17. Water Pollution, Environmental Science Curriculum Guide Supplement.

    ERIC Educational Resources Information Center

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers

  18. NUCLEAR SCIENCE CURRICULUM PROJECT. INSTRUCTIONAL RESOURCES SUPPLEMENT.

    ERIC Educational Resources Information Center

    Culver City Unified School District, CA.

    DESIGNED AS AN ADJUNCT TO MATERIALS DEVELOPED BY THE NUCLEAR SCIENCE CURRICULUM PROJECT, THIS DOCUMENT PROVIDES RESOURCE MATERIAL WITH WHICH THE NUCLEAR SCIENCE CURRICULUM MAY BE ENRICHED, AND ADDRESSES ITSELF TO (1) INSTRUCTIONAL AIDS PRESENTLY AVAILABLE, (2) USE OF INSTRUCTIONAL AIDS TO SUPPLEMENT THE CURRENT SCIENCE CURRICULA, (3) FACILITIES

  19. An Academic/Vocational Curriculum Partnership: Home Economics and Science.

    ERIC Educational Resources Information Center

    Smith, Frances M.; Hausafus, Cheryl O.

    1993-01-01

    Proposes middle-school curriculum integrating two diverse disciplines (home economics and science), incorporates social issues, and deals with fundamental concerns of young adolescents. Three major areas are included in framework: food additives for appeal, science of textile fibers, and chemistry of household cleaning. All should be taught by

  20. North Dakota Elementary Science Curriculum Guide K-6.

    ERIC Educational Resources Information Center

    North Dakota State Dept. of Public Instruction, Bismarck.

    It is often claimed that students must have a thorough understanding of the processes of science to understand the constant changes in scientific theories and make meaningful decisions. This curriculum guide has five major parts including goals and objectives of elementary school science, problem solving, suggested scope and sequence,

  1. An Academic/Vocational Curriculum Partnership: Home Economics and Science.

    ERIC Educational Resources Information Center

    Smith, Frances M.; Hausafus, Cheryl O.

    1993-01-01

    Proposes middle-school curriculum integrating two diverse disciplines (home economics and science), incorporates social issues, and deals with fundamental concerns of young adolescents. Three major areas are included in framework: food additives for appeal, science of textile fibers, and chemistry of household cleaning. All should be taught by…

  2. UWHS Climate Science: Uniting University Scientists and High School Teachers in the Development and Implementation of a Dual-Credit STEM-Focused Curriculum

    NASA Astrophysics Data System (ADS)

    Bertram, M. A.; Thompson, L.; Ackerman, T. P.

    2012-12-01

    The University of Washington is adapting a popular UW Atmospheric Sciences course on Climate and Climate Change for the high school environment. In the process, a STEM-focused teaching and learning community has formed. With the support of NASA Global Climate Change Education 20 teachers have participated in an evolving professional development program that brings those actively engaged in research together with high school teachers passionate about bringing a formal climate science course into the high school. Over a period of several months participating teachers work through the UW course homework and delve deeply into specific subject areas. Then, during a week-long summer institute, scientists bring their particular expertise (e.g. radiation, modeling) to the high school teachers through lectures or labs. Together they identify existing lectures, textbook material and peer-reviewed resources and labs available through the internet that can be used to effectively teach the UW material to the high school students. Through this process the scientists learn how to develop teaching materials around their area of expertise, teachers engage deeply in the subject matter, and both the university and high school teachers are armed with the tools to effectively teach a STEM-focused introductory course in climate science. To date 12 new hands-on modules have been completed or are under development, exploring ice-cores, isotopes, historical temperature trends, energy balance, climate models, and more. Two modules have been tested in the classroom and are ready for peer-review through well-respected national resources such as CLEAN or the National Earth Science Teachers Association; three others are complete and will be implemented in a high school classroom this year, and the remainder under various stages of development. The UWHS ATMS 211 course was piloted in two APES (Advanced Placement Environmental Science classrooms) in Washington State in 2011/2012. The high school course used the UW Atmospheric Sciences curriculum, exams, and textbook (The Earth System, 3rd edition, Kump, Kasting and Crane, 2010), and one of the hands-on modules. Communication with these instructors during the year helped us define assessment strategies and to identify challenges of bringing the material into the high school classroom. This knowledge will be shared with teachers during our summer 2012 workshop and will inform approaches to teaching the course in 2012/2013. Proposed formats for implementation include year-long courses, using the APES/Climate format of 2011/2012, a union of Oceanography and Climate content, or in the context of an engineering course. Our initial vision was for a stand-alone semester or year-long course in climate science, incorporating excel and data handling as a learning tool and a suite of hands-on learning opportunities. Yet, the creative approaches to implementation of a new course in the schools, together with the breadth and depth of the UW curriculum and the Kump et al. 2010 textbook, have resulted in diverse educational approaches for bringing climate science into the high school.

  3. Researching the Effectiveness of a Science Professional Learning Programme Using a Proposed Curriculum Framework for Schools: A Case Study

    ERIC Educational Resources Information Center

    Paige, Kathryn; Zeegers, Yvonne; Lloyd, David; Roetman, Philip

    2016-01-01

    This paper reports on an action research-based professional learning programme (PLP) in which early career teachers volunteered to identify and then research an aspect of their science teaching practice. The PLP was facilitated by academics from the School of Education and the Barbara Hardy Institute at the University of South Australia. The…

  4. Serving Students, Science, or Society? The Secondary School Physics Curriculum in the United States, 1930-65.

    ERIC Educational Resources Information Center

    Donahue, David M.

    1993-01-01

    Reviews the reform of secondary school physics in the United States from the 1930s through the mid-1960s. Describes the impact of progressive education, World War II, and the post-Sputnik reforms. Points out differences between past reform efforts and the current Project 2061 of the American Association for the Advancement of Science (AAAS). (CFR)

  5. Designing a Web-Based Design Curriculum for Middle School Science: The WISE "Houses in the Desert" Project. Research Report

    ERIC Educational Resources Information Center

    Cuthbert, Alex; Slotta, James

    2004-01-01

    Design activities allow students to create their own solutions, drawing upon a personal understanding of science principles and examples. We created the 'Houses in the Desert' project to engage middle school students in designing a passive solar house that will keep its owners comfortable in the desert climate. Students used their knowledge of…

  6. Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study

    ERIC Educational Resources Information Center

    Green, Lisa Anne

    2012-01-01

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called

  7. Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study

    ERIC Educational Resources Information Center

    Green, Lisa Anne

    2012-01-01

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…

  8. Which preparatory curriculum for the International Baccalaureate Diploma Programme is best? The challenge for international schools with regard to mathematics and science

    NASA Astrophysics Data System (ADS)

    Corlu, M. Sencer

    2014-12-01

    There are two mainstream curricula for international school students at the junior high level: the International Baccalaureate (IB) Middle Years Programme (MYP) and the Cambridge International General Certificate of Secondary Education (IGCSE). The former was developed in the mid-1990s and is currently being relaunched in a 21st-century approach. The latter programme of study was developed by University of Cambridge International Examinations in 1985 and has become popular in recent years among British domestic and international schools worldwide due to the clarity of its learning content. The prevailing uncertainty about which curriculum is best to prepare students for the IB Diploma Programme represents a challenge for international schools. The purpose of the current study is to develop a methodology through causal models which can explain the relationship between student performance in the IGCSE and the Diploma Programme with regard to mathematics and science. The data evaluated here consisted of external examination scores of students who attended a private international high school between the years 2005 and 2012. Two structural equation models were developed. The first model employed a maximum likelihood estimation, while the second model used a Bayesian estimation with a Markov Chain Monte Carlo method. Both models fit the data well. The evidence suggests that the IGCSE provides a good foundational preparation for the Diploma Programme in mathematics and science.

  9. Use of the NBME Comprehensive Basic Science Examination as a progress test in the preclerkship curriculum of a new medical school.

    PubMed

    Johnson, Teresa R; Khalil, Mohammed K; Peppler, Richard D; Davey, Diane D; Kibble, Jonathan D

    2014-12-01

    In the present study, we describe the innovative use of the National Board of Medical Examiners (NBME) Comprehensive Basic Science Examination (CBSE) as a progress test during the preclerkship medical curriculum. The main aim of this study was to provide external validation of internally developed multiple-choice assessments in a new medical school. The CBSE is a practice exam for the United States Medical Licensing Examination (USMLE) Step 1 and is purchased directly from the NBME. We administered the CBSE five times during the first 2 yr of medical school. Student scores were compared with scores on newly created internal summative exams and to the USMLE Step 1. Significant correlations were observed between almost all our internal exams and CBSE scores over time as well as with USMLE Step 1 scores. The strength of correlations of internal exams to the CBSE and USMLE Step 1 broadly increased over time during the curriculum. Student scores on courses that have strong emphasis on physiology and pathophysiology correlated particularly well with USMLE Step 1 scores. Student progress, as measured by the CBSE, was found to be linear across time, and test performance fell behind the anticipated level by the end of the formal curriculum. These findings are discussed with respect to student learning behaviors. In conclusion, the CBSE was found to have good utility as a progress test and provided external validation of our new internally developed multiple-choice assessments. The data also provide performance benchmarks both for our future students to formatively assess their own progress and for other medical schools to compare learning progression patterns in different curricular models. PMID:25434014

  10. Integrating Agriculture into the Science Curriculum.

    ERIC Educational Resources Information Center

    Emery, Pamela M.; Linder, Mark P.

    1993-01-01

    The California Foundation for Agriculture in the Classroom supports efforts to integrate agricultural education into K-12 science curriculum. Thirteen pilot agriculture/science units have been developed. (SK)

  11. SCIENCE EDUCATION INFORMATION REPORT, BIBLIOGRAPHY 4, CURRICULUM.

    ERIC Educational Resources Information Center

    ERIC Information Analysis Center for Science Education, Columbus, OH.

    THIS IS THE FOURTH IN A SERIES OF GENERAL BIBLIOGRAPHIES WHICH ARE BEING DEVELOPED TO DISSEMINATE INFORMATION CONCERNING DOCUMENTS ANALYZED AT THE ERIC INFORMATION ANALYSIS CENTER FOR SCIENCE EDUCATION. REPORTED ARE OVER 350 CITATIONS TO SELECTED DOCUMENTS ON CURRICULUM AND CURRICULUM DEVELOPMENT IN SCIENCE EDUCATION. THE DOCUMENTS INCLUDED…

  12. Life Science Curriculum Guide. Bulletin 1614.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a life science course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…

  13. Earth Science Curriculum Guide. Bulletin 1643.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in an earth science course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals…

  14. Science Grade 7, Chemistry, Physics, Earth Science, Biology. Curriculum Bulletin, 1968-69 Series, No. 15.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    This publication is a teacher's guide for teaching seventh grade science in New York City Schools. Activities for four areas -- physics, chemistry, earth science, and biology -- are included. This particular edition is a reprint of Science: Grade 7, Curriculum Bulletin Nos 9a--9d, 1962-1963 Series, which were originally produced in four separate…

  15. Third Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for third grade students. Each content standard is explained and includes student learning expectations, third grade benchmarks, assessments, and…

  16. Sixth Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for sixth grade students. Each content standard is explained and includes student learning expectations, sixth grade benchmarks, assessments, and…

  17. Fourth Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for fourth grade students. Each content standard is explained and includes student learning expectations, fourth grade benchmarks, assessments, and…

  18. First Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for first grade students. Each content standard is explained and includes student learning expectations, first grade benchmarks, assessments, and…

  19. Second Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for second grade students. Each content standard is explained and includes student learning expectations, second grade benchmarks, assessments, and…

  20. Kindergarten Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for kindergarten students. Each content standard is explained and includes student learning expectations, kindergarten benchmarks, assessments, and…

  1. Seventh Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for seventh grade students. Each content standard is explained and includes student learning expectations, seventh grade benchmarks, assessments, and…

  2. Eighth Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for eighth grade students. Each content standard is explained and includes student learning expectations, eighth grade benchmarks, assessments, and…

  3. Fifth Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for fifth grade students. Each content standard is explained and includes student learning expectations, fifth grade benchmarks, assessments, and…

  4. K-12 Science Curriculum Guide.

    ERIC Educational Resources Information Center

    Reading Community Schools, OH.

    GRADES OR AGES: K-12. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into three sections, one each for elementary grades, middle grades, and high school. The first two sections are further subdivided by grade level and the last section is subdivided by course. Sections are laid out in four columns across two…

  5. Using Symbolic Interactionism to Analyze a Specialized STEM High School Teacher's Experience in Curriculum Reform

    ERIC Educational Resources Information Center

    Teo, Tang Wee; Osborne, Margery

    2012-01-01

    In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: "inquiry curriculum" and "curriculum change" through the process lens of interactions, actions,…

  6. The School Curriculum and Liberal Education

    ERIC Educational Resources Information Center

    Crittenden, Brian

    2006-01-01

    This article illustrates imaginative ways in which the building blocks of a liberal education (the systematic intellectual disciplines) can be assembled into a school curriculum. The advocacy of liberal education as the distinctive work of schools does not require a curriculum of isolated academic subjects. The historic ideal of the school as a…

  7. Science K-12, Living Things Are Products of Their Heredity and Their Environment. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, health, general science, physical science) and grade level. Concepts regarding characteristics of living things are stressed in objectives for the primary grades (K-5), and reproductive biology is covered…

  8. The relationship between the beliefs of school board members concerning Young Earth Creationism and Old Earth Creationism and the inclusion of creationism in the science curriculum of Georgia public schools

    NASA Astrophysics Data System (ADS)

    Cook, Karen S.

    This study investigated district location and the beliefs of school board members regarding Young Earth Creationism (YEC) and Old Earth Creationism (OEC) associated with the inclusion or exclusion of creationism in the district science curriculum of Georgia public schools. A random sampling of 144 mailed of a total population of 1,034 local school board members was selected as subjects. Data analysis indicated that beliefs of school board members in Young Earth Creationism had a weak, positive association with the permitted inclusion of creationism in the district science curriculum while board member beliefs in OEC had a moderate, negative relationship. No association was found between board member beliefs in either Young Earth Creationism or Old Earth Creationism and the required inclusion of creationism in district creationism in Georgia public schools. Concerning district location (rural, urban, or suburban) and the permitted or mandatory inclusion of creationism, no relationship was found. The results of this study provide insight into connections between beliefs of board members and the inclusion of creationism, which may translate into enlightened voting decisions.

  9. Science CAP: Curriculum Assistance Program. [Multimedia.

    ERIC Educational Resources Information Center

    DEMCO, Inc., Madison, WI.

    Science Curriculum Assistance Program (Science CAP(TM)) is a multimedia package developed to create a model for preserving classroom science activities that can be shared and customized by teachers. This program is designed to assist teachers in preparing classroom science activities for grades five through eight, and to foster an environment of…

  10. Schools, Science and Society

    ERIC Educational Resources Information Center

    Andrew, Michael D.

