Science.gov

Sample records for science symposium planned

  1. Annual symposium on Frontiers in Science

    SciTech Connect

    Metzger, N.; Fulton, K.R.

    1998-12-31

    This final report summarizes activities conducted for the National Academy of Sciences' Annual Symposium on Frontiers of Science with support from the US Department of Energy for the period July 1, 1993 through May 31, 1998. During the report period, five Frontiers of Science symposia were held at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering. For each Symposium, an organizing committee appointed by the NAS President selected and planned the eight sessions for the Symposium and identified general participants for invitation by the NAS President. These Symposia accomplished their goal of bringing together outstanding younger (age 45 or less) scientists to hear presentations in disciplines outside their own and to discuss exciting advances and opportunities in their fields in a format that encourages, and allows adequate time for, informal one-on-one discussions among participants. Of the 458 younger scientists who participated, over a quarter (124) were women. Participant lists for all symposia (1993--1997) are attached. The scientific participants were leaders in basic research from academic, industrial, and federal laboratories in such disciplines as astronomy, astrophysics, atmospheric science, biochemistry, cell biology, chemistry, computer science, earth sciences, engineering, genetics, material sciences, mathematics, microbiology, neuroscience, physics, and physiology. For each symposia, the 24 speakers and discussants on the program were urged to focus their presentations on current cutting-edge research in their field for a scientifically sophisticated but non-specialist audience, and to provide a sense of the experimental data--what is actually measured and seen in the various fields. They were also asked to address questions such as: What are the major research problems and unique tools in their field? What are the current limitations on advances as well as the frontiers? Speakers were asked to provide a 2500- to

  2. NASA Space Sciences Symposium-1977

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The primary objective of the symposium was to motivate American Indians and other minority youths and women to select science and engineering as viable career choices, thereby making them available to the technical work force. Other objectives were: (1) to determine how aerospace technology careers and aerospace activities can be made more relevant to minorities and women; (2) to provide an opportunity for key NASA officials to interact with teachers and counselors of the participating schools; (3) to stimulate a greater interest among American Indian organizations and students in NASA's research and development programs; (4) to help NASA's efforts in the recruiting of minorities and women into its work force; and (5) to provide opportunities for minority aerospace scientists and engineers to interact with the minority community, particularly with youths at the junior high school and high school levels.

  3. Culinary Arts Hospitality Symposium Planning Guide.

    ERIC Educational Resources Information Center

    Borgie, Karen; Wang, Yeimei

    This guide was developed as part of a project to standardize California's statewide culinary arts curriculum based on industry guidelines and standards. It details a process that California community colleges can use to plan a hospitality symposium that will accomplish the following objectives: provide students with a forum to demonstrate their…

  4. Assessing a Science Graduate School Recruitment Symposium

    PubMed Central

    González-Espada, Wilson; Díaz-Muñoz, Greetchen; Feliú-Mójer, Mónica; Flores-Otero, Jacqueline; Fortis-Santiago, Yaihara; Guerrero-Medina, Giovanna; López-Casillas, Marcos; Colón-Ramos, Daniel A.; Fernández-Repollet, Emma

    2015-01-01

    Ciencia Puerto Rico, a non-profit organization dedicated to promoting science, research and scientific education among Latinos, organized an educational symposium to provide college science majors the tools, opportunities and advice to pursue graduate degrees and succeed in the STEM disciplines. In this article we share our experiences and lessons learned, for others interested in developing large-scale events to recruit underrepresented minorities to STEM and in evaluating the effectiveness of these efforts. PMID:26770074

  5. 78 FR 20664 - 2013 Medical Countermeasures Initiative Regulatory Science Symposium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... HUMAN SERVICES Food and Drug Administration 2013 Medical Countermeasures Initiative Regulatory Science...) Regulatory Science Symposium. The symposium is intended to provide a forum for the exchange of ideas for medical countermeasure development, highlight work on regulatory science as it applies to the...

  6. 78 FR 10180 - Annual Computational Science Symposium; Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... HUMAN SERVICES Food and Drug Administration Annual Computational Science Symposium; Conference AGENCY... public conference entitled ``The FDA/PhUSE Annual Computational Science Symposium.'' The purpose of the conference is to help the broader community align and share experiences to advance computational science....

  7. Symposium: The Role of Biological Sciences in the Optometric Curriculum.

    ERIC Educational Resources Information Center

    And Others; Rapp, Jerry

    1980-01-01

    Papers from a symposium probing some of the curricular elements of the program in biological sciences at a school or college of optometry are provided. The overall program sequence in the biological sciences, microbiology, pharmacology, and the curriculum in the biological sciences from a clinical perspective are discussed. (Author/MLW)

  8. Symposium on Career Opportunities in Biomedical and Public Health Sciences

    NASA Technical Reports Server (NTRS)

    Sullivan, Walter W.

    1997-01-01

    The goal of the Symposium on Career Opportunities in Biomedical and Public Health Sciences is to encourage minority collegiate and junior and senior high school students to pursue careers in biomedical and public health sciences. The objectives of the Symposium are to: (1) Provide information to participants concerning biomedical and public health science careers in government, academe and industry; (2) Provide information to minority students about training activities necessary to pursue a biomedical or public health science career and the fiscal support that one can obtain for such training; and (3) Provide opportunities for participating minority biomedical and public health role models to interact with participants.

  9. Eisenhower Focused Initiative K-12 Mathematics and Science Symposium. Proceedings.

    ERIC Educational Resources Information Center

    Otto, Paul B., Ed.

    The purpose of this symposium was to provide a forum for the interchange of state of the art mathematics and science education teaching in two Southeast South Dakota National Science Foundation Statewide Systemic Initiative projects. Presentations include: (1) "To Get This Car Moving, We Will Have to Put It in Gear" (Delmar Janke); (2) "Math…

  10. Managing the Junior Science & Humanities Symposium: Management and Operation of the Pacific Region Junior Science & Humanities Symposium, 2001-2002.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This publication provides administrative, management, supervisory guidance, and other information necessary for successful conduct and support of grades 7-12 science symposia. Originally the text was developed as the operations manual for the Pacific Region Junior Science and Humanities Symposium (PJSHS). It contains information necessary to…

  11. Planning a Science Fair

    ERIC Educational Resources Information Center

    Ebert, Jim

    1976-01-01

    Presented are views, on planning science fairs and science fair projects, of a fair coordinator, a science teacher, and students. Also included are 25 questions which might result in science fair projects. (SL)

  12. 77 FR 4568 - Annual Computational Science Symposium; Public Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... Drug Administration (FDA), in cosponsorship with the Pharmaceutical Users Software Exchange (PhUSE), is announcing a public conference entitled ``The FDA/PhUSE Annual Computational Science Symposium.'' The purpose...-5300. Contact: Chris Decker, U.S. Regional Director, Pharmaceutical Users Software Exchange (PhUSE),...

  13. Choices for Science. Symposium Proceedings. Bunting Institute Working Paper.

    ERIC Educational Resources Information Center

    Radcliffe Coll., Cambridge, MA. Mary Ingraham Bunting Inst.

    These proceedings result from a symposium designed to provide a forum for the consideration of major social issues confronting science today. Participants (including scientists at different stages of career development from undergraduate concentrator to Nobel laureate) discussed issues related to the scientist's responsibilities as scientist and…

  14. University of South Dakota Mathematics/Science Symposium: First Eisenhower Focused Initiative K-12 Mathematics and Science Symposium Conference Proceedings (Vermillion, South Dakota, January 13-14, 1995).

    ERIC Educational Resources Information Center

    Otto, Paul B., Ed.

    This document contains papers presented at a mathematics and science symposium. The purpose of the symposium was to provide a forum for the interchange of the state-of-the-art mathematics and science education activities taking place within a South Dakota National Science Foundation State Systemic Initiative project within Southeast Area…

  15. Science education in partnership: the 2002 Australian American Fulbright Symposium

    NASA Astrophysics Data System (ADS)

    Devore, E.; Oliver, C.; Wilmoth, K.; Vozzo, L.

    The Australian American Fulbright 2002 Symposium: Science Education in Partnership was held in parallel--in partnership-- with the scientific meeting of the IAU 213 Bioastronomy 2002 Symposium: Life Among the Stars. In practice, the two meetings modeled partnership between educators and scientists, both professional events interacting while maintaining individual goals. Leading scientists attending the IAU meeting participated in the Fulbright with presentations based upon their work and their experiences. Educators and scientists interacted on how their work impacts science education and strategies for building direct connections between scientists and classrooms. Educators attending the Fulbright Symposium attended a number of scientific presentations in IAU meeting as well. A major issue in science education is teaching science in a way that is relevant to the student. Partnerships between scientists and teachers can provide real-life scientific research experience in the laboratory and the field for teachers and students. These partnerships enhance the quality of both teaching and learning, and engage students directly in projects and curricula that lead to a better understanding of the nature and practice of science. Scientists are often engaged in the development of new curricula as a part of the education and public outreach programs affiliated with research programs. Participants explored the similarities and differences between the approach to this endeavor in Australia and the US. Partnerships between all the professionals involved--scientists, teachers, and writers--creates an opportunity for innovative, cutting-edge research to reach the classroom. The excitement of seeking new knowledge, exploring the unknown, can motivate students to pursue science studies in high school and beyond at the university. Oral papers, posters and workshops presented the results of partnerships between scientists and educators in Australian and the US as well as

  16. The First Twenty-Five Years of the National Science Foundation. A Symposium of the National Academy of Sciences, April 21, 1975.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    The National Academy of Sciences at its 112th Annual Meeting on April 21, 1975, paid homage to the comparatively young National Science Foundation (NSF), in celebration of its 25th birthday. The planning that went into the symposium will become clear to the reader of these four papers, which are quite different in style and content but united by…

  17. February NICBR Symposium Highlights Careers in Science | Poster

    Cancer.gov

    Poster Staff The first National Interagency Confederation for Biological Research (NICBR) Exploring Careers in a Scientific Environment Symposium was held on Feb. 18 at the Advanced Technology Research Facility. The event drew more than 70 Frederick County public school teachers, who learned about the wide range of biomedical research being conducted by scientists in the NICBR agencies, as well as the variety of opportunities for students interested in pursuing careers in science and/or technology.

  18. Junior Science and Humanities Symposium, January 1994-July 1995. Pacific Region Program Operations Manual.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This informational packet contains the materials necessary to administer the annual Department of Defense Dependent Schools Pacific Region Junior Science and Humanities Symposium (JSHS) at the high school and middle school levels. The symposium program is a calendar year research program which includes one week symposium of students (grade 8-12)…

  19. Cassini science planning process

    NASA Technical Reports Server (NTRS)

    Paczkowski, Brian G.; Ray, Trina L.

    2004-01-01

    The mission design for Cassini-Huygens calls for a four-year orbital survey of the Saturnian system and the descent into the Titan atmosphere and eventual soft-landing of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 44 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that will perform a wide range of observations on a multitude of designated targets. The science opportunities, frequency of encounters, the length of the Tour, and the use of distributed operations pose significant challenges for developing the science plan for the orbiter mission. The Cassini Science Planning Process is the process used to develop and integrate the science and engineering plan that incorporates an acceptable level of science required to meet the primary mission objectives far the orbiter. The bulk of the integrated science and engineering plan will be developed prior to Saturn Orbit Insertion (Sol). The Science Planning Process consists of three elements: 1) the creation of the Tour Atlas, which identifies the science opportunities in the tour, 2) the development of the Science Operations Plan (SOP), which is the conflict-free timeline of all science observations and engineering activities, a constraint-checked spacecraft pointing profile, and data volume allocations to the science instruments, and 3) an Aftermarket and SOP Update process, which is used to update the SOP while in tour with the latest information on spacecraft performance, science opportunities, and ephemerides. This paper will discuss the various elements of the Science Planning Process used on the Cassini Mission to integrate, implement, and adapt the science and engineering activity plans for Tour.

  20. Science Education in Partnership: The 2002 Australian American Fulbright Symposium

    NASA Astrophysics Data System (ADS)

    DeVore, E.; Oliver, C.; Wilmoth, K.; Vozzo, L.

    2004-01-01

    The Australian American Fulbright 2002 Symposium: Science Education in Partnership was held in parallel-in partnership-with the scientific meeting of the IAU 213 Bioastronomy 2002 Symposium: Life Among the Stars. In practice, the two meetings modeled partnership between educators and scientists, both professional events interacting while maintaining individual goals. Leading scientists attending the IAU meeting participated in the Fulbright with presentations based upon their work and their experiences. Educators and scientists interacted on how their work impacts science education and strategies for building direct connections between scientists and classrooms. Educators attending the Fulbright Symposium attended a number of scientific presentations in IAU meeting as well. A major issue in science education is teaching science in a way that is relevant to the student. Partnerships between scientists and teachers can provide real-life scientific research experience in the laboratory and the field for teachers and students. These partnerships enhance the quality of both teaching and learning, and engage students directly in projects and curricula that lead to a better understanding of the nature and practice of science. Scientists are often engaged in the development of new curricula as a part of the education and public outreach programs affiliated with research programs. Participants explored the similarities and differences between the approach to this endeavor in Australia and the US. Partnerships between all the professionals involved-scientists, teachers, and writers-creates an opportunity for innovative, cutting-edge research to reach the classroom. The excitement of seeking new knowledge, exploring the unknown, can motivate students to pursue science studies in high school and beyond at the university. Oral papers, posters and workshops presented the results of partnerships between scientists and educators in Australian and the USA as well as opportunities

  1. Proceedings of the fifteenth symposium on energy engineering sciences

    SciTech Connect

    1997-11-01

    This Proceedings Volume includes the technical papers that were presented during the Fifteenth Symposium on Energy Engineering Sciences on May 14-15, 1997, at Argonne National Laboratory, Argonne, Illinois. The Symposium was organized into eight technical sessions, which included 32 individual presentations followed by discussion and interaction with the audience. The topics of the eight sessions are: multiphase flows 1; multiphase flows 2; mostly optics; fluid mechanics; nonlinear fields; welding and cracks; materials; and controls. The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. It has the prime responsibility for establishing the basic scientific foundation upon which the Nation`s future energy options will have to be identified, developed, and built. It is committed to the generation of new knowledge necessary for the solution of present and future problems of energy exploration, production, conversion, and utilization, consistent with respect for the environment. Separate abstracts have been indexed into the energy database for contributions to this Symposium.

  2. PREFACE: International Symposium on Physical Sciences in Space

    NASA Astrophysics Data System (ADS)

    Meyer, Andreas; Egry, Ivan

    2011-12-01

    ISPS is the major international scientific forum for researchers in physics utilizing the space environment, in particular microgravity. It is intended to inspire and encourage cross-cutting discussions between different scientific communities working in the same environment. Contributions discussing results of experiments carried out on drop towers, parabolic aircraft flights, sounding rockets, unmanned recoverable capsules and, last but not least, the International Space Station ISS, are the backbone of this conference series, complemented by preparatory ground-based work, both experimentally and theoretically. The first International Symposium on Physical Sciences in Space (ISPS) sponsored by the International Microgravity Strategic Planning Group (IMSPG) took place in 2000 in Sorrento, Italy. IMSPG seeks to coordinate the planning of space for research in physical sciences by space agencies worldwide. AEB (Brazil), ASI (Italy), CNES (France), CSA (Canada), DLR (Germany), ESA (Europe), JAXA (Japan), NASA (USA), NSAU (Ukraine) and RSA (Russia) are members, and CNSA (China) and ISRO (India) are also invited to join IMSPG meetings. ISPS-4 was the fourth symposium in that series, following ISPS-2 organized by CSA in 2004 in Toronto, Canada, and ISPS-3 organized in 2007 by JAXA in Nara, Japan. ISPS-4 was jointly organized by ESA and DLR on behalf of the IMSPG and was held in Bonn from 11-15 July 2011. 230 participants from 17 different countries attended ISPS-4. Recent microgravity experiments were presented, analysed, and set in context to results from Earth bound experiments in 16 plenary and 68 topical talks. Lively discussions continued during two dedicated poster sessions and at the exhibition booths of space industry and research centers with new flight hardware on display. The oral presentations at ISPS4 were selected exclusively on the basis of scientific merit, as evidenced through the submitted abstracts. The selection was performed by the International

  3. PREFACE: The Third 21COE Symposium: Astrophysics as Interdisciplinary Science

    NASA Astrophysics Data System (ADS)

    Maeda, Kei-ichi; Yamada, Shoichi; Daishido, Tsuneaki

    2006-03-01

    In the last decade, we have seen a remarkable progress in observations by air-borne and satellite-loaded detectors as well as large ground-based telescopes. Cosmological parameters have been precisely determined. For example, the age of the Universe is about 14 Gyrs and the curvature of our 3-space is almost zero. We have also recognized that most of the matter content of the Universe is unknown, the mystery of Dark Energy and Dark Matter. When we look at compact objects in the Universe, recent observations of supernovae and gamma ray bursts (up to cosmological distances) have revealed a variety of high energy astrophysical phenomena much beyond our expectations. Also found are quite exotic astrophysical objects such as magnetars and probably quark stars. Now we have a lot of new observational data. The present theoretical understanding, on the other hand, is far behind such observational advances. We may need new ideas to solve such problems. In the late 20th century, astrophysicists have learned much from particle physics and nuclear physics, resulting in the deeper understanding of how the big bang universe expands and stars evolve. Then we would like to extend this practice in different directions. This volume contains lectures and contributed papers presented at ``The Third 21COE Symposium: Astrophysics as Interdisciplinary Science'', which was held at Waseda University, Tokyo, Japan, on September 1 3, 2005. The aim of the symposium is to obtain new insights into the important themes mentioned above by bringing together the latest ideas from various fields. In the symposium, we have discussed not only such mysterious and important astrophysical or cosmological objects but also some subjects closely related with other fields such as nonlinear dynamics, statistical physics and condensed matter physics. Hence the main topics in the symposium have included formations of large-scale structures, galaxies, stellar clusters as well as the nature of condensed matter in

  4. Proceedings of the seventeenth symposium on energy engineering sciences

    SciTech Connect

    1999-05-13

    This Proceedings Volume includes the technical papers that were presented during the Seventeenth Symposium on Energy Engineering Sciences on May 13-14, 1999, at Argonne National Laboratory, Argonne, Illinois. The Symposium was structured into seven technical sessions, which included 25 individual presentations followed by discussion and interaction with the audience. A list of participants is appended to this volume. The DOE Office of Basic Energy Sciences (BES), of which Engineering Research is a component program, is responsible for the long-term, mission-oriented research in the Department. The Office has prime responsibility for establishing the basic scientific foundation upon which the Nation's future energy options will be identified, developed, and built. BES is committed to the generation of new knowledge necessary to solve present and future problems regarding energy exploration, production, conversion, and utilization, while maintaining respect for the environment. Consistent with DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, prolonging the useful life of energy-related structures and equipment, and developing advanced manufacturing technologies and materials processing. The program emphasis is on reducing costs through improved industrial production and performance and expanding the nation's store of fundamental knowledge for solving anticipated and unforeseen engineering problems in energy technologies. To achieve these goals, the Engineering Research Program supports approximately 130 research projects covering a broad spectrum of topics that cut across traditional engineering disciplines. The program focuses on

  5. Cooperative Science Lesson Plans.

    ERIC Educational Resources Information Center

    Cooperative Learning, 1991

    1991-01-01

    Offers several elementary level cooperative science lesson plans. The article includes a recipe for cooperative class learning, instructions for making a compost pile, directions for finding evidence of energy, experiments in math and science using oranges to test density, and discussions of buoyancy using eggs. (SM)

  6. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    NASA Astrophysics Data System (ADS)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related

  7. Cardiopulmonary discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.

  8. Overview of the Science of Science Policy Symposium

    ERIC Educational Resources Information Center

    Lane, Julia, Ed.; Black, Dan, Ed.

    2012-01-01

    Governments across the world are investing large amounts of money in scientific research, often with the belief that such investments will increase economic growth--yet the scientific evidence for this belief is, as Colin Macilwain notes, "patchy." Science agencies are charged with identifying and funding the best science, yet there is little…

  9. Musculoskeletal discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the musculoskeletal discipline must identify possible consequences of weightlessness on this system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers. The musculoskeletal system is highly plastic in that is possesses the inherent capability to adapt its structural and functional properties in accordance with the type and degree of stimuli imposed on it. Prolonged space travel is essentially a period of significant unloading of the musculoskeletal system. This results in adaptive responses in the structure and function of this system, placing it on the low end of a continuum from one of complete disuse to one of maximal use. There is a high probability that the musculoskeletal system is functionally impaired with increasing duration of weightlessness. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences division research and development activities in the area of musculoskeletal function. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines research opportunities, which encompass critical questions in the subdiscipline areas (e.g., muscle, bone, and other musculoskeletal connective tissues). These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  10. Neuroscience discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  11. Proceedings of the 37th annual symposium on foundations of computer science

    SciTech Connect

    1996-12-31

    This report contains papers from the 37th annual Symposium on Foundations of Computer Science. Most of papers deal with the mathematical schemes, models, and lemma for improving algorithms used by computers.

  12. Correction [to “Symposium focuses on arctic science and policy needs”

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The news article “Symposium focuses on Arctic science and policy needs” (Eos, 92(27), 226, 5 July 2011) should have indicated that the U.S. Coast Guard cutter Healy, the nation's largest icebreaker, is currently operating.

  13. The Energetic Gamma-Ray Experiment Telescope (EGRET) Science Symposium

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E. (Editor); Hunter, Stanley D. (Editor); Sreekumar, Parameswaran (Editor); Stecker, Floyd W. (Editor)

    1990-01-01

    The principle purpose of this symposium is to provide the EGRET (Energetic Gamma-Ray Experiment Telescope) scientists with an opportunity to study and improve their understanding of high energy gamma ray astronomy. The Symposium began with the galactic diffusion radiation both because of its importance in studying galactic cosmic rays, galactic structure, and dynamic balance, and because an understanding of its characteristics is important in the study of galactic sources. The galactic objects to be reviewed included pulsars, bursts, solar flares, and other galactic sources of several types. The symposium papers then proceeded outward from the Milky Way to normal galaxies, active galaxies, and the extragalactic diffuse radiation.

  14. The Junior Science and Humanities Symposium: Management and Operation, 2002-2003.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document provides the administrative, management, and supervisory guidance necessary to successfully conduct and support grades 7-12 science symposia. It was developed as the operations manual for the Pacific Region Junior Science and Humanities Symposium (PJSHS) program for 2002-2003 which is an 10-month, precollege student research program…

  15. The Junior Science & Humanities Symposium: Management and Operations, 2003-2004. Theme--Atmosphere--The Other Ocean.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document reviews the Pacific Region Junior Science and Humanities Symposium (PJSHS) program for 2003-2004 which is a 10-month, precollege student research program held in Japan. The theme is AtmosphereThe Other Ocean. The program includes a one-week symposium of student delegates who have completed research projects in the sciences or have…

  16. Science Unit Plans. PACE '94.

    ERIC Educational Resources Information Center

    Schoon, Kenneth J., Ed.; Wiles, Clyde A., Ed.

    This booklet contains mathematics unit plans for Biology, Chemistry, and Physical Science developed by PACE (Promoting Academic Excellence In Mathematics, Science & Technology for Workers of the 21st Century). Each unit plan contains suggested timing, objectives, skills to be acquired, workplace relationships, learning activities with suggested…

  17. PREFACE: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)

    NASA Astrophysics Data System (ADS)

    Mago, V. K.; Ananthapadmanabhan, P. V.; Patil, D. S.; Das, A. K.

    2010-01-01

    It is our pleasure to present the proceedings of the 23rd National Symposium on Plasma Science and Technology (PLASMA-2008) held at Bhabha Atomic Research Center, Mumbai, 10- December 2008 in association with the Plasma Science Society of India. The Plasma Science Society of India has been holding regular symposia on general topics related to Plasma. The symposium was designed to provide a forum for young researchers in Plasma Science and Technology to interact with eminent plasma scientists from India and abroad and to present their work. The scope of the symposium included frontline research in Basic Plasma Physics as well as significant advances in Plasma Technology. In view of the ever-growing importance of Plasma Science and Technology to India's Nuclear Energy program, the focal theme of the symposium was chosen as 'Plasmas in Nuclear Fuel Cycle'. The scientific program of this four day symposium consisted of review talks, invited topical lectures, contributed oral and poster presentations in the following areas of Plasma Science & Technology. Basic Plasma Physics, simulations and modeling (BP) Nuclear fusion and Technology (NF) Space & Astrophysical Plasma(SA) Exotic Plasmas, Non-linear Dynamics(EP) Laser Plasma Interaction and Beam Physics (LP) Industrial applications of plasmas (IP) Plasma Diagnostics(PD) Plasmas and clean environment(PC) There was also a Special Session devoted to the focal theme Plasmas in Nuclear Fuel Cycle (PANFC) Applications in Nuclear Fusion Technology (ANFT) Physics and technology of Processing Plasmas in Nuclear Fuel Cycle (PPNFC). Plasma Technology finds wide applications not only in nuclear, space and defense-related industries but also in medical, nano-technology and semiconductor industries. Plasma technologies have distinguished themselves in terms of compactness, process efficiency, techno economics and innovative possibilities. As we advance into the new technology era, there is a need for evolving strategies to apply the

  18. Professional Improvement Plans in Science.

    ERIC Educational Resources Information Center

    Sousa, David A., Comp.; And Others

    In 1982 the New Jersey Science Supervisors Association asked its members to submit samples of Professional Improvement Plans (PIPS) that they had developed for themselves as well as for their science teachers. Provided in this document, in chart format, are actual PIPS used by classroom teachers and science supervisors. The PIPS are divided into…

  19. Women's technical and professional symposium

    SciTech Connect

    Budil, K; Mack, L

    1999-10-01

    This is the fourth LLNL-sponsored Women's Technical and Professional Symposium. This year's theme: ''Excellence through the Millennium,'' focuses on the cutting edge work being done at LLNL and the many contributions of women to our science and technology mission. We hope this Symposium gives each person attending a better idea of the broad scope of the Laboratory's mission and their place within the organization. It is easy to lose sight of the fact that we all work in support of science and technology despite the diversity of our experience. This Symposium provides an opportunity to reflect on our past and to begin to plan our future.

  20. 8(th) Symposium on Hemostasis: Translational and Basic Science Discoveries.

    PubMed

    Margaritis, Paris; Key, Nigel S

    2016-05-01

    It has been 14 years since the first symposium on hemostasis at UNC Chapel Hill that focused primarily on the tissue factor (TF) and Factor VIIa (FVIIa) biology, biochemistry and translational work for the treatment of bleeding. Concepts, mechanistic data and therapeutic agents have since emerged that permeate not only aspects of the TF and FVIIa functions, but also broader processes in hemostasis and thrombosis. These processes involve circulating proteins, receptors, cells and cellular components that interact within the coagulation system as well as with additional systems that are dysregulated in disorders seemingly unrelated to bleeding/thrombosis. The reviews in this symposium provide the research background to understand such interactions and integrations. PMID:27207413

  1. Symposium focuses on Arctic science and policy needs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-07-01

    The most important step the United States needs to take for the future of the Arctic is ratification of the United Nations Convention on the Law of the Sea (LOS), U.S. Senator Mark Begich (D-AK) told attendees at the 4th Symposium on the Impacts of an Ice-Diminishing Arctic on Naval and Maritime Operations, held 20-22 June in Washington, D. C. With the Arctic region undergoing rapid transformation due to climate change, scientists at the symposium provided details about diminishing ice and other concerns, while U.S. Naval and Coast Guard officers discussed research and operational needs and policy makers called for more resources to deal with Arctic issues and for LOS ratification.

  2. NASA GSFC Science Symposium on Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K. (Editor)

    2007-01-01

    This document is the proceedings of a conference on atomic and molecular physics in honor of the retirements of Dr. Aaron Temkin and Dr. Richard Drachman. The conference contained discussions on electron, positron, atomic, and positronium physics, as well as a discussion on muon catalyzed fusion. This proceedings document also contains photographs taken at the symposium, as well as speeches and a short biography made in tribute to the retirees.

  3. Junior Science and Humanities Symposium Program, Management Guide SY91-92.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC. Pacific Region.

    This information booklet contains the information necessary to administer the annual Department of Defense Dependent Schools Pacific Region Junior Science and Humanities Symposium (JSHS) at the school level. It is intended to be used by teachers and administrators as they manage the JSHS program within their schools and by students as they conduct…

  4. Brief Report: State of the Science Symposium on Aging and Developmental Disabilities

    ERIC Educational Resources Information Center

    Heller, Tamar; Janicki, Matthew P.; Marks, Beth; Hammel, Joy; Factor, Alan

    2008-01-01

    The overall goal of the "2007 State of the Science Symposium on Aging with Developmental Disabilities: Charting Lifespan Trajectories and Supportive Environments for Healthy Community Living" (held in Atlanta, Georgia, U.S.A.) was to increase the understanding and definition of how to improve the health, psychosocial well-being, and community…

  5. Eleventh symposium on energy engineering sciences: Proceedings. Solid mechanics and processing: Analysis, measurement and characterization

    SciTech Connect

    Not Available

    1993-09-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases.

  6. Meat science and muscle biology symposium: In utero factors that influence postnatal muscle growth, carcass composition, and meat quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Meat Science and Muscle Biology Symposium titled “In utero factors that influence postnatal muscle growth, carcass composition, and meat quality” was held at the Joint Annual Meeting in Phoenix, AZ, July 15 to 19, 2012. The goal of this symposium was to highlight research on the impact of fetal...

  7. Developmental programming: State-of-the-science and future directions-summary from a Pennington biomedical symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current s...

  8. Proceedings of the Symposium on the Effects on Technology of a Vanishing Species: Mathematics and Science Teachers.

    ERIC Educational Resources Information Center

    State Univ. of New York, Albany. School of Education.

    The symposium whose proceedings are included in this document was designed to inform diverse segments of society of the catastrophic decline in the supply of mathematics and science teachers. It was also seen as a first step in a continuing dialogue among educators, legislators, and corporate executives in New York State. The symposium was, thus,…

  9. Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society

    NASA Astrophysics Data System (ADS)

    Akimoto, Katsuhiro; Suzuki, Yoshikazu; Monirul Islam, Muhammad

    2015-04-01

    This volume of the Journal of Physics: Conference Series contains papers presented at the Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society (TJS 2014) held at Gammarth, Republic of Tunisia on November 28-30, 2014. The TJS 2014 is based on the network of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) which has been regularly organized since 2000. The symposium was focused on the technological developments of energy and materials for the realization of sustainable society. To generate technological breakthrough and innovation, it seems to be effective to discuss with various fields of researchers such as solid-state physicists, chemists, surface scientists, process engineers and so on. In this symposium, there were as many as 109 attendees from a wide variety of research fields. The technical session consisted of 106 contributed presentations including 3 plenary talks and 7 key-note talks. We hope the Conference Series and publications like this volume will contribute to the progress in research and development in the field of energy and material sciences for sustainable society and in its turn contribute to the creation of cultural life and peaceful society.

  10. NASA Space Sciences Strategic Planning

    NASA Technical Reports Server (NTRS)

    Crane, Philippe

    2004-01-01

    The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.

  11. 77 FR 21785 - Medical Countermeasures Initiative Regulatory Science Symposium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... HUMAN SERVICES Food and Drug Administration Medical Countermeasures Initiative Regulatory Science... Administration (FDA) is announcing the following meeting: Medical Countermeasures Initiative Regulatory Science... development, highlight work on regulatory science as it applies to the development and advancement of...

  12. Environmental health discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in environmental health. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; animal and human subjects; and research and development. This document summarizes the history and current status of the program elements, outlines available knowledge, establishes goals and objectives, identifies scientific priorities, and defines critical questions in the three disciplines: (1) Barophysiology, (2) Toxicology, and (3) Microbiology. This document contains a general plan that will be used by both NASA Headquarters Program Officers and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area. The document is divided into sections addressing these three disciplines.

  13. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  14. Proceedings of ISCIS III, the third international symposium on computer and information sciences

    SciTech Connect

    Gelenbe, E.; Orhun, E.; Basar, E.

    1988-01-01

    The symposium presented in this book covered the following topics in computer and information sciences: computer networks, computers in education, software engineering, modelling and simulation, concurrency, artificial intelligence, image and signal processing, data base systems, operating systems, parallel processing, robotics, reliability, computer architecture, CAD/CAM, and social and technical applications. Many of the papers presented are studies on computer networks, computers in education, artificial intelligence, software engineering, concurrency, data base systems, image processing, and parallel processing.

  15. Planning for rover opportunistic science

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Forest, Fisher; Chouinard, Caroline; Castano, Rebecca; Anderson, Robert C.

    2004-01-01

    The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled in a single sol on Mars. Future planetary exploration missions are expected to use even longer drives to position rovers in areas of high scientific interest. This increase provides the potential for a large rise in the number of new science collection opportunities as the rover traverses the Martian surface. In this paper, we describe the OASIS system, which provides autonomous capabilities for dynamically identifying and pursuing these science opportunities during longrange traverses. OASIS uses machine learning and planning and scheduling techniques to address this goal. Machine learning techniques are applied to analyze data as it is collected and quickly determine new science gods and priorities on these goals. Planning and scheduling techniques are used to alter the behavior of the rover so that new science measurements can be performed while still obeying resource and other mission constraints. We will introduce OASIS and describe how planning and scheduling algorithms support opportunistic science.

  16. Regulatory physiology discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  17. FOREWORD: 7th Symposium on Vacuum-based Science and Technology (SVBST2013)

    NASA Astrophysics Data System (ADS)

    Gulbiński, W.

    2014-11-01

    These are the proceedings of the 7th Symposium on Vacuum based Science and Technology organized in Kołobrzeg (PL) on November 19-21, 2013 by the Institute of Technology and Education, Koszalin University of Technology and the Clausius Tower Society under auspices of the Polish Vacuum Society (PTP) and the German Vacuum Society (DVG) and in collaboration with the BalticNet PlasmaTec and the Society of Vacuum Coaters (SVC). It was accompanied by the 12-th Annual Meeting of the German Vacuum Society. The mission of the Symposium is to provide a forum for presentation and exchange of expertise and research results in the field of vacuum and plasma science. After already six successful meetings organized alternately in Poland and Germany our goal is to continue and foster cooperation within the vacuum and plasma science community. This year, the Rudolf-Jaeckel Prize, awarded by the DVG for outstanding achievements in the field of vacuum based sciences, was presented to Dr Ute Bergner, president of the VACOM Vakuum Komponenten & Messtechnik GmbH and a member of our community. The full-day course organized in the framework of the Educational Program by the Society of Vacuum Coaters (SVC) and entitled: An Introduction to Physical Vapor Deposition (PVD) Processes was held on November 18, 2013 as a satellite event of the Symposium. The instructor was Prof. Ismat Shah from Delaware University (US). The Clausius Session, already traditionally organized during the Symposium was addressed this year to young generation. We invited our young colleagues to attend a series of educational lectures reporting on achievements in graphene science, scanning probe microscopy and plasma science. Lectures were given by: Prof. Jacek Baranowski from the Institute of Electronic Materials Technology in Warsaw, Prof. Teodor Gotszalk from the Wroclaw University of Technology and Prof. Holger Kersten from the Christian Albrechts University in Kiel. The Symposium was accompanied by an industry

  18. PREFACE: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)

    NASA Astrophysics Data System (ADS)

    Mago, V. K.; Ananthapadmanabhan, P. V.; Patil, D. S.; Das, A. K.

    2010-01-01

    It is our pleasure to present the proceedings of the 23rd National Symposium on Plasma Science and Technology (PLASMA-2008) held at Bhabha Atomic Research Center, Mumbai, 10- December 2008 in association with the Plasma Science Society of India. The Plasma Science Society of India has been holding regular symposia on general topics related to Plasma. The symposium was designed to provide a forum for young researchers in Plasma Science and Technology to interact with eminent plasma scientists from India and abroad and to present their work. The scope of the symposium included frontline research in Basic Plasma Physics as well as significant advances in Plasma Technology. In view of the ever-growing importance of Plasma Science and Technology to India's Nuclear Energy program, the focal theme of the symposium was chosen as 'Plasmas in Nuclear Fuel Cycle'. The scientific program of this four day symposium consisted of review talks, invited topical lectures, contributed oral and poster presentations in the following areas of Plasma Science & Technology. Basic Plasma Physics, simulations and modeling (BP) Nuclear fusion and Technology (NF) Space & Astrophysical Plasma(SA) Exotic Plasmas, Non-linear Dynamics(EP) Laser Plasma Interaction and Beam Physics (LP) Industrial applications of plasmas (IP) Plasma Diagnostics(PD) Plasmas and clean environment(PC) There was also a Special Session devoted to the focal theme Plasmas in Nuclear Fuel Cycle (PANFC) Applications in Nuclear Fusion Technology (ANFT) Physics and technology of Processing Plasmas in Nuclear Fuel Cycle (PPNFC). Plasma Technology finds wide applications not only in nuclear, space and defense-related industries but also in medical, nano-technology and semiconductor industries. Plasma technologies have distinguished themselves in terms of compactness, process efficiency, techno economics and innovative possibilities. As we advance into the new technology era, there is a need for evolving strategies to apply the

  19. Abstracts for the symposium on the Application of neural networks to the earth sciences

    USGS Publications Warehouse

    Singer, Donald A.

    2002-01-01

    Artificial neural networks are a group of mathematical methods that attempt to mimic some of the processes in the human mind. Although the foundations for these ideas were laid as early as 1943 (McCulloch and Pitts, 1943), it wasn't until 1986 (Rumelhart and McClelland, 1986; Masters, 1995) that applications to practical problems became possible. It is the acknowledged superiority of the human mind at recognizing patterns that the artificial neural networks are trying to imitate with their interconnected neurons. Interconnections used in the methods that have been developed allow robust learning. Capabilities of neural networks fall into three kinds of applications: (1) function fitting or prediction, (2) noise reduction or pattern recognition, and (3) classification or placing into types. Because of these capabilities and the powerful abilities of artificial neural networks, there have been increasing applications of these methods in the earth sciences. The abstracts in this document represent excellent samples of the range of applications. Talks associated with the abstracts were presented at the Symposium on the Application of Neural Networks to the Earth Sciences: Seventh International Symposium on Mineral Exploration (ISME–02), held August 20–21, 2002, at NASA Moffett Field, Mountain View, California. This symposium was sponsored by the Mining and Materials Processing Institute of Japan (MMIJ), the U.S. Geological Survey, the Circum-Pacific Council, and NASA. The ISME symposia have been held every two years in order to bring together scientists actively working on diverse quantitative methods applied to the earth sciences. Although the title, International Symposium on Mineral Exploration, suggests exclusive focus on mineral exploration, interests and presentations have always been wide-ranging—abstracts presented here are no exception.

  20. Proceedings: Computer Science and Data Systems Technical Symposium, volume 1

    NASA Technical Reports Server (NTRS)

    Larsen, Ronald L.; Wallgren, Kenneth

    1985-01-01

    Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form are included for topics in three categories: computer science, data systems and space station applications.

  1. Proceedings: Computer Science and Data Systems Technical Symposium, volume 2

    NASA Technical Reports Server (NTRS)

    Larsen, Ronald L.; Wallgren, Kenneth

    1985-01-01

    Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form, along with abstracts, are included for topics in three catagories: computer science, data systems, and space station applications.

  2. PREFACE: The 8th China International NanoScience and Technology Symposium

    NASA Astrophysics Data System (ADS)

    Cong, Hailin

    2009-09-01

    The 8th China International NanoScience and Technology Symposium, Xiangtan (2009) - Nano-products Exposition, sponsored by Chinese Society of Miro-nanoTechnology and IEEE Nanotechnology Council, etc will be held on 23-27 October 2009 in Xiangtan, China. This symposium is held in order to promote the technology for the development of micro- and nano-scale, cross-scale integration, to share new micro/nano technologies, to exchange information and knowledge over all fields and promote the industrialization and development of nanotechnology. This is a leading professional and traditional conference with at least 400 participants every year. Famous experts, professors and government officials at home and abroad will give lectures during the symposium, which provides a good platform for delegates to discover the latest developments and dynamics of nanotechnology. Researchers, teachers and students in colleges, and technical personnel in the industrial community are welcome to contribute and actively participate in the symposium. In our last symposium held in 2008, over 600 participants from all over the world attended, and we received over 570 abstract and paper submissions for the proceedings published in different languages in famous professional journals. And this year, we have already received over 400 submissions. After strict peer review, 60 of them are published in this volume of Journal of Physics: Conference Series. We are confident that the event will be even more successful this year. Consequently, the organizing committee and proceedings editorial committee would like to thank our colleagues at the IOP Publishing, the invited speakers, our sponsors and all the delegates for their great contributions in this conference. Hailin Cong Vice Chair of the proceedings editorial committee

  3. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    SciTech Connect

    Carwell, H.

    1997-09-19

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  4. Employment after stroke: report of a state of the science symposium.

    PubMed

    Roth, Elliot J; Lovell, Linda

    2014-01-01

    For many stroke survivors, returning to work becomes an important emotional and functional milestone in signaling recovery. It can also provide needed financial support and reduce the burden placed on society in the form of government assistance. The complex nature of the return-to-work process involves many factors that may support or interfere with reintegration into the workforce. For the purpose of examining this important topic more closely, the Rehabilitation Research & Training Center on Enhancing the Functional and Employment Outcomes of Individuals Who Experience a Stroke held a State of the Science Symposium on employment after stroke on November 7, 2011, which was supported by the US Department of Education, National Institute on Disability and Rehabilitation Research. Six questions were posed to the symposium members, who developed research and policy recommendations to address the issues facing stroke survivors seeking to return to work. PMID:24722046

  5. 1988 SYMPOSIUM ON SCIENCE COMMUNICATION: ENVIRONMENTAL AND HEALTHRESEARCH

    EPA Science Inventory

    This report concludes the activity at the University of SouthernCalifornia on the project concerned with holding the 1988 Symposiumon Science Communication: nvironmental and Health Research, onDecember 15-17, 1988 at the Annenberg School for Communication,USC. The purpose of this...

  6. Education, Social Science, and the Judicial Process: An International Symposium.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC.

    Dimensions and implications of the role of the federal courts in the formulation of educational policy are discussed. Emphasis is placed on the function of social scientists and social science data and techniques in the legal process. The document contains seven articles. Article I presents background information on the relationship between social…

  7. Space life sciences strategic plan

    NASA Astrophysics Data System (ADS)

    Nicogossian, Arnauld E.