    1970-01-01

    Discusses the importance of designing new science curriculum to emphasize these features: ecology-environment concepts; close tie between science and human values; technology and the application of science; processes which will enable man to more effectively use and control science and technology; integrated science; and…

  11. A Sociological Analysis of Science Curriculum and Pedagogic Practices

    ERIC Educational Resources Information Center

    Alves, Vanda; Morais, Ana M.

    2012-01-01

    The study analyses the extent to which the sociological message transmitted by the teachers' pedagogic practice recontextualizes the official pedagogic discourse of the natural sciences curriculum for a Portuguese middle school. Theoretically, the study is based on theories of psychology (e.g. Vygotsky), epistemology (e.g. Ziman) and sociology,

  12. Laboratory Science in Clover. Curriculum Guide Grades 4-7.

    ERIC Educational Resources Information Center

    Clover School District, SC.

    This curriculum guide provides a laboratory approach to teaching elementary school science. A set of both cognitive and affective objectives is presented. Beginning with grade level 4, conceptual schemes for each level, with accompanying subconcepts, are presented, and a complete list of behavioral objectives associated with the conceptual schemes…

  13. REORGANIZED SCIENCE CURRICULUM, 4B, FOURTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE SIXTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FOURTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THIS FOURTH GRADE SUPPLEMENT IS IN TWO PARTS. PART 4A CONTAINS THE INTRODUCTORY MATERIAL, THE CONCEPTS

  14. REORGANIZED SCIENCE CURRICULUM, 6C, SIXTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE ELEVENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SIXTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THIS VOLUME, 6C, IS ONE OF THREE COMPRISING THE SIXTH GRADE SUPPLEMENT, AND CONTAINS THE SECTIONS ON

  15. REORGANIZED SCIENCE CURRICULUM, 5A, FIFTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE SEVENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FIFTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THERE IS A DETAILED OUTLINE OF SUBJECT MATTER FOR GRADE 5 FOR EACH OF THE FOLLOWING MAJOR AREAS AROUND…

  16. REORGANIZED SCIENCE CURRICULUM, 6A, SIXTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE NINTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SIXTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THE SIXTH GRADE SUPPLEMENT IS IN THREE VOLUMES. VOLUME 6A HAS A DETAILED OUTLINE OF THE SUBJECT MATTER FOR…

  17. REORGANIZED SCIENCE CURRICULUM, 4A, FOURTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE FIFTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FOURTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THERE IS A DETAILED OUTLINE OF THE CONTENT FOR GRADE 4 FOR EACH OF THE FOLLOWING MAJOR AREAS AROUND WHICH…

  18. REORGANIZED SCIENCE CURRICULUM, 7A, GRADE SEVEN SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE TWELFTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SEVENTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THE SEVENTH GRADE SUPPLEMENT IS IN TWO VOLUMES. VOLUME 7A CONTAINS INTRODUCTORY MATERIAL, A BRIEF…

  19. The Shell Science Centre Curriculum Extension Programme 1987-1989.

    ERIC Educational Resources Information Center

    Ziervogel, A., Comp.; Lewy, A., Ed.

    The curriculum extension program (CEP) of the Shell Science Centre provided group tutoring to small groups of secondary school pupils using qualified teachers. This evaluation report presents articles discussing various aspects of the program and its effectiveness. The first article by A. Ziervogel provides a review of the program. The following…

  20. ADP-MAS: A Math and Science Curriculum.

    ERIC Educational Resources Information Center

    National Council of La Raza, Washington, DC.

    This curriculum, Academia del Pueblo-Math and Science (ADP-MAS), is an outgrowth of the National Council of La Raza's Project EXCEL, a supplemental educational enrichment model for at-risk Latino students to be operated by Latino community-based organizations or public institutions, including schools with substantial Latino populations. ADP-MAS…

  1. A Sociological Analysis of Science Curriculum and Pedagogic Practices

    ERIC Educational Resources Information Center

    Alves, Vanda; Morais, Ana M.

    2012-01-01

    The study analyses the extent to which the sociological message transmitted by the teachers' pedagogic practice recontextualizes the official pedagogic discourse of the natural sciences curriculum for a Portuguese middle school. Theoretically, the study is based on theories of psychology (e.g. Vygotsky), epistemology (e.g. Ziman) and sociology,…

  2. REORGANIZED SCIENCE CURRICULUM, 5A, FIFTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE SEVENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FIFTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THERE IS A DETAILED OUTLINE OF SUBJECT MATTER FOR GRADE 5 FOR EACH OF THE FOLLOWING MAJOR AREAS AROUND

  3. REORGANIZED SCIENCE CURRICULUM, 5B, FIFTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE EIGHTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FIFTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE AUGMENTED AND REVISED AS THE NEED ARISES. THE FIFTH GRADE SUPPLEMENT IS IN TWO PARTS. CONTAINED IN 5A ARE THE INTRODUCTORY MATERIAL, THE CONCEPTS SECTION, AND THE…

  4. Science: Model Curriculum Guide, Kindergarten through Grade Eight.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This guide was developed with the intention of helping teachers and school site administrators in California review the elementary science curriculum and compare it to an idealized model that is presented in the document. Part I of the guide provides a summary of a number of characteristics considered to be important to a strong elementary science…

  5. LIFE AND EARTH SCIENCE, JUNIOR HIGH SCHOOL.

    ERIC Educational Resources Information Center

    MAHLER, FRED

    CURRICULUM GUIDES FOR GRADE 7 "LIFE SCIENCE" AND GRADE 8 "EARTH SCIENCE" WERE DEVELOPED BY 24 AREA TEACHERS AND THREE SAM HOUSTON STATE COLLEGE PROFESSORS. THE PROJECT WAS SUPPORTED BY THE TEXAS SMALL SCHOOL ASSOCIATION, THE LOCAL SCHOOLS, AND FUNDS FROM THE TITLE III PROGRAM. THE TEACHER GUIDES WERE PREPARED TO IMPROVE THE JUNIOR HIGH SCHOOL…

  6. Science K-12, Interdependency of Living Things and Living Things With Their Environment. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, physical science), and grade level. Choices of environmental topics such as weather, conservation of natural resources, and the interdependence of organisms and environment dominate objectives written for grades…

  7. Astronomy in the Delaware Public Schools Curriculum

    NASA Astrophysics Data System (ADS)

    Shipman, H.; Martin, K.; Moyer, J.; Baldwin, J.; Bole, D.; Bouchelle, H.; Densler, S.; Gizis, J.; Matthes, M.; Mills, B.; Stubbolo, G.; Sypher, J.

    2005-12-01

    100 years ago, the Committee of Ten cast astronomy into the back rooms of K-12 education, among other things. Ten years ago, the State of Delaware approved science standards which brought astronomy back to center stage. "Earth in Space" is now one of eight strands in the state's K-12 science standards. The authors of this paper form a team of university astronomers, K-12 teachers, and dedicated workers in the state's department of education. We guide statewide efforts to transform the nice words in the standards into high-quality classroom teaching. Our most robust achievements are in middle school, where the the FOSS Planetary Systems kit has given all Delaware eighth grade students an extensive exposure to astronomy. The authors of this paper have written additional materials, most classroom-tested by us, to supplement the kit and align the contents of the 8th grade curriculum with the Delaware standards. Pilot testing of the new curricular units begins in the spring of 2006, and astronomy questions will soon appear on the state assessments. Implementation of the standards in K-5 and in high school now varies considerably from teacher to teacher. We plan to help teachers who know little or no astronomy do more in their classes. In high school, a unit on the Big Bang will be developed in conjunction with a unit on biological evolution. In K-5, astronomy activities can naturally be introduced along with the other science curriculum kits that the state has used for the past decade to produce demonstrable, statistically significant improvements in student achievement. HS will lead a small team which will develop support materials. We thank the State of Delaware, private industries, the National Science Foundations Distinguished Teaching Scholars Program (DUE-0306557), and the NASA E/PO program for support.

  8. Aspirations: The Ganado Primary School Curriculum.

    ERIC Educational Resources Information Center

    Ganado Public Schools, AZ.

    This document describes an elementary school curriculum implemented at the Ganado Primary School in Arizona. The curriculum is based on traditional Navajo teachings associated with the four cardinal directions. The goal is to help students live harmonious lives by developing a sound belief and value system, learning ways to make a living, learning…

  9. Outcomes of a High School Entrepreneurship Curriculum

    ERIC Educational Resources Information Center

    Doucet, LaRon; Hiatt-Michael, Diana B.

    2011-01-01

    This study was a post-evaluation of graduates of Network for Teaching Entrepreneurship (NFTE), a national program in high schools to promote entrepreneurship knowledge and skills. The study focused on graduates of the NFTE curriculum in an inner-city high school in Los Angeles County, California. Although the NFTE curriculum contains an evaluation…

  10. A Reexamination of Ontario's Science Curriculum: Toward a More Inclusive Multicultural Science Education?

    ERIC Educational Resources Information Center

    Mujawamariya, Donatille; Hujaleh, Filsan; Lima-Kerckhoff, Ashley

    2014-01-01

    The rapid diversification of communities in Ontario has necessitated the provincial government to reevaluate public school curriculums and policies to make schools more inclusive and reflective of its diverse population. This article critically analyzes the content of the latest revised science curricula for Grades 1 to 10 and assesses the degree…

  11. STEM policy and science education: scientistic curriculum and sociopolitical silences

    NASA Astrophysics Data System (ADS)

    Gough, Annette

    2015-06-01

    This essay responds to the contribution of Volny Fages and Virginia Albe, in this volume, to the field of research in science education, and places it in the context of the plethora of government and industry policy documents calling for more Science, Technology, Engineering and Mathematics (STEM) education in schools and universities and the tension between these and students' declining interest in studying STEM subjects. It also draws attention to the parallels between the silences around sociopolitical issues in government policies and curriculum related to STEM, including nanoscience, and those found with respect to environmental education two decades ago, and relates these to the resurgence of a scientific rationalist approach to curriculum.

  12. An evaluation of the National Curriculum Redesign Project: Eighth grade science curriculum pedagogical strategies

    NASA Astrophysics Data System (ADS)

    Chalwell-Brewley, Lavon P.

    The purpose of this study was to examine the effectiveness of the eighth grade science National Curriculum Redesign Project. The site for this study was an urban secondary school in the British Virgin Islands. The school's population consisted of 1600 students and 120 teachers, where approximately 70% of the students were from low socioeconomic families (Secondary High School Statistical Records, 2006). The school's population was tri-cultural and consisted of approximately more Black West Indian, than Hispanic and Caucasian students and teachers. The school employed a student centered and pedagogical approach. The classroom's structure comprised of heterogeneously grouped inclusion classes with class sizes ranging between 27--40 students. The results of several studies revealed that the school's graduates did not have vital skills to work and effectively function in the work place (Organization of Eastern Caribbean States, 2000). These findings challenged the curriculum attributes and the school's pedagogical practices as it relates to providing powerful discourse in good instruction and improved academic achievement skills. Thus, the National Curriculum Redesign Project was developed to ensure teaching-learning components work together to foster significant learning practices. The review of the literature informed and substantiated the research and the related research questions. The population sample consisted of three secondary school science teachers and 26 students. Questionnaires and interview data collecting tools were employed. The data was analyzed to identify patterns and themes in responses. Descriptive statistics consisting of frequencies and percentage were used to support qualitative information and recommendations were made.

  13. Toward a Lived Science Curriculum in Intersecting Figured Worlds: An Exploration of Individual Meanings in Science Education

    ERIC Educational Resources Information Center

    Price, Jeremy F.; McNeill, Katherine L.

    2013-01-01

    As knowledge of and familiarity with science becomes an increasingly important aspect of contemporary life and citizenship, efforts have been made to make the science curriculum a lived curriculum (Hurd, 2000), one that reaches out to the lives, communities, and experiences of students. In this research around a high school urban ecology

  14. Toward a Lived Science Curriculum in Intersecting Figured Worlds: An Exploration of Individual Meanings in Science Education

    ERIC Educational Resources Information Center

    Price, Jeremy F.; McNeill, Katherine L.

    2013-01-01

    As knowledge of and familiarity with science becomes an increasingly important aspect of contemporary life and citizenship, efforts have been made to make the science curriculum a “lived” curriculum (Hurd, 2000), one that reaches out to the lives, communities, and experiences of students. In this research around a high school urban ecology…

  15. Children's Literature and the Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2010-01-01

    A quality children's literature program needs to be correlated with ongoing science lessons and units of study. It can enhance and enrich the science curriculum. Pupils tend to enjoy reading library books and the the literature may assist pupils to explore topics in greater depth. In addition to science experiments, demonstrations, and

  16. Children's Literature and the Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2010-01-01

    A quality children's literature program needs to be correlated with ongoing science lessons and units of study. It can enhance and enrich the science curriculum. Pupils tend to enjoy reading library books and the the literature may assist pupils to explore topics in greater depth. In addition to science experiments, demonstrations, and…

  17. The Hidden Variable: How Organizations Influence Teacher Responses to Secondary Science Curriculum Reform.

    ERIC Educational Resources Information Center

    Cuban, Larry

    1995-01-01

    Reviews the history of secondary science curriculum reform and presents an organizational and curricular framework for discussing why reformers committed to creating a science for living have difficulty altering prevailing patterns. Examines the influence of district, school, and classroom organization upon what curriculum is actually taught and…

  18. Physics for the Star-Gazer: Pupil's Attitudes to Astronomy in the Northern Ireland Science Curriculum.

    ERIC Educational Resources Information Center

    Jarman, Ruth; McAleese, Liam

    1996-01-01

    Reports on a study of the implementation of the new science curriculum in secondary schools in Northern Ireland. Findings suggest that astronomy has caught the interest of many students. Concludes that these findings justify the inclusion of astronomy in the Northern Ireland Science Curriculum. Contains 12 references. (JRH)

  19. Leading Curriculum Innovation in Primary Schools

    ERIC Educational Resources Information Center

    Brundrett, Mark; Duncan, Diane

    2011-01-01

    This article reports on a study of 40 primary school leaders from ten very successful primary schools who were interviewed in order to find out the skills, processes and practices that are required for the leadership of successful curriculum innovation in primary schools. Findings suggest that school leaders need to create an "ethos for change" if…

  20. When Curriculum Changes a School's Organization.

    ERIC Educational Resources Information Center

    Martin, David S.; Hockersmith, Mary

    1988-01-01

    Traditional school administrative policy often establishes the structure and organization of the school first; from this structure, the program and curriculum then follow. By contrast, a case study is offered of an educational change as support for the reverse sequence, whereby the school program can be the determiner of school organization. (CJH)

  1. A Unifying Curriculum for Museum-Schools

    ERIC Educational Resources Information Center

    Povis, Kaleen E.