    1992-05-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  8. Space life sciences strategic plan

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  9. Space Challenge of the 21st Century. Junior Science and Humanities Symposium Information Booklet for SY88-89.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC. Pacific Region.

    This booklet is a program management tool designed for use by high school students and teachers participating in science research programs throughout the United States as well as overseas. The program consists of a symposium during which students are invited to conduct original research in the sciences, mathematics, humanities, and computer…

  10. Symposium on Applying Knowledge from the Behvarioral Sciences to Social Legislation Programs. Summary of Conclusions and Recommendations.

    ERIC Educational Resources Information Center

    Brookings Institution, Washington, DC.

    Symposium participants were divided among "providers" of social science knowledge and "consumers." Objectives addressed by these participants were: (1) to examine the extent of existing knowledge in the behavioral sciences area; (2) to analyze actions needed to make this knowledge available in useful form; and (3) to identify governmental actions…

  11. Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte

    1992-01-01

    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.

  12. Proc. of the sixteenth symposium on energy engineering sciences, May 13-15, 1998, Argonne, IL.

    SciTech Connect

    1998-05-13

    This Proceedings Volume includes the technical papers that were presented during the Sixteenth Symposium on Energy Engineering Sciences on May 13--15, 1998, at Argonne National Laboratory, Argonne, Illinois. The Symposium was structured into eight technical sessions, which included 30 individual presentations followed by discussion and interaction with the audience. A list of participants is appended to this volume. The DOE Office of Basic Energy Sciences (BES), of which Engineering Research is a component program, is responsible for the long-term, mission-oriented research in the Department. The Office has prime responsibility for establishing the basic scientific foundation upon which the Nation's future energy options will be identified, developed, and built. BES is committed to the generation of new knowledge necessary to solve present and future problems regarding energy exploration, production, conversion, and utilization, while maintaining respect for the environment. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, prolonging the useful life of energy-related structures and equipment, and developing advanced manufacturing technologies and materials processing. The program emphasis is on reducing costs through improved industrial production and performance and expanding the nation's store of fundamental knowledge for solving anticipated and unforeseen engineering problems in energy technologies. To achieve these goals, the Engineering Research Program supports approximately 130 research projects covering a broad spectrum of topics that cut across traditional engineering disciplines. The program focuses on

  13. IAS Towards an HIV Cure Symposium: people focused, science driven: 18-19 July 2015, Vancouver, Canada.

    PubMed

    Fidler, Sarah; Thornhill, John; Malatinkova, Eva; Reinhard, Robert; Lamplough, Rosanne; Ananworanich, Jintanat; Chahroudi, Ann

    2015-01-01

    The International AIDS Society (IAS) convened the Towards an HIV Cure Symposium on 18-19 July 2015 in Vancouver, Canada, bringing together researchers and community to discuss the most recent advances in our understanding of HIV latency, reservoirs and a summary of the current clinical approaches towards an HIV cure. The symposium objectives were to: (1) gather researchers and stakeholders to present, review, and discuss the latest research towards an HIV cure; (2) promote cross-disciplinary global interactions between basic, clinical and social scientists; and (3) provide a platform for sharing information among scientists, clinicians, funders, media and civil society. The symposium examined basic molecular science and animal model data, and emerging and ongoing clinical trial results to prioritise strategies and determine the viral and immune responses that could lead to HIV remission without antiretroviral therapy. This report summarises some of the major findings discussed during the symposium. PMID:27482425

  14. Shuttle accident stalls science plans

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    Plans to make 1986 a uniquely productive year for U.S. space science activities ended in one horrible moment with the January 28, 1986, explosion of the space shuttle Challenger. The joyless scene at Cape Canaveral, Fla., stood in sharp contrast to the overwhelming success of Voyager 2 in its encounter with Uranus 4 days earlier. (Scientific details of that encounter will follow in upcoming issues of Eos.)Of the 15 space shuttle flights planned for fiscal year 1986, beginning October 1, 1985, a total of seven were to have carried scientific payloads for the National Aeronautics and Space Administration (NASA). The remaining eight flights were evenly divided between missions for the U.S. Department of Defense and commercial missions for NASA's paying customers. The explosion caused NASA to put its entire space shuttle program on hold to allow time for engineers to find the cause of the accident and for NASA to implement corrective measures. As Eos went to press, NASA acting administrator William R. Graham had not yet released the names of those who would serve on the formal investigative panel. “I think everybody's agreed that it will take weeks to months to unravel,” said Alexander Dessler, director of the space science laboratory at NASA's Marshall Space Flight Center near Huntsville, Ala. Dessler speculated that investigators would begin with a list of hundreds of possible causes for the explosion.

  15. EDITORIAL: The 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009) The 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009)

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri

    2010-05-01

    The papers for this special feature have been selected for publication after the successful measurement forum that took place in Saint Petersburg, Russia, in 2009. ISMTII-2009 presented state-of-the-art approaches and solutions in the most challenging areas and focused on microscale and nanoscale measurements and metrology; novel measurements and diagnostic technologies, including nondestructive and dimensional inspection; measurements for geometrical and mechanical quantities, terahertz technologies for science, industry and biomedicine; intelligent measuring instruments and systems for industry and transport; optical and x-ray tomography and interferometry, metrology and characterization of materials, measurements and metrology for the humanitarian fields; and education in measurement science. We believe that scientists and specialists around the world found there the newest information on measurement technology and intelligent instruments, and this will stimulate work in these areas which is an essential part of progress in measurement. The ISMTII Symposia have been held successfully every two years from 1989 in the People's Republic of China, Hungary, Egypt, Hong Kong, UK and Japan under the direction of ICMI. In 2009 the ISMTII measuring forum took place in Russia, and it is a great honour for our country, as well as for the Russian Academy of Sciences and its Siberian Branch—Novosibirsk Scientific Center. This Symposium was located in historic Saint Petersburg, which from its foundation has been a unique bridge of communication between countries on all continents, and participation provided an excellent opportunity for the exchange of experience, information and knowledge between specialists from different countries and fields. On behalf of the Organizers, Steering Committee and International Program Committee I would like to thank all the participants for their valuable contributions without which this special feature would not have become reality, as well

  16. Mathematics/Science Education and Technology, 1994. Proceedings of the International Symposium on Mathematics/Science Education and Technology (San Diego, California, July 21-23, 1994).

    ERIC Educational Resources Information Center

    Marks, Gary H., Ed.

    The primary purpose of the 1994 Mathematics/Science Education and Technology Symposium was to help foster the exchange of information related to the research, development, and applications of learning and teaching using information technology in mathematics and science educations. The theme "Emerging Issues and Trends" was identified to encourage…

  17. Quebec Science Education: Which Directions? Proceedings of a Symposium Sponsored by the Science Council of Canada and the Association des Professeurs de Sciences du Quebec (March 1982). P82/2.

    ERIC Educational Resources Information Center

    Souque, Jean-Pascal, Ed.; Dufour, Paul, Ed.

    Proceedings are presented of a symposium on science education in Quebec, which was sponsored by the Science Council of Canada and the Association des Professeurs de Sciences du Quebec. Papers and authors addressing the background and present state of Quebec science education are as follows: "Science Teaching at the Secondary Level: An Evaluation"…

  18. Nutritional Needs of the Handicapped/Chronically Ill Child. Manual I: Nutrition Program Planning. Presentations from a National Interdisciplinary Symposium.

    ERIC Educational Resources Information Center

    Ekvall, Shirley M., Ed.; And Others

    The following papers were delivered at a symposium on improving the nutritional status of a child who is chronically ill or handicapped: (1) "Planning Comprehensive Health Services for the Chronically Ill/Handicapped Child; (2) "Future National Directions in Maternal and Child Health"; (3) "Nutrition Services in a State Crippled Children's…

  19. Educational Planning in the United States. Symposium on Educational Requirements for the 1970's, an Interdisciplinary Approach (2nd).

    ERIC Educational Resources Information Center

    Elam, Stanley, Ed.; Swanson, Gordon I., Ed.

    Five papers comprise this book of symposium proceedings. Philip Smith, in "Objectives for American Education," theorizes that the U.S. can afford a sophisticated, dedicated profession to run the schools, and that educational leaders must become dedicated or other leaders will replace them. Francis Chase, in "The Status of Educational Planning in…

  20. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28

  1. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  2. PREFACE: 2014 Joint IMEKO TC1-TC7-TC13 Symposium: Measurement Science Behind Safety and Security

    NASA Astrophysics Data System (ADS)

    Sousa, João A.; Ribeiro, Álvaro S.; Filipe, Eduarda

    2015-02-01

    The 2014 Joint IMEKO (International Measurement Confederation) TC1-TC7-TC13 Symposium was organized by RELACRE - Portuguese Association of Accredited Laboratories and the Portuguese Society for Metrology, on 3-5 September 2014. The work of this symposium is reported in this volume. The scope of the symposium includes the main topics covered by the above Technical Committees: - TC1 Education and Training in measurement and Instrumentation - TC7 Measurement Science - TC13 Measurements in Biology and Medicine The effort towards excellence of previous events, in this well established series, is maintained. There has been a special focus on measurement science behind safety and security, with the aim of highlighting the interdisciplinary character of measurement science and the importance of metrology in our daily lives. The discussion was introduced by keynote lectures on measurement challenges in biometrics, health monitoring and social sciences, to promote useful interactions with scientists from different disciplines. The Symposium was attended by experts working in these areas from 18 countries, including USA, Japan and China, and provided a useful forum for them to share and exchange their work and ideas. In total over fifty papers are included in the volume, organized according to the presentation sessions. Each paper was independently peer-reviewed by two reviewers from a distinguished international panel. The Symposium was held in Funchal, capital of Madeira Islands, known as the Atlantic Pearl. This wonderful Atlantic archipelago, formed by Madeira and Porto Santo islands, discovered in the 14th century, was chosen to host the 2014 IMEKO TC1-TC7-TC13 Joint Symposium ''Measurement Science behind Safety and Security''. It was the first territory discovered by the Portuguese sailors, when set out to discover a new world, in an epic journey where instrumentation and quality of measurement played a central role in the success of the enterprise, and gave an

  3. Proceedings: International Symposium on Thermal Engineering and Science for Cold Regions

    NASA Astrophysics Data System (ADS)

    Lunardini, V. J.; Bowen, S. L.

    This document contains a collection of papers from the Fourth International Symposium on Thermal Engineering and Science for Cold Regions. Topics covered include: some topics on melting heat transfer problems; osmotic model of ice segregation; thermosyphon applications in cold regions; an analytic study of liquid solidification in low Peclet number forced flows inside a parallel plate channel concerning axial heat conduction; freezing within laminar fast-growing thermally developing region of a uniform heat flux cooled parallel plate duct; the morphology of ice layers in curved rectangular channels; effect of heat conductor plates on ice formation near a wall; freezing characteristics of water flow in a horizontal cooled tube with the separated region; stability of thick ice formation in pipes; experiments and analysis of pipe freezing; experimental study of freezing of water in a closed circular tube with pressure increasing; and effects of a porous medium in a flow passage with miter bend.

  4. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: Remarks from Steve Chu at the Scientific Symposium Held in his Honor

    ScienceCinema

    Chu, Steve

    2011-06-03

    Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize, presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium in his honor. The symposium was held August 30, 2008 in Berkeley.

  5. PREFACE: 36th Risø International Symposium on Materials Science

    NASA Astrophysics Data System (ADS)

    Fæster, S.; Hansen, N.; Hong, C.; Huang, X.; Jensen, D. Juul; Mishin, O. V.; Sun, J.; Yu, T.; Zhang, Y. B.

    2015-08-01

    The 36th Risø Symposium focuses on the effects of deformation-induced structural variations on annealing mechanisms. Although it is widely recognized that the processes occurring during annealing of deformed metals are determined by the local environment in which they occur, much of the current understanding, analysis and modelling is based on larger scale considerations. Recent detailed investigations of deformation microstructures have led to a paradigm shift in the way these structures are characterized and analyzed. It is now clear that deformation microstructures are hierarchical, with dislocations and deformation-induced boundaries subdividing the original grains. This subdivision means that there are variations in the crystallographic orientations and in the distribution of stored energy on the scale of the subdivision, which typically is on the micrometer, sub-micrometer or nanometer scale. Structural variations in this subdivision may also be present from grain to grain in polycrystalline materials, thereby introducing variations on the grain scale. Finally, processing may also introduce structural variations on even larger scales. There are thus structural variations at many length scales, all of which play an essential role in subsequent annealing processes and in property optimization. Recent advances in incorporating these structural variations into the understanding of annealing mechanisms and of how they affect the mechanical and physical properties of annealed metals and alloys are addressed in these Proceedings. The Proceedings contain 15 key-note and 46 contributed papers. The 36th Risø International Symposium on Materials Science is organized by the Section for Materials Science and Advanced Characterization, Department of Wind Energy, Technical University of Denmark (DTU). We would like to thank all those at DTU who assisted in the preparations for the Symposium. We appreciate additionally the help from the international advisory committee

  6. Review of the Draft 2014 Science Mission Directorate Science Plan

    NASA Technical Reports Server (NTRS)

    2013-01-01

    At the request of NASA's Science Mission Directorate (SMD), the National Research Council's (NRC's) Space Studies Board (SSB) initiated a study to review a draft of the SMD's 2014 Science Plan. The request for this review was made at a time when NASA is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan and at a time when NASA's budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines-astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities-than is possible in the agency-wide Strategic Plan. In conducting its review of the draft Science Plan, the Committee on the Assessment of the NASA Science Mission Directorate 2014 Science Plan was charged to comment on the following specific areas: (1) Responsiveness to the NRC's guidance on key science issues and opportunities in recent NRC reports; (2) Attention to interdisciplinary aspects and overall scientific balance; (3) Identification and exposition of important opportunities for partnerships as well as education and public outreach; (4) Integration of technology development with the science program; (5) Clarity on how the plan aligns with SMD's strategic planning process; (6) General readability and clarity of presentation; and (7) Other relevant issues as determined by the committee. The main body of the report provides detailed findings and recommendations relating to the draft Science Plan. The highest-level, crosscutting issues are summarized here, and more detail is available in the main body of the report.

  7. FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)

    NASA Astrophysics Data System (ADS)

    Das, A. K.

    2010-01-01

    efforts on Tokamak technology and physics of magnetized fusion plasmas. Our industries have already adopted a large number of plasma processes related to manufacturing, lighting and surface engineering. Indian universities and National Institutes have successfully taken up research projects and building of demonstration equipment that are being used in strategic as well as other industrial applications. In addition, and more importantly, plasma science has triggered research and development effort in many related areas like power supplies, specialized instrumentation and controls, magnets, diagnostics and monitoring, lasers, electron beams, vacuum systems, thermal engineering, material science, fluid dynamics, molecular and nano engineering, molecular chemistry etc. In short, plasma science and technology in India has reached a stage of maturity that can be harnessed for industrial and societal use. The expertise and core competence developed over the years need to be sustained through interactions among researchers as well as nurturing of new research efforts. The Annual Plasma Symposiums have eminently worked towards achievement of that purpose. Like all years, Plasma - 2008 is built around the entire national effort in this field with a special focus on 'Plasmas in Nuclear Fuel Cycle (PANFC)'. The program includes several plenary lectures, invited talks and contributed papers. The manuscripts have been peer reviewed and compiled in the form of Conference Proceedings. I am sure that the online proceedings will be useful and serve as a valuable reference material for active researchers in this field. I would like to take this opportunity to gratefully acknowledge the help and guidance of the National Advisory Committee Chaired by Professor P K Kaw, Director, Institute of Plasma Research, Gandhinagar during the organization of this symposium. My sincere thanks to Dr S Banerjee, Director, Bhabha Atomic Research Center, an acknowledged expert in the field of Materials

  8. FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)

    NASA Astrophysics Data System (ADS)

    Das, A. K.

    2010-01-01

    efforts on Tokamak technology and physics of magnetized fusion plasmas. Our industries have already adopted a large number of plasma processes related to manufacturing, lighting and surface engineering. Indian universities and National Institutes have successfully taken up research projects and building of demonstration equipment that are being used in strategic as well as other industrial applications. In addition, and more importantly, plasma science has triggered research and development effort in many related areas like power supplies, specialized instrumentation and controls, magnets, diagnostics and monitoring, lasers, electron beams, vacuum systems, thermal engineering, material science, fluid dynamics, molecular and nano engineering, molecular chemistry etc. In short, plasma science and technology in India has reached a stage of maturity that can be harnessed for industrial and societal use. The expertise and core competence developed over the years need to be sustained through interactions among researchers as well as nurturing of new research efforts. The Annual Plasma Symposiums have eminently worked towards achievement of that purpose. Like all years, Plasma - 2008 is built around the entire national effort in this field with a special focus on 'Plasmas in Nuclear Fuel Cycle (PANFC)'. The program includes several plenary lectures, invited talks and contributed papers. The manuscripts have been peer reviewed and compiled in the form of Conference Proceedings. I am sure that the online proceedings will be useful and serve as a valuable reference material for active researchers in this field. I would like to take this opportunity to gratefully acknowledge the help and guidance of the National Advisory Committee Chaired by Professor P K Kaw, Director, Institute of Plasma Research, Gandhinagar during the organization of this symposium. My sincere thanks to Dr S Banerjee, Director, Bhabha Atomic Research Center, an acknowledged expert in the field of Materials

  9. Space science plans for the shuttle era.

    NASA Technical Reports Server (NTRS)

    Naugle, J. E.; Johnson, R. W.

    1972-01-01

    Review of the current thinking on the space science, exploration, and application plans and policies that are to take advantage of the widened capabilities to be provided by the shuttle and the sortie mode of the shuttle. Present planning activities and plans for the next year are discussed.

  10. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    NASA Astrophysics Data System (ADS)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  11. Highlights of the Fourth Canadian Symposium on Hepatitis C: Moving towards a National Action Plan

    PubMed Central

    Sagan, Selena M.; Dupont, Benoit; Grebely, Jason; Krajden, Mel; MacParland, Sonya A.; Raven, Jennifer F.; Saeed, Sahar; Feld, Jordan J.; Tyrrell, D. Lorne; Wilson, Joyce A.

    2016-01-01

    Hepatitis C virus (HCV) affects at least 268,000 Canadians and causes greater disease burden than any other infectious disease in the country. The Canadian Institutes of Health Research (CIHR) and the Public Health Agency of Canada (PHAC) have identified HCV-related liver disease as a priority. In 2015, the release of well-tolerated, short course treatments (~12 weeks) able to cure the majority of treated HCV patients revolutionized HCV therapy. However, treatment is extremely costly and puts a significant burden on the Canadian healthcare system. Thus, managing treatment costs and improving treatment engagement in those most in need will be a key challenge. Diagnosis and treatment uptake are currently poor in Canada due to financial, geographical, cultural, and social barriers. The United States, Australia, and Scotland all have National Action Plans to prevent, diagnose, and treat HCV in order to efficiently reduce the burden and costs associated with HCV-related liver disease. The theme of the 4th annual symposium held on Feb 27, 2015, “Strategies to Manage HCV Infection in Canada: Moving towards a National Action Plan,” was aimed at identifying strategies to maximize the impact of highly effective therapies to reduce HCV disease burden and ultimately eliminate HCV in Canada. PMID:27446849

  12. Applied social science for environmental planning

    SciTech Connect

    Millsap, W.

    1983-01-01

    As regions and communities are increasingly affected by the projects, programs, and policies of disparate government and private groups, the skills of social scientists are being called on to aid in the environmental planning process. This volume presents accounts of the many ways in which the social sciences are contributing to environmental planning. The authors address the transition from theory to practice in environmental planning, local-level contributions to the planning process, socioeconomic development and planning needs, and socioenvironmental planning and mitigation procedures.

  13. Dawn Science Planning, Operations and Archiving

    NASA Astrophysics Data System (ADS)

    Polanskey, C. A.; Joy, S. P.; Raymond, C. A.

    2011-12-01

    The Dawn science operations team has designed the Vesta mission within the constraints of a low-cost Discovery mission, and will apply the same methodology to the Ceres mission. The design employs proactive mapping mission strategies and tactics such as functional redundancy, adaptability to trajectory uncertainties, and easy sequence updates to deliver reliable and robust sequences. Planning tools include the Science Opportunity Analyzer and other multi-mission tools, and the Science time-ordered listings. Science operations are conducted jointly by the Science Operations Support Team at the Jet Propulsion Laboratory (JPL) and the Dawn Science Center at the University of California, Los Angeles (UCLA). The UCLA Dawn Science Center has primary responsibility for data archiving while the JPL team has primary responsibility for spacecraft and instrument operations. Constraints and uncertainties in the planning and sequencing environment are described, and then details of the science plan are presented for each mission sub-phase. The plans indicate that Dawn has a high probability of meeting its science objectives and requirements within the imposed constraints.

  14. Planning a Creative Science Curriculum

    ERIC Educational Resources Information Center

    Iiyambo, Rebekah

    2005-01-01

    A group of science coordinators in the London Borough of Newham decided that they wanted to create an exciting, stimulating and creative curriculum for teaching science across key stages 1 and 2 (5-11 year-olds). They were motivated to do this because they were concerned about an overloaded curriculum, dominated by literacy and numeracy, with…

  15. Life sciences space biology project planning

    NASA Technical Reports Server (NTRS)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  16. PREFACE: 2013 Joint IMEKO (International Measurement Confederation) TC1-TC7-TC13 Symposium: Measurement Across Physical and Behavioural Sciences

    NASA Astrophysics Data System (ADS)

    Battista Rossi, Giovanni; Crenna, Francesco; Belotti, Vittorio

    2013-09-01

    The 2013 Joint IMEKO (International Measurement Confederation) TC1-C7-TC13 was organised by the University of Genova - DIME/MEC, Measurement Laboratory, Italy, on 4-6 September 2013. The work of this symposium is reported in this volume. The scope of the symposium includes the main topics covered by the above Technical Committees: TC1 Education and Training in Measurement and Instrumentation TC7 Measurement Science TC13 Measurements in Biology and Medicine This is in keeping with the tradition set by the previous events of this well established series. There has been a special focus on measurement across physical and behavioural sciences, with the aim of highlighting the interdisciplinary character of measurement science and of promoting constructive interactions with scientists in other disciplines. The discussion was introduced by keynote lectures on measurement challenges in psychophysics, psychometrics and quantum physics. The symposium was attended by experts working in these areas from 18 countries, including USA, Australia and Japan, and provided a useful forum for them to share and exchange their work and ideas. In total over sixty papers are included in the volume, organised according to the presentation sessions. Each paper was independently peer-reviewed by two reviewers from a distinguished international panel. The Symposium was held in Genova, which was the European Capital of Culture in 2004, and took place in Palazzo Ducale, an important historical building whose construction started in the 13th century, and that has been the house of the Duke of Genova from the 14th century. Genova, whose name comes from the Latin word 'Janua' (meaning 'door', as January is the door month of the year), has been regarded over the centuries as a door connecting Europe with the different countries and cultures of the Mediterranean basin and thus was an appropriate site for an international symposium involving different and new scientific visions and approaches to

  17. Space human factors discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.

  18. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  19. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    NASA Astrophysics Data System (ADS)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    It is our great pleasure to deliver the proceedings of ASR2009, the Advanced Science Research International Symposium 2009. ASR2009 is part of a series of symposia which is hosted by the Japan Atomic Energy Agency, Advanced Science Research Center (JAEA-ASRC), and held every year with different scientific topics. ASR2009 was held at Tokai in Japan from 10-12 November 2009. In total, 102 participants, including 29 overseas scientists, made 44 oral presentations and 64 poster presentations. In ASR2009 we have focused on material and atomic/molecular science research using positrons, muons and other exotic particle beams. The symposium covered all the fields of materials science which use such exotic particle beams. Positrons, muons and other beams have similar and different features. For example, although positrons and muons are both leptons having charge and spin, they give quite different information about materials. A muon mainly detects the local magnetic state of the solid, while a positron detects crystal imperfections and electron momenta in solids. Other exotic particle beams also provide useful information about materials which is not able to be obtained with muons or positrons. Therefore, the complementary use of particle beams, coupled with an understanding of their relative advantages, leads to greater excellence in materials research. This symposium crossed the fields of muon science, positron science, unstable-nuclei science, and other exotic particle-beam science. We therefore believe that ASR2009 became an especially important meeting for finding new science with exotic particle beams. Finally, we would like to extend our appreciation to all the participants, committee members, and support staff for their great efforts to make ASR2009 a fruitful symposium. ASR2009 Chairs Wataru Higemoto and Atsuo Kawasuso Advanced Science Research Center, Japan Atomic Energy Agency Organizing committee Y Hatano, JAEA (Director of ASRC) M Fujinami, Chiba Univ. R H

  20. EOS Science Plan and EOS Science Plan Executive Summary

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Kaufman, Y. J.; Tanre, D.; Nakajima, T.

    1999-01-01

    Remote sensing of aerosol properties from space is reviewed both for present and planned national and international satellite sensors. Techniques that are being used to enhance our ability to characterize the global distribution of aerosol properties include well-calibrated multispectral radiometers, multispectral polarimeters, and multi-angle spectroradiometers. Though most of these sensor systems rely primarily on visible to mid-infrared spectral channels, the availability of thermal channels to aid in cloud screening is an important additional piece of information that is not always incorporated into the sensor design. In this paper, we describe the various satellite sensor systems being developed by Europe, Japan, and the U.S., and highlight the advantages and disadvantages of each of these systems for aerosol applications. An important underlying theme is that the remote sensing of aerosol properties, especially aerosol size distribution and single scattering albedo, is exceedingly difficult. As a consequence, no one sensor system is capable of providing totally unambiguous information, and hence a careful intercomparison of derived products from different sensors, together with a comprehensive network of ground-based sunphotometer and sky radiometer systems, are required to advance our quantitative understanding of global aerosol characteristics.

  1. Planning for life sciences research in space

    NASA Technical Reports Server (NTRS)

    Mallory, K. M., Jr.; Deutsch, S.

    1976-01-01

    Invitations to participate in planning the NASA Life Sciences Program in Space were mailed to members of the Life Sciences community at large during April 1975. The invitation is related to current planning for Life Sciences research in space during the 1980's, taking into account a use of the Space Shuttle, Spacelab, and the unmanned Biological Experiments Scientific Satellite (BESS). A response form to be completed and returned to NASA by the scientists included questions requesting suggestions on topics-for-research, laboratory equipment, and test specimens. A description of the invitation results is presented, taking into account general response, respondent specialties, laboratory equipment, test specimens, and research objectives. Attention is also given to an Announcement of Opportunities (AO) for the Space Transportation System. The AO was issued by the Office of Space Science in March 1976.

  2. Space science and applications: Strategic plan 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy.

  3. OSSA Space Station Freedom science utilization plans

    NASA Technical Reports Server (NTRS)

    Cressy, Philip J.

    1992-01-01

    Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.

  4. Clinical trial opportunities in hemostasis and thrombosis: NHBLI State-of-the-Science symposium.

    PubMed

    Cines, Douglas B; Blajchman, Morris A; High, Katherine A; Bussel, James B

    2012-02-01

    Clinical trials in hemostasis and thrombosis (HT) are needed to guide medical practice and future research. Providing public support for trials that could have the greatest impact on clinical care has been a major challenge. The National Heart, Lung and Blood Institute (NHLBI) convened a State-of-the-Science meeting in Bethesda on September 14th and 15th, 2009 to identify Phase II and III clinical trials in HT that could have critical impact on healthcare. An oversight committee composed of representatives of the NHLBI and three experienced extramural investigators chose chairs of subcommittees representing six broad areas of investigation in adult and pediatric HT. Chairs were charged with identifying important, feasible proposals. Nineteen trial concepts were presented at this public meeting, followed by open commentary from members of an independent external panel chosen to evaluate the trials and from symposium participants from the wider scientific community. Descriptions of two important clinical trial concepts from each of the six subcommittees are provided in the Supporting Information. Phase II-III clinical trials that could have high impact include studies for treatment of venous thromboembolism (TE) in children and in adults, the potential utility of statins in prophylaxis of TE, prophylaxis of adults with severe hemophilia, management of heparin-induced thrombocytopenia (HIT) and of primary immune thrombocytopenia (ITP). The external panel also provided recommendations concerning infrastructure and approach that could improve the conduct of studies including: development of core organizations with expertise in design of clinical trials, biostatistics, and contract development; funding based on output and milestones; and enhanced investment in coordinating centers. PMID:22120890

  5. The Space Science Enterprise Strategic Plan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    It is a pleasure to present our new Space Science Strategic Plan. It represents contributions by hundreds of members of the space science community, including researchers, technologists, and educators, working with staff at NASA, over a period of nearly two years. Our time is an exciting one for space science. Dramatic advances in cosmology, planetary research, and solar-terrestrial science form a backdrop for this ambitious plan. Our program boldly addresses the most fundamental questions that science can ask: (1) how the universe began and is changing, (2) what are the past and future of humanity, and (3) whether we are alone. In taking up these questions, researchers and the general public--for we are all seekers in this quest--will draw upon all areas of science and the technical arts. Our Plan outlines how we will communicate our findings to interested young people and adults. The program that you will read about in this Plan includes forefront research and technology development on the ground as well as development and operation of the most complex spacecraft conceived. The proposed flight program is a balanced portfolio of small missions and larger spacecraft. Our goal is to obtain the best science at the lowest cost, taking advantage of the most advanced technology that can meet our standards for expected mission success. In driving hard to achieve this goal, we experienced some very disappointing failures in 1999. But NASA, as a research and development agency, makes progress by learning also from mistakes, and we have learned from these.

  6. Proceedings of the 2000 Sino-United States Symposium and Workshop on Library and Information Science Education in the Digital Age (Wuhan, China, November 5-10, 2000).

    ERIC Educational Resources Information Center

    Perushek, D. E., Ed.

    The first International Symposium on Library and Information Science Education in the Digital Age, held in November 2000 at Wuhan University (Wuhan, China), drew more than 90 library and information science professionals from China, Macao, and the United States. Participants gathered to discuss a question of common concern: How are our respective…

  7. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  8. Modern Lesson Plans in Environmental Science.

    ERIC Educational Resources Information Center

    Kotsonis, Helen Hoch; Baker, Bill

    This sourcebook, developed for teachers of ecology, biology, general science and hygiene, contains 27 lesson plans that have been organized into 5 units. The units are: The Dynamics of Pollution, Conservation and the Environment, Biological Controls and their Relationship to the Environment, Urban Ecology, and Environment and Health. The lesson…

  9. Delivering Images for Mars Rover Science Planning

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    A methodology has been developed for delivering, via the Internet, images transmitted to Earth from cameras on the Mars Explorer Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and the Mars Reconnaissance Orbiter spacecraft. The images in question are used by geographically dispersed scientists and engineers in planning Rover scientific activities and Rover maneuvers pertinent thereto.

  10. A Computer-Integrated Science Plan.

    ERIC Educational Resources Information Center

    Fillebrown-DiDomenico, Karen

    1992-01-01

    Describes secondary science programs designed to meet the educational, behavioral, social, and emotional needs of students who do not appear able to benefit from, or adapt to, the traditional educational system. Includes an outline of lessons encompassing a multidisciplinary, computer integration plan for hatching chicken eggs, and directions for…

  11. Science planning and sequencing for Cassini

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Finnerty, Daniel F.

    1993-01-01

    This paper will address the science planning and sequencing aspects of the command generation process for the scientifically diverse Cassini Mission. The mission's prime objectives are to study the Saturnian system and deliver the Huygens Probe to the moon Titan. Together, the spacecraft and probe will be the largest and most complicated craft ever launched to another planet. The presentation will begin with an overview of the Cassini spacecraft and its scientific instrumentation. This will be followed with a description of the Oct. 1997 mission. Next, the structure of the science planning and sequencing process, with special emphasis on science's role, will be outlined. Finally, this presentation will conclude with a discussion of some of the unique challenges faced by the Ground System during Cassini's four-year orbital tour.

  12. NATO Symposium on the Evaluation and Planning of Interpersonal Telecommunications Systems. Final Report.

    ERIC Educational Resources Information Center

    Elton, Martin C. J.

    Papers presented at this symposium are grouped into eight sections, including introductory overviews; the delivery of health care, education, and community services; contributions from the field of scientific and technical information; teleconferencing and computer conferencing services; new services; and communication processes at both the…

  13. Prospectives for Nursing: A Symposium (May 25, 1979). Nurse Planning Information Series, 15.

    ERIC Educational Resources Information Center

    Cleland, Virginia; And Others

    The future of nursing is discussed in these five papers delivered at a symposium in honor of Jessie M. Scott, Director of the Division of Nursing, U.S. Department of Health and Human Services, 1964-1979. In the first article, "Old Dreams--New Visions," Virginia Cleland reviews the economics of medicine and calls for a new Surgeon General's Report…

  14. Adding "Missed" Science to Cassini's Ops Plan

    NASA Technical Reports Server (NTRS)

    Roy, Mou; Burton, Marcia E.; Edgington, Scott; Pitesky, Jo E.; Steadman, Kimberly B.; Ray, Trina L.; Evans, Mike

    2014-01-01

    The phenomenal success of the Cassini Mission at Saturn is largely due to flagship instruments, in a target rich environment, for a long period of time, executing almost error free complex mission operations. A smooth transition from cruise operations through the prime science mission and extended science (Equinox) mission culminating in the currently executing Solstice mission has folded in necessary procedural alterations due to improved understanding of the spacecraft, instruments, uplink and planning systems as well as additional science objectives. These have come with the maturation of the mission along with management of workforce reductions. One important set of operational changes has been initiated due to scientific findings highlighting "missed" science opportunities. This is the case for the Titan Meteorology Campaigns and Saturn Storm Watch Campaigns. These observations involve long term monitoring of the atmospheres of Titan and Saturn while the spacecraft and science teams are focused on other high priority targets of opportunity (like Enceladus). Our objective in this paper is to emphasize how a non-invasive strategy to get additional remarkable science was conceived and implemented in a mission with an already well defined operational plan. To illustrate this we will detail Titan Meteorology Campaign and Saturn Storm Watch Campaign integration and implementation strategies as well as the scientific goals and achievements of both.

  15. NEON Citizen Science: Planning and Prototyping

    NASA Astrophysics Data System (ADS)

    Newman, S. J.; Henderson, S.; Gardiner, L. S.; Ward, D.; Gram, W.

    2011-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of "human sensors." As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include "citizens" or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was

  16. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  17. Symposium on the Future of Dental Education, Institute of Medicine, National Academy of Sciences. Preface.

    ERIC Educational Resources Information Center

    Field, Marilyn J.

    1996-01-01

    This brief article introduces several papers originally presented at a symposium responding to the Institute of Medicine's 1995 report on the current status and future needs of dental education in the United States. It notes the range of reactions to the original report ranging from mostly positive support to caution and disagreement on some…

  18. Chemistry and Materials Science Strategic Plan

    SciTech Connect

    Rhodie, K B; Mailhiot, C; Eaglesham, D; Hartmann-Siantar, C L; Turpin, L S; Allen, P G

    2004-04-21

    Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted the assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme

  19. NEON Citizen Science: Planning and Prototyping (Invited)

    NASA Astrophysics Data System (ADS)

    Gram, W.

    2010-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of “human sensors.” As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include “citizens” or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process

  20. Fraser River action plan: Aquatic science

    SciTech Connect

    1998-12-31

    Reviews research carried out under the Fraser River Action Plan in the field of aquatic science, beginning with research carried out on Fraser River headwater lakes and the contaminants found in those lakes and their fish. Subsequent sections cover research on sediment and contaminant transport, benthic communities, fish species distribution, contaminants in fish, pollution sources (from urban runoff, agriculture, and forestry), pollution in the Fraser estuary, and environmental indicators.

  1. Proceedings of the Colorado River Basin Science and Resource Management Symposium, November 18-20, 2008, Scottsdale, Arizona

    USGS Publications Warehouse

    Melis, Theodore S.; Hamill, John F.; Bennett, Glenn E.; Coggins,, Lewis G., Jr.; Grams, Paul E.; Kennedy, Theodore A.; Kubly, Dennis M.; Ralston, Barbara E.

    2010-01-01

    Since the 1980s, four major science and restoration programs have been developed for the Colorado River Basin to address primarily the conservation of native fish and other wildlife pursuant to the Endangered Species Act (ESA): (1) Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin (commonly called the Upper Colorado River Endangered Fish Recovery Program) (1988); (2) San Juan River Basin Recovery Implementation Program (1992); (3) Glen Canyon Dam Adaptive Management Program (1997); and (4) Lower Colorado River Multi-Species Conservation Program (2005). Today, these four programs, the efforts of which span the length of the Colorado River, have an increasingly important influence on water management and resource conservation in the basin. The four efforts involve scores of State, Federal, and local agencies; Native American Tribes; and diverse stakeholder representatives. The programs have many commonalities, including similar and overlapping goals and objectives; comparable resources and threats to those resources; and common monitoring, research, and restoration strategies. In spite of their commonalities, until recently there had been no formal opportunity for information exchange among the programs. To address this situation, the U.S. Geological Survey (USGS) worked in coordination with the four programs and numerous Federal and State agencies to organize the first Colorado River Basin Science and Resource Management Symposium, which took place in Scottsdale, AZ, in November 2008. The symposium's primary purpose was to promote an exchange of information on research and management activities related to the restoration and conservation of the Colorado River and its major tributaries. A total of 283 managers, scientists, and stakeholders attended the 3-day symposium, which included 87 presentations and 27 posters. The symposium featured plenary talks by experts on a variety of topics, including overviews of the four

  2. Antarctica: A Keystone in a Changing World--Online Proceedings for the Tenth International Symposium on Antarctic Earth Sciences. Santa Barbara, California, U.S.A.--August 26 to September 1, 2007

    USGS Publications Warehouse

    2007-01-01

    Overview: The International Symposium on Antarctic Earth Sciences (ISAES) is held once every four years to provide an international forum for presenting research results and new ideas and for planning future Antarctic geoscience research projects. This Tenth ISAES coincides with the International Polar Year (IPY; 50th Anniversary of the International Geophysical Year) and has been structured to showcase the great breadth of geoscience research being done in Antarctic regions by more than more than 100 institutions located in over 30 countries. The science program of the Symposium encompasses six broad themes that cover key topics on evolution and interactions of the geosphere, cryosphere and biosphere and their cross-linkages with past and historic paleoclimates. Emphasis is also on deciphering the climate records in ice cores, geologic cores, rock outcrops and those inferred from climate models. New technologies for the coming decades of geoscience data collection are also highlighted. Ten keynote presentations at the symposium outline the foundation for the research sessions of the symposium and the structure of the Online Proceedings and Proceedings Book for the Tenth ISAES. The ISAES is traditionally a cornerstone meeting for the Scientific Committee on Antarctic Research (SCAR). In recognition of the Tenth ISAES being held in the U.S. for the first time in 30 years and during IPY, the publication of the symposium proceedings is being handled as a special collaborative effort of the U.S. National Science Foundation, the U.S. Geological Survey, The National Academies Polar Research Board and The National Academies Press. The National Academies Polar Research Board oversees the activities of SCAR in the U.S. Special attention has been directed at publication formats for the symposium, to expedite the open and wide sharing of mature and preliminary research results presented in talks and posters at the Tenth ISAES. All symposium presentations are documented by a

  3. Novice High School Science Teachers: Lesson Plan Adaptations

    ERIC Educational Resources Information Center

    Scharon, Aracelis Janelle

    2013-01-01

    The Next Generation Science Standards (NRC, 2013) positions teachers as responsible for necessary decision making about how their intended science lesson plan content supports continuous student science learning. Teachers interact with their instructional lesson plans in dynamic and constructive ways. Adapting lesson plans is complex. This process…

  4. Science operations planning and implementation for Rosetta

    NASA Astrophysics Data System (ADS)

    Koschny, Detlef; Sweeney, Mark; Montagon, Elsa; Hoofs, Raymond; van der Plas, Peter

    2002-07-01

    The Rosetta mission is a cornerstone mission of the Horizon 2000 programme of the European Space Agency. It will be launched to comet 46P/Wirtanen in January 2003. This mission is the first of a series of planetary missions, including Mars Express, Smart-I (to the Moon), and BepiColombo (to Mercury). All these missions have similar requirements for their scientific operations. The Experiments H/W and S/W are developed by Principal Investigators, working at scientific institutes. They are also responsible for the operation of their experiments and for the generation of related operational documentation. The Science Operations Centre (SOC) has the task to consolidate the inputs of the different experimenters and the Lander and ensure that the resulting science operations timeline is free of conflicts. It forwards this timeline to the Mission Operations Centre (MOC) which combines the science operations with the operations of the other spacecraft subsystems and the orbit and attitude of the spacecraft. The MOC is also responsible for uplinking the operational command sequences to the spacecraft and for returning the received telemetry to the user. In a collaboration between the team of the Rosetta Project Scientist at the Research and Science Support Department of ESA/ESTEC and the European Space Operations Centre (ESA/ESOC), a concept for the SOC/MOC and their interfaces was developed for the Rosetta mission. This concept is generic enough to allow its implementation also for the other planetary missions. The design phase is now complete, and implementation is on-going. This paper briefly presents the architecture of the complex ground segment, concentrating on the elements required for planning of scientific operations, and then details the software tools EPS (Experiment Planning System) and PTB (Project Test Bed) which are used in the planning process.

  5. Reform and Planning of Higher Education, Symposium at Oxford, 31st March-5th April 1974. Council of Europe Information Bulletin. Vol. 3, 1974.

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    Presented in this document are the conference papers on Reform and Planning of Higher Education, held in Oxford, England, March 31-April 5, 1974. This symposium was centered on the British experience and the present state of thinking in the United Kingdom, and includes fifteen papers read by British lecturers and five by non-British lecturers that…

  6. 36 CFR 219.3 - Role of science in planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Role of science in planning. 219.3 Section 219.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.3 Role of science in planning....

  7. 36 CFR 219.3 - Role of science in planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Role of science in planning. 219.3 Section 219.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.3 Role of science in planning....

  8. 36 CFR 219.3 - Role of science in planning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Role of science in planning. 219.3 Section 219.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.3 Role of science in planning....

  9. Joint IAMAS/IAHS Symposium J1 on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Ohring, G.; Aoki, T.; Halpern D.; Henderson-Sellers, A.; Charlock, T.; Joseph, J.; Labitzke, K.; Raschke, E.; Smith, W.