    2011-01-01

    There are over two dozen schools in the United States with the word "museum" in their names. However, the philosophy and pedagogy that tie these schools together is unclear. A consistent definition, criteria for classification, and a unifying curriculum to guide museum- schools is lacking. Yet, museum-schools continue to open across the country.…

  2. Leading Curriculum Innovation in Primary Schools

    ERIC Educational Resources Information Center

    Brundrett, Mark; Duncan, Diane

    2011-01-01

    This article reports on a study of 40 primary school leaders from ten very successful primary schools who were interviewed in order to find out the skills, processes and practices that are required for the leadership of successful curriculum innovation in primary schools. Findings suggest that school leaders need to create an "ethos for change" if

  3. Curriculum Guide: Social Science. Elementary.

    ERIC Educational Resources Information Center

    Boston Public Schools, MA.

    The purpose of this curriculum guide is the development of those understandings, attitudes, and skills necessary for effective and responsible democratic citizenship. This curriculum hopes to develop in each child the realization of his own uniqueness, dignity, and worth and an awareness of these characteristics in others through the structure of

  4. Curriculum Guide: Social Science. Elementary.

    ERIC Educational Resources Information Center

    Boston Public Schools, MA.

    The purpose of this curriculum guide is the development of those understandings, attitudes, and skills necessary for effective and responsible democratic citizenship. This curriculum hopes to develop in each child the realization of his own uniqueness, dignity, and worth and an awareness of these characteristics in others through the structure of…

  5. Science and Technology Education for the Elementary Years: Frameworks for Curriculum and Instruction.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.; And Others

    This report is a policy statement for science curriculum and instruction in elementary schools. It describes a set of organizing principles that incorporate what science ought to be taught, and a learning sequence that illustrates how more "hand-on, minds-on" science can become more prevalent in our schools. Chapters included are: (1)…

  6. Environmental Education Curriculum in a Bilingual Education School in China

    ERIC Educational Resources Information Center

    Li, Ling

    2006-01-01

    In this article, the author discusses her experiences with developing an English-language science curriculum for students at the experimental Hai Bin Lu Primary School in China. She uses Schwab's (1973) four common denominators (or essential factors) of curricula--teacher, student, subject matter, and milieu--and Genette's (1980) three…

  7. Mathematics and Science across the Curriculum.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    2002-01-01

    This issue, intended for classroom teachers, provides a collection of essays organized around the theme of mathematics and science across the curriculum as well as a guide to instructional materials related to the theme. Topics addressed in the essays include experiencing mathematics through nature; connecting science, fiction, and real life;…

  8. General Physics, Physics 12 [Science Curriculum Materials].

    ERIC Educational Resources Information Center

    Rochester City School District, NY.

    The Physics 12 curriculum guide represents one in a series of science guides especially designed to provide for the pupil whose primary interests are in non-science fields. The program provides study in physics in which fundamental concepts and understandings are developed, mathematical concepts are limited, and students are encouraged to relate…

  9. Curriculum for Excellence Science: Vision or Confusion?

    ERIC Educational Resources Information Center

    Day, Stephen; Bryce, Tom

    2013-01-01

    Policy studies in science education do not have a particularly high profile. For science teachers, policy lurks in the background, somewhat disconnected from their normal classroom practice; for many, it is simply taken-for-granted. This paper analyses policy documents which have emerged from Curriculum for Excellence ("CfE") that impact…

  10. Religion, Interculturalism and Science in an English Primary School

    ERIC Educational Resources Information Center

    Coulby, David

    2008-01-01

    This article attempts to show how a set of values associated with the Christian character of an English primary school support aspects of the science curriculum. Data are obtained from the chair of governors and school documents.

  11. Cubism and the Medical School Curriculum.

    ERIC Educational Resources Information Center

    Wear, Delese

    1991-01-01

    Presents cubism as metaphor to think about medical humanities curriculum in medical school curriculum. Uses Kafka's "The Metamorphosis," Tolstoy's "The Death of Ivan Ilych," and Olsen's "Tell Me a Riddle" to illustrate how literary inquiry might enable medical students and other health care providers to think about lives of dying patients from…

  12. Small Rural Schools CAN Have Adequate Curriculums.

    ERIC Educational Resources Information Center

    Loustaunau, Martha

    The small rural school's foremost and largest problem is providing an adequate curriculum for students in a changing world. Often the small district cannot or is not willing to pay the per-pupil cost of curriculum specialists, specialized courses using expensive equipment no more than one period a day, and remodeled rooms to accommodate new…

  13. The Effects of Research-Based Curriculum Materials and Curriculum-Based Professional Development on High School Science Achievement: Results of a Cluster-Randomized Trial

    ERIC Educational Resources Information Center

    Taylor, Joseph; Kowalski, Susan; Getty, Stephen; Wilson, Christopher; Carlson, Janet

    2013-01-01

    Effective instructional materials can be valuable interventions to improve student interest and achievement in science (National Research Council [NRC], 2007); yet, analyses indicate that many science instructional materials and curricula are fragmented, lack coherence, and are not carefully articulated through a sequence of grade levels (AAAS,…

  14. Multi-Ethnic Curriculum in the Schools.

    ERIC Educational Resources Information Center

    Columbia Univ., New York, NY. General Assistance Center for Equal Educational Opportunity.

    This booklet, containing monographs on aspects of multiethnic curriculum in the schools, is intended to aid teachers to keep in touch with some of the strategies and criteria in planning and executing multiethnic programs. An article on new curricula for multiethnic schools notes that most of the urban and suburban schools are racially and

  15. Models for Curriculum Integration in High School.

    ERIC Educational Resources Information Center

    Pettus, Alvin M.

    Increased interest in interdisciplinary instruction in secondary schools has led to the development of different models. At one school in the Shenandoah Valley (Virginia) three designs evolved when teams of teachers took on nontraditional, integrated instruction as a goal. In general, integrated curriculum designs in secondary schools match one of…

  16. Environmental Chemistry in the High School Curriculum.

    ERIC Educational Resources Information Center

    Stearns, Carole

    1988-01-01

    Discusses the incorporation of environmental chemistry topics into the traditional high school chemistry curriculum. Describes and provides lesson plans for the sulfur cycle and acid rain, and radioactivity and nuclear energy. Considers possible laboratory experiments. (CW)

  17. Disciplined knowledge: Differentiating and binding the elementary science curriculum

    NASA Astrophysics Data System (ADS)

    Hayes, Michael Thomas

    The purpose of this research was to investigate elementary science curriculum differentiation at two schools with widely divergent student demographics. Historically, elementary school students of ethnic-minority and low-socioeconomic backgrounds have not performed on traditional assessments of academic achievement and progress in science education at the same level as their White and more affluent peers. This inequality has long been of interest to the proponents of science education reform who are concerned with the ability of students to participate successfully in a democratic society and in the labor market. Differentiating the curriculum such that students, because of their socioeconomic, ethnic, or racial backgrounds, receive different knowledge, skills, and experiences is a key component of school activity that supports social inequality. Participants in the study included the teachers and students of four classrooms in two schools with student populations that differed in their socioeconomic and ethnic demographics. Qualitative research methods, including fieldnotes, audiorecordings, and interviews, were utilized to gather data. The collection and analysis of data were articulated in a developmental research process in which theories and interpretations were continuously constructed and tested for validity. The results of this research show that the science curricula at the two schools were different, with differences being understood in terms of the populations served. The particular form of differentiation observed in this study was closely correlated to elements of social discipline, knowledge segmentation and reconfiguration, time and pacing, control of bodies, and testing. The elementary science curriculum at the two schools differed in the formality and intensity with which the curriculum was constructed in adherence to these elements of discipline. Such differences cannot be understood in traditional terms as supporting White middle-class students' academic and social progress while retarding that of students from low-socioeconomic and ethnic-minority backgrounds. Curriculum differentiation, when considered on a theory of discipline, is not simply a matter of placing students into inequitable social and educational positions. Instead, the curriculum is implicated in the construction of a stratified social system that at once constrained and provided for educational, social, and economic possibility.

  18. Science, Math, and Technology. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Science, Math and Technology is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) science (with activities on observation, comparisons, and the scientific method); (2) technology (examining simple machines, electricity, magnetism, waves and forces); (3) mathematics (addressing skill

  19. Science, Math, and Technology. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Science, Math and Technology is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) science (with activities on observation, comparisons, and the scientific method); (2) technology (examining simple machines, electricity, magnetism, waves and forces); (3) mathematics (addressing skill…

  20. Science Curriculum Material Development through a Teacher-Industrialist Partnership: Industrialists' Perceptions of Their Role.

    ERIC Educational Resources Information Center

    Lubben, Fred; Campbell, Bob; Maphalala, Tizie; Putsoa, Bongi

    1998-01-01

    Focuses on a curriculum-development project involving a team of teachers and industrial technologists in the creation of lesson materials for secondary school science classes in Swaziland. Contains 20 references. (DDR)

  1. Designing a Science Curriculum Fit for Purpose

    ERIC Educational Resources Information Center

    Millar, Robin

    2014-01-01

    The science curriculum to age 16 should be judged on how well it meets the needs of students who progress to A-level science courses and those (a larger number) who do not. To address the diversity of students' interests and aspirations, we need a clear view of the purposes of science education rooted in a view of the purposes of education

  2. Designing a Science Curriculum Fit for Purpose

    ERIC Educational Resources Information Center

    Millar, Robin

    2014-01-01

    The science curriculum to age 16 should be judged on how well it meets the needs of students who progress to A-level science courses and those (a larger number) who do not. To address the diversity of students' interests and aspirations, we need a clear view of the purposes of science education rooted in a view of the purposes of education…

  3. Science Fiction across the Curriculum.

    ERIC Educational Resources Information Center

    Kay, Andrew L.; Golden, Michael

    1991-01-01

    Presents ideas on integrating science fiction into language arts, science, social studies, and math. Suggestions include an interstellar journey, imaginative language lessons, futuristic social studies, extraterrestrial life studies, intergalactic math, and science fiction story writing. (SM)

  4. Traversing the educational ladder: Perspectives on science curriculum reform

    NASA Astrophysics Data System (ADS)

    Salyer, Barbara Ann

    1998-12-01

    The purpose of this interpretive study was to unravel some of the complexity of science curriculum reform by tracing the natural history of the initiation of planned change viewed from the perspectives of practitioners and policymakers. The study captures the experiences, beliefs, and perceptions of key stakeholders in one school district in Texas and in the state education agency as they encounter, negotiate, and work with a radically different approach to the secondary science curriculum. Incorporating ideas from national reform efforts, such as Project 2061 and Scope, Sequence, and Coordination of Secondary School Science, the new approach called Coordinated Thematic Science (CTS) would offer a four-year course of study in grades seven through ten, integrating the major science disciplines with a thematic approach. Three sources of data were collected, described, and analyzed in the study: in-depth interviews, document analyses, and field notes. Nine factors related to the initiation and implementation of change, derived inductively from the data, were identified and described for each of the participants from the different stakeholder groups studied. These groups included middle school science teachers, high school science teachers, middle school principals, district office staff members, and state education agency staff members. Results are presented both in the form of descriptive text and in data displays constructed around the nine key factors for each stakeholder group. The results are interpreted against the historical account of the origins and development of CTS and related to the literature on educational change. Stakeholder perspectives on the reform were complex and often idiosyncratic. Two factors, belief that the curriculum needs to be reformed and beliefs about the effects of the proposed reform on students, showed the widest variations in perceptions across the five stakeholder groups. Teachers' personal concerns about their science backgrounds, lack of information about the new approach, and lack of communication within and across schools posed serious barriers to the success of the reform. The fact that there were widely different perceptions among stakeholders in a single district poses challenges both to curriculum reform in science and to the idea of systemic reform in education.

  5. How Teachers Perceive the New Curriculum Reform: Lessons from a School District in the Eastern Cape Province, South Africa

    ERIC Educational Resources Information Center

    Bantwini, Bongani D.

    2010-01-01

    The meanings that a teacher attaches to the new curriculum reforms act as his or her map on the curriculum implementation journey, and these usually determine the success of the education reforms. This research article explores the meanings attached to the new Science curriculum reforms by primary school teachers in a school district in South…

  6. One Brief, Shining Moment? The Impact of Neo-Liberalism on Science Curriculum in the Compulsory Years of Schooling

    ERIC Educational Resources Information Center

    Smith, Dorothy Veronica

    2011-01-01

    The past 20 years or so have seen ongoing concern for the nature of science education in the Anglophone developed world. A particular focus of this concern has been the need to find new ways to frame science curricula that will engage students, yet it is proving difficult to achieve this goal. In this article I argue that the impact on science

  7. Mapping Curriculum Innovation in STEM Schools to Assessment Requirements: Tensions and Dilemmas

    ERIC Educational Resources Information Center

    Tan, Aik-Ling; Leong, Woon Foong

    2014-01-01

    Specialized science, technology, engineering, and mathematics (STEM) schools create niche areas in an attempt to attract the best students, establish the school status, and justify their privilege to valuable resources. One Singapore STEM school does this in applied science learning to differentiate its curriculum from the national prescribed…

  8. Mapping Curriculum Innovation in STEM Schools to Assessment Requirements: Tensions and Dilemmas

    ERIC Educational Resources Information Center

    Tan, Aik-Ling; Leong, Woon Foong

    2014-01-01

    Specialized science, technology, engineering, and mathematics (STEM) schools create niche areas in an attempt to attract the best students, establish the school status, and justify their privilege to valuable resources. One Singapore STEM school does this in applied science learning to differentiate its curriculum from the national prescribed

  9. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    ERIC Educational Resources Information Center

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  10. Middle Level Science: A Mixed-Methodology Study of the Impact of the Pennsylvania System of School Assessment (PSSA) on Curriculum and Instruction

    ERIC Educational Resources Information Center

    Britton, Patricia Sarappo

    2013-01-01

    Using a mixed methodology approach, this study examined the impact of the implementation of the science PSSA on the curriculum and instructional practice of eighth-grade teachers. It was hypothesized that despite the specter of PSSA influence on the academic climate, teachers are not necessarily influenced to change instructional practices, even…

  11. Use of the NBME Comprehensive Basic Science Examination as a Progress Test in the Preclerkship Curriculum of a New Medical School

    ERIC Educational Resources Information Center

    Johnson, Teresa R.; Khalil, Mohammed K.; Peppler, Richard D.; Davey, Diane D.; Kibble, Jonathan D.