    1994-01-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS). Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  10. ICDP's Science Plan for 2014-2019

    NASA Astrophysics Data System (ADS)

    Wiersberg, Thomas; Harms, Uli; Knebel, Carola

    2015-04-01

    The International Continental Scientific Drilling Program ICDP has played a primary role over the past two decades, uncovering geological secrets from beneath the continents. Even though this has been done very successfully still our planet is far from being understood. The need to drill has never been greater and with its new science plan ICDP wants to unravel the workings of planet earth, fixing the new program attention in a White Paper valid from 2014 to 2019. ICDP's focus for the next term is laid on balancing the needs of science and society even stronger than in the past years, because this is the fundamental task mankind has to face in the 21st century. The challenges that can be addressed by scientific drilling are climate and ecosystem evolution, sustainable georesources, water quality and availability, as well as natural hazards. Cause these challenges are inextricably linked with the dynamics of planet earth ICDP addresses the geoprocesses condensed to 5 major themes in its White Paper. These themes are active faults and earthquakes, global cycles, heat and mass transfer, the deep biosphere, and cataclysmic events. For each of it is summarized what societal challenges are effected by and how they can be understood, what has been achieved by ICDP so far, what are the fundamental open questions left, and what are possible future scientific targets. Furthermore the new ICDP Science Plan strengthens and expands ties between member countries and partner programs, invites and integrates early career researchers in upcoming ICDP activities, debates incorporation of industry partners into selected ICDP strategic activities for a science-driven mutual benefit and discusses new outreach measures to media, policy makers and the interested public. By providing this information the new White Paper shall act as a roadmap for the international Earth Science community on one hand and at the same time shall serve as a docking station for the national funding agencies as

  11. Symposium introduction: the first joint American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Chemical Society (ACS) Agricultural and Food Chemistry Division (AGFD) and the ACS International Chemical Sciences Chapter in Thailand (ICSCT) worked together to stage the “1st Joint ACS AGFD - ACS ICSCT Symposium on Agricultural and Food Chemistry,” which was held in Bangkok, Thailand ...

  12. NEW TEACHING AIDS FOR THE AMERICAN CLASSROOM, A SYMPOSIUM HELD AT THE CENTER FOR ADVANCED STUDY IN THE BEHAVIORAL SCIENCES, NOVEMBER 13-14, 1959.

    ERIC Educational Resources Information Center

    SCHRAMM, WILBUR; AND OTHERS

    A SYMPOSIUM ON THE STATE OF RESEARCH IN INSTRUCTIONAL TELEVISION AND TEACHING MACHINES WAS HELD NOVEMBER 13-14, 1959, AT THE CENTER FOR ADVANCED STUDY IN THE BEHAVIORAL SCIENCES, STANFORD, CALIFORNIA. IT INVOLVED A SMALL GROUP OF SCHOLARS, INFORMED AND EXPERIENCED IN RESEARCH ON THE NEW MEDIA, WHO DISCUSSED CURRENT DEVELOPMENTS AND FUTURE RESEARCH…

  13. National Institutes of Health State of the Science Symposium in Therapeutic Apheresis: scientific opportunities in extracorporeal photopheresis.

    PubMed

    Ratcliffe, Nora; Dunbar, Nancy M; Adamski, Jill; Couriel, Daniel; Edelson, Richard; Kitko, Carrie L; Levine, John E; Morgan, Shanna; Schneiderman, Jennifer; Sloan, Steve; Wu, Yanyun; Szczepiorkowski, Zbigniew M; Cooling, Laura

    2015-01-01

    The clinical use of extracorporeal photopheresis (ECP) for accepted indications such as graft-versus-host disease, transplant rejection, and cutaneous T-cell lymphoma continues to increase. Expanded applications for ECP, such as the treatment of select autoimmune diseases, are being explored. Extracorporeal photopheresis's capacity to both immunotolerize in the autoreactive setting, while immunizing against a lymphoma is unusual and suggestive of a unique mechanism. It is likely that ECP's induction of dendritic cells is key to its efficacy in both of these settings, but exactly how ECP impacts other immune components and their interactions is not fully understood. Further basic science research is necessary to elucidate how these dissimilar cellular activities are functionally integrated. On the clinical side, collaborative multicenter trials designed to recognize the principal variables controlling therapeutic responses and improve prognostic indicators may enable tailoring devices, treatment schedules, and doses to the needs of the individual patients or diseases. This review describes our current understanding of how ECP influences the immune system, reviews the existing clinical applications of ECP, and explores areas for future basic science and clinical research as presented at the National Institutes of Health State of the Science Symposium in Therapeutic Apheresis in November 2012. PMID:25459074

  14. Whitehead Policy Symposium. The Human Genome Project: Science, law, and social change in the 21st century

    SciTech Connect

    Nichols, E.K.

    2000-02-17

    Advances in the biomedical sciences, especially in human genomics, will dramatically influence law, medicine, public health, and many other sectors of our society in the decades ahead. The public already senses the revolutionary nature of genomic knowledge. In the US and Europe, we have seen widespread discussions about genetic discrimination in health insurance; privacy issues raised by the proliferation of DNA data banks; the challenge of interpreting new DNA diagnostic tests; changing definitions of what it means to be healthy; and the science and ethics of cloning animals and human beings. The primary goal of the Whitehead/ASLME Policy Symposium was to provide a bridge between the research community and professionals, who were just beginning to grasp the potential impact of new genetic technologies on their fields. The ''Human Genome Project: Science, Law, and Social Change in the 21st Century'' initially was designed as a forum for 300-500 physicians, lawyers, consumers, ethicists, and scientists to explore the impact of new genetic technologies and prepare for the challenges ahead.

  15. The SIR-B science plan

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Shuttle Imaging Radar-B (SIR-B) will be the third in a series of spaceborne SAR experiments conducted by NASA which began with the 1978 launch of SEASAT and continued with the 1981 launch of SIR-A. Like SEASAT and SIR-A, SIR-B will operate at L-band and will be horizontally polarized. However, SIR-B will allow digitally processed imagery to be acquired at selectable incidence angles between 15 and 60 deg, thereby permitting, for the first time, parametric studies of the effect of illumination geometry on SAR image information extraction. This document presents a science plan for SIR-B and serves as a reference for the types of geoscientific, sensor, and processing experiments which are possible.

  16. Symposium Promotes Technological Literacy through STEM

    ERIC Educational Resources Information Center

    Havice, Bill; Marshall, Jerry

    2009-01-01

    This article describes a symposium which promotes technological literacy through science, technology, engineering, and mathematics (STEM). The three-day symposium titled, "The Anderson, Oconee, Pickens Symposium on Teaching and Learning STEM Standards for the 21st Century," was held August 4-6, 2008 at the Tri-County Technical College (TCTC)…

  17. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  18. 4th-International Symposium on Ultrafast Surface Science - Final Report

    SciTech Connect

    Hrvoje Petek

    2005-01-26

    The 4-th International Symposium on Ultrafast Surface Dynamics (UDS4) was held at the Telluride Summer Research Center on June 22-27, 2003. The International Organizing Committee consisting of Hrvoje Petek (USA), Xiaoyang Zhu (USA), Pedro Echenique (Spain) and Maki Kawai (Japan) brought together a total of 51 participants 16 of whom were from Europe, 10 from Japan, and 25 from the USA. The focus of the conference was on ultrafast electron or light induced processes at well-defined surfaces. Ultrafast surface dynamics concerns the transfer of charge and energy at solid surfaces on the femtosecond time scale. These processes govern rates of fundamental steps in surface reactions, interfacial electron transfer in molecular electronics, and relaxation in spin transport. Recent developments in femtosecond laser technology make it possible to measure by a variety of nonlinear optical techniques directly in the time domain the microscopic rates underlying these interfacial processes. Parallel progress in scanning probe microscopy makes it possible at a single molecular level to perform the vibrational and electronic spectroscopy measurements, to induce reactions with tunneling electrons, and to observe their outcome. There is no doubt that successful development in the field of ultrafast surface dynamics will contribute to many important disciplines.

  19. Rosetta Science Operations Planning for Steins Flyby

    NASA Astrophysics Data System (ADS)

    Wirth, Kristin R.; Kueppers, M.; Dhiri, V.; Vallat, C.; Ashman, M.; Garcia Beteta, J. J.; Schulz, R.; Schwehm, G.

    2009-09-01

    The International Rosetta mission managed by the European Space Agency (ESA) was launched on 2 March 2004 to rendezvous with comet 67P/Churyumov-Gerasimenko (C-G) in May 2014. Upon arrival, the Philae lander carrying 10 experiments will be placed on the comet's surface, and the Rosetta orbiter with 12 experiments will continue to orbit C-G and accompany the comet through perihelion. During its cruise to C-G, Rosetta performs close flybys at two asteroids, namely 2867 Steins on September 5, 2008 and 21 Lutetia on July 10, 2010. High resolution images and spectra are taken around the closest approach (CA) to the target. Light curves are recorded, and the exosphere as well as the dust and plasma environment is explored. This paper discusses the science operations planning aspects specific to the Rosetta flyby at Steins carried out last year. The flyby trajectory was constrained by the fixed velocity (8.6 km/s) and direction of Rosetta relative to asteroid Steins. In terms of free parameters, the minimum closest approach distance possible was selected (800 km), and passage through zero phase angle allowed observing the opposition effect. An optical navigation campaign improved the targeting of the trajectory correction maneuvers (TCMs). Breakpoints to restart the payload operations in case of a spacecraft anomaly were linked to the TCM slots, plus a last breakpoint was defined 2 hrs before CA. The attitude profile was mainly driven by the requirement to point the remote sensing instruments to the small angular size target body. Around CA the navigation cameras tracked the asteroid, and the attitude and orbit control system operated in closed loop. For the unlikely case that this asteroid mode could not be entered, a backup slew profile was designed to recover some science observations in spite of the much larger expected pointing errors.

  20. Science Plans for the International Heliophysical Year

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; Gopalswamy, N.; Harrison, R. A.; Stamper, R.; Briand, C.; Potgieter, M. S.

    2006-05-01

    On October 4, 1957, only 53 years after the beginning of flight in Kitty Hawk, the launch of Sputnik 1 marked the beginning of the space age; as mankind took the first steps to leaving the protected environment of Earth's atmosphere. Discovery of the radiation belts, the solar wind, and the structure of Earth's magnetosphere prepared the way for the inevitable human exploration to follow. Soon, Cosmonauts and Astronauts orbited Earth, and then in 1969, Astronauts landed on the Moon. Today a similar story is unfolding, the spacecraft Voyager has crossed the termination shock, and will soon leave the heliosphere. For the first time, man will begin to explore the local interstellar medium. It is inevitable that, during the next 50 years, exploration of the solar system including the Moon, Mars and the outer planets will be the focus of the space program, and like 50 years ago, unmanned probes will lead the way, followed by human exploration. The International Geophysical Year (IGY) of 1957, a broad-based and all-encompassing effort to push the frontiers of geophysics, resulted in a tremendous increase of knowledge in space physics, Sun-Earth Connection, planetary science and the heliosphere in general. Now, 50 years later, we have the unique opportunity to further advance our knowledge of the global heliosphere and its interaction with the interstellar medium through the International Heliophysical Year (IHY) in 2007, and to raise public awareness of space physics. This presentation will focus on global science planning efforts and campaigns for all participating IHY nations.

  1. International Symposium on Microgravity Science and Application (ISMSA), Beijing, China, May 10-13, 1993

    NASA Technical Reports Server (NTRS)

    Greger, Gottfried; Rath, Hans J.

    1994-01-01

    Papers at this conference on Microgravity Science and Technology concerned fluid science and biotechnology. Some representative titles include the following: Hydrodynamic Instabilities in Thermocapillary Flow; Marangoni Convection in Immiscible Double Liquid Layers; Note on the Instability of Capillary Jet with Thermocapillarity; Residual Gravity Jitter Effects on Fluid Processes; Responsive Motion of Bubbles to Periodic g-jitter; and Protein Crystallization in Space.

  2. Scientists Meet to Plan ALMA Science Program

    NASA Astrophysics Data System (ADS)

    1999-09-01

    world astronomical community." At the Washington conference, scientists will describe in detail ALMA's capabilities in studying galaxies from near the time of their formation to the present; the detection and study of planets and disks around nearby stars; the study of star formation; and the study of the origin, distribution, and evolution of the elements and their isotopes. "ALMA will produce dramatic steps forward in our understanding of objects as close as the planets of our own solar system and as distant as the young galaxies at the edge of the observable universe." said Dr. Paul Vanden Bout, Director of the National Radio Astronomy Observatory. "The purpose of this meeting is to plan how to maximize ALMA's scientific potential." A press briefing on ALMA will take place Thursday, October 7, at 10:30 a.m. EST in the Board Room at CIW. Participants in the briefing include: incoming President of the American Astronomical Society Dr. Anneila Sargent (Caltech), noted author Dr. Alan Boss (CIW Department of Terrestrial Magnetism), Dr. David Spergel (Princeton University), Dr. Robert Eisenstein (NSF Assistant Director for Mathematics & Physical Sciences), Dr. Catherine Cesarky (Director General of the European Southern Observatory), and Dr. Keiichi Kodaira (Director General of the National Astronomical Observatory of Japan). Dr. Anneila Sargent will deliver the conference keynote address on Thursday, Oct. 7, at 8:30 a.m. There is a complete schedule for the meeting, as well as abstracts of invited talks and poster sessions, at the NRAO Web site. The National Radio Astronomy Observatory is a facility of the National Science Foundation and is operated under cooperative agreement by Associated Universities, Inc.

  3. Enhancing Cassini Operations & Science Planning Tools

    NASA Technical Reports Server (NTRS)

    Castello, Jonathan

    2012-01-01

    The Cassini team uses a variety of software utilities as they manage and coordinate their mission to Saturn. Most of these tools have been unchanged for many years, and although stability is a virtue for long-lived space missions, there are some less-fragile tools that could greatly benefit from modern improvements. This report shall describe three such upgrades, including their architectural differences and their overall impact. Emphasis is placed on the motivation and rationale behind architectural choices rather than the final product, so as to illuminate the lessons learned and discoveries made.These three enhancements included developing a strategy for migrating Science Planning utilities to a new execution model, rewriting the team's internal portal for ease of use and maintenance, and developing a web-based agenda application for tracking the sequence of files being transmitted to the Cassini spacecraft. Of this set, the first two have been fully completed, while the agenda application is currently in the early prototype stage.

  4. PREFACE: 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) and 25th Symposium on Plasma Science for Materials (SPSM-25)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Kaneko, Toshio; Sekine, Makoto; Tanaka, Yasunori

    2013-06-01

    The 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) was held in Kyoto, Japan on 2-5 October 2012 with the 25th Symposium on Plasma Science for Materials (SPSM-25). SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. APCPST and SPSM are jointly held biennially to survey the current status of low temperature and thermal plasma physics and chemistry for industrial applications. The whole area of plasma processing was covered from fundamentals to applications. Previous meetings were held in China, Japan, Korea, and Australia, attended by scientists from the Asia-Pacific and other countries. The joint conference was organized in plenary lectures, invited, contributed oral presentations and poster sessions. At this meeting, we had 386 participants from 10 countries and 398 presentations, including 26 invited presentations. This year, we arranged special topical sessions that covered green innovation, life innovation, and technical reports from industry. This conference seeks to bring the plasma community together and to create a forum for discussing the latest developments and issues, the challenges ahead in the field of plasma research and applications among engineers and scientists in Asia, the Pacific Rim, as well as Europe. This volume presents 44 papers that were selected via a strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from the basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This volume offers an overview of recent

  5. WebGL for Rosetta Science Planning

    NASA Astrophysics Data System (ADS)

    Schmidt, Albrecht; Völk, Stefan; Grieger, Björn

    2013-04-01

    Rosetta is a mission of the European Space Agency (ESA) to rendez-vous with comet Churyumov-Gerasimenko in 2014. The trajectory and operations of the mission are particularly complex, have many free parameters and are novel to the community. To support science planning, communicate operational ideas and disseminate operational scenarios to the scientific community, the science ground segment makes use of Web-based visualisation technologies. Using the recent standard WebGL, static pages of time-dependent three-dimensional views of the spacecraft and the field-of-views of the instruments are generated, directly from the operational files. These can then be viewed in modern Web browsers for understanding or verification, be analysed and correlated with other studies. Variable timesteps make it possible to provide both overviews and detailed animated scenes. The technical challenges that are particular to Web-based environments include: (1) In traditional OpenGL, is much easier to compute needed data on demand since the visualisation runs natively on a usually quite powerful computer. In WebGL application, since requests for additional data have to be passed through a Web server, they are more complex and also require a more complex infrastructure. (2) The volume of data that can be kept in a browser environment is limited and has to be transferred over often slow network links. Thus, careful design and reduction of data is required. (3) Although browser support for WebGL has improved since the authors started using it, it is often not well supported on mobile and small devices. (4) Web browsers often only support limited end user interactions with a mouse or keyboards. While some of the challenges can be expected to become less important as technological progress continues, others seem to be more inherent to the approach. On the positive side, the authors' experiences include: (1) low threshold in the community to using the visualisations, (2), thus, cooperative use

  6. The NASA computer science research program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  7. The International Space Life Sciences Strategic Planning Working Group

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  8. Nuclear Science Symposium, 31st and Symposium on Nuclear Power Systems, 16th, Orlando, FL, October 31-November 2, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Biggerstaff, J. A. (Editor)

    1985-01-01

    Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.

  9. Improving Teacher Preparation and Credentialing Consistent with the National Science Education Standards: Report of a Symposium.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Center for Science, Mathematics, and Engineering Education.

    In February, 1996, representatives of departments of education and major teacher education colleges in 39 states, the District of Columbia, the U.S. Virgin Islands, and the U.S. Department of Defense met at the National Academy of Sciences in Washington, D.C. to identify and discuss issues surrounding the preparation and credentialing of science…

  10. Distance Education in Geographic Information Science: Symposium and an Informal Survey

    ERIC Educational Resources Information Center

    Wright, Dawn J.; Dibiase, David

    2005-01-01

    The results of an informal survey to uncover the diversity of existing programmes in GIScience are presented. The survey was an activity of the Distance Education Working Group within the Education Committee of the University Consortium for Geographic Information Science (UCGIS), a consortium of 61 US research universities from 37 states whose…

  11. Science Outcomes Assessment Plan (SOAP): Design phase

    NASA Astrophysics Data System (ADS)

    Webster, Zodiac T.; Gurkas, P.; Shaw, K.

    2009-01-01

    Columbus State University is under pressure to reduce the number of "unproductive grades” in its introductory science classes, to increase the number of STEM majors, and to assess the level of attainment of science outcomes in its general education courses for accreditation documentation. The authors designed a study to examine affective, cognitive, social, and classroom factors as predictors of success in science while also attempting to document the link between introductory "gateway to science major” course outcomes and the general education program. One of the factors probed is the match between students’ understanding of important learning outcomes of the course and the instructor's stated priorities. A very real risk in content focused courses (e.g., astronomy) is the mismatch between the university's stated outcomes for a general education science course (e.g., critical thinking) and the instructor's content related outcomes. This mismatch may become a barrier for students taking `required’ courses as they may not comprehend the rationale for the requirement, fail to engage in the course, and consequently receive a failing grade. Another possible factor affecting student success in science is the student reasoning level. Students who are concrete thinkers may not be as successful in introductory science classes that require advanced logical thinking about unfamiliar concepts. The authors hope to use the results of this study to help inform university practices such as placement into introductory science courses and for future faculty development.

  12. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    SciTech Connect

    1995-11-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Information technology strategic planning: art or science?

    PubMed

    Hutsell, Richard; Mancini-Newell, Lulcy

    2005-01-01

    It had been almost a decade since the hospitals that make up the Daughters of Charity Health System (DCHS) had engaged in a formal information technology strategic planning process. In the summer of 2002, as the health system re-formed, there was a unique opportunity to introduce a planning process that reflected the governance style of the new health system. DCHS embarked on this journey, with the CIO initiating and formally sponsoring the information technology strategic planning process in a dynamic and collaborative manner The system sought to develop a plan tailored to encompass both enterprise-wide and local requirements; to develop a governance model to engage the members of the local health ministries in plan development, both now and in the future; and to conduct the process in a manner that reflected the values of the Daughters of Charity. The DCHS CIO outlined a premise that the CIO would guide and be continuously involved in the development of this tailored process, in conjunction with an external resource. Together, there would be joint responsibility for introducing a flexible information technology strategic planning methodology; providing an education on the current state of healthcare IT, including future trends and success factors; facilitating support to tap into existing internal talent; cultivating a collaborative process to support both current requirements and future vision; and developing a well-functioning governance structure that would enable the plan to evolve and reflect user community requirements. This article highlights the planning process, including the lessons learned, the benchmarking during and in post-planning, and finally, but most importantly, the unexpected benefit that resulted from this planning process. PMID:16045082

  14. Creating relevant science through urban planning and gardening

    NASA Astrophysics Data System (ADS)

    Fusco, Dana

    2001-10-01

    The purpose of this article is to describe a community-based science project that was coproduced with urban teenagers and to elaborate on my understanding of what it means to create a practicing culture of science learning. This understanding will be positioned in relation to various educationally relevant discourses and research on urban science education, concluding with an exploration of these questions: In what ways did an urban planning and community gardening project help to create a learning environment in which science was relevant? To whom was science relevant and toward what ends? It is argued that in a practicing culture of science learning, science was relevant because (a) it was created from participants' concerns, interests, and experiences inside and outside science, (b) it was an ongoing process of researching and then enacting ideas, and (c) it was situated within the broader community.

  15. Gender Segregation of Adolescent Science Career Plans in 50 Countries

    ERIC Educational Resources Information Center

    Sikora, Joanna; Pokropek, Artur

    2012-01-01

    Using data from the Program for International Student Assessment 2006 surveys for 50 countries, this paper explores gender segregation of adolescent science career plans. We ask whether, in different cultures, bridging the male-female gap in science self-concept could reduce gender disparities in students' career preferences. Bringing together the…

  16. Effectiveness of Science Tasks and Plans for Siberian Scholars.

    ERIC Educational Resources Information Center

    Marchuk, G. I.

    1972-01-01

    Science and Technology research plans formulated for the Siberian Department of the U.S.S.R. Academy of Sciences are analyzed in this article to illustrate the tasks of scholars, workers, and engineering and technical personnel in the fulfillment of the 24th party congress resolutions The hypothesis of developing Siberia and the Far East up to the…

  17. Math & Science for Girls: A Symposium Sponsored by The National Coalition of Girls' Schools with Support from the Klingenstein Fund. The Complete Proceedings (Wellesley, Massachusetts, June 16-20, 1991).

    ERIC Educational Resources Information Center

    National Coalition of Girls' Schools, Concord, MA.

    This document contains the proceedings from a "Math and Science for Girls" symposium. The conference was aimed at identifying teaching strategies that are particularly effective for girls. The book is divided into three parts: research reports, small group workshops, and miscellaneous items. The research reports are "Women in Science: Where Do We…

  18. Physical Sciences Research Priorities and Plans in OBPR

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  19. PREFACE: International Symposium on Materials Science and Innovation for Sustainable Society - Eco-Materials and Eco-Innovation for Global Sustainability - The 21st Iketani Conference 2011

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuo

    2012-08-01

    Conference logo The 21st century has been called the century of environmental revolution. Green innovations and environmentally friendly production systems based on physics, chemistry, materials science, and electronic engineering will be indispensable for ensuring renewable energy and establishing a sustainable society. In particular, production design, materials processing, and fabrication technologies such as welding and joining will be very important components of such green innovations. For these reasons, the International Symposium on Materials Science and Innovation for Sustainable Society - eco-materials and eco-innovation for global sustainability - (ECO-MATES 2011) was organized by the Joining and Welding Research Institute (JWRI) and the Center of Environmental Innovation Design for Sustainability (CEIDS), Osaka University. ECO-MATES 2011 was held at Hotel Hankyu Expo Park, Osaka, Japan from 28-30 November 2011. 435 participants from 20 countries around the world attended the symposium. 149 oral presentations including 60 invited talks and 160 posters were presented at the symposium to discuss the latest research and developments in green innovations in relation to environmental issues. The topics of the symposium covered all environmentally related fields including renewable energy, energy-materials, environment and resources, waste and biomass, power electronics, semiconductor, rare-earth metals, functional materials, organic electronics materials, electronics packaging, smart processing, joining and welding, eco-efficient processes, and green applied physics and chemistry. Therefore, 55 full papers concerning green innovations and environmentally benign production were selected and approved by the editorial board and the program committee of ECO-MATES 2011. All papers were accepted through peer review processes. I believe that all the papers have many informative contents. On behalf of the steering committee of the symposium, I would like to express

  20. A Symposium.

    ERIC Educational Resources Information Center

    Rachal, John R.

    2003-01-01

    Uses the framework of a symposium to present an imagined discussion by historical figures about whether and how knowledge might be acquired. Discussants include Democritus, Protagoras, Heraclitus, Socrates, Jesus, Gorgias, Nietzsche, Buddha, and Kierkegaard. (Contains 40 endnotes.) (SK)

  1. Animal behavior and well-being symposium: Farm animal welfare assurance: science and application.

    PubMed

    Rushen, J; Butterworth, A; Swanson, J C

    2011-04-01

    Public and consumer pressure for assurances that farm animals are raised humanely has led to a range of private and public animal welfare standards, and for methods to assess compliance with these standards. The standards usually claim to be science based, but even though researchers have developed measures of animal welfare and have tested the effects of housing and management variables on welfare within controlled laboratory settings, there are challenges in extending this research to develop on-site animal welfare standards. The standards need to be validated against a definition of welfare that has broad support and which is amenable to scientific investigation. Ensuring that such standards acknowledge scientific uncertainty is also challenging, and balanced input from all scientific disciplines dealing with animal welfare is needed. Agencies providing animal welfare audit services need to integrate these scientific standards and legal requirements into successful programs that effectively measure and objectively report compliance. On-farm assessment of animal welfare requires a combination of animal-based measures to assess the actual state of welfare and resource-based measures to identify risk factors. We illustrate this by referring to a method of assessing welfare in broiler flocks. Compliance with animal welfare standards requires buy-in from all stakeholders, and this will be best achieved by a process of inclusion in the development of pragmatic assessment methods and the development of audit programs verifying the conditions and continuous improvement of farm animal welfare. PMID:21216980

  2. 1988 Nuclear Science Symposium, Orlando, FL, Nov. 9-11, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Pordes, Ruth

    1989-02-01

    Papers on nuclear science are presented, covering topics such as performance of a lead radiator, a gas tube calorimeter, various types of detectors, multiwire proportional counters, the DELPHI time projection chamber, scintillator research, bolometeric detectors, liquid xenon detectors for gamma-ray astronomy, calorimetry, trigger processors, front end electronics, advanced custom circuits, data aquisition systems, and radiation damage on ICs, detectors, and CCDs. Topics related to space physics and astronomy include high amplitude events in microchannel plates, large format microchannel plate detectors, HGI2 X-ray detectors, Ga solar neutrino detectors, semiconductor thermistors at low temperatures, blocked impurity band hybrid IR focal plane arrays, a three-dimensional position sensitive scintillation detector, proportional counters, X-ray imaging telescopes, a daytime star sensor for a stabilized balloon platform, multiphase CCD operation, EUV microchannel plate detectors, EUV remote sensing, digital optical spark chambers, detector arrays, microcomputer control of IR detector arrays, array speckle interferometry, and design of a space IR telescope facility. Other subjects include medical detectors, medical imaging, health physics, nuclear well logging, and nuclear power systems.

  3. BepiColombo Science Operations Analysis and Planning: Maximising Science Return

    NASA Astrophysics Data System (ADS)

    McAuliffe, Jonathan; de la Fuente, Sara; Casale, Mauro; Benkhoff, Johannes; Zender, Joe

    2016-04-01

    BepiColombo is a ESA-JAXA Mission to the planet Mercury. The mission consists of two orbiters dedicated to the detailed study of the planet and of its magnetosphere, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The MPO is ESA's scientific contribution to the mission. It is a three-axis-stabilised, nadir-pointing spacecraft that will be placed in a polar orbit, providing excellent spatial resolution over the entire planet surface. The Science Operations Analysis and Planning (SOAP) for MPO will be carried-out by the Science Ground Segment (SGS) at ESAC, Spain, in conjunction with the 11instrument teams, in-line with the overall mission characteristics and operational constraints. Driven by the operational product delivery timeline, the SOAP activity will be a multi-cycle process that will consider the complete nominal mission duration. In this manner, the contribution of scheduled observations to the science objectives, the total data volume generated, and their seasonal interdependency, can be tracked. The Science Planning System will be the system used for the planning, preparation and tracking of the MPO science operations throughout the mission. It will be used to define instrument team observations and process them into executable operational timelines. It will be used to track their execution with the intention of tracing the science end-products back to the original observation requests and ultimately to the high level mission science objectives. The Science Planning System will consist principally of 4 components: An Observation Catalogue, a Science Planning Repository (SPR), a Planning Module and a Simulation Module. This paper will summarise the Science Teams' interface to MPO's Science Planning System and highlight how it will be used to maximise the science return of the mission.

  4. Space life sciences strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  5. Climate Solutions Presentations on Science On a Sphere (SOS) and SOS Explorer achieve acceptance of Climate Science among Policymakers as well as the Public: US National Academy of Sciences Symposium/Open House Example

    NASA Astrophysics Data System (ADS)

    Sievering, H.

    2015-12-01

    The outcomes of climate science are inherently rife with discussions of dire consequences for humans that leave many listeners feeling helpless and hopeless. We have found that a focus on clean energy solutions, without reference to dirty energy, substantially reduces (may even eliminate) the negativity associated with sea level rise, extreme weather and other climate change presentations. US audiences respond well to discussion of California's clean energy transformation with solar, wind, geothermal and water power together now approaching 25% of total energy supply for the world's sixth largest economy. For both policymakers and the general public, a "positive climate change" presentation does not generally suffice on its own. Clear visual display of climate science information is essential. We have found the Science On a Sphere (SOS) National Oceanic and Atmospheric Administration science education tool, to be exceptional in this regard. Further, broad dissemination is possible given the SOS network consists of over 120 sites in 23 countries. The new SOS Explorer system, an advanced science education tool, can readily utilize the over 500 available SOS data sets. We have recently developed an arctic amplification and mid-latitude climate change impacts program for the upcoming US National Academy of Sciences' Arctic Matters Symposium/Open House. This SOS and SOS Explorer education program will be described with emphasis on the climate solutions incorporated into this module targeted at US policymakers and invited open house public.

  6. Asset - An application in mission automation for science planning

    NASA Technical Reports Server (NTRS)

    Finnerty, D. F.; Martin, J.; Doms, P. E.

    1987-01-01

    Recent advances in computer technology were used to great advantage in planning science observation sequences for the Voyager 2 encounter with Uranus in 1986. Despite a loss of experienced personnel, a challenging schedule, workforce limitations, and the complex nature of the Uranus encounter itself, the resultant science observation timelines were the most highly optimized of the five Voyager encounters with the outer planets. In part, this was due to the development of a microcomputer-based system, called ASSET (Automated Science Sequence Encounter Timelines generator), which was used to design those science observation timelines. This paper details the development of that system. ASSET demonstrates several features essential to the design of the first expert systems for science planning which will be applied for future missions.

  7. Planning the Teaching Environment: Secondary Science Facilities.

    ERIC Educational Resources Information Center

    Engelhardt, David

    Reviews publications supporting the concept that carefully planned special characteristics of a classroom can facilitate desired activities both for the teacher and students. The author denotes these facilitating associations as the "suggestiveness of space," and applies the term "limiting conditions" to spacial characteristics which prevent…

  8. Science Opportunity Analyzer (SOA): Science Planning Made Simple

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Polanskey, Carol A.

    2004-01-01

    .For the first time at JPL, the Cassini mission to Saturn is using distributed science operations for developing their experiments. Remote scientists needed the ability to: a) Identify observation opportunities; b) Create accurate, detailed designs for their observations; c) Verify that their designs meet their objectives; d) Check their observations against project flight rules and constraints; e) Communicate their observations to other scientists. Many existing tools provide one or more of these functions, but Science Opportunity Analyzer (SOA) has been built to unify these tasks into a single application. Accurate: Utilizes JPL Navigation and Ancillary Information Facility (NAIF) SPICE* software tool kit - Provides high fidelity modeling. - Facilitates rapid adaptation to other flight projects. Portable: Available in Unix, Windows and Linux. Adaptable: Designed to be a multi-mission tool so it can be readily adapted to other flight projects. Implemented in Java, Java 3D and other innovative technologies. Conclusion: SOA is easy to use. It only requires 6 simple steps. SOA's ability to show the same accurate information in multiple ways (multiple visualization formats, data plots, listings and file output) is essential to meet the needs of a diverse, distributed science operations environment.

  9. CosmicSIG science and plans

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2014-03-01

    Recent activities of the Cosmic Ray Science Interest Group (CosmicSIG) of the Physics of the Cosmos PAG will be reviewed. CosmicSIG was formed to provide an assessment to NASA HQ and the PCOS program office of the status of current and future missions in the area of cosmic-ray astrophysics. CosmicSIG also strives to act as a focal point and forum for the cosmic ray community.

  10. International Symposium on Coastal Lagoons. (Bordeaux, France, September 8-14, 1981). Unesco Technical Papers in Marine Science 43.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    Lagoons and their characteristic coastal bay-mouth bars represent 15 percent of the world coastal zone. They are among the most productive ecosystems in the biosphere, this productivity resulting from the interplay of ocean and continent. An International Symposium on Coastal Lagoons (ISCOL) was held to: assess the state of knowledge in the…

  11. Interactive Webmap-Based Science Planning for BepiColombo

    NASA Astrophysics Data System (ADS)

    McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.

    2015-10-01

    For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.

  12. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  13. Nuclear Science Symposium, 27th, and Symposium on Nuclear Power Systems, 12th, Orlando, Fla., November 5-7, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Martini, M.

    1981-01-01

    Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.

  14. International Symposium on Ion Therapy: Planning the First Hospital-Based Heavy Ion Therapy Center in the United States

    PubMed Central

    Laine, Aaron; Pompos, Arnold; Story, Michael; Jiang, Steve; Timmerman, Robert; Choy, Hak

    2015-01-01

    Investigation into the use of heavy ions for therapeutic purposes was initially pioneered at Lawrence Berkeley National Laboratory in the 1970s [1, 2]. More recently, however, significant advances in determining the safety and efficacy of using heavy ions in the hospital setting have been reported in Japan and Germany [3, 4]. These promising results have helped to resurrect interest in the establishment of hospital-based heavy ion therapy in the United States. In line with these efforts, world experts in the field of heavy ion therapy were invited to attend the first annual International Symposium on Ion Therapy, which was held at the University of Texas Southwestern Medical Center, Dallas, Texas, from November 12 to 14, 2014. A brief overview of the results and discussions that took place during the symposium are presented in this article. PMID:27110586

  15. A study of teacher cognition in planning elementary science lessons

    NASA Astrophysics Data System (ADS)

    Wing-Mui So, Winnie

    1997-03-01

    Advances in cognitive psychology and in research techniques have led to an increase in the acceptance of the conception of teaching as a “thoughtful” profession. The interest and enthusiasm of researches in aspects of teacher cognition demonstrate a shift from an emphasis on observable teacher behaviours to a focus on a teacher's unobservable thinking process. In this study, a qualitative approach was used to uncover a teacher's thinking process during lesson planning, to depict a more holistic view of the structural complexity of teacher cognition during lesson planning. Specialised science teachers and general teachers who had different levels of subject expertise were studied. The teachers were interviewed on how they planned an elementary science lesson. Interview protocols were analysed using a taxonomy which assessed the cognitive complexity of teacher thinking. Differences were found between specialised science teachers and general teachers in the levels of structural complexity in their thinking process.

  16. Enabling Autonomous Rover Science through Dynamic Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel; Chouinard, Caroline; Fisher, Forest; Castano, Rebecca; Judd, Michele; Nesnas, Issa

    2005-01-01

    This paper describes how dynamic planning and scheduling techniques can be used onboard a rover to autonomously adjust rover activities in support of science goals. These goals could be identified by scientists on the ground or could be identified by onboard data-analysis software. Several different types of dynamic decisions are described, including the handling of opportunistic science goals identified during rover traverses, preserving high priority science targets when resources, such as power, are unexpectedly over-subscribed, and dynamically adding additional, ground-specified science targets when rover actions are executed more quickly than expected. After describing our specific system approach, we discuss some of the particular challenges we have examined to support autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations.

  17. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  18. The Changing Science of Urban Transportation Planning

    NASA Astrophysics Data System (ADS)

    Kloster, Tom

    2010-03-01

    The last half of the 20th Century was the age of the automobile, and the development of bigger and faster roads defined urban planning for more than 50 years. During this period, transportation planners developed sophisticated behavior models to help predict future travel patterns in an attempt to keep pace with ever-growing congestion and public demand for more roads. By the 1990s, however, it was clear that eliminating congestion with new road capacity was an unattainable outcome, and had unintended effects that were never considered when the automobile era first emerged. Today, public expectations are rapidly evolving beyond ``building our way out'' of congestion, and toward more complex definitions of desired outcomes in transportation planning. In this new century, planners must improve behavior models to predict not only the travel patterns of the future, but also the subsequent environmental, social and public health effects associated with growth and changes in travel behavior, and provide alternative transportation solutions that respond to these broader outcomes.

  19. Novice high school science teachers: Lesson plan adaptations

    NASA Astrophysics Data System (ADS)

    Scharon, Aracelis Janelle

    The Next Generation Science Standards (NRC, 2013) positions teachers as responsible for necessary decision making about how their intended science lesson plan content supports continuous student science learning. Teachers interact with their instructional lesson plans in dynamic and constructive ways. Adapting lesson plans is complex. This process of adapting lesson plans may play an important role in affording and constraining teachers' actions and students' learning (Brown, 2009). This study explored how five novice chemistry teachers (under 4 years of total teaching experience) at five Midwestern high schools adapted or retained their honors chemistry instructional lesson plans, and what associated contextual factors influenced their decisions. Using a case study design, this study was conducted during the fall semester of 2013 when teachers were focusing on introductory chemistry topics. Three frameworks (pedagogical content knowledge (PCK), teacher decision making, and pedagogical discontentment and self-efficacy) were used to investigate the relationships between teacher adaptations, contextual factors and decision making. The outcome of this study was the identification of 15 types of adaptations and 17 relevant contextual factors. Contextual factors were categorized by factors that relate to students or the teacher. Adaptations were categorized into three overarching types of adaptations: adapting the activity presented during the lesson, adapting the levels of support to assist students with the lesson plan content, and adapting the lesson plan to create another iteration of the same lesson plan that supports the next class. Lesson plan adaptations and contextual factors are discussed in the context of research on teacher decision making and lesson plan adaptations.

  20. The Lunar Reconnaissance Orbiter: Plans for the Extended Science Phase

    NASA Technical Reports Server (NTRS)

    Vondrak, R. R.; Keller, J. W.; Chin, G.; Garvin, J. B.; Rice, J. W., Jr.; Petro, N. E.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. Having marked the two-year anniversary, we will review here the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for an extended science phase out to 2014.

  1. The VLT Opening Symposium

    NASA Astrophysics Data System (ADS)

    1999-02-01

    Scientists Meet in Antofagasta to Discuss Front-Line Astrophysics To mark the beginning of the VLT era, the European Southern Observatory is organizing a VLT Opening Symposium which will take place in Antofagasta (Chile) on 1-4 March 1999, just before the start of regular observations with the ESO Very Large Telescope on April 1, 1999. The Symposium occupies four full days and is held on the campus of the Universidad Catolica del Norte. It consists of plenary sessions on "Science in the VLT Era and Beyond" and three parallel Workshops on "Clusters of Galaxies at High Redshift" , "Star-way to the Universe" and "From Extrasolar Planets to Brown Dwarfs" . There will be many presentations of recent work at the major astronomical facilities in the world. The meeting provides a very useful forum to discuss the latest developments and, in this sense, contributes to the planning of future research with the VLT and other large telescopes. The symposium will be opened with a talk by the ESO Director General, Prof. Riccardo Giacconi , on "Paranal - an observatory for the 21st century". It will be followed by reports about the first scientific results from the main astronomical instruments on VLT UT1, FORS1 and ISAAC. The Symposium participants will see the VLT in operation during special visits to the Paranal Observatory. Press conferences are being arranged each afternoon to inform about the highlights of the conference. After the Symposium, there will be an Official Inauguration Ceremony at Paranal on 5 March Contributions from ESO ESO scientists will make several presentations at the Symposium. They include general reviews of various research fields as well as important new data and results from the VLT that show the great potential of this new astronomical facility. Some of the recent work is described in this Press Release, together with images and spectra of a large variety of objects. Note that all of these data will soon become publicly available via the VLT Archive

  2. The Philae Lander: Science planning and operations

    NASA Astrophysics Data System (ADS)

    Moussi, Aurélie; Fronton, Jean-François; Gaudon, Philippe; Delmas, Cédric; Lafaille, Vivian; Jurado, Eric; Durand, Joelle; Hallouard, Dominique; Mangeret, Maryse; Charpentier, Antoine; Ulamec, Stephan; Fantinati, Cinzia; Geurts, Koen; Salatti, Mario; Bibring, Jean-Pierre; Boehnhardt, Hermann

    2016-08-01

    Rosetta is an ambitious mission launched in March 2004 to study comet 67P/Churyumov-Gerasimenko. It is composed of a space probe (Rosetta) and the Philae Lander. The mission is a series of premieres: among others, first probe to escort a comet, first time a landing site is selected with short turnaround time, first time a lander has landed on a comet nucleus. In November 2014, once stabilized on the comet, Philae has performed its "First Science Sequence". Philae's aim was to perform detailed and innovative in-situ experiments on the comet's surface to characterize the nucleus by performing mechanical, chemical and physical investigations on the comet surface. The main contribution to the Rosetta lander by the French space agency (CNES) is the Science Operation and Navigation Center (SONC) located in Toulouse. Among its tasks is the scheduling of the scientific activities of the 10 lander experiments and then to provide it to the Lander Control Center (LCC) located in DLR Cologne. The teams in charge of the Philae activity scheduling had to cope with considerable constraints in term of energy, data management, asynchronous processes and co-activities or exclusions between instruments. Moreover the comet itself, its environment and the landing conditions remained unknown until separation time. The landing site was selected once the operational sequence was already designed. This paper will explain the specific context of the Rosetta lander mission and all the constraints that the lander activity scheduling had to face to fulfill the scientific objectives specified for Philae. A specific tool was developed by CNES and used to design the complete sequence of activities on the comet with respect to all constraints. The baseline scenario for the lander operation will also be detailed as well as the sequence performed on the comet to highlight the difficulties and challenges that the operational team faced.

  3. HEAO Science Symposium

    NASA Technical Reports Server (NTRS)

    Dailey, C. (Editor); Johnson, W. (Editor)

    1979-01-01

    Scientific results from the early analysis of data from the HEAO 1 mission are presented. Development of astronomical catalogs and maps, X-ray variability, extragalactic astronomy, X-ray iron line emission, and optical identification and spectroscopy of X-ray sources are among the topics discussed. Results from HEAO 2 imaging and nonimaging instruments are included.

  4. Science in Africa: UNESCO's Contribution to Africa's Plan for Science and Technology to 2010

    ERIC Educational Resources Information Center

    Schneegans, Susan, Ed.; Candau, Anne, Ed.

    2007-01-01

    The United Nations Educational, Scientific and Cultural Organization (UNESCO) has put together this brochure on its contribution to Africa's Plan for Science and Technology to 2010 in the lead up to the forthcoming African Union Summit, in January 2007, and the meeting of African Ministers of Science and Technology November 23-24, 2006. The theme…

  5. Microgravity combustion science: Progress, plans, and opportunities

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An earlier overview is updated which introduced the promise of microgravity combustion research and provided a brief survey of results and then current research participants, the available set of reduced gravity facilities, and plans for experimental capabilities in the space station era. Since that time, several research studies have been completed in drop towers and aircraft, and the first space based combustion experiments since Skylab have been conducted on the Shuttle. The microgravity environment enables a new range of experiments to be performed since buoyancy induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments are feasible. In addition to new examinations of classical problems, (e.g., droplet burning), current areas of interest include soot formation and weak turbulence, as influenced by gravity.

  6. ESA's Planetary Science Archive: Status and Plans

    NASA Astrophysics Data System (ADS)

    Heather, David; Barthelemy, Maud; Manaud, Nicolas; Martinez, Santa; Szumlas, Marek; Vazquez, Jose Luis; Arviset, Christophe; Osuna, Pedro; PSA Development Team

    2013-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. The PSA currently holds data from Mars Express, Venus Express, SMART-1, Huygens, Rosetta and Giotto, as well as several ground-based cometary observations. It will be used for archiving on ExoMars, BepiColombo and for the European contributions to Chandrayaan-1. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Advanced Search Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. - The Map-based Interface is currently operational only for Mars Express HRSC and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Advanced interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Advanced interface. - The FTP Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All PSA data are prepared by the corresponding instrument teams, and are made to comply with the internationally recognized PDS standards. PSA supports the instrument teams in the full archiving process, from the definition of the data products, meta-data and product labels through to

  7. CLEANER-Hydrologic Observatory Joint Science Plan

    NASA Astrophysics Data System (ADS)

    Welty, C.; Dressler, K.; Hooper, R.

    2005-12-01

    The CLEANER-Hydrologic Observatory* initiative is a distributed network for research on complex environmental systems that focuses on the intersecting water-related issues of both the CUAHSI and CLEANER communities. It emphasizes research on the nation's water resources related to human-dominated natural and built environments. The network will be comprised of: interacting field sites with an integrated cyberinfrastructure; a centralized technical resource staff and management infrastructure to support interdisciplinary research through data collection from advanced sensor systems, data mining and aggregation from multiple sources and databases; cyber-tools for analysis, visualization, and predictive multi-scale modeling that is dynamically driven. As such, the network will transform 21st century workforce development in the water-related intersection of environmental science and engineering, as well as enable substantial educational and engagement opportunities for all age levels. The scientific goal and strategic intent of the CLEANER-Hydrologic Observatory Network is to transform our understanding of the earth's water cycle and associated biogeochemical cycles across spatial and temporal scales-enabling quantitative forecasts of critical water-related processes, especially those that affect and are affected by human activities. This strategy will develop scientific and engineering tools that will enable more effective adaptive approaches for resource management. The need for the network is based on three critical deficiencies in current abilities to understand large-scale environmental processes and thereby develop more effective management strategies. First we lack basic data and the infrastructure to collect them at the needed resolution. Second, we lack the means to integrate data across scales from different media (paper records, electronic worksheets, web-based) and sources (observations, experiments, simulations). Third, we lack sufficiently accurate

  8. Planning and management of science programs on Skylab

    NASA Technical Reports Server (NTRS)

    Parker, R. A. R.; Sevier, J. R.

    1974-01-01

    Discussion of the experience gained in experiment operation planning during the Skylab mission. The Skylab flight planning activity allowed the experimenters to interact with the system and provided the flexibility to respond to contingencies both major and minor. Both these aspects contributed to make efficient use of crew time thus helping to increase the science return from the mission. Examples of the need for real time scheduling response and of the tradeoffs considered between conflicting experiment requirements are presented. General management principles derived from this experience are developed. The Skylab mission experiences, together with previous Apollo mission experiences, are shown to provide a good background for Shuttle flight planning.

  9. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  10. Professional Development Planning and Design. Issues in Science Education.

    ERIC Educational Resources Information Center

    Rhoton, Jack; Bowers, Patricia

    This book focuses on the professional development of teachers and discusses issues related to the planning and design of professional development programs. The content of the book is divided into three parts. Part 1, Standards-Based Reform and Professional Development includes: (1) "National Science Education Standards as a Catalyst for Change:…

  11. Outcomes Assessment Planning: An Overview with Applications in Health Sciences.

    ERIC Educational Resources Information Center

    Trent, Ava M.

    2002-01-01

    Provides a brief overview of the process of outcomes assessment and examples of its application in professional health science education. Provides a background for other articles in this issue describing ongoing activities in outcomes assessment in veterinary education and for programs considering developing a plan. Focuses on health professions…

  12. Science Teachers' Views and Practices in Planning for Teaching.

    ERIC Educational Resources Information Center

    Sanchez, Gaspar; Valcarcel, M. Victoria

    1999-01-01

    Reports on the views and attitudes of secondary science teachers (n=27) toward lesson planning. Describes teacher decisions, the things they take into account, what they ascribe the most importance to, time spent, the source of their knowledge, and how they evaluate the results. Contains 46 references. (Author/WRM)

  13. The Team Approach to Planning a College Science Building.

    ERIC Educational Resources Information Center

    Yarbrough, David B.

    In considering the team approach to architectural service, emphasis is given to the advantages of many specialists working together to solve complex building problems. An actual use of the team approach is described to illustrate how Caudill, Rowlett and Scott Architects solved the problems in planning a science building for Colorado College. The…

  14. Science Planning for the TROPIX Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1998-01-01

    The objective of the study grant was to undertake the planning needed to execute meaningful solar electric propulsion missions in the magnetosphere and beyond. The first mission examined was the Transfer Orbit Plasma Investigation Experiment (TROPIX) mission to spiral outward through the magnetosphere. The next mission examined was to the moon and an asteroid. Entitled Diana, it was proposed to NASA in October 1994. Two similar missions were conceived in 1996 entitled CNR for Comet Nucleus Rendezvous and MBAR for Main Belt Asteroid Rendezvous. The latter mission was again proposed in 1998. All four of these missions were unsuccessfully proposed to the NASA Discovery program. Nevertheless we were partially successful in that the Deep Space 1 (DS1) mission was eventually carried out nearly duplicating our CNR mission. Returning to the magnetosphere we studied and proposed to the Medium Class Explorer (MIDEX) program a MidEx mission called TEMPEST, in 1995. This mission included two solar electric spacecraft that spiraled outward in the magnetosphere: one at near 900 inclination and one in the equatorial plane. This mission was not selected for flight. Next we proposed a single SEP vehicle to carry Energetic Neutral Atom (ENA) imagers and inside observations to complement the IMAGE mission providing needed data to properly interpret the IMAGE data. This mission called SESAME was submitted unsuccessfully in 1997. One proposal was successful. A study grant was awarded to examine a four spacecraft solar electric mission, named Global Magnetospheric Dynamics. This study was completed and a report on this mission is attached but events overtook this design and a separate study team was selected to design a classical chemical mission as a Solar Terrestrial Probe. Competing proposals such as through the MIDEX opportunity were expressly forbidden. A bibliography is attached.

  15. Proceedings of the frst joint american chemical society agricultural and food chemistry division – american chemical society international chemical sciences chapter in Thailand symposium on agricultural and food chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Proceedings is a compilation of papers from contributed oral and poster presentations presented at the first joint symposium organized by the American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand ...

  16. Science As a Way of Knowing III--Genetics. Proceedings of a Symposium at the Annual Meeting of the American Society of Zoologists (Baltimore, Maryland, December 27-30, 1985).

    ERIC Educational Resources Information Center

    Moore, John A.; And Others

    1986-01-01

    "Science as a Way of Knowing" is a project of the Education Committee of the American Society of Zoologists and ten other organizations. The goal of the project is to offer suggestions for making the teaching of biology at the college and university level more effective. The proceedings of the 1985 symposium on genetics are presented in this…

  17. Symposium Summary

    NASA Astrophysics Data System (ADS)

    Milner, Richard G.

    2016-02-01

    The Stern-Gerlach experiment and the origin of electron spin are described in historical context. SPIN 2014 occurs on the fortieth anniversary of the first International High Energy Spin Physics Symposium at Argonne in 1974. A brief history of the international spin conference series is presented.

  18. Symposium: Assessment

    ERIC Educational Resources Information Center

    Anson, Chris M.; Perelman, Les; Poe, Mya; Sommers, Nancy

    2008-01-01

    This article presents four symposium papers on assessment. It includes: (1) "Closed Systems and Standardized Writing Tests" (Chris M. Anson); (2) "Information Illiteracy and Mass Market Writing Assessments" (Les Perelman); (3) "Genre, Testing, and the Constructed Realities of Student Achievement" (Mya Poe); and (4) "The Call of Research: A…

  19. NHLBI state of the science symposium in therapeutic apheresis: Knowledge gaps and research opportunities in the area of hematology-oncology.

    PubMed

    Karafin, Matthew S; Sachais, Bruce S; Connelly-Smith, Laura; Field, Joshua J; Linenberger, Michael L; Padmanabhan, Anand

    2016-02-01

    The National Heart Lung and Blood Institute (NHLBI) hosted a two-day state of the science symposium on therapeutic apheresis in Bethesda, MD on November 28th-29th, 2012. The purpose of the symposium was multifaceted, and included the following aims: (a) To discuss this state of research and key scientific questions in apheresis medicine; (b) To identify gaps in knowledge for relevant cardiovascular diseases, hematological and oncological diseases, infectious diseases and sepsis, renal diseases, and neurological diseases where there may be strong therapeutic rationale for the application of apheresis treatments; (c) To explore ways of coordinating therapeutic apheresis with other medical disciplines and treatment modalities; (d) To identify and prioritize the most important research questions to be answered in apheresis medicine; and (e) To offer NHLBI suggestions on how a structured research approach can be applied to the therapeutic apheresis research agenda in future years. The following document summarizes three such key proposals presented at the meeting for evaluating apheresis therapy for the treatment of pain in sickle cell disease, heparin induced thrombocytopenia, and leukostasis from acute myeloid leukemia. The challenges and limitations regarding apheresis therapy for each disease are discussed, and avenues for future investigation for each disease are outlined. PMID:25940408

  20. SURE (Science User Resource Expert): A science planning and scheduling assistant for a resource based environment

    NASA Technical Reports Server (NTRS)

    Thalman, Nancy E.; Sparn, Thomas P.

    1990-01-01

    SURE (Science User Resource Expert) is one of three components that compose the SURPASS (Science User Resource Planning and Scheduling System). This system is a planning and scheduling tool which supports distributed planning and scheduling, based on resource allocation and optimization. Currently SURE is being used within the SURPASS by the UARS (Upper Atmospheric Research Satellite) SOLSTICE instrument to build a daily science plan and activity schedule and in a prototyping effort with NASA GSFC to demonstrate distributed planning and scheduling for the SOLSTICE II instrument on the EOS platform. For the SOLSTICE application the SURE utilizes a rule-based system. Development of a rule-based program using Ada CLIPS as opposed to using conventional programming, allows for capture of the science planning and scheduling heuristics in rules and provides flexibility in inserting or removing rules as the scientific objectives and mission constraints change. The SURE system's role as a component in the SURPASS, the purpose of the SURE planning and scheduling tool, the SURE knowledge base, and the software architecture of the SURE component are described.

  1. Science Planning for the NASA Mars Reconnaissance Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wenkert, Daniel D.; Bridges, Nathan T.; Eggemeyer, William Curtis; Hale, Amy Snyder; Kass, David; Martin, Terry Z.; Noland, Stephen J.; Safaeinili, Ali; Smrekar, Suzanne

    2006-01-01

    The Mars Reconnaissance Orbiter (MRO), launched on August 12, 2005, carries six science instruments, each with unique requirements for repetitive global monitoring, regional or global survey mapping, and/or targeted observations of Mars. Some prefer nadir-only observations, while other instruments require many off-nadir observations (especially for stereo viewing). Because the operations requirements are often incompatible, an interactive science planning process has been developed. This process is more complex than in some recent NASA Mars missions, but less complex (and more repetitive) than processes used by many large planetary missions. It takes full advantage of MRO's novel onboard processing capabilities, and uses simple electronic interactions between geographically distributed teams. This paper describes the process used during MRO's Primary Science Phase (PSP) to plan both interactive and non-interactive observations of Mars, and what has already been learned in the tests and rehearsals preparing for PSP.

  2. Planning and Processing Space Science Observations Using NASA's SPICE System

    NASA Technical Reports Server (NTRS)

    Acton, Charles H.

    2000-01-01

    The Navigation and Ancillary Information Facility (NAIF) team, acting under the directions of NASA's Office of Space Science, has built a data system-named SPICE, to assist scientists in planning and interpreting scientific observations from space-borne instruments. The principal objective of this data system is that it will provide geometric and other ancillary data used to plan space science missions and subsequently recover the full value of science instrument data returned from these missions, including correlation of individual instrument data sets with data from other instruments on the same or other spacecraft. SPICE is also used to support a host of mission engineering functions, such as telecommunications system analysis and operation of NASA's Deep Space Network antennas. This paper describes the SPICE system, including where and how it is used. It also touches on possibilities for further development and invites participation it this endeavor.

  3. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  4. Science-Driven Computing: NERSC's Plan for 2006-2010

    SciTech Connect

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.; Banda,Michael J.; Bethel, E. Wes; Craw, James M.; Fortney, William J.; Hules,John A.; Meyer, Nancy L.; Meza, Juan C.; Ng, Esmond G.; Rippe, Lynn E.; Saphir, William C.; Verdier, Francesca; Walter, Howard A.; Yelick,Katherine A.

    2005-05-16

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise of the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.

  5. The Second Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Summaries of the papers presented at the Second Spaceborne Imaging Radar Symposium are presented. The purpose of the symposium was to present an overwiew of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans.

  6. Daniel K. Inouye Solar Telescope (DKIST) Critical Science Plan

    NASA Astrophysics Data System (ADS)

    Rast, Mark

    2015-08-01

    The Daniel K. Inouye Solar Telescope (DKIST), formerly the Advanced Technology Solar Telescope (ATST), is under construction on Haleakala, Maui HI, with expected instrument integration in 2018 and start of operations during the summer of 2019. In preparation, the National Solar Observatory (NSO) is working with the Science Working Group to formulate a critical science plan for early operations and is calling for community involvement in all stages of its development. The first step in this process is the definition of a set of critical science themes and, under each of these, use-cases that outline the scientific motivation along with the instrument suite and high level observing strategies to be employed. The use-cases will later be refined into observing proposals, which will guide the development of efficient operations tools and procedures and provide the framework for some of the first science observations to be made with the telescope. A web interface has been established to facilitate community engagement.

  7. Joint IAMAS/IAHS symposium J1 on global monitoring and advanced observing techniques in the atmosphere and hydrosphere

    SciTech Connect

    Ohring, G. ); Aoki, T. ); Halpern, D. ); Henderson-Sellers, A. ); Charlock, T. ); Joseph, J. ); Labitzke, K. ); Raschke, E. ); Smith, W. )

    1994-04-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS) and took place in Yokohama, Japan, 13-15 July 1993, as part of the IAMAS/IAHS Join Assembly. Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  8. The New Engineering Research Centers: Purposes, Goals, and Expectations. Symposium (District of Columbia, April 29-30, 1985).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.

    The sympoisum was held to describe the roots and future plans of the Engineering Research Center's (ERC's) concept and program. The first section of this symposium compilation describes the national goals that the ERCs represent. The second section presents the point of view of the National Science Foundation on the ERCs--the concept behind them,…

  9. Space 2000 Symposium

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.

  10. MS&T'13 Symposium Preview: Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2013-08-01

    The Metal and Polymer Matrix Composites symposium at Materials Science & Technology 2013 (MS&T'13) conference is planned to provide a platform to researchers working on various aspects of composite materials and capture the state of the art in this area. The dialogue among leading researchers is expected to provide insight into the future of this field and identify the future directions in terms of research, development, and applications of composite materials. In the 2 day program, the symposium includes 34 presentations, including 10 invited presentations. The contributions have come from 16 different countries including USA, Mexico, Switzerland, India, Egypt, and Singapore.

  11. Science observation and operation plans of BepiColombo MMO

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Fujimoto, Masaki

    2016-04-01

    BepiColombo is an ESA-JAXA joint mission to Mercury with the aim to understand the process of planetary formation and evolution as well as to understand similarities and differences between the magnetospheres of Mercury and Earth. The baseline mission consists of two spacecraft, i.e. the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The two orbiters will be launched in 2017 by an Ariane-5 and arrive at Mercury in 2024. JAXA is responsible for the development and operations of MMO, while ESA is responsible for the development and operations of MPO as well as the launch, transport, and the insertion of two spacecraft into their dedicated orbits. Being a spin-stabilized spacecraft, MMO has much less constraint for plasma observations and is expected to extract essential elements of space plasma physics that become visible in the Hermean environment. However, MMO has large constraints on science operations, such as thermal issue and limited telemetry rate. Due to the thermal issue each science instrument cannot always be turned on. In addition, due to the low telemetry rate in average, only a part (~20-30%) of science mission data with high resolution can be downlinked. Therefore, in order to maximize the scientific results and outcomes to be achieved by MMO, we must optimize the science observation and downlink plans in detail. In this paper, we summarize the basic plans and strategies of MMO science operations.

  12. PREFACE: 10th International LISA Symposium

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Conklin, John W.; Mueller, Guido

    2015-05-01

    The LISA Symposia have become a mainstay of the gravitational wave community. Held every two years, they are the prime opportunity for our community to discuss the exciting science, technology, mission designs, and progress of the Laser Interferometer Space Antenna. The 8th LISA symposium, held at Stanford University in the summer of 2010 was the largest symposium so far and was dominated by progress and hopes that the LISA mission will soon excel following the expected launch of the LISA pathfinder (LPF), no later than 2012, and the expected prioritization by the Decadal survey which was released 6 weeks later. The following years were challenging. Although the Decadal survey ranked LISA very high, NASA's budget issues, mostly due to the cost increase of the James Webb Space Telescope, and continued delays in LPF put too much stress on the LISA project and it officially ended in 2011. The LISA International Science Team (LIST), the core group of LISA scientists and technologists, was dissolved and the community in the U.S. was struggling to maintain cohesion. In the wake of these events, ESA started a new selection process for their next three large missions, L1, L2, and L3, and the European LISA team developed the New Gravitational wave Observatory (NGO), an evolved LISA concept, as an ESA only L1 candidate. A few weeks before the 9th LISA Symposium, held in Paris in May 2012, ESA announced its decision to select JUICE, a planetary mission to Jupiter and its moons, as its next large science mission (L1). Despite having the highest ranked science case, NGO was not selected due to further delays in LPF and the general feeling outside the GW community that the technology is perhaps too challenging to be pulled off in time for the L1 launch in 2022. Many U.S. members of the LISA community cancelled their travel plans and the mood at that symposium ranged from resignation to defiance. Hope for a somewhat timely launch of a LISA-like mission rested upon L2, the next

  13. GEWEX America Prediction Project (GAPP) Science and Implementation Plan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The purpose of this Science and Implementation Plan is to describe GAPP science objectives and the activities required to meet these objectives, both specifically for the near-term and more generally for the longer-term. The GEWEX Americas Prediction Project (GAPP) is part of the Global Energy and Water Cycle Experiment (GEWEX) initiative that is aimed at observing, understanding and modeling the hydrological cycle and energy fluxes at various time and spatial scales. The mission of GAPP is to demonstrate skill in predicting changes in water resources over intraseasonal-to-interannual time scales, as an integral part of the climate system.

  14. ICESat (GLAS) Science Processing Software Document Series. Volume 2; Science Data Management Plan; 4.0

    NASA Technical Reports Server (NTRS)

    Jester, Peggy L.; Hancock, David W., III

    1999-01-01

    This document provides the Data Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Facility (ISF) Software. This Plan addresses the identification, authority, and description of the interface nodes associated with the GLAS Standard Data Products and the GLAS Ancillary Data.

  15. The Way Point Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2012-01-01

    Airborne real time observation are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientist, planning a research aircraft mission within the context of meeting the science objective is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircraft are often involved in the NASA field campaigns the coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving dynamic weather conditions often determine the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientist and help them plan and modify the flight tracks successfully. Scientists at the University of Alabama Huntsville and the NASA Marshal Space Flight Center developed the Waypoint Planning Tool (WPT), an interactive software tool that enables scientist to develop their own flight plans (also known as waypoints), with point and click mouse capabilities on a digital map filled with time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analyses during and after each campaign helped identify both issues and new requirements, initiating the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities to the Google Earth Plugin and Java Web Start/Applet on web platform, as well as to the rising open source GIS tools with new JavaScript frameworks, the Waypoint planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed

  16. Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  17. Potential Science Missions Enabled by NASA's Planned Ares V

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stephani; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12-meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  18. Three petabytes or bust: planning science observations for NISAR

    NASA Astrophysics Data System (ADS)

    Doubleday, Joshua R.

    2016-05-01

    The National Aeronautics and Space Administration (NASA) and the Indian Space Research Organization (ISRO) have formed a joint agency mission, NASA ISRO Synthetic Aperture Radar (NISAR) to fly in the 2020 timeframe, charged with collecting Synthetic Aperture Radar data over nearly all of earth's land and ice, to advance science in ecosystems, solid-earth and cryospheric disciplines with global time-series maps of various phenomenon. Over a three-year mission span, NISAR will collect on the order of 24 Terabits of raw radar data per day. Developing a plan to collect the data necessary for these three primary science disciplines and their sub-disciplines has been challenging in terms of overlapping geographic regions of interest, temporal requirements, competing modes of the radar instrument, and data-volume resources. One of the chief tools in building a plan of observations against these requirements has been a software tool developed at JPL, the Compressed Large-scale Scheduler Planner (CLASP). CLASP intersects the temporo-geometric visibilities of a spaceborne instrument with campaigns of temporospatial maps of scientific interest, in an iterative squeaky-wheel optimization loop. While the overarching strategy for science observations has evolved through the formulation phases of this mission, so has the use of CLASP. We'll show how this problem space and tool has evolved over time, as well as some of the current parameter estimates for NISAR and its overall mission plan.

  19. Satellite Situation Center data system for magnetospheric science planning

    NASA Technical Reports Server (NTRS)

    Aist-Sagara, L.; Cooper, J. F.; McGuire, R. E.; Parthasarathy, R.; Peredo, M.

    1995-01-01

    Critical problems in planning coordinated observation campaigns for magnetospheric science include the need to predict time intervals when one or more observing satellites or ground stations will be connected along magnetic field lines to other observation sites, or when such sites will be located within magnetospheric regions of common interest. The Satellite Situation Center (SSC) was created at the National Space Science Data Center (NSSDC) during the International Magnetospheric Study in the 1970s to address these problems. The SSC Data System has evolved since that era to support potentially complex queries by SSC staff and has now been opened to NASA Science Internet access via the NSSDC On-line Data Information System (NODIS). The SSC software, ephemeris data base, and access modes are described for the Version 2.1 release in 1993.

  20. 36 CFR 219.22 - The overall role of science in planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false The overall role of science... AGRICULTURE PLANNING National Forest System Land and Resource Management Planning The Contribution of Science § 219.22 The overall role of science in planning. (a) The responsible official must ensure that the...

  1. 36 CFR 219.22 - The overall role of science in planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false The overall role of science... AGRICULTURE PLANNING National Forest System Land and Resource Management Planning The Contribution of Science § 219.22 The overall role of science in planning. (a) The responsible official must ensure that the...

  2. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2010-01-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA's well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when "chasing" a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an

  3. Science, policy, and stakeholders: developing a consensus science plan for Amchitka Island, Aleutians, Alaska.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Kosson, David S; Powers, Charles W; Friedlander, Barry; Eichelberger, John; Barnes, David; Duffy, Lawrence K; Jewett, Stephen C; Volz, Conrad D

    2005-05-01

    With the ending of the Cold War, the US Department of Energy is responsible for the remediation of radioactive waste and disposal of land no longer needed for nuclear material production or related national security missions. The task of characterizing the hazards and risks from radionuclides is necessary for assuring the protection of health of humans and the environment. This is a particularly daunting task for those sites that had underground testing of nuclear weapons, where the radioactive contamination is currently inaccessible. Herein we report on the development of a Science Plan to characterize the physical and biological marine environment around Amchitka Island in the Aleutian chain of Alaska, where three underground nuclear tests were conducted (1965-1971). Information on the ecology, geology, and current radionuclide levels in biota, water, and sediment is necessary for evaluating possible current contamination and to serve as a baseline for developing a plan to ensure human and ecosystem health in perpetuity. Other information required includes identifying the location of the salt water/fresh water interface where migration to the ocean might occur in the future and determining groundwater recharge balances, as well as assessing other physical/geological features of Amchitka near the test sites. The Science Plan is needed to address the confusing and conflicting information available to the public about radionuclide risks from underground nuclear blasts in the late 1960s and early 1970s, as well as the potential for volcanic or seismic activity to disrupt shot cavities or accelerate migration of radionuclides into the sea. Developing a Science Plan involved agreement among regulators and other stakeholders, assignment of the task to the Consortium for Risk Evaluation with Stakeholder Participation, and development of a consensus Science Plan that dealt with contentious scientific issues. Involvement of the regulators (State of Alaska), resource

  4. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  5. Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    SciTech Connect

    Nichols, James W., LTC

    2000-09-15

    These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Space Science for the 21st Century: The Space Science Enterprise Strategic Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Throughout its history, the U.S. Space Science technologies program has been enormously productive. Its accomplishments have rewritten the textbooks. But now, the economic environment has changed dramatically. The Nation's scientific and technological goals are being reexamined and redefined.And the social contract between the scientific community and the Federal Government is being rewritten. There is an expectation that the American public should receive more direct benefits from its investment in science and technology. This Strategic Plan reflects this new paradigm. It presents a carefully selected set of new scientific initiatives that build on past accomplishments to continue NASA's excellence in Space Science. At the same time, it responds to fiscal constraints by defining a new approach to planning, developing, and operating Space Science missions. In particular, investments in new technologies will permit major scientific advances to be made with smaller, more focused, and less costly missions. With the introduction of advanced technologies, smaller does not have to mean less capable. The focus on new technologies also provides and opportunity for the Space Science program to enhance its direct contribution to the country's economic base. At the same time, the program can build on public interest to strengthen its contributions to education and scientific literacy. With this plan we are taking the first steps toward shaping the Space Science program of the 21st century. In doing so, we face major challenges. It will be a very different program than might have been envisioned even a few years ago. But it will be a program that remains at the forefront of science, technology, and education. We intend to continue rewriting the textbooks.

  7. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    NASA Astrophysics Data System (ADS)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji

  8. Integrated Science and Logistical Planning to Support Big Questions in Antarctic Science

    NASA Astrophysics Data System (ADS)

    Vaughan, D. G.; Stockings, T. M.

    2015-12-01

    Each year, British Antarctic Survey (BAS) supports an extensive programme of science at five Antarctic and sub-Antarctic stations, ranging from the tiny Bird Island Research Station at 54°S in the South Atlantic, to the massive, and fully re-locatable, Halley Research Station on Brunt Ice Shelf at 75°S. The BAS logistics hub, Rothera Research Station on the Antarctic Peninsula supports deployment of deep-field and airborne field campaigns through much of the Antarctic continent, and an innovative new UK polar research vessel is under design, and planned to enter service in the Southern Ocean in 2019. BAS's core science programme covering all aspects of physical, biological and geological science is delivered by our own science teams, but every year many other UK scientists and overseas collaborators also access BAS's Antarctic logistics to support their own programmes. As an integrated science and logistics provider, BAS is continuously reviewing its capabilities and operational procedures to ensure that the future long-term requirements of science are optimally supported. Current trends are towards providing the capacity for heavier remote operations and larger-scale field camps, increasing use of autonomous ocean and airborne platforms, and increasing opportunities to provide turnkey solutions for low-cost experimental deployments. This talk will review of expected trends in Antarctic science and the opportunities to conduct science in Antarctica. It will outline the anticipated logistic developments required to support future stakeholder-led and strategically-directed science programmes, and the long-term ambitions of our science communities indentified in several recent horizon-scanning activities.

  9. 11th European VLBI Network Symposium & Users Meeting

    NASA Astrophysics Data System (ADS)

    The Laboratoire d'Astrophysique de Bordeaux (LAB) at the University of Bordeaux (France), on behalf of the European VLBI Consortium, hosted the 11th European VLBI Network (EVN) Symposium and EVN Users Meeting on October 9-12, 2012. The Symposium was held at the "Chambre de Commerce et d'Industrie de Bordeaux", located in the "Palais de la Bourse", in the center of Bordeaux. The conference highlighted the latest scientific results and technical developments from VLBI, space VLBI and e-VLBI. All fields of astrophysics were concerned - stellar, galactic and extragalactic - as well as astrometry and planetary science. Presentations addressing synergy between (e-)VLBI and other new or planned radio facilities (ALMA, LOFAR, e-MERLIN,...) or instruments at other wavelengths (Fermi, CTA, Gaia,...) were also an integral part of the program. The scientific program was organized in 11 sessions including 71 oral presentations, with an additional 43 posters available for viewing during the entire length of the conference. An EVN Users Meeting was also held during one of the evening to foster interaction between the EVN users and the EVN organization. The symposium was attended by a total of 122 delegates originating from 47 institutes world-wide, sharing new VLBI science and innovations while also building links with other communities. The research leading to these results has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 283393 (RadioNet3).

  10. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss, Robert Augdahl, Bill Nickels, Cassandra Zellers

    2008-04-16

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Aeronautics and Space Administration, state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  11. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul P. Guss

    2008-04-01

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Space and Aeronautics and Space Administration (NASA), state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  12. Science opportunity analyzer - a multi-mission approach to science planning

    NASA Technical Reports Server (NTRS)

    Streiffert, B. A.; Polanskey, C. A.; O'Reilly, T.; Colwell, J.

    2003-01-01

    In the past Science Planning for space missions has been comprised of using ad-hoc software toolscollected or reconstructed from previous missions, tools used by other groups who often speak a different 'technical' language or even 'the backs of envelopes'. In addition to the tools being rough, the work done with these tools often has had to be redone or at least re-entered when it came time to determine actual observations. Science Opportunity Analyzer (SOA), a Java-based application, has been built for scientists to enable them to identify/analyze observation opportunities and then, to create corresponding observation designs.

  13. Physiology and Endocrinology Symposium. Factors controlling puberty in beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Physiology and Endocrinology Symposium on “Factors controlling puberty in beef heifers” was held at the joint annual meeting of the American Dairy Science Association and the American Society of Animal Science in New Orleans, Louisiana, USA, July 10 to 14, 2011. The objective of the symposium w...

  14. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    PubMed Central

    Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.

    2016-01-01

    Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165

  15. Science opportunity analyzer - a multi-mission tool for planning

    NASA Technical Reports Server (NTRS)

    Streiffert, B. A.; Polanskey, C. A.; O'Reilly, T.; Colwell, J.

    2002-01-01

    For many years the diverse scientific community that supports JPL's wide variety ofinterplanetary space missions has needed a tool in order to plan and develop their experiments. The tool needs to be easily adapted to various mission types and portable to the user community. The Science Opportunity Analyzer, SOA, now in its third year of development, is intended to meet this need. SOA is a java-based application that is designed to enable scientists to identify and analyze opportunities for science observations from spacecraft. It differs from other planning tools in that it does not require an in-depth knowledge of the spacecraft command system or operation modes to begin high level planning. Users can, however, develop increasingly detailed levels of design. SOA consists of six major functions: Opportunity Search, Visualization, Observation Design, Constraint Checking, Data Output and Communications. Opportunity Search is a GUI driven interface to existing search engines that can be used to identify times when a spacecraft is in a specific geometrical relationship with other bodies in the solar system. This function can be used for advanced mission planning as well as for making last minute adjustments to mission sequences in response to trajectory modifications. Visualization is a key aspect of SOA. The user can view observation opportunities in either a 3D representation or as a 2D map projection. The user is given extensive flexibility to customize what is displayed in the view. Observation Design allows the user to orient the spacecraft and visualize the projection of the instrument field of view for that orientation using the same views as Opportunity Search. Constraint Checking is provided to validate various geometrical and physical aspects of an observation design. The user has the ability to easily create custom rules or to use official project-generated flight rules. This capability may also allow scientists to easily impact the cost to science if

  16. 11th Annual LVMH Recherche Symposium: skin rejuvenation.

    PubMed

    Bonté, Frédéric

    2012-01-01

    The 11(th) Annual LVMH Recherche Scientific Symposium was held in London on October 27(th), into the warmth of the distinguished British Library, with nearly 150 industry and research attendees. The meeting organized by LVMH Recherche was centered on the theme of skin rejuvenation. The current state of play for rejuvenation research was summarized, and then advances in the science of skin aging and rejuvenation therapies were discussed in detail. Personalized genomics and current and prospective translational therapies were presented, followed by a clever linking of multiple global theories towards a cohesive plan for future goals in rejuvenation research. PMID:22615002

  17. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss

    2008-03-01

    The U.S. Department of Energy (DOE) provides technical support to the requesting federal agency such as the Federal Bureau of Investigation, Department of Defense, the National Space and Aeronautics and Space Administration (NASA), or a state agency to address the radiological consequences of an event. These activities include measures to alleviate damage, loss, hardship, or suffering caused by the incident; protect public health and safety; restore essential government services; and provide emergency assistance to those affected. Scheduled to launch in the fall of 2009, Mars Science Laboratory is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Mars Science Laboratory is a rover that will assess whether Mars ever was, or is still today, an environment able to support microbial life. In other words, its mission is to determine the planet's "habitability." The Mars Science Laboratory rover will carry a radioisotope power system that generates electricity from the heat of plutonium's radioactive decay. This power source gives the mission an operating lifespan on Mars' surface of a full Martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the DOE in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. NSTec is responsible to prepare the contingency planning for a range of areas from monitoring and assessment

  18. Mixed-Initiative Planning and Scheduling for Science Missions

    NASA Technical Reports Server (NTRS)

    Myers, Karen L.; Wolverton, Michael J.

    2004-01-01

    The objective of this joint NASA Ames/JPL/SRI project was to develop mixed-initiative planning and scheduling technology that would enable more effective and efficient planning of science missions. The original intent behind the project was to have all three organizations work closely on the overall research and technology development objectives. Shortly after the project began, however, the Ames and JPL project members made a commitment to develop and field an operational mixed-initiative planning and scheduling tool called MAPGEN for the 2003 Mars Exploration Rover (MER) mission [Ai-Chang et al. 2003]. Because of the tremendous amounts of time and effort that went into making that tool a success, the Ames and JPL personnel were mostly unavailable for collaboration on the joint objectives of the original proposal. Until November of 2002, SRI postponed work on the project in the hope that the Ames and JPL personnel would be able to find time for the planned collaborative research. During discussions between Dr. Karen Myers (the SRI institutional PI) and Dr. John Bresina (the project PI) during November of 2002, it was mutually agreed that SRI should work independently to achieve some of the research objectives for the project. In particular, Dr. Bresina identified explanation of plans and planner behavior as a critical area for research, based on feedback from demonstrating an initial prototype of MAPGEN to the operational community. For that reason, our focus from November of 2002 through the end of the project was on designing explanation methods to address this need.

  19. GOSAT-2 : Science Plan, Products, Validation, and Application

    NASA Astrophysics Data System (ADS)

    Matsunaga, T.; Morino, I.; Yoshida, Y.; Saito, M.; Hiraki, K.; Yokota, Y.; Kamei, A.; Oishi, Y.; Dupuy, E.; Murakami, K.; Ninomiya, K.; Pang, J. S.; Yokota, T.; Maksyutov, S. S.; Machida, T.; Saigusa, N.; Mukai, H.; Nakajima, M.; Imasu, R.; Nakajima, T.

    2013-12-01

    Based on the success of Greenhouse Gases Observing Satellite (GOSAT) launched in 2009, Ministry of the Environment (MOE), Japan Space Exploration Agency (JAXA), and National Institute for Environmental Studies (NIES) started the preparations for the follow-on satellite, GOSAT-2 in FY2011. The current target launch year of GOSAT-2 is FY2017. The objectives of GOSAT-2 include : 1) Continue and enhance spaceborne greenhouse gases observation started by GOSAT, 2) Improve our understanding of global and regional carbon cycles, and 3) Contribute to the climate change related policies as one of MRV(Measurement, Reporting, and Verification) tools for carbon emission reduction. As a scientific background/rationale of GOSAT-2, GOSAT-2 Science Plan is being edited by GOSAT-2 Science Team Preparation Committee. Not only carbon dioxide and methane but also carbon monoxide, tropospheric ozone, and aerosols are discussed in the plan. GOSAT-2 Level 2 (gas concentrations) and Level 4 (gas fluxes) products will be operationally generated at and distributed from GOSAT-2 Data Handling Facility located in NIES. In addition, a new supercomputer dedicated to GOSAT-2 research and development will be also installed in NIES. GOSAT-2 validation plan is also being discussed. Its baseline is similar to the current GOSAT . But various efforts will be made to extend the coverage of validation data for GOSAT-2. The efforts include the increased commercial passenger aircraft volunteering atmospheric measurements and additional ground-based Fourier transform spectrometers to be newly installed in Asian countries. In addition, a compact accelerator mass spectrometer is being introduced to NIES to investigate the contributions of anthropogenic emissions which is important for GOSAT-2. Climate change related policies include JCM (Joint Crediting Mechanism) in which MRV plays a critical role. MRV tools used in the existing JCM projects are mostly ground-based and site-specific. Satellite atmospheric

  20. Science Planning for the Solar Probe Plus NASA Mission

    NASA Astrophysics Data System (ADS)

    Kusterer, M. B.; Fox, N. J.; Turner, F. S.; Vandegriff, J. D.

    2015-12-01

    With a planned launch in 2018, there are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus mission. The geometry of the celestial bodies and the spacecraft during some of the Solar Probe Plus mission orbits cause limited uplink and downlink opportunities. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. The aim is to write the instrument data to the spacecraft SSR for downlink before a set of data downlink opportunities large enough to get the data to the ground and before the start of another data collection cycle. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To add further complexity, two of the spacecraft payloads have the capability to write a large volumes of data to their internal payload SSR while sending a smaller "survey" portion of the data to the spacecraft SSR for downlink. The instrument scientists would then view the survey data on the ground, determine the most interesting data from their payload SSR, send commands to transfer that data from their payload SSR to the spacecraft SSR for downlink. The timing required for downlink and analysis of the survey data, identifying uplink opportunities for commanding data transfers, and downlink opportunities big enough for the selected data within the data collection period is critical. To solve these challenges, the Solar Probe Plus Science Working Group has designed a orbit-type optimized data file priority downlink scheme to downlink high priority survey data quickly. This file priority scheme would maximize the reaction time that the payload teams have to perform the survey and selected data method on orbits where the downlink and uplink availability will support using this method. An interactive display and analysis science planning tool is being designed for the SPT to use as an aid to planning. The

  1. Differentiated Instruction for K-8 Math and Science: Activities and Lesson Plans

    ERIC Educational Resources Information Center

    Hamm, Mary; Adams, Dennis

    2008-01-01

    This book offers practical recommendations to reach every student in a K-8 classroom. Research-based and written in a teacher-friendly style, it will help teachers with classroom organization and lesson planning in math and science. Included are math and science games, activities, ideas, and lesson plans based on the math and science standards.…

  2. NSTX Contributions to the FESAC Fusion Energy Sciences Development Plan*

    NASA Astrophysics Data System (ADS)

    Peng, Y.-K. M.

    2003-10-01

    The Spherical Torus configuration, together with other Innovative Confinement Concepts (ICCs) such as the Reversed Field Pinch and the Compact Stellarator, were identified as an integral part of a recent FESAC Fusion Energy Sciences Development Plan (March 2003), which aims to generate net electricity in 35 years. In the next 5 years, the NSTX National Research Team proposes to carry out research in the regime of order-unity beta and strong toroidicity and make contributions to this plan. The NSTX research plans to produce the physics database needed for the design of a Performance Extension stage ST (Next Step Spherical Torus, NSST) capable of testing solenoid-free plasma operations, transport and turbulence, MHD, heating and current drive, and boundary physics at 5 - 10 MA in plasma current. An ST-based Component Test Facility (CTF), with similar plasma conditions and capable of high steady-state neutron wall loading and accumulated dose, can then focus on nuclear technology development. These contributions, together with those from theory and simulation, burning plasmas (ITER), and materials testing, will in time establish the needed physics and technology basis for a Demonstration Power Plant. *Work supported by DoE Contract Nos. DE-AC02-76CH03073 and DE-AC05-96OR22464.

  3. National Science Foundation Postdoctoral Research Mentoring Plan Requirement

    NASA Astrophysics Data System (ADS)

    Lehr, Dana

    2010-01-01

    The National Science Foundation (NSF) Grant Proposal Guide (NSF 09-29) contains new guidance regarding compliance with the mentoring requirement of the America COMPETES Act. NSF Program Staff will review the Postdoctoral Researcher Mentoring Plan Requirement with regard to NSF proposal submissions. Each NSF proposal that requests funding to support postdoctoral researchers must include, as a supplementary document, a description of the mentoring activities that will be provided for such individuals. In no more than one page, the mentoring plan must describe the mentoring that will be provided to all postdoctoral researchers supported by the project, irrespective of whether they reside at the submitting organization, any subawardee organization, or at any organization participating in a simultaneously submitted collaborative project. Examples of mentoring activities include, but are not limited to: career counseling; training in preparation of grant proposals, publications and presentations; guidance on ways to improve teaching and mentoring skills; guidance on how to effectively collaborate with researchers from diverse backgrounds and disciplinary areas; and training in responsible professional practices. The proposed mentoring activities will be evaluated as part of the merit review process under the Foundation's broader impacts merit review criterion. Proposals that include funding to support postdoctoral researchers, and, do not include the requisite mentoring plan will be returned without review.