    2014-01-01

    In the present study, we describe the innovative use of the National Board of Medical Examiners (NBME) Comprehensive Basic Science Examination (CBSE) as a progress test during the preclerkship medical curriculum. The main aim of this study was to provide external validation of internally developed multiple-choice assessments in a new medical…

  12. Medical student perceptions of a behavioural and social science curriculum

    PubMed Central

    2011-01-01

    Background In 2006, Oregon Health & Science University began implementing changes to better integrate mental health and social science into the curriculum by addressing the Institute of Medicine's (IOM's) 2004 recommendation for the inclusion of six behavioural and social science (BSS) domains: health policy and economics, patient behaviour, physician–patient interaction, mind–body interactions, physician role and behaviour, and social and cultural issues. Methods We conducted three focus groups with a purposive sample of 23 fourth-year medical students who were exposed to 4 years of the new curriculum. Students were asked to reflect upon the adequacy of their BSS training specifically as it related to the six IOM domains. The 90-minute focus groups were recorded, transcribed and analysed. Results Students felt the MS1 and MS2 years of the curriculum presented a strong didactic orientation to behavioural and social science precepts. However, they reported that these principles were not well integrated into clinical care during the second two years. Students identified three opportunities to further the inclusion of BSS in their clinical training: presentation of BSS concepts prior to relevant clinical exposure, consistent BSS skills mentoring in the clinical setting, and improving cultural congruence between aspects of BSS and biomedicine. Conclusions Students exposed to the revised BSS curriculum tend to value its principles; however, modelling and practical training in the application of these principles during the second two years of medical school are needed to reinforce this learning and demonstrate methods of integrating BSS principles into practice. PMID:23205062

  13. Fantastic Physics: Developing an Early Interest in Science. A Preschool Science Curriculum.(4 Year Old Curriculum).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    Using hands-on activities and the "Plan, Do, Review" approach, this physics curriculum for 4-year-olds is designed to develop an early interest in and enthusiasm for science and to excite children about learning in general. The curriculum is designed to be implemented biweekly in preschool or child care programs but may also be presented at a…

  14. Terrebonne Parish Nautical Science Program Curriculum.

    ERIC Educational Resources Information Center

    Louisiana State Univ., Baton Rouge. Center for Wetland Resources.

    The curriculum presented in this document was created through the auspices of Louisiana State University's Center for Wetland Resources. Need for a program to train qualified personnel for the transportation segment of the mineral and oil industry was shown by a shortage of skilled workers. With the cooperation of a local high school, a one-year…

  15. Georgia science curriculum alignment and accountability: A blueprint for student success

    NASA Astrophysics Data System (ADS)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  16. The Professional Growth of a Primary School Teacher Engaged in an Innovative Primary Science Trial Curriculum Development Project Utilising Satellite Broadcasting.

    ERIC Educational Resources Information Center

    Ginns, Ian S.; Watters, James J.

    The implementation of effective science programs in primary schools is of continuing interest and concern for teacher educators. Recent Australian national initiatives have been designed to foster the teaching of science in primary schools. At the provincial level in Queensland, decisions concerning the planning and introduction of a new primary…

  17. Describing Connections between Science Content and Future Careers: Implementing Texas Curriculum for Rural at-Risk High School Students Using Purposefully-Designed Field Trips

    ERIC Educational Resources Information Center

    Hutson, Tommye; Cooper, Susan; Talbert, Tony

    2011-01-01

    The state of Texas has an "essential knowledge" component in some high school science courses indicating that students be able to describe connections between academic science content and future jobs or training through effective exposure to course content. The participants in this study were from a small rural high school in central Texas. Each…

  18. One Brief, Shining Moment? The Impact of Neo-Liberalism on Science Curriculum in the Compulsory Years of Schooling

    ERIC Educational Resources Information Center

    Smith, Dorothy Veronica

    2011-01-01

    The past 20 years or so have seen ongoing concern for the nature of science education in the Anglophone developed world. A particular focus of this concern has been the need to find new ways to frame science curricula that will engage students, yet it is proving difficult to achieve this goal. In this article I argue that the impact on science…

  19. The Extra Strand of the Maori Science Curriculum

    ERIC Educational Resources Information Center

    Stewart, Georgina

    2011-01-01

    This paper comments on the process of re-development of the Maori-medium Science (Putaiao) curriculum, as part of overall curriculum development in Aotearoa New Zealand. A significant difference from the English Science curriculum was the addition of an "extra strand" covering the history and philosophy of science. It is recommended that this

  20. School-Based Curriculum Development in Scotland: Curriculum Policy and Enactment

    ERIC Educational Resources Information Center

    Priestley, Mark; Minty, Sarah; Eager, Michelle

    2014-01-01

    Recent worldwide trends in curriculum policy have re-emphasised the role of teachers in school-based curriculum development. Scotland's Curriculum for Excellence is typical of these trends, stressing that teachers are agents of change. This paper draws upon empirical data to explore school-based curriculum development in response to

  1. School-Based Curriculum Development in Scotland: Curriculum Policy and Enactment

    ERIC Educational Resources Information Center

    Priestley, Mark; Minty, Sarah; Eager, Michelle

    2014-01-01

    Recent worldwide trends in curriculum policy have re-emphasised the role of teachers in school-based curriculum development. Scotland's Curriculum for Excellence is typical of these trends, stressing that teachers are agents of change. This paper draws upon empirical data to explore school-based curriculum development in response to…

  2. Universe Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Universe Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) earth (providing activities on the physical shape of the earth and landform formations; (2) geography (emphasizing map reading skills); (3) universe (exploring the components, processes and future projects for the

  3. Rock Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  4. Social Science Disciplines. Fundamental for Curriculum Development.

    ERIC Educational Resources Information Center

    McLendon, Johathan C., Ed.

    This guide is written for the social studies curriculum developer interested in developing a structured multidisciplinary program based on the concepts, methodology, and structure of social science disciplines and history. Seven 15-29 page chapters are included on each discipline: Anthropology and Psychology, by Charles R. Berryman; Economics, by

  5. Biological Sciences Curriculum Study Newsletter Number 47.

    ERIC Educational Resources Information Center

    Clark, George M., Ed.

    This issue of the Biological Sciences Curriculum Study (BSCS) newsletter is mainly devoted to reports of the international adaptation of the BSCS materials. The BSCS director provides an overview of the international cooperation program, and a member from most of the adaptation teams contributes a short report on the progress of adaptations in his…

  6. Adult Basic Education Science Curriculum Guide.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    This seven-part guide is intended for use in defining curricula for a wide clientele of adult learners in British Columbia who want to improve their knowledge, skills, and understanding in science. Part 1 explains the guide's place in the provincial curriculum development and articulation processes, defines the three purposes of the guide,

  7. Universe Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Universe Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) earth (providing activities on the physical shape of the earth and landform formations; (2) geography (emphasizing map reading skills); (3) universe (exploring the components, processes and future projects for the…

  8. Life Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Life Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) past life (focusing on dinosaurs and fossil formation, types, and importance); (2) animal life (examining groups of invertebrates and vertebrates, cells, reproduction, and classification systems); (3) plant life…

  9. Water Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Water Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) atmosphere (highlighting the processes of evaporation, condensation, convection, wind movement and air pollution); (2) water (examining the properties of liquids, water distribution, use, and quality, and the water…

  10. Plate Tectonic Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps

  11. Plate Tectonic Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…

  12. Water Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Water Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) atmosphere (highlighting the processes of evaporation, condensation, convection, wind movement and air pollution); (2) water (examining the properties of liquids, water distribution, use, and quality, and the water

  13. Mathematical Modeling in the Secondary School Curriculum.

    ERIC Educational Resources Information Center

    Swetz, Frank, Ed.; Hartzler, J. S., Ed.

    Over the past 10 years, national conferences and committees investigating the state of American mathematics education have advocated an increased emphasis on problem solving and mathematical modeling situations in the secondary school curriculum. However, little effort has been made to prepare secondary school teachers to use mathematical modeling…

  14. Small Schools Curriculum: Physical Education, K-6.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; Hartl, Doris, Ed.

    The self-contained sections within the document (one for grades K-3, the other for grades 4-6) present objectives, activities, monitoring procedures and resources for the elementary physical education curriculum for Washington small school districts. Identical introductory materials describe the organization of Small Schools materials,…

  15. THE ENGLISH CURRICULUM IN THE SECONDARY SCHOOL.

    ERIC Educational Resources Information Center

    SEYFERT, WARREN C.

    AT THE INVITATION OF THE NATIONAL ASSOCIATION OF SECONDARY SCHOOL PRINCIPALS (NASSP), A SPECIAL COMMITTEE OF THE NATIONAL COUNCIL OF TEACHERS OF ENGLISH HAS PREPARED A SYMPOSIUM OF PAPERS ON NEW DIRECTIONS IN THE ENGLISH SECONDARY SCHOOL CURRICULUM. ARTICLES ON IMPORTANT ISSUES AND DEVELOPMENTS IN THE TEACHING OF ENGLISH ARE--(1) "SIX MAJOR…

  16. Mount Pleasant Intermediate School Curriculum Project.

    ERIC Educational Resources Information Center

    Abell, Herb; And Others

    This document contains the outline of a science curriculum for grades six and seven. General objectives for science education are listed, then a general course overview, a content outline with suggested time allotments, and unit objectives are provided for both the sixth and seventh grade courses. The primary focus of the suggested sixth grade…

  17. The Forgotten Majority: Science Curriculum

    ERIC Educational Resources Information Center

    Weaver, A. Miles, III

    1970-01-01

    Describes the objectives and content of an experience-oriented approach for 9th grade general science students. The emphasis is on the learning of science processes, through field studies and student investigations. Topic areas include measurement, landforms, weather, soil, plants and animals, population relationships, conservation, and pollution.

  18. The Forgotten Majority: Science Curriculum

    ERIC Educational Resources Information Center

    Weaver, A. Miles, III

    1970-01-01

    Describes the objectives and content of an experience-oriented approach for 9th grade general science students. The emphasis is on the learning of science processes, through field studies and student investigations. Topic areas include measurement, landforms, weather, soil, plants and animals, population relationships, conservation, and pollution.…

  19. An Insight into a School's Readiness to Implement a CAPS Related Indigenous Knowledge Curriculum for Meteorological Sciences

    ERIC Educational Resources Information Center

    Riffel, Alvin Daniel

    2015-01-01

    This paper looks at those aspects of Indigenous Knowledge (IK) that are socially and culturally relevant in South Africa for teaching meteorological science concepts in a grade 9 geography class room using dialogical argumentation as an instructional model (DAIM). Focusing on the Western Cape Province, and using a quasi-experimental research…

  20. Collaborative Professional Development and Curriculum Enactment: Teacher Reflection to Inform Inquiry-Based Discussions in High School Science Classrooms

    ERIC Educational Resources Information Center

    Alozie, Nonyelum M.

    2010-01-01

    Professional development for practicing science teachers has been a goal in education for the last two decades. Studies have shown that the quality of teacher instruction may be linked to teacher participation and involvement in professional development programs (Fishman, Marx, Best, & Tal, 2003). Furthermore, reflection during professional…

  1. Collaborative Professional Development and Curriculum Enactment: Teacher Reflection to Inform Inquiry-Based Discussions in High School Science Classrooms

    ERIC Educational Resources Information Center

    Alozie, Nonyelum M.

    2010-01-01

    Professional development for practicing science teachers has been a goal in education for the last two decades. Studies have shown that the quality of teacher instruction may be linked to teacher participation and involvement in professional development programs (Fishman, Marx, Best, & Tal, 2003). Furthermore, reflection during professional

  2. The Integration of Biomimicry as a Solution-Oriented Approach to the Environmental Science Curriculum for High School Students

    ERIC Educational Resources Information Center

    Staples, Hilary

    2005-01-01

    Biomimicry is an interdisciplinary science in which scientists look for solutions to human needs in nature. It endeavors to discover answers from the molecular, or material level, all the way up to the interrelationships, or systems level. The purpose of this review of the literature is to demonstrate the need and potential application of this new…

  3. How Jeff Gordon and NASCAR Helped to Develop a High School Science Curriculum and Educate Future Teachers

    ERIC Educational Resources Information Center

    Hoodak, Ronald A.

    2004-01-01

    The focus of this article is the development of future science teachers. A research project, involving Cornell University, the Cornell Center for Materials Research, and NASCAR Champion Jeff Gordon is described. All research was conducted in association with faculty and staff at Cornell University and resulted in the development of a science…

  4. Designing a Curriculum for Public Understanding of Science.

    ERIC Educational Resources Information Center

    Millar, Robin

    1996-01-01

    Addresses the issue of what the curriculum might look like if the promotion of public understanding of science was taken as its primary aim. Discusses understanding science content, methods of science, and science as a social enterprise. (JRH)

  5. Science, Fiction and Curriculum Innovation

    NASA Astrophysics Data System (ADS)

    Brake, Mark; Griffiths, Martin

    2004-06-01

    The academic world is now becoming so specialized that the advantages of a cross disciplinary education are being lost in the tidal wave of scholarship concentrating upon narrow subject fields whilst displacing the values of connected disciplines from the sciences and humanities. The almost rigorous segregation of science and the arts at degree level is being felt not only within academia, but within society. The more a subject is concentrated, the less profound and applicable it appears to the public who should ultimately be the beneficiaries of such knowledge. In order to achieve a form of parity through which our modern world can be examined, the University of Glamorgan has introduced an innovative degree course aimed at developing a multidisciplinary knowledge of science and the arts via an exploration of the science, history, philosophy, religious, artistic, literary, cultural and social endeavours of the fields of astronomy and fantastic literature.