  4. Vision 2015: The West Virginia Science and Technology Strategic Plan. Progress Report

    ERIC Educational Resources Information Center

    West Virginia Higher Education Policy Commission, 2014

    2014-01-01

    In 2005, West Virginia science and education leaders developed a strategic plan entitled: "Vision 2015: The West Virginia Science and Technology Strategic Plan." The plan is comprised of five (5) target areas for infrastructure development, with 14 goals for action by designated leaders from higher education, state government, and…

  5. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  6. International Symposium on Fast Glacier Flow

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.

    1990-01-01

    Cryospheric Sciences Program "International Symposium on Fast Glacier Flow" (PI, C. Lingle) provided partial support for publication of Annals of Glaciology 36 by the International Glaciological Society. Annals of Glaciology is a peer-reviewed journal. Annals 36, which was published in 2003, contains 39 peer-reviewed and edited papers from the International Symposium on Fast Glacier Flow, which was held in Yakutat, Alaska, 10-14 June 2002.

  7. Science Planning for Multi-Spacecraft Coordinated Observations

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Fishman, Mark; Pell, Vince; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    Fulfilling the promise of an era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to single observatory observations. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. Each year, a number of proposals are accepted by a space-based observatory for conduction of astronomical observations and gathering of science data for the study of galactic events. Since each space-based observatory uses a set of instruments designed to operate in specific energy regions, most such studies are conducted by submitting observation proposals to multiple observatories, with requests to coordinate among themselves. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. In order to exploit new paradigms for observatory operation, the Goddard Space Flight Center's Advanced Architectures and Automation Branch has developed a prototype tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the science planning of coordinated observations for multiple spacecraft, as well as to increase the scheduling probability of observations. However, VOLT is also useful for single observatory planning to optimize observatory control. Three space-based missions are interested in using VOLT (the Hubble Space Telescope, the Chandra X

  8. Sustaining the Bering Ecosystem: A Social Science Research Plan

    NASA Astrophysics Data System (ADS)

    Fitzhugh, B.; Huntington, H. P.; Pete, M. C.; Sepez, J. A.

    2007-12-01

    The Bering Sea is changing from an ice-dominated to an increasingly open water system. The over-arching goal of the NSF-supported Bering Ecosystem Study (BEST) is to understand the effects of climate variability and change on the Bering Sea ecosystem. To the people who are simultaneously a part of that ecosystem and rely on its productivity for life and work, climate change and its effects are among the top concerns. Sustaining the Bering Ecosystem articulates a vision and approaches for social science research as a component of the BEST Program (www.arcus.org/bering). This science plan seeks to initiate research to elucidate the dynamic relationship between the Bering Sea ecosystem and the humans who constitute an integral component of that system. To do so, this plan delineates a research program focused on three broad themes: 1. Impacts on humans: how past, current, and possible future changes in the Bering Sea ecosystem affect the health and well-being of people living and depending on this region for subsistence, employment, and cultural survival. 2. Human impacts: how changing human uses of the Bering Sea region affect the natural cycles of this ecosystem by moderating and/or accelerating systemic changes. 3. Dynamics of human and non-human natural systems: how the human-environmental dynamic has changed through time and may change in the future due to internal and external opportunities and pressures. These themes are developed in the context of a community-driven approach based on the concerns, goals, and interests of Bering Sea residents and other stakeholders of the region. This plan has been drafted through the collaboration of Bering Sea residents (primarily Alaska Natives) and non-resident stakeholders, social scientists, and natural scientists to focus efforts around research questions important to stakeholders, which in various ways center on issues of sustainability (of resources, economic opportunities, ways of life, and culture itself). The

  9. International Symposium on Space Technology and Science, 17th, Tokyo, Japan, May 20-25, 1990, Proceedings. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Kuriki, Kyoichi

    Various papers on space technology and science are presented. The general topics addressed include: national space programs; propulsion; materials and structure, flight dynamics and astrodynamics; fluid dynamics; thermal environment and thermochemistry; electronic components and devices; computer and data systems; guidance, navigation, and control; robotics; systems engineering. Also discussed are: space transportation systems; spacecraft systems; space station and manned flight; balloons; satellite communications and broadcasting; lunar and planetary exploration; space science; earth observations; space medicine; space biology; microgravity; space industrialization; space law and international cooperation.

  10. Ghosts in the machine: publication planning in the medical sciences.

    PubMed

    Sismondo, Sergio

    2009-04-01

    Publication of pharmaceutical company-sponsored research in medical journals, and its presentation at conferences and meetings, is mostly governed by 'publication plans' that extract the maximum amount of scientific and commercial value out of data and analyses through carefully constructed and placed papers. Clinical research is typically performed by contract research organizations, analyzed by company statisticians, written up by independent medical writers, approved and edited by academic researchers who then serve as authors, and the whole process organized and shepherded through to journal publication by publication planners. This paper reports on a conference of an international association of publication planners. It describes and analyzes their work in an ecological framework that relates it to marketing departments of pharmaceutical companies, medical journals and publishers, academic authors, and potential audiences. The medical research described here forms a new kind of corporate science, designed to look like traditional academic work, but performed largely to market products. PMID:19831220

  11. The Mars mapper science and mission planning tool

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.

    1993-01-01

    The Mars Mapper Program (MOm) is an interactive tool for science and mission design developed for the Mars Observer Mission (MO). MOm is a function of the Planning and Sequencing Element of the MO Ground Data System. The primary users of MOm are members of the science and mission planning teams. Using MOm, the user can display digital maps of Mars in various projections and resolutions ranging from 1 to 256 pixels per degree squared. The user can overlay the maps with ground tracks of the MO spacecraft (S/C) and footprints and swaths of the various instruments on-board the S/C. Orbital and instrument geometric parameters can be computed on demand and displayed on the digital map or plotted in XY-plots. The parameter data can also be saved into files for other uses. MOm is divided into 3 major processes: Generator, Mapper, Plotter. The Generator Process is the main control which spawns all other processes. The processes communicate via sockets. At any one time, only 1 copy of MOm may operate on the system. However, up to 5 copies of each of the major processes may be invoked from the Generator. MOm is developed on the Sun SPARCStation 2GX with menu driven graphical user interface (GUI). The map window and its overlays are mouse-sensitized to permit on-demand calculations of various parameters along an orbit. The program is currently under testing and will be delivered to the MO Mission System Configuration Management for distribution to the MO community in 3/93.

  12. NOAA Plans for Improving Public Access to Science Research (Invited)

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2013-12-01

    The White House Office of Science and Technology Policy (OSTP) issued a memorandum on 2013 February 22 calling for federal agencies to enhance public access to research results (PARR), and required agencies to submit, within 6 months of the memo, draft plans explaining how they would implement the requirements. For the National Oceanic and Atmospheric Administration (NOAA), research results include digital data about the Earth's environment and publications based on those data. Regarding environmental data, NOAA is already very active in ensuring and improving public access. Indeed, National Weather Service (NWS) data was highlighted as one of the good examples in the OSTP memo. More generally, the NOAA National Data Centers, the Environmental Data Management Committee (EDMC), and scientific and technical personnel across the agency are striving to ensure NOAA data are discoverable and accessible on-line, well-documented and formatted for usability, and preserved for future generations as a national asset. This presentation will describe current and potential activities in support of public access to NOAA and NOAA-funded environmental data. Regarding publications, there is greater uncertainty. The fundamental issue is how to ensure no-cost access (after an embargo period) to publications that typically require subscriptions. That issue must be addressed at the interagency level with the journal publishers. The plan indicates that NOAA will adopt shared mechanisms and agreements to the extent possible rather than building new systems. Some elements remain under discussion; this presentation will be limited to those aspects on which there is general agreement.

  13. Intergas `95: International unconventional gas symposium. Proceedings

    SciTech Connect

    1995-07-01

    The International Unconventional Gas Symposium was held on May 14--20, 1995 in Tuscaloosa, Alabama where 52 reports were presented. These reports are grouped in this proceedings under: geology and resources; mine degasification and safety; international developments; reservoir characterization/coal science; and environmental/legal and regulatory. Each report has been processed separately for inclusion in the Energy Science and Technology Database.

  14. Third LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1993-01-01

    This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  15. Communication of Science Plans in the Rosetta Mission

    NASA Astrophysics Data System (ADS)

    Schmidt, Albrecht; Grieger, Björn; Völk, Stefan

    2014-05-01

    Rosetta is a mission of the European Space Agency (ESA) to rendez-vous with comet Churyumov-Gerasimenko in mid-2014. The trajectories and their corresponding operations are both flexible and particularly complex. To make informed decisions among the many free parameters, novel ways to communicate operations to the community have been explored. To support science planning by communicating operational ideas and disseminating operational scenarios, the science ground segment makes use of Web-based visualisation technologies. To keep the threshold to analysing operations proposals as low as possible, various implementation techniques have been investigated. An important goal was to use the Web to make the content as accessible as possible. By adopting the recent standard WebGL and generating static pages of time-dependent three-dimensional views of the spacecraft as well as the corresponding field-of-views of instruments, directly from the operational and for-study files, users are given the opportunity to explore interactively in their Web browsers what is being proposed in addition to using the traditional file products and analysing them in detail. The scenes and animations can be viewed in any modern Web browser and be combined with other analyses. This is to facilitate verification and cross-validation of complex products, often done by comparing different independent analyses and studies. By providing different timesteps in animations, it is possible to focus on long-term planning or short-term planning without distracting the user from the essentials. This is particularly important since the information that can be displayed in a Web browser is somewhat related to data volume that can be transferred across the wire. In Web browsers, it is more challenging to do numerical calculations on demand. Since requests for additional data have to be passed through a Web server, they are more complex and also require a more complex infrastructure. The volume of data that

  16. ICESat (GLAS) Science Processing Software Document Series. Volume 1; Science Software Management Plan; 3.0

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III

    1999-01-01

    This document provides the Software Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Terminal (IST) Software. For the I-SIPS Software, the SDS will produce Level 0, Level 1, and Level 2 data products as well as the associated product quality assessments and descriptive information. For the IST Software, the SDS will accommodate the GLAS instrument support areas of engineering status, command, performance assessment, and instrument health status.

  17. Biocatalysis - Key Technology to Meet Global Challenges CCBIO Symposium at the 8(th) Waedenswil Day of Life Science.

    PubMed

    Heinzelmann, Elsbeth

    2016-01-01

    In a world of dwindling fossil-based energy, global air pollution and warming, biocatalysis may be a perfect problem-solver. It has the potential to procure sustainable raw materials and energy from biomass, and enables chiral and highly functionalized compounds to be produced ecologically for the chemical and pharmaceutical industry. At ZHAW Waedenswil on June 20, 2016, the Competence Center for Biocatalysis (CCBIO) gave European experts the opportunity to present the latest findings from science, research and practice in the future-oriented field of biocatalysis. PMID:27561617

  18. Symposium: Uneasy Bedfellows: Social Science and Pornography: The British, Canadian, and U.S. Pornography Commissions and Their Use of Social Science Research.

    ERIC Educational Resources Information Center

    Einsiedel, Edna F.

    1988-01-01

    Suggests that British, Canadian, and U.S. pornography commissions' definitions of pornography and their positions on its potential effects show substantial variation in sociopolitical interpretations and regard for social science evidence. (ARH)

  19. Proceedings of the Twelfth International Symposium on Space Terahertz Technology

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran (Editor)

    2001-01-01

    The Twelfth International Symposium on Space Terahertz Technology was held February 14-16, 2001 in San Diego, California, USA. This symposium was jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory, California Institute of Technology. The symposium featured sixty nine presentations covering a wide variety of technical topics relevant to Terahertz Technology. The presentations can be divided into five broad technology areas: Hot Electron Bolometers, superconductor insulator superconductor (SIS) technology, local oscillator (LO) technology, Antennas and Measurements, and Direct Detectors. The symposium provides scientists, engineers, and researchers working in the terahertz technology and science fields to engineers their work and exchange ideas with colleagues.

  20. A Strategic Action Plan for Advancing Math and Science Education in New Mexico 2007-2010

    ERIC Educational Resources Information Center

    New Mexico Public Education Department, 2007

    2007-01-01

    This Strategic Action Plan for Advancing Math and Science Education is an initial outline of strategies, actions, measures of progress, resources needed, timelines, and responsible parties. The Plan focuses on these three main goals: (1) increasing student interest, participation, and achievement in math and science; (2) raising public support and…

  1. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  2. NASA Science Institutes Plan. Report of the NASA Science Institutes Team: Final Publication (Incorporating Public Comments and Revisions)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.

  3. Creating Relevant Science through Urban Planning and Gardening.

    ERIC Educational Resources Information Center

    Fusco, Dana

    2001-01-01

    Reports on a community-based science project that was coproduced with urban teenagers and elaborates on the creation of a practicing culture of science learning. Concludes that in a practicing culture of science learning, science is relevant since it was created from the participants' concerns, interests, and experiences inside and outside…

  4. INTRODUCTION: Physics of Low-dimensional Systems: Nobel Symposium 73

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stig

    1989-01-01

    Tercentenary Fund of the Bank of Sweden and The Knut and Alice Wallenberg Foundation. Additional support was obtained from the Royal Academy of Sciences, the Nordic Institute for Theoretical Atomic Physics (NORDITA), Chalmers University of Technology and Gothenburg University. To arrange a Nobel Symposium on such hot topics is an open invitation for criticism and trouble. The organizers tried their best to select a few topics of current interest in order to generate a strong interaction between participants and to stimulate a good discussion. I would like to express our apologies to all these prominent scientists who could not be invited because of the small format of the Symposium and the planning of the organizers. These Proceedings contain most of the material presented at the Symposium. A few participants found it inconvenient to prepare a full length paper, which would just have been a modified version of material to appear in regular journals. Others might have felt that a conference proceeding be too slow a medium in comparison with e.g. the New York Times. On the whole however these proceedings give a good report of the science discussed during the Symposium. We would like to place on record our sincere thanks to the participants who contributed substantially in the planning by making valuable suggestions about participants and topics. In particular, Bob Schrieffer did a great job in organizing the programme and effectively to run the Symposium. My co-organizers played a crucial role in the planning and during the Symposium week. Our secretary, Yvonne Steen, deserves our very special thanks for her outstanding work. I would finally like to say something about Gräftåvallen and our hosts, Annica and Tommy Hagström. We decided to take the Symposium out of academia and chose this charming tiny mountain resort on a mountain slope in the northern Swedish mountains about 20 miles from the nearest village. Annica and Tommy Hagström welcomed us with such warm hospitality

  5. Proceedings of the Third Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication contains summaries of the papers presented at the Third Spaceborne Imaging Radar Symposium held at the Jet Propulsion Laboratory (JPL), California Institute of Technology, in Pasadena, California, on 18-21 Jan. 1993. The purpose of the symposium was to present an overview of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans. This symposium is the third in a series of 'Spaceborne Imaging Radar' symposia held at JPL. The first symposium was held in Jan. 1983 and the second in 1986.

  6. WE-E-BRF-01: The ESTRO-AAPM Joint Symposium On Imaging for Proton Treatment Planning and Guidance

    SciTech Connect

    Parodi, K; Dauvergne, D; Kruse, J

    2014-06-15

    scale for active proton beam delivery in homogenous targets. The development of gamma cameras, that has been studied by several groups worldwide over the last years, now reaches - for some of them - the stage of being applicable in clinical conditions, with real size prototypes and count rate capability matching the therapeutic beam intensities. We will review the different concepts of gamma cameras, the advantages and limitations of this method, and the main challenges that should still be overcome before the widespread of prompt gamma quality assurance for proton and hadrontherapy. Jon Kruse (Mayo Clinic, Rochester, MN, USA) Treatment simulation images for proton therapy are used to determine proton stopping power and range in the patient. This talk will discuss the careful control of CT numbers and conversion of CT number to stopping power required in proton therapy. Imaging for treatment guidance of proton therapy also presents unique challenges which will be addressed. Among them are the enhanced relationship between internal anatomy changes and dosimetry, the need for imaging to support adaptive planning protocols, and high operational efficiency. Learning Objectives: To learn about the possibilities of using activation products to determine the range of particle beams in a patient treatment setting To be informed on an alternative methodology using prompt gamma detectors To understand the impact of the accuracy of the knowledge of the patient information with respect to the delivered treatment.

  7. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    SciTech Connect

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  8. 2015 Proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine Symposium

    PubMed Central

    Spitalnik, Steven L.; Triulzi, Darrell; Devine, Dana V.; Dzik, Walter H.; Eder, Anne F.; Gernsheimer, Terry; Josephson, Cassandra D.; Kor, Daryl J.; Luban, Naomi L. C.; Roubinian, Nareg H.; Mondoro, Traci; Welniak, Lisbeth A.; Zou, Shimian; Glynn, Simone

    2015-01-01

    On March 25-26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the NIH campus in Bethesda, MD, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5-10 years, and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three “classical” transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Prior to the meeting, four Working Groups, one for each area, prepared five major questions for discussion along with a list of 5-10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in Keynote lectures, small group breakout sessions, and large group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine. PMID:26260861

  9. 2015 proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine symposium.

    PubMed

    Spitalnik, Steven L; Triulzi, Darrell; Devine, Dana V; Dzik, Walter H; Eder, Anne F; Gernsheimer, Terry; Josephson, Cassandra D; Kor, Daryl J; Luban, Naomi L C; Roubinian, Nareg H; Mondoro, Traci; Welniak, Lisbeth A; Zou, Shimian; Glynn, Simone

    2015-09-01

    On March 25 and 26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the National Institutes of Health (NIH) campus in Bethesda, Maryland, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5 to 10 years and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three "classical" transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Before the meeting, four working groups, one for each area, prepared five major questions for discussion along with a list of five to 10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in keynote lectures, small-group breakout sessions, and large-group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine. PMID:26260861

  10. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    USGS Publications Warehouse

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response

  11. BiteScis: Connecting K-12 teachers with science graduate students to produce lesson plans on modern science research

    NASA Astrophysics Data System (ADS)

    Battersby, Cara

    2016-01-01

    Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.

  12. PREFACE: Third International Symposium on Atomic Technology

    NASA Astrophysics Data System (ADS)

    Yasumori, Atsuo

    2009-09-01

    The International Symposium on Atomic Technology (ISAT) is held every year. The Third Symposium (ISAT-3) was held on 5-6 March 2009 at the Tokyo International Exchange Center, Tokyo, Japan jointed with the Third Polyscale Technology Workshop (PTW-3). The ISAT-3 symposium was intended to offer a forum for the discussion of the latest progress in atomic technologies, which was successively held after ISAT-1 at Tsukuba and ISAT-2 at Awaji in 2007. The symposium was attended by 136 participants. There were 12 invited and 4 oral presentations. The number of poster presentations was 101. From all the contributions, 32 papers selected through review process are contained in this volume. The 'Atomic Technology Project' and the 'Polyscale Technology Project' were started in 2006 as the joint project of three institutions; (1) Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University (CAMT), (2) Tsukuba Research Center for Interdisciplinary Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba (TIMS) and (3) Polyscale Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science (PTRC), each of which were independently pursuing atomic and polyscale technologies. The project is funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The goal of these projects is to contribute to the development of atomic and polyscale science and technologies. In this symposium, four research fields were focused on: Biomedical Applications, Fabrication for Advanced Materials and Devices, Magnetic Applications, and Quantum and Molecular Engineering for Advanced Technologies. Atsuo Yasumori Conference Chair Polyscale Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.

  13. Proceedings of the TOUGH Symposium 2009

    SciTech Connect

    Moridis, George J.; Doughty, Christine; Finsterle, Stefan; Sonnenthal, Eric

    2009-10-01

    Welcome to the TOUGH Symposium 2009. Within this volume are the Symposium Program for eighty-nine papers to be presented in both oral and poster formats. The full papers are available as pdfs linked from the Symposium Program posted on the TOUGH Symposium 2009 website http://esd.lbl.gov/newsandevents/events/toughsymposium09/program.html Additional updated information including any changes to the Program will also be available at the website. The papers cover a wide range of application areas and reflect the continuing trend toward increased sophistication of the TOUGH codes. A CD containing the proceedings papers will be published immediately following the Symposium and sent to all participants. As in the prior Symposium, selected papers will be invited for submission to a number of journals for inclusion in Special Issues focused on applications and developments of the TOUGH codes. These journals include, Transport in Porous Media, Geothermics, Energy Conversion and Management, Journal of Nuclear Science and Technology, and the Vadose Zone Journal.

  14. DOE Grant to organize "International Symposium on Opportunities in Underground Physics", Asilomar, CA, May 24-27, 2013

    SciTech Connect

    Babu, Kaladi S.

    2015-03-16

    The International Symposium in Opportunities in Underground Physics (ISOUP) was held in Asilomar, CA during May 24-27, 2013. The Symposium brought together scientists from the US and abroad for an open discussion on science opportunities provided by the possibility of a new generation of large underground detectors associated with long baseline neutrino beams. The Symposium was highly successful. The main focus of the Symposium was the science goals that could be achieved by placing such a detector deep underground.

  15. The ExoMars science data archive: status and plans

    NASA Astrophysics Data System (ADS)

    Heather, David

    2016-07-01

    The ExoMars program, a cooperation between ESA and Roscosmos, comprises two missions: the Trace Gas Orbiter, to be launched in 2016, and a rover and surface platform, due for launch in 2018. This will be the first time ESA has operated a rover, and the archiving and management of the science data to be returned will require a significant effort in development of the new Planetary Science Archive (PSA). The ExoMars mission data will also be formatted according to the new PDS4 Standards, based in XML, and this will be the first data of that format to be archived in the PSA. There are significant differences in the way in which a scientist will want to query, retrieve, and use data from a suite of rover instruments as opposed to remote sensing instrumentation from an orbiter. The PSA data holdings and the accompanying services are currently driven more towards the management of remote sensing data, so some significant changes will be needed. Among them will be a much closer link to the operational information than is currently available for our missions. NASA have a strong user community interaction with their analysts notebook, which provides detailed operational information to explain why, where and when operations took place. A similar approach will be needed for the future PSA, which is currently being designed. In addition to the archiving interface itself, there are differences with the overall archiving process being followed for ExoMars compared to previous ESA planetary missions. The Trace Gas Orbiter data pipelines for the first level of processing from telemetry to raw data, will be hosted directly by ESA's ground segment at ESAC in Madrid, where the archive itself resides. Data will have a continuous flow direct to the PSA, where after the given proprietary period, it will be directly released to the community via the new user interface. For the rover mission, the data pipelines are being developed by European industry, in close collaboration with ESA PSA

  16. Triennial Reproduction Symposium: challenges and opportunities facing livestock reproduction in the 21st century.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2009 Triennial Reproduction Symposium was held immediately before the Joint Annual Meeting of the American Society of Animal Science, American Dairy Science Association, and Canadian Society of Animal Science in Montreal, Canada, in July 2009. The intent of the symposium was to identify major ch...

  17. Triennial Growth Symposium: Dietary regulation of growth development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2010 Triennial Growth Symposium was held immediately before the Joint Annual Meeting of the American Dairy Science Association, Poultry Science Association, Asociación Mexicana de Producción Animal, Canadian Society of Animal Science, Western Section American Society of Animal Science, and Ameri...

  18. State-of-the-Science Symposium on Postacute Rehabilitation: Setting a Research Agenda and Developing an Evidence Base for Practice and Public Policy--Executive Summary

    ERIC Educational Resources Information Center

    Heinemann, Allen W.

    2007-01-01

    Purpose: The Rehabilitation Research and Training Center on Measuring Rehabilitation Outcomes and Effectiveness along with academic, professional, provider, and accreditor organizations sponsored a symposium with the aim of serving as a catalyst for expanded research on postacute care (PAC) rehabilitation. The goals were to describe the state of…

  19. Papers Presented at the ACM SIGCSE Technical Symposium on Academic Education in Computer Science [held in Houston, Texas, November 16, 1970].

    ERIC Educational Resources Information Center

    Aiken, Robert M., Ed.

    1970-01-01

    The papers given at this symposium were selected for their description of how specific problems were tackled, and with what success, as opposed to proposals unsupported by experience. The goal was to permit the audience to profit from the trials (and errors) of others. The eighteen papers presented are: "Business and the University Computer…

  20. CONFERENCE NOTE: Sixth Symposium on Temperature Scheduled for March 1982

    NASA Astrophysics Data System (ADS)

    1981-07-01

    The call for papers for the 6th Symposium on Temperature, Its Measurement and Control in Science and Industry has been issued. The Symposium is scheduled to take place in Washington, DC, USA during the week of March 14 18, 1982. Like its predecessors held in the years 1919, 1939, 1954, 1961, and 1971, the 6th Symposium will stress advances in the measurement of thermodynamic values of temperature, in temperature reference points, in temperature sensors and instruments for the control of temperature, and in the development and use of temperature scales. For the first time, an exhibit of thermometry will be a part of the Symposium. Manuscripts to be submitted for inclusion in the Symposium should be sent to the 6th Temperature Symposium Program Chairman, National Bureau of Standards, by September 15, 1981. Those papers accepted for the Symposium will be due in camera-ready form by February 15, 1982. Original papers on all of the topics listed above, as well as reviews of the past decade's progress in thermometry and temperature control, are solicited by the Symposium organizers. The Symposium arrangements and registration are in the care of the Instrument Society of America (represented on the Symposium General Committee by Mr C T Glazer, 67 Alexander Drive, PO Box 12277, Research Triangle Park, North Carolina, 27709, USA). Questions regarding the instrument exhibits should also be addressed to the ISA. The technical program for the Symposium is the responsibility of a committee headed by Dr J F Schooley, Room B-128 Physics Building, National Bureau of Standards, Washington, DC, 20234, USA. The Symposium proceedings will be published by the American Institute of Physics.

  1. International Symposium on Technology Management: Modeling, Simulation, and Optimization

    NASA Astrophysics Data System (ADS)

    Li, Yiming

    2007-12-01

    This symposium provides a forum for scientists and researchers from academia and industry to exchange knowledge, ideas and results in computational aspects of social and management science. This symposium will cover theory and practice of computational methods, models and empirical analysis for decision making and forecasting in economics, finance, management, transportation, and related aspects of information and system engineering. Welcome to this interdisciplinary symposium in International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2007). Look forward to seeing you in Corfu, Greece!

  2. Identity, Influence, and Politics. Symposium 7. [Concurrent Symposium Session at AHRD Annual Conference, 2000.

    ERIC Educational Resources Information Center

    2000

    This packet contains three papers on gender identity; power and influence styles in program planning; and white male backlash from a symposium on human resource development (HRD). The first paper, "Identification of Power and Influence Styles in Program Planning Practice" (Baiyin Yang), explores the relationship between HRD practitioners using…

  3. PREFACE: 10th International LISA Symposium

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Conklin, John W.; Mueller, Guido

    2015-05-01

    The LISA Symposia have become a mainstay of the gravitational wave community. Held every two years, they are the prime opportunity for our community to discuss the exciting science, technology, mission designs, and progress of the Laser Interferometer Space Antenna. The 8th LISA symposium, held at Stanford University in the summer of 2010 was the largest symposium so far and was dominated by progress and hopes that the LISA mission will soon excel following the expected launch of the LISA pathfinder (LPF), no later than 2012, and the expected prioritization by the Decadal survey which was released 6 weeks later. The following years were challenging. Although the Decadal survey ranked LISA very high, NASA's budget issues, mostly due to the cost increase of the James Webb Space Telescope, and continued delays in LPF put too much stress on the LISA project and it officially ended in 2011. The LISA International Science Team (LIST), the core group of LISA scientists and technologists, was dissolved and the community in the U.S. was struggling to maintain cohesion. In the wake of these events, ESA started a new selection process for their next three large missions, L1, L2, and L3, and the European LISA team developed the New Gravitational wave Observatory (NGO), an evolved LISA concept, as an ESA only L1 candidate. A few weeks before the 9th LISA Symposium, held in Paris in May 2012, ESA announced its decision to select JUICE, a planetary mission to Jupiter and its moons, as its next large science mission (L1). Despite having the highest ranked science case, NGO was not selected due to further delays in LPF and the general feeling outside the GW community that the technology is perhaps too challenging to be pulled off in time for the L1 launch in 2022. Many U.S. members of the LISA community cancelled their travel plans and the mood at that symposium ranged from resignation to defiance. Hope for a somewhat timely launch of a LISA-like mission rested upon L2, the next

  4. The Second International Symposium on Plant Cryopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Second International Symposium on Plant Cryopreservation was held in Fort Collins, Colorado, USA, from August 11-14, 2013, under the auspices of the International Society for Horticultural Science. The town of Fort Collins is home to the USDA-ARS, National Center for Genetic Resources Preservati...

  5. Life Science Payloads Planning Study Integration Facility Survey: Executive Summary

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Brown, N. E.

    1976-01-01

    Analyses of proposed life science shuttle era payload operations are discussed. A summary of results from a survey conducted to: (1) examine facility and equipment resources needed for life science payload integration, checkout, test and mission support activities; (2) identify presently available resources; and (3) determine methods by which operational era status may be implemented based on currently available resources, is presented.

  6. Life science payloads planning study integration facility survey results

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Brown, N. E.; Nelson, W. G.

    1976-01-01

    The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.

  7. Literature Related to Planning, Design and Construction of Science Facilities.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    A list of the articles and papers in the science facilities collection of the Architectural Services Staff is presented. It has been prepared to serve as a bibliography that may be useful to persons searching for data on the design of science facilities, and as a means of informing such persons of the material available for reference in the…

  8. Cassini/Huygens Program Archive Plan for Science Data

    NASA Technical Reports Server (NTRS)

    Conners, D.

    2000-01-01

    The purpose of this document is to describe the Cassini/Huygens science data archive system which includes policy, roles and responsibilities, description of science and supplementary data products or data sets, metadata, documentation, software, and archive schedule and methods for archive transfer to the NASA Planetary Data System (PDS).

  9. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    SciTech Connect

    Not Available

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

  10. National & Legislative View: The National Science Foundation Long-Range Plan FY 1989-1993.

    ERIC Educational Resources Information Center

    Paldy, Lester G., Ed.

    1989-01-01

    Discusses the current status and major issues affecting the quality and size of the human resources pool of scientists, engineers, and technical personnel. Indicates the role and strategies the National Science Foundation plans to take to address the deficiences. (RT)

  11. Interdisciplinary graduate student symposium organized by students for students

    NASA Astrophysics Data System (ADS)

    Mann, C. P.; Goulet-Hanssens, A.; de Boef, M.; Hudson, E.; Pandzic, E.

    2010-12-01

    indicate not enough time allotted to poster judging. In total, 97% of the students liked the idea of a symposium organized by students for students, 84% said they would participate the next year and 32% said they would get involved in planning. Graduate students like the concept of a conference organized by students, for students, thus creating a sense of ownership by both the organizers and participants. The interdisciplinary theme of the conference is timely and if graduate students can develop these skills in graduate school they will be that much more prepared for successful careers in the sciences.

  12. Incorporating science and engineering practices into preservice secondary science teachers' planning practices: Testing the efficacy of an intervention

    NASA Astrophysics Data System (ADS)

    Wargo, Brian M.

    The New Standards Framework (NRC, 2012) explicitly calls for teachers to engage students in science and engineering practices (SEPs) as they develop knowledge of scientific phenomena and canonical disciplinary ideas. This study analyzed six pre-service secondary science teachers' (PSSSTs') incorporation of SEPs into their planning practices before, during, and after an instructional intervention. The intervention, which was nested into an instructional methods course, supported the PSSSTs by representing the practices they were to engage their own students with. The PSSSTs were then able to decompose and approximate those scientific practices in their lesson planning, thereby developing pedagogical design capacity (PDC). The PSSSTs were interviewed to determine what affordances and constraints they felt when planning for incorporating SEPs into their lesson planning. Analysis of the lesson plans showed that 50% of the PSSSTs incorporated SEPs into their lesson plans when only provided a written description of the SEPs and prompted to do so. During the instructional intervention, 83% of the PSSSTs incorporated SEPs into their lesson plans. After the instructional intervention, the PSSSTs were no longer required to incorporate SEPs into their lesson planning nor were they required to hand in lesson plans for a grade. Instead, they wrote lesson plans for their cooperating teachers and for their own use. Surprisingly, the PSSSTs not only continued to incorporate SEPs into their lessons, but did so more completely by incorporating a diversity of sub-SEPs and more of them in their lessons. This is significant because this may indicate that the instructional intervention has longevity. Interview data suggests that PSSSTs experience both internal and external affordances and constrains when attempting to incorporate SEPs into their lesson planning. Three categories of issues (epistemic, logistical, and curricular) emerged in the results and influence how teachers interact

  13. Symposium on high temperature and materials chemistry

    SciTech Connect

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  14. Traditional and Block Scheduling for College Science Preparation: A Comparison of College Science Success of Students Who Report Different High School Scheduling Plans

    ERIC Educational Resources Information Center

    Dexter, Kirsten M.; Tai, Robert H.; Sadler, Philip M.

    2006-01-01

    This study compares frequencies of instructional practices across differing scheduling plans (Traditional and Block plans), and explores the association between high school scheduling plans and college science preparation, using introductory college science grades as the outcome measure. More than 7000 students enrolled in introductory college…

  15. Mars Returned Sample Science: Scientific Planning Related to Sample Quality

    NASA Astrophysics Data System (ADS)

    Beaty, D. W.; Liu, Y.; Borg, L. E.; Herd, C. D. K.; McLennan, S. M.; Allen, C. C.; Bass, D. S.; Farley, K. A.; Mattingly, R. L.

    2014-07-01

    We have evaluated the set of measurements central to addressing the science goals for MSR, and developed a list of the factors that would affect the usefulness of the samples for scientific investigations.

  16. Land Use Planning Experiment for Introductory Earth Science Courses

    ERIC Educational Resources Information Center

    Fetter, C. W., Jr.; Hoffman, James I.

    1975-01-01

    Describes an activity which incorporates topographic map interpretation, soils analysis, hydrogeology, and local geology in a five-week series of exercises for an introductory college earth science class. (CP)

  17. ECONOMICS AND DECISION SCIENCES MULTI-YEAR PLAN

    EPA Science Inventory

    As long as environmental policy is designed to change behaviors that cause environmental problems, economics and decision sciences research will be essential to understanding these behaviors. In addition, this research informs state and federal environmental agencies on how best ...

  18. Predictors of Science Fair Participation Using the Theory of Planned Behavior.

    ERIC Educational Resources Information Center

    Czerniak, Charlene M.; Lumpe, Andrew T.

    1996-01-01

    Uses the Theory of Planned Behavior to examine factors that predict junior high and secondary students' (n=303) attitudes toward participating in district science fair competitions, beliefs about who would approve or disapprove of participation, and perceptions of control. Results indicate that science fair entry appears to be involuntary and that…

  19. Background Research and Mapping. Australian School Science Education National Action Plan, 2008-2012. Volume 2

    ERIC Educational Resources Information Center

    Rennie, Leonie J.; Goodrum, Denis

    2007-01-01

    The purpose of this document is to provide background to the text and recommended actions of the Australian School Science Education National Action Plan, 2007-2012. The first part presents a synthesis of the national and international research used to identify gaps and overlaps amongst activities related to school science education in …

  20. Triple Science GCSEs: Curriculum Planning and Design. GCSEs in Biology, Chemistry and Physics

    ERIC Educational Resources Information Center

    Morris, Pam; Quill, John

    2007-01-01

    This publication will provide managers and others with practical advice on how to plan, develop and model the Triple Science requirement, taking into account all the critical factors that need to be considered. This guidance concentrates on curriculum planning and design, including the use of the new (2006) specifications to provide Triple Science…

  1. A Report on Health Sciences Education Planning for California: 1980-1982.

    ERIC Educational Resources Information Center

    California State Postsecondary Education Commission, Sacramento.

    Health sciences education planning for California for 1980-82 is examined. The adequacy of educational programs in meeting the needs of California for professional personnel in medicine, nursing, dentistry, pharmacy, and optometry is assessed. Data on enrollments and graduation rates in these fields are updated from the 1978 plan, and similar data…

  2. Perspectives and Plans for Graduate Studies. 6. Solid Earth Science 1973.

    ERIC Educational Resources Information Center

    Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.

    Effective planning and rationalization of long-term graduate development in Ontario's universities concerning solid earth sciences are discussed in relation to a report and recommendations of the Council of Ontario Universities and a report of the Advisory Committee on Academic Planning. Recommendations suggest: (1) The universities proceed with…

  3. International Space Station: 6-8 Hands-on Science and Math Lesson Plans.

    ERIC Educational Resources Information Center

    Armstrong, Pat

    These lesson plans, designed for grades 6-8, have been developed to provide a guide to hands-on experience in science and math. They focus on an International Space Station and are designed for use with students working in groups. The three lesson plans highlighting the importance of the scientific method are: (1) International Space Station…

  4. Transcripts From the Southern Regional Council's Symposium on Human Intelligence, Social Science, and Social Policy. Text of Dr. Kamin's Presentation Denying That Proof Exists That IQ Test Scores are Hereditary; How Testing Harms Children; IQ Tests as Instruments of Oppression--From Immigration Quotas to Welfare.

    ERIC Educational Resources Information Center

    Kamin, Leon; Green, Winifred

    This document comprises three presentations made on March 23 at a symposium sponsored by the Southern Regional Council focusing on Human Intelligence, Social Science and Social Policy. The first of the three parts of the document is the text of the principal presentation, made by Dr. Leon Kamin, Chariman of the Department of Psychology at…

  5. Cooperative modeling: linking science, communication, and ground water planning.

    PubMed

    Tidwell, Vincent C; van den Brink, Cors

    2008-01-01

    Equitable allocation of ground water resources is a growing challenge due to both the increasing demand for water and the competing values placed on its use. While scientists can contribute to a technically defensible basis for water resource planning, this framework must be cast in a broader societal and environmental context. Given the complexity and often contentious nature of resource allocation, success requires a process for inclusive and transparent sharing of ideas complemented by tools to structure, quantify, and visualize the collective understanding and data, providing an informed basis of dialogue, exploration, and decision making. Ideally, a process that promotes shared learning leading to cooperative and adaptive planning decisions. While variously named, mediated modeling, group modeling, cooperative modeling, shared vision planning, or computer-mediated collaborative decision making are similar approaches aimed at meeting these objectives. In this paper, we frame "cooperative modeling" in the context of ground water planning and illustrate the process with two brief examples. PMID:18194321

  6. International Symposium on Advanced Materials (ISAM 2013)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    This proceeding is a compilation of peer reviewed papers presented at the 13th International Symposium on Advanced Materials (ISAM 2013) held from September 23-27, 2013, at Islamabad, Pakistan. In my capacity as ISAM-2013 Secretary, I feel honoured that the symposium has ended on a positive note. The ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. ISAM and other similar forums serve to fulfill this need. The five day deliberations of ISAM 2013, consisted of 19 technical sessions and 2 poster sessions. In all, 277 papers were presented, inclusive of 80 contributory, invited and oral presentations. The symposium also hosted panel discussions led by renowned scientists and eminent researchers from foreign as well as local institutes. The ultimate aim of this proceeding is to record in writing the new findings in the field of advanced materials. I hope that the technical data available in this publication proves valuable to young scientists and researchers working in this area of science. At the same time, I wish to acknowledge Institute of Physics (IOP) Publishing UK, for accepting the research papers from ISAM-2013 for publication in the IOP Conference Series: Materials Science and Engineering. The proceeding will be available on the IOP website as an online open access document. I am profoundly thankful to the Symposium Chairman for his steadfast support and valuable guidance without which ISAM 2013 could not have been the mega event that it turned out to be. My gratitude to all our distinguished participants, session chairs/co-chairs, and reviewers for their active role in the symposium. I appreciate the entire organizing committee for the zest and ardor with which each committee fulfilled its obligations to ISAM. Last yet not the least, my thankfulness goes to all our sponsors for wilfully financing the event. Dr. Sara Qaisar Symposium Secretary Further

  7. Create your own science planning tool in 3 days with SOA

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Polanskey, Carol A.; O'Reilly, Taifun

    2003-01-01

    Scientific discovery and advancement of knowledge has been, and continues to be, the goal for space missions at Jet Propulsion Laboratory. Scientist must plan their observation/experiments to get the maximum data return in order to make those discoveries. However, each mission has different science objectives, a different spacecraft and different instrument payloads, as well as, different routes to different destinations with different spacecraft restrictions and characteristics. In the current reduced cost environment, manageable cost for mission planning software is a must. Science Opportunity Analyzer (SOA), a planning tool for scientists and mission planners, utilizes a simple approach to reduce cost and promote reusability.

  8. Discoveries Within the Ice: Plans of the Ice Coring and Drilling Science Community

    NASA Astrophysics Data System (ADS)

    Albert, M. R.; Bentley, C. R.; Twickler, M.; Idpo/Iddo

    2010-12-01

    The search for answers to questions about our changing climate creates an urgent need to discover the clues to the past archived in glaciers and ice sheets, and to understand current ice sheet behavior. Recognizing that U.S. scientific productivity in this area depends upon a mechanism for ensuring continuity and international cooperation in ice coring and drilling efforts, along with availability of appropriate drills, drilling expertise, and innovations in drilling technology, the Ice Drilling Program Office (IDPO) and its partner, the Ice Drilling Design and Operations group (IDDO), collectively known as IDPO/IDDO, work with the science community to articulate integrated research, technological planning and delivery. This presentation highlights science goals articulated in the IDPO Long Range Science Plan, which lays out the scientific goals and future directions of the multidisciplinary research community and international partners. The science fits into four broad categories: Climate; Ice Dynamics and History; the Sub-ice Environment; and Ice as a Scientific Observatory. A companion plan, the IDDO Long Range Drilling Technology Plan, discusses details of the drills and new development driven by the Long Range Science Plan. The ice drilling technology described in the Long Range Drilling Technology Plan spans from the use of the multi-ton Deep Ice Sheet Coring (DISC) drill for deep drilling projects such as the West Antarctic Ice Sheet Divide, in Antarctica, to shallow drilling endeavors using hand augers, and beyond to identification of new drilling tools not yet in existence.