  6. Food-based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    PubMed Central

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students’ understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. Previous studies have shown that students experiencing the FoodMASTER curriculum were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations. The purpose of this study was to: 1) assess 4th graders food-related multidisciplinary science knowledge, and 2) compare gains in food-related science knowledge after implementation of an integrated, food-based curriculum. During the 2009–2010 school year, FoodMASTER researchers implemented a hands-on, food-based intermediate curriculum in eighteen 4th grade classrooms in Ohio (n=9) and North Carolina (n=9). Sixteen classrooms in Ohio (n=8) and North Carolina (n=8), following their standard science curricula, served as comparison classrooms. Students completed a researcher-developed science knowledge exam, consisting of 13 multiple-choice questions administered pre- and post-test. Only subjects with pre- and post-test scores were entered into the sample (Intervention n=343; Control n=237). No significant differences were observed between groups at pre-test. At post-test, the intervention group scored (9.95±2.00) significantly higher (p=.000) than the control group (8.84±2.37) on a 13-point scale. These findings suggest the FoodMASTER intermediate curriculum is more effective than a standard science curriculum in increasing students’ multidisciplinary science knowledge related to food. PMID:25152539

  7. Food-based Science Curriculum Increases 4(th) Graders Multidisciplinary Science Knowledge.

    PubMed

    Hovland, Jana A; Carraway-Stage, Virginia G; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R; Collins, Angelo; Duffrin, Melani W

    2013-10-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students' understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. Previous studies have shown that students experiencing the FoodMASTER curriculum were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations. The purpose of this study was to: 1) assess 4(th) graders food-related multidisciplinary science knowledge, and 2) compare gains in food-related science knowledge after implementation of an integrated, food-based curriculum. During the 2009-2010 school year, FoodMASTER researchers implemented a hands-on, food-based intermediate curriculum in eighteen 4(th) grade classrooms in Ohio (n=9) and North Carolina (n=9). Sixteen classrooms in Ohio (n=8) and North Carolina (n=8), following their standard science curricula, served as comparison classrooms. Students completed a researcher-developed science knowledge exam, consisting of 13 multiple-choice questions administered pre- and post-test. Only subjects with pre- and post-test scores were entered into the sample (Intervention n=343; Control n=237). No significant differences were observed between groups at pre-test. At post-test, the intervention group scored (9.95±2.00) significantly higher (p=.000) than the control group (8.84±2.37) on a 13-point scale. These findings suggest the FoodMASTER intermediate curriculum is more effective than a standard science curriculum in increasing students' multidisciplinary science knowledge related to food. PMID:25152539

  8. Can Middle-School Science Textbooks Help Students Learn Important Ideas? Findings from Project 2061's Curriculum Evaluation Study: Life Science

    ERIC Educational Resources Information Center

    Stern, Luli; Roseman, Jo Ellen

    2004-01-01

    The transfer of matter and energy from one organism to another and between organisms and their physical setting is a fundamental concept in life science. Not surprisingly, this concept is common to the "Benchmarks for Science Literacy" (American Association for the Advancement of Science, [1993]), the "National Science Education Standards"…

  9. Can Middle-School Science Textbooks Help Students Learn Important Ideas? Findings from Project 2061's Curriculum Evaluation Study: Life Science

    ERIC Educational Resources Information Center

    Stern, Luli; Roseman, Jo Ellen

    2004-01-01

    The transfer of matter and energy from one organism to another and between organisms and their physical setting is a fundamental concept in life science. Not surprisingly, this concept is common to the "Benchmarks for Science Literacy" (American Association for the Advancement of Science, [1993]), the "National Science Education Standards"

  10. Narrowing the Gulf between the Practices of Science and the Elementary School Science Classroom

    ERIC Educational Resources Information Center

    Metz, Kathleen E.

    2008-01-01

    The American Association for the Advancement of Science and the National Academy of Science have emphasized the need to design curriculum such that students do not simply learn about science, but also do science. Although obviously the knowledge-building practices among scientists and children in elementary school science classrooms will always be…

  11. The Effects of Ethical Education in Science Classes on Middle School Students' Attitude toward Science.

    ERIC Educational Resources Information Center

    Choi, Kyunghee; Cho, Hee-Hyung; Kim, Jihyun

    2000-01-01

    Examines the effect of teaching science ethical issues relevant to the idle school science curriculum. Concludes that teaching ethical issues in science had a positive influence on student attitudes toward science and fostered a positive impression of science education. (Author/YDS)

  12. Computers in the Curriculum: Science.

    ERIC Educational Resources Information Center

    Walton, Karen Doyle

    1985-01-01

    Defines microcomputer-based laboratory (MBL); discusses necessary hardware and software for operation of an MBL; reviews science applications in secondary education and eight steps involved in constructing a four-paddle interface box, the heart of an MBL; and provides information on suppliers of resources for creating an MBL. (MBR)

  13. Proposed Social Sciences Education Framework for California Public Schools. Report of the Statewide Social Sciences Study Committee to the State Curriculum Commission and the California State Board of Education. Kindergarten and Grades One through Twelve.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This framework is intended to be a flexible starting point for innovation, evaluation, and revision of curriculum and instructional programs. Here the social sciences also include: area studies (citizenship, conservation, comparative religions, ethnic studies, and contemporary affairs), and are linked with the natural sciences in comparing man…

  14. School Subjects, Subject Communities and Curriculum Change: The Social Construction of Economics in the School Curriculum

    ERIC Educational Resources Information Center

    Jephcote, Martin; Davies, Brian

    2007-01-01

    The place of economics in the curriculum in England and Wales provides a lens through which we may view the ways in which the curriculum as a whole is fought over and remains shifting terrain. Conceived of as social movements, school subject communities are made up of competing factions giving rise to contest and conflict both within themselves…

  15. Implications of Curriculum Reform for School Buildings in Scotland

    ERIC Educational Resources Information Center

    Scott-Watson, W.

    2008-01-01

    Scotland's Building Excellence programme is exploring the implications of curriculum reform for school building design. It includes events which bring together teachers, designers, school managers and local authorities.

  16. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    ERIC Educational Resources Information Center

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  17. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    ERIC Educational Resources Information Center

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a

  18. Indigenous? What Indigenous Knowledge? Beliefs and Attitudes of Rural Primary School Teachers towards Indigenous Knowledge in the Science Curriculum in Zimbabwe

    ERIC Educational Resources Information Center

    Shizha, Edward

    2008-01-01

    Despite the end of colonialism, Zimbabwean rural school teachers still find themselves trapped in the colonial pedagogic practices that undervalue the importance of rural school children's experiential knowledge in science. This article explores the beliefs and attitudes of rural primary teachers towards incorporating Indigenous knowledge and…

  19. Elementary School Science: A 1975 Reflection

    ERIC Educational Resources Information Center

    Butts, David P.

    1976-01-01

    Standing on the shoulders of the experience of the recent past, the science which our children experience reflect a montage of curriculum reform, teacher renewal and school commitment. These three factors, not always distinct, and the challenge of clearly discerning them is essential in describing where our experience has led. (Author/RK)

  20. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    ERIC Educational Resources Information Center

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  1. A Delphi study: Practitioners' perceptions of how the science curriculum is differentiated for academically gifted students at the middle school level

    NASA Astrophysics Data System (ADS)

    Kelley, Jean Mary

    The purpose of this study was to identify, analyze, and compare the perceptions of selected district science educators and teachers of middle school science students regarding the following issues: (1) Current methods of differentiating science instruction for gifted middle school students. (2) Strengths of the current methods of differentiating science instruction for gifted middle school students. (3) Weaknesses of the current methods of differentiating science instruction for gifted middle school students. (4) The types of training/experience needed to prepare teachers to effectively differentiate science instruction for gifted middle school students. (5) The steps need to develop an effective differentiated science program at the middle school level. (6) Trends for the future development of differentiated science programs at the middle school level. The panel of educators was identified using the Delphi technique and asked to participate in the study by responding to the research questions. The responses to the first round were condensed into two lists of discrete statements, and in the second round, each group of panelists was asked to rank each statement on a Likert scale. A third round was sent to each group of panel members showing the median and interquartile ranges of the second round. Panelists could adjust their responses based on the results of the second round. The analysis of the data was computed using the computer program Statistics Package for the Social Sciences. Based on the data obtained, the following results and conclusions were determined. The coordinators and the teachers both considered training of teachers, strategies for differentiation, and future trends to be the most important considerations. The areas with the most differences were those dealing with the current methods of differentiating science instruction at the middle school level. There were several limitations identified in this study. Among them were the makeup of the sample of panelists and different definitions of the same term(s). If we are to address the needs of middle school students who are academically gifted in science, teachers and coordinators need to communicate more about expectations in the classroom and what is really happening.

  2. Student Centered Curriculum: Elementary School

    ERIC Educational Resources Information Center

    Rondone, Atria

    2014-01-01

    Student-centered learning has an important place in education because it fosters student engagement and allows the traditional micromanaging teacher to transform into a guide. The current education model emphasizes teacher control and curriculum based on standardized testing, which stunts students' natural learning processes. This study…

  3. Electricity: Residential Wiring. Secondary Schools. Curriculum Guide.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This curriculum guide on residential wiring for secondary students is one of six developed for inservice teachers at Marianas High School in Saipan. The guide provides the rationale, description, goals, and objectives of the program; the program of studies and performance objectives by levels; samples of lesson plans for effective delivery of…

  4. High School Law Awareness Curriculum Guide, 1980.

    ERIC Educational Resources Information Center

    Seminole County Board of Public Instruction, Sanford, FL.

    Instructional materials, activities, and lesson plans used to teach high school students about the law, the legal process, and the legal system are presented. The materials are intended to be incorporated into the U.S. history curriculum. The following topics are covered: procedure for trial simulation; the Boston Massacre; the debate over…

  5. Equalizing Multi-School Curriculum by Technology.

    ERIC Educational Resources Information Center

    Etowah County Board of Education, Gadsden, AL.

    A three year project aimed at providing equal educational opportunity for all students in the seven high schools of Etowah County, Alabama by implementing a county-wide curriculum using a flexible, rotating schedule, audio-graphic network, instructional television, a learning center, and individualized instruction. The report rates the project as…

  6. Transgender and Art in the School Curriculum

    ERIC Educational Resources Information Center

    Dittman, Rebecca; Meecham, Pam

    2006-01-01

    The intention of this paper is two-fold. First, it makes explicit a little known and poorly understood area of human experience: transgender. Second, it explores curriculum possibilities opened up by recent legitimating of transgender people through the Gender Recognition Act (2004). The Act foregrounds the necessity for a forum in schools to…

  7. Construction Carpentry. Secondary Schools. Curriculum Guide.

    ERIC Educational Resources Information Center

    Tellei, Patrick U.

    This document is intended to help construction carpentry instructors in the State of Truk, Truk, Federated States of Micronesia, to prepare their senior high school students uniformly to design and build residential structures capable of withstanding typhoons. Because of the threat of typhoons, the carpentry curriculum contained in the guide has a

  8. Construction: Masonry. Secondary Schools. Curriculum Guide.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This construction curriculum guide on masonry for secondary students is one of six developed for inservice teachers at Marianas High School in Saipan. The guide provides the rationale, description, goals, and objectives of the program; the program of studies and performance objectives by levels; samples of lesson plans for effective delivery of

  9. Construction Carpentry. Secondary Schools. Curriculum Guide.

    ERIC Educational Resources Information Center

    Tellei, Patrick U.

    This document is intended to help construction carpentry instructors in the State of Truk, Truk, Federated States of Micronesia, to prepare their senior high school students uniformly to design and build residential structures capable of withstanding typhoons. Because of the threat of typhoons, the carpentry curriculum contained in the guide has a…

  10. Biology [Sahuarita High School Career Curriculum Project.

    ERIC Educational Resources Information Center

    Esser, Robert

    This course entitled "Biology" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of 11 units of study, and 45 behavioral objectives relating to these units are listed. The topics covered include observation, measurement, scales and magnification, the…

  11. Biology Curriculum, Munster Senior High School.

    ERIC Educational Resources Information Center

    Tyner, Ron; And Others

    This paper describes the biology program at Munster Senior High School, Munster, Indiana. It is an individualized curriculum utilizing a multi-sensory systems approach, and is presently taught by a team of three teachers and one para-professional to 458 general biology students and 36 advanced biology students. Each student must complete 24 units;…

  12. Black Cinderella: Multicultural Literature and School Curriculum

    ERIC Educational Resources Information Center

    Yenika-Agbaw, Vivian

    2014-01-01

    This article discusses diversity issues evident in fairy tales and explores the pedagogical implications for adding counter-narratives in the school curriculum. Critical Race Theory is employed. In order to uncover contradictory discourses of race within Black cultures, four Africana (African, African American, and Caribbean) Cinderella tale types…

  13. Russian Curriculum, Junior and Senior High School.

    ERIC Educational Resources Information Center

    Trujillo, Lorenzo A.; And Others

    The curriculum guide for Russian outlines the general and specific objectives and content of the courses to be offered in the Jefferson County (Colorado) public junior and senior high schools. An introductory section describes the district's comprehensive and second language education goals and philosophy, summarizes findings of the President's…

  14. The Moral Curriculum in the Soviet School.

    ERIC Educational Resources Information Center

    Zajda, Joseph

    1988-01-01

    Describes and comments on rationale for moral education under socialism in Soviet Union. Discusses current Soviet children's literature as attempt to systematize and coordinate moral education and political socialization in elementary and secondary schools. Cites evidence of reconstructionist ideology in curriculum and planned educational…

  15. Chemistry [Sahuarita High School Career Curriculum Project].

    ERIC Educational Resources Information Center

    Lane, Robert

    This course entitled "Chemistry" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of three packages, the first dealing with solids, liquids and solutions, the second with acids, bases and anions, and the third with cation analysis. These packages are…

  16. Agriculture: Horticulture. Secondary Schools. Curriculum Guide.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This agricultural curriculum guide on horticulture for secondary students is one of six developed for inservice teachers at Marianas High School in Saipan. The guide provides the rationale, description, goals, and objectives of the program; the program of studies and performance objectives by levels; samples of lesson plans for effective delivery…

  17. The Science For Our Schools (SFOS) Program

    NASA Astrophysics Data System (ADS)

    Terebey, S.; Mayo, D.; Strauss, J.

    2004-12-01

    The Science For Our Schools (SFOS) program at California State University at Los Angeles places graduate students from Astronomy, Biology, Chemistry, Geology, and Physics with science teachers in secondary classrooms throughout the Los Angeles area. The program implements activities and demonstrations based on California's new science content standards. Graduate Fellows act as science communicators to bring the excitement of scientific research to high school classrooms. Fellows are partnered with highly experienced science teachers in seven different middle and high schools, most of which have high minority enrollment and large numbers of students from low-income families. In addition to curriculum development, our Fellows plan field trips, scout funding opportunities, facilitate lab equipment purchases, and help organize special events such as science fairs and "Ask a Scientist" nights. SFOS Fellows and PI's meet weekly to exchange ideas and experiences, to review current science education literature, and to preview curriculum developed for our middle and high school science classrooms. All SFOS participants gather at quarterly workshops to share the results of program activities through presentations and discussions. We thank the National Science Foundation for funding through the GK-12 program.

  18. Australian Curriculum Implementation in a Remote Aboriginal School: A Curriculum Leader's Search for a Transformational Compromise

    ERIC Educational Resources Information Center

    Parkinson, Chloe

    2015-01-01

    This paper examines the trial implementation of the Australian Curriculum in a remote Aboriginal school. It was a school that at the time was beginning to achieve successes with the development of dual-knowledge, transformational outcomes based curriculum that had its justification in the Northern Territory Curriculum Framework. Drawing on the…

  19. Australian Curriculum Implementation in a Remote Aboriginal School: A Curriculum Leader's Search for a Transformational Compromise

    ERIC Educational Resources Information Center

    Parkinson, Chloe

    2015-01-01

    This paper examines the trial implementation of the Australian Curriculum in a remote Aboriginal school. It was a school that at the time was beginning to achieve successes with the development of dual-knowledge, transformational outcomes based curriculum that had its justification in the Northern Territory Curriculum Framework. Drawing on the

  20. Primary Science Curriculum Guide, C. Branching Out.

    ERIC Educational Resources Information Center

    Victoria Education Dept. (Australia).