  9. Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Terrie, Greg; Berglund, Judith

    2006-01-01

    This presentation introduces a draft plan for characterizing commercial data products for Earth science research. The general approach to the commercial product verification and validation includes focused selection of a readily available commercial remote sensing products that support Earth science research. Ongoing product verification and characterization will question whether the product meets specifications and will examine its fundamental properties, potential and limitations. Validation will encourage product evaluation for specific science research and applications. Specific commercial products included in the characterization plan include high-spatial-resolution multispectral (HSMS) imagery and LIDAR data products. Future efforts in this process will include briefing NASA headquarters and modifying plans based on feedback, increased engagement with the science community and refinement of details, coordination with commercial vendors and The Joint Agency Commercial Imagery Evaluation (JACIE) for HSMS satellite acquisitions, acquiring waveform LIDAR data and performing verification and validation.

  10. The NEON Science Commissioning Plan: Strategies for Confirming System Operation

    NASA Astrophysics Data System (ADS)

    Wirth, G. D.; Thorpe, A.; Buur, H.

    2015-12-01

    A transformation is underway in the field of ecological monitoring as compelling science questions motivate us to build ever-larger networks aiming to acquire uniform datasets over wide geographical ranges and long timescales. The National Ecological Observatory Network (NEON), currently under construction across the U.S., represents the most ambitious such effort to characterize ecology at the continental scale. When completed in 2017, NEON will begin a 30-year program to monitor the state of North American ecosystems at scores of independent sites by employing a combination of terrestrial and aquatic sensors, organismal, biogeochemical, and hydrological sampling conducted by field staff, and airborne remote-sensing imaging and spectroscopy. Simply building and bringing such complex, long-term monitoring networks online is, however, insufficient to produce a useful result: the science team must also confirm that the system fulfills its essential mission to generate accurate and uniform data from all sites over time. This is the role of Science Commissioning, the process which completes the construction stage by confirming that the system operates as designed before entering full operations. Ideally, Science Commissioning involves simply testing the completed system against all applicable science requirements. In the real world of large, complex networks, planners of Science Commissioning must grapple with several key questions: How can we verify that the measurements from a given subsystem reflect "truth"? How can we ensure that similar subsystems at different sites return equivalent results? How can we confirm that data from the same site remain comparable over long periods of time? How can we conduct meaningful tests on a large system in a reasonable amount of time and effort? We describe the specific strategies NEON is developing to meet these challenges and the implications for other large ecological monitoring networks.

  11. Space Symposium/76

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A symposium dealing with career opportunities in the aerospace program for minorities was conducted and evaluated. The symposium was attended by students from eleven predominantly minority colleges and universities in and around Washington, D. C. and the eastern region, and from high schools in five jurisdictions of the Washington metropolitan area. Speakers included representatives of Howard University, NASA, and private industry. On display during the symposium was a NASA exhibit of moon rocks, space shuttles, a lunar module, command module, pacemaker, LANDSAT, and other items of interest.

  12. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  13. Applying Climate Science to Urban Water Infrastructure Planning in California

    NASA Astrophysics Data System (ADS)

    Asante, K. O.; Khimsara, P.; Brown, K.

    2013-12-01

    Operators of urban water systems in California routinely develop long-range infrastructure plans to keep the communities they serve informed and to facilitate financing of planned projects. These plans compare baseline water supplies and demands to future projections, and they assess the adequacy of existing infrastructure for delivering water from raw water sources to customer connections under a variety of scenarios. In spite of these planning efforts, urban infrastructure projects are vulnerable to extreme climate and socioeconomic events. This paper examines the challenges facing infrastructure planners seeking to adapt urban water infrastructure to climate change using the current generation of climate predictions. A case study of small urban water systems in Lompoc Valley in California highlights the gap between climate variables available from global climate model predictions and decision parameters used in water infrastructure planning. Solutions are proposed for addressing some of the challenges encountered during climate impact analysis and vulnerability assessment. The paper also highlights outstanding gaps in our understanding of climate change and societal responses which could have profound impacts on urban water use and infrastructure needs.

  14. Science and Technology Roadmapping to Support Project Planning

    SciTech Connect

    Mc Carthy, Jeremiah Justin; Haley, Daniel Joseph; Dixon, Brent Wayne

    2001-07-01

    Disciplined science and technology roadmapping provides a framework to coordinate research and development activities with project objectives. This case-history paper describes initial project technology needs identification, assessment and R&D ranking activities supporting characterization of 781 waste tanks requiring a 'hazardous waste determination' or 'verification of empty' decision to meet an Idaho state Voluntary Consent Order.

  15. Bush Keeps Math-Science Plan on Bunsen Burner

    ERIC Educational Resources Information Center

    Davis, Michelle R.

    2006-01-01

    President Bush continued his campaign to get schools to focus more on mathematics and science education with a visit to a middle school in Rockville, Maryland, where students study robotics and work with NASA scientists. President Bush toured the school with Secretary of Education Margaret Spellings as part of his initiative to emphasize math and…

  16. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  17. Plans of Mice and Men: From Bench Science to Science Policy

    PubMed Central

    Simon, Ian D.

    2011-01-01

    The transition from bench science to science policy is not always a smooth one, and my journey stretched as far as the unemployment line to the hallowed halls of the U.S. Capitol. While earning my doctorate in microbiology, I found myself more interested in my political activities than my experiments. Thus, my science policy career aspirations were born from merging my love of science with my interest in policy and politics. After receiving my doctorate, I accepted the Henry Luce Scholarship, which allowed me to live in South Korea for 1 year and delve into the field of science policy research. This introduction into science policy occurred at the South Korean think tank called the Science and Technology Policy Institute (STEPI). During that year, I used textbooks, colleagues, and hands-on research projects as my educational introduction into the social science of science and technology decision-making. However, upon returning to the United States during one of the worst job markets in nearly 80 years, securing a position in science policy proved to be very difficult, and I was unemployed for five months. Ultimately, it took more than a year from the end of the Luce Scholarship to obtain my next science policy position with the American Society for Microbiology Congressional Fellowship. This fellowship gave me the opportunity to work as the science and public health advisor to U.S. Senator Harry Reid. While there were significant challenges during my transition from the laboratory to science policy, those challenges made me tougher, more appreciative, and more prepared to move from working at the bench to working in the field of science policy. PMID:21966041

  18. The Science of Shorthand Dictation: A Plan for All Seasons

    ERIC Educational Resources Information Center

    Condon, Gregg

    1977-01-01

    Three types of diction drills are described which are designed to build shorthand skills: (1) The stair-step plan which builds higher speed and increased endurance in graduated steps, (2) the 1-minute speed builder and variations, and (3) spurt diction and progressive diction. (TA)

  19. Environmental planning, ecosystem science, and ecosystem approaches for integrating environment and development

    NASA Astrophysics Data System (ADS)

    Slocombe, D. Scott

    1993-05-01

    Currently popular concepts such as sustainable development and sustainability seek the integration of environment and development planning. However, there is little evidence that this integration is occurring in either mainstream development planning or environmental planning. This is a function of the history, philosophies, and evolved roles of both. A brief review of the experience and results of mainstream planning, environmental planning, and ecosystem science suggests there is much in past scientific and professional practice that is relevant to the goal of integrated planning for environment and development, but still such commonly recommended reforms as systems and multidisciplinary approaches, institutional integration, and participatory, goal-oriented processes are rarely achieved. “Ecosystem approaches,” as developed and applied in ecology, human ecology, environmental planning, anthropology, psychology, and other disciplines, may provide a more transdisciplinary route to successful integration of environment and development. Experience with ecosystem approaches is reviewed, their advantages and disadvantages are discussed, and they are compared to traditional urban and regional planning, environmental planning, and ecosystem science approaches. Ultimately a synthesis of desirable characteristics for a framework to integrate environment and development planning is presented as a guide for future work and a criterion for evaluating existing programs.

  20. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  1. 1999 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    1999-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  2. ACS Symposium Support

    SciTech Connect

    Kenneth D. Jordan

    2010-02-20

    The funds from this DOE grant were used to help cover the travel costs of five students and postdoctoral fellows who attended a symposium on 'Hydration: From Clusters to Aqueous Solutions' held at the Fall 2007 American Chemical Society Meeting in Boston, MA, August 19-23. The Symposium was sponsored by the Physical Chemistry Division, ACS. The technical program for the meeting is available at http://phys-acs.org/fall2007.html.

  3. PREFACE: The International Symposium on Atomic Technology

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuharu

    2008-03-01

    The International Symposium on Atomic Technology (ISAT) is held every year. The Second Symposium (ISAT-2) was held on 1-2 October 2007 at the Awaji Yumebutai Conference Center, Awaji City, Japan presided by the `Atomic Technology Project'. The ISAT-2 symposium was intended to offer a forum for the discussion of the latest progress in atomic technologies. The symposium was attended by 106 delegates. There were 9 invited and 5 oral presentations. The number of poster presentations was 73. From all the contributions, 24 papers selected through review process are contained in this volume. The `Atomic Technology Project' was started in 2006 as a joint project of three institutions; (1) Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University (CAMT), (2) Tsukuba Research Center for Interdisciplinary Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba (TIMS) and (3) Polyscale Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science (PTRC), each of which were independently pursuing nano-technologies and were developing atomic scale operation and diagnostics, functional materials, micro processing and devices. The project is funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The goal of the project is to contribute to the development of atomic-scale science and technologies such as functional molecules, biomaterials, and quantum functions of atomic-scale structures. Yasuharu Shirai Conference Chair Center for Atomic Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-city, Osaka 565-0871, Japan. Conference photograph

  4. PREFACE: Fourth International Symposium on Atomic Technology

    NASA Astrophysics Data System (ADS)

    Okada, Shigefumi

    2010-04-01

    The International Symposium on Atomic Technology (ISAT) is held every year. The 4th Symposium (ISAT-4) was held on November 18-19, 2009 at the Seaside Hotel MAIKO VILLA KOBE, Kobe City, Japan presided by the "Atomic Technology Project". The ISAT-4 symposium was intended to offer a forum for the discussion on the latest progress in the atomic technologies. The symposium was attended by 107 delegates. There were 10 invited and 6 oral presentations. The number of poster presentations was 69. From all the contributions, 22 papers selected through review process are contained in this volume. The "Atomic Technology Project" was started in 2006 as a joint project of three institutions; (1) the Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University (CAMT), (2) the Tsukuba Research Center for Interdisciplinary Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba (TIMS) and (3) the Polyscale Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science (PTRC), each of which were independently pursuing nano-technologies and was developing atomic scale operation and diagnostics, functional materials, micro processing and device. The project is funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The goal of the project is to contribute to the development of atomic-scale science and technologies such as functional molecules, biomaterials, and quantum functions of atomic-scale structures. Shigefumi Okada Conference Chair Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-city, Osaka 565-0871, Japan. Conference photograph Kobe photograph

  5. International Symposium on Karst Water Resources

    NASA Astrophysics Data System (ADS)

    Back, William

    The International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH) joined the Hacettepe University of Ankara, Turkey, in sponsoring the International Symposium on Karst Water Resources. The other sponsors of the symposium were the Karst Water Resources Research Center Project of Hacettepe University and the United Nations Development Program through the United Nations Department of Technical Cooperation for Development, in addition to the following government organizations of Turkey: Ministry of Energy and Natural Resources, State Hydraulic, Works (DSI), General Directorate of Mineral Research and Exploration (MTA), Electrical Power Resources Survey and Development Administration (EIE) and Geological Engineering Department of the Engineering Faculty and Karst Hydrogeology Research Group (KRG) at the Hacettepe University Earth Sciences Application and Research Center. Cooperating organizations included the Turkish National Committee of the International Hydrological Program, the United Nations Educational, Scientific, and Cultural Organization (UNESCO), and the International Water Resources Association (IWRA). The symposium was divided into two parts: a paper presentation session held at the new Turkish National Library in Ankara during July 7-12, 1985, and a field trip from Ankara through Konya and Antalya to Izmir during July 13-18. The symposium chairman was Gultekin Gunay of the Hydrogeological Engineering Department of Ankara's Hacettepe University, and the cochairman was A. Ivan Johnson, a water resources consultant from Denver, Colo., and editor of WaterWatch. Scientists from 27 countries were represented among the 200 or so participants in attendance.

  6. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  7. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  8. News Almost dry but never dull: ASE 2014 EuroPhysicsFun shows physics to Europe Institute of Physics for Africa (IOPfA) South Sudan Report October 2013 Celebrating the centenary of x-ray diffraction The Niels Bohr Institute—an EPS Historical Site Nordic Research Symposium on Science Education (NFSUN) 2014: inquiry-based science education in technology-rich environments Physics World Cup 2013

    NASA Astrophysics Data System (ADS)

    2014-03-01

    Almost dry but never dull: ASE 2014 EuroPhysicsFun shows physics to Europe Institute of Physics for Africa (IOPfA) South Sudan Report October 2013 Celebrating the centenary of x-ray diffraction The Niels Bohr Institute—an EPS Historical Site Nordic Research Symposium on Science Education (NFSUN) 2014: inquiry-based science education in technology-rich environments Physics World Cup 2013

  9. A Science Plan for Development of an Arctic System Model

    NASA Astrophysics Data System (ADS)

    Hinzman, L.; Cassano, J.; Doescher, R.; Holland, M.; Mitsudera, H.; Roberts, A.; Sumi, A.; Walsh, J.

    2008-12-01

    In the last 50 years a wide variety of changes in the Arctic have been documented. Regardless of the driving forces, the combined observations and documentation suggest that the arctic system may be entering a state unprecedented in the history of civilization. The complex interplay of physical, chemical, biological and social processes interact to such a degree that it is not possible to understand future trajectories without developing holistic perspectives of the complete system. A central justification for developing an 'Arctic System Model' is to strengthen our understanding of the inter-connections among system components and related feedback processes, thereby enhancing the predictive capability required for societal planning and response to future change. A recent community workshop has identified the objectives and strategic elements that comprise a plan for Arctic System Model development and implementation. The objective encompasses our understanding of change, attribution of change, and effects of change. The plan includes the use of a limited area model, driven at the boundaries by a global model. The limited-area model approach allows for the use of computationally sophisticated algorithms and very high resolution to resolve processes parameterized in global models. The implementation strategy includes the utilization of ongoing efforts in component modeling, together with community oversight and a dedicated vehicle for the provision of coordination, support activities, and liaison with the observational and user communities.

  10. Life sciences biomedical research planning for Space Station

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  11. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  12. Lessons Learned in Decadal Planning in Space Science

    NASA Technical Reports Server (NTRS)

    Groswald, Lewis; Smith, David H.

    2012-01-01

    This summary has been prepared by the workshop rapporteurs as a factual summary of what occurred at the workshop. The planning committee's role was limited to planning and convening the workshop. The views contained in the report are those of individual workshop participants and do not necessarily represent the views of all workshop participants, the planning committee, or the National Research Council. This summary was written using video recordings of the entire workshop proceedings. Speakers attributed in this summary were not asked to review the workshop summary before its release. This workshop summary has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the NRC's Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the summary meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this summary: George Paulikas, The Aerospace Corporation (retired), Marcia Rieke, University of Arizona, Kunio Sayanagi, Hampton University, Marcia Smith, Space and Technology Policy Group, LLC, and Warren Washington, National Center for Atmospheric Research. Although the reviewers listed above have provided many constructive comments and suggestions, they did not see the final draft of the workshop summary before its release. The review of this report was overseen by Kenneth Kellermann, National Radio Astronomy Observatory. Appointed by the NRC, he was responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review

  13. U.S. Materials Science on the International Space Station: Status and Plans

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  14. Collaborative Large-scale Engineering Analysis Network for Environmental Research (CLEANER)Science Planning

    NASA Astrophysics Data System (ADS)

    Schnoor, J. L.; Minsker, B. S.; Haas, C. N.

    2005-12-01

    The Project Office of the Collaborative Large-scale Engineering Analysis Network for Environmental Research (CLEANER) was awarded a cooperative agreement from the National Science Foundation (NSF)and began operations on August 1, 2005. Since that time we have organized six standing committees and an executive committee with an advisory board. The first all-hands meeting of CLEANER took place at NSF and the National Center for Supercomputing Applications (NCSA) Access facility in Arlington, Virginia, in September. Among the initial tasks of CLEANER is to join with the Consortium of Universities for the Advancement of Hydrological Sciences Incorporated (CUAHSI) in developing a joint science plan for a national observatory for environmental research utilizing NSF Major Research Equipment and Facilities Construction (MREFC) funds slated for 2011. This presentation describes our initial thinking on the science plan and our vision for the national environmental observatory and cyberinfrastructure.

  15. Attitude and Secondary School Science Students' Intention To Enroll in Physics: An Application of the Theory of Planned Behavior.

    ERIC Educational Resources Information Center

    Crawley, Frank E.; Black, Carolyn B.

    This study explores the utility of the theory of planned behavior for understanding and predicting the behavioral intentions of secondary science students. Data were collected from secondary science students enrolling in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade). Cause-effect relations…

  16. Integrated planning and scheduling for Earth science data processing

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.

    1995-01-01

    Several current NASA programs such as the EOSDIS Core System (ECS) have data processing and data management requirements that call for an integrated planning and scheduling capability. In this paper, we describe the experience of applying advanced scheduling technology operationally, in terms of what was accomplished, lessons learned, and what remains to be done in order to achieve similar successes in ECS and other programs. We discuss the importance and benefits of advanced scheduling tools, and our progress toward realizing them, through examples and illustrations based on ECS requirements. The first part of the paper focuses on the Data Archive and Distribution (DADS) V0 Scheduler. We then discuss system integration issues ranging from communication with the scheduler to the monitoring of system events and re-scheduling in response to them. The challenge of adapting the scheduler to domain-specific features and scheduling policies is also considered. Extrapolation to the ECS domain raises issues of integrating scheduling with a product-generation planner (such as PlaSTiC), and implementing conditional planning in an operational system. We conclude by briefly noting ongoing technology development and deployment projects being undertaken by HTC and the ISTB.

  17. Plasma Physics, Fusion Science, and California High School Science

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2004-11-01

    In order to further engage California HIgh School science teachers in plasma physics and fusion science, a collaboration was formed between LLNL's Fusion Energy Program and the University of California's Edward Teller Education Center (etec.ucdavis.edu). California's Science Content Standards for high school physics (www.cde.ca.gov/be/st/ss/scphysics.asp) were used to create a public lecture (education.llnl.gov/sos/) that covered "students are expected to achieve" physics topics relevant to astrophysical and fusion plasma research. In addition to the lecture, a two day workshop for the Edward Teller Education Symposium, September 24 - 25, 2004 (education.llnl.gov/symposium2004) was designed around plasma spectroscopy (education.llnl.gov/symposium2004/agenda_astro.html). Plasma spectroscopy was chosen as the "anchor" to the workshop given the breadth and depth of the field to both astrophysical and fusion plasma research. Workshop participation includes lectures, tours, spectroscopic measurements, and building a 'spectroscope' for use in the teachers' respective high school classrooms. Accomplishments will be reported and future plans will be presented that include development of a one to two week expanded workshop that includes plasma research methods and advanced science skills essential to guiding students to conduct research projects.

  18. Observation Planning Made Simple with Science Opportunity Analyzer (SOA)

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Polanskey, Carol A.

    2004-01-01

    As NASA undertakes the exploration of the Moon and Mars as well as the rest of the Solar System while continuing to investigate Earth's oceans, winds, atmosphere, weather, etc., the ever-existing need to allow operations users to easily define their observations increases. Operation teams need to be able to determine the best time to perform an observation, as well as its duration and other parameters such as the observation target. In addition, operations teams need to be able to check the observation for validity against objectives and intent as well as spacecraft constraints such as turn rates and acceleration or pointing exclusion zones. Science Opportunity Analyzer (SOA), in development for the last six years, is a multi-mission toolset that has been built to meet those needs. The operations team can follow six simple steps and define his/her observation without having to know the complexities of orbital mechanics, coordinate transformations, or the spacecraft itself.

  19. The Lunar Reconnaissance Orbiter: Plans for the Science Phase

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.; Keller, John W.; Chin, Gordon; Petro, Noah; Rice, James; Garvin, James

    2011-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), which was launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's primary objectives included the search for resources and to investigate the Lunar radiation environment. This phase of the mission was completed on September 15,2010 when the operational responsibility for LRO was transferred from ESMD to NASA's Science Mission directorate (SMD). Under SMD, the mission focuses on a new set of goals related to the history of the Moon, its current state and what its history can tell us about the evolution of the Solar System.

  20. Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Hou, Arthur Y.

    2008-01-01

    For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.

  1. SciBox, an end-to-end automated science planning and commanding system

    NASA Astrophysics Data System (ADS)

    Choo, Teck H.; Murchie, Scott L.; Bedini, Peter D.; Steele, R. Josh; Skura, Joseph P.; Nguyen, Lillian; Nair, Hari; Lucks, Michael; Berman, Alice F.; McGovern, James A.; Turner, F. Scott

    2014-01-01

    SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.

  2. Strategic plan, 1991: A strategy for leadership in space through excellence in space science and applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In 1988, the Office of Space Science and Applications (OSSA) developed and published a Strategic Plan for the United States' space science and applications program during the next 5 to 10 years. The Plan presented the proposed OSSA program for the next fiscal year and defined a flexible process that provides the basis for near-term decisions on the allocation of resources and the planning of future efforts. Based on the strategies that have been developed by the advisory committees both of the National Academy of Sciences and of NASA, the Plan balances major, moderate, and small mission initiatives, the utilization of Space Station Freedom, and the requirements for a vital research base. The Plan can be adjusted to accommodate varying budget levels, both those levels that provide opportunities for an expanded science and applications program, and those that constrain growth. SSA's strategic planning is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy can yield a viable program; and check the strategy for consistency with resource constraints. The outcome of this process is a clear, coherent strategy that meets both NASA's and OSSA's goals, that assures realism in long-range planning and advanced technology development, and that provides sufficient resiliency to respond and adapt to both known and unexpected internal and external realities. The OSSA Strategic Plan is revised annually to reflect the approval of new programs, improved understanding of requirements and issues, and any major changes in the circumstances, both within NASA and external to NASA, in which OSSA initiatives are considered.

  3. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    SciTech Connect

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  4. Proceedings of the sixteenth international symposium on mine planning and equipment selection (MPES 2007) and the tenth international symposium on environmental issues and waste management in energy and mineral production (SWEMP 2007)

    SciTech Connect

    Singhal, R.K.; Fytas, K.; Jongsiri, S.; Ge, Hao

    2007-07-01

    Papers presented at MPES 2007 covered: coal mining and clean coal processing technologies; control, design and planning of surface and underground mines; drilling, blasting and excavation engineering; mining equipment selection; automation and information technology; maintenance and production management for mines and mining systems; health, safety and environment; cost effective methods of mine reclamation; mine closure and waste disposal; and rock mechanics and geotechnical issues. Papers from SWEMP 2007 discussed methods and technologies for assessing, minimizing and preventing environmental problems associated with mineral and energy production. Topics included environmental impacts of coal-fired power projects; emission control in thermal power plants; greenhouse gas abatement technologies; remediation of contaminated soil and groundwater; environmental issues in surface and underground mining of coal, minerals and ores; managing mine waste and mine water; and control of effluents from mineral processing, metallurgical and chemical plants.

  5. Sustainability science: an integrated approach for health-programme planning.

    PubMed

    Gruen, Russell L; Elliott, Julian H; Nolan, Monica L; Lawton, Paul D; Parkhill, Anne; McLaren, Cameron J; Lavis, John N

    2008-11-01

    Planning for programme sustainability is a key contributor to health and development, especially in low-income and middle-income countries. A consensus evidence-based operational framework would facilitate policy and research advances in understanding, measuring, and improving programme sustainability. We did a systematic review of both conceptual frameworks and empirical studies about health-programme sustainability. On the basis of the review, we propose that sustainable health programmes are regarded as complex systems that encompass programmes, health problems targeted by programmes, and programmes' drivers or key stakeholders, all of which interact dynamically within any given context. We show the usefulness of this approach with case studies drawn from the authors' experience. PMID:18984192

  6. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  7. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    SciTech Connect

    Powell, H.T.; Kilkenny, J.D.

    1995-12-01

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

  8. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  9. Plains Elevated Convection at Night (PECAN) Experiment Science Plan

    SciTech Connect

    Turner, D; Parsons, D; Geerts, B

    2015-03-01

    The Plains Elevated Convection at Night (PECAN) experiment is a large field campaign that is being supported by the National Science Foundation (NSF) with contributions from the National Oceanic and Atmospheric Administration (NOAA), the National Atmospheric and Space Administration (NASA), and the U.S. Department of Energy (DOE). The overarching goal of the PECAN experiment is to improve the understanding and simulation of the processes that initiate and maintain convection and convective precipitation at night over the central portion of the Great Plains region of the United States (Parsons et al. 2013). These goals are important because (1) a large fraction of the yearly precipitation in the Great Plains comes from nocturnal convection, (2) nocturnal convection in the Great Plains is most often decoupled from the ground and, thus, is forced by other phenomena aloft (e.g., propagating bores, frontal boundaries, low-level jets [LLJ], etc.), (3) there is a relative lack of understanding how these disturbances initiate and maintain nocturnal convection, and (4) this lack of understanding greatly hampers the ability of numerical weather and climate models to simulate nocturnal convection well. This leads to significant uncertainties in predicting the onset, location, frequency, and intensity of convective cloud systems and associated weather hazards over the Great Plains.

  10. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  11. The Two-Column Aerosol Project (TCAP) Science Plan

    SciTech Connect

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  12. Draft Plan for Development of the Integrated Science Assessment for Nitrogen Oxides - Health Criteria

    EPA Science Inventory

    EPA has announced a draft development plan for the next Integrated Science Assessment (ISA) for the health effects of nitrogen oxides (NOX) which will serve as the scientific basis for review of the primary (health-based) National Ambient Air Quality Standard for nitrogen dioxide...

  13. DRAFT SCIENCE INFORMATION MANAGEMENT COORDINATION BOARD (SIMCORB) BUSINESS PLAN VERSION 1.2, JULY 14, 2000

    EPA Science Inventory

    The Office of Research and Development (ORD) has recognized the central role of information management (IM) in supporting the quality and integrity of science and has established an IM component of the ORD Strategic Plan. The ORD strategic IM vision highlights ORD's responsibilit...

  14. 77 FR 34062 - Announcement of the U.S. Geological Survey Science Strategy Planning Feedback Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ....S. Geological Survey Announcement of the U.S. Geological Survey Science Strategy Planning Feedback.... This process involves gathering input from the public on draft strategy documents. Feedback can be... closes at midnight on August 1, 2012. FOR FURTHER INFORMATION CONTACT: Listed below are contacts for...

  15. 77 FR 43110 - Announcement of the U.S. Geological Survey Science Strategy Planning Feedback Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ....S. Geological Survey Announcement of the U.S. Geological Survey Science Strategy Planning Feedback.... This process involves gathering input from the public on draft strategy documents. Feedback can be... been extended to midnight on September 1, 2012. FOR FURTHER INFORMATION CONTACT: Listed below...

  16. The Impact of Student Education and Occupational Planning on Course Selection in Mathematics and Science.

    ERIC Educational Resources Information Center

    Wentworth, Nancy M.; Monroe, Eula Ewing; Smith, Barbara A.

    1998-01-01

    Analyzes effects of a high school counseling program designed to encourage students to consider future career options and the mathematics and science courses required for them. Counseling positively influenced the number and level of classes students planned to take, although actual number of classes taken were not higher than those at control…

  17. EPA Critical Path Science Plan Projects 19, 20 and 21: Human and Bovine Source Detection

    EPA Science Inventory

    The U.S. EPA Critical Path Science Plan Projects are: Project 19: develop novel bovine and human host-specific PCR assays and complete performance evaluation with other published methods. Project 20: Evaluate human-specific assays with water samples impacted with different lev...

  18. California Community Colleges Family and Consumer Sciences: A Plan for the 21st Century Update, 1998.

    ERIC Educational Resources Information Center

    Mount San Antonio Coll., Walnut, CA.

    This update of the 1998 Plan for the 21st Century was designed to augment the California Community College Family and Consumer Sciences in the 21st Century packet, produced in 1996. It summarizes a variety of activities, products and events that have taken place over the past two years, and suggests resources and contacts for learning more about…

  19. Some Problems for the Teacher Useful as a Basis for Planning Lessons in Science-Conservation.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    This manual was prepared for elementary school teachers as part of The Science Project Related to Upgrading Conservation Education (Project S.P.R.U.C.E.). The introduction emphasizes the importance of an integrated approach to environmental education, and lists some research findings important in planning instruction. A chart shows related…

  20. Assessing pre-service science teachers' technological pedagogical content knowledge (TPACK) through observations and lesson plans

    NASA Astrophysics Data System (ADS)

    Canbazoglu Bilici, Sedef; Selcen Guzey, S.; Yamak, Havva

    2016-05-01

    Background: Technological pedagogical content knowledge (TPACK) is critical for effective teaching with technology. However, generally science teacher education programs do not help pre-service teachers develop TPACK. Purpose: The purpose of this study was to assess pre-service science teachers' TPACK over a semester-long Science Methods. Sample: Twenty-seven pre-service science teachers took the course toward the end of their four-year teacher education program. Design and method: The study employed the case study methodology. Lesson plans and microteaching observations were used as data collection tools. Technological Pedagogical Content Knowledge-based lesson plan assessment instrument (TPACK-LpAI) and Technological Pedagogical Content Knowledge Observation Protocol (TPACK-OP) were used to analyze data obtained from observations and lesson plans. Results: The results showed that the TPACK-focused Science Methods course had an impact on pre-service teachers' TPACK to varying degrees. Most importantly, the course helped teachers gain knowledge of effective usage of educational technology tools. Conclusion: Teacher education programs should provide opportunities to pre-service teachers to develop their TPACK so that they can effectively integrate technology into their teaching.

  1. Symposium on electroslag component casting: proceedings

    SciTech Connect

    Judkins, R.R.; Hobday, J.M.

    1984-03-01

    The US Department of Energy (DOE), Office of Fossil Energy, Office of Surface Coal Gasification, has established a Materials Program to develop and apply appropriate materials to coal gasification plant components. The overall goals of the Surface Gasification Materials Program (SGMP) are to improve operational reliability and system durability and to reduce fabrication and operating costs of coal gasification plant components. The SGMP Electroslag Component Casting Project is directed to the development of electroslag casting (ESC) technology for use in coal conversion components such as valve bodies, pump housings, and pipe fittings. The aim is to develop a sufficient data base to permit ESC to become an ASME Code-accepted process. It is also intended to transfer the ESC process technology to private industry. This symposium was planned to discuss not only the SGMP Electroslag Component Casting Project but the activities and experiences of other organizations as well. The symposium addressed descriptions of electroslag processes; a worldwide perspective on the status of ESC technology; and details of production, mechanical properties, economics, and use of ESC for coal gasification components. Ten papers were presented, and a panel discussion was held to provide participants an opportunity to express their opinions and to offer recommendations on the content of the DOE program. This document constitutes the proceedings of that symposium. The papers included here are minimally edited transcripts of the presentations made at the symposium. All papers have been processed for inclusion in the Energy Data Base.

  2. ARM West Antarctic Radiation Experiment (AWARE) Science Plan

    SciTech Connect

    Lubin, D; Bromwich, DH; Russell, LM; Verlinde, J; Vogelmann, AM

    2015-10-01

    West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary from one season to the next, and these mechanisms very likely involve complex teleconnections with subtropical and tropical latitudes. The prime motivation for this proposal is that there has been no substantial atmospheric science or climatological field work on West Antarctica since the 1957 International Geophysical Year and that research continued for only a few years. Direct meteorological information on the WAIS has been limited to a few automatic weather stations for several decades, yet satellite imagery and meteorological reanalyses indicate that West Antarctica is highly susceptible to advection of warm and moist maritime air with related cloud cover, depending on the location and strength of low pressure cells in the Amundsen, Ross, and Bellingshausen Seas. There is a need to quantify the role of these changing air masses on the surface energy balance, including all surface energy components and cloud-radiative forcing. More generally, global climate model simulations are known to perform poorly over the Antarctic and Southern Oceans, and the marked scarcity of cloud information at southern high latitudes has so far inhibited significant progress. Fortunately, McMurdo Station, where the Atmospheric Radiation Measurement Facility’s (ARM’s) most advanced cloud and aerosol instrumentation is situated, has a meteorological relationship with the WAIS via circulation patterns in the Ross and Amundsen Seas. We can therefore gather sophisticated data with cloud

  3. The VLT Opening Symposium

    NASA Astrophysics Data System (ADS)

    Bergeron, J.

    1999-06-01

    The beginning of the VLT era was marked by two major events: the VLT Official Inauguration Ceremony at Paranal on 5 March 1999, preceded by the VLT Opening Symposium on 1-4 March. ESO is indebted to Professor J.A. Music Tomicic, Rector of the Universidad Católica del Norte, for hosting this symposium. Another major event occurred on the night of 4 March: First light was achieved ahead of schedule at Kueyen, the second 8.2-m VLT unit telescope.

  4. 2001 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  5. The Planning of Lander Science Observations after ROSETTA Deep Space Hibernation

    NASA Astrophysics Data System (ADS)

    Barthelemy, Maud; Ulamec, Stephan; Gaudon, Philippe; Biele, Jens; Pätz, Brigitte; Ashman, Mike

    2014-05-01

    After 10 years of its interplanetary journey, Rosetta has woken up from hibernation to meet Churyumov-Gerasimenko comet in the second term of 2014. The Rosetta spacecraft is composed of an Orbiter and a Lander part. The spacecraft will deliver the Lander, named Philae, to land on the surface of the comet in November 2014. During the Cruise Phase, the Lander, attached to the Orbiter, participated in several commissioning and payload checkout observations. In April 2014, after almost 3 years of hibernation, the Lander and the Orbiter will enter a commissioning phase to check the health of all instruments. Then, from May to November, Prelanding science activities can be planned, although the priority will go to those observations that help to select the landing site. The Lander project has, in much the same way as the Orbiter, its own ground segment: the Rosetta Lander Ground Segment (RLGS). The RLGS is composed of the Science Operations and Navigation Center - SONC - at CNES in Toulouse and the Lander Control Center - LCC - at DLR in Cologne. There are 10 instruments on board of Philae trying to conduct science observations during the life of the Lander. As the comet travels closer to the sun the temperature will eventually become too hot for Philae. The Orbiter, however, is planned to operate for much longer, until end of 2015, passing perihelion. Each of the 10 instruments is represented by a principal investigator. The Lander project also has Lead Scientists, who make sure that the science objectives of the Lander are fulfilled and are on hand to solve any eventual conflicts in this regard. To plan their observations, the Lander team listed their science objectives and ranked them. From these objectives, Specific On-Comet Operation Plan (SOCOP) documents are written by LCC describing the proposed observations. Then, at SONC, the MOST (Mission Operation Scheduling Tool) is used to generate a science experiment plan. This plan is confirmed by the PIs and the Lead

  6. A checklist for planning and designing audiovisual facilities in health sciences libraries.

    PubMed Central

    Holland, G J; Bischoff, F A; Foxman, D S

    1984-01-01

    Developed by an MLA/HeSCA (Health Sciences Communications Association) joint committee, this checklist is intended to serve as a conceptual framework for planning a new or renovated audiovisual facility in a health sciences library. Emphasis is placed on the philosophical and organizational decisions that must be made about an audiovisual facility before the technical or spatial decisions can be wisely made. Specific standards for facilities or equipment are not included. The first section focuses on health sciences library settings. Ideas presented in the remaining sections could apply to academic learning resource center environments as well. A bibliography relating to all aspects of audiovisual facilities planning and design is included with references to specific sections of the checklist. PMID:6208957

  7. Getting Started in Science Fairs: From Planning to Judging. The Teacher's Science Fair Survival Guide.

    ERIC Educational Resources Information Center

    Perry, Phyllis J.

    This book is provided as a helpful tool in ensuring a successful and satisfying elementary school science fair. The book clarifies the roles of teachers, parents, and students and provides information about types of projects, practical tips, and possible topics for research. Included are short bibliographies, sample forms (which are teacher…

  8. PREFACE: 13th IMEKO TC17-TC7 Joint Symposium

    NASA Astrophysics Data System (ADS)

    Khan, Sanowar

    2010-04-01

    'Without Measurement No Science, Without Science No Measurement' The 13th IMEKO (International Measurement Confederation) TC1-TC7 Joint Symposium was held at City University London, UK from 1-3 September 2010. For the first time this Symposium also included the involvement of IMEKO Technical Committee 13 (TC13) - Measurements in Biology and Medicine. This brings an added dimension to the Symposium in London since the area of measurement science and technology in biology and medicine is an important and a fast growing one. The Symposium was organized by the City University London (www.city.ac.uk) in collaboration with the Institute of Physics (IOP), UK (www.iop.org). The work of this Symposium is reported in this volume. The scope of the Symposium included the main topics covered by the above Technical Committees - education and training in measurement and instrumentation (TC1), measurement science (TC7) and measurements in biology and medicine. These themes underpinned the strap line of the Symposium, 'Without Measurement No Science, Without Science No Measurement' with the highest number of contributions from the measurement science area. The thematic areas were led by invited presentations from each of the areas by eminent speakers. The Symposium provided a useful forum for experts working in these areas for sharing and exchanging their work and ideas. The Symposium attracted participants from many countries of the world including the United States, Japan, Russia and Ukraine. In total over sixty papers are included in the volume and they are presented under the above three key thematic areas. Each paper was independently peer-reviewed by two reviewers from a distinguished international panel. The organizers of the Symposium, City University London have pioneered the establishment of measurement and instrumentation as an academic discipline in the UK through the work of Professor Ludwik Finkelstein who was for many years Chairman of TC1 and a founding member of TC

  9. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect

    Kotamarthi, VR

    2010-06-21

    emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  10. Keynote symposium - avian influenza: Vectors, vaccines, public health, and product marketability introduction and welcome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper is the introduction to the Keynote Symposium titled “Avian Influenza: Vectors, Vaccines, Public Health, and Product Marketability” that the author organized for the Poultry Science Association (PSA) on July 20, 2008. The purpose of the symposium was to provide the members and guests of PS...

  11. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  12. Research Symposium I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The proceedings of this symposium consist of abstracts of talks presented by interns at NASA Glenn Research Center (GRC). The interns assisted researchers at GRC in projects which primarily address the following topics: aircraft engines and propulsion, spacecraft propulsion, fuel cells, thin film photovoltaic cells, aerospace materials, computational fluid dynamics, aircraft icing, management, and computerized simulation.

  13. Tools in HRD. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on tools in human resource development (HRD). "Game Theory Methodology in HRD" (Thomas J. Chermack, Richard A. Swanson) explores the utility of game theory in helping the HRD profession address the complexity of integrating multiple theories for disciplinary understanding and fulfilling its…

  14. Recruitment and Training. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on recruitment and training. "College Choice: The State of Marketing and Effective Student Recruitment Strategies" (Fredrick Muyia Nafukho, Michael F. Burnett) reports on a study of the recruitment strategies used by Louisiana State University's admissions office and College of Agriculture that…

  15. European Cosmic Ray Symposium

    ScienceCinema

    None

    2011-04-25

    13me Symposium qui se déroule du 27 au 31 juillet pour la première fois au Cern. Brian Pattison ouvre la cérémonie et donne la parole à Dr.Ugland (qui représente le DG C.Rubbia excusé) et d'autres intervenants

  16. Standards and Certification. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on standards and certification in human resource development (HRD). "Implementing Management Standards in the UK" (Jonathan Winterton, Ruth Winterton) reports on a study that explored the implementation of management standards in 16 organizations and identified 36 key themes and strategic issues…

  17. Globalism and HRD. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on globalization and human resource development (HRD). "Challenges and Strategies of Developing Human Resources in the Surge of Globalization: A Case of the People's Republic of China" (De Zhang, Baiyin Yang, Yichi Zhang) analyzes the challenges and strategies of HRD in China and discusses the…

  18. Online Learning. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on online learning that was conducted as part of a conference on human resource development (HRD). "An Instructional Strategy Framework for Online Learning Environments" (Scott D. Johnson, Steven R. Aragon) discusses the pitfalls of modeling online courses after traditional instruction instead…

  19. Fifth Cooley's anemia symposium

    SciTech Connect

    Bank, A.; Anderson, W.F.; Zaino, E.C.

    1985-01-01

    This book discusses the topics presented at the symposium on the subject of 'Thalassemia'. Sickle cell anemia is also briefly discussed. The aspects discussed are chromosomal defects of anemias particularly globin synthesis, and the role of messenger RNA and other chromosomes.

  20. ASSA Symposium 2012 Abstracts

    NASA Astrophysics Data System (ADS)

    2012-10-01

    of papers presented at the ASSA Symposium held in Cape Town 12-14 October 2012. Videos are available on You tube. See http://www.youtube.com/playlist?list=PL8odLrzpzMkHS-cSEfPFIr3YLPAq4d5MU for a playlist.

  1. Issues of Gender. Symposium.

    ERIC Educational Resources Information Center

    2002

    This symposium is comprised of three papers on issues of gender in human resource development (HRD). "The Impact of Awareness and Action on the Implementation of a Women's Network" (Laura L. Bierema) reports on research to examine how gender consciousness emerges through the formation of in-company networks to promote corporate women's status. It…

  2. Technical Entrepreneurship: A Symposium.

    ERIC Educational Resources Information Center

    Cooper, Arnold C., Ed.; Komives, John L., Ed.

    Contained in this document are papers presented at the Symposium on Technical Entrepreneurship at Purdue University by researchers who were then or had previously been engaged in research in the area. Because formal research in this area was in its infancy, there was a particular need to afford investigators in the field opportunities to compare…

  3. Issues of HRD. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on issues of human resource development (HRD). "The Complex Roots of Human Resource Development" (Monica Lee) discusses the roots of HRD within the framework of the following views of management: (1) classic (the view that managers must be able to create appropriate rules and procedures for…

  4. Competencies in HRD. Symposium.

    ERIC Educational Resources Information Center

    2002

    This symposium is comprised of three papers on competencies in human resource development (HRD). "The Development of a Competency Model and Assessment Instrument for Public Sector Leadership and Management Development" (Sharon S. Naquin, Elwood F. Holton III) reports on a streamlined methodology and process used to develop a competency model for…

  5. Quality of Life Symposium.

    ERIC Educational Resources Information Center

    New Mexico State Univ., Las Cruces. New Mexico Environmental Inst.

    Comments, speeches, and questions delivered at the Quality of Life Symposium are compiled in these proceedings. As an exploratory session, the conference objectives were to (1) become better informed about New Mexico--its resource base, the economy, social and cultural base, and the environment; and (2) to evaluate and discuss the role of New…

  6. Values: A Symposium Report.

    ERIC Educational Resources Information Center

    Ryan, T. A., Ed.

    This publication brings together a set of four papers prepared for a symposium on values at the 1972 annual meeting of the American Educational Research Association. The first paper, by Fred N. Kerlinger, establishes a rationale for values research. The discussion focuses on the definition of values, relationship between values and attitudes,…

  7. Team Based Work. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on team-based work in human resource development (HRD). "Toward Transformational Learning in Organizations: Effects of Model-II Governing Variables on Perceived Learning in Teams" (Blair K. Carruth) summarizes a study that indicated that, regardless of which Model-II variable (valid information,…

  8. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    SciTech Connect

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  9. Enhancing Use of Learning Sciences Research in Planning for and Supporting Educational Change: Leveraging and Building Social Networks

    ERIC Educational Resources Information Center

    Penuel, William R.; Bell, Philip; Bevan, Bronwyn; Buffington, Pam; Falk, Joni

    2016-01-01

    This paper explores practical ways to engage two areas of educational scholarship--research on science learning and research on social networks--to inform efforts to plan and support implementation of new standards. The standards, the "Next Generation Science Standards" (NGSS; NGSS Lead States in Next generation science standards: For…

  10. A case study of high school teachers' decision making models for planning and teaching science

    NASA Astrophysics Data System (ADS)

    Duschl, Richard A.; Wright, Emmett

    The focus of this study was to investigate the manner and the degree to which science teachers consider the nature of the subject matter in their decision making addressing the planning and the delivery of instructional tasks. An assumption of the study is that considerations for the nature of the subject matter should be a factor in a teacher's decision making about what to teach and how to teach. Relevant research literature reviewed includes (1) human decision making and the development of cognitive models of reality, (2) modern philosophies of science, and (3) philosophy of science and science education. Methods of data collection and of data analysis followed Spradley's Developmental Research Sequence guidelines for conducting ethnographic research. Validity of research findings was established from the triangulation of observations, interviews, and documents and surveys. The goal of the research was the development of grounded hypotheses about science TEACHERS' pedagogical decision making. Based on the results of this study it is hypothesized that science TEACHERS' decision-making models of reality for the selection, implementation, and development of instructional tasks are dominated by considerations for (a) student development, (b) curriculum guide objectives, and (c) pressures of accountability. Little, if any, consideration is given to the nature of the subject matter by the science teachers in decision making. Implications exist for the disenfranchisement of teachers from the task of making decisions concerning what to teach.

  11. Catholic Secondary Schools and Colleges: Renewing the Partnership. Proceedings of the Symposium on Secondary School-College Collaboration (Anaheim, California, April 3-5, 1986).

    ERIC Educational Resources Information Center

    Association of Catholic Colleges and Universities, Washington, DC.

    Proceedings of the 1986 Symposium on Catholic Secondary School and College Collaboration are presented. In addition to outlining the background to the symposium, including meetings of National Catholic Education Association task forces, the activities and topics of the symposium and some outcomes are summarized. A brief statement of plans for…

  12. Proceedings of the XIII International Symposium on Biological Control of Weeds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal during this symposium has been to help colleagues reconnect, share experiences and plan future collaborations as we examine emerging issues that affect invasive plant management across the globe. This symposium also provided a unique opportunity to take stock of a century of biological cont...

  13. What scientists can learn from Plato's Symposium

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim

    2015-04-01

    Conferences and scientific meetings are as old as science itself. The ancient Greeks where (in)famous for organizing so-called symposiums. During a symposium (from Greek, drinking together), attendees followed a program that contained both social and scientific aspects, focused around a certain topic. Whilst drinking and eating, all participants were expected to share their vision on the topic of interest by giving an oral presentation. The goal of these meetings was to arrive at a new common understanding and to come closer to the truth. Plato et al. knew very well how to organize an effective scientific conference, which should make use overthink the way we are organizing present-day conferences. Scientific meetings aim to connect researchers, share research and unravel the truth. The question is now: how do we get this done effectively? Plato knew that discussing science with strangers is difficult and he believed that talking about heavy matter could be done best when combined with social events. What if we try to go back to the times of Plato and model our conferences after the ancient symposiums? We might drop laying on couches and covering ourselves in ivy and flowers. However, a mix of social and scientific events will contribute to achieving the ultimate goal of why scientists go to conferences: to connect, to share and to unravel the truth.

  14. Life science payloads planning study. [for space shuttle orbiters and spacelab

    NASA Technical Reports Server (NTRS)

    Nelson, W. G.; Wells, G. W.

    1977-01-01

    Preferred approaches and procedures were defined for integrating the space shuttle life sciences payload from experiment solicitation through final data dissemination at mission completion. The payloads operations plan was refined and expended to include current information. The NASA-JSC facility accommodations were assessed, and modifications recommended to improve payload processing capability. Standard format worksheets were developed to permit rapid location of experiment requirements and a Spacelab mission handbook was developed to assist potential life sciences investigators at academic, industrial, health research, and NASA centers. Practical, cost effective methods were determined for accommodating various categories of live specimens during all mission phases.

  15. The space shuttle payload planning working groups. Volume 4: Life sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Life Sciences working group of the space shuttle payload planning activity are presented. The objectives of the Life Sciences investigations are: (1) to continue the research directed at understanding the origin of life and the search for extraterrestrial evidence of life, (2) biomedical research to understand mechanisms and provide criteria for support of manned flight, (3) technology development for life support, protective systems, and work aids for providing environmental control, and (4) to study basic biological functions at all levels or organization influenced by gravity, radiation, and circadian rhythms. Examples of candidate experimental schedules and the experimental package functional requirements are included.

  16. The Transition from VMS to Unix Operations for STScI's Science Planning and Scheduling Team

    NASA Astrophysics Data System (ADS)

    Adler, D. S.; Taylor, D. K.

    The Science Planning and Scheduling Team of the Space Telescope Science Institute currently uses the VMS operating system. SPST began a transition to Unix-based operations in the summer of 1999. The main tasks for SPST to address in the Unix transition are: (1) converting the current SPST operational tools from DCL to Python; (2) converting our database report scripts from SQL; (3) adopting a Unix-based code management system; and (4) training the SPST staff. The goal is to fully transition the team to Unix operations by the end of 2001.

  17. Preservice elementary teachers learning to use curriculum materials to plan and teach science

    NASA Astrophysics Data System (ADS)

    Gunckel, Kristin Lee

    New elementary teachers rely heavily on curriculum materials, but available science curriculum materials do not often support teachers in meeting specified learning goals, engaging students in the inquiry and application practices of science, or leveraging students' intellectual and cultural resources for learning. One approach to supporting new elementary teachers in using available science curriculum materials is to provide frameworks to scaffold preservice teachers' developing lesson planning and teaching practices. The Inquiry-Application Instructional Model (I-AIM) and the Critical Analysis and Planning (CA&P) tool were designed to scaffold preservice teachers' developing practice to use curriculum materials effectively to plan and teach science. The I-AIM identifies functions for each activity in an instructional sequence. The CA&P provides guides preservice teachers in modifying curriculum materials to better fit I-AIM and leverage students' resources for learning. This study followed three elementary preservice teachers in an intern-level science method course as they learned to use the I-AIM and CA&P to plan and teach a science unit in their field placement classrooms. Using a sociocultural perspective, this study focused on the ways that the interns used the tools and the mediators that influenced how they used the tools. A color-coding analysis procedure was developed to identify the teaching patterns in the interns' planned instructional approaches and enacted activity sequences and compare those to the patterns implied by the I-AIM and CA&P tools. Interviews with the interns were also conducted and analyzed, along with the assignments they completed for their science methods course, to gain insight into the meanings the interns made of the tools and their experiences planning and teaching science. The results show that all three interns had some successes using the I-AIM and CA&P to analyze their curriculum materials and to plan and teach science

  18. The ends of uncertainty: Air quality science and planning in Central California

    SciTech Connect

    Fine, James

    2003-09-01

    uncertainty information is identified and capabilities to produce it are assessed. Practices to facilitate incorporation of uncertainty information are suggested based on research findings, as well as theory from the literatures of the policy sciences, decision sciences, science and technology studies, consensus-based and communicative planning, and modeling.

  19. 78 FR 26026 - Draft Plan for Development of the Integrated Science Assessment for Nitrogen Oxides-Health Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... of the health effects of NO X (77 FR 7149). NCEA has prepared a draft plan for development of the ISA... AGENCY Draft Plan for Development of the Integrated Science Assessment for Nitrogen Oxides--Health...: The U.S. EPA is announcing the availability of the ``Draft Plan for Development of the...

  20. Earth Sciences Data and Information System (ESDIS) program planning and evaluation methodology development

    NASA Technical Reports Server (NTRS)

    Dickinson, William B.

    1995-01-01

    An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.

  1. Solid earth science in the 1990s. Volume 1: Program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is volume one of a three volume series. A plan for solid earth science research for the next decade is outlined. The following topics are addressed: scientific requirements; status of current research; major new emphasis in the 1990's; interagency and international participation; and the program implementation plan. The following fields are represented: plate motion and deformation; lithospheric structure and evolution; volcanology; land surface (processes of change); earth structure and dynamics; earth rotation and reference frames; and geopotential fields. Other topics of discussion include remote sensing, space missions, and space techniques.

  2. First LDEF Post-Retrieval Symposium abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1991-01-01

    The LDE facility was designed to better understand the environments of space and the effects of prolonged exposure in these environments on future spacecraft. The symposium abstracts presented here are organized according to the symposium agenda into five sessions. The first session provides an overview of the LDEF, the experiments, the mission, and the natural and induced environments the spacecraft and experiments encountered during the mission. The second session presents results to date from studies to better define the environments of near-Earth space. The third session addresses studies of the effects of the space environments on spacecraft materials. The fourth session addresses studies of the effects of the space environments on spacecraft systems. And the fifth session addresses other subjects such as results of the LDEF life science and crystal growth experiments.

  3. Special issue "International CAWSES-II Symposium"

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Shiokawa, Kazuo; Nakamura, Takuji; Gopalswamy, Nat

    2016-02-01

    This special issue gathered papers from the International CAWSES-II Symposium (November 18-22, 2013 at Nagoya University, Japan). Climate and Weather of the Sun-Earth System II (CAWSES-II) is an international scientific program sponsored by Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) that continued from 2009 to 2013. The program was established with the aim of significantly enhancing our understanding of the space environment and its impacts on life and society. The International CAWSES-II Symposium was successful with 388 presentations; and from that, 38 papers were published in this special issue. In this preface, we briefly discuss the contents of the special issue as well as the CAWSES-II review papers published in Progress in Earth and Planetary Science (PEPS) in 2014-2015.

  4. Future high energy colliders symposium. Summary report

    SciTech Connect

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  5. John B. Little Center Annual Symposium

    SciTech Connect

    Demple, Bruce F.

    2007-11-02

    The Annual Symposium of the John B. Little Center for Radiation Sciences and Environmental Health at the Harvard School of Public Health seeks to educate radiobiologists and biomedical scientists in related areas on the leading research related to the effects of ionizing radiation and related environmental agents in biological systems. This effort seeks to further the training of individuals in this field, and to foment productive interactions and collaborations among scientists at Harvard and with other institutions. The Symposium attracts world-class scientists as speakers, and a broad cross-section of attendees from academic, government, and industrial research centers, as well as editorial staff from leading scientific publications. In order to maintain this quality, funding to support the travel and local expenses of invited speakers is sought, along with funds to allow use of appropriate conference facilities.

  6. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  7. Front end evaluation research results. Communications and concept planning: Hatfield Marine Science Center

    NASA Technical Reports Server (NTRS)

    Falk, John H.; Holland, Dana

    1994-01-01

    An evaluation for the renovation of the existing visitor center at the Hatfield Marine Sciences Center (HMSC) was undertaken, in conjunction with the communications planning phase of the project. The outcome is expected to be the development of a communications plan and selection of concepts for visitors' interpretive experience. In the course of the evaluation, data were collected from 140 visitors to HMSC using both a questionnaire and face to face semi-structured interviews. Major results of the evaluation covered: 1, reasons for attending the HMSC; 2, visitor expectations; 3, visitors's knowledge of general science and of marine life and environments; 4, visitors' level of interest and attitudes toward exhibit themes; 5, issue areas of greatest interest; and 6, research areas of greatest interest.Visitors to t he HMSC had a strong orientation toward seeing and closely interacting with marine life and environments.

  8. Integrating Sustainability Science with the Sciences of Human Well-being to Inform Design and Planning in an Urbanizing World

    NASA Astrophysics Data System (ADS)

    Alberti, M.; Graumlich, L. J.; Frumkin, H.; Friedman, D.

    2012-12-01

    A sustainable human future requires both healthy ecosystems and communities in which people thrive, with opportunities for health, well-being, happiness, economic prosperity, and equity. To make progress towards this goal, two largely disparate communities of scholars and practitioners must come together: sustainability science needs to be integrated with the sciences of human health and well-being. The opportunity for such integration is particularly ripe for urbanizing regions which not only dominate energy and resource use but also increasingly represent the human habitat. We present a conceptual framework that integrates sustainability science with the sciences of human health and well-being to explicitly articulate testable hypotheses on the relationships between humans and their habitat. We are interested in human behaviors and metrics of health and well-being in relationship to the characteristics of the built environment at various scales from buildings to metro regions. Focusing on the U.S. Pacific Northwest (PNW) as a testbed, we are building on our current empirical studies on urban sprawl and ecosystem function including biodiversity, air quality, hydrological, biogeochemical, and human health to develop formal hypotheses on how alternative urban design and development patterns may influence health outcomes and well-being. The PNW is an ideal setting for this work because of the connected metropolitan areas within a region characterized by a spectacular diversity of aquatic and terrestrial ecosystems and deeply held cultural and political aspirations towards sustainability. The framework also highlights opportunities for translation of knowledge to practice in the design and planning of built environments. For example, understanding these associations is critical to assessing tradeoffs in design and planning strategies and exploring potential synergies that optimize both sustainability and human well-being. In complex systems such as cities, managers

  9. Operational status and life extension plans for the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Garnett, Robert W; Gulley, Mark S; Jones, Kevin W; Erickson, John L

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources, a proton radiography facility and a medical and research isotope production facility. The recent operating history of the facility, including both achievements and challenges, will be reviewed. Plans for performance improvement will be discussed, together with the underlying drivers for the ongoing LANSCE Risk Mitigation project. The details of this latter project will also be discussed.

  10. Operational Status and Life Extension Plans for the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Erickson, John L.; Rees, Daniel E.

    2011-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources, a proton radiography facility and a medical and research isotope production facility. The recent operating history of the facility, including both achievements and challenges, will be reviewed. Plans for performance improvement will be discussed, together with the underlying drivers for the ongoing LANSCE Linac Risk Mitigation (LRM) project. The details of this latter project will also be discussed.

  11. Space Science for the 21st Century. Strategic Plan for 1995-2000

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This publication is one of three volumes in 'Space Science for the 21st Century', the Office of Space Science Strategic plan for 1995-2000. The other two volumes are the recently released Integrated Technology Strategy and the Education Plan, which is in preparation at this publication date. The Science Plan was developed by the Office of Space Science (OSS) in partnership with the Space Science Advisory Committee. The mission of the OSS is to seek answers to fundamental questions about: the galaxy and the universe; the connection between the Sun, Earth, and Heliosphere; the origin and evolution of planetary systems; and the origin and distribution of life in the universe. The strategy to answer these questions includes completing the means to survey the universe across the entire electromagnetic spectrum; completing the survey of cosmic rays through their highest energies, and of interstellar gas; carrying out a basic new test of the Theory of General Relativity; completing development of the means to understand the mechanisms of solar variability and its effects on Earth; completing the first exploration of the inner and outer frontiers of the heliosphere; determining the plasma environments of the solar system planets and how those environments are affected by solar activity; completing development of the means to finish the reconnaissance of the entire solar system from the Sun to Pluto; beginning the comprehensive search for other planets around other stars; resuming surface exploration of solar system bodies to understand the origin and evolution of the Sun's planetary system; continuing the study of biogenic compounds and their evolution in the universe; and searching for indicators of past and present conditions conducive to life.

  12. An Internationally Coordinated Science Management Plan for Samples Returned from Mars

    NASA Astrophysics Data System (ADS)

    Haltigin, T.; Smith, C. L.

    2015-12-01

    Mars Sample Return (MSR) remains a high priority of the planetary exploration community. Such an effort will undoubtedly be too large for any individual agency to conduct itself, and thus will require extensive global cooperation. To help prepare for an eventual MSR campaign, the International Mars Exploration Working Group (IMEWG) chartered the international Mars Architecture for the Return of Samples (iMARS) Phase II working group in 2014, consisting of representatives from 17 countries and agencies. The overarching task of the team was to provide recommendations for progressing towards campaign implementation, including a proposed science management plan. Building upon the iMARS Phase I (2008) outcomes, the Phase II team proposed the development of an International MSR Science Institute as part of the campaign governance, centering its deliberations around four themes: Organization: including an organizational structure for the Institute that outlines roles and responsibilities of key members and describes sample return facility requirements; Management: presenting issues surrounding scientific leadership, defining guidelines and assumptions for Institute membership, and proposing a possible funding model; Operations & Data: outlining a science implementation plan that details the preliminary sample examination flow, sample allocation process, and data policies; and Curation: introducing a sample curation plan that comprises sample tracking and routing procedures, sample sterilization considerations, and long-term archiving recommendations. This work presents a summary of the group's activities, findings, and recommendations, highlighting the role of international coordination in managing the returned samples.

  13. Teaching for Understanding in Earth Science: Comparing Impacts on Planning and Instruction in Three Professional Development Designs for Middle School Science Teachers

    ERIC Educational Resources Information Center

    Penuel, William R.; McWilliams, Harold; McAuliffe, Carla; Benbow, Ann E.; Mably, Colin; Hayden, Margaret M.

    2009-01-01

    This paper compares and contrasts the impacts of three professional development designs aimed at middle school Earth science teachers on how teachers plan and enact instruction. The designs were similar in their alignment to research-based practices in science professional development: each design was of an extended duration and time span,…

  14. World Population Day special symposium.

    PubMed

    1998-08-01

    This article describes Japan's celebration of World Population Day, and provides excerpts from speeches at the symposium held on July 8, 1998. The symposium, in Tokyo, was attended by about 300 people. The Chairman of JOICFP gave the opening address. The executive director of UNFPA congratulated Japan for its efforts in the field of population awareness and noted Japan's self-sufficiency despite its importation of 40% of its food and most of its raw materials. A keynote address was delivered by the president of CPE and the former UN Secretary General, who stressed income inequities in the 66% of developing countries within the 185 UN member states. The UN has been promoting sustainable development, but is facing the issue of limited arable land and population growth. The Tutsi and Hutus are fighting due to population based issues. The emphasis should be on women's reproductive rights and protection of women's human rights. 1998 is the 50th year of human rights; progress has been made. The UNFPA Goodwill Ambassador spoke about the disparity between the rich and poor in the Philippines. A small donation reaps incredible progress. Manila has high levels of adolescent childbearing. Men appear to be unaware of the disadvantages of childbearing too early. Rural areas are dominated by strict Roman Catholic beliefs. Manila has commercial sex workers who provide services to Japanese men. The 1998 Kato Award was given to women who raised awareness about coercion in the sex trade and female genital mutilation. The economic situation in Japan creates even greater need to promote family planning and reproductive health. PMID:12321788

  15. Operational plans for life science payloads - From experiment selection through postflight reporting

    NASA Technical Reports Server (NTRS)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  16. A Titan exploration study: Science, technology and mission planning options, volume 1

    NASA Technical Reports Server (NTRS)

    Tindle, E. L.; Manning, L. A.; Sadin, S. R.; Edsinger, L. E.; Weissman, P. R.; Swenson, B. L.

    1976-01-01

    Mission concepts and technology advancements that can be used in the exploration of the outer planet satellites were examined. Titan, the seventh satellite of Saturn was selected as the target of interest. Science objectives for Titan exploration were identified, and recommended science payloads for four basic mission modes were developed (orbiter, atmospheric probe, surface penetrator and lander). Trial spacecraft and mission designs were produced for the various mission modes. Using these trial designs as a base, technology excursions were then made to find solutions to the problems resulting from these conventional approaches and to uncover new science, technology and mission planning options. Several mission modes were developed that take advantage of the unique conditions expected at Titan. They include a combined orbiter, atmosphere probe and lander vehicle, a combined probe and surface penetrator configuration and concepts for advanced remote sensing orbiters.

  17. Land-Use Symposium Proceedings: Privately Owned Rural Lands and Land-Use Planning (7th, Albuquerque, New Mexico, October 15-16, 1975).

    ERIC Educational Resources Information Center

    Austin, Keith, Comp.; And Others

    This report includes 14 speeches by State and Local representatives relative to the control of land use and land use planning. The speeches are: (1) "The Status of Privately Owned Rural Land in New Mexico" (a statement regarding the confusing status of current statistics); (2) "Keynote Address" (emphasis on local control); (3) "What Are the Pros…

  18. The fourteenth international symposium on mine planning and equipment selection (MPES) 2005 and the fifth international conference on computer applications in the minerals industry (CAMI) 2005

    SciTech Connect

    Singhal, R.J.; Fytas, K.; Chiwetelu, C.

    2005-07-01

    The proceedings contain 122 papers on mine planning, equipment selection, and computer applications in the mining and minerals industry. Presentations cover surface and underground mining, development, coal mining, oil sands mining, risk analysis, productivity, computer modelling, and waste treatment. Selected papers have been abstracted for the Coal Abstracts database.

  19. First International Symposium on Strain Gauge Balances. Pt. 1

    NASA Technical Reports Server (NTRS)

    Tripp, John S. (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  20. First International Symposium on Strain Gauge Balances. Part 2

    NASA Technical Reports Server (NTRS)

    Tripp, John S (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  1. Mid-year Status of MESSENGER SciBox Science Planning and Commanding

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Choo, T. H.; Steele, R. J.; Lucks, M.; Nair, H.; Perry, M. E.; Anderson, B. J.; Berman, A. F.; Solomon, S. C.

    2011-12-01

    More than halfway into its primary orbital mission, MESSENGER has successfully exploited the SciBox planning and commanding system to automate science observation scheduling and command generation for its full instrument suite, as well as its radio-frequency communication and guidance and control systems. MESSENGER's SciBox software coordinates instrument observations to determine the optimal conflict-free science schedule for the entire orbital mission and generates weekly command sequences for submission to mission operations. SciBox maximizes science return by filling all available observing opportunities and fully utilizing onboard storage and downlink bandwidth. As of four months into its one-year orbital mission, MESSENGER SciBox had scheduled the acquisition and downlink of nearly 40,000 images and comparable data sets from the spacecraft's six other instruments. The flexibility of MESSENGER SciBox allows for rapid re-optimization of schedules in the event of unforeseen circumstances. It has also allowed the science and planning teams to analyze rapidly the effects of modifying operational parameters and adding new observations. Within two hours, the entire mission can be re-optimized, schedules and command sequences generated, and a full set of plots and reports produced. The effects on resource usage, observational coverage, and compliance with operational constraints may be quickly assessed. This rapid turnaround ensures that optimal schedules are produced regardless of circumstances. We present an overview of the MESSENGER SciBox design and its operation.

  2. Microgravity Fluid Management Symposium

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.

  3. Second International Lygus Symposium

    PubMed Central

    Goodell, P. B.; Ellsworth, Peter C.

    2008-01-01

    The Second International Lygus Symposium brought together 52 entomologists from six nations and 11 states representing universities, public agencies, and private entities to discuss the latest research on Lygus species and their relatives. Symposium topics included Lygus biology, behavior and ecology, IPM, insecticides and resistance, and biological control. Papers and posters dealt with Lygus as a pest of several crops, including cotton, strawberries, seed alfalfa, canola, dry beans, cucumbers, cereals, peaches, and new crops guayule and lesquerella. Intercrop movement of Lygus2008200820082008 species was another important topic of many presentations. In the capstone session, participants identified needs and priorities for ongoing Lygus research and education (available at http://ag.arizona.edu/apmc/Arid_SWPMC_RAMP.html). The conference was sponsored in part by FMC Corporation, the University of Arizona Arizona Pest Management Center, the University of California Statewide IPM Program, and a grant to Ellsworth et al. (CRIS# 0207436) from the USDA-CSREES, Risk Avoidance and Mitigation Program (RAMP).

  4. U.S. Climate Change Science Program. Vision for the Program and Highlights of the Scientific Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The vision document provides an overview of the Climate Change Science Program (CCSP) long-term strategic plan to enhance scientific understanding of global climate change.This document is a companion to the comprehensive Strategic Plan for the Climate Change Science Program. The report responds to the Presidents direction that climate change research activities be accelerated to provide the best possible scientific information to support public discussion and decisionmaking on climate-related issues.The plan also responds to Section 104 of the Global Change Research Act of 1990, which mandates the development and periodic updating of a long-term national global change research plan coordinated through the National Science and Technology Council.This is the first comprehensive update of a strategic plan for U.S. global change and climate change research since the origal plan for the U.S. Global Change Research Program was adopted at the inception of the program in 1989.

  5. SLS-PLAN-IT: A knowledge-based blackboard scheduling system for Spacelab life sciences missions

    NASA Technical Reports Server (NTRS)

    Kao, Cheng-Yan; Lee, Seok-Hua

    1992-01-01

    The primary scheduling tool in use during the Spacelab Life Science (SLS-1) planning phase was the operations research (OR) based, tabular form Experiment Scheduling System (ESS) developed by NASA Marshall. PLAN-IT is an artificial intelligence based interactive graphic timeline editor for ESS developed by JPL. The PLAN-IT software was enhanced for use in the scheduling of Spacelab experiments to support the SLS missions. The enhanced software SLS-PLAN-IT System was used to support the real-time reactive scheduling task during the SLS-1 mission. SLS-PLAN-IT is a frame-based blackboard scheduling shell which, from scheduling input, creates resource-requiring event duration objects and resource-usage duration objects. The blackboard structure is to keep track of the effects of event duration objects on the resource usage objects. Various scheduling heuristics are coded in procedural form and can be invoked any time at the user's request. The system architecture is described along with what has been learned with the SLS-PLAN-IT project.

  6. Research Infrastructure for the Advancement of Hydrologic Science: Planning Highlights and Update

    NASA Astrophysics Data System (ADS)

    Bales, R. C.

    2001-12-01

    In response to the need for research infrastructure in hydrologic sciences, a group of over 35 universities has formed a Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). With support from the U.S. National Science Foundation, CUAHSI has initiated a science planning process aimed at building research infrastructure in three main areas: i) Long Term Hydrologic Observatories, to provide the consistent, integrated, long-term information from point to continental scales ii) a Hydrologic Information System program, to support the data, information, and analysis requirements of the community and iii) a Hydrologic Measurement Technology program to develop and operate state-of-the-art systems and provide support services for hydrologic research. Scientifically, this infrastructure initiative aims to support research to provide new understanding about priority questions in hydrologic and related sciences, including: i) spatial and temporal properties of precipitation and snow processes, ii) surface water generation and transport at scales from hectares to continental-scale basins, iii) linked water, carbon and other chemical cycles, and changes in response to varying temperature, precipitation and land-use patterns, iii) environmental stresses on aquatic and riparian ecosystems related to groundwater pumping and other perturbations, iv) basin-scale subsurface water and solute movement, particularly as related to patterns of precipitation, evapotranspiration and recharge, and v) feedback between regional evaporation and transpiration and patterns of precipitation and humidity. It has become apparent that the science infrastructure in hydrologic and related sciences is currently inadequate to meet many of these priority science questions and societal needs. Specifically, investments are needed to: i) maintain, supplement and upgrade existing field facilities, ii) establish measurement programs that can deliver consistent data over the long

  7. 1979 DOE statistical symposium

    SciTech Connect

    Gardiner, D.A.; Truett T.

    1980-09-01

    The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.

  8. Linking Science Analysis with Observation Planning: A Full Circle Data Lifecycle

    NASA Technical Reports Server (NTRS)

    Grosvenor, Sandy; Jones, Jeremy; Koratkar, Anuradha; Li, Connie; Mackey, Jennifer; Neher, Ken; Wolf, Karl; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    A clear goal of the Virtual Observatory (VO) is to enable new science through analysis of integrated astronomical archives. An additional and powerful possibility of the VO is to link and integrate these new analyses with planning of new observations. By providing tools that can be used for observation planning in the VO, the VO will allow the data lifecycle to come full circle: from theory to observations to data and back around to new theories and new observations. The Scientist's Expert Assistant (SEA) Simulation Facility (SSF) is working to combine the ability to access existing archives with the ability to model and visualize new observations. Integrating the two will allow astronomers to better use the integrated archives of the VO to plan and predict the success of potential new observations more efficiently, The full circle lifecycle enabled by SEA can allow astronomers to make substantial leaps in the quality of data and science returns on new observations. Our paper examines the exciting potential of integrating archival analysis with new observation planning, such as performing data calibration analysis on archival images and using that analysis to predict the success of new observations, or performing dynamic signal-to-noise analysis combining historical results with modeling of new instruments or targets. We will also describe how the development of the SSF is progressing and what have been its successes and challenges.

  9. The challenges associated with developing science-based landscape scale management plans

    USGS Publications Warehouse

    Szaro, R.C.; Boyce, D.A., Jr.; Puchlerz, T.

    2005-01-01

    Planning activities over large landscapes poses a complex of challenges when trying to balance the implementation of a conservation strategy while still allowing for a variety of consumptive and nonconsumptive uses. We examine a case in southeast Alaska to illustrate the breadth of these challenges and an approach to developing a science-based resource plan. Not only was the planning area, the Tongass National Forest, USA, exceptionally large (approximately 17 million acres or 6.9 million ha), but it also is primarily an island archipelago environment. The water system surrounding and going through much of the forest provides access to facilitate the movement of people, animals, and plants but at the same time functions as a barrier to others. This largest temperate rainforest in the world is an exceptional example of the complexity of managing at such a scale but also illustrates the role of science in the planning process. As we enter the 21st century, the list of questions needing scientific investigation has not only changed dramatically, but the character of the questions also has changed. Questions are contentious, cover broad scales in space and time, and are highly complex and interdependent. The provision of unbiased and objective information to all stakeholders is an important step in informed decision-making.

  10. INTRODUCTION: The Physics of Chaos and Related Problems: Proceedings of the 59th Nobel Symposium

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stig

    1985-01-01

    The physics of non-linear phenomena has developed in a remarkable way over the last couple of decades and has accelerated over the last few years, in particular because of the recent progress in the study of chaotic behaviour. In particular the discovery of the universal properties of the transition into chaos for certain classes of systems has stimulated much recent work in different directions both theoretically and experimentally. Chaos theory has become a real challenge to physicists in many different fields and also in many other disciplines such as astronomy, chemistry, medicine, meteorology and economics and social theory. The study of chaos-related phenomena has a truly interdisciplinary character and makes use of important concepts and methods from other disciplines. For the description of chaotic structures one needs a new, recently developed geometry called fractal geometry. For the discussion of the enormous richness of ordered structures which appear, one uses the theory of pattern recognition. In order to study even the simplest theoretical models describing chaos, a computer is essential. It should finally be mentioned that important aspects of computer science are related to the theory of order and chaos. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key participants is typically in the range 20-40. These symposia are organized through a special Nobel Symposium Committee after proposals from individuals. This symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The Tercentenary Fund of the Bank of Sweden and The Knut Alice Wallenberg Foundation. Additional support was obtained from the Royal Academy of Sciences, The Nordic Institute for Theoretical Atomic Physics (NORDITA), Chalmers University of Technology and

  11. Eighth particulate control symposium

    SciTech Connect

    Not Available

    1990-11-01

    The Eighth Symposium on the Transfer and Utilization of Particulate Control Technology was held in San Diego, California, March 20 through 23, 1990. The symposium proceedings contain 80 papers presented by representatives of utility companies, equipment and process suppliers, university representatives, research and development companies, EPA and other federal and state agency representatives, and EPRI staff members. Electrostatic precipitators and fabric filters were the major topics discussed during the symposium. Papers from this conference are organized by session in two volumes. This Volume (2) contains papers presented in the sessions on: low ratio baghouse O M experience, pulse-jet baghouse experience, particulate control for AFBCs, particulate control for dry SO2 control processes, baghouse design and performance, fundamental baghouse studies, high temperature filtration, and control of emissions from RDF incinerators. Both fabric filters and ESPs are discussed in the AFBC and dry SO2 control papers. The high temperature filtration papers deal with ceramic barrier and granular bed filters. The rest of the papers in Volume 2 are concerned with fabric filters on pulverized-coal-fired boilers. Individual projects are processed separately for the data bases.

  12. PROCEEDINGS OF A SYMPOSIUM ON COOLING WATER INTAKE TECHNOLOGIES TO PROTECT AQUATIC ORGANISMS

    EPA Science Inventory

    This Symposium brought together professionals from federal, state, and tribal regulatory agencies; industry; environmental organizations; engineering consulting firms; science and research organizations; academia; and other organizations concerned with mitigating harm to the aqua...

  13. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  14. Proceedings of the Second Shanthi V. Sitaraman Intestinal Pathobiology Symposium.

    PubMed

    Etienne-Mesmin, Lucie; Wang, Tanyu; Viennois, Emilie; Chassaing, Benoit; Gewirtz, Andrew T; Merlin, Didier

    2015-08-01

    On March 18 and 19, 2015, the Institute for Biomedical Sciences at Georgia State University hosted the Second Shanthi V. Sitaraman Intestinal Pathobiology Symposium in memory of Dr. Shanthi V. Sitaraman, an outstanding clinician and scientist in gastroenterology. The recent advances in basic and translational science related to gastroenterology, which makes the timely exchange of ideas critical; the need to recruit mentor and young MD, MD/PhD, and PhD scientists in the field; and the overwhelming success of the First Shanthi V. Sitaraman Intestinal Pathobiology Symposium (2012) in achieving similar goals motivated the project of a second edition of this symposium. Its overall aim was to provide scientific programming at the forefront of research in fields related to the gastrointestinal tract in health and disease. The symposium brought together investigators interested in basic and clinical aspects of gastrointestinal pathobiology in a venue that facilitated meaningful exchanges. This proceeding outlines the 2 days of the symposium and provides insights into recent advances in the field of digestive diseases, as reflected in the speakers' presentations. PMID:26389819

  15. Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Team

    SciTech Connect

    de Supinski, Bronis R.; Alam, Sadaf R; Bailey, David; Carrington, Laura; Daley, Christopher; Dubey, Anshu; Gamblin, Todd; Gunter, Dan; Hovland, Paul; Jagode, Heike; Karavanic, Karen; Marin, Gabriel; Mellor-Crummey, John; Moore, Shirley; Norris, Boyana; Oliker, Leonid; Olschanowsky, Cathy; Roth, Philip C; Schulz, Martin; Shende, Sameer; Snavely, Allan; Spea, Wyatt; Tikir, Mustafa; Vetter, Jeffrey S; Worley, Patrick H; Wright, Nicholas

    2009-01-01

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfilll our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  16. Modeling the Office of Science Ten Year FacilitiesPlan: The PERI Architecture Tiger Team

    SciTech Connect

    de Supinski, B R; Alam, S R; Bailey, D H; Carrington, L; Daley, C

    2009-05-27

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort to the optimization of key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  17. Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team

    SciTech Connect

    de Supinski, Bronis R.; Alam, Sadaf; Bailey, David H.; Carrington, Laura; Daley, Chris; Dubey, Anshu; Gamblin, Todd; Gunter, Dan; Hovland, Paul D.; Jagode, Heike; Karavanic, Karen; Marin, Gabriel; Mellor-Crummey, John; Moore, Shirley; Norris, Boyana; Oliker, Leonid; Olschanowsky, Catherine; Roth, Philip C.; Schulz, Martin; Shende, Sameer; Snavely, Allan; Spear, Wyatt; Tikir, Mustafa; Vetter, Jeff; Worley, Pat; Wright, Nicholas

    2009-06-26

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  18. Beyond Earth: Weaving Science and Indigenous Culture - A 1-year NSF Planning Grant

    NASA Astrophysics Data System (ADS)

    Young, Timothy; Guy, M.; Baker Big-Back, C.; Froelich, K.

    2011-01-01

    We present results of a 1-year NSF planning grant called Beyond Earth. The project is designed to engage Native American, urban, and rural families in science learning while piloting curriculum development and implementation that incorporates both Native and Western epistemologies. Physical, earth, and space science content is juxtaposed with indigenous culture, stories, language and epistemology in after-school programs and teacher training. Project partners include the Dakota Science Center, Fort Berthold Community College, and Sitting Bull College. The Native American tribes represented in this initiative illustrate partnerships between the Dakota, Lakota, Nakota, Hidatsa, Mandan, and Arikara. Over the past year the primary project deliverables include a culturally responsive curriculum Beyond Earth Moon Module, teacher training workshops, a project website. The curriculum module introduces students to the moon's appearance, phases, and positions in the sky using the Night Sky Planetarium Experience Station to explore core concepts underlying moon phases and eclipses using the interactive Nature Experience Station before engaging in the culminating Mission Challenge in which they apply their knowledge to problem solving situations and projects. The Native Science and Western Science activities developed, planetarium explorations created, and website toolkit utilizations are presented.

  19. PREFACE: High Performance Computing Symposium 2011

    NASA Astrophysics Data System (ADS)

    Talon, Suzanne; Mousseau, Normand; Peslherbe, Gilles; Bertrand, François; Gauthier, Pierre; Kadem, Lyes; Moitessier, Nicolas; Rouleau, Guy; Wittig, Rod

    2012-02-01

    HPCS (High Performance Computing Symposium) is a multidisciplinary conference that focuses on research involving High Performance Computing and its application. Attended by Canadian and international experts and renowned researchers in the sciences, all areas of engineering, the applied sciences, medicine and life sciences, mathematics, the humanities and social sciences, it is Canada's pre-eminent forum for HPC. The 25th edition was held in Montréal, at the Université du Québec à Montréal, from 15-17 June and focused on HPC in Medical Science. The conference was preceded by tutorials held at Concordia University, where 56 participants learned about HPC best practices, GPU computing, parallel computing, debugging and a number of high-level languages. 274 participants from six countries attended the main conference, which involved 11 invited and 37 contributed oral presentations, 33 posters, and an exhibit hall with 16 booths from our sponsors. The work that follows is a collection of papers presented at the conference covering HPC topics ranging from computer science to bioinformatics. They are divided here into four sections: HPC in Engineering, Physics and Materials Science, HPC in Medical Science, HPC Enabling to Explore our World and New Algorithms for HPC. We would once more like to thank the participants and invited speakers, the members of the Scientific Committee, the referees who spent time reviewing the papers and our invaluable sponsors. To hear the invited talks and learn about 25 years of HPC development in Canada visit the Symposium website: http://2011.hpcs.ca/lang/en/conference/keynote-speakers/ Enjoy the excellent papers that follow, and we look forward to seeing you in Vancouver for HPCS 2012! Gilles Peslherbe Chair of the Scientific Committee Normand Mousseau Co-Chair of HPCS 2011 Suzanne Talon Chair of the Organizing Committee UQAM Sponsors The PDF also contains photographs from the conference banquet.

  20. Land Subsidence International Symposium held in Venice

    NASA Astrophysics Data System (ADS)

    The Third International Symposium on Land Subsidence was held March 18-25, 1984, in Venice, Italy. Sponsors were the Ground-Water Commission of the International Association of Hydrological Sciences (IAHS), the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the Italian National Research Council (CNR), the Italian Regions of Veneto and Emilia-Romagna, the Italian Municipalities of Venice, Ravenna, and Modena, the Venice Province, and the European Research Office. Cosponsors included the International Association of Hydrogeologists (IAH), the International Society for Soil Mechanics and Foundation Engineering (ISSMFE), and the Association of Geoscientists for International Development (AGID).Organized within the framework of UNESCO's International Hydrological Program, the symposium brought together over 200 international interdisciplinary specialists in the problems of land subsidence due to fluid and mineral withdrawal. Because man's continuing heavy development of groundwater, gas, oil, and minerals is changing the natural regime and thus causing more and more subsiding areas in the world, there had been sufficient new land subsidence occurrence, problems, research, and remedial measures since the 1976 Second International Symposium held in Anaheim, California, to develop a most interesting program of nearly 100 papers from about 30 countries. The program consisted of papers covering case histories of fluid and mineral withdrawal, engineering theory and analysis, karst “sink-hole”-type subsidence, subsidence due to dewatering of organic deposits or due to application of water (hydrocompaction), instrumentation, legal, socioeconomic, and environmental effects of land subsidence, and remedial works.

  1. Surface water quality-assurance plan, U.S. Geological Survey, Kentucky Water Science Center, water year 2006

    USGS Publications Warehouse

    Griffin, Michael S.

    2006-01-01

    This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kentucky Water Science Center for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  2. Report on the 13th symposium on invertebrate neurobiology held 26-30 August 2015 at the Balaton Limnological Institute, MTA Centre for ecological research of the Hungarian Academy of Sciences, Tihany, Hungary.

    PubMed

    Crisford, Anna; Holden-Dye, Lindy; Walker, Robert J

    2016-06-01

    This report summarizes the lectures and posters presented at the International Society for Invertebrate Neurobiology's 13th symposium held 26-30 August 2015, at the Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, Hungary. The symposium provided an opportunity for scientists working on a range of topics in invertebrate neurobiology to meet and present their research and discuss ways to advance the discipline. PMID:27149972

  3. 2012 BRN Symposium - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Biospecimen Research Network Symposium brings together stakeholders including research investigators, clinicians, industry representatives, hospital administrators and patient advocates to discuss new developments in the field of biospecimen science that address the molecular changes that can occur during collection, processing, and storage of biospecimens.

  4. Proceedings of the LLNL Technical Women`s Symposium

    SciTech Connect

    von Holtz, E.

    1993-12-31

    This report documents events of the LLNL Technical Women`s Symposium. Topics include; future of computer systems, environmental technology, defense and space, Nova Inertial Confinement Fusion Target Physics, technical communication, tools and techniques for biology in the 1990s, automation and robotics, software applications, materials science, atomic vapor laser isotope separation, technical communication, technology transfer, and professional development workshops.