    Examples of reports from children in grades 4-6 of Education Department of Victoria schools are used to illustrate the suggestions made for teaching the topics included in the science course. Emphasis is given to methods of inter-relating science and other activities, including social studies, mathematics, writing and history. Teachers are…

  1. Curriculum Reviews: Middle/Junior High Science.

    ERIC Educational Resources Information Center

    Faller, Richard

    1982-01-01

    Reviews "Pathways in Science" (Globe Book Company), designed as a complete middle/junior high school science program. Strengths (including sixth-grade readability) and weaknesses (indicating that limited process skill development may not challenge more capable students). Limited process skill development and the possibility for the program…

  2. High School Biology [Sahuarita High School Career Curriculum Project].

    ERIC Educational Resources Information Center

    Esser, Robert

    This course entitled "High School Biology: Introduction" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of six units of study, and 26 behavioral objectives relating to these units are stated. Also included are a brief introduction and an annotated list

  3. High School Biology [Sahuarita High School Career Curriculum Project].

    ERIC Educational Resources Information Center

    Esser, Robert

    This course entitled "High School Biology: Introduction" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of six units of study, and 26 behavioral objectives relating to these units are stated. Also included are a brief introduction and an annotated list…

  4. The Effect of School Culture on Science Education at an Ideologically Innovative Elementary Magnet School: An Ethnographic Case Study

    ERIC Educational Resources Information Center

    Meier, Lori T.

    2012-01-01

    This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant…

  5. The Effect of School Culture on Science Education at an Ideologically Innovative Elementary Magnet School: An Ethnographic Case Study

    ERIC Educational Resources Information Center

    Meier, Lori T.

    2012-01-01

    This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant

  6. The Engineering Science Curriculum At Penn State

    NASA Astrophysics Data System (ADS)

    Thompson, William

    1997-03-01

    The Engineering Science major at Penn State is an interdisciplinary program of study for academically gifted students that features both breadth and depth exposure to the engineering sciences. It is the honors curriculum in the College of Engineering. During the junior year of this program, students study courses selected from a broad range of the engineering sciences such as solid and fluid mechanics (11 credits total during the four years), thermodynamics and heat transfer (6 credits), electrical sciences (10 credits), materials science (6 credits), and applied mathematics and computer science (30 credits). These courses stress the basic principles underlying engineering analysis and synthesis as well as the transferability of engineering concepts from one discipline to another. Seniors then undertake a seven credit capstone design project which they support with four three-credit technical electives. Students work one-on-one with a faculty member on this capstone design project. Because this faculty member can be in any engineering department, these senior projects cover an enormous range of topics. However, because a large number of the faculty of the Engineering Science department (officially known as the Engineering Science and Mechanics department) have an interest in engineered materials (e.g., composites, sensors, powdered materials, thin films, video displays, MEMS, smart materials, electronic devices) many of the senior projects, as well as many of the graduate theses, involve materials design, fabrication, testing, utilization, or corrosion prevention. Some of the current projects and facilities of the department will be highlighted in this talk.

  7. The Science Curriculum; The Decline of Expertise and the Rise of Bureaucratise

    ERIC Educational Resources Information Center

    Fensham, Peter J.

    2013-01-01

    The content for the school science curriculum has always been an interplay or contest between the interests of a number of stakeholders, who have an interest in establishing it at a new level of schooling or in changing its current form. For most of its history, the interplay was dominated by the interests of academic scientists, but in the 1980s

  8. Evaluation of an Interdisciplinary, Problem Solving Curriculum in Elementary Science and Mathematics

    ERIC Educational Resources Information Center

    Shann, Mary H.

    1977-01-01

    This evaluation was designed to investigate the cognitive and affective responses of elementary school students to the interdisciplinary, process oriented curriculum Unified Science and Mathematics for Elementary Schools (USMES). Results of the study which involved 40 USMES and 40 control classes are provided. (Author/CP)

  9. The Need for a Core, Interdisciplinary, Life-Sciences Curriculum in the Middle Grades.

    ERIC Educational Resources Information Center

    Heller, H. Craig

    1993-01-01

    Campaigns to improve adolescent health must involve schools, focusing on middle grades. Currently, school organization is poor, with too little good curricular material for such students. The article describes Stanford University's interdisciplinary, core, middle grades curriculum in human biology that combats alienation from science by making it…

  10. The Science Curriculum; The Decline of Expertise and the Rise of Bureaucratise

    ERIC Educational Resources Information Center

    Fensham, Peter J.

    2013-01-01

    The content for the school science curriculum has always been an interplay or contest between the interests of a number of stakeholders, who have an interest in establishing it at a new level of schooling or in changing its current form. For most of its history, the interplay was dominated by the interests of academic scientists, but in the 1980s…

  11. Constraints to Curriculum Reform: Teachers and the Myths of Schooling.

    ERIC Educational Resources Information Center

    Tobin, Kenneth; Dawson, George

    1992-01-01

    Discusses myths underlying the curriculum, teacher knowledge of the curriculum, and constructivist perspectives of the curriculum that need to be considered if curriculum reform is to succeed. Goals, pedagogical features, a typical session, and field test evaluation results for the ScienceVision hypermedia system are described. Sample screen…

  12. Uncovering Portuguese Teachers' Difficulties in Implementing Sciences Curriculum

    ERIC Educational Resources Information Center

    Vasconcelos, Clara; Torres, Joana; Moutinho, Sara; Martins, Idalina; Costa, Nilza

    2015-01-01

    Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and

  13. Teacher Preparation and the National Primary Science Curriculum: A Twentieth-Anniversary Perspective

    ERIC Educational Resources Information Center

    Sharp, John; Hopkin, Rebecca; James, Sarah; Peacock, Graham; Kelly, Lois; Davies, Dan; Bowker, Rob

    2009-01-01

    In 1989, the progressive introduction of a National Curriculum of subjects to all maintained schools in England and Wales brought compulsory science education into the primary sectors of these two countries for the first time. Such was its considered importance, science was placed alongside English and mathematics in what became known simply as

  14. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy

  15. Supplement for Curriculum Guide for Science: Vietnamese-Speaking Students, Kindergarten-Upper Two. Field Test.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL.

    This supplement to the Chicago public schools' science curriculum guide is for use with Vietnamese-speaking students and is designed to help students make the transition to science learning in English. English-Vietnamese vocabulary lists, independent learning activities (in Vietnamese), and teaching aids (cultural activities such as songs,…

  16. Supplement for Curriculum Guide for Science: Lao-Speaking Students. Kindergarten-Grade 8. Working Draft.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL.

    This supplement to the Chicago public schools' science curriculum, for use with Lao-speaking students in grades K-8, is designed to help students make the transition to learning science in English. English-Lao vocabulary lists, independent learning activities and teaching aids (in both languages), and study questions (in Lao) are included to…

  17. Teacher Preparation and the National Primary Science Curriculum: A Twentieth-Anniversary Perspective

    ERIC Educational Resources Information Center

    Sharp, John; Hopkin, Rebecca; James, Sarah; Peacock, Graham; Kelly, Lois; Davies, Dan; Bowker, Rob

    2009-01-01

    In 1989, the progressive introduction of a National Curriculum of subjects to all maintained schools in England and Wales brought compulsory science education into the primary sectors of these two countries for the first time. Such was its considered importance, science was placed alongside English and mathematics in what became known simply as…

  18. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  19. Integrated medical school ultrasound: development of an ultrasound vertical curriculum

    PubMed Central

    2013-01-01

    Background Physician-performed focused ultrasonography is a rapidly growing field with numerous clinical applications. Focused ultrasound is a clinically useful tool with relevant applications across most specialties. Ultrasound technology has outpaced the education, necessitating an early introduction to the technology within the medical education system. There are many challenges to integrating ultrasound into medical education including identifying appropriately trained faculty, access to adequate resources, and appropriate integration into existing medical education curricula. As focused ultrasonography increasingly penetrates academic and community practices, access to ultrasound equipment and trained faculty is improving. However, there has remained the major challenge of determining at which level is integrating ultrasound training within the medical training paradigm most appropriate. Methods The Ohio State University College of Medicine has developed a novel vertical curriculum for focused ultrasonography which is concordant with the 4-year medical school curriculum. Given current evidenced-based practices, a curriculum was developed which provides medical students an exposure in focused ultrasonography. The curriculum utilizes focused ultrasonography as a teaching aid for students to gain a more thorough understanding of basic and clinical science within the medical school curriculum. The objectives of the course are to develop student understanding in indications for use, acquisition of images, interpretation of an ultrasound examination, and appropriate decision-making of ultrasound findings. Results Preliminary data indicate that a vertical ultrasound curriculum is a feasible and effective means of teaching focused ultrasonography. The foreseeable limitations include faculty skill level and training, initial cost of equipment, and incorporating additional information into an already saturated medical school curriculum. Conclusions Focused ultrasonography is an evolving concept in medicine. It has been shown to improve education and patient care. The indications for and implementation of focused ultrasound is rapidly expanding in all levels of medicine. The ideal method for teaching ultrasound has yet to be established. The vertical curriculum in ultrasound at The Ohio State University College of Medicine is a novel evidenced-based training regimen at the medical school level which integrates ultrasound training into medical education and serves as a model for future integrated ultrasound curricula. PMID:23819896

  20. Improving School Curriculum through Technology.

    ERIC Educational Resources Information Center

    Frazier, Peggy; Reed, Patty

    Educators and administrators have many things to consider before setting up a distance education facility at their schools. They will first need to decide what type of distance education technology will best benefit their students and schools. Administrators will need to decide if they want to use programming that is locally controlled or…

  1. High School Computer Science Education: A Five-State Study.

    ERIC Educational Resources Information Center

    Stephenson, Chris

    2002-01-01

    Discusses the place of computer science education in the high school curriculum and reports on a survey of schools in five states that investigated computer science teaching responsibilities, hardware and software use, programming languages, how teachers rank instructional resources, and how teachers rank opportunities for their own skill…

  2. Teaching Media Studies as High School Social Science.

    ERIC Educational Resources Information Center

    Tuggle, C. A.; Sneed, Don; Wulfemeyer, K. Tim

    2000-01-01

    Finds that a large majority of high school social science teachers in two of the nation's largest school districts believe that: students should be taught how to be informed media consumers; the social science curriculum is the appropriate place for that instruction; and while they feel qualified to teach about the media, they have received little…

  3. School-Based Experiences: Developing Primary Science Preservice Teachers' Practices

    ERIC Educational Resources Information Center

    Hudson, Peter

    2010-01-01

    Reviews into teacher education emphasise the need for preservice teachers to have more school-based experiences. In this study, a school- based experience was organised within a nine-week science curriculum university unit that allowed preservice teachers' repeated experiences in teaching primary science. This research uses a survey, questionnaire

  4. The Australian Science and Mathematics School, Flinders University, South Australia.

    ERIC Educational Resources Information Center

    PEB Exchange, 2002

    2002-01-01

    Describes the design of the secondary school named in the title, including the educational context and design goals. In conjunction with the science faculty of Flinders University, the school will offer adult learning approaches and develop curriculum based on new sciences such as nano- technology. Describes the design innovations that incorporate…

  5. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, demonstrations, activities, and teaching suggestions on topics appropriate for middle school science including a simple electrolysis cell, conversion factors, energy, solubilities of salts, condensers, and a worksheet for studying coppice woodlands. (DC)

  6. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes activities, demonstrations, and materials suitable for middle school science, including investigations on solar energy, surface tension, exploding cottages, worms and light, airplanes, depolarizing simple cells, and the thermal expansion of metals. (JN)

  7. Infusing Quantitative Approaches throughout the Biological Sciences Curriculum

    ERIC Educational Resources Information Center

    Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kren C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle

    2013-01-01

    A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's

  8. Infusing Quantitative Approaches throughout the Biological Sciences Curriculum

    ERIC Educational Resources Information Center

    Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kären C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle

    2013-01-01

    A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's…

  9. Racing to Success: Using Professional 3-D Design Software to Build CO[2]-Powered Cars in Middle School Science. In the Curriculum--Technology/Education/Science

    ERIC Educational Resources Information Center

    Ogle, Thomas

    2004-01-01

    In 1995, the Farmington Board of Education (Michigan) adopted a new student profile it hoped to achieve by 2007, the year students then in kindergarten would graduate from high school. This article describes a course named "2007"--named so because the 10-week, Grade 8 course was designed to address some of the profile's key attributes:

  10. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, experiments, and activities useful in middle school science instruction, including demonstrating how strong paper can be, the inclined plane illusion, a simplified diet calculation, a magnetic levitator, science with soap bubbles, a model motor and dynamo, and a pocketed sorter for safety glasses. (SK)

  11. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Explains some middle school science demonstrations and experiments: included are a simplified circuit board, a scheme for the identification of plastics, a soot-free bunsen burner, science in a packet of cornflakes, and perceptual ambiguities with a "Chinese Compass." (GA)

  12. School Students' Science Achievement

    ERIC Educational Resources Information Center

    Shymansky, James; Wang, Tzu-Ling; Annetta, Leonard; Everett, Susan; Yore, Larry D.

    2013-01-01

    This paper is a report of the impact of an externally funded, multiyear systemic reform project on students' science achievement on a modified version of the Third International Mathematics and Science Study (TIMSS) test in 33 small, rural school districts in two Midwest states. The systemic reform effort utilized a cascading leadership strategy…

  13. The Presidential Address 2013: Promoting Enthusiasm, Imparting Knowledge! Science for the General Population and Science for Future Researchers Must All Start in the School Curriculum

    ERIC Educational Resources Information Center

    Rees, Martin

    2013-01-01

    This article provides a transcript of the Presidential Address delivered by Martin Rees, Lord Rees of Ludlow, to the Association for Science Education (ASE) Annual Conference at the University of Reading, January 2013. The address is divided into five sections under the following headings: (1) Three Reasons Why the ASE's Mission Is So…

  14. The Presidential Address 2013: Promoting Enthusiasm, Imparting Knowledge! Science for the General Population and Science for Future Researchers Must All Start in the School Curriculum

    ERIC Educational Resources Information Center

    Rees, Martin

    2013-01-01

    This article provides a transcript of the Presidential Address delivered by Martin Rees, Lord Rees of Ludlow, to the Association for Science Education (ASE) Annual Conference at the University of Reading, January 2013. The address is divided into five sections under the following headings: (1) Three Reasons Why the ASE's Mission Is So

  15. District Professional Development Models as a Way to Introduce Primary-School Teachers to Natural Science Curriculum Reforms in One District in South Africa

    ERIC Educational Resources Information Center

    Bantwini, Bongani D.

    2009-01-01

    This paper reports on a study that investigated whether district continued professional development (CPD) sufficiently prepared teachers for their classroom practice. Analysis of CPD models used with primary-school natural science teachers in a district in the Eastern Cape Province in South Africa was conducted. Findings indicated that the…

  16. Examining Differences in Middle School Student Achievement on a Criterion-Referenced Competency Test (CRCT) in Science

    ERIC Educational Resources Information Center

    Rich, Jamie; Duncan, Dennis W.; Navarro, Maria; Ricketts, John C.