  5. Biotechnology Symposium - In Memoriam, the Late Dr. Allan Zipf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A one-day biotechnology symposium was held at Alabama A&M University (AAMU), Normal, AL on June 4, 2004 in memory of the late Dr. Allan Zipf (Sept 1953-Jan 2004). Dr. Zipf was a Research Associate Professor at the Department of Plant and Soil Sciences, AAMU, who collaborated extensively with ARS/MS...

  6. Cassini Information Management System in Distributed Operations Collaboration and Cassini Science Planning

    NASA Technical Reports Server (NTRS)

    Equils, Douglas J.

    2008-01-01

    Launched on October 15, 1997, the Cassini-Huygens spacecraft began its ambitious journey to the Saturnian system with a complex suite of 12 scientific instruments, and another 6 instruments aboard the European Space Agencies Huygens Probe. Over the next 6 1/2 years, Cassini would continue its relatively simplistic cruise phase operations, flying past Venus, Earth, and Jupiter. However, following Saturn Orbit Insertion (SOI), Cassini would become involved in a complex series of tasks that required detailed resource management, distributed operations collaboration, and a data base for capturing science objectives. Collectively, these needs were met through a web-based software tool designed to help with the Cassini uplink process and ultimately used to generate more robust sequences for spacecraft operations. In 2001, in conjunction with the Southwest Research Institute (SwRI) and later Venustar Software and Engineering Inc., the Cassini Information Management System (CIMS) was released which enabled the Cassini spacecraft and science planning teams to perform complex information management and team collaboration between scientists and engineers in 17 countries. Originally tailored to help manage the science planning uplink process, CIMS has been actively evolving since its inception to meet the changing and growing needs of the Cassini uplink team and effectively reduce mission risk through a series of resource management validation algorithms. These algorithms have been implemented in the web-based software tool to identify potential sequence conflicts early in the science planning process. CIMS mitigates these sequence conflicts through identification of timing incongruities, pointing inconsistencies, flight rule violations, data volume issues, and by assisting in Deep Space Network (DSN) coverage analysis. In preparation for extended mission operations, CIMS has also evolved further to assist in the planning and coordination of the dual playback redundancy of

  7. A multi-disciplinary plan for easier access, management, and analysis of science data

    NASA Astrophysics Data System (ADS)

    Hornstein, Rhoda Shaller; Miller, Raymond E.; Hei, Donald J.; Kaufmann, David E.; LoPinto, Frank J.; Todd, Jacqueline E.

    NASA's COST LESS Team is pursuing strategies to reduce the cost and complexity of planning and executing space missions. The team's technical goal is to reverse the trend of constructing unique solutions for similar problems. To this end, the team is exploring ways to represent mission functionality in terms of building blocks and is discovering approaches that could accommodate the same building blocks for seemingly disparate activities, such as organizing processed telemetry data, controlling onboard experiments, searching science archives, reducing and presenting information to science users, and supporting educational outreach. Reusable object technology (UOT), a research undertaking by the authors, is showing promise in recognizing similarities in functions which were previously viewed as unique because they appeared in different programs or mission phases. Since UOT is aimed at being implementation independent (i.e. the function performed could be accomplished manually, by an automated process, by a specialized instrument, etc.), no premature judgment for automation or autonomy need be made. In this paper, the authors attempt to strike a balance between theory and reality as they describe UOT, including its beginnings, its underpinning, its utility, and its potential for achieving substantive reductions in cost and complexity for the Agency's space programs. The authors discuss their collaboration with the Center for EUV Astrophysics, University of California, Berkeley to reduce the cost and complexity of science investigations. Their multi-disciplinary plan incorporates both UOT and a complementary technology introduced in this paper, called interactive archives.

  8. Tycho Brahe, laboratory design, and the aim of science. Reading plans in context.

    NASA Astrophysics Data System (ADS)

    Shackelford, J.

    1993-06-01

    It was from the villa, Uraniborg, and from the nearby observatory, Stjerneborg, that Tycho made his celestial observations. These buildings disappeared soon after Tycho left the island of Hven in 1597, and our understanding of them and their part in Tycho's life is less certain. They must be reconstructed from what Tycho wrote about them, the diagrams and pictures he made and published, and what little archaeological evidence remains. One of those who regarded Uraniborg, not long after Tycho's death in 1601, was the German chemist Andreas Libavius, who interpreted Uraniborg as a place of contemplation. But laboratory plans are not just for contemplation. Tycho's, presumably, reflect the actual Uraniborg and Stjerneborg, which were active scientific research facilities. If we wish to approach a fuller understanding of what these plans represent and how the ideological roots of Tycho's science fit into the history of early modern laboratory science, both the plans and Libavius's critique of them ought to be regarded in a broader historical context. This is the purpose of this paper.

  9. Execution of the Spitzer In-orbit Checkout and Science Verification Plan

    NASA Technical Reports Server (NTRS)

    Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.

    2004-01-01

    The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges

  10. 35th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Doty, Laura W. (Technical Monitor)

    2001-01-01

    The proceedings of the 35th Aerospace Mechanisms Symposium are reported. Ames Research Center hosted the conference, which was held at the Four Points Sheraton, Sunnyvale, California, on May 9-11, 2001. The symposium was sponsored by the Mechanisms Education Association. Technology areas covered included bearings and tribology; pointing, solar array, and deployment mechanisms; and other mechanisms for spacecraft and large space structures.

  11. 33rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Litty, Edward C. (Compiler); Sevilla, Donald R. (Compiler)

    1999-01-01

    The proceedings of the 33rd Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held at the Pasadena Conference and Exhibition Center, Pasadena, California, on May 19-21, 1999. Lockheed Martin Missiles and Space cosponsored the symposium. Technology areas covered include bearings and tribology; pointing, solar array and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  12. Keynote Symposium. Tomorrow’s Poultry: Genomics, Physiology, and Well-Being. Keynote Symposium welcome and introduction.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this symposium is to provide members and guests of the Poultry Science Association (PSA) with an opportunity to interact with industry and research leaders who are pursuing the use of functional genomic tools, basic physiology of the stress response, and traditional behavioral methodo...

  13. Strategic HRD. [Concurrent Symposium Session at AHRD Annual Conference, 1998.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on strategic human resource development (HRD). "The GEICO Challenge Session: A Model for Integrating Human Resource Development and Strategic Planning" (Clyde T. Conine, Jr., Bill P. Criswell) reports on a study that delineated the nature of the integration of HRD into the strategic planning…

  14. TRIENNIAL REPRODUCTION SYMPOSIUM: American Society of Animal Science L. E. Casida Award for Excellence in Graduate Education: Thoughts on mentoring graduate students in reproductive biology.

    PubMed

    Smith, M F

    2016-07-01

    Programs in animal science are particularly well suited for graduate education because students can receive comprehensive training in the laboratory as well as with the whole animal. Furthermore, graduate students in animal science have the opportunity to understand how their research relates to a real world problem. Graduate students need to take ownership of their education by identifying training goals, choosing a mentor who will help them achieve their goals, and becoming engaged in research as soon as possible. In my own graduate program, I emphasize concepts more than techniques and I believe that graduate course work should focus on the basic areas of science that underlie reproductive biology (e.g., endocrinology, biochemistry, physiology, immunology, and statistics). Based on the increase in technology available for scientific investigation and the diversity of expertise required to address important research problems, graduate students need to learn the importance of establishing productive collaborations and begin building a scientific network. Preparation for graduate school frequently begins early with a curiosity and passion for understanding how biology works. Undergraduate courses can facilitate scientific thinking by providing opportunities in lectures and laboratories for students to transition from passive learners to thinking of themselves as animal scientists. There is a profound difference between individuals who view themselves as practitioners of a discipline and those who are simply trying to complete a course requirement. Teachers of undergraduate courses should incorporate experiential learning exercises into their lectures and laboratories to provide undergraduate students the opportunity to function as animal scientists and to embrace their scientific education. Graduate training has been the most enjoyable aspect of my career and it has been a joy to witness the achievements of students following completion of their degree! PMID

  15. Bioethics Symposium: The ethical food movement: What does it mean for the role of science and scientists in current debates about animal agriculture?

    PubMed

    Croney, C C; Apley, M; Capper, J L; Mench, J A; Priest, S

    2012-05-01

    Contemporary animal agriculture is increasingly criticized on ethical grounds. Consequently, current policy and legislative discussions have become highly controversial as decision makers attempt to reconcile concerns about the impacts of animal production on animal welfare, the environment, and on the efficacy of antibiotics required to ensure human health with demands for abundant, affordable, safe food. Clearly, the broad implications for US animal agriculture of what appears to be a burgeoning movement relative to ethical food production must be understood by animal agriculture stakeholders. The potential effects of such developments on animal agricultural practices, corporate marketing strategies, and public perceptions of the ethics of animal production must also be clarified. To that end, it is essential to acknowledge that people's beliefs about which food production practices are appropriate are tied to diverse, latent value systems. Thus, relying solely on scientific information as a means to resolve current debates about animal agriculture is unlikely to be effective. The problem is compounded when scientific information is used inappropriately or strategically to advance a political agenda. Examples of the interface between science and ethics in regards to addressing currently contentious aspects of food animal production (animal welfare, antimicrobial use, and impacts of animal production practices on the environment) are reviewed. The roles of scientists and science in public debates about animal agricultural practices are also examined. It is suggested that scientists have a duty to contribute to the development of sound policy by providing clear and objectively presented information, by clarifying misinterpretations of science, and by recognizing the differences between presenting data vs. promoting their own value judgments in regard to how and which data should be used to establish policy. Finally, the role of the media in shaping public opinions

  16. The Murchison Widefield Array: Science, future plans & links to SKA developments

    NASA Astrophysics Data System (ADS)

    Jackson, Carole Ann

    2015-08-01

    The Murchison Widefield Array (MWA) is the SKA low frequency precursor sited at the Murchison Radio astronomy Observatory (MRO) in Western Australia. The MWA telescope has been operational since August 2013 and has been extremely research-productive.The MWA is a collaboration involving large number of international partners who designed, funded and now lead the 4 science teams. Moreover the MWA collaboration has recently expanded as plans for further development of the MWA telescope take shape.Curtin University is the manager and operator of the MWA. The Curtin Institute of Radio Astronomy was instigated in 2006 and now forms a sizable team of astronomers, engineers and other staff active in low frequency radio astronomy as well as design work for SKA_LOW.In this presentation I will review the current MWA status, key science studies being pursued at Curtin and linkages to the development of SKA_LOW.

  17. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    SciTech Connect

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  18. Astronomy and Space Science from the Moon: Proceedings of Symposium E4 of the COSPAR 29th Plenary Meeting held in Washington, DC, 28 Aug.-5 Sep., 1992

    NASA Technical Reports Server (NTRS)

    Foing, B. H. (Editor)

    1994-01-01

    The goal of the conference was to assess the moon as a base for conducting astronomy, solar system observations, and space sciences. The lunar vacuum allows a complete opening of the electromagnetic window and distortion-free measurements at the highest angular resolution, precision, and temporal stability. The moon is perfect for continuous monitoring of the Sun, Solar System targets, and for deep observations of galactic and extragalactic objects. It is an in-situ laboratory for selenophysics, chemistry, and exobiology. The moon contains useful resources and is accessible from Earth for installation, operations maintenance, robotics, and human activities.

  19. RICIS Symposium 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Integrated Environments for Large, Complex Systems is the theme for the RICIS symposium of 1988. Distinguished professionals from industry, government, and academia have been invited to participate and present their views and experiences regarding research, education, and future directions related to this topic. Within RICIS, more than half of the research being conducted is in the area of Computer Systems and Software Engineering. The focus of this research is on the software development life-cycle for large, complex, distributed systems. Within the education and training component of RICIS, the primary emphasis has been to provide education and training for software professionals.

  20. IAU Symposium 317 Summary

    NASA Astrophysics Data System (ADS)

    Gratton, Raffaele G.

    2016-08-01

    The assembly of the halo yields fundamental information on the formation and evolution of galaxies: this was quite exhaustively discussed at this very important symposium. I present a brief personal summary of the meeting, outlining those points that I found more exciting and suggestive. I also remarked a few areas that were possibly not enough expanded. I found this research field extremely interesting and I think there are great expectations for new developments in the next few years, thanks to the new large spectroscopic surveys and the ESA GAIA satellite.

  1. Trends in SAT Scores and Other Characteristics of Examinees Planning To Major in Mathematics, Science, or Engineering. Research Report.

    ERIC Educational Resources Information Center

    Grandy, Jerilee

    This study analyzed data from the Scholastic Aptitude Test (SAT) taken between 1977 and 1988 to study trends in the numbers, test scores, and other characteristics of high school seniors planning to major in math, science, or engineering, and to compare these data with comparable data from examinees planning to major in other fields. Results…

  2. Intentions of Science Teachers To Use Investigative Teaching Methods: A Test of the Theory of Planned Behavior.

    ERIC Educational Resources Information Center

    Crawley, Frank E., III

    The purpose of this study was to explore the utility of the Theory of Planned Behavior for predicting the behavioral intentions of teachers enrolled in the Institute in Physical Science. The study investigated three determinants of teachers' behavioral intentions set forth in the theory of planned behavior, namely attitude toward the behavior,…

  3. The Open University; Report of the Planning Committee to the Secretary of State for Education and Science.

    ERIC Educational Resources Information Center

    Department of Education and Science, London (England).

    The Planning Committee, appointed by the British Secretary of State for Education and Science to work out a comprehensive plan for an Open University, reports on the objectives, general approach, charter and statues, administrative structure and appointments, degree structure and courses, academic staffing, relationships with the British…

  4. Recent Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Phase

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard; Keller, John W.; Chin, Gordon; Petro, Noah; Garvin, James B.; Rice, James W.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September, 2012. The LRO mission has been extended for two years under SMD. The extended mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution Of the Solar System. Here we will review the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for the extended science phase out to 2014. Results from the LRO mission include but are not limited to the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the day and night time temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs, evidence for recent tectonic activity on the Moon, and high resolution maps of the illumination conditions as the poles. The objectives for the second and extended science phases of the mission under SMD include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5

  5. Planned Data Products and Science Processing Paradigm for the Proposed NASA-ISRO SAR Mission

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.

    2014-12-01

    The proposed NASA-ISRO Synthetic Aperture Radar (SAR), or NISAR, Mission will make global integrated measurements of the causes and consequences of land surface changes. NISAR would provide a means of disentangling highly spatial and temporally complex processes ranging from ecosystem disturbances, to ice sheet collapse and natural hazards including earthquakes, tsunamis, volcanoes, and landslides. The mission would capable of performing repeat-pass interferometry and collecting polarimetric data. The core of the payload would consist of an L-band SAR to meet all of the NASA science requirements. A secondary S-band SAR would be contributed by ISRO, the Indian Space Research Organisation. The instrument would comprise a large diameter deployable reflector and a dual frequency antenna feed and associated electronics to implement the fine-resolution, polarimetric, 240-km swath imaging system. Combined with an ambitious data acquisition plan that supports continuous mapping of Earth's land and ice-covered surfaces at every opportunity over the life of the mission, the mission would generate over 1 Petabyte of raw data each year, which expands to greater data volumes for higher level products. Since many of the science requirements propose time-series analysis, which often involve combinatorial manipulation of images acquired over time, it would be impractical and inadvisable to create global time-series science products. As a result, the processing plan for the mission would be for the project to create a complete set of products through Level 2, and only selected Level 3 products over extended areas of calibration and validation. These sites would be chosen to be scientifically interesting, so that the mission products would include significant scientific results. In addition, the project will develop higher-level processing software to the community that will allow scientists to apply the mission data from Level 0 to 2 to their science problems.

  6. Using the SPICE system to help plan and interpret space science observations

    NASA Technical Reports Server (NTRS)

    Acton, Charles H., Jr.

    1993-01-01

    A portable multimission information system named SPICE is used to assemble, archive, and provide easy user access to viewing geometry and other ancillary information needed by space scientists to interpret observations of bodies within our solar system. The modular nature of this system lends it to use in planning such observations as well. With a successful proof of concept on Voyager, the SPICE system has been adapted to the Magellan, Galileo and Mars Observer missions, and to a variety of ground based operations. Adaptation of SPICE for Cassini and the Russian Mars 94/96 projects is underway, and work on Cassini will follow, SPICE has been used to support observation planning for moving targets on the Hubble Space Telescope Project. Applications for SPICE on earth science, space physics and other astrophysics missions are under consideration.

  7. MRO's High Resolution Imaging Science Experiment (HiRISE): Education and Public Outreach Plans

    NASA Technical Reports Server (NTRS)

    Gulick, V.; McEwen, A.; Delamere, W. A.; Eliason, E.; Grant, J.; Hansen, C.; Herkenhoff, K.; Keszthelyi, L.; Kirk, R.; Mellon, M.

    2003-01-01

    The High Resolution Imaging Experiment, described by McEwen et al. and Delamere et al., will fly on the Mars 2005 Orbiter. In conjunction with the NASA Mars E/PO program, the HiRISE team plans an innovative and aggressive E/PO effort to complement the unique high-resolution capabilities of the camera. The team is organizing partnerships with existing educational outreach programs and museums and plans to develop its own educational materials. In addition to other traditional E/PO activities and a strong web presence, opportunities will be provided for the public to participate in image targeting and science analysis. The main aspects of our program are summarized.

  8. Automated Planning of Science Products Based on Nadir Overflights and Alerts for Onboard and Ground Processing

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; McLaren, David A.; Rabideau, Gregg R.; Mandl, Daniel; Hengemihle, Jerry

    2013-01-01

    A set of automated planning algorithms is the current operations baseline approach for the Intelligent Payload Module (IPM) of the proposed Hyper spectral Infrared Imager (HyspIRI) mission. For this operations concept, there are only local (e.g. non-depletable) operations constraints, such as real-time downlink and onboard memory, and the forward sweeping algorithm is optimal for determining which science products should be generated onboard and on ground based on geographical overflights, science priorities, alerts, requests, and onboard and ground processing constraints. This automated planning approach was developed for the HyspIRI IPM concept. The HyspIRI IPM is proposed to use an X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However, the HyspIRI VSWIR and TIR instruments will produce approximately 1 Gbps data, while the DB capability is 15 Mbps for a approx. =60X oversubscription. In order to address this mismatch, this innovation determines which data to downlink based on both the type of surface the spacecraft is overflying, and the onboard processing of data to detect events. For example, when the spacecraft is overflying Polar Regions, it might downlink a snow/ice product. Additionally, the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected, thereby reducing data volume. The planning system described above automatically generated the IPM mission plan based on requested products, the overflight regions, and available resources.

  9. Planning for the next influenza pandemic: using the science and art of logistics.

    PubMed

    Cupp, O Shawn; Predmore, Brad G

    2011-01-01

    The complexities and challenges for healthcare providers and their efforts to provide fundamental basic items to meet the logistical demands of an influenza pandemic are discussed in this article. The supply chain, planning, and alternatives for inevitable shortages are some of the considerations associated with this emergency mass critical care situation. The planning process and support for such events are discussed in detail with several recommendations obtained from the literature and the experience from recent mass casualty incidents (MCIs). The first step in this planning process is the development of specific triage requirements during an influenza pandemic. The second step is identification of logistical resources required during such a pandemic, which are then analyzed within the proposed logistics science and art model for planning purposes. Resources highlighted within the model include allocation and use of work force, bed space, intensive care unit assets, ventilators, personal protective equipment, and oxygen. The third step is using the model to discuss in detail possible workarounds, suitable substitutes, and resource allocation. An examination is also made of the ethics surrounding palliative care within the construction of an MCI and the factors that will inevitably determine rationing and prioritizing of these critical assets to palliative care patients. PMID:22010601

  10. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  11. Quo Vadis ICDP? The Science Plan of the International Continental Scientific Drilling Program.

    NASA Astrophysics Data System (ADS)

    Horsfield, Brian

    2014-05-01

    The rocks and fluids of our ever-changing planet contain heat, energy, and life as well as archived records of what has gone before. These precious relicts and living systems need to be probed, collected, monitored and analyzed. The science results obtained cover the spectrum of the earth sciences from climate change, natural hazards and earth resources to the origins of life on Earth. The need to drill has never been greater, and this requires improved coordination between the marine, terrestrial and ice-coring communities and the research and private sector communities, effectively addressing the needs of our growing population for energy, sustenance, and quality of life. The ICDP is an infrastructure for scientific drilling that facilitates outstanding science. It is the only international platform for scientific research drilling in terrestrial environments. ICDP brings together scientists and stakeholders from 24 nations to work together at the highest scientific and technical niveaux. More than 30 drilling projects and 55 planning workshops have been supported to date. It is an efficient organisation, run according to the philosophy "lean and mean", with an average annual budget of about 5 million, and further third-party drilling expenditures that more than doubles this yearly investment. Here we report on ICDP's 2013 Science Conference "Imaging the Past to Imagine our Future", held November 11-14, 2013 in Potsdam whose goal was to set the new ICDP Science Plan in motion. New insights into geoprocesses and the identification of hot topics were high on the agenda, and debated in closed sessions, via posters and through oral presentations, and where appropriate dovetailed with socio-economic challenges. The conference was used to strengthen and expand our ties with member countries, and to debate incorporating industry into selected ICDP strategic activities where it makes sense to do so (ICDP remains science-driven). In addition, the conference paved the way

  12. CHRONICLE: Third International Symposium on Modern Optics, Budapest, September 1988

    NASA Astrophysics Data System (ADS)

    Bukhenskiĭ, M. F.; Nikitin, P. I.; Semenov, A. S.

    1989-07-01

    The Third International Symposium on Modern Optics (Optics-88), held in Budapest on 13-16 September 1988, was organized by the Hungarian Optical, Acoustic, and Cinematographic Society with the support of the International Commission on Optics and various scientific and industrial organizations in Hungary. The International Symposium Committee was composed of leading specialists from 11 countries in Asia, America, and Europe with A. M. Prokhorov (USSR) and N. Kroo (Hungary) as Co-chairmen. The purpose of this regular symposium is to summarize the scientific and technical progress underlying the developments in optics itself, discuss the branches of science where progress depends on optical methods in devices, and draw the attention of specialists to the most promising trends which should yield results in the immediate future.

  13. Recent advances in engineering science; Proceedings of the A. Cemal Eringen Symposium, University of California, Berkeley, June 20-22, 1988

    NASA Technical Reports Server (NTRS)

    Koh, Severino L. (Editor); Speziale, Charles G. (Editor)

    1989-01-01

    Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.

  14. Engineering science and mechanics; Proceedings of the International Symposium, Tainan, Republic of China, December 29-31, 1981. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.

    1983-07-01

    The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061

  15. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    none,

    1998-01-23

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  16. Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.; Keller, J. W.; Chin, G.; Garvin, J.; Petro, N.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18,2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  17. Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Vondrak, R. R.; Petro, N. E.; Chin, G.; Garvin, J.

    2012-12-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  18. PREFACE: 2nd International Symposium "Optics and its Applications"

    NASA Astrophysics Data System (ADS)

    Calvo, Maria L.; Dolganova, Irina N.; Gevorgyan, Narine; Guzman, Angela; Papoyan, Aram; Sarkisyan, Hayk; Yurchenko, Stanislav

    2016-01-01

    The ICTP smr2633: 2nd International Symposium "Optics and its Applications" (OPTICS-2014) http://indico.ictp.it/event/a13253/ was held in Yerevan and Ashtarak, Armenia, on 1-5 September 2014. The Symposium was organized by the Abdus Salam International Center for Theoretical Physics (ICTP) with the collaboration of the SPIE Armenian Student Chapter, the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of the National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-Pyrkal, and the Yerevan State University (YSU). The Symposium was co-organized by the BMSTU SPIE & OSA student chapters. The International Symposium OPTICS-2014 was dedicated to the 50th anniversary of the Abdus Salam International Center for Theoretical Physics. This symposium "Optics and its Applications" was the First Official ICTP Scientific Event in Armenia. The presentations at OPTICS-2014 were centered on these topics: optical properties of nanostructures; quantum optics & information; singular optics and its applications; laser spectroscopy; strong field optics; nonlinear & ultrafast optics; photonics & fiber optics; optics of liquid crystals; and mathematical methods in optics.

  19. The Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing: Proceedings of a Symposium.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.

    This volume contains the prepared papers and discussions of a National Academy of Sciences - National Research Council Symposium on the Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing. The purpose of the symposium was to examine the past, present, and future contributions of animals to human health…

  20. A Report to the Australian Development Assistance Bureau. Regional Symposium on Distance Teaching in Asia (Penang, Malaysia, May 1981).

    ERIC Educational Resources Information Center

    Reid-Smith, Edward R.

    Reports and summaries of papers presented at the 1981 Regional Symposium on Distance Teaching in Asia are presented. The symposium, which was represented by 22 countries, was organized by the Universiti Sains (University of Science) Malaysia as part of the activities associated with the completion of 10 years of off-campus program facilities. The…

  1. Exploring the Possibilities: Earth and Space Science Missions in the Context of Exploration

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Calabrese, Michael; Kirkpatrick, James; Malay, Jonathan T.

    2006-01-01

    According to Dr. Edward J. Weiler, Director of the Goddard Space Flight Center, "Exploration without science is tourism". At the American Astronautical Society's 43rd Annual Robert H. Goddard Memorial Symposium it was quite apparent to all that NASA's current Exploration Initiative is tightly coupled to multiple scientific initiatives: exploration will enable new science and science will enable exploration. NASA's Science Mission Directorate plans to develop priority science missions that deliver science that is vital, compelling and urgent. This paper will discuss the theme of the Goddard Memorial Symposium that science plays a key role in exploration. It will summarize the key scientific questions and some of the space and Earth science missions proposed to answer them, including the Mars and Lunar Exploration Programs, the Beyond Einstein and Navigator Programs, and the Earth-Sun System missions. It will also discuss some of the key technologies that will enable these missions, including the latest in instruments and sensors, large space optical system technologies and optical communications, and briefly discuss developments and achievements since the Symposium. Throughout history, humans have made the biggest scientific discoveries by visiting unknown territories; by going to the Moon and other planets and by seeking out habitable words, NASA is continuing humanity's quest for scientific knowledge.

  2. Third International Symposium on Environmental Hydraulics with a Special Theme on Urban Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Boyer, Don

    2002-01-01

    This is to report on the use of the funds provided by NASA to support the 'Third International Symposium on Environmental Hydraulics with a Special Theme on Urban Fluid Dynamics'. The Symposium was held on the campus of Arizona State University in Tempe, Arizona, USA, from 5-8 December 2001. It proved to be a forum for the discussion of a wide range of applied and basic research being conducted in the general areas of water and air resources, with the latter focusing on air quality in urban areas associated with complex terrain. This aspect of the Symposium was highlighted by twelve invited papers given by distinguished international scientists and roughly three hundred contributed manuscripts. Owing primarily to the current international situation, roughly 20% of the authors canceled their plans to attend the Symposium; while this was unfortunate, the Symposium went ahead with the enthusiastic participation of more than 250 scientists from forty nations.

  3. Geospatial Information Integration for Science Activity Planning at the Mars Desert Research Station

    NASA Astrophysics Data System (ADS)

    Berrios, Daniel C.; Sierhuis, Maarten; Keller, Richard M.

    NASA's Mobile Agents project leads coordinated planetary exploration simulations at the Mars Desert Research Station. Through ScienceOrganizer, a Web-based tool for organizing and providing contextual information for scientific data sets, remote teams of scientists access and annotate data sets, images, documents and other forms of scientific information, applying predefined semantic links and metadata using a Web browser. We designed and developed an experimental geographic information server that integrates remotely sensed images of scientific activity areas with information regarding activity plans, actors and data that had been characterized semantically using ScienceOrganizer. The server automatically obtains remotely sensed photographs of geographic survey sites at various resolutions and combines these images with scientific survey data to generate “context maps” illustrating the paths of survey actors and the sequence and types of data collected during simulated surface “extra-vehicular activities.” The remotely located scientific team found the context maps were extremely valuable for achieving and conveying activity plan consensus.

  4. Sheep symposium: Biology and management of low-input lambing in easy-care systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-input lambing management was the focus of the 2007 Sheep Symposium at the joint annual meetings of the American Society of Animal Science, the American Dairy Science Association, the Asociacio´n Mexicana de Produccio´n Animal, and the Poultry Science Association held in San Antonio, Texas, on Ju...

  5. The first Brazilian Dinosaur Symposium

    NASA Astrophysics Data System (ADS)

    dos Anjos Candeiro, Carlos Roberto; da Silva Marinho, Thiago

    2015-08-01

    The 1st Brazilian Dinosaur Symposium gathered paleontologists, geologists, and paleoartists in the city of Ituiutaba, Minas Gerais State, Brazil, from April 21st to 24th, 2013. The Dinosaur Symposium in the Pontal Campus of the Universidade Federal de Uberlândia, Minas Gerais State, Brazil provided an opportunity to share many new results of dinosaur research being conducted around the world. The symposium coincided with a new dawn of scientific advances in dinosaur paleontology further expanding its importance, interest and credibility worldwide.

  6. Designing Innovative Lessons Plans to Support the Next Generation Science Standards (NGSS)

    NASA Astrophysics Data System (ADS)

    Passow, M. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) issued earlier in 2013 provide the opportunity to enhance pre-college curricula through a new focus on the ';Big Ideas' in Science, more attention to reading and writing skills needed for college and career readiness, and incorporation of engineering and technology. We introduce a set of lesson plans about scientific ocean drilling which can serve as a exemplars for developing curricula to meet NGSS approaches. Designed for middle and high school students, these can also be utilized in undergraduate courses. Development of these lessons was supported through a grant from the Deep Earth Academy of the Consortium for Ocean Leadership. They will be disseminated through websites of the Deep Earth Academy (http://www.oceanleadership.org/education/deep-earth-academy/) and Earth2Class Workshops for Teachers (http://www.earth2class.org), as well as through workshops at science education conferences sponsored by the National Earth Science Teachers Association (www.nestanet.org) and other organizations. Topics include 'Downhole Logging,' 'Age of the Ocean Floors,' 'Tales of the Resolution,' and 'Continental Shelf Sediments and Climate Change Patterns.' 'Downhole Logging' focuses on the engineering and technology utilized to obtain more information about sediments and rocks cored by the JOIDES Resolution scientific drilling vessel. 'Age of the Ocean Floor' incorporates the GeoMap App visualization tools (http://www.geomapapp.org/) to compare sea bottom materials in various parts of the world. 'Tales of the Resolution' is a series of ';graphic novels' created to describe the scientific discoveries, refitting of the JOIDES Resolution, and variety of careers available in the marine sciences (http://www.ldeo.columbia.edu/BRG/outreach/media/tales/). The fourth lesson focuses on discoveries made during Integrated Ocean Drilling Program Expedition 313, which investigated patterns in the sediments beneath the continental shelf off New

  7. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    The Consortium for International Earth Science Information Network (CIESIN) was founded in 1989 as a non-profit corporation dedicated to facilitating access to, use and understanding of global change information worldwide. The Consortium was created to cooperate and coordinate with organizations and researchers throughout the global change community to further access the most advanced technology, the latest scientific research, and the best information available for critical environmental decision making. CIESIN study efforts are guided by Congressional mandates to 'convene key present and potential users to assess the need for investment in integration of earth science information,' to 'outline the desirable pattern of interaction with the scientific and policy community,' and to 'develop recommendations and draft plans to achieve the appropriate level of effort in the use of earth science data for research and public policy purposes.' In addition, CIESIN is tasked by NASA to develop a data center that would extend the benefits of Earth Observing System (EOS) to the users of global change information related to human dimensions issues. For FY 1991, CIESIN focused on two main objectives. The first addressed the identification of information needs of global change research and non-research user groups worldwide. The second focused on an evaluation of the most efficient mechanisms for making this information available in usable forms.

  8. Multiple Discipline science assessment. [considering astronomy, astrophysics, cosmology, gravitation and geophysics when planning planetary missions

    NASA Technical Reports Server (NTRS)

    Wells, W. C.

    1978-01-01

    Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.

  9. Summary of Past Microgravity Experiment in Japanese Microgravity Science Field and Future Plan

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Yoda, S.

    2002-01-01

    strategic plan for the early years of the 21st century is described experiments were carried out onboard various flight platforms such as airplanes, sounding rockets, free-flyers, and space shuttles. In Japan, microgravity experiments started with Skylab in 1973. In this first set of experiments, the results were scrutinized with keen interest and the usefulness of microgravity environment was evidenced. In the 1980's, the Japanese sounding rocket TT-500A, which provided microgravity conditions for several minutes, was used to verify the experimental facilities and the operations before long duration microgravity experiments were carried out. With the First International Microgravity Laboratory (IML-1) and the First Material Processing Test (FMPT) projects, the National Space Development Agency of Japan (NASDA) had the opportunity to perform sustained and genuine microgravity experiments. With the twenty-two experiments carried out in the FPMT, the Japanese microgravity community made rapid progress. Following this, space missions such as the Second International Microgravity Laboratory (IML-2) and the First Microgravity Science Laboratory (MSL-1) were performed. In addition, a series of seven sounding rockets TR-IA were launched to investigate scientific problems and to help develop technologies. Through these flight experiments, material sciences (Electrostatic Levitation Furnace; the diffusion coefficient measurement by shear-cell method; in-situ simultaneous observation of temperature and concentration field by two wavelength Mach-Zehnder microscope Interferometer) became at the forefront of science and technology in the world. measurement, and cell biology, are being carried out as phase C of NASDA strategic research. Research solicitation in microgravity sciences, among other fields, has seen substantial progress since its initiation in 1997. It is hoped that grant awardees will be the potential applicants of ISS flight experiments in the future. The science

  10. Scientist-Teacher-Student Interactions: Experiences around the Fall 2010 A-Train Symposium

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Rogers, M. A.; Charlevoix, D. J.; Kennedy, T.; Oostra, D. H.

    2010-12-01

    In late October 2010, the second A-Train Science Symposium will be held in New Orleans, LA. (The first such event was hosted by CNES in France in 2007.) In conjunction with the symposium, a multi-faceted education event is also being planned. This will include: - Onsite one-day teacher workshops for local teachers introducing remote sensing and the use of satellite data in the classroom - Visits by scientists to local classrooms for direct interaction with students the day after the symposium - A Student-Scientist Observation Campaign which will engage A-Train scientists in a social media website with teachers and students from around the world. This paper will focus primarily on the observation campaign. It will describe the rapid development and testing of a web-based framework to support student-scientist interaction. It will lay out the steps used to activate a (hopefully significant) number of students and teachers through the GLOBE Program (www.globe.gov) and the S’COOL Project (scool.larc.nasa.gov). It will describe the interaction during the event, which will be a 3-week period before, during and after the symposium. During this time, A-Train scientists will be posting interesting satellite observations on a social media website. Students will be able to comment, ask questions, and post their own observations of related phenomena observed from the ground. Scientists will respond to student questions, and comment or ask questions on student observations. In addition, student observations will be collected through the existing S’COOL and GLOBE websites, and combined into a common visualization tool that is easily accessible through the social media framework. A photo upload pilot system is also planned, taking advantage of advances in exif photo metadata in new electronics (cell phones, smart phones, digital cameras) to easily geolocate this imagery for correlation to satellite remote sensing data and images. It is our hope that this approach will be

  11. NASA Life Sciences Data Repositories: Tools for Retrospective Analysis and Future Planning

    NASA Technical Reports Server (NTRS)

    Thomas, D.; Wear, M.; VanBaalen, M.; Lee, L.; Fitts, M.

    2011-01-01

    As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future

  12. Research symposium proceedings. Final report

    SciTech Connect

    1991-12-31

    THE research symposium was organized to present the cutting edge research for PET by individuals from leading institutions throughout the world. The Institute for Clinical PET (ICP) has focused its annual meeting on the clinical applications of PET.

  13. 30th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Bradley, Obie H., Jr. (Compiler); Rogers, John F. (Compiler)

    1996-01-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  14. Summary of the discussions held at a conference of the behavioral sciences and family planning programs.

    PubMed

    Synder, M

    1966-01-01

    A conference was called in the hope that by applying the knowledge science can give, family planners can improve the form and efficiency of their programs. A summary of the major points made by the participants is presented. Philip Huaser urger employing a full battery of social scientists to do basic research into the theory and methodology of surveys. Michael Young proposed shifting the focus from individual use of contraception to social policies designed to reduce birthrates. Le Bogart commented on the ignorance about the psychological relationship between sexuality and procreation. Brewster Smith suggested a psychological perspective from which to examine questions involved in family planning. Orville Brim, Jr., argued that sociological theorists must learn to work with technologists to develop contraceptive devices and other tools of family planning programs. Richard Bell reported on the physical and mental impairments in children from large families with short birth intervals. Reuben Hill focused on family studies which see man as an initiator in the social process, as opposed to the passive picture painted by demographers. A lively discussion on the use of mass communications in the spread of family planning was ushered in by Daniel Lerner. Dr. Freedman wondered if family planning communications should be designed primarily for education or persuasion, seeing greater numbers of recruits in the former. Cultural innovations from an anthropological point of view were discussed by George Foster, who suggested that people are so pragmatic that they will accept any innovation that meets a need in their lives. Everett Rogers reported on research in the diffusion of agricultural innovations. A discussion on barriers to effective organization was introduced by Nicholas Demarath. PMID:12255222

  15. The Role of Teachers' Pedagogical and Subject-Matter Knowledge in Planning and Enacting Science-Inquiry Instruction, and in Assessing Students' Science-Inquiry Learning

    NASA Astrophysics Data System (ADS)

    Birlean, Camelia

    This study explored the relation between pedagogical knowledge and subject-matter knowledge, in the context of inquiry-driven science instruction, and their relation to instructors' performance in the instructional process. This multiple case study focused on three distinct categories of teachers--Novice in Inquiry and in Science, Novice in Inquiry and Expert in Science, and Expert in Inquiry and in Science--and examined the commonalities and differences among them by exploring the cognitive processes these teachers used when planning and enacting an inquiry instructional situation, as well as when assessing students' learning resulting from this specific instructional event. Inquiry instruction varied across cases from largely structured to largely open. The Novice-Novice's science instruction, predominantly traditional in the approach, differed greatly from that of the Expert-Expert and of the Novice-Expert. The latter two emphasized--to various extents structured, guided, and open--inquiry strategy as part of their ongoing instruction. The open inquiry was an approach embraced solely by the Expert-Expert teacher throughout the Advanced Science Research instruction, emphasizing the creative aspect of problem generation. Edward teacher also distinguished himself from the other two participants in his view of planning and terminology used to describe it, both of which emphasized the dynamic and flexible feature of this instructional process. The Expert-Expert identified occasional planning, planning of specific skills and content critical to students' learning process during their independent inquiry. The observed teaching performance of the three participants partly reflected their planning; the alignment was least frequent for the Novice-Novice. The assessment of inquiry-based projects varied greatly across participants. Each teacher participant evaluated a set of three inquiry-based science projects that differed in their quality, and this variation increased

  16. Kick-off symposium series to help New Ph.D.s is a success

    NASA Astrophysics Data System (ADS)

    Chernys, Michael; Roughan, Moninya

    The U.S. National Science Foundation (NSF) and the U.S. Office of Naval Research (ONR) recently sponsored the first of what is expected to be many symposia to be held every couple of years to help new scientists begin their research careers. The inaugural dissertation symposium, Physical Oceanography Dissertation Symposium I (PODS I), provided a forum for new Ph.D.s and doctoral candidates soon to receive their degrees in physical oceanography or a related field, to discuss science and forge future professional relationships. The next symposium is expected to be in October 2003, in Hawaii, in concert with the Dissertation Symposium for Chemical Oceanographers (DISCO); information to be posted at http://spars.aibs.org/pods/. Applications from prospective participants were sought internationally, with the sponsoring agencies and coordinators advertising by e-mail, through personal communication with established researchers, and by informing degree-granting institutions in the related fields.

  17. Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Nasir, Ali

    Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models〝 and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and

  18. West Antarctic Ice Sheet Initiative. Volume 1: Science and Implementation Plan

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1990-01-01

    The Science and Implementation Plan of the West Antarctic Ice Sheet Initiative (WAIS) is described. The goal of this initiative is the prediction of the future behavior of this ice sheet and an assessment of its potential to collapse, rapidly raising global sea level. The multidisciplinary nature of WAIS reflects the complexity of the polar ice sheet environment. The project builds upon past and current polar studies in many fields and meshes with future programs of both the U.S. and other countries. Important tasks in each discipline are described and a coordinated schedule by which the majority of these tasks can be accomplished in 5 years is presented. The companion report (Volume 2) contains seven discipline review papers on the state of knowledge of Antarctica and opinions on how that knowledge must be increased to attain the WAIS goal.

  19. Ozone Depletion, Greenhouse Gases, and Climate Change. Proceedings of a Joint Symposium by the Board on Atmospheric Sciences and Climate and the Committee on Global Change, National Research Council (Washington, D.C., March 23, 1988).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The motivation for the organization of this symposium was the accumulation of evidence from many sources, both short- and long-term, that the global climate is in a state of change. Data which defy integrated explanation including temperature, ozone, methane, precipitation and other climate-related trends have presented troubling problems for…

  20. Aquatic Ecosystem Enhancement at Mountaintop Mining Sites Symposium

    SciTech Connect

    Black, D. Courtney; Lawson, Peter; Morgan, John; Maggard, Randy; Schor, Horst; Powell, Rocky; Kirk, Ed. J.

    2000-01-12

    Welcome to this symposium which is part of the ongoing effort to prepare an Environmental Impact Statement (EIS) regarding mountaintop mining and valley fills. The EIS is being prepared by the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, U.S. Office of Surface Mining, and U.S. Fish and Wildlife Service, in cooperation with the State of West Virginia. Aquatic Ecosystem Enhancement (AEE) at mountaintop mining sites is one of fourteen technical areas identified for study by the EIS Interagency Steering Committee. Three goals were identified in the AEE Work Plan: 1. Assess mining and reclamation practices to show how mining operations might be carried out in a way that minimizes adverse impacts to streams and other environmental resources and to local communities. Clarify economic and technical constraints and benefits. 2. Help citizens clarify choices by showing whether there are affordable ways to enhance existing mining, reclamation, mitigation processes and/or procedures. 3. Ide identify data needed to improve environmental evaluation and design of mining projects to protect the environment. Today’s symposium was proposed in the AEE Team Work Plans but coordinated planning for the event began September 15, 1999 when representatives from coal industry, environmental groups and government regulators met in Morgantown. The meeting participants worked with a facilitator from the Canaan Valley Institute to outline plans for the symposium. Several teams were formed to carry out the plans we outlined in the meeting.