    2009-01-01

    Many authors have posited that agricultural education curriculum in middle schools may enhance student performance in science. To determine the effect that agricultural education curriculum has upon Georgia middle schools' student performance in science, this descriptive study compared science knowledge among middle school students in Georgia who…

  17. School Science and Public Understanding of Science.

    ERIC Educational Resources Information Center

    Fensham, Peter J.; Harlen, Wynne

    1999-01-01

    Traces how the idea of measuring the connection between school science and public awareness of science has emerged. Describes the Program for International Student Achievement (PISA) project's indicators of educational progress in science. Contains 28 references. (Author/WRM)

  18. Evolution: Its Treatment in K-12 State Science Curriculum Standards

    NASA Astrophysics Data System (ADS)

    Lerner, L. S.

    2001-12-01

    State standards are the basis upon which states and local schools build curricula. Usually taking the form of lists of what students are expected to learn at specified grades or clusters of grades, they influence statewide examinations, textbooks, teacher education and credentialing, and other areas in which states typically exercise control over local curriculum development. State science standards vary very widely in overall quality.1,2 This is especially true in their treatment of evolution, both in the life sciences and to a somewhat lesser extent in geology and astronomy. Not surprisingly, a detailed evaluation of the treatment of evolution in state science standards3 has evoked considerably more public interest than the preceding studies of overall quality. We here consider the following questions: What constitutes a good treatment of evolution in science standards and how does one evaluate the standards? Which states have done well, and which less well? What nonscientific influences have been brought to bear on standards, for what reasons, and by whom? What strategies have been used to obscure or distort the role of evolution as the central organizing principle of the historical sciences? What are the effects of such distortions on students' overall understanding of science? What can the scientific community do to assure the publication of good science standards and to counteract attacks on good science teaching? 1. Lerner, L. S., State Science Standards: An Appraisal of Science Standards in 36 States, The Thomas B. Fordham Foundation, Washington, D.C., March 1998. 2. Lerner, L. S. et al ., The State of State Standards 2000, ibid., January 2000. 3. Lerner, L. S., Good Science, Bad Science: Teaching Evolution In the States, ibid., September 2000.

  19. Oak Knoll School English Curriculum.

    ERIC Educational Resources Information Center

    Marcus, Harriet; And Others

    In this detailed survey of the English offerings of a private secondary school for girls, each grade is divided into semester or smaller thematic units. For each of these units, an overview/rationale is followed by a book list and description of how the unit's activities will help the student develop specific skills in the areas of reading,…

  20. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2015-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  1. Theme: The Role of Science in the Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  2. Integrating a Planetary Science Curriculum into Geology and Astronomy Curricula

    NASA Astrophysics Data System (ADS)

    Burbine, T. H.; Dyar, M. D.; Hamilton, C. M.

    2008-03-01

    This abstract discusses courses that were developed or adapted for this planetary science curriculum at a small liberals arts college to assist other institutions in developing planetary science programs.

  3. Reviewing the National Curriculum for Science: Opportunities and Challenges

    ERIC Educational Resources Information Center

    Millar, Robin

    2011-01-01

    This article considers the extent to which the English National Curriculum for science has influenced practice and learning outcomes, and briefly reviews the mechanisms through which this influence is exerted. It identifies and discusses three central issues for the review that is now in progress: the structure of the science curriculum; the

  4. Biological Sciences Curriculum Study Newsletter 52, Progress Report.

    ERIC Educational Resources Information Center

    Clark, George M., Ed.

    This issue of the Biological Sciences Curriculum Study (BSCS) newsletter is entitled "Progress Report" and includes articles on the BSCS program, "The Life of a Curriculum Study" by Wm. V. Mayer; a brief report on the sixth-grade trials of the BSCS Human Sciences Program; a discussion of minicourses, with emphasis on cooperative efforts of Dr. S.

  5. Curriculum Reform and a Science Department: A Bourdieuian Analysis

    ERIC Educational Resources Information Center

    Melville, Wayne

    2010-01-01

    This article will describe the dispositions of science teachers in the context of a curriculum reform. Using Bourdieu's notions of "habitus" and "the field," the analysis of the data highlights the necessity for curriculum reformers to view the field of the science department as a contested space. From this understanding flow several subsidiary…

  6. Interest-Based Curriculum for House Care Services: Science.

    ERIC Educational Resources Information Center

    Natchitoches Parish School Board, LA.

    The interest-based curriculum materials are designed to correlate the subjects of English, math, science, and home economics and infuse academic skills into the world of work. The House Care Science curriculum guide is divided into five units: (1) measurement, (2) household chemistry, (3) household electricity, (4) household machines, and (5)…

  7. Environmental Science, Grade 9. Experimental Curriculum Bulletin.

    ERIC Educational Resources Information Center

    Bernstein, Leonard, Ed.

    This is the teacher's guide for the required, interdisciplinary, ninth-year environmental science course for the New York City Schools. One hundred twenty lesson plans, divided into nine units, are presented. Areas of study include the living and non-living environment, ecosystems, population, urban ecology, energy and technology, pollution, and…

  8. Challenging traditional assumptions of secondary science through the PET curriculum

    NASA Astrophysics Data System (ADS)

    Ross, Mike; Otero, Valerie

    2013-01-01

    This study seeks to illustrate aspects of a physics classroom experience in an underserved high school through the perspective of the students. This context was chosen with the intent of determining factors that lead to successful secondary physics education outcomes for populations historically underrepresented in STEM. Two class periods of physics were observed and interviewed in an urban high school while using the Physics and Everyday Thinking (PET) curriculum. Findings indicate that students came to value and positively identify with the activities of physics through instruction that fosters a more dignified student experience than traditional approaches. Specifically, this experience was characterized by the valuing of students' naïve and developing understandings and shifting the authority for validating science knowledge from the instructor to laboratory evidence and social consensus.

  9. The Pursuit of Curriculum: Schooling and the Public Interest. Research in Curriculum and Instruction

    ERIC Educational Resources Information Center

    Reid, William A., Ed.; Null, J. Wesley, Ed.

    2006-01-01

    In this far-reaching discussion of curriculum and liberal education, William A. Reid compares curriculum making to the idea of "pursuit." Like justice, Reid argues that curriculum is not something that we own or possess in a material sense; rather, it is an achievement that anyone involved in schooling must and should pursue. Drawing upon the…

  10. Best Practice in Middle-School Science

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Wilcox, Kristen C.; Angelis, Janet; Applebee, Arthur N.; Amodeo, Vincent; Snyder, Michele A.

    2013-03-01

    Using socio-ecological theory, this study explores best practice (educational practices correlated with higher student performance) in middle-school science. Seven schools with consistently higher student performance were compared with three demographically similar, average-performing schools. Best practice included instructional approaches (relevance and engagement, inquiry, differentiated instruction, collaborative work, moderate amounts of homework, and integration of language literacy and science) and administrative practices (nurturing a climate of opportunity to succeed in science, offering professional development based on data and dialogue, engaging teachers in standards-based curriculum revision and alignment, and recruiting the right fit of teacher). It is argued that best practice entails multiple levels of teaching and administrative praxis that together form a school-wide socio-ecological system conducive to higher performance.

  11. Curriculum reform and choice of science: Consequences for balanced and equitable participation and achievement

    NASA Astrophysics Data System (ADS)

    Rennie, Léonie J.; Parker, Lesley H.

    In 1988, most schools in Western Australia adopted a Unit Curriculum structure in the first three years of high school, following piloting of the scheme in seven schools in 1987. The goais of the Unit Curriculum are stated to be excellence, equity, and relevance, and one of its key features is the increased flexibility students have in making their subject selection. This article reviews the science enrollment and achievement patterns of males and females studying in the pilot schools in 1987, and for the first three years of the operation of the Unit Curriculum in 1988, 1989, and 1990. The data indicate that lowering the age for subject choice is associated with a reduction in the amount of science studies, especially by females, and with the early manifestation of sex-stereotyped subject selection. It appears that if early sex stereotyping is to be avoided, then students need to be provided with more structure in their selection of units. This article emphasizes the need for all involved in system-wide curriculum change to be fully informed of the potential benefits and dangers of curriculum models which allow wide flexibility, especially where curriculum change affects students' choice point.

  12. On track for success: an innovative behavioral science curriculum model.

    PubMed

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach. PMID:24261264

  13. A case study on the use of a formative assessment probe to determine the presence of science misconceptions in elementary school students: Implications for teaching and curriculum

    NASA Astrophysics Data System (ADS)

    Lambi, Elizabeth A.

    While there may be disagreement on exactly what scientific literacy means, there is arguably little disagreement that students in the United States are desperately lacking in it. If the goal of science education is to produce scientifically literate individuals, then weaknesses in their knowledge must be identified and corrected. These weaknesses arise from misconceptions that exist in the students' conceptual and contextual understanding, as well as other forces. The purpose of this study was to determine whether patterns exist in students' misconceptions, specifically in physical science, and if so, whether the misconceptions change as students move from grade to grade. The use of a two-tiered science assessment probe facilitated this determination. This study reported on students in grades one through five who were instructed in the topic of phases of matter during science lessons developed for use in each of the above-mentioned grades. This constructivist curricular program was developed to provide science content, foster critical thinking skills, and bridge the gap between students' prior knowledge and new application. A total of 539 students participated in the study. An assessment probe, consisting of a scenario with one multiple-choice question and six responses, and a rationale section, was administered. Interviews were also conducted of students in each grade level. Results from the study indicated that students in each grade level shared similar ideas about the phases of matter. Chi-square analysis of the results also revealed that there was a significant difference in the frequency of each multiple-choice response across grade levels as well. Despite detailed instruction on the topic in grades three and four, fewer fifth grade students answered correctly than did those in second grade, who had not yet received the detailed instruction. Recommendations were made by the researcher for the use of formative assessments to determine the presence of misconceptions. Use of a two-tiered assessment, such as the probe used in this study, will allow the teacher to gain insight into the student's level of understanding in many different concepts in science. Once the misconception is identified, it can then be corrected with additional instruction. Implications of the study included the need for professional development, the alignment of curriculum, and the need to focus attention on science literacy as the goal of science education.

  14. A Perspective on the Intended Science Curriculum in Iceland and Its "Transformation" over a Period of 50 Years

    ERIC Educational Resources Information Center

    Thorolfsson, Meyvant; Finnbogason, Gunnar E.; Macdonald, Allyson

    2012-01-01

    In recent decades, a consensus has emerged among educators and scientists that all compulsory school students need good science education. The debate about its purpose and nature as a school subject in an emerging information society has not been as conclusive. To further understand this, it helps to examine how the science curriculum has

  15. A Perspective on the Intended Science Curriculum in Iceland and Its "Transformation" over a Period of 50 Years

    ERIC Educational Resources Information Center

    Thorolfsson, Meyvant; Finnbogason, Gunnar E.; Macdonald, Allyson

    2012-01-01

    In recent decades, a consensus has emerged among educators and scientists that all compulsory school students need good science education. The debate about its purpose and nature as a school subject in an emerging information society has not been as conclusive. To further understand this, it helps to examine how the science curriculum has…

  16. Perceptions of Elementary School Teachers Concerning the Concept of Curriculum

    ERIC Educational Resources Information Center

    Yurdakul, Bunyamin

    2015-01-01

    As the meaning that teachers attribute to curriculum includes important data concerning curriculum development as well as affects their teaching process, this study investigated the perceptions of elementary school teachers regarding the concept of curriculum. The participants of the study, which was carried out using the phenomenological design,…

  17. Science and Health Education Perspectives on the Handicapped. A Curriculum to Foster Understanding of People with Disabilities.

    ERIC Educational Resources Information Center

    City Univ. of New York, NY. Hunter Coll.

    Intended to extend the existing science and health education curriculum at junior and senior high school levels, the curriculum presents four mini-units on specific disabilities. The first section provides lesson plans about hearing impairments, and includes four lesson plans listing themes, objectives, and discussion guidelines for such topics as…

  18. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    NASA Astrophysics Data System (ADS)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.

  19. An Exploration of the Science Teaching Orientations of Indian Science Teachers in the Context of Curriculum Reform

    ERIC Educational Resources Information Center

    Nargund-Joshi, Vanashri

    2012-01-01

    This study explores the concepts and behaviors, otherwise referred to as "orientations", of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types…

  20. Maine School Science Safety Guidelines.

    ERIC Educational Resources Information Center

    Keller, Thomas E.

    A hands-on approach to science is highly desirable because an inquiry approach to science greatly promotes learning. However when students and teachers manipulate glassware, chemical, and other materials, accidents will happen. Because of this, risk management and safety procedures become an important, integral part of the science curriculum. This

  1. Biological Sciences Curriculum Study Newsletter, Number 69: A Progress Report on "Me in the Future" - A BSCS Science Program for Special Education and Career Awareness.

    ERIC Educational Resources Information Center

    Clark, George M., Ed.

    This publication of the Biological Sciences Curriculum Study (BSCS) presents an updated report on "Me in the Future," a curriculum development project that started in 1975 for educable mentally handicapped (EMH) students of secondary school age. The report introduces the project and describes its stages of development. The evaluation of the…

  2. Nebraska Vocational Agribusiness Curriculum for City Schools. Horticulture. Agricultural Mechanics. A Curriculum Guide. 11th Grade.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Dept. of Agricultural Education.

    Designed for use with high school juniors, this agribusiness curriculum for city schools contains thirty-two units of instruction in the areas of horticulture and agricultural mechanics. Among the units included in the curriculum are (1) Planting Media, (2) Fertilizer, (3) Plant Classification, (4) Turf Grass Management, (5) Landscape Design, (6)…

  3. The Contribution of a Curriculum Coordinator to School Curriculum Development: Two Case Studies.

    ERIC Educational Resources Information Center

    Sabar, Naama; And Others

    1993-01-01

    Summarizes two Israeli case studies concerning an internal curriculum coordinator functioning as a school staff member and an external curriculum coordinator delegated by a national project. The schools had similar (participative) educational philosophies. Studies highlighted the principal-coordinator relationship, personal factors affecting the…

  4. Nebraska Vocational Agribusiness Curriculum for City Schools. Horticulture. Agricultural Mechanics. A Curriculum Guide. 11th Grade.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Dept. of Agricultural Education.

    Designed for use with high school juniors, this agribusiness curriculum for city schools contains thirty-two units of instruction in the areas of horticulture and agricultural mechanics. Among the units included in the curriculum are (1) Planting Media, (2) Fertilizer, (3) Plant Classification, (4) Turf Grass Management, (5) Landscape Design, (6)

  5. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  6. The Study of the Atmosphere in the Science Curriculum.

    ERIC Educational Resources Information Center

    Fisher, Brian

    1998-01-01

    Seeks to justify the inclusion of meteorology within the science curriculum. Reflects upon the nature of science and some current issues in science education, and examines the reality of including meteorology within worldwide science curricula. Contains 37 references. (Author/DDR)

  7. Science-based occupations and the science curriculum: Concepts of evidence

    NASA Astrophysics Data System (ADS)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  8. Bringing Science Public Outreach to Elementary Schools

    NASA Astrophysics Data System (ADS)

    Miller, Lucas; Speck, A.; Tinnin, A.

    2012-01-01

    Many science "museums” already offer fantastic programs for the general public, and even some aimed at elementary school kids. However, these venues are usually located in large cities and are only occasionally used as tools for enriching science education in public schools. Here we present preliminary work to establish exciting educational enrichment environments for public schools that do not easily have access to such facilities. This program is aimed at motivating children's interest in science beyond what they learn in the classroom setting. In this program, we use the experience and experiments/demonstrations developed at a large science museum (in this case, The St. Louis Science Center) and take them into a local elementary school. At the same time, students from the University of Missouri are getting trained on how to present these outreach materials and work with the local elementary schools. Our pilot study has started with implementation of presentations/demonstrations at Benton Elementary School within the Columbia Public School district, Missouri. The school has recently adopted a STEM (Science, Technology, Engineering, and Mathematics) centered learning system throughout all grade levels (K-5), and is therefore receptive to this effort. We have implemented a program in which we have given a series of scientific demonstrations at each grade level's lunch hour. Further enrichment ideas and plans include: addition demonstrations, hands-on experiments, and question and answer sessions. However, the application of these events would be to compliment the curriculum for the appropriate grade level at that time. The focus of this project is to develop public communications which links science museums, college students and local public schools with an emphasis on encouraging college science majors to share their knowledge and to strengthen their ability to work in a public environment.

  9. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Demonstrations, experiments, and classroom activities/materials for middle school science are presented. These include: additive color mixing demonstration; electricity activity and worksheet; atmospheric pressure "magic" demonstration; homemade microbalance; energy from soap bubbles; and a model used to demonstrate muscle pairs and how they work

  10. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Demonstrations, experiments, and classroom activities/materials for middle school science are presented. These include: additive color mixing demonstration; electricity activity and worksheet; atmospheric pressure "magic" demonstration; homemade microbalance; energy from soap bubbles; and a model used to demonstrate muscle pairs and how they work…

  11. REORGANIZED SCIENCE CURRICULUM, 6B, A RESOURCE UNIT TO BE TAUGHT IN GRADE SIX.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE TENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SIXTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THIS VOLUME, 6B, IS ONE OF THE THREE COMPRISING THE SIXTH GRADE SUPPLEMENT, AND CONTAINS A RESOURCE UNIT

  12. Science Curriculum and Student Diversity: A Framework for Equitable Learning Opportunities

    ERIC Educational Resources Information Center

    Lee, Okhee; Buxton, Cory

    2008-01-01

    We address issues of science curriculum for nonmainstream students--students of color, students learning English as a new language, and students from low-income families--who are often concentrated in urban schools. First, we describe a theoretical framework for equitable learning opportunities with nonmainstream students. Building on this…

  13. Environmental Education and the Science Curriculum--A WWF Action Agenda.

    ERIC Educational Resources Information Center

    Johnson, Craig

    1992-01-01

    Some developments in the World Wide Fund for Nature's Environmental Education Programme are discussed, in particular its research into whole school management of cross-curricular themes. Also considered is whether the so-called precautionary principle is an appropriate concept to include in the science curriculum and suggests the need for broad…

  14. Curriculum as Experienced by Students: How Teacher Identity Shapes Science Notebook Use

    ERIC Educational Resources Information Center

    Madden, Lauren; Wiebe, Eric N.

    2013-01-01

    This mixed-methods case study examined the notebook entries of one class of 22 second graders as a way of examining how teacher identity shaped the way students experienced their science curriculum. These notebook entries were created during lessons with three different teachers over the course of one school year, using similar kit-based materials…

  15. Curriculum Design for Junior Life Sciences Based Upon the Theories of Piaget and Skiller. Final Report.

    ERIC Educational Resources Information Center

    Pearce, Ella Elizabeth

    Four seventh grade life science classes, given curriculum materials based upon Piagetian theories of intellectual development and Skinner's theories of secondary reinforcement, were compared with four control classes from the same school districts. Nine students from each class, who(at the pretest) were at the concrete operations stage of…

  16. Curriculum as Experienced by Students: How Teacher Identity Shapes Science Notebook Use

    ERIC Educational Resources Information Center

    Madden, Lauren; Wiebe, Eric N.

    2013-01-01

    This mixed-methods case study examined the notebook entries of one class of 22 second graders as a way of examining how teacher identity shaped the way students experienced their science curriculum. These notebook entries were created during lessons with three different teachers over the course of one school year, using similar kit-based materials

  17. The Body Game: Developed by Undergraduates for Key Stage 2 National Curriculum Science.

    ERIC Educational Resources Information Center

    Verran, J.; Brintnell, B.; Brownrigg, N.; Garcia, R.; Green, A.

    1997-01-01

    Describes a game developed for school children which addresses part of the Science National Curriculum. The board is a human body with organs on view. Questions relate to different organ systems, body parts, and processes. Topics include breathing, digestion and metabolism, blood and circulation, and the sensory organs and teeth. (AIM)

  18. Hipparcos data supporting the IB school curriculum

    NASA Astrophysics Data System (ADS)

    O'Flaherty, K. S.; Brumfitt, A.; Lawton, C.

    2008-07-01

    The Hipparcos and Tycho catalogues are ideal data sources for classwork since they provide real data illustrating fundamental astronomical concepts in a simple and easy to manipulate format. In this poster we describe how some of this data is used as support material within the International Baccalaureate (IB) science curriculum. The preparation and deployment of a series of Teacher Notes, specifically constructed to support the IB but applicable to other curricula, is described. Specific attention is given to the Teacher Notes on Stellar Distances which employs data from the Hipparcos and Tycho catalogues.

  19. The University School Enaction Curriculum, 2001-2002.

    ERIC Educational Resources Information Center

    Hollingsworth, Patricia L., Ed.

    This document presents the curriculum of the University School at the University of Tulsa (Oklahoma), an early childhood and elementary school for academically gifted students. The curriculum is based on enaction theory, which emphasizes active, interdisciplinary learning involving three steps: (1) concept introduction through active and…

  20. "Nature" and the "Environment" in Jamaica's Primary School Curriculum Guides

    ERIC Educational Resources Information Center

    Ferguson, Therese

    2008-01-01

    In cases where environmental education is institutionalised within schools, the curriculum can affect what and how students learn about "nature" and the "environment". In Jamaica, schools are considered important settings for environmental education; the curriculum therefore includes environmental issues. Using content analysis, representations of…

  1. Teacher Perspectives on Career-Relevant Curriculum in Middle School

    ERIC Educational Resources Information Center

    Akos, Patrick; Charles, Pajarita; Orthner, Dennis; Cooley, Valerie

    2011-01-01

    Relevant, challenging, integrative, and exploratory all describe the curriculum desirable in middle school (National Middle School Association, 2010). Career-relevant curriculum is one prominent strategy used since the 1970s to achieve these goals. Systematic, integrated, and contemporary efforts at career education often engage core teachers who…

  2. "Nature" and the "Environment" in Jamaica's Primary School Curriculum Guides

    ERIC Educational Resources Information Center

    Ferguson, Therese

    2008-01-01

    In cases where environmental education is institutionalised within schools, the curriculum can affect what and how students learn about "nature" and the "environment". In Jamaica, schools are considered important settings for environmental education; the curriculum therefore includes environmental issues. Using content analysis, representations of

  3. Dissecting Local Design: Instructional Leadership, Curriculum and Science Education

    ERIC Educational Resources Information Center

    Clifford, Matthew Aaron

    2009-01-01

    Local instructional design describes the process of customization that naturally occurs when curriculum innovations interface with local classrooms and schools. Describing the practice of local instructional design can help to explain how curriculum is adapted to local conditions and provides insight on how instructional leaders mediate…

  4. Ka Hana `Imi Na`auao: A Science Curriculum Project

    NASA Astrophysics Data System (ADS)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na`auao is funded through a grant awarded to the University of Hawaii Center on Disability Studies (R.A. Stodden, PI) from the U.S. Department of Education, Native Hawaiian Education Act. Project information and curricula are available at http://www.scihi.hawaii.edu/.

  5. STELR: Improving Science Retention Rates in Australian Secondary Schools

    ERIC Educational Resources Information Center

    Finkel, Alan; Pentland, Peter; Hubber, Peter; Blake, Damian; Tytler, Russell

    2009-01-01

    The Australian Federal Department of Education, Employment and Workplace Relations has funded a rollout of the STELR (Science and Technology Education Leveraging Relevance) Stage One Project to 150 secondary schools in 2010. Participating schools will receive, at no cost, curriculum materials, class sets of supporting laboratory equipment, two…

  6. Motivation Materials for Junior High School Physical Science.

    ERIC Educational Resources Information Center

    Mork, Dorlan

    The project was to design, produce, and field test interactive video materials to increase junior high school student interest in physics and chemistry. A curriculum development team consisting of junior high school physical science students and teachers and university educators produced a seven-part videotape series entitled "The Hypothesizers."…

  7. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study

  8. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  9. Teacher Variation in Concept Presentation in BSCS [Biological Sciences Curriculum Study] Curriculum Program.

    ERIC Educational Resources Information Center

    Gallagher, James J.

    As a result of the Biological Sciences Curriculum Study (BSCS), instructional content and style were studied in six teachers teaching the concept of photosynthesis. The same BSCS curriculum program was used by all six teachers; all six had some previous BSCS training. The students in the six classes had been selected on the basis of high ability…

  10. The Impact of Computer Science on School Mathematics.

    ERIC Educational Resources Information Center

    Ralston, Anthony

    1985-01-01

    Computer science may foreshadow some near revolutions in school mathematics, concerning new ways of teaching much of the mathematics curriculum, increased emphasis on discrete mathematics, and the impact of symbolic mathematical systems. Each is discussed, with a distinction made between computer science and computer technology. (MNS)

  11. "It's All Human Error!": When a School Science Experiment Fails

    ERIC Educational Resources Information Center

    Viechnicki, Gail Brendel; Kuipers, Joel

    2006-01-01

    This paper traces the sophisticated negotiations to re-inscribe the authority of Nature when a school science experiment fails during the enactment of a highly rated science curriculum unit. Drawing on transcriptions from classroom videotapes, we identify and describe four primary patterns of interaction that characterize this process, arguing…

  12. Teachers' Experiences of Science Curriculum Reform

    ERIC Educational Resources Information Center

    Ryder, Jim; Banner, Indira; Homer, Matt

    2014-01-01

    We report on a three-year study of teachers' experiences of a major reform of the science National Curriculum for 14- to 16-year-olds in England. Teachers' responses to this curriculum reform were guided by: "personal" aims and biography; "internal" features of their workplace such as departmental collegiality; and

  13. Curriculum Assessment in Social Sciences at Universiti Pendidikan Sultan Idris

    ERIC Educational Resources Information Center

    Saleh, Hanifah Mahat Yazid; Hashim, Mohmadisa; Yaacob, Norazlan Hadi; Kasim, Adnan Jusoh Ahmad Yunus

    2015-01-01

    The purpose of this paper is to discuss the effectiveness of the curriculum implementation for undergraduate programme in the Faculty of Human Sciences, UPSI producing quality and competitive educators. Curriculum implementation has to go through an assessment process that aims to determine the problem, select relevant information and collect and…

  14. Teachers' Experiences of Science Curriculum Reform

    ERIC Educational Resources Information Center

    Ryder, Jim; Banner, Indira; Homer, Matt

    2014-01-01

    We report on a three-year study of teachers' experiences of a major reform of the science National Curriculum for 14- to 16-year-olds in England. Teachers' responses to this curriculum reform were guided by: "personal" aims and biography; "internal" features of their workplace such as departmental collegiality; and…

  15. A Curriculum for a Master of Science in Information Quality

    ERIC Educational Resources Information Center

    Lee, Yang W.; Pierce, Elizabeth; Talburt, John; Wang, Richard Y.; Zhu, Hongwei

    2007-01-01

    The first Master of Science in Information Quality (IQ) degree is designed and being offered to prepare students for careers in industry and government as well as advanced graduate studies. The curriculum is guided by the Model Curriculum and Guidelines for Graduate Degree Programs in Information Systems, which are endorsed by the Association for…

  16. Curriculum Action Project. A Report of Curriculum Decision-Making in Australian Secondary Schools.

    ERIC Educational Resources Information Center

    Cohen, David; Harrison, Marelle

    Research on school-based curriculum decision-making (SBCD) in Australia involved a national survey of 586 educators in 98 secondary schools and an ethnographic study of a Sydney (Australia) high school. The results are presented in 9 chapters and 67 tables. The study focused on what decisions are made in Australian schools about years 7-10…

  17. Leading Curriculum Innovation in Primary Schools Project: An Interim Report on School Leaders' Roles in Curriculum Development in England

    ERIC Educational Resources Information Center

    Brundrett, Mark; Duncan, Diane; Rhodes, Christopher

    2010-01-01

    This article provides an interim report on a two-phase study of curriculum innovation in primary schools in England during one of the most significant periods of change for the last two decades. More specifically, the study addresses the challenges to school leaders created by the Rose Review of the primary curriculum. This article presents and…

  18. Portraying epistemology: School science in historical context

    NASA Astrophysics Data System (ADS)

    Rudolph, John L.

    2003-01-01

    Current debates over the nature of science in the school curriculum have centered on where the boundary between traditional science and other forms of knowledge should be drawn. What has been missing from these discussions, however, is a careful examination of how what lies within the boundary of traditional school science itself has been determined. Given the diversity of scientific practices and the inherent limitations of space in the curriculum, the portrayal of traditional science (its epistemology in particular) should be understood to be only a selective representation of the real-world practices of science. Such representations are inevitably shaped by not just what scientists do, but also by the social and political context in which they are developed. Taking a historical perspective, the curricular ideas of John Dewey and Joseph Schwab are used to illustrate the subtle ways in which epistemological portrayals have been influenced by this sociohistorical context and the consequences those portrayals have had with respect to the public's relationship with institutional science in the United States at two key points during the twentieth century.

  19. Science Literacy: Exploring Middle-Level Science Curriculum Structure and Student Achievement

    ERIC Educational Resources Information Center

    Faulkner, Sarah Ford

    2012-01-01

    The purpose of this quantitative study was to explore and describe the relationship between middle-level science curriculum structure and student science literacy. Although national and state science curriculum standards are based on an integrated model, there is little quantitative data supporting integration. This study explored the use of

  20. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials