Science.gov

Sample records for scientific computing service

  1. Availability measurement of grid services from the perspective of a scientific computing centre

    NASA Astrophysics Data System (ADS)

    Marten, H.; Koenig, T.

    2011-12-01

    The Karlsruhe Institute of Technology (KIT) is the merger of Forschungszentrum Karlsruhe and the Technical University Karlsruhe. The Steinbuch Centre for Computing (SCC) was one of the first new organizational units of KIT, combining the former Institute for Scientific Computing of Forschungszentrum Karlsruhe and the Computing Centre of the University. IT service management according to the worldwide de-facto-standard "IT Infrastructure Library (ITIL)" [1] was chosen by SCC as a strategic element to support the merging of the two existing computing centres located at a distance of about 10 km. The availability and reliability of IT services directly influence the customer satisfaction as well as the reputation of the service provider, and unscheduled loss of availability due to hardware or software failures may even result in severe consequences like data loss. Fault tolerant and error correcting design features are reducing the risk of IT component failures and help to improve the delivered availability. The ITIL process controlling the respective design is called Availability Management [1]. This paper discusses Availability Management regarding grid services delivered to WLCG and provides a few elementary guidelines for availability measurements and calculations of services consisting of arbitrary numbers of components.

  2. Towards Monitoring-as-a-service for Scientific Computing Cloud applications using the ElasticSearch ecosystem

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Guarise, A.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    The INFN computing centre in Torino hosts a private Cloud, which is managed with the OpenNebula cloud controller. The infrastructure offers Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) services to different scientific computing applications. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BESIII collaboration, plus an increasing number of other small tenants. The dynamic allocation of resources to tenants is partially automated. This feature requires detailed monitoring and accounting of the resource usage. We set up a monitoring framework to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the ElasticSearch, Logstash and Kibana (ELK) stack. The infrastructure relies on a MySQL database back-end for data preservation and to ensure flexibility to choose a different monitoring solution if needed. The heterogeneous accounting information is transferred from the database to the ElasticSearch engine via a custom Logstash plugin. Each use-case is indexed separately in ElasticSearch and we setup a set of Kibana dashboards with pre-defined queries in order to monitor the relevant information in each case. For the IaaS metering, we developed sensors for the OpenNebula API. The IaaS level information gathered through the API is sent to the MySQL database through an ad-hoc developed RESTful web service. Moreover, we have developed a billing system for our private Cloud, which relies on the RabbitMQ message queue for asynchronous communication to the database and on the ELK stack for its graphical interface. The Italian Grid accounting framework is also migrating to a similar set-up. Concerning the application level, we used the Root plugin TProofMonSenderSQL to collect accounting data from the interactive analysis facility. The BESIII

  3. Scientific Services on the Cloud

    NASA Astrophysics Data System (ADS)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  4. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    ERIC Educational Resources Information Center

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of…

  5. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1995-01-01

    The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.

  6. Computers and Computation. Readings from Scientific American.

    ERIC Educational Resources Information Center

    Fenichel, Robert R.; Weizenbaum, Joseph

    A collection of articles from "Scientific American" magazine has been put together at this time because the current period in computer science is one of consolidation rather than innovation. A few years ago, computer science was moving so swiftly that even the professional journals were more archival than informative; but today it is much easier…

  7. CRISP (COMPUTER RETRIEVED INFORMATION ON SCIENTIFIC PROJECTS)

    EPA Science Inventory

    CRISP (Computer Retrieval of Information on Scientific Projects) is a biomedical database system containing information on research projects and programs supported by the Department of Health and Human Services. Most of the research falls within the broad category of extramural p...

  8. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.

  9. Accelerating Scientific Computations using FPGAs

    NASA Astrophysics Data System (ADS)

    Pell, O.; Atasu, K.; Mencer, O.

    Field Programmable Gate Arrays (FPGAs) are semiconductor devices that contain a grid of programmable cells, which the user configures to implement any digital circuit of up to a few million gates. Modern FPGAs allow the user to reconfigure these circuits many times each second, making FPGAs fully programmable and general purpose. Recent FPGA technology provides sufficient resources to tackle scientific applications on large-scale parallel systems. As a case study, we implement the Fast Fourier Transform [1] in a flexible floating point implementation. We utilize A Stream Compiler [2] (ASC) which combines C++ syntax with flexible floating point support by providing a 'HWfloat' data-type. The resulting FFT can be targeted to a variety of FPGA platforms in FFTW-style, though not yet completely automatically. The resulting FFT circuit can be adapted to the particular resources available on the system. The optimal implementation of an FFT accelerator depends on the length and dimensionality of the FFT, the available FPGA area, the available hard DSP blocks, the FPGA board architecture, and the precision and range of the application [3]. Software-style object-orientated abstractions allow us to pursue an accelerated pace of development by maximizing re-use of design patterns. ASC allows a few core hardware descriptions to generate hundreds of different circuit variants to meet particular speed, area and precision goals. The key to achieving maximum acceleration of FFT computation is to match memory and compute bandwidths so that maximum use is made of computational resources. Modern FPGAs contain up to hundreds of independent SRAM banks to store intermediate results, providing ample scope for optimizing memory parallelism. At 175Mhz, one of Maxeler's Radix-4 FFT cores computes 4x as many 1024pt FFTs per second as a dual Pentium-IV Xeon machine running FFTW. Eight such parallel cores fit onto the largest FPGA in the Xilinx Virtex-4 family, providing a 32x speed-up over

  10. National Energy Research Scientific Computing Center 2007 Annual Report

    SciTech Connect

    Hules, John A.; Bashor, Jon; Wang, Ucilia; Yarris, Lynn; Preuss, Paul

    2008-10-23

    This report presents highlights of the research conducted on NERSC computers in a variety of scientific disciplines during the year 2007. It also reports on changes and upgrades to NERSC's systems and services aswell as activities of NERSC staff.

  11. Supporting the scientific lifecycle through cloud services

    NASA Astrophysics Data System (ADS)

    Gensch, S.; Klump, J. F.; Bertelmann, R.; Braune, C.

    2014-12-01

    Cloud computing has made resources and applications available for numerous use cases ranging from business processes in the private sector to scientific applications. Developers have created tools for data management, collaborative writing, social networking, data access and visualization, project management and many more; either for free or as paid premium services with additional or extended features. Scientists have begun to incorporate tools that fit their needs into their daily work. To satisfy specialized needs, some cloud applications specifically address the needs of scientists for sharing research data, literature search, laboratory documentation, or data visualization. Cloud services may vary in extent, user coverage, and inter-service integration and are also at risk of being abandonend or changed by the service providers making changes to their business model, or leaving the field entirely.Within the project Academic Enterprise Cloud we examine cloud based services that support the research lifecycle, using feature models to describe key properties in the areas of infrastructure and service provision, compliance to legal regulations, and data curation. Emphasis is put on the term Enterprise as to establish an academic cloud service provider infrastructure that satisfies demands of the research community through continious provision across the whole cloud stack. This could enable the research community to be independent from service providers regarding changes to terms of service and ensuring full control of its extent and usage. This shift towards a self-empowered scientific cloud provider infrastructure and its community raises implications about feasability of provision and overall costs. Legal aspects and licensing issues have to be considered, when moving data into cloud services, especially when personal data is involved.Educating researchers about cloud based tools is important to help in the transition towards effective and safe use. Scientists

  12. Advanced Scientific Computing Environment Team new scientific database management task

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future computer'' will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This network computer'' will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of Jvv'' concepts and capabilities to distributed and/or parallel computing environments.

  13. Scientific computing environment for the 1980s

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.

    1986-01-01

    An emerging scientific computing environment in which computers are used not only to solve large-scale models, but are also integrated into the daily activities of scientists and engineers, is discussed. The requirements of the scientific user in this environment are reviewed, and the hardware environment is described, including supercomputers, work stations, mass storage, and communications. Significant increases in memory capacity to keep pace with performance increases, the introduction of powerful graphics displays into the work station, and networking to integrate many computers are stressed. The emerging system software environment is considered, including the operating systems, communications software, and languages. New scientific user tools and utilities that will become available are described.

  14. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    SciTech Connect

    Hey, Tony; Agarwal, Deborah; Borgman, Christine; Cartaro, Concetta; Crivelli, Silvia; Van Dam, Kerstin Kleese; Luce, Richard; Arjun, Shankar; Trefethen, Anne; Wade, Alex; Williams, Dean

    2015-09-04

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  15. Scientific Computing on the Grid

    SciTech Connect

    Allen, Gabrielle; Seidel, Edward; Shalf, John

    2001-12-12

    Computer simulations are becoming increasingly important as the only means for studying and interpreting the complex processes of nature. Yet the scope and accuracy of these simulations are severely limited by available computational power, even using today's most powerful supercomputers. As we endeavor to simulate the true complexity of nature, we will require much larger scale calculations than are possible at present. Such dynamic and large scale applications will require computational grids and grids require development of new latency tolerant algorithms, and sophisticated code frameworks like Cactus to carry out more complex and high fidelity simulations with a massive degree of parallelism.

  16. Ontology-Driven Discovery of Scientific Computational Entities

    ERIC Educational Resources Information Center

    Brazier, Pearl W.

    2010-01-01

    Many geoscientists use modern computational resources, such as software applications, Web services, scientific workflows and datasets that are readily available on the Internet, to support their research and many common tasks. These resources are often shared via human contact and sometimes stored in data portals; however, they are not necessarily…

  17. Introduction to the LaRC central scientific computing complex

    NASA Technical Reports Server (NTRS)

    Shoosmith, John N.

    1993-01-01

    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.

  18. Web Services Provide Access to SCEC Scientific Research Application Software

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Gupta, V.; Okaya, D.; Kamb, L.; Maechling, P.

    2003-12-01

    Web services offer scientific communities a new paradigm for sharing research codes and communicating results. While there are formal technical definitions of what constitutes a web service, for a user community such as the Southern California Earthquake Center (SCEC), we may conceptually consider a web service to be functionality provided on-demand by an application which is run on a remote computer located elsewhere on the Internet. The value of a web service is that it can (1) run a scientific code without the user needing to install and learn the intricacies of running the code; (2) provide the technical framework which allows a user's computer to talk to the remote computer which performs the service; (3) provide the computational resources to run the code; and (4) bundle several analysis steps and provide the end results in digital or (post-processed) graphical form. Within an NSF-sponsored ITR project coordinated by SCEC, we are constructing web services using architectural protocols and programming languages (e.g., Java). However, because the SCEC community has a rich pool of scientific research software (written in traditional languages such as C and FORTRAN), we also emphasize making existing scientific codes available by constructing web service frameworks which wrap around and directly run these codes. In doing so we attempt to broaden community usage of these codes. Web service wrapping of a scientific code can be done using a "web servlet" construction or by using a SOAP/WSDL-based framework. This latter approach is widely adopted in IT circles although it is subject to rapid evolution. Our wrapping framework attempts to "honor" the original codes with as little modification as is possible. For versatility we identify three methods of user access: (A) a web-based GUI (written in HTML and/or Java applets); (B) a Linux/OSX/UNIX command line "initiator" utility (shell-scriptable); and (C) direct access from within any Java application (and with the

  19. A Computing Environment to Support Repeatable Scientific Big Data Experimentation of World-Wide Scientific Literature

    SciTech Connect

    Schlicher, Bob G; Kulesz, James J; Abercrombie, Robert K; Kruse, Kara L

    2015-01-01

    A principal tenant of the scientific method is that experiments must be repeatable and relies on ceteris paribus (i.e., all other things being equal). As a scientific community, involved in data sciences, we must investigate ways to establish an environment where experiments can be repeated. We can no longer allude to where the data comes from, we must add rigor to the data collection and management process from which our analysis is conducted. This paper describes a computing environment to support repeatable scientific big data experimentation of world-wide scientific literature, and recommends a system that is housed at the Oak Ridge National Laboratory in order to provide value to investigators from government agencies, academic institutions, and industry entities. The described computing environment also adheres to the recently instituted digital data management plan mandated by multiple US government agencies, which involves all stages of the digital data life cycle including capture, analysis, sharing, and preservation. It particularly focuses on the sharing and preservation of digital research data. The details of this computing environment are explained within the context of cloud services by the three layer classification of Software as a Service , Platform as a Service , and Infrastructure as a Service .

  20. Intel Woodcrest: An Evaluation for Scientific Computing

    SciTech Connect

    Roth, Philip C; Vetter, Jeffrey S

    2007-01-01

    Intel recently began shipping its Xeon 5100 series processors, formerly known by their 'Woodcrest' code name. To evaluate the suitability of the Woodcrest processor for high-end scientific computing, we obtained access to a Woodcrest-based system at Intel and measured its performance first using computation and memory micro-benchmarks, followed by full applications from the areas of climate modeling and molecular dynamics. For computational benchmarks, the Woodcrest showed excellent performance compared to a test system that uses Opteron processors from Advanced Micro Devices (AMD), though its performance advantage for full applications was less definitive. Nevertheless, our evaluation suggests the Woodcrest to be a compelling foundation for future leadership class systems for scientific computing.

  1. Comparisons of some large scientific computers

    NASA Technical Reports Server (NTRS)

    Credeur, K. R.

    1981-01-01

    In 1975, the National Aeronautics and Space Administration (NASA) began studies to assess the technical and economic feasibility of developing a computer having sustained computational speed of one billion floating point operations per second and a working memory of at least 240 million words. Such a powerful computer would allow computational aerodynamics to play a major role in aeronautical design and advanced fluid dynamics research. Based on favorable results from these studies, NASA proceeded with developmental plans. The computer was named the Numerical Aerodynamic Simulator (NAS). To help insure that the estimated cost, schedule, and technical scope were realistic, a brief study was made of past large scientific computers. Large discrepancies between inception and operation in scope, cost, or schedule were studied so that they could be minimized with NASA's proposed new compter. The main computers studied were the ILLIAC IV, STAR 100, Parallel Element Processor Ensemble (PEPE), and Shuttle Mission Simulator (SMS) computer. Comparison data on memory and speed were also obtained on the IBM 650, 704, 7090, 360-50, 360-67, 360-91, and 370-195; the CDC 6400, 6600, 7600, CYBER 203, and CYBER 205; CRAY 1; and the Advanced Scientific Computer (ASC). A few lessons learned conclude the report.

  2. Exploring HPCS Languages in Scientific Computing

    SciTech Connect

    Barrett, Richard F; Alam, Sadaf R; de Almeida, Valmor F; Bernholdt, David E; Elwasif, Wael R; Kuehn, Jeffery A; Poole, Stephen W; Shet, Aniruddha G

    2008-01-01

    As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper computational and memory hierarchies, and increased heterogeneity, developers of scientific software are increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS) program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety of features not found in currently popular HPC programming environments and make it easier to express powerful computational constructs, leading to new ways of thinking about parallel programming. Though the languages and their implementations are not yet mature enough for a comprehensive evaluation, we discuss some of the important features, and provide examples of how they can be used in scientific computing. We believe that these characteristics will be important to the future of high-performance scientific computing, whether the ultimate language of choice is one of the HPCS languages or something else.

  3. Accelerating Scientific Discovery Through Computation and Visualization

    PubMed Central

    Sims, James S.; Hagedorn, John G.; Ketcham, Peter M.; Satterfield, Steven G.; Griffin, Terence J.; George, William L.; Fowler, Howland A.; am Ende, Barbara A.; Hung, Howard K.; Bohn, Robert B.; Koontz, John E.; Martys, Nicos S.; Bouldin, Charles E.; Warren, James A.; Feder, David L.; Clark, Charles W.; Filla, B. James; Devaney, Judith E.

    2000-01-01

    The rate of scientific discovery can be accelerated through computation and visualization. This acceleration results from the synergy of expertise, computing tools, and hardware for enabling high-performance computation, information science, and visualization that is provided by a team of computation and visualization scientists collaborating in a peer-to-peer effort with the research scientists. In the context of this discussion, high performance refers to capabilities beyond the current state of the art in desktop computing. To be effective in this arena, a team comprising a critical mass of talent, parallel computing techniques, visualization algorithms, advanced visualization hardware, and a recurring investment is required to stay beyond the desktop capabilities. This article describes, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing and visualization to accelerate condensate modeling, (2) fluid flow in porous materials and in other complex geometries, (3) flows in suspensions, (4) x-ray absorption, (5) dielectric breakdown modeling, and (6) dendritic growth in alloys. PMID:27551642

  4. Computers and Reference Service.

    ERIC Educational Resources Information Center

    Purcell, Royal

    1989-01-01

    Discusses the current status and potential for automated library reference services in the areas of community information systems, online catalogs, remote online reference services, and telephone reference services. Several models of the reference procedure which might be used in developing expert systems are examined. (19 references) (CLB)

  5. Scientific Computing Kernels on the Cell Processor

    SciTech Connect

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine

    2007-04-04

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  6. Software Engineering for Scientific Computer Simulations

    NASA Astrophysics Data System (ADS)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  7. Scientific Visualization and Computational Science: Natural Partners

    NASA Technical Reports Server (NTRS)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization

  8. Enabling Computational Technologies for Terascale Scientific Simulations

    SciTech Connect

    Ashby, S.F.

    2000-08-24

    We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.

  9. Advances in computing, and their impact on scientific computing.

    PubMed

    Giles, Mike

    2002-01-01

    This paper begins by discussing the developments and trends in computer hardware, starting with the basic components (microprocessors, memory, disks, system interconnect, networking and visualization) before looking at complete systems (death of vector supercomputing, slow demise of large shared-memory systems, rapid growth in very large clusters of PCs). It then considers the software side, the relative maturity of shared-memory (OpenMP) and distributed-memory (MPI) programming environments, and new developments in 'grid computing'. Finally, it touches on the increasing importance of software packages in scientific computing, and the increased importance and difficulty of introducing good software engineering practices into very large academic software development projects. PMID:12539947

  10. Advanced Scientific Computing Research Network Requirements

    SciTech Connect

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  11. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    SciTech Connect

    Hules, J.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  12. SDS: A Framework for Scientific Data Services

    SciTech Connect

    Dong, Bin; Byna, Surendra; Wu, Kesheng

    2013-10-31

    Large-scale scientific applications typically write their data to parallel file systems with organizations designed to achieve fast write speeds. Analysis tasks frequently read the data in a pattern that is different from the write pattern, and therefore experience poor I/O performance. In this paper, we introduce a prototype framework for bridging the performance gap between write and read stages of data access from parallel file systems. We call this framework Scientific Data Services, or SDS for short. This initial implementation of SDS focuses on reorganizing previously written files into data layouts that benefit read patterns, and transparently directs read calls to the reorganized data. SDS follows a client-server architecture. The SDS Server manages partial or full replicas of reorganized datasets and serves SDS Clients' requests for data. The current version of the SDS client library supports HDF5 programming interface for reading data. The client library intercepts HDF5 calls and transparently redirects them to the reorganized data. The SDS client library also provides a querying interface for reading part of the data based on user-specified selective criteria. We describe the design and implementation of the SDS client-server architecture, and evaluate the response time of the SDS Server and the performance benefits of SDS.

  13. 77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Update from Committee of Visitors for Computer Science activities Facilities update including early science efforts ] Early Career technical talks Recompetition results for Scientific Discovery through.../Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy....

  14. Archival Services and Technologies for Scientific Data

    NASA Astrophysics Data System (ADS)

    Meyer, Jörg; Hardt, Marcus; Streit, Achim; van Wezel, Jos

    2014-06-01

    After analysis and publication, there is no need to keep experimental data online on spinning disks. For reliability and costs inactive data is moved to tape and put into a data archive. The data archive must provide reliable access for at least ten years following a recommendation of the German Science Foundation (DFG), but many scientific communities wish to keep data available much longer. Data archival is on the one hand purely a bit preservation activity in order to ensure the bits read are the same as those written years before. On the other hand enough information must be archived to be able to use and interpret the content of the data. The latter is depending on many also community specific factors and remains an areas of much debate among archival specialists. The paper describes the current practice of archival and bit preservation in use for different science communities at KIT for which a combination of organizational services and technical tools are required. The special monitoring to detect tape related errors, the software infrastructure in use as well as the service certification are discussed. Plans and developments at KIT also in the context of the Large Scale Data Management and Analysis (LSDMA) project are presented. The technical advantages of the T10 SCSI Stream Commands (SSC-4) and the Linear Tape File System (LTFS) will have a profound impact on future long term archival of large data sets.

  15. Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures

    SciTech Connect

    2007-06-27

    This CRADA was established at the start of FY02 with $200 K from IBM and matching funds from DOE to support post-doctoral fellows in collaborative research between International Business Machines and Oak Ridge National Laboratory to explore effective use of emerging petascale computational architectures for the solution of computational biology problems. 'No cost' extensions of the CRADA were negotiated with IBM for FY03 and FY04.

  16. 75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing Advisory..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  17. 78 FR 6087 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  18. 76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Advanced Scientific Computing Advisory Committee Charter Renewal AGENCY: Department of Energy, Office of... Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed... concerning the Advanced Scientific Computing program in response only to charges from the Director of...

  19. 76 FR 9765 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research, SC-21/Germantown Building, U.S. Department of...

  20. 78 FR 41046 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year... (DOE), on the Advanced Scientific Computing Research Program managed by the Office of...

  1. 75 FR 9887 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  2. 75 FR 57742 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building;...

  3. 78 FR 56871 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  4. Accurate modeling of parallel scientific computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Townsend, James C.

    1988-01-01

    Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.

  5. InSAR Scientific Computing Environment

    NASA Astrophysics Data System (ADS)

    Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2010-12-01

    The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with

  6. OPENING REMARKS: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2006-01-01

    Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such

  7. 76 FR 45786 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown...

  8. 76 FR 64330 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Workshop on Mathematics for the Analysis, Simulation, and Optimization of Complex Systems Report from ASCR..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of Energy... Department of Energy on scientific priorities within the field of advanced scientific computing...

  9. 77 FR 8330 - Health Services Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... AFFAIRS Health Services Research and Development Service Scientific Merit Review Board; Notice of Meeting... Committee Act) that various subcommittees of the Health Services Research and Development Service Scientific... applications involving the measurement and evaluation of health care services, the testing of new methods...

  10. Service-oriented infrastructure for scientific data mashups

    NASA Astrophysics Data System (ADS)

    Baru, C.; Krishnan, S.; Lin, K.; Moreland, J. L.; Nadeau, D. R.

    2009-12-01

    An important challenge in informatics is the development of concepts and corresponding architecture and tools to assist scientists with their data integration tasks. A typical Earth Science data integration request may be expressed, for example, as “For a given region (i.e. lat/long extent, plus depth), return a 3D structural model with accompanying physical parameters of density, seismic velocities, geochemistry, and geologic ages, using a cell size of 10km.” Such requests create “mashups” of scientific data. Currently, such integration is hand-crafted and depends heavily upon a scientist’s intimate knowledge of how to process, interpret, and integrate data from individual sources. In most case, the ultimate “integration” is performed by overlaying output images from individual processing steps using image manipulation software such as, say, Adobe Photoshop—leading to “Photoshop science”, where it is neither easy to repeat the integration steps nor to share the data mashup. As a result, scientists share only the final images and not the mashup itself. A more capable information infrastructure is needed to support the authoring and sharing of scientific data mashups. The infrastructure must include services for data discovery, access, and transformation and should be able to create mashups that are interactive, allowing users to probe and manipulate the data and follow its provenance. We present an architectural framework based on a service-oriented architecture for scientific data mashups in a distributed environment. The framework includes services for Data Access, Data Modeling, and Data Interaction. The Data Access services leverage capabilities for discovery and access to distributed data resources provided by efforts such as GEON and the EarthScope Data Portal, and services for federated metadata catalogs under development by projects like the Geosciences Information Network (GIN). The Data Modeling services provide 2D, 3D, and 4D modeling

  11. 78 FR 54594 - Airworthiness Directives; Pacific Scientific Aviation Services (Pacific Scientific) Seat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not affect intrastate aviation in Alaska... Directives; Pacific Scientific Aviation Services (Pacific Scientific) Seat Restraint System Rotary Buckle...). SUMMARY: We propose to adopt a new airworthiness directive (AD) for the specified Pacific Scientific...

  12. The InSAR Scientific Computing Environment

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Gurrola, Eric; Sacco, Gian Franco; Zebker, Howard

    2012-01-01

    We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements rigorously componentized by separating input/output operations from the processing engines. This allows greater flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnecessary modification when new data types and sensors are available. In addition, the components support provenance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy processing codes, have been adapted to assume a common reference track approach for all images acquired from nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products. With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from other platforms

  13. 78 FR 12422 - Health Services Research and Development Service Scientific Merit Review Board, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... AFFAIRS Health Services Research and Development Service Scientific Merit Review Board, Notice of Meeting... States Code Appendix 2, that the Health Services Research and Development Service Scientific Merit Review Board will conduct telephone conference call and web-conference based meetings of its six...

  14. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  15. On combining computational differentiation and toolkits for parallel scientific computing.

    SciTech Connect

    Bischof, C. H.; Buecker, H. M.; Hovland, P. D.

    2000-06-08

    Automatic differentiation is a powerful technique for evaluating derivatives of functions given in the form of a high-level programming language such as Fortran, C, or C++. The program is treated as a potentially very long sequence of elementary statements to which the chain rule of differential calculus is applied over and over again. Combining automatic differentiation and the organizational structure of toolkits for parallel scientific computing provides a mechanism for evaluating derivatives by exploiting mathematical insight on a higher level. In these toolkits, algorithmic structures such as BLAS-like operations, linear and nonlinear solvers, or integrators for ordinary differential equations can be identified by their standardized interfaces and recognized as high-level mathematical objects rather than as a sequence of elementary statements. In this note, the differentiation of a linear solver with respect to some parameter vector is taken as an example. Mathematical insight is used to reformulate this problem into the solution of multiple linear systems that share the same coefficient matrix but differ in their right-hand sides. The experiments reported here use ADIC, a tool for the automatic differentiation of C programs, and PETSC, an object-oriented toolkit for the parallel solution of scientific problems modeled by partial differential equations.

  16. Computational Simulations and the Scientific Method

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Wood, Bill

    2005-01-01

    As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.

  17. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun

    2015-01-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students (N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation…

  18. Guidelines for Financing School District Computer Services.

    ERIC Educational Resources Information Center

    Splittgerber, Frederic L.; Stirzaker, Norbert A.

    1984-01-01

    School districts can obtain computer services with purchase, lease, or network options. The advantages and disadvantages of each are explained. Guidelines are offered for assessing needs and determining costs of computer services. (MLF)

  19. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    SciTech Connect

    Hules, John A

    2008-12-12

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics.

  20. Vectorized presentation-level services for scientific distributed applications

    SciTech Connect

    Stanberry, L.C.; Branstetter, M.L.; Nessett, D.M.

    1993-03-01

    The use of heterogeneous distributed systems is a promising approach to significantly increase computational performance of scientific applications. However, one key to this strategy is to minimize the percentage of lime spent by an application moving data between machines. This percentage is composed of two parts: (1) the time to translate data between the formats used on different machines, and (2) the time to move data over the network that interconnects the machines. Previous work suggests that data format conversion activity, generally known as presentation-level services, is by far the more costly of the two. In this paper we describe how vectorization can be used to improve presentation-level performance in scientific applications by one or two orders of magnitude over the conventional approach. While others have recognized the advantages of vectorized data format conversion, we describe how to automate this process so that an application programmer need not explicitly call vectorization routines. We explore the impact of presentation-level vectorization on software portability, programming efficiency and protocol standards. We compare our performance results with those of two other popular distributed application programming tools and then summarize the lessons we have learned during the course of our research.

  1. Computing Services Writing and Editing Standards

    SciTech Connect

    Caruthers, C.; Heiberger, A.

    1985-08-01

    This report provides information that will enable writers to produce better documents consistent with Computing Services standards in less time. This document provides advice for organizing and writing technical information clearly and concisely, and it explains Computing Services usage standards. Applying the principles in this document will speed the writing, editing, review, and revision process in Computing Services.

  2. Vocabulary services to support scientific data interoperability

    NASA Astrophysics Data System (ADS)

    Cox, Simon; Mills, Katie; Tan, Florence

    2013-04-01

    Shared vocabularies are a core element in interoperable systems. Vocabularies need to be available at run-time, and where the vocabularies are shared by a distributed community this implies the use of web technology to provide vocabulary services. Given the ubiquity of vocabularies or classifiers in systems, vocabulary services are effectively the base of the interoperability stack. In contemporary knowledge organization systems, a vocabulary item is considered a concept, with the "terms" denoting it appearing as labels. The Simple Knowledge Organization System (SKOS) formalizes this as an RDF Schema (RDFS) application, with a bridge to formal logic in Web Ontology Language (OWL). For maximum utility, a vocabulary should be made available through the following interfaces: * the vocabulary as a whole - at an ontology URI corresponding to a vocabulary document * each item in the vocabulary - at the item URI * summaries, subsets, and resources derived by transformation * through the standard RDF web API - i.e. a SPARQL endpoint * through a query form for human users. However, the vocabulary data model may be leveraged directly in a standard vocabulary API that uses the semantics provided by SKOS. SISSvoc3 [1] accomplishes this as a standard set of URI templates for a vocabulary. Any URI comforming to the template selects a vocabulary subset based on the SKOS properties, including labels (skos:prefLabel, skos:altLabel, rdfs:label) and a subset of the semantic relations (skos:broader, skos:narrower, etc). SISSvoc3 thus provides a RESTFul SKOS API to query a vocabulary, but hiding the complexity of SPARQL. It has been implemented using the Linked Data API (LDA) [2], which connects to a SPARQL endpoint. By using LDA, we also get content-negotiation, alternative views, paging, metadata and other functionality provided in a standard way. A number of vocabularies have been formalized in SKOS and deployed by CSIRO, the Australian Bureau of Meteorology (BOM) and their

  3. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  4. 77 FR 12823 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR awards Data-intensive Science... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science....

  5. Cloud services for the Fermilab scientific stakeholders

    NASA Astrophysics Data System (ADS)

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-12-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. We present in detail the technological improvements that were used to make this work a reality.

  6. Cloud services for the Fermilab scientific stakeholders

    SciTech Connect

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.

  7. Cloud services for the Fermilab scientific stakeholders

    DOE PAGESBeta

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; et al

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic raymore » simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.« less

  8. Cloud Services for the Fermilab Scientific Stakeholders

    SciTech Connect

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-12-23

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. We present in detail the technological improvements that were used to make this work a reality.

  9. Basic mathematical function libraries for scientific computation

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1989-01-01

    Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.

  10. Computational Epigenetics: the new scientific paradigm

    PubMed Central

    Lim, Shen Jean; Tan, Tin Wee; Tong, Joo Chuan

    2010-01-01

    Epigenetics has recently emerged as a critical field for studying how non-gene factors can influence the traits and functions of an organism. At the core of this new wave of research is the use of computational tools that play critical roles not only in directing the selection of key experiments, but also in formulating new testable hypotheses through detailed analysis of complex genomic information that is not achievable using traditional approaches alone. Epigenomics, which combines traditional genomics with computer science, mathematics, chemistry, biochemistry and proteomics for the large-scale analysis of heritable changes in phenotype, gene function or gene expression that are not dependent on gene sequence, offers new opportunities to further our understanding of transcriptional regulation, nuclear organization, development and disease. This article examines existing computational strategies for the study of epigenetic factors. The most important databases and bioinformatic tools in this rapidly growing field have been reviewed. PMID:20978607

  11. An Analysis on Modes of Scientific and TechnologicaInformation Integration Services in the E- environment

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zhang, Weidong; Yuan, Ye; Song, Xueyan

    During the combination of knowledge and capital, science and technology intermediaries are demanded to provide information integration services. Science and technology intermediaries play an important role in quickening the commercialization of research findings, developing new and high technology industry, and promoting regional scientific and technological innovations. With the influences of the computer age on science and technology information services as the starting point, the thesis makes a large-scale survey of websites of state and provincial comprehensive science and technology intermediaries, and based on this, the overall framework of scientific and technological information integration services under the E-environment is established, and furthermore, the functions and structures of different subsystems are systemically analyzed in the modes of scientific and technological information integration services.

  12. Scientific computations section monthly report, November 1993

    SciTech Connect

    Buckner, M.R.

    1993-12-30

    This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.

  13. Scientific Data Storage for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Readey, J.

    2014-12-01

    Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast cloud based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google Cloud Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these cloud-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable cloud storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also cover other advantages of this system such as enhanced metadata search.

  14. Building Cognition: The Construction of Computational Representations for Scientific Discovery

    ERIC Educational Resources Information Center

    Chandrasekharan, Sanjay; Nersessian, Nancy J.

    2015-01-01

    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a…

  15. Computing services writing and editing standards

    SciTech Connect

    Caruthers, C.M.; Heiberger, A.A.

    1987-11-01

    Computing Services Writing and Editing Standards explains how to write and organize technical information clearly and concisely; it also establishes Argonne National Laboratory Computing Services standards for grammar, usage, style, formats, and publication procedures. This manual will enable writers to produce better documents consistent with Computing Services standards in less time. Applying the specified principles will also speed up the editing, review, and revision processes.

  16. Expanding Computer Service with Personal Computers.

    ERIC Educational Resources Information Center

    Bomzer, Herbert

    1983-01-01

    A planning technique, the mission justification document, and the evaluation procedures developed at Central Michigan University to ensure the orderly growth of computer-dependent resources within the constraints of tight budgets are described. (Author/MLW)

  17. ASCR Cybersecurity for Scientific Computing Integrity

    SciTech Connect

    Piesert, Sean

    2015-02-27

    The Department of Energy (DOE) has the responsibility to address the energy, environmental, and nuclear security challenges that face our nation. Much of DOE’s enterprise involves distributed, collaborative teams; a signi¬cant fraction involves “open science,” which depends on multi-institutional, often international collaborations that must access or share signi¬cant amounts of information between institutions and over networks around the world. The mission of the Office of Science is the delivery of scienti¬c discoveries and major scienti¬c tools to transform our understanding of nature and to advance the energy, economic, and national security of the United States. The ability of DOE to execute its responsibilities depends critically on its ability to assure the integrity and availability of scienti¬c facilities and computer systems, and of the scienti¬c, engineering, and operational software and data that support its mission.

  18. Accelerating scientific computations with mixed precision algorithms

    NASA Astrophysics Data System (ADS)

    Baboulin, Marc; Buttari, Alfredo; Dongarra, Jack; Kurzak, Jakub; Langou, Julie; Langou, Julien; Luszczek, Piotr; Tomov, Stanimire

    2009-12-01

    On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to other technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor architectures and the STI Cell BE are presented. Program summaryProgram title: ITER-REF Catalogue identifier: AECO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7211 No. of bytes in distributed program, including test data, etc.: 41 862 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: desktop, server Operating system: Unix/Linux RAM: 512 Mbytes Classification: 4.8 External routines: BLAS (optional) Nature of problem: On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. Solution method: Mixed precision algorithms stem from the observation that, in many cases, a single precision solution of a problem can be refined to the point where double precision accuracy is achieved. A common approach to the solution of linear systems, either dense or sparse, is to perform the LU

  19. 75 FR 3542 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... AFFAIRS Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting... Act) that the Rehabilitation Research and Development Service Scientific Merit Review Board will meet... rehabilitation research and development applications for scientific and technical merit and to...

  20. 75 FR 40036 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... AFFAIRS Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting... Act) that the Rehabilitation Research and Development Service Scientific Merit Review Board will meet... rehabilitation research and development applications for scientific and technical merit and to...

  1. Products and Services for Computer Networks.

    ERIC Educational Resources Information Center

    Negroponte, Nicholas P.

    1991-01-01

    Creative applications of computer networks are discussed. Products and services of the future that come from imaginative applications of both channel and computing capacity are described. The topics of entertainment, transactions, and electronic personal surrogates are included. (KR)

  2. Ferrofluids: Modeling, numerical analysis, and scientific computation

    NASA Astrophysics Data System (ADS)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  3. 78 FR 6854 - Health Services Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    .... App. 2, that the Centers of Innovation subcommittee of the Health Services Research and Development... AFFAIRS Health Services Research and Development Service Scientific Merit Review Board; Notice of Meeting... the Chief Research and Development Officer. During the closed portion of the meeting, discussion...

  4. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    NASA Astrophysics Data System (ADS)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  5. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    NASA Astrophysics Data System (ADS)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  6. InSAR Scientific Computing Environment

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Sacco, Gian Franco; Gurrola, Eric M.; Zabker, Howard A.

    2011-01-01

    This computing environment is the next generation of geodetic image processing technology for repeat-pass Interferometric Synthetic Aperture (InSAR) sensors, identified by the community as a needed capability to provide flexibility and extensibility in reducing measurements from radar satellites and aircraft to new geophysical products. This software allows users of interferometric radar data the flexibility to process from Level 0 to Level 4 products using a variety of algorithms and for a range of available sensors. There are many radar satellites in orbit today delivering to the science community data of unprecedented quantity and quality, making possible large-scale studies in climate research, natural hazards, and the Earth's ecosystem. The proposed DESDynI mission, now under consideration by NASA for launch later in this decade, would provide time series and multiimage measurements that permit 4D models of Earth surface processes so that, for example, climate-induced changes over time would become apparent and quantifiable. This advanced data processing technology, applied to a global data set such as from the proposed DESDynI mission, enables a new class of analyses at time and spatial scales unavailable using current approaches. This software implements an accurate, extensible, and modular processing system designed to realize the full potential of InSAR data from future missions such as the proposed DESDynI, existing radar satellite data, as well as data from the NASA UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), and other airborne platforms. The processing approach has been re-thought in order to enable multi-scene analysis by adding new algorithms and data interfaces, to permit user-reconfigurable operation and extensibility, and to capitalize on codes already developed by NASA and the science community. The framework incorporates modern programming methods based on recent research, including object-oriented scripts controlling legacy and

  7. Amdahl's Laws and Extreme Data-Intensive Scientific Computing

    NASA Astrophysics Data System (ADS)

    Szalay, A.

    2011-07-01

    Scientific computing is increasingly revolving around massive amounts of data. In astronomy, observations and numerical simulations are on the verge of generating many Petabytes of data. This new, data-centric computing requires a new look at computing architectures and strategies. The talk will revisit Amdahl's Law establishing the relation between CPU and I/O in a balanced computer system, and use this to analyze current computing architectures and workloads. We will discuss how existing hardware can be used to build systems that are much closer to an ideal Amdahl machine. Scaling existing architectures to the yearly doubling of data will soon require excessive amounts of electrical power. We have deployed various scientific test cases, mostly drawn from astronomy, over different architectures and compare performance and scaling laws. We discuss an inexpensive, yet high performance multi-petabyte system currently under construction at JHU.

  8. Advanced Scientific Computing Environment Team new scientific database management task. Progress report

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future ``computer`` will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This ``network computer`` will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of ``Jvv`` concepts and capabilities to distributed and/or parallel computing environments.

  9. Creating Service Policies for Computer Conferencing.

    ERIC Educational Resources Information Center

    Feen, Hildy; Brickner, Judy

    The University of Wisconsin-Madison began to offer computer conferencing as a service to the campus for the fall 1995 semester. The university's End User Computing Group developed a set of policies to address such questions as: who is eligible to use the service; the Division of Information Technology's responsibilities; customer responsibilities;…

  10. Component-Based Software for High-Performance Scientific Computing

    SciTech Connect

    Alexeev, Yuri; Allan, Benjamin A.; Armstrong, Robert C.; Bernholdt, David E.; Dahlgren, Tamara L.; Gannon, Dennis B.; Janssen, Curtis; Kenny, Joseph P.; Krishnan, Manoj Kumar; Kohl, James A.; Kumfert, Gary K.; McInnes, Lois C.; Nieplocha, Jarek; Parker, Steven G.; Rasmussen, Craig; Windus, Theresa L.

    2005-06-26

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  11. A Component Architecture for High-Performance Scientific Computing

    SciTech Connect

    Bernholdt, D E; Allan, B A; Armstrong, R; Bertrand, F; Chiu, K; Dahlgren, T L; Damevski, K; Elwasif, W R; Epperly, T W; Govindaraju, M; Katz, D S; Kohl, J A; Krishnan, M; Kumfert, G; Larson, J W; Lefantzi, S; Lewis, M J; Malony, A D; McInnes, L C; Nieplocha, J; Norris, B; Parker, S G; Ray, J; Shende, S; Windus, T L; Zhou, S

    2004-12-14

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  12. A Component Architecture for High-Performance Scientific Computing

    SciTech Connect

    Bernholdt, David E; Allan, Benjamin A; Armstrong, Robert C; Bertrand, Felipe; Chiu, Kenneth; Dahlgren, Tamara L; Damevski, Kostadin; Elwasif, Wael R; Epperly, Thomas G; Govindaraju, Madhusudhan; Katz, Daniel S; Kohl, James A; Krishnan, Manoj Kumar; Kumfert, Gary K; Larson, J Walter; Lefantzi, Sophia; Lewis, Michael J; Malony, Allen D; McInnes, Lois C; Nieplocha, Jarek; Norris, Boyana; Parker, Steven G; Ray, Jaideep; Shende, Sameer; Windus, Theresa L; Zhou, Shujia

    2006-07-03

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  13. Scientific Reasoning for Pre-service Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra R.

    2010-10-01

    The objectives of K-12 teacher education science courses often focus on conceptual learning and improving students overall attitude towards science. It is often assumed that with the use of research-based curriculum material and more hands on inquiry approaches, without any explicit instruction, student scientific and critical thinking skills would also be enhanced. In the last three years, we have been investigating student scientific and evidence-based reasoning abilities in a K-8 pre-service science course at Cal Poly Pomona. After recognizing student difficulties understanding the elements of scientific reasoning, we have provided explicit feedback using a rubric to assist students to become more rigorous and reflective thinkers; to use appropriate and accurate vocabulary; exercise evidence-base reasoning; and develop skepticism with respect to their own views. We will share the rubric and report on the preliminary results.

  14. Exploring Cloud Computing for Large-scale Scientific Applications

    SciTech Connect

    Lin, Guang; Han, Binh; Yin, Jian; Gorton, Ian

    2013-06-27

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address these challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.

  15. Tpetra, and the use of generic programming in scientific computing

    SciTech Connect

    Baker, Christopher G; Heroux, Dr. Michael A

    2012-01-01

    We present Tpetra, a Trilinos package for parallel linear algebra primitives implementing the Petra object model. We describe Tpetra s design, based on generic programming via C++ templated types and template metaprogramming. We discuss some benefits of this approach in the context of scientific computing, with illustrations consisting of code and notable empirical results.

  16. Connecting Minds: Computer-Mediated Communication and Scientific Work.

    ERIC Educational Resources Information Center

    Walsh, John P.; Kucker, Stephanie; Maloney, Nancy G.; Gabbay, Shaul

    2000-01-01

    Summarizes the preliminary findings from a recent study of scientists in four disciplines with regard to computer-mediated communication (CMC) use and effects. Findings from surveys of 333 scientists indicate that CMC use is central to both professional and research-related aspects of scientific work, and that this use differs by field. CMC use is…

  17. Institute for Scientific Computing Research Annual Report: Fiscal Year 2004

    SciTech Connect

    Keyes, D E

    2005-02-07

    Large-scale scientific computation and all of the disciplines that support and help to validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of computational simulation as a tool of scientific and engineering research is underscored in the November 2004 statement of the Secretary of Energy that, ''high performance computing is the backbone of the nation's science and technology enterprise''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use efficiently. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to LLNL's core missions than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In Fiscal Year 2004, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an active seminar series. The ISCR identifies researchers from the academic community for computer science and computational science collaborations with LLNL and hosts them for short- and

  18. Accelerating Scientific Discovery Through Computation and Visualization II

    PubMed Central

    Sims, James S.; George, William L.; Satterfield, Steven G.; Hung, Howard K.; Hagedorn, John G.; Ketcham, Peter M.; Griffin, Terence J.; Hagstrom, Stanley A.; Franiatte, Julien C.; Bryant, Garnett W.; Jaskólski, W.; Martys, Nicos S.; Bouldin, Charles E.; Simmons, Vernon; Nicolas, Oliver P.; Warren, James A.; am Ende, Barbara A.; Koontz, John E.; Filla, B. James; Pourprix, Vital G.; Copley, Stefanie R.; Bohn, Robert B.; Peskin, Adele P.; Parker, Yolanda M.; Devaney, Judith E.

    2002-01-01

    This is the second in a series of articles describing a wide variety of projects at NIST that synergistically combine physical science and information science. It describes, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate research. The examples include scientific collaborations in the following areas: (1) High Precision Energies for few electron atomic systems, (2) Flows of suspensions, (3) X-ray absorption, (4) Molecular dynamics of fluids, (5) Nanostructures, (6) Dendritic growth in alloys, (7) Screen saver science, (8) genetic programming. PMID:27446728

  19. Heterogeneous concurrent computing with exportable services

    NASA Technical Reports Server (NTRS)

    Sunderam, Vaidy

    1995-01-01

    Heterogeneous concurrent computing, based on the traditional process-oriented model, is approaching its functionality and performance limits. An alternative paradigm, based on the concept of services, supporting data driven computation, and built on a lightweight process infrastructure, is proposed to enhance the functional capabilities and the operational efficiency of heterogeneous network-based concurrent computing. TPVM is an experimental prototype system supporting exportable services, thread-based computation, and remote memory operations that is built as an extension of and an enhancement to the PVM concurrent computing system. TPVM offers a significantly different computing paradigm for network-based computing, while maintaining a close resemblance to the conventional PVM model in the interest of compatibility and ease of transition Preliminary experiences have demonstrated that the TPVM framework presents a natural yet powerful concurrent programming interface, while being capable of delivering performance improvements of upto thirty percent.

  20. Initial explorations of ARM processors for scientific computing

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Muzaffar, Shahzad

    2014-06-01

    Power efficiency is becoming an ever more important metric for both high performance and high throughput computing. Over the course of next decade it is expected that flops/watt will be a major driver for the evolution of computer architecture. Servers with large numbers of ARM processors, already ubiquitous in mobile computing, are a promising alternative to traditional x86-64 computing. We present the results of our initial investigations into the use of ARM processors for scientific computing applications. In particular we report the results from our work with a current generation ARMv7 development board to explore ARM-specific issues regarding the software development environment, operating system, performance benchmarks and issues for porting High Energy Physics software.

  1. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  2. An evolving infrastructure for scientific computing and the integration of new graphics technology

    SciTech Connect

    Fong, K.W.

    1993-02-01

    The National Energy Research Supercomputer Center (NERSC) at the Lawrence Livermore National Laboratory is currently pursuing several projects to implement and integrate new hardware and software technologies. While each of these projects ought to be and is in fact individually justifiable, there is an appealing metaphor for viewing them collectively which provides a simple and memorable way to understand the future direction not only of supercomputing services but of computer centers in general. Once this general direction is understood, it becomes clearer what future computer graphics technologies would be possible and desirable, at least within the context of large scale scientific computing.

  3. The Potential of the Cell Processor for Scientific Computing

    SciTech Connect

    Williams, Samuel; Shalf, John; Oliker, Leonid; Husbands, Parry; Kamil, Shoaib; Yelick, Katherine

    2005-10-14

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of the using the forth coming STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. We are the first to present quantitative Cell performance data on scientific kernels and show direct comparisons against leading superscalar (AMD Opteron), VLIW (IntelItanium2), and vector (Cray X1) architectures. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop both analytical models and simulators to predict kernel performance. Our work also explores the complexity of mapping several important scientific algorithms onto the Cells unique architecture. Additionally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  4. Technologies for Large Data Management in Scientific Computing

    NASA Astrophysics Data System (ADS)

    Pace, Alberto

    2014-01-01

    In recent years, intense usage of computing has been the main strategy of investigations in several scientific research projects. The progress in computing technology has opened unprecedented opportunities for systematic collection of experimental data and the associated analysis that were considered impossible only few years ago. This paper focuses on the strategies in use: it reviews the various components that are necessary for an effective solution that ensures the storage, the long term preservation, and the worldwide distribution of large quantities of data that are necessary in a large scientific research project. The paper also mentions several examples of data management solutions used in High Energy Physics for the CERN Large Hadron Collider (LHC) experiments in Geneva, Switzerland which generate more than 30,000 terabytes of data every year that need to be preserved, analyzed, and made available to a community of several tenth of thousands scientists worldwide.

  5. Critical services in the LHC computing

    NASA Astrophysics Data System (ADS)

    Sciabà, A.

    2010-04-01

    The LHC experiments (ALICE, ATLAS, CMS and LHCb) rely for the data acquisition, processing, distribution, analysis and simulation on complex computing systems, running using a variety of services, provided by the experiments, the Worldwide LHC Computing Grid and the different computing centres. These services range from the most basic (network, batch systems, file systems) to the mass storage services or the Grid information system, up to the different workload management systems, data catalogues and data transfer tools, often internally developed in the collaborations. In this contribution we review the status of the services most critical to the experiments by quantitatively measuring their readiness with respect to the start of the LHC operations. Shortcomings are identified and common recommendations are offered.

  6. I/O-Efficient Scientific Computation Using TPIE

    NASA Technical Reports Server (NTRS)

    Vengroff, Darren Erik; Vitter, Jeffrey Scott

    1996-01-01

    In recent years, input/output (I/O)-efficient algorithms for a wide variety of problems have appeared in the literature. However, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to support I/O-efficient paradigms for problems from a variety of domains, including computational geometry, graph algorithms, and scientific computation. The TPIE interface frees programmers from having to deal not only with explicit read and write calls, but also the complex memory management that must be performed for I/O-efficient computation. In this paper we discuss applications of TPIE to problems in scientific computation. We discuss algorithmic issues underlying the design and implementation of the relevant components of TPIE and present performance results of programs written to solve a series of benchmark problems using our current TPIE prototype. Some of the benchmarks we present are based on the NAS parallel benchmarks while others are of our own creation. We demonstrate that the central processing unit (CPU) overhead required to manage I/O is small and that even with just a single disk, the I/O overhead of I/O-efficient computation ranges from negligible to the same order of magnitude as CPU time. We conjecture that if we use a number of disks in parallel this overhead can be all but eliminated.

  7. Globus-based Services for the Hydro-Meteorology Scientific Community

    NASA Astrophysics Data System (ADS)

    Muntean, Ioan-Lucian; Hofmann, Matthias; Heller, Helmut

    2013-04-01

    Scientific workflows in hydro-meteorology involve multiple applications with varying computational requirements. These are best met by different e-Infrastructures in Europe: sequential codes with modest requirements are well suited to resources offered in EGI (European Grid Infrastructure) while parallelized, computationally demanding codes have to run on PRACE (Partnership for Advanced Computing in Europe) resources. Access to major Distributed Computing Infrastructures (DCI) in Europe such as PRACE and EGI is provided by means of grid middleware like Globus, which is available in both eInfrastructures and thus can bridge between them. The consortium "Initiative for Globus in Europe" (IGE - http://www.ige-project.eu) and its community body EGCF (http://www.egcf.eu) act as European provider for Globus technology, offering the resource providers and scientific user communities professional services such as Globus software provisioning and certification, training and documentation, and community software adaptation to Globus technology. This presentation will cover the following two parts: an outline of the IGE/EGCF services for the DRIHM community and an introduction to data handling with Globus Online, with emphasis on the achievements to date. The set of Globus-centered services of potential interest to the hydro-meteorology community have been identified to be: Globus support for: data access and handling: GridFTP, Globus Online, Globus Connect, Globus Storage; computing: GRAM for submission of parallel jobs to PRACE or of high-throughput jobs to EGI; accounting: tracking the usage records with GridSAFE. Infrastructure and workflow integration support such as: setup of virtual organizations for DRIHM community; access to EGI and PRACE infrastructures via Globus-based tools; investigation of workflow interoperability technologies (such as SHIWA). Furthermore, IGE successfully provides access to test bed resources where developers of the DRIHM community can port

  8. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations

  9. Building Cognition: The Construction of Computational Representations for Scientific Discovery.

    PubMed

    Chandrasekharan, Sanjay; Nersessian, Nancy J

    2015-11-01

    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that led to a remarkable discovery in basic bioscience. Accounting for such discoveries requires a distributed cognition (DC) analysis, as DC focuses on the roles played by external representations in cognitive processes. However, DC analyses by and large have not examined scientific discovery, and they mostly focus on memory offloading, particularly how the use of existing external representations changes the nature of cognitive tasks. In contrast, we study discovery processes and argue that discoveries emerge from the processes of building the computational representation. The building process integrates manipulations in imagination and in the representation, creating a coupled cognitive system of model and modeler, where the model is incorporated into the modeler's imagination. This account extends DC significantly, and we present some of the theoretical and application implications of this extended account. PMID:25444018

  10. An Introductory Course on Service-Oriented Computing for High Schools

    ERIC Educational Resources Information Center

    Tsai, W. T.; Chen, Yinong; Cheng, Calvin; Sun, Xin; Bitter, Gary; White, Mary

    2008-01-01

    Service-Oriented Computing (SOC) is a new computing paradigm that has been adopted by major computer companies as well as government agencies such as the Department of Defense for mission-critical applications. SOC is being used for developing Web and electronic business applications, as well as robotics, gaming, and scientific applications. Yet,…

  11. Evaluation of leading scalar and vector architectures for scientific computations

    SciTech Connect

    Simon, Horst D.; Oliker, Leonid; Canning, Andrew; Carter, Jonathan; Ethier, Stephane; Shalf, John

    2004-04-20

    The growing gap between sustained and peak performance for scientific applications is a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to reduce this gap for many computational science codes and deliver a substantial increase in computing capabilities. This project examines the performance of the cacheless vector Earth Simulator (ES) and compares it to superscalar cache-based IBM Power3 system. Results demonstrate that the ES is significantly faster than the Power3 architecture, highlighting the tremendous potential advantage of the ES for numerical simulation. However, vectorization of a particle-in-cell application (GTC) greatly increased the memory footprint preventing loop-level parallelism and limiting scalability potential.

  12. Autonomic Computing Paradigm For Large Scale Scientific And Engineering Applications

    NASA Astrophysics Data System (ADS)

    Hariri, S.; Yang, J.; Zhang, Y.

    2005-12-01

    Large-scale distributed scientific applications are highly adaptive and heterogeneous in terms of their computational requirements. The computational complexity associated with each computational region or domain varies continuously and dramatically both in space and time throughout the whole life cycle of the application execution. Furthermore, the underlying distributed computing environment is similarly complex and dynamic in the availabilities and capacities of the computing resources. These challenges combined together make the current paradigms, which are based on passive components and static compositions, ineffectual. Autonomic Computing paradigm is an approach that efficiently addresses the complexity and dynamism of large scale scientific and engineering applications and realizes the self-management of these applications. In this presentation, we present an Autonomic Runtime Manager (ARM) that supports the development of autonomic applications. The ARM includes two modules: online monitoring and analysis module and autonomic planning and scheduling module. The ARM behaves as a closed-loop control system that dynamically controls and manages the execution of the applications at runtime. It regularly senses the state changes of both the applications and the underlying computing resources. It then uses these runtime information and prior knowledge about the application behavior and its physics to identify the appropriate solution methods as well as the required computing and storage resources. Consequently this approach enables us to develop autonomic applications, which are capable of self-management and self-optimization. We have developed and implemented the autonomic computing paradigms for several large scale applications such as wild fire simulations, simulations of flow through variably saturated geologic formations, and life sciences. The distributed wildfire simulation models the wildfire spread behavior by considering such factors as fuel

  13. InSAR Scientific Computing Environment on the Cloud

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Shams, K. S.; Gurrola, E. M.; George, B. A.; Knight, D. S.

    2012-12-01

    In response to the needs of the international scientific and operational Earth observation communities, spaceborne Synthetic Aperture Radar (SAR) systems are being tasked to produce enormous volumes of raw data daily, with availability to scientists to increase substantially as more satellites come online and data becomes more accessible through more open data policies. The availability of these unprecedentedly dense and rich datasets has led to the development of sophisticated algorithms that can take advantage of them. In particular, interferometric time series analysis of SAR data provides insights into the changing earth and requires substantial computational power to process data across large regions and over large time periods. This poses challenges for existing infrastructure, software, and techniques required to process, store, and deliver the results to the global community of scientists. The current state-of-the-art solutions employ traditional data storage and processing applications that require download of data to the local repositories before processing. This approach is becoming untenable in light of the enormous volume of data that must be processed in an iterative and collaborative manner. We have analyzed and tested new cloud computing and virtualization approaches to address these challenges within the context of InSAR in the earth science community. Cloud computing is democratizing computational and storage capabilities for science users across the world. The NASA Jet Propulsion Laboratory has been an early adopter of this technology, successfully integrating cloud computing in a variety of production applications ranging from mission operations to downlink data processing. We have ported a new InSAR processing suite called ISCE (InSAR Scientific Computing Environment) to a scalable distributed system running in the Amazon GovCloud to demonstrate the efficacy of cloud computing for this application. We have integrated ISCE with Polyphony to

  14. Institute for Scientific Computing Research Fiscal Year 2002 Annual Report

    SciTech Connect

    Keyes, D E; McGraw, J R; Bodtker, L K

    2003-03-11

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory is jointly administered by the Computing Applications and Research Department (CAR) and the University Relations Program (URP), and this joint relationship expresses its mission. An extensively externally networked ISCR cost-effectively expands the level and scope of national computational science expertise available to the Laboratory through CAR. The URP, with its infrastructure for managing six institutes and numerous educational programs at LLNL, assumes much of the logistical burden that is unavoidable in bridging the Laboratory's internal computational research environment with that of the academic community. As large-scale simulations on the parallel platforms of DOE's Advanced Simulation and Computing (ASCI) become increasingly important to the overall mission of LLNL, the role of the ISCR expands in importance, accordingly. Relying primarily on non-permanent staffing, the ISCR complements Laboratory research in areas of the computer and information sciences that are needed at the frontier of Laboratory missions. The ISCR strives to be the ''eyes and ears'' of the Laboratory in the computer and information sciences, in keeping the Laboratory aware of and connected to important external advances. It also attempts to be ''feet and hands, in carrying those advances into the Laboratory and incorporating them into practice. In addition to conducting research, the ISCR provides continuing education opportunities to Laboratory personnel, in the form of on-site workshops taught by experts on novel software or hardware technologies. The ISCR also seeks to influence the research community external to the Laboratory to pursue Laboratory-related interests and to train the workforce that will be required by the Laboratory. Part of the performance of this function is interpreting to the external community appropriate (unclassified) aspects of the Laboratory's own contributions

  15. Java Performance for Scientific Applications on LLNL Computer Systems

    SciTech Connect

    Kapfer, C; Wissink, A

    2002-05-10

    Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part of the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.

  16. Hubble Space Telescope servicing mission scientific instrument protective enclosure design requirements and contamination controls

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Hughes, David W.; Hedgeland, Randy J.; Chivatero, Craig J.; Studer, Robert J.; Kostos, Peter J.

    1994-01-01

    The Scientific Instrument Protective Enclosures were designed for the Hubble Space Telescope Servicing Missions to provide a beginning environment to a Scientific Instrument during ground and on orbit activities. The Scientific Instruments required very stringent surface cleanliness and molecular outgassing levels to maintain ultraviolet performance. Data from the First Servicing Mission verified that both the Scientific Instruments and Scientific Instrument Protective Enclosures met surface cleanliness level requirements during ground and on-orbit activities.

  17. Secure Document Service for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Xu, Jin-Song; Huang, Ru-Cheng; Huang, Wan-Ming; Yang, Geng

    The development of cloud computing is still in its initial stage, and the biggest obstacle is data security. How to guarantee the privacy of user data is a worthwhile study. This paper has proposed a secure document service mechanism based on cloud computing. Out of consideration of security, in this mechanism, the content and the format of documents were separated prior to handling and storing. In addition, documents could be accessed safely within an optimized method of authorization. This mechanism would protect documents stored in cloud environment from leakage and provide an infrastructure for establishing reliable cloud services.

  18. Intelligent Smart Cloud Computing for Smart Service

    NASA Astrophysics Data System (ADS)

    Song, Su-Mi; Yoon, Yong-Ik

    The cloud computing technology causes much attention in IT field. The developments using this technology have done actively. The cloud computing is more evolved than the existing offer. So, the current cloud computing only has a process that responds user requirements when users demand their needs. For intelligently adapting the needs, this paper suggests a intelligent smart cloud model that is based on 4S/3R. This model can handle intelligently to meet users needs through collecting user's behaviors, prospecting, building, delivering, and rendering steps. It is because users have always mobile devices including smart phones so that is collecting user's behavior by sensors mounted on the devices. The proposed service model using intelligent smart cloud computing will show the personalized and customized services to be possible in various fields.

  19. Review of An Introduction to Parallel and Vector Scientific Computing

    SciTech Connect

    Bailey, David H.; Lefton, Lew

    2006-06-30

    On one hand, the field of high-performance scientific computing is thriving beyond measure. Performance of leading-edge systems on scientific calculations, as measured say by the Top500 list, has increased by an astounding factor of 8000 during the 15-year period from 1993 to 2008, which is slightly faster even than Moore's Law. Even more importantly, remarkable advances in numerical algorithms, numerical libraries and parallel programming environments have led to improvements in the scope of what can be computed that are entirely on a par with the advances in computing hardware. And these successes have spread far beyond the confines of large government-operated laboratories, many universities, modest-sized research institutes and private firms now operate clusters that differ only in scale from the behemoth systems at the large-scale facilities. In the wake of these recent successes, researchers from fields that heretofore have not been part of the scientific computing world have been drawn into the arena. For example, at the recent SC07 conference, the exhibit hall, which long has hosted displays from leading computer systems vendors and government laboratories, featured some 70 exhibitors who had not previously participated. In spite of all these exciting developments, and in spite of the clear need to present these concepts to a much broader technical audience, there is a perplexing dearth of training material and textbooks in the field, particularly at the introductory level. Only a handful of universities offer coursework in the specific area of highly parallel scientific computing, and instructors of such courses typically rely on custom-assembled material. For example, the present reviewer and Robert F. Lucas relied on materials assembled in a somewhat ad-hoc fashion from colleagues and personal resources when presenting a course on parallel scientific computing at the University of California, Berkeley, a few years ago. Thus it is indeed refreshing to see

  20. Integration of High-Performance Computing into Cloud Computing Services

    NASA Astrophysics Data System (ADS)

    Vouk, Mladen A.; Sills, Eric; Dreher, Patrick

    High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).

  1. 76 FR 19189 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... AFFAIRS Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation... (Federal Advisory Committee Act) that a meeting of the Clinical Science Research and Development Service... Science Research and Development Service on the relevance and feasibility of proposed projects and...

  2. 77 FR 31072 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... AFFAIRS Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation... (Federal Advisory Committee Act) that a meeting of the Clinical Science Research and Development Service... the Clinical Science Research and Development Service on the relevance and feasibility of...

  3. 76 FR 73781 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... AFFAIRS Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation... (Federal Advisory Committee Act) that a meeting of the Clinical Science Research and Development Service... Clinical Science Research and Development Service on the relevance and feasibility of proposed projects...

  4. 75 FR 79446 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... AFFAIRS Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation... (Federal Advisory Committee Act) that a meeting of the Clinical Science Research and Development Service... Clinical Science Research and Development Service on the relevance and feasibility of proposed projects...

  5. Computer control of a robotic satellite servicer

    NASA Technical Reports Server (NTRS)

    Fernandez, K. R.

    1980-01-01

    The advantages that will accrue from the in-orbit servicing of satellites are listed. It is noted that in a concept in satellite servicing which holds promise as a compromise between the high flexibility and adaptability of manned vehicles and the lower cost of an unmanned vehicle involves an unmanned servicer carrying a remotely supervised robotic manipulator arm. Because of deficiencies in sensor technology, robot servicing would require that satellites be designed according to a modular concept. A description is given of the servicer simulation hardware, the computer and interface hardware, and the software. It is noted that several areas require further development; these include automated docking, modularization of satellite design, reliable connector and latching mechanisms, development of manipulators for space environments, and development of automated diagnostic techniques.

  6. AVES: A Computer Cluster System approach for INTEGRAL Scientific Analysis

    NASA Astrophysics Data System (ADS)

    Federici, M.; Martino, B. L.; Natalucci, L.; Umbertini, P.

    The AVES computing system, based on an "Cluster" architecture is a fully integrated, low cost computing facility dedicated to the archiving and analysis of the INTEGRAL data. AVES is a modular system that uses the software resource manager (SLURM) and allows almost unlimited expandibility (65,536 nodes and hundreds of thousands of processors); actually is composed by 30 Personal Computers with Quad-Cores CPU able to reach the computing power of 300 Giga Flops (300x10{9} Floating point Operations Per Second), with 120 GB of RAM and 7.5 Tera Bytes (TB) of storage memory in UFS configuration plus 6 TB for users area. AVES was designed and built to solve growing problems raised from the analysis of the large data amount accumulated by the INTEGRAL mission (actually about 9 TB) and due to increase every year. The used analysis software is the OSA package, distributed by the ISDC in Geneva. This is a very complex package consisting of dozens of programs that can not be converted to parallel computing. To overcome this limitation we developed a series of programs to distribute the workload analysis on the various nodes making AVES automatically divide the analysis in N jobs sent to N cores. This solution thus produces a result similar to that obtained by the parallel computing configuration. In support of this we have developed tools that allow a flexible use of the scientific software and quality control of on-line data storing. The AVES software package is constituted by about 50 specific programs. Thus the whole computing time, compared to that provided by a Personal Computer with single processor, has been enhanced up to a factor 70.

  7. Industrial applications of computed tomography at Los Alamos Scientific Laboratory

    SciTech Connect

    Kruger, R.P.; Morris, R.A.; Wecksung, G.W.; Wonn, G.; London, R.

    1980-06-01

    A research and development program was begun two years ago at the Los Alamos Scientific Laboratory (LASL) to study nonmedical applications of computed tomography. This program had several goals. The first goal was to develop the necessary reconstruction algorithms to accurately reconstruct cross sections of nonmedical industrial objects. The second goal was to be able to perform extensive tomographic simulations to determine the efficacy of tomographic reconstruction with a variety of hardware configurations. The final goal was to construct an inexpensive industrial prototype scanner with a high degree of design flexibility. The implementation of these program goals is described.

  8. Hydra: a service oriented architecture for scientific simulation integration

    SciTech Connect

    Bent, Russell; Djidjev, Tatiana; Hayes, Birch P; Holland, Joe V; Khalsa, Hari S; Linger, Steve P; Mathis, Mark M; Mniszewski, Sue M; Bush, Brian

    2008-01-01

    One of the current major challenges in scientific modeling and simulation, in particular in the infrastructure-analysis community, is the development of techniques for efficiently and automatically coupling disparate tools that exist in separate locations on different platforms, implemented in a variety of languages and designed to be standalone. Recent advances in web-based platforms for integrating systems such as SOA provide an opportunity to address these challenges in a systematic fashion. This paper describes Hydra, an integrating architecture for infrastructure modeling and simulation that defines geography-based schemas that, when used to wrap existing tools as web services, allow for seamless plug-and-play composability. Existing users of these tools can enhance the value of their analysis by assessing how the simulations of one tool impact the behavior of another tool and can automate existing ad hoc processes and work flows for integrating tools together.

  9. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    SciTech Connect

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  10. Computer Service Technician "COMPS." Curriculum Grant 1985.

    ERIC Educational Resources Information Center

    Schoolcraft Coll., Livonia, MI.

    This document is a curriculum guide for a program in computer service technology developed at Schoolcraft College, Livonia, Michigan. The program is designed to give students a strong background in the fundamentals of electricity, electronic devices, and basic circuits (digital and linear). The curriculum includes laboratory demonstrations of the…

  11. Computer Servicing Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of a computer servicing technology program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational…

  12. Charon Message-Passing Toolkit for Scientific Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The Charon toolkit for piecemeal development of high-efficiency parallel programs for scientific computing is described. The portable toolkit, callable from C and Fortran, provides flexible domain decompositions and high-level distributed constructs for easy translation of serial legacy code or design to distributed environments. Gradual tuning can subsequently be applied to obtain high performance, possibly by using explicit message passing. Charon also features general structured communications that support stencil-based computations with complex recurrences. Through the separation of partitioning and distribution, the toolkit can also be used for blocking of uni-processor code, and for debugging of parallel algorithms on serial machines. An elaborate review of recent parallelization aids is presented to highlight the need for a toolkit like Charon. Some performance results of parallelizing the NAS Parallel Benchmark SP program using Charon are given, showing good scalability.

  13. Charon Message-Passing Toolkit for Scientific Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngarrt, Rob F.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The Charon toolkit for piecemeal development of high-efficiency parallel programs for scientific computing is described. The portable toolkit, callable from C and Fortran, provides flexible domain decompositions and high-level distributed constructs for easy translation of serial legacy code or design to distributed environments. Gradual tuning can subsequently be applied to obtain high performance, possibly by using explicit message passing. Charon also features general structured communications that support stencil-based computations with complex recurrences. Through the separation of partitioning and distribution, the toolkit can also be used for blocking of uni-processor code, and for debugging of parallel algorithms on serial machines. An elaborate review of recent parallelization aids is presented to highlight the need for a toolkit like Charon. Some performance results of parallelizing the NAS Parallel Benchmark SP program using Charon are given, showing good scalability. Some performance results of parallelizing the NAS Parallel Benchmark SP program using Charon are given, showing good scalability.

  14. A Scientific Cloud Computing Platform for Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Johnson, W.; Vila, F. D.; Rehr, J. J.

    2013-03-01

    Scientific Cloud Computing (SCC) makes possible calculations with high performance computational tools, without the need to purchase or maintain sophisticated hardware and software. We have recently developed an interface dubbed SC2IT that controls on-demand virtual Linux clusters within the Amazon EC2 cloud platform. Using this interface we have developed a more advanced, user-friendly SCC Platform configured especially for condensed matter calculations. This platform contains a GUI, based on a new Java version of SC2IT, that permits calculations of various materials properties. The cloud platform includes Virtual Machines preconfigured for parallel calculations and several precompiled and optimized materials science codes for electronic structure and x-ray and electron spectroscopy. Consequently this SCC makes state-of-the-art condensed matter calculations easy to access for general users. Proof-of-principle performance benchmarks show excellent parallelization and communication performance. Supported by NSF grant OCI-1048052

  15. An Execution Service for Grid Computing

    NASA Technical Reports Server (NTRS)

    Smith, Warren; Hu, Chaumin

    2004-01-01

    This paper describes the design and implementation of the IPG Execution Service that reliably executes complex jobs on a computational grid. Our Execution Service is part of the IPG service architecture whose goal is to support location-independent computing. In such an environment, once n user ports an npplicntion to one or more hardware/software platfrms, the user can describe this environment to the grid the grid can locate instances of this platfrm, configure the platfrm as required for the application, and then execute the application. Our Execution Service runs jobs that set up such environments for applications and executes them. These jobs consist of a set of tasks for executing applications and managing data. The tasks have user-defined starting conditions that allow users to specih complex dependencies including task to execute when tasks fail, afiequent occurrence in a large distributed system, or are cancelled. The execution task provided by our service also configures the application environment exactly as specified by the user and captures the exit code of the application, features that many grid execution services do not support due to dflculties interfacing to local scheduling systems.

  16. Pre-Service Science Teachers in Xinjiang "Scientific Inquiry" - Pedagogical Content Knowledge Research

    ERIC Educational Resources Information Center

    Li, Yufeng; Xiong, Jianwen

    2012-01-01

    Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…

  17. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    SciTech Connect

    William M. Tang

    2011-02-09

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  18. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    SciTech Connect

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-01-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  19. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-06-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  20. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    NASA Technical Reports Server (NTRS)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  1. 77 FR 21622 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... AFFAIRS Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting... Committee Act) that a meeting of the Rehabilitation Research and Development Service Scientific Merit Review..., Rehabilitation Research and Development Service, and the Chief Research and Development Officer on the...

  2. Domain analysis of computational science - Fifty years of a scientific computing group

    SciTech Connect

    Tanaka, M.

    2010-02-23

    I employed bibliometric- and historical-methods to study the domain of the Scientific Computing group at Brookhaven National Laboratory (BNL) for an extended period of fifty years, from 1958 to 2007. I noted and confirmed the growing emergence of interdisciplinarity within the group. I also identified a strong, consistent mathematics and physics orientation within it.

  3. Performance of scientific computing platforms running MCNP4B

    SciTech Connect

    McLaughlin, H.E.; Hendricks, J.S.

    1997-11-01

    A performance study has been made for the MCNP4B Monte Carlo radiation transport code on a wide variety of scientific computing platforms ranging from personal computers to Cray mainframes. We present the timing study results using MCNP4B and its new test set and libraries. This timing study is unlike other timing studies because of its widespread reproducibility, its direct comparability to the predecessor study in 1993, and its focus upon a nuclear engineering code. Our results, derived from using the new 29-problem test set for MCNP4B, (1) use a highly versatile and readily available physics code; (2) show that timing studies are very problem dependent; (3) present the results as raw data allowing comparisons of performance to other computing platforms not included in this study to those platforms that were included; (4) are reproducible; and (5) provide a measure of improvement in performance with the MCNP code due to advancements in software and hardware over the past 4 years. In the 1993 predecessor study using MCNP4A, the performances were based on a 25 problem test set. We present our data based on MCNP4B`s new 29 problem test set which cover 97% of all the FORTRAN physics code lines in MCNP4B. Like the previous study the new test problems and the test data library are available from the Radiation Shielding and Information Computational Center (RSICC) in Oak Ridge, Tennessee. Our results are reproducible because anyone with the same workstation, compiler, and operating system can duplicate the results presented here. The computing platforms included in this study are the Sun Sparc2, Sun Sparc5, Cray YMP 8/128, HP C180,SGI origin 2000, DBC 3000/600, DBC AiphaStation 500(300 MHz), IBM RS/6000-590, HP /9000-735, Micron Milienia Pro 200 MHz PC, and the Cray T94/128.

  4. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    SciTech Connect

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  5. A data management system for engineering and scientific computing

    NASA Technical Reports Server (NTRS)

    Elliot, L.; Kunii, H. S.; Browne, J. C.

    1978-01-01

    Data elements and relationship definition capabilities for this data management system are explicitly tailored to the needs of engineering and scientific computing. System design was based upon studies of data management problems currently being handled through explicit programming. The system-defined data element types include real scalar numbers, vectors, arrays and special classes of arrays such as sparse arrays and triangular arrays. The data model is hierarchical (tree structured). Multiple views of data are provided at two levels. Subschemas provide multiple structural views of the total data base and multiple mappings for individual record types are supported through the use of a REDEFINES capability. The data definition language and the data manipulation language are designed as extensions to FORTRAN. Examples of the coding of real problems taken from existing practice in the data definition language and the data manipulation language are given.

  6. Marketing and commercialization of computational research services.

    SciTech Connect

    Toevs, J. W.

    2001-01-01

    Physical and computational scientists and mathematicians in Russia's nuclear cities are turning their work toward generating profits from Western markets. Successful ventures require an understanding of the marketing of contract research as well as Western expectations regarding contract execution, quality, and performance. This paper will address fundamentals in business structure, marketing, and contract performance for organizations engaging in the marketing and commercialization of research services. Considerable emphasis will be placed on developing adequate communication within the organization.

  7. Scientific and computational challenges of the fusion simulation project (FSP)

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2008-07-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Project (FSP). The primary objective is to develop advanced software designed to use leadership-class computers for carrying out multiscale physics simulations to provide information vital to delivering a realistic integrated fusion simulation model with unprecedented physics fidelity. This multiphysics capability will be unprecedented in that in the current FES applications domain, the largest-scale codes are used to carry out first-principles simulations of mostly individual phenomena in realistic 3D geometry while the integrated models are much smaller-scale, lower-dimensionality codes with significant empirical elements used for modeling and designing experiments. The FSP is expected to be the most up-to-date embodiment of the theoretical and experimental understanding of magnetically confined thermonuclear plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing a reliable ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales. From a computational perspective, the fusion energy science application goal to produce high-fidelity, whole-device modeling capabilities will demand computing resources in the petascale range and beyond, together with the associated multicore algorithmic formulation needed to address burning plasma issues relevant to ITER — a multibillion dollar collaborative device involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied

  8. Institute for scientific computing research;fiscal year 1999 annual report

    SciTech Connect

    Keyes, D

    2000-03-28

    Large-scale scientific computation, and all of the disciplines that support it and help to validate it, have been placed at the focus of Lawrence Livermore National Laboratory by the Accelerated Strategic Computing Initiative (ASCI). The Laboratory operates the computer with the highest peak performance in the world and has undertaken some of the largest and most compute-intensive simulations ever performed. Computers at the architectural extremes, however, are notoriously difficult to use efficiently. Even such successes as the Laboratory's two Bell Prizes awarded in November 1999 only emphasize the need for much better ways of interacting with the results of large-scale simulations. Advances in scientific computing research have, therefore, never been more vital to the core missions of the Laboratory than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, the Laboratory must engage researchers at many academic centers of excellence. In FY 1999, the Institute for Scientific Computing Research (ISCR) has expanded the Laboratory's bridge to the academic community in the form of collaborative subcontracts, visiting faculty, student internships, a workshop, and a very active seminar series. ISCR research participants are integrated almost seamlessly with the Laboratory's Center for Applied Scientific Computing (CASC), which, in turn, addresses computational challenges arising throughout the Laboratory. Administratively, the ISCR flourishes under the Laboratory's University Relations Program (URP). Together with the other four Institutes of the URP, it must navigate a course that allows the Laboratory to benefit from academic exchanges while preserving national security. Although FY 1999 brought more than its share of challenges to the operation of an academic-like research enterprise within the context of a national security laboratory, the results declare the challenges well met and well

  9. BOINC service for volunteer cloud computing

    NASA Astrophysics Data System (ADS)

    Høimyr, N.; Blomer, J.; Buncic, P.; Giovannozzi, M.; Gonzalez, A.; Harutyunyan, A.; Jones, P. L.; Karneyeu, A.; Marquina, M. A.; Mcintosh, E.; Segal, B.; Skands, P.; Grey, F.; Lombraña González, D.; Zacharov, I.

    2012-12-01

    Since a couple of years, a team at CERN and partners from the Citizen Cyberscience Centre (CCC) have been working on a project that enables general physics simulation programs to run in a virtual machine on volunteer PCs around the world. The project uses the Berkeley Open Infrastructure for Network Computing (BOINC) framework. Based on CERNVM and the job management framework Co-Pilot, this project was made available for public beta-testing in August 2011 with Monte Carlo simulations of LHC physics under the name “LHC@home 2.0” and the BOINC project: “Test4Theory”. At the same time, CERN's efforts on Volunteer Computing for LHC machine studies have been intensified; this project has previously been known as LHC@home, and has been running the “Sixtrack” beam dynamics application for the LHC accelerator, using a classic BOINC framework without virtual machines. CERN-IT has set up a BOINC server cluster, and has provided and supported the BOINC infrastructure for both projects. CERN intends to evolve the setup into a generic BOINC application service that will allow scientists and engineers at CERN to profit from volunteer computing. This paper describes the experience with the two different approaches to volunteer computing as well as the status and outlook of a general BOINC service.

  10. 75 FR 28686 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... AFFAIRS Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation... (Federal Advisory Committee Act) that a meeting of the Clinical Science Research and Development Service... Committee advises the Chief Research and Development Officer through the Director of the Clinical...

  11. 76 FR 65781 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... AFFAIRS Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation... (Federal Advisory Committee Act) that a meeting of the Clinical Science Research and Development Service... Research and Development Officer through the Director of the Clinical Science Research and...

  12. Scientific Application Requirements for Leadership Computing at the Exascale

    SciTech Connect

    Ahern, Sean; Alam, Sadaf R; Fahey, Mark R; Hartman-Baker, Rebecca J; Barrett, Richard F; Kendall, Ricky A; Kothe, Douglas B; Mills, Richard T; Sankaran, Ramanan; Tharrington, Arnold N; White III, James B

    2007-12-01

    The Department of Energy s Leadership Computing Facility, located at Oak Ridge National Laboratory s National Center for Computational Sciences, recently polled scientific teams that had large allocations at the center in 2007, asking them to identify computational science requirements for future exascale systems (capable of an exaflop, or 1018 floating point operations per second). These requirements are necessarily speculative, since an exascale system will not be realized until the 2015 2020 timeframe, and are expressed where possible relative to a recent petascale requirements analysis of similar science applications [1]. Our initial findings, which beg further data collection, validation, and analysis, did in fact align with many of our expectations and existing petascale requirements, yet they also contained some surprises, complete with new challenges and opportunities. First and foremost, the breadth and depth of science prospects and benefits on an exascale computing system are striking. Without a doubt, they justify a large investment, even with its inherent risks. The possibilities for return on investment (by any measure) are too large to let us ignore this opportunity. The software opportunities and challenges are enormous. In fact, as one notable computational scientist put it, the scale of questions being asked at the exascale is tremendous and the hardware has gotten way ahead of the software. We are in grave danger of failing because of a software crisis unless concerted investments and coordinating activities are undertaken to reduce and close this hardwaresoftware gap over the next decade. Key to success will be a rigorous requirement for natural mapping of algorithms to hardware in a way that complements (rather than competes with) compilers and runtime systems. The level of abstraction must be raised, and more attention must be paid to functionalities and capabilities that incorporate intent into data structures, are aware of memory hierarchy

  13. Data Publishing Services in a Scientific Project Platform

    NASA Astrophysics Data System (ADS)

    Schroeder, Matthias; Stender, Vivien; Wächter, Joachim

    2014-05-01

    Data-intensive science lives from data. More and more interdisciplinary projects are aligned to mutually gain access to their data, models and results. In order to achieving this, an umbrella project GLUES is established in the context of the "Sustainable Land Management" (LAMA) initiative funded by the German Federal Ministry of Education and Research (BMBF). The GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) project supports several different regional projects of the LAMA initiative: Within the framework of GLUES a Spatial Data Infrastructure (SDI) is implemented to facilitate publishing, sharing and maintenance of distributed global and regional scientific data sets as well as model results. The GLUES SDI supports several OGC webservices like the Catalog Service Web (CSW) which enables it to harvest data from varying regional projects. One of these regional projects is SuMaRiO (Sustainable Management of River Oases along the Tarim River) which aims to support oasis management along the Tarim River (PR China) under conditions of climatic and societal changes. SuMaRiO itself is an interdisciplinary and spatially distributed project. Working groups from twelve German institutes and universities are collecting data and driving their research in disciplines like Hydrology, Remote Sensing, and Agricultural Sciences among others. Each working group is dependent on the results of another working group. Due to the spatial distribution of participating institutes the data distribution is solved by using the eSciDoc infrastructure at the German Research Centre for Geosciences (GFZ). Further, the metadata based data exchange platform PanMetaDocs will be used by participants collaborative. PanMetaDocs supports an OAI-PMH interface which enables an Open Source metadata portal like GeoNetwork to harvest the information. The data added in PanMetaDocs can be labeled with a DOI (Digital Object Identifier) to publish the data and to

  14. 75 FR 72872 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... AFFAIRS Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting... Committee Act) that a meeting of the Rehabilitation Research and Development Service Scientific Merit Review..., examination, reference to, and oral review of the applications and critiques. The purpose of the Board is...

  15. 75 FR 65404 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... AFFAIRS Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting... of the Rehabilitation Research and Development Service Scientific Merit Review Board will be held.... The meeting will be closed to the public for the discussion, examination, reference to, ] and...

  16. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review

    SciTech Connect

    Reed, Daniel; Berzins, Martin; Pennington, Robert; Sarkar, Vivek; Taylor, Valerie

    2015-08-01

    On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observations and recommendations of the subcommittee.

  17. PS3 CELL Development for Scientific Computation and Research

    NASA Astrophysics Data System (ADS)

    Christiansen, M.; Sevre, E.; Wang, S. M.; Yuen, D. A.; Liu, S.; Lyness, M. D.; Broten, M.

    2007-12-01

    The Cell processor is one of the most powerful processors on the market, and researchers in the earth sciences may find its parallel architecture to be very useful. A cell processor, with 7 cores, can easily be obtained for experimentation by purchasing a PlayStation 3 (PS3) and installing linux and the IBM SDK. Each core of the PS3 is capable of 25 GFLOPS giving a potential limit of 150 GFLOPS when using all 6 SPUs (synergistic processing units) by using vectorized algorithms. We have used the Cell's computational power to create a program which takes simulated tsunami datasets, parses them, and returns a colorized height field image using ray casting techniques. As expected, the time required to create an image is inversely proportional to the number of SPUs used. We believe that this trend will continue when multiple PS3s are chained using OpenMP functionality and are in the process of researching this. By using the Cell to visualize tsunami data, we have found that its greatest feature is its power. This fact entwines well with the needs of the scientific community where the limiting factor is time. Any algorithm, such as the heat equation, that can be subdivided into multiple parts can take advantage of the PS3 Cell's ability to split the computations across the 6 SPUs reducing required run time by one sixth. Further vectorization of the code can allow for 4 simultanious floating point operations by using the SIMD (single instruction multiple data) capabilities of the SPU increasing efficiency 24 times.

  18. Evolving the Land Information System into a Cloud Computing Service

    SciTech Connect

    Houser, Paul R.

    2015-02-17

    The Land Information System (LIS) was developed to use advanced flexible land surface modeling and data assimilation frameworks to integrate extremely large satellite- and ground-based observations with advanced land surface models to produce continuous high-resolution fields of land surface states and fluxes. The resulting fields are extremely useful for drought and flood assessment, agricultural planning, disaster management, weather and climate forecasting, water resources assessment, and the like. We envisioned transforming the LIS modeling system into a scientific cloud computing-aware web and data service that would allow clients to easily setup and configure for use in addressing large water management issues. The focus of this Phase 1 project was to determine the scientific, technical, commercial merit and feasibility of the proposed LIS-cloud innovations that are currently barriers to broad LIS applicability. We (a) quantified the barriers to broad LIS utility and commercialization (high performance computing, big data, user interface, and licensing issues); (b) designed the proposed LIS-cloud web service, model-data interface, database services, and user interfaces; (c) constructed a prototype LIS user interface including abstractions for simulation control, visualization, and data interaction, (d) used the prototype to conduct a market analysis and survey to determine potential market size and competition, (e) identified LIS software licensing and copyright limitations and developed solutions, and (f) developed a business plan for development and marketing of the LIS-cloud innovation. While some significant feasibility issues were found in the LIS licensing, overall a high degree of LIS-cloud technical feasibility was found.

  19. 5 CFR 838.242 - Computing lengths of service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Computing lengths of service. 838.242... Affecting Employee Annuities Procedures for Computing the Amount Payable § 838.242 Computing lengths of service. (a)(1) The smallest unit of time that OPM will calculate in computing a formula in a court...

  20. 5 CFR 838.242 - Computing lengths of service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Computing lengths of service. 838.242... Affecting Employee Annuities Procedures for Computing the Amount Payable § 838.242 Computing lengths of service. (a)(1) The smallest unit of time that OPM will calculate in computing a formula in a court...

  1. 5 CFR 838.441 - Computing lengths of service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Computing lengths of service. 838.441... Affecting Refunds of Employee Contributions Procedures for Computing the Amount Payable § 838.441 Computing lengths of service. (a) The smallest unit of time that OPM will calculate in computing a formula in...

  2. 5 CFR 838.441 - Computing lengths of service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Computing lengths of service. 838.441... Affecting Refunds of Employee Contributions Procedures for Computing the Amount Payable § 838.441 Computing lengths of service. (a) The smallest unit of time that OPM will calculate in computing a formula in...

  3. 5 CFR 838.441 - Computing lengths of service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Computing lengths of service. 838.441... Affecting Refunds of Employee Contributions Procedures for Computing the Amount Payable § 838.441 Computing lengths of service. (a) The smallest unit of time that OPM will calculate in computing a formula in...

  4. 5 CFR 838.242 - Computing lengths of service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Computing lengths of service. 838.242... Affecting Employee Annuities Procedures for Computing the Amount Payable § 838.242 Computing lengths of service. (a)(1) The smallest unit of time that OPM will calculate in computing a formula in a court...

  5. 5 CFR 838.242 - Computing lengths of service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Computing lengths of service. 838.242... Affecting Employee Annuities Procedures for Computing the Amount Payable § 838.242 Computing lengths of service. (a)(1) The smallest unit of time that OPM will calculate in computing a formula in a court...

  6. 5 CFR 838.441 - Computing lengths of service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Computing lengths of service. 838.441... Affecting Refunds of Employee Contributions Procedures for Computing the Amount Payable § 838.441 Computing lengths of service. (a) The smallest unit of time that OPM will calculate in computing a formula in...

  7. 5 CFR 838.242 - Computing lengths of service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Computing lengths of service. 838.242... Affecting Employee Annuities Procedures for Computing the Amount Payable § 838.242 Computing lengths of service. (a)(1) The smallest unit of time that OPM will calculate in computing a formula in a court...

  8. 5 CFR 838.441 - Computing lengths of service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Computing lengths of service. 838.441... Affecting Refunds of Employee Contributions Procedures for Computing the Amount Payable § 838.441 Computing lengths of service. (a) The smallest unit of time that OPM will calculate in computing a formula in...

  9. Scientific and Technological Information Services in Australia: II. Discipline Formation in Information Management

    ERIC Educational Resources Information Center

    Middleton, Michael

    2006-01-01

    This second part of an analysis of scientific and technical information (STI) services in Australia considers their development in the context of discipline formation in information management. The case studies used are the STI services from Part I. A case study protocol is used to consider the extent to which the development of the services may…

  10. 77 FR 72438 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... AFFAIRS Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation... Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and Development Service Cooperative... Clinical Science Research and Development Service on the relevance and feasibility of proposed projects...

  11. 78 FR 70102 - Clinical Science Research and Development Service Cooperative Studies; Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... AFFAIRS Clinical Science Research and Development Service Cooperative Studies; Scientific Evaluation... Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and Development Service Cooperative... the Director of the Clinical Science Research and Development Service on the relevance and...

  12. Pre-Service Science and Primary School Teachers' Identification of Scientific Process Skills

    ERIC Educational Resources Information Center

    Birinci Konur, Kader; Yildirim, Nagihan

    2016-01-01

    The purpose of this study was to conduct a comparative analysis of pre-service primary school and science teachers' identification of scientific process skills. The study employed the survey method, and the sample included 95 pre-service science teachers and 95 pre-service primary school teachers from the Faculty of Education at Recep Tayyip…

  13. Open Science in the Cloud: Towards a Universal Platform for Scientific and Statistical Computing

    NASA Astrophysics Data System (ADS)

    Chine, Karim

    The UK, through the e-Science program, the US through the NSF-funded cyber infrastructure and the European Union through the ICT Calls aimed to provide "the technological solution to the problem of efficiently connecting data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge".1 The Grid (Foster, 2002; Foster; Kesselman, Nick, & Tuecke, 2002), foreseen as a major accelerator of discovery, didn't meet the expectations it had excited at its beginnings and was not adopted by the broad population of research professionals. The Grid is a good tool for particle physicists and it has allowed them to tackle the tremendous computational challenges inherent to their field. However, as a technology and paradigm for delivering computing on demand, it doesn't work and it can't be fixed. On one hand, "the abstractions that Grids expose - to the end-user, to the deployers and to application developers - are inappropriate and they need to be higher level" (Jha, Merzky, & Fox), and on the other hand, academic Grids are inherently economically unsustainable. They can't compete with a service outsourced to the Industry whose quality and price would be driven by market forces. The virtualization technologies and their corollary, the Infrastructure-as-a-Service (IaaS) style cloud, hold the promise to enable what the Grid failed to deliver: a sustainable environment for computational sciences that would lower the barriers for accessing federated computational resources, software tools and data; enable collaboration and resources sharing and provide the building blocks of a ubiquitous platform for traceable and reproducible computational research.

  14. Scientific data reduction and analysis plan: PI services

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Fastie, W. G.

    1971-01-01

    This plan comprises two parts. The first concerns the real-time data display to be provided by MSC during the mission. The prime goal is to assess the operation of the UVS and to identify any problem areas that could be corrected during the mission. It is desirable to identify any possible observations of unusual scientific interest in order to repeat these observations at a later point in the mission, or to modify the time line with respect to the operating modes of the UVS. The second part of the plan discusses the more extensive postflight analysis of the data in terms of the scientific objectives of this experiment.

  15. POET (parallel object-oriented environment and toolkit) and frameworks for scientific distributed computing

    SciTech Connect

    Armstrong, R.; Cheung, A.

    1997-01-01

    Frameworks for parallel computing have recently become popular as a means for preserving parallel algorithms as reusable components. Frameworks for parallel computing in general, and POET in particular, focus on finding ways to orchestrate and facilitate cooperation between components that implement the parallel algorithms. Since performance is a key requirement for POET applications, CORBA or CORBA-like systems are eschewed for a SPMD message-passing architecture common to the world of distributed-parallel computing. Though the system is written in C++ for portability, the behavior of POET is more like a classical framework, such as Smalltalk. POET seeks to be a general platform for scientific parallel algorithm components which can be modified, linked, mixed and matched to a user`s specification. The purpose of this work is to identify a means for parallel code reuse and to make parallel computing more accessible to scientists whose expertise is outside the field of parallel computing. The POET framework provides two things: (1) an object model for parallel components that allows cooperation without being restrictive; (2) services that allow components to access and manage user data and message-passing facilities, etc. This work has evolved through application of a series of real distributed-parallel scientific problems. The paper focuses on what is required for parallel components to cooperate and at the same time remain ``black-boxes`` that users can drop into the frame without having to know the exquisite details of message-passing, data layout, etc. The paper walks through a specific example of a chemically reacting flow application. The example is implemented in POET and the authors identify component cooperation, usability and reusability in an anecdotal fashion.

  16. Accelerating Scientific Discovery Through Computation and Visualization III. Tight-Binding Wave Functions for Quantum Dots

    PubMed Central

    Sims, James S.; George, William L.; Griffin, Terence J.; Hagedorn, John G.; Hung, Howard K.; Kelso, John T.; Olano, Marc; Peskin, Adele P.; Satterfield, Steven G.; Terrill, Judith Devaney; Bryant, Garnett W.; Diaz, Jose G.

    2008-01-01

    This is the third in a series of articles that describe, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate scientific discovery. In this article we focus on the use of high performance computing and visualization for simulations of nanotechnology. PMID:27096116

  17. RELIABILITY, AVAILABILITY, AND SERVICEABILITY FOR PETASCALE HIGH-END COMPUTING AND BEYOND

    SciTech Connect

    Chokchai "Box" Leangsuksun

    2011-05-31

    Our project is a multi-institutional research effort that adopts interplay of RELIABILITY, AVAILABILITY, and SERVICEABILITY (RAS) aspects for solving resilience issues in highend scientific computing in the next generation of supercomputers. results lie in the following tracks: Failure prediction in a large scale HPC; Investigate reliability issues and mitigation techniques including in GPGPU-based HPC system; HPC resilience runtime & tools.

  18. 5 CFR 630.603 - Computation of service abroad.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Computation of service abroad. 630.603 Section 630.603 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE..., not leave-earning, purposes), and (4) a period of detail. In computing service abroad, full credit...

  19. Future Directions in Computational Mathematics, Algorithms, and Scientific Software. Report of the Panel.

    ERIC Educational Resources Information Center

    Society for Industrial and Applied Mathematics, Philadelphia, PA.

    The critical role of computers in scientific advancement is described in this panel report. With the growing range and complexity of problems that must be solved and with demands of new generations of computers and computer architecture, the importance of computational mathematics is increasing. Multidisciplinary teams are needed; these are found…

  20. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC

    NASA Astrophysics Data System (ADS)

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan

    2016-04-01

    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  1. Reconfiguring Basic Computer Occupations: Between Technology and Service.

    ERIC Educational Resources Information Center

    Liaroutzos, Oliver; Robichon, Marc

    2000-01-01

    The nature of basic computer occupations has changed greatly since the early 1980s. The changes reveal a shift in the respective roles of the sectors of industry associated with computer services (manufacturing and industrial computing). The service sector has adopted the procedures of industry in terms of organization, methods, and quality,…

  2. 5 CFR 838.623 - Computing lengths of service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Computing lengths of service. 838.623 Section 838.623 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE... Employee Annuities or Refunds of Employee Contributions Computation of Benefits § 838.623 Computing...

  3. 5 CFR 838.623 - Computing lengths of service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Computing lengths of service. 838.623 Section 838.623 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE... Employee Annuities or Refunds of Employee Contributions Computation of Benefits § 838.623 Computing...

  4. 5 CFR 838.623 - Computing lengths of service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Computing lengths of service. 838.623 Section 838.623 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE... Employee Annuities or Refunds of Employee Contributions Computation of Benefits § 838.623 Computing...

  5. 5 CFR 838.623 - Computing lengths of service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Computing lengths of service. 838.623 Section 838.623 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE... Employee Annuities or Refunds of Employee Contributions Computation of Benefits § 838.623 Computing...

  6. 5 CFR 838.623 - Computing lengths of service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Computing lengths of service. 838.623 Section 838.623 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE... Employee Annuities or Refunds of Employee Contributions Computation of Benefits § 838.623 Computing...

  7. Enabling Interoperation of High Performance, Scientific Computing Applications: Modeling Scientific Data with the Sets & Fields (SAF) Modeling System

    SciTech Connect

    Miller, M C; Reus, J F; Matzke, R P; Arrighi, W J; Schoof, L A; Hitt, R T; Espen, P K; Butler, D M

    2001-02-07

    This paper describes the Sets and Fields (SAF) scientific data modeling system. It is a revolutionary approach to interoperation of high performance, scientific computing applications based upon rigorous, math-oriented data modeling principles. Previous technologies have required all applications to use the same data structures and/or meshes to represent scientific data or lead to an ever expanding set of incrementally different data structures and/or meshes. SAF addresses this problem by providing a small set of mathematical building blocks--sets, relations and fields--out of which a wide variety of scientific data can be characterized. Applications literally model their data by assembling these building blocks. A short historical perspective, a conceptual model and an overview of SAF along with preliminary results from its use in a few ASCI codes are discussed.

  8. BioTorrents: A File Sharing Service for Scientific Data

    PubMed Central

    Langille, Morgan G. I.; Eisen, Jonathan A.

    2010-01-01

    The transfer of scientific data has emerged as a significant challenge, as datasets continue to grow in size and demand for open access sharing increases. Current methods for file transfer do not scale well for large files and can cause long transfer times. In this study we present BioTorrents, a website that allows open access sharing of scientific data and uses the popular BitTorrent peer-to-peer file sharing technology. BioTorrents allows files to be transferred rapidly due to the sharing of bandwidth across multiple institutions and provides more reliable file transfers due to the built-in error checking of the file sharing technology. BioTorrents contains multiple features, including keyword searching, category browsing, RSS feeds, torrent comments, and a discussion forum. BioTorrents is available at http://www.biotorrents.net. PMID:20418944

  9. Turkish Pre-Service Elementary Science Teachers' Scientific Literacy Level and Attitudes toward Science

    ERIC Educational Resources Information Center

    Cavas, Pinar Huyuguzel; Ozdem, Yasemin; Cavas, Bulent; Cakiroglu, Jale; Ertepinar, Hamide

    2013-01-01

    In order to educate elementary students scientifically literate as expected in the science curricula in many countries around the world, science teachers need to be equipped with the diverse aspects of scientific literacy. This study investigates whether pre-service elementary science teachers at universities in Turkey have a satisfactory level of…

  10. Applications of parallel supercomputers: Scientific results and computer science lessons

    SciTech Connect

    Fox, G.C.

    1989-07-12

    Parallel Computing has come of age with several commercial and inhouse systems that deliver supercomputer performance. We illustrate this with several major computations completed or underway at Caltech on hypercubes, transputer arrays and the SIMD Connection Machine CM-2 and AMT DAP. Applications covered are lattice gauge theory, computational fluid dynamics, subatomic string dynamics, statistical and condensed matter physics,theoretical and experimental astronomy, quantum chemistry, plasma physics, grain dynamics, computer chess, graphics ray tracing, and Kalman filters. We use these applications to compare the performance of several advanced architecture computers including the conventional CRAY and ETA-10 supercomputers. We describe which problems are suitable for which computers in the terms of a matching between problem and computer architecture. This is part of a set of lessons we draw for hardware, software, and performance. We speculate on the emergence of new academic disciplines motivated by the growing importance of computers. 138 refs., 23 figs., 10 tabs.

  11. Scientific Data Services -- A High-Performance I/O System with Array Semantics

    SciTech Connect

    Wu, Kesheng; Byna, Surendra; Rotem, Doron; Shoshani, Arie

    2011-09-21

    As high-performance computing approaches exascale, the existing I/O system design is having trouble keeping pace in both performance and scalability. We propose to address this challenge by adopting database principles and techniques in parallel I/O systems. First, we propose to adopt an array data model because many scientific applications represent their data in arrays. This strategy follows a cardinal principle from database research, which separates the logical view from the physical layout of data. This high-level data model gives the underlying implementation more freedom to optimize the physical layout and to choose the most effective way of accessing the data. For example, knowing that a set of write operations is working on a single multi-dimensional array makes it possible to keep the subarrays in a log structure during the write operations and reassemble them later into another physical layout as resources permit. While maintaining the high-level view, the storage system could compress the user data to reduce the physical storage requirement, collocate data records that are frequently used together, or replicate data to increase availability and fault-tolerance. Additionally, the system could generate secondary data structures such as database indexes and summary statistics. We expect the proposed Scientific Data Services approach to create a “live” storage system that dynamically adjusts to user demands and evolves with the massively parallel storage hardware.

  12. Scientific and high-performance computing at FAIR

    NASA Astrophysics Data System (ADS)

    Kisel, Ivan

    2015-05-01

    Future FAIR experiments have to deal with very high input rates, large track multiplicities, make full event reconstruction and selection on-line on a large dedicated computer farm equipped with heterogeneous many-core CPU/GPU compute nodes. To develop efficient and fast algorithms, which are optimized for parallel computations, is a challenge for the groups of experts dealing with the HPC computing. Here we present and discuss the status and perspectives of the data reconstruction and physics analysis software of one of the future FAIR experiments, namely, the CBM experiment.

  13. Scientific Uses and Directions of SPDF Data Services

    NASA Technical Reports Server (NTRS)

    Fung, Shing

    2007-01-01

    From a science user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project perform as a working and highly functional heliophysics virtual observatory. CDAWeb enables plots, listings and file downloads for current data across the boundaries of missions and instrument types (and now including data from THEMIS and STEREO), VSPO access to a wide range of distributed data sources. SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently-important to heliophysics science. OMNIWeb with its new extension to 1- and 5- minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. To enable easier integrated use of our capabilities by developers and by the emerging heliophysics VxOs, our data and services are available through webservices-based APls as well as through our direct user interfaces. SPDF has also now developed draft descriptions of its holdings in SPASE-compliant XML In addition to showcasing recent enhancements to SPDF capabilities, we will use these systems and our experience in developing them: to demonstrate a few typical science use cases; to discuss key scope and design issues among users, service providers and end data providers; and to identify key areas where existing capabilities and effective interface design are still inadequate to meet community needs.

  14. Comparison of Pre-Service Teachers' Metaphors Regarding the Concept of "Scientific Knowledge"

    ERIC Educational Resources Information Center

    Akinoglu, Orhan; Eren, Canan Dilek

    2016-01-01

    The aim of this research was to analyze pre-service teachers' perceptions of the concept "scientific knowledge" through metaphors. Phenomenology, one of qualitative research designs, was used in the study. A total of 189 pre-service teachers, including 158 females and 31 males, studying at different departments in the education faculty…

  15. Better Information Management Policies Needed: A Study of Scientific and Technical Bibliographic Services.

    ERIC Educational Resources Information Center

    Comptroller General of the U.S., Washington, DC.

    This report discusses the management of scientific and technical bibliographic data bases by the Federal Government, the existence of overlapping and duplicative bibliographic information services, the application of cost recovery principles to bibliographic information services, and the need to manage information as a resource. Questionnaires…

  16. Scientific and Technological Information Services in Australia: I. History and Development

    ERIC Educational Resources Information Center

    Middleton, Michael

    2006-01-01

    An investigation of the development of Australian scientific and technological information (STI) services has been undertaken. It comprises a consideration of the characteristics and development of the services, which is the focus of this part of the paper, along with a broader examination of discipline formation in information management covered…

  17. 78 FR 53015 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... AFFAIRS Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation... Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and Development Service Cooperative... Chief Research and Development Officer through the Director of the Clinical Science Research...

  18. 78 FR 41198 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... AFFAIRS Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation... Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and Development Service Cooperative... Research and Development Officer through the Director of the Clinical Science Research and...

  19. Multicore Challenges and Benefits for High Performance Scientific Computing

    DOE PAGESBeta

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2008-01-01

    Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less

  20. How to Bill Your Computer Services.

    ERIC Educational Resources Information Center

    Dooskin, Herbert P.

    1981-01-01

    A computer facility billing procedure should be designed so that the full costs of a computer center operation are equitably charged to the users. Design criteria, costing methods, and management's role are discussed. (Author/MLF)

  1. Continue Service Improvement at CERN Computing Centre

    NASA Astrophysics Data System (ADS)

    Barroso Lopez, M.; Everaerts, L.; Meinhard, H.; Baehler, P.; Haimyr, N.; Guijarro, J. M.

    2014-06-01

    Using the framework of ITIL best practises, the service managers within CERN-IT have engaged into a continuous improvement process, mainly focusing on service operation. This implies an explicit effort to understand and improve all service management aspects in order to increase efficiency and effectiveness. We will present the requirements, how they were addressed and share our experiences. We will describe how we measure, report and use the data to continually improve both the processes and the services being provided. The focus is not the tool or the process, but the results of the continuous improvement effort from a large team of IT experts providing services to thousands of users, supported by the tool and its local team. This is not an initiative to address user concerns in the way the services are managed but rather an on-going working habit of continually reviewing, analysing and improving the service management processes and the services themselves, having in mind the currently agreed service levels and whose results also improve the experience of the users about the current services.

  2. Computers and Media Centers: Services, Satisfaction, and Cost Effectiveness.

    ERIC Educational Resources Information Center

    Givens, Patsy B.

    A survey was conducted of school media centers throughout the United States to determine: (1) how computers are being utilized by these centers, (2) the levels of satisfaction with present services, and (3) whether or not the services being provided by the computer are cost effective. Responses to survey forms returned by 20 school districts and…

  3. Computer-Supported Aids to Making Sense of Scientific Articles: Cognitive, Motivational, and Attitudinal Effects

    ERIC Educational Resources Information Center

    Gegner, Julie A.; Mackay, Donald H. J.; Mayer, Richard E.

    2009-01-01

    High school students can access original scientific research articles on the Internet, but may have trouble understanding them. To address this problem of online literacy, the authors developed a computer-based prototype for guiding students' comprehension of scientific articles. High school students were asked to read an original scientific…

  4. From Mars to Minerva: The origins of scientific computing in the AEC labs

    SciTech Connect

    Seidel, R.W. |

    1996-10-01

    Although the AEC laboratories are renowned for the development of nuclear weapons, their largess in promoting scientific computing also had a profound effect on scientific and technological development in the second half of the 20th century. {copyright} {ital 1996 American Institute of Physics.}

  5. Position Paper: Applying Machine Learning to Software Analysis to Achieve Trusted, Repeatable Scientific Computing

    SciTech Connect

    Prowell, Stacy J; Symons, Christopher T

    2015-01-01

    Producing trusted results from high-performance codes is essential for policy and has significant economic impact. We propose combining rigorous analytical methods with machine learning techniques to achieve the goal of repeatable, trustworthy scientific computing.

  6. Computer Concepts for VTAE Food Service. Final Report.

    ERIC Educational Resources Information Center

    Wisconsin Univ. - Stout, Menomonie. Center for Vocational, Technical and Adult Education.

    A project was conducted to determine the computer application competencies needed by a graduate of Wisconsin Vocational Technical Adult Education (VTAE) food service programs. Surveys were conducted of food service graduates and their employers as well as of major companies by the food service coordinators of the VTAE districts in the state; a…

  7. Scientific computing in the 1990ies: An astronomical perspective

    NASA Technical Reports Server (NTRS)

    Adorf, Hans-Martin

    1992-01-01

    The compute performance, storage capability, degree of networking, and usability of modern computer hardware have enormously progressed in the past decade. These hardware advances are not paralleled by an equivalent increase in software productivity. Among astronomers the need is gradually perceived to discuss questions such as whether we are prepared to meet the pending challenge of vector and massively parallel computers. Therefore, a moderated, time-limited and access-restricted, wide-area network discussion forum is proposed for having a first, broad-minded go at the question of whether our current software efforts are heading in the right direction. The main topics, goals, means, and form of the proposed discussion process are presented.

  8. High throughput computing: a solution for scientific analysis

    USGS Publications Warehouse

    O'Donnell, M.

    2011-01-01

    handle job failures due to hardware, software, or network interruptions (obviating the need to manually resubmit the job after each stoppage); be affordable; and most importantly, allow us to complete very large, complex analyses that otherwise would not even be possible. In short, we envisioned a job-management system that would take advantage of unused FORT CPUs within a local area network (LAN) to effectively distribute and run highly complex analytical processes. What we found was a solution that uses High Throughput Computing (HTC) and High Performance Computing (HPC) systems to do exactly that (Figure 1).

  9. A language comparison for scientific computing on MIMD architectures

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.; Voigt, Robert G.

    1989-01-01

    Choleski's method for solving banded symmetric, positive definite systems is implemented on a multiprocessor computer using three FORTRAN based parallel programming languages, the Force, PISCES and Concurrent FORTRAN. The capabilities of the language for expressing parallelism and their user friendliness are discussed, including readability of the code, debugging assistance offered, and expressiveness of the languages. The performance of the different implementations is compared. It is argued that PISCES, using the Force for medium-grained parallelism, is the appropriate choice for programming Choleski's method on the multiprocessor computer, Flex/32.

  10. Computer Communications and New Services. CCITT Achievements.

    ERIC Educational Resources Information Center

    Hummel, Eckart

    New non-voice services (sometimes also called information services) and the possibilities of telecommunication networks to support them are described in this state-of-the-art review. It begins with a summary of the various data transmission techniques, which include several types of data transmission over the telephone network: general, telegraph…

  11. PNNL pushing scientific discovery through data intensive computing breakthroughs

    ScienceCinema

    Deborah Gracio; David Koppenaal; Ruby Leung

    2012-12-31

    The Pacific Northwest National Laboratorys approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  12. 77 FR 62231 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY DOE.... Computational Science Graduate Fellowship (CSGF) Longitudinal Study. Update on Exascale. Update from DOE data... contact Melea Baker, (301) 903-7486 or by email at: Melea.Baker@science.doe.gov . You must make...

  13. Tools for 3D scientific visualization in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.

  14. Argonne National Lab - Theory and Computing Sciences, Accelerating Scientific Discovery

    SciTech Connect

    Beckman, Pete

    2009-01-01

    Argonne's new TCS building houses all of Argonne's computing divisions, and is designed to foster collaboration of the Manhattan Project model "Getting the best people together and having them work on a problem with singular determination." More at http://www.anl.gov/Media_Center/News/2009/tcs0910.html

  15. AVES: A high performance computer cluster array for the INTEGRAL satellite scientific data analysis

    NASA Astrophysics Data System (ADS)

    Federici, Memmo; Martino, Bruno Luigi; Ubertini, Pietro

    2012-07-01

    In this paper we describe a new computing system array, designed, built and now used at the Space Astrophysics and Planetary Institute (IAPS) in Rome, Italy, for the INTEGRAL Space Observatory scientific data analysis. This new system has become necessary in order to reduce the processing time of the INTEGRAL data accumulated during the more than 9 years of in-orbit operation. In order to fulfill the scientific data analysis requirements with a moderately limited investment the starting approach has been to use a `cluster' array of commercial quad-CPU computers, featuring the extremely large scientific and calibration data archive on line.

  16. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    PubMed Central

    Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong

    2014-01-01

    This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931

  17. Carbon Nanotube Computer: Transforming Scientific Discoveries into Working Systems

    NASA Astrophysics Data System (ADS)

    Mitra, Subhasish

    2014-03-01

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy- delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. However, carbon nanotubes (CNTs) are subject to substantial inherent imperfections that pose major obstacles to the design of robust and very large-scale CNFET digital systems: (i) It is nearly impossible to guarantee perfect alignment and positioning of all CNTs. This limitation introduces stray conducting paths, resulting in incorrect circuit functionality. (ii) CNTs can be metallic or semiconducting depending on chirality. Metallic CNTs cause shorts resulting in excessive leakage and incorrect circuit functionality. A combination of design and processing technique overcomes these challenges by creating robust CNFET digital circuits that are immune to these inherent imperfections. This imperfection-immune design paradigm enables the first experimental demonstration of the carbon nanotube computer, and, more generally, arbitrary digital systems that can be built using CNFETs. The CNT computer is capable of performing multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we emulate 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This is the most complex carbon-based electronic system yet demonstrated. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next

  18. A Study on Strategic Provisioning of Cloud Computing Services

    PubMed Central

    Rejaul Karim Chowdhury, Md

    2014-01-01

    Cloud computing is currently emerging as an ever-changing, growing paradigm that models “everything-as-a-service.” Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified. PMID:25032243

  19. Security Risks of Cloud Computing and Its Emergence as 5th Utility Service

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    Cloud Computing is being projected by the major cloud services provider IT companies such as IBM, Google, Yahoo, Amazon and others as fifth utility where clients will have access for processing those applications and or software projects which need very high processing speed for compute intensive and huge data capacity for scientific, engineering research problems and also e- business and data content network applications. These services for different types of clients are provided under DASM-Direct Access Service Management based on virtualization of hardware, software and very high bandwidth Internet (Web 2.0) communication. The paper reviews these developments for Cloud Computing and Hardware/Software configuration of the cloud paradigm. The paper also examines the vital aspects of security risks projected by IT Industry experts, cloud clients. The paper also highlights the cloud provider's response to cloud security risks.

  20. Charon Message-Passing Toolkit for Scientific Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Yan, Jerry (Technical Monitor)

    2000-01-01

    Charon is a library, callable from C and Fortran, that aids the conversion of structured-grid legacy codes-such as those used in the numerical computation of fluid flows-into parallel, high- performance codes. Key are functions that define distributed arrays, that map between distributed and non-distributed arrays, and that allow easy specification of common communications on structured grids. The library is based on the widely accepted MPI message passing standard. We present an overview of the functionality of Charon, and some representative results.

  1. Grid computing enhances standards-compatible geospatial catalogue service

    NASA Astrophysics Data System (ADS)

    Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang

    2010-04-01

    A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and

  2. 76 FR 27952 - Small Business Size Standards: Professional, Scientific and Technical Services.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ...On March 16, 2011, the U.S. Small Business Administration (SBA or Agency) proposed to increase small business size standards for 35 industries and one sub-industry in North American Industry Classification System (NAICS) Sector 54, Professional, Scientific and Technical Services and one industry in NAICS Sector 81, Other Services. SBA provided a 60-day comment period ending on May 16, 2011. In......

  3. Performance Evaluation of Three Distributed Computing Environments for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Fatoohi, Rod; Weeratunga, Sisira; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    We present performance results for three distributed computing environments using the three simulated CFD applications in the NAS Parallel Benchmark suite. These environments are the DCF cluster, the LACE cluster, and an Intel iPSC/860 machine. The DCF is a prototypic cluster of loosely coupled SGI R3000 machines connected by Ethernet. The LACE cluster is a tightly coupled cluster of 32 IBM RS6000/560 machines connected by Ethernet as well as by either FDDI or an IBM Allnode switch. Results of several parallel algorithms for the three simulated applications are presented and analyzed based on the interplay between the communication requirements of an algorithm and the characteristics of the communication network of a distributed system.

  4. Object-Based Parallel Framework for Scientific Computing

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Omelchenko, Y. A.

    1999-11-01

    We have developed a library of software in Fortran 90 and MPI for running simulations on massively parallel facilities. This is modeled after Omelchenko's FLAME code which was written in C++. With Fortran 90 we found several advantages, such as the array syntax and the intrinsic functions. The parallel portion of this library is achieved by dividing the data into subdomains, and distributing the subdomains among the processors to be computed concurrently (with periodic updates in neighboring region information as is necessary). The library is flexible enough so that one can use it to run simulations on any number of processors, and the user can divide up the data between the processors in an arbitrary fashion. We have tested this library for correctness and speed by using it to conduct simulations on a parallel cluster at General Atomics and on a serial workstation.

  5. Scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Plessel, Todd; Merritt, Fergus; Walatka, Pamela P.; Watson, Val

    1989-01-01

    The visualization methods used in computational fluid dynamics research at the NASA-Ames Numerical Aerodynamic Simulation facility are examined, including postprocessing, tracking, and steering methods. The visualization requirements of the facility's three-dimensional graphical workstation are outlined and the types hardware and software used to meet these requirements are discussed. The main features of the facility's current and next-generation workstations are listed. Emphasis is given to postprocessing techniques, such as dynamic interactive viewing on the workstation and recording and playback on videodisk, tape, and 16-mm film. Postprocessing software packages are described, including a three-dimensional plotter, a surface modeler, a graphical animation system, a flow analysis software toolkit, and a real-time interactive particle-tracer.

  6. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    SciTech Connect

    Nam, H.; Stoitsov, M.; Nazarewicz, W.; Bulgac, A.; Hagen, G.; Kortelainen, M.; Maris, P.; Pei, J. C.; Roche, K. J.; Schunck, N.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2012-12-20

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. Finally, we illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  7. Creating science-driven computer architecture: A new patch to scientific leadership

    SciTech Connect

    Simon, Horst D.; McCurdy, C. William; Kramer, T.C.; Stevens, Rick; McCoy,Mike; Seager, Mark; Zacharia, Thomas; Bair, Ray; Studham, Scott; Camp, William; Leland, Robert; Morrison, John; Feiereisen, William

    2003-05-16

    We believe that it is critical for the future of high end computing in the United States to bring into existence a new class of computational capability that is optimal for science. In recent years scientific computing has increasingly become dependent on hardware that is designed and optimized for commercial applications. Science in this country has greatly benefited from the improvements in computers that derive from advances in microprocessors following Moore's Law, and a strategy of relying on machines optimized primarily for business applications. However within the last several years, in part because of the challenge presented by the appearance of the Japanese Earth Simulator, the sense has been growing in the scientific community that a new strategy is needed. A more aggressive strategy than reliance only on market forces driven by business applications is necessary in order to achieve a better alignment between the needs of scientific computing and the platforms available. The United States should undertake a program that will result in scientific computing capability that durably returns the advantage to American science, because doing so is crucial to the country's future. Such a strategy must also be sustainable. New classes of computer designs will not only revolutionize the power of supercomputing for science, but will also affect scientific computing at all scales. What is called for is the opening of a new frontier of scientific capability that will ensure that American science is greatly enabled in its pursuit of research in critical areas such as nanoscience, climate prediction, combustion, modeling in the life sciences, and fusion energy, as well as in meeting essential needs for national security. In this white paper we propose a strategy for accomplishing this mission, pursuing different directions of hardware development and deployment, and establishing a highly capable networking and grid infrastructure connecting these platforms to the broad

  8. SIAM Conference on Parallel Processing for Scientific Computing - March 12-14, 2008

    SciTech Connect

    2008-09-08

    The themes of the 2008 conference included, but were not limited to: Programming languages, models, and compilation techniques; The transition to ubiquitous multicore/manycore processors; Scientific computing on special-purpose processors (Cell, GPUs, etc.); Architecture-aware algorithms; From scalable algorithms to scalable software; Tools for software development and performance evaluation; Global perspectives on HPC; Parallel computing in industry; Distributed/grid computing; Fault tolerance; Parallel visualization and large scale data management; and The future of parallel architectures.

  9. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    SciTech Connect

    Lee, J.R.

    1998-11-01

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  10. Chaos and the Marketing of Computing Services on Campus.

    ERIC Educational Resources Information Center

    May, James H.

    1989-01-01

    In an age of chaos and uncertainty in computing services delivery, the best marketing strategy that can be adopted is concern for user constituencies and the long range solutions to their problems. (MLW)

  11. Three-dimensional geospatial information service based on cloud computing

    NASA Astrophysics Data System (ADS)

    Zhai, Xi; Yue, Peng; Jiang, Liangcun; Wang, Linnan

    2014-01-01

    Cloud computing technologies can support high-performance geospatial services in various domains, such as smart city and agriculture. Apache Hadoop, an open-source software framework, can be used to build a cloud environment on commodity clusters for storage and large-scale processing of data sets. The Open Geospatial Consortium (OGC) Web 3-D Service (W3DS) is a portrayal service for three-dimensional (3-D) geospatial data. Its performance could be improved by cloud computing technologies. This paper investigates how OGC W3DS could be developed in a cloud computing environment. It adopts the Apache Hadoop as the framework to provide a cloud implementation. The design and implementation of the 3-D geospatial information cloud service is presented. The performance evaluation is performed over data retrieval tests running in a cloud platform built by Hadoop clusters. The evaluation results provide a valuable reference on providing high-performance 3-D geospatial information cloud services.

  12. Computational brain connectivity mapping: A core health and scientific challenge.

    PubMed

    Deriche, Rachid

    2016-10-01

    One third of the burden of all the diseases in Europe is due to problems caused by diseases affecting brain. Although exceptional progress have been obtained for exploring the brain during the past decades, it is still terra-incognita and calls for specific efforts in research to better understand its architecture and functioning. To take up this great challenge of modern science and to solve the limited view of the brain provided just by one imaging modality, this article advocates the idea developed in my research group of a global approach involving new generation of models for brain connectivity mapping and strong interactions between structural and functional connectivities. Capitalizing on the strengths of integrated and complementary non invasive imaging modalities such as diffusion Magnetic Resonance Imaging (dMRI) and Electro & Magneto-Encephalography (EEG & MEG) will contribute to achieve new frontiers for identifying and characterizing structural and functional brain connectivities and to provide a detailed mapping of the brain connectivity, both in space and time. Thus leading to an added clinical value for high impact diseases with new perspectives in computational neuro-imaging and cognitive neuroscience. PMID:27338172

  13. 77 FR 7489 - Small Business Size Standards: Professional, Technical, and Scientific Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ...The United States Small Business Administration (SBA) is increasing 37 small business size standards for 34 industries and three sub-industries (``exceptions'' in SBA's table of small business size standards) in North American Industry Classification System (NAICS) Sector 54, Professional, Technical, and Scientific Services. SBA is also increasing the one size standard in NAICS Sector 81,......

  14. Pre-Service Elementary Mathematics Teachers' Metaphors on Scientific Research and Foundations of Their Perceptions

    ERIC Educational Resources Information Center

    Bas, Fatih

    2016-01-01

    In this study, it is aimed to investigate pre-service elementary mathematics teachers' perceptions about scientific research with metaphor analysis and determine the foundations of these perceptions. This phenomenological study was conducted with 182 participants. The data were collected with two open-ended survey forms formed for investigating…

  15. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  16. CACTUS: Calculator and Computer Technology User Service.

    ERIC Educational Resources Information Center

    Hyde, Hartley

    1998-01-01

    Presents an activity in which students use computer-based spreadsheets to find out how much grain should be added to a chess board when a grain of rice is put on the first square, the amount is doubled for the next square, and the chess board is covered. (ASK)

  17. High-Precision Floating-Point Arithmetic in ScientificComputation

    SciTech Connect

    Bailey, David H.

    2004-12-31

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required: some of these applications require roughly twice this level; others require four times; while still others require hundreds or more digits to obtain numerically meaningful results. Such calculations have been facilitated by new high-precision software packages that include high-level language translation modules to minimize the conversion effort. These activities have yielded a number of interesting new scientific results in fields as diverse as quantum theory, climate modeling and experimental mathematics, a few of which are described in this article. Such developments suggest that in the future, the numeric precision used for a scientific computation may be as important to the program design as are the algorithms and data structures.

  18. Educational Computer Services. School District Decision-Making Manual.

    ERIC Educational Resources Information Center

    New Mexico Research and Study Council, Albuquerque.

    Before the New Mexico Research and Study Council (NMRSC) could create the Educational Computer Services Program, school districts had to agree that they would contract for the proposed services for the 1980-81 school year. This manual provides decision-making information for school districts wanting to become members of the program. Included are…

  19. Biomedical cloud computing with Amazon Web Services.

    PubMed

    Fusaro, Vincent A; Patil, Prasad; Gafni, Erik; Wall, Dennis P; Tonellato, Peter J

    2011-08-01

    In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references. PMID:21901085

  20. Smart Learning Services Based on Smart Cloud Computing

    PubMed Central

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048

  1. Computer Conference in Information Service. Research Report 191.

    ERIC Educational Resources Information Center

    Repo, Aatto J.

    This document describes the development of computer conferencing (CC) and its role within information service communities, particularly in Finland and Sweden. CC is defined as a computer-based messaging (CBM) system providing an asynchronous communications structure for group work. It is noted that CC differs from electronic mail and that CC…

  2. 78 FR 50144 - Health Services Research and Development Service, Scientific Merit Review Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... health care services, the testing of new methods of health care delivery and management, and nursing... protection of human and animal subjects. Recommendations regarding funding are submitted to the...

  3. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    SciTech Connect

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    2015-06-03

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues included research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three

  4. Constructing Arguments: Investigating Pre-Service Science Teachers' Argumentation Skills in a Socio-Scientific Context

    ERIC Educational Resources Information Center

    Robertshaw, Brooke; Campbell, Todd

    2013-01-01

    As western society becomes increasingly reliant on scientific information to make decisions, citizens must be equipped to understand how scientific arguments are constructed. In order to do this, pre-service teachers must be prepared to foster students' abilities and understandings of scientific argumentation in the classroom. This study…

  5. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    SciTech Connect

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  6. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  7. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    DOE PAGESBeta

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less

  8. Introducing scientific computation from high school to college: the case of Modellus

    NASA Astrophysics Data System (ADS)

    Teodoro, Vítor; Neves, Rui

    2009-03-01

    The development of computational tools and methods has changed the way science is done. This change, however, is far from being accomplished on high school and college curricula, where computers are mainly used for showing text, images and animations. Most curricula do not consider the use of computational scientific tools, particularly tools where students can manipulate and build mathematical models, as an integral part of the learning experiences all students must have. In this paper, we discuss how Modellus, a freely available software tool (created in Java and available for all operating systems) can be used to support curricula where students from the age of 12 to college years can be introduced to scientific computation. We will also show how such a wide range of learners and their teachers can use Modellus to implement simple numerical methods and interactive animations based on those methods to explore advanced mathematical and physical reasoning.

  9. National Resource for Computation in Chemistry (NRCC). Attached scientific processors for chemical computations: a report to the chemistry community

    SciTech Connect

    Ostlund, N.S.

    1980-01-01

    The demands of chemists for computational resources are well known and have been amply documented. The best and most cost-effective means of providing these resources is still open to discussion, however. This report surveys the field of attached scientific processors (array processors) and attempts to indicate their present and possible future use in computational chemistry. Array processors have the possibility of providing very cost-effective computation. This report attempts to provide information that will assist chemists who might be considering the use of an array processor for their computations. It describes the general ideas and concepts involved in using array processors, the commercial products that are available, and the experiences reported by those currently using them. In surveying the field of array processors, the author makes certain recommendations regarding their use in computational chemistry. 5 figures, 1 table (RWR)

  10. A distributed computing environment with support for constraint-based task scheduling and scientific experimentation

    SciTech Connect

    Ahrens, J.P.; Shapiro, L.G.; Tanimoto, S.L.

    1997-04-01

    This paper describes a computing environment which supports computer-based scientific research work. Key features include support for automatic distributed scheduling and execution and computer-based scientific experimentation. A new flexible and extensible scheduling technique that is responsive to a user`s scheduling constraints, such as the ordering of program results and the specification of task assignments and processor utilization levels, is presented. An easy-to-use constraint language for specifying scheduling constraints, based on the relational database query language SQL, is described along with a search-based algorithm for fulfilling these constraints. A set of performance studies show that the environment can schedule and execute program graphs on a network of workstations as the user requests. A method for automatically generating computer-based scientific experiments is described. Experiments provide a concise method of specifying a large collection of parameterized program executions. The environment achieved significant speedups when executing experiments; for a large collection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled processors was obtained.

  11. Institute for Scientific Computing Research Annual Report for Fiscal Year 2003

    SciTech Connect

    Keyes, D; McGraw, J

    2004-02-12

    The University Relations Program (URP) encourages collaborative research between Lawrence Livermore National Laboratory (LLNL) and the University of California campuses. The Institute for Scientific Computing Research (ISCR) actively participates in such collaborative research, and this report details the Fiscal Year 2003 projects jointly served by URP and ISCR.

  12. A fault detection service for wide area distributed computations.

    SciTech Connect

    Stelling, P.

    1998-06-09

    The potential for faults in distributed computing systems is a significant complicating factor for application developers. While a variety of techniques exist for detecting and correcting faults, the implementation of these techniques in a particular context can be difficult. Hence, we propose a fault detection service designed to be incorporated, in a modular fashion, into distributed computing systems, tools, or applications. This service uses well-known techniques based on unreliable fault detectors to detect and report component failure, while allowing the user to tradeoff timeliness of reporting against false positive rates. We describe the architecture of this service, report on experimental results that quantify its cost and accuracy, and describe its use in two applications, monitoring the status of system components of the GUSTO computational grid testbed and as part of the NetSolve network-enabled numerical solver.

  13. Computer-using patients want Internet services from family physicians.

    PubMed

    Grover, Fred; Wu, H David; Blanford, Christal; Holcomb, Sherry; Tidler, Diana

    2002-06-01

    Patients are increasingly using the Internet to obtain medical information. Few practice Web sites provide services beyond information about the clinic and common medical diseases. We surveyed computer-using patients at 4 family medicine clinics in Denver, Colorado, by assessing their desire for Internet services from their providers. Patients were especially interested in getting e-mail reminders about appointments, online booking of appointments in real time, and receiving updates about new advances in treatment. Patients were also interested in virtual visits for simple and chronic medical problems and for following chronic conditions through virtual means. We concluded that computer-using patients desire Internet services to augment their medical care. As growth and communication via the Internet continue, primary care physicians should move more aggressively toward adding services to their practices' Internet Web sites beyond the simple provision of information. PMID:12100783

  14. Evaluation of cache-based superscalar and cacheless vector architectures for scientific computations

    SciTech Connect

    Oliker, Leonid; Canning, Andrew; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; Van der Wijngaart, Rob

    2003-05-01

    The growing gap between sustained and peak performance for scientific applications is a well-known problem in high end computing. The recent development of parallel vector systems offers the potential to bridge this gap for many computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX-6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of scientific computing areas. First, we present the performance of a microbenchmark suite that examines low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks. Finally, we evaluate the performance of several scientific computing codes. Results demonstrate that the SX-6 achieves high performance on a large fraction of our applications and often significantly out performs the cache-based architectures. However, certain applications are not easily amenable to vectorization and would re quire extensive algorithm and implementation reengineering to utilize the SX-6 effectively.

  15. Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob

    2003-01-01

    The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.

  16. The cloud services innovation platform- enabling service-based environmental modelling using infrastructure-as-a-service cloud computing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...

  17. Acts -- A collection of high performing software tools for scientific computing

    SciTech Connect

    Drummond, L.A.; Marques, O.A.

    2002-11-01

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Further, many new discoveries depend on high performance computer simulations to satisfy their demands for large computational resources and short response time. The Advanced CompuTational Software (ACTS) Collection brings together a number of general-purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS collection promotes code portability, reusability, reduction of duplicate efforts, and tool maturity. This paper presents a brief introduction to the functionality available in ACTS. It also highlight the tools that are in demand by Climate and Weather modelers.

  18. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    SciTech Connect

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  19. A cloud computing based 12-lead ECG telemedicine service

    PubMed Central

    2012-01-01

    Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan. PMID:22838382

  20. Master Plan for the Virginia Community College System Computing Services.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Community Colleges, Richmond.

    This master plan sets forth a general strategy for providing administrative and academic computing services and satisfying the data processing requirements for the Virginia Community College System (VCCS) during the 1980's. Following an executive summary, chapter 1 sets forth the purpose of the plan and outlines the planning processes used.…

  1. A "Service-Learning Approach" to Teaching Computer Graphics

    ERIC Educational Resources Information Center

    Hutzel, Karen

    2007-01-01

    The author taught a computer graphics course through a service-learning framework to undergraduate and graduate students in the spring of 2003 at Florida State University (FSU). The students in this course participated in learning a software program along with youths from a neighboring, low-income, primarily African-American community. Together,…

  2. 29 CFR 801.59 - Service and computation of time.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Service and computation of time. 801.59 Section 801.59 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS APPLICATION OF THE EMPLOYEE POLYGRAPH PROTECTION ACT OF 1988 Administrative Proceedings Rules of...

  3. 29 CFR 801.59 - Service and computation of time.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Service and computation of time. 801.59 Section 801.59 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS APPLICATION OF THE EMPLOYEE POLYGRAPH PROTECTION ACT OF 1988 Administrative Proceedings Rules of...

  4. 29 CFR 801.59 - Service and computation of time.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Service and computation of time. 801.59 Section 801.59 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS APPLICATION OF THE EMPLOYEE POLYGRAPH PROTECTION ACT OF 1988 Administrative Proceedings Rules of...

  5. 29 CFR 801.59 - Service and computation of time.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Service and computation of time. 801.59 Section 801.59 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS APPLICATION OF THE EMPLOYEE POLYGRAPH PROTECTION ACT OF 1988 Administrative Proceedings Rules of...

  6. 29 CFR 801.59 - Service and computation of time.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Service and computation of time. 801.59 Section 801.59 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS APPLICATION OF THE EMPLOYEE POLYGRAPH PROTECTION ACT OF 1988 Administrative Proceedings Rules of...

  7. Computer Based Reference Service--A Course Taught by Practitioners

    ERIC Educational Resources Information Center

    Knapp, Sara D.; Gavryck, Jacquelyn A.

    1978-01-01

    An overview is provided of a computer based reference course at the State University of New York at Albany which uses the ERIC file on BRS to teach online searching techniques. Course highlights include question negotiation, Venn diagramming, explanation of STAIRS file structure and Boolean logic, and management of services. (J PF)

  8. CERN database services for the LHC computing grid

    NASA Astrophysics Data System (ADS)

    Girone, M.

    2008-07-01

    Physics meta-data stored in relational databases play a crucial role in the Large Hadron Collider (LHC) experiments and also in the operation of the Worldwide LHC Computing Grid (WLCG) services. A large proportion of non-event data such as detector conditions, calibration, geometry and production bookkeeping relies heavily on databases. Also, the core Grid services that catalogue and distribute LHC data cannot operate without a reliable database infrastructure at CERN and elsewhere. The Physics Services and Support group at CERN provides database services for the physics community. With an installed base of several TB-sized database clusters, the service is designed to accommodate growth for data processing generated by the LHC experiments and LCG services. During the last year, the physics database services went through a major preparation phase for LHC start-up and are now fully based on Oracle clusters on Intel/Linux. Over 100 database server nodes are deployed today in some 15 clusters serving almost 2 million database sessions per week. This paper will detail the architecture currently deployed in production and the results achieved in the areas of high availability, consolidation and scalability. Service evolution plans for the LHC start-up will also be discussed.

  9. E-Governance and Service Oriented Computing Architecture Model

    NASA Astrophysics Data System (ADS)

    Tejasvee, Sanjay; Sarangdevot, S. S.

    2010-11-01

    E-Governance is the effective application of information communication and technology (ICT) in the government processes to accomplish safe and reliable information lifecycle management. Lifecycle of the information involves various processes as capturing, preserving, manipulating and delivering information. E-Governance is meant to transform of governance in better manner to the citizens which is transparent, reliable, participatory, and accountable in point of view. The purpose of this paper is to attempt e-governance model, focus on the Service Oriented Computing Architecture (SOCA) that includes combination of information and services provided by the government, innovation, find out the way of optimal service delivery to citizens and implementation in transparent and liable practice. This paper also try to enhance focus on the E-government Service Manager as a essential or key factors service oriented and computing model that provides a dynamically extensible structural design in which all area or branch can bring in innovative services. The heart of this paper examine is an intangible model that enables E-government communication for trade and business, citizen and government and autonomous bodies.

  10. MiniGhost : a miniapp for exploring boundary exchange strategies using stencil computations in scientific parallel computing.

    SciTech Connect

    Barrett, Richard Frederick; Heroux, Michael Allen; Vaughan, Courtenay Thomas

    2012-04-01

    A broad range of scientific computation involves the use of difference stencils. In a parallel computing environment, this computation is typically implemented by decomposing the spacial domain, inducing a 'halo exchange' of process-owned boundary data. This approach adheres to the Bulk Synchronous Parallel (BSP) model. Because commonly available architectures provide strong inter-node bandwidth relative to latency costs, many codes 'bulk up' these messages by aggregating data into a message as a means of reducing the number of messages. A renewed focus on non-traditional architectures and architecture features provides new opportunities for exploring alternatives to this programming approach. In this report we describe miniGhost, a 'miniapp' designed for exploration of the capabilities of current as well as emerging and future architectures within the context of these sorts of applications. MiniGhost joins the suite of miniapps developed as part of the Mantevo project.

  11. Scientific computation of big data in real-world clinical research.

    PubMed

    Li, Guozheng; Zuo, Xuewen; Liu, Baoyan

    2014-09-01

    The advent of the big data era creates both opportunities and challenges for traditional Chinese medicine (TCM). This study describes the origin, concept, connotation, and value of studies regarding the scientific computation of TCM. It also discusses the integration of science, technology, and medicine under the guidance of the paradigm of real-world, clinical scientific research. TCM clinical diagnosis, treatment, and knowledge were traditionally limited to literature and sensation levels; however, primary methods are used to convert them into statistics, such as the methods of feature subset optimizing, multi-label learning, and complex networks based on complexity, intelligence, data, and computing sciences. Furthermore, these methods are applied in the modeling and analysis of the various complex relationships in individualized clinical diagnosis and treatment, as well as in decision-making related to such diagnosis and treatment. Thus, these methods strongly support the real-world clinical research paradigm of TCM. PMID:25190349

  12. Scientific advances of the MyOcean projects underpinning the transition towards the Marine Copernicus service

    NASA Astrophysics Data System (ADS)

    Brasseur, Pierre

    2015-04-01

    The MyOcean projects supported by the European Commission period have been developed during the 2008-2015 period to build an operational service of ocean physical state and ecosystem information to intermediate and downstream users in the areas of marine safety, marine resources, marine and coastal environment and weather, climate and seasonal forecasting. The "core" information provided to users is obtained through the combination of satellite and in situ observations, eddy-resolving modelling of the global ocean and regional european seas, biochemistry, ecosystem and sea-ice modelling, and data assimilation for global to basin scale circulation. A comprehensive R&D plan was established in 2010 to ensure the collection and provision of information of best possible quality for daily estimates of the ocean state (real-time), its short-term evolution, and its history over the past (reanalyses). A service validation methodology was further developed to ensure proper scientific evaluation and routine monitoring of the accuracy of MyOcean products. In this presentation, we will present an overview of the main scientific advances achieved in MyOcean using the NEMO modelling platform, ensemble-based assimilation schemes, coupled circulation-ecosystem, sea-ice assimilative models and probabilistic methodologies for ensemble validation. We will further highlight the key areas that will require additional innovation effort to support the Marine Copernicus service evolution.

  13. Relative performances of several scientific computers for a liquid molecular dynamics simulation. [Computers tested are: VAX 11/70, CDC 7600, CRAY-1, CRAY-1*, VAX-FPSAP

    SciTech Connect

    Ceperley, D.M.

    1980-08-01

    Some of the computational characteristics of simulations and the author's experience in using his standard simulation program called CLAMPS on several scientific computers are discussed. CLAMPS is capable of performing Metropolis Monte Carlo and Molecular Dynamics simulations of arbitrary mixtures of single atoms. The computational characteristics of simulations and what makes a good simulation computer are also summarized.

  14. Scalability of a Base Level Design for an On-Board-Computer for Scientific Missions

    NASA Astrophysics Data System (ADS)

    Treudler, Carl Johann; Schroder, Jan-Carsten; Greif, Fabian; Stohlmann, Kai; Aydos, Gokce; Fey, Gorschwin

    2014-08-01

    Facing a wide range of mission requirements and the integration of diverse payloads requires extreme flexibility in the on-board-computing infrastructure for scientific missions. We show that scalability is principally difficult. We address this issue by proposing a base level design and show how the adoption to different needs is achieved. Inter-dependencies between scaling different aspects and their impact on different levels in the design are discussed.

  15. DB90: A Fortran Callable Relational Database Routine for Scientific and Engineering Computer Programs

    NASA Technical Reports Server (NTRS)

    Wrenn, Gregory A.

    2005-01-01

    This report describes a database routine called DB90 which is intended for use with scientific and engineering computer programs. The software is written in the Fortran 90/95 programming language standard with file input and output routines written in the C programming language. These routines should be completely portable to any computing platform and operating system that has Fortran 90/95 and C compilers. DB90 allows a program to supply relation names and up to 5 integer key values to uniquely identify each record of each relation. This permits the user to select records or retrieve data in any desired order.

  16. Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.

  17. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    SciTech Connect

    Lucas, Robert; Ang, James; Bergman, Keren; Borkar, Shekhar; Carlson, William; Carrington, Laura; Chiu, George; Colwell, Robert; Dally, William; Dongarra, Jack; Geist, Al; Haring, Rud; Hittinger, Jeffrey; Hoisie, Adolfy; Klein, Dean Micron; Kogge, Peter; Lethin, Richard; Sarkar, Vivek; Schreiber, Robert; Shalf, John; Sterling, Thomas; Stevens, Rick; Bashor, Jon; Brightwell, Ron; Coteus, Paul; Debenedictus, Erik; Hiller, Jon; Kim, K. H.; Langston, Harper; Murphy, Richard Micron; Webster, Clayton; Wild, Stefan; Grider, Gary; Ross, Rob; Leyffer, Sven; Laros III, James

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a system that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.

  18. Models and Simulations as a Service: Exploring the Use of Galaxy for Delivering Computational Models.

    PubMed

    Walker, Mark A; Madduri, Ravi; Rodriguez, Alex; Greenstein, Joseph L; Winslow, Raimond L

    2016-03-01

    We describe the ways in which Galaxy, a web-based reproducible research platform, can be used for web-based sharing of complex computational models. Galaxy allows users to seamlessly customize and run simulations on cloud computing resources, a concept we refer to as Models and Simulations as a Service (MaSS). To illustrate this application of Galaxy, we have developed a tool suite for simulating a high spatial-resolution model of the cardiac Ca(2+) spark that requires supercomputing resources for execution. We also present tools for simulating models encoded in the SBML and CellML model description languages, thus demonstrating how Galaxy's reproducible research features can be leveraged by existing technologies. Finally, we demonstrate how the Galaxy workflow editor can be used to compose integrative models from constituent submodules. This work represents an important novel approach, to our knowledge, to making computational simulations more accessible to the broader scientific community. PMID:26958881

  19. Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.

    SciTech Connect

    Khaleel, Mohammad A.

    2011-02-06

    The goal of the "Scientific Grand Challenges - Crosscutting Technologies for Computing at the Exascale" workshop in February 2010, jointly sponsored by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, was to identify the elements of a research and development agenda that will address these challenges and create a comprehensive exascale computing environment. This exascale computing environment will enable the science applications identified in the eight previously held Scientific Grand Challenges Workshop Series.

  20. EDP Sciences and A&A: partnering to providing services to support the scientific community

    NASA Astrophysics Data System (ADS)

    Henri, Agnes

    2015-08-01

    Scholarly publishing is no longer about simply producing and packaging articles and sending out to subscribers. To be successful, as well as being global and digital, Publishers and their journals need to be fully engaged with their stakeholders (authors, readers, funders, libraries etc), and constantly developing new products and services to support their needs in the ever-changing environment that we work in.Astronomy & Astrophysics (A&A) is a high quality, major international Journal that belongs to the astronomical communities of a consortium of European and South American countries supported by ESO who sponsor the journal. EDP Sciences is a non-profit publisher belonging to several learned societies and is appointed by ESO to publish the journal.Over the last decade, as well as publishing the results of worldwide astronomical and astrophysical research, A&A and EDP Sciences have worked in partnership to develop a wide range of services for the authors and readers of A&A:- A specialist language editing service: to provide a clear and excellent level of English ensuring full understanding of the high-quality science.- A flexible and progressive Open Access Policy including Gold and Green options and strong links with arXiv.- Enriched articles: authors are able to enhance their articles using a wide range of rich media such as 3D models, videos and animations.Multiple publishing formats: allowing readers to browse articles on multiple devices including eReaders and Kindles.- “Scientific Writing for Young Astronomers”: In 2008 EDP Sciences and A&A set up the Scientific Writing for Young Astronomers (SWYA) School with the objective to teach early PhD Students how write correct and efficient scientific papers for different mediums (journals, proceedings, thesis manuscripts, etc.).

  1. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  2. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  3. Paradigms and strategies for scientific computing on distributed memory concurrent computers

    SciTech Connect

    Foster, I.T.; Walker, D.W.

    1994-06-01

    In this work we examine recent advances in parallel languages and abstractions that have the potential for improving the programmability and maintainability of large-scale, parallel, scientific applications running on high performance architectures and networks. This paper focuses on Fortran M, a set of extensions to Fortran 77 that supports the modular design of message-passing programs. We describe the Fortran M implementation of a particle-in-cell (PIC) plasma simulation application, and discuss issues in the optimization of the code. The use of two other methodologies for parallelizing the PIC application are considered. The first is based on the shared object abstraction as embodied in the Orca language. The second approach is the Split-C language. In Fortran M, Orca, and Split-C the ability of the programmer to control the granularity of communication is important is designing an efficient implementation.

  4. Final Report for the Account Creation/Deletion Reenginering Task for the Scientific Computing Department

    SciTech Connect

    JENNINGS, BARBARA J.; MCALLISTER, PAULA L.

    2002-04-01

    In October 2000, the personnel responsible for administration of the corporate computers managed by the Scientific Computing Department assembled to reengineer the process of creating and deleting users' computer accounts. Using the Carnegie Mellon Software Engineering Institute (SEI) Capability Maturity Model (CMM) for quality improvement process, the team performed the reengineering by way of process modeling, defining and measuring the maturity of the processes, per SEI and CMM practices. The computers residing in the classified environment are bound by security requirements of the Secure Classified Network (SCN) Security Plan. These security requirements delimited the scope of the project, specifically mandating validation of all user accounts on the central corporate computer systems. System administrators, in addition to their assigned responsibilities, were spending valuable hours performing the additional tacit responsibility of tracking user accountability for user-generated data. For example, in cases where the data originator was no longer an employee, the administrators were forced to spend considerable time and effort determining the appropriate management personnel to assume ownership or disposition of the former owner's data files. In order to prevent this sort of problem from occurring and to have a defined procedure in the event of an anomaly, the computer account management procedure was thoroughly reengineered, as detailed in this document. An automated procedure is now in place that is initiated and supplied data by central corporate processes certifying the integrity, timeliness and authentication of account holders and their management. Automated scripts identify when an account is about to expire, to preempt the problem of data becoming ''orphaned'' without a responsible ''owner'' on the system. The automated account-management procedure currently operates on and provides a standard process for all of the computers maintained by the

  5. Aligning Business Motivations in a Services Computing Design

    NASA Astrophysics Data System (ADS)

    Roach, T.; Low, G.; D'Ambra, J.

    The difficulty in aligning business strategies with the design of enterprise systems has been recognised as a major inhibitor of successful IT initiatives. Service-oriented architecture (SOA) initiatives imply an entirely new approach to enterprise process enablement and require significant architectural redesign. Successful SOA deployments are highly dependent on the degree to which flexible support for evolving business strategies is embedded into their designs. This chapter addresses the challenge of modelling business strategies in support of SOA designs. The proposed framework is derived from conceptual elements introduced in the OMG business motivation model and delivers an architectural view for business stakeholders in a computational-independent model (CIM). This model represents the first of three layers that will define a complete reference architecture for a service-based computing model.

  6. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    SciTech Connect

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank; Ma, Kwan-Liu; Geveci, Berk; Meredith, Jeremy

    2015-12-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  7. Using Social Media to Promote Pre-Service Science Teachers' Practices of Socio-Scientific Issue (SSI) - Based Teaching

    ERIC Educational Resources Information Center

    Pitiporntapin, Sasithep; Lankford, Deanna Marie

    2015-01-01

    This paper addresses using social media to promote pre-service science teachers' practices of Socio-Scientific Issue (SSI) based teaching in a science classroom setting. We designed our research in two phases. The first phase examined pre-service science teachers' perceptions about using social media to promote their SSI-based teaching. The…

  8. 5 CFR 630.301 - Annual leave accrual and accumulation-Senior Executive Service, Senior-Level, and Scientific and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Annual leave accrual and accumulation-Senior Executive Service, Senior-Level, and Scientific and Professional Employees. 630.301 Section 630.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE AND LEAVE Annual Leave § 630.301 Annual leave...

  9. Probability-Based Determination Methods for Service Waiting in Service-Oriented Computing Environments

    NASA Astrophysics Data System (ADS)

    Zeng, Sen; Huang, Shuangxi; Liu, Yang

    Cooperative business processes (CBP)-based service-oriented enterprise networks (SOEN) are emerging with the significant advances of enterprise integration and service-oriented architecture. The performance prediction and optimization for CBP-based SOEN is very complex. To meet these challenges, one of the key points is to try to reduce an abstract service’s waiting number of its physical services. This paper introduces a probability-based determination method (PBDM) of an abstract service’ waiting number, M l , and time span, τ i , for its physical services. The determination of M i and τ i is according to the physical services’ arriving rule and their overall performance’s distribution functions. In PBDM, the arriving probability of the physical services with the best overall performance value is a pre-defined reliability. PBDM has made use of the information of the physical services’ arriving rule and performance distribution functions thoroughly, which will improve the computational efficiency for the scheme design and performance optimization of the collaborative business processes in service-oriented computing environments.

  10. Smart Libraries: Best SQE Practices for Libraries with an Emphasis on Scientific Computing

    SciTech Connect

    Miller, M C; Reus, J F; Matzke, R P; Koziol, Q A; Cheng, A P

    2004-12-15

    As scientific computing applications grow in complexity, more and more functionality is being packaged in independently developed libraries. Worse, as the computing environments in which these applications run grow in complexity, it gets easier to make mistakes in building, installing and using libraries as well as the applications that depend on them. Unfortunately, SQA standards so far developed focus primarily on applications, not libraries. We show that SQA standards for libraries differ from applications in many respects. We introduce and describe a variety of practices aimed at minimizing the likelihood of making mistakes in using libraries and at maximizing users' ability to diagnose and correct them when they occur. We introduce the term Smart Library to refer to a library that is developed with these basic principles in mind. We draw upon specific examples from existing products we believe incorporate smart features: MPI, a parallel message passing library, and HDF5 and SAF, both of which are parallel I/O libraries supporting scientific computing applications. We conclude with a narrative of some real-world experiences in using smart libraries with Ale3d, VisIt and SAF.

  11. FOSS GIS on the GFZ HPC cluster: Towards a service-oriented Scientific Geocomputation Environment

    NASA Astrophysics Data System (ADS)

    Loewe, P.; Klump, J.; Thaler, J.

    2012-12-01

    High performance compute clusters can be used as geocomputation workbenches. Their wealth of resources enables us to take on geocomputation tasks which exceed the limitations of smaller systems. These general capabilities can be harnessed via tools such as Geographic Information System (GIS), provided they are able to utilize the available cluster configuration/architecture and provide a sufficient degree of user friendliness to allow for wide application. While server-level computing is clearly not sufficient for the growing numbers of data- or computation-intense tasks undertaken, these tasks do not get even close to the requirements needed for access to "top shelf" national cluster facilities. So until recently such kind of geocomputation research was effectively barred due to lack access to of adequate resources. In this paper we report on the experiences gained by providing GRASS GIS as a software service on a HPC compute cluster at the German Research Centre for Geosciences using Platform Computing's Load Sharing Facility (LSF). GRASS GIS is the oldest and largest Free Open Source (FOSS) GIS project. During ramp up in 2011, multiple versions of GRASS GIS (v 6.4.2, 6.5 and 7.0) were installed on the HPC compute cluster, which currently consists of 234 nodes with 480 CPUs providing 3084 cores. Nineteen different processing queues with varying hardware capabilities and priorities are provided, allowing for fine-grained scheduling and load balancing. After successful initial testing, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008) and allow to use all 3084 cores for GRASS based geocomputation work. However, in practice applications are limited to fewer resources as assigned to their respective queue. Applications of the new GIS functionality comprise so far of hydrological analysis, remote sensing and the generation of maps of simulated tsunamis

  12. Seventh SIAM Conference on Parallel Processing for Scientific Computing. Final technical report

    SciTech Connect

    1996-10-01

    The Seventh SIAM Conference on Parallel Processing for Scientific Computing was held in downtown San Francisco on the dates above. More than 400 people attended the meeting. This SIAM conference is, in this organizer`s opinion, the premier forum for developments in parallel numerical algorithms, a field that has seen very lively and fruitful developments over the past decade, and whose health is still robust. Other, related areas, most notably parallel software and applications, are also well represented. The strong contributed sessions and minisymposia at the meeting attest to these claims.

  13. Fortran Transformational Tools in Support of Scientific Application Development for Petascale Computer Architectures

    SciTech Connect

    Sottille, Matthew

    2013-09-12

    This document is the final report for a multi-year effort building infrastructure to support tool development for Fortran programs. We also investigated static analysis and code transformation methods relevant to scientific programmers who are writing Fortran programs for petascale-class high performance computing systems. This report details our accomplishments, technical approaches, and provides information on where the research results and code may be obtained from an open source software repository. The report for the first year of the project that was performed at the University of Oregon prior to the PI moving to Galois, Inc. is included as an appendix.

  14. NATO Scientific and Technical Information Service (NSTIS): functional description. Final report

    SciTech Connect

    Molholm, K.N.; Blados, W.N.; Bulca, C.; Cotter, G.A.; Cuffez, A.

    1987-08-01

    This report provides a functional description of the requirements for a NATO Scientific and Technical Information Service (NSTIS). The user requirements and much of the background information in this report were derived primarily from interviews with more than 60 NATO Headquarters staff members between 2 March and 25 March 1987. In addition, representatives of the Supreme Headquarters Applied Powers Europe (SHAPE) Technical Centre (STC), the Supreme Allied Commander Atlantic (Anti-Submarine Warfare Research) Centre (SACLANTCEN), the NATO Communications and Information Systems Agency (NACISA), The Advisory Group for Aerospace Research and Development (AGARD), the U.S. Defense Technical Information Center (DTIC), and the Technical Documentation Center for the Armed Forces in the Netherlands (TDCK), were interviewed, either in person or by telephone.

  15. Challenges and Opportunities in Using Automatic Differentiation with Object-Oriented Toolkits for Scientific Computing

    SciTech Connect

    Hovland, P; Lee, S; McInnes, L; Norris, B; Smith, B

    2001-04-17

    The increased use of object-oriented toolkits in large-scale scientific simulation presents new opportunities and challenges for the use of automatic (or algorithmic) differentiation (AD) techniques, especially in the context of optimization. Because object-oriented toolkits use well-defined interfaces and data structures, there is potential for simplifying the AD process. Furthermore, derivative computation can be improved by exploiting high-level information about numerical and computational abstractions. However, challenges to the successful use of AD with these toolkits also exist. Among the greatest challenges is balancing the desire to limit the scope of the AD process with the desire to minimize the work required of a user. They discuss their experiences in integrating AD with the PETSc, PVODE, and TAO toolkits and the plans for future research and development in this area.

  16. Above the cloud computing: applying cloud computing principles to create an orbital services model

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy; Mohammad, Atif; Berk, Josh; Nervold, Anders K.

    2013-05-01

    Large satellites and exquisite planetary missions are generally self-contained. They have, onboard, all of the computational, communications and other capabilities required to perform their designated functions. Because of this, the satellite or spacecraft carries hardware that may be utilized only a fraction of the time; however, the full cost of development and launch are still bone by the program. Small satellites do not have this luxury. Due to mass and volume constraints, they cannot afford to carry numerous pieces of barely utilized equipment or large antennas. This paper proposes a cloud-computing model for exposing satellite services in an orbital environment. Under this approach, each satellite with available capabilities broadcasts a service description for each service that it can provide (e.g., general computing capacity, DSP capabilities, specialized sensing capabilities, transmission capabilities, etc.) and its orbital elements. Consumer spacecraft retain a cache of service providers and select one utilizing decision making heuristics (e.g., suitability of performance, opportunity to transmit instructions and receive results - based on the orbits of the two craft). The two craft negotiate service provisioning (e.g., when the service can be available and for how long) based on the operating rules prioritizing use of (and allowing access to) the service on the service provider craft, based on the credentials of the consumer. Service description, negotiation and sample service performance protocols are presented. The required components of each consumer or provider spacecraft are reviewed. These include fully autonomous control capabilities (for provider craft), a lightweight orbit determination routine (to determine when consumer and provider craft can see each other and, possibly, pointing requirements for craft with directional antennas) and an authentication and resource utilization priority-based access decision making subsystem (for provider craft

  17. Applied Use Value of Scientific Information for Management of Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Raunikar, R. P.; Forney, W.; Bernknopf, R.; Mishra, S.

    2012-12-01

    The U.S. Geological Survey has developed and applied methods for quantifying the value of scientific information (VOI) that are based on the applied use value of the information. In particular the applied use value of U.S. Geological Survey information often includes efficient management of ecosystem services. The economic nature of U.S. Geological Survey scientific information is largely equivalent to that of any information, but we focus application of our VOI quantification methods on the information products provided freely to the public by the U.S. Geological Survey. We describe VOI economics in general and illustrate by referring to previous studies that use the evolving applied use value methods, which includes examples of the siting of landfills in Louden County, the mineral exploration efficiencies of finer resolution geologic maps in Canada, and improved agricultural production and groundwater protection in Eastern Iowa possible with Landsat moderate resolution satellite imagery. Finally, we describe the adaptation of the applied use value method to the case of streamgage information used to improve the efficiency of water markets in New Mexico.

  18. Long-running telemedicine networks delivering humanitarian services: experience, performance and scientific output

    PubMed Central

    Geissbuhler, Antoine; Jethwani, Kamal; Kovarik, Carrie; Person, Donald A; Vladzymyrskyy, Anton; Zanaboni, Paolo; Zolfo, Maria

    2012-01-01

    Abstract Objective To summarize the experience, performance and scientific output of long-running telemedicine networks delivering humanitarian services. Methods Nine long-running networks – those operating for five years or more– were identified and seven provided detailed information about their activities, including performance and scientific output. Information was extracted from peer-reviewed papers describing the networks’ study design, effectiveness, quality, economics, provision of access to care and sustainability. The strength of the evidence was scored as none, poor, average or good. Findings The seven networks had been operating for a median of 11 years (range: 5–15). All networks provided clinical tele-consultations for humanitarian purposes using store-and-forward methods and five were also involved in some form of education. The smallest network had 15 experts and the largest had more than 500. The clinical caseload was 50 to 500 cases a year. A total of 59 papers had been published by the networks, and 44 were listed in Medline. Based on study design, the strength of the evidence was generally poor by conventional standards (e.g. 29 papers described non-controlled clinical series). Over half of the papers provided evidence of sustainability and improved access to care. Uncertain funding was a common risk factor. Conclusion Improved collaboration between networks could help attenuate the lack of resources reported by some networks and improve sustainability. Although the evidence base is weak, the networks appear to offer sustainable and clinically useful services. These findings may interest decision-makers in developing countries considering starting, supporting or joining similar telemedicine networks. PMID:22589567

  19. Computer-aided resource planning and scheduling for radiological services

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.; Ge, Yiqun; Khan, Javed I.

    1996-05-01

    There exists tremendous opportunity in hospital-wide resource optimization based on system integration. This paper defines the resource planning and scheduling requirements integral to PACS, RIS and HIS integration. An multi-site case study is conducted to define the requirements. A well-tested planning and scheduling methodology, called Constrained Resource Planning model, has been applied to the chosen problem of radiological service optimization. This investigation focuses on resource optimization issues for minimizing the turnaround time to increase clinical efficiency and customer satisfaction, particularly in cases where the scheduling of multiple exams are required for a patient. How best to combine the information system efficiency and human intelligence in improving radiological services is described. Finally, an architecture for interfacing a computer-aided resource planning and scheduling tool with the existing PACS, HIS and RIS implementation is presented.

  20. Message Protocols for Provisioning and Usage of Computing Services

    NASA Astrophysics Data System (ADS)

    Borissov, Nikolay; Caton, Simon; Rana, Omer; Levine, Aharon

    The commercial availability of computational resources enable consumers to scale their applications on-demand. However, it is necessary for both consumers and providers of computational resources to express their technical and economic preferences using common language protocols. Ultimately, this requires clear, flexible and pragmatic communication protocols and policies for the expression of bids and resulting generation of service level agreements (SLAs). Further standardization efforts in such description languages will foster the specification of common interfaces and matching rules for establishing SLAs. Grid middleware are not compatible with market-orientated resource provisioning. We aim to reduce this gap by defining extensions to a standardized specification such as JSDL. Furthermore, we present a methodology for matchmaking consumer bids and provider offers and map the additional economic attributes into a SLA. We demonstrate the usage of the message protocols in an application scenario.

  1. Assessing Pre-Service Science Teachers' Understanding of Scientific Argumentation: What Do They Know about Argumentation after Four Years of College Science?

    ERIC Educational Resources Information Center

    Aydeniz, M.; Ozdilek, Z.

    2015-01-01

    The purpose of this study was to assess pre-service science teachers' understanding of science, scientific argumentation and the difference between scientific argumentation and scientific explanation. A total of 40 pre-service science teachers enrolled in a Turkish university completed a five-question questionnaire. The results showed that the…

  2. An u-Service Model Based on a Smart Phone for Urban Computing Environments

    NASA Astrophysics Data System (ADS)

    Cho, Yongyun; Yoe, Hyun

    In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.

  3. 12 CFR 225.118 - Computer services for customers of subsidiary banks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Computer services for customers of subsidiary... (REGULATION Y) Regulations Financial Holding Companies Interpretations § 225.118 Computer services for.... (b) The Board understood from the facts presented that the service company owns a computer which...

  4. 12 CFR 225.118 - Computer services for customers of subsidiary banks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Computer services for customers of subsidiary...) Regulations Financial Holding Companies Interpretations § 225.118 Computer services for customers of... understood from the facts presented that the service company owns a computer which it utilizes to...

  5. 12 CFR 225.118 - Computer services for customers of subsidiary banks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Computer services for customers of subsidiary... (REGULATION Y) Regulations Financial Holding Companies Interpretations § 225.118 Computer services for.... (b) The Board understood from the facts presented that the service company owns a computer which...

  6. 12 CFR 225.118 - Computer services for customers of subsidiary banks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Computer services for customers of subsidiary...) Regulations Financial Holding Companies Interpretations § 225.118 Computer services for customers of... understood from the facts presented that the service company owns a computer which it utilizes to...

  7. 12 CFR 225.118 - Computer services for customers of subsidiary banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Computer services for customers of subsidiary...) Regulations Financial Holding Companies Interpretations § 225.118 Computer services for customers of... understood from the facts presented that the service company owns a computer which it utilizes to...

  8. 31 CFR 256.31 - How does Fiscal Service compute interest on payments?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false How does Fiscal Service compute interest on payments? 256.31 Section 256.31 Money and Finance: Treasury Regulations Relating to Money and... does Fiscal Service compute interest on payments? Fiscal Service computes interest according to...

  9. NSF Antarctic and Arctic Data Consortium; Scientific Research Support & Data Services for the Polar Community

    NASA Astrophysics Data System (ADS)

    Morin, P. J.; Pundsack, J. W.; Carbotte, S. M.; Tweedie, C. E.; Grunow, A.; Lazzara, M. A.; Carpenter, P.; Sjunneskog, C. M.; Yarmey, L.; Bauer, R.; Adrian, B. M.; Pettit, J.

    2014-12-01

    The U.S. National Science Foundation Antarctic & Arctic Data Consortium (a2dc) is a collaboration of research centers and support organizations that provide polar scientists with data and tools to complete their research objectives. From searching historical weather observations to submitting geologic samples, polar researchers utilize the a2dc to search andcontribute to the wealth of polar scientific and geospatial data.The goals of the Antarctic & Arctic Data Consortium are to increase visibility in the research community of the services provided by resource and support facilities. Closer integration of individual facilities into a "one stop shop" will make it easier for researchers to take advantage of services and products provided by consortium members. The a2dc provides a common web portal where investigators can go to access data and samples needed to build research projects, develop student projects, or to do virtual field reconnaissance without having to utilize expensive logistics to go into the field.Participation by the international community is crucial for the success of a2dc. There are 48 nations that are signatories of the Antarctic Treaty, and 8 sovereign nations in the Arctic. Many of these organizations have unique capabilities and data that would benefit US ­funded polar science and vice versa.We'll present an overview of the Antarctic & Arctic Data Consortium, current participating organizations, challenges & opportunities, and plans to better coordinate data through a geospatial strategy and infrastructure.

  10. High Performance Distributed Computing in a Supercomputer Environment: Computational Services and Applications Issues

    NASA Technical Reports Server (NTRS)

    Kramer, Williams T. C.; Simon, Horst D.

    1994-01-01

    This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.

  11. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  12. Computing Spatial Distance Histograms for Large Scientific Datasets On-the-Fly

    PubMed Central

    Kumar, Anand; Grupcev, Vladimir; Yuan, Yongke; Huang, Jin; Shen, Gang

    2014-01-01

    This paper focuses on an important query in scientific simulation data analysis: the Spatial Distance Histogram (SDH). The computation time of an SDH query using brute force method is quadratic. Often, such queries are executed continuously over certain time periods, increasing the computation time. We propose highly efficient approximate algorithm to compute SDH over consecutive time periods with provable error bounds. The key idea of our algorithm is to derive statistical distribution of distances from the spatial and temporal characteristics of particles. Upon organizing the data into a Quad-tree based structure, the spatiotemporal characteristics of particles in each node of the tree are acquired to determine the particles’ spatial distribution as well as their temporal locality in consecutive time periods. We report our efforts in implementing and optimizing the above algorithm in Graphics Processing Units (GPUs) as means to further improve the efficiency. The accuracy and efficiency of the proposed algorithm is backed by mathematical analysis and results of extensive experiments using data generated from real simulation studies. PMID:25264418

  13. Model-Driven Development for scientific computing. Computations of RHEED intensities for a disordered surface. Part I

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2010-03-01

    Scientific computing is the field of study concerned with constructing mathematical models, numerical solution techniques and with using computers to analyse and solve scientific and engineering problems. Model-Driven Development (MDD) has been proposed as a means to support the software development process through the use of a model-centric approach. This paper surveys the core MDD technology that was used to develop an application that allows computation of the RHEED intensities dynamically for a disordered surface. New version program summaryProgram title: RHEED1DProcess Catalogue identifier: ADUY_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 31 971 No. of bytes in distributed program, including test data, etc.: 3 039 820 Distribution format: tar.gz Programming language: Embarcadero C++ Builder Computer: Intel Core Duo-based PC Operating system: Windows XP, Vista, 7 RAM: more than 1 GB Classification: 4.3, 7.2, 6.2, 8, 14 Catalogue identifier of previous version: ADUY_v3_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2394 Does the new version supersede the previous version?: No Nature of problem: An application that implements numerical simulations should be constructed according to the CSFAR rules: clear and well-documented, simple, fast, accurate, and robust. A clearly written, externally and internally documented program is much easier to understand and modify. A simple program is much less prone to error and is more easily modified than one that is complicated. Simplicity and clarity also help make the program flexible. Making the program fast has economic benefits. It also allows flexibility because some of the features that make a program efficient can be traded off for

  14. Scientific services related to climate-induced natural hazards in the Vrancea Seismic Region, Romania

    NASA Astrophysics Data System (ADS)

    Sima, M.; Micu, D.; Dragota, C.; Chendes, V.; Micu, M.; Balteanu, D.

    2012-04-01

    Scientific services, regarded as a tool for offering different stakeholders and users with the necessary information adapted to their needs, are a major challenge to researchers nowadays. The paper aims to present an example of user-researcher interaction on issues related to climate-induced hazards in a highly seismic region of Romania. It is a case-study included in the FP7 ECLISE project which has in view the assessment of landslide and floods hazard and risk, as being the most important climate-induced natural hazards in the region. The main climate signals derived from the observational data indicate a tendency of precipitation concentration over short time intervals and the increase of their torrential character, combined during spring with long-lasting rains and snowmelt which generally led to a higher instability of the slopes due to landslides and flash floods. The Vrancea Seismic Region, considered being the most active sub-crustal earthquake province of Europe, with 3-5 earthquakes over magnitude 7 per century, is represented by the Curvature sector of the Carpathians and Subcarpathians of Romania. The region is affected by a large diversity of slope processes (especially landslides and mudflows) and flood and flash-flood events, generated by the morphometric traits of the small catchments, the loose lithology, the torrential features of rainfalls especially during the summer and by the severe changes occurred in the land cover characteristics after 1989 (large deforestation, property fragmentation, lack of interest in land-management works). Based on a comprehensive landslide inventory, the landslide susceptibility map (showing the probability of occurrence in space), obtained through statistical analysis and field/statistically-validated, would be completed with the hazard assessment, resulting from the correlation of landslide frequency and magnitude, rainfall triggering threshold and its returning period. The numerous elements at risk (transport and

  15. Data mining techniques for scientific computing: Application to asymptotic paraxial approximations to model ultrarelativistic particles

    NASA Astrophysics Data System (ADS)

    Assous, Franck; Chaskalovic, Joël

    2011-06-01

    We propose a new approach that consists in using data mining techniques for scientific computing. Indeed, data mining has proved to be efficient in other contexts which deal with huge data like in biology, medicine, marketing, advertising and communications. Our aim, here, is to deal with the important problem of the exploitation of the results produced by any numerical method. Indeed, more and more data are created today by numerical simulations. Thus, it seems necessary to look at efficient tools to analyze them. In this work, we focus our presentation to a test case dedicated to an asymptotic paraxial approximation to model ultrarelativistic particles. Our method directly deals with numerical results of simulations and try to understand what each order of the asymptotic expansion brings to the simulation results over what could be obtained by other lower-order or less accurate means. This new heuristic approach offers new potential applications to treat numerical solutions to mathematical models.

  16. Impact of Quad-core Cray XT4 System and Software Stack on Scientific Computation

    SciTech Connect

    Alam, Sadaf R; Barrett, Richard F; Jagode, Heike; Kuehn, Jeffery A; Poole, Stephen W; Sankaran, Ramanan

    2009-01-01

    An upgrade from dual-core to quad-core AMD processor on the Cray XT system at the Oak Ridge National Laboratory (ORNL) Leadership Computing Facility (LCF) has resulted in significant changes in the hardware and software stack, including a deeper memory hierarchy, SIMD instructions and a multi-core aware MPI library. In this paper, we evaluate impact of a subset of these key changes on large-scale scientific applications. We will provide insights into application tuning and optimization process and report on how different strategies yield varying rates of successes and failures across different application domains. For instance, we demonstrate that the vectorization instructions (SSE) provide a performance boost of as much as 50% on fusion and combustion applications. Moreover, we reveal how the resource contentions could limit the achievable performance and provide insights into how application could exploit Petascale XT5 system's hierarchical parallelism.

  17. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in

  18. Testing framework for GRASS GIS: ensuring reproducibility of scientific geospatial computing

    NASA Astrophysics Data System (ADS)

    Petras, V.; Gebbert, S.

    2014-12-01

    GRASS GIS, a free and open source GIS, is used by many scientists directly or through other projects such as R or QGIS to perform geoprocessing tasks. Thus, a large number of scientific geospatial computations depend on quality and correct functionality of GRASS GIS. Automatic functionality testing is therefore necessary to ensure software reliability. Here we present a testing framework for GRASS GIS which addresses different needs of GRASS GIS and geospatial software in general. It allows to test GRASS tools (referred to as GRASS modules) and examine outputs including large raster and vector maps as well as temporal datasets. Furthermore, it enables to test all levels of GRASS GIS architecture including C and Python application programming interface and GRASS modules invoked as subprocesses. Since GRASS GIS is used as a platform for development of geospatial algorithms and models, the testing framework allows not only to test GRASS GIS core functionality but also tools developed by scientists as a part of their research. Using testing framework we can test GRASS GIS and related tools automatically and repetitively and thus detect errors caused by code changes and new developments. Tools and code are then easier to maintain which results in preserving reproducibility of scientific results over time. Similarly to open source code, the test results are publicly accessible, so that all current and potential users can see them. The usage of testing framework will be presented on an example of a test suite for r.slope.aspect module, a tool for computation of terrain slope, aspect, curvatures and other terrain characteristics.

  19. Automated School Food Service System. [A Directory Based on a Survey of Computer Applications in School Food Service.

    ERIC Educational Resources Information Center

    Food and Nutrition Service (USDA), Washington, DC.

    This directory consists of a compilation of information from a survey of 101 school food service administrators to ascertain specific information on computer hardware, software, and applications currently used in their school food service operations. It is designed to assist school food service administrators in developing or enhancing systems…

  20. Advanced information processing system: Inter-computer communication services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  1. A Selective Bibliography of Building Environment and Service Systems with Particular Reference to Computer Applications. Computer Report CR20.

    ERIC Educational Resources Information Center

    Forwood, Bruce S.

    This bibliography has been produced as part of a research program attempting to develop a new approach to building environment and service systems design using computer-aided design techniques. As such it not only classifies available literature on the service systems themselves, but also contains sections on the application of computers and…

  2. Investigating the Relationship between Pre-Service Teachers' Scientific Literacy, Environmental Literacy and Life-Long Learning Tendency

    ERIC Educational Resources Information Center

    Saribas, D.

    2015-01-01

    The study investigates the relationship between pre-service teachers' scientific literacy (SL) and their environmental literacy (EL). It also seeks significant differences in SL at different levels of a tendency towards life-long learning (LLT). With the world facing critical environmental problems, an interdisciplinary approach to teaching…

  3. Automation of the Comprehensive Science Library: Promotion of Scientific and Technological Information Service, Republic of Korea. [Restricted Technical Report.

    ERIC Educational Resources Information Center

    Mackenzie, A. Graham

    This technical report presents recommendations and plans which are the result of a mission undertaken as part of a project to promote a scientific and technological information service and establish a popular science resource center in Korea. The mission's main emphasis was to help Korean authorities and the United Nations Development Programme…

  4. Pre-Service Biology Teachers' Perceptions on the Instruction of Socio-Scientific Issues in the Curriculum

    ERIC Educational Resources Information Center

    Kara, Yilmaz

    2012-01-01

    The work presented here represents a preliminary attempt to address the role of teachers in supporting students' learning on socio-scientific issues (SSI) by characterising pre-service biology teachers' perceptions and adaptation of curriculum and identifying factors that serve to mediate this process. A hundred and two undergraduate pre-service…

  5. Emergency healthcare process automation using mobile computing and cloud services.

    PubMed

    Poulymenopoulou, M; Malamateniou, F; Vassilacopoulos, G

    2012-10-01

    Emergency care is basically concerned with the provision of pre-hospital and in-hospital medical and/or paramedical services and it typically involves a wide variety of interdependent and distributed activities that can be interconnected to form emergency care processes within and between Emergency Medical Service (EMS) agencies and hospitals. Hence, in developing an information system for emergency care processes, it is essential to support individual process activities and to satisfy collaboration and coordination needs by providing readily access to patient and operational information regardless of location and time. Filling this information gap by enabling the provision of the right information, to the right people, at the right time fosters new challenges, including the specification of a common information format, the interoperability among heterogeneous institutional information systems or the development of new, ubiquitous trans-institutional systems. This paper is concerned with the development of an integrated computer support to emergency care processes by evolving and cross-linking institutional healthcare systems. To this end, an integrated EMS cloud-based architecture has been developed that allows authorized users to access emergency case information in standardized document form, as proposed by the Integrating the Healthcare Enterprise (IHE) profile, uses the Organization for the Advancement of Structured Information Standards (OASIS) standard Emergency Data Exchange Language (EDXL) Hospital Availability Exchange (HAVE) for exchanging operational data with hospitals and incorporates an intelligent module that supports triaging and selecting the most appropriate ambulances and hospitals for each case. PMID:22205383

  6. A prototype computer network service for occupational therapists.

    PubMed

    Hallberg, N; Johansson, M; Timpka, T

    1999-04-01

    Due to recent reforms, the demands on the people working in community-oriented health care service are increasing. The individual providers need professional knowledge and skills to perform their tasks quickly and safely. The individuals are also confronted with new tasks and situations of which they lack experience. At the same time, the resources for education and development are decreasing. The aim of this paper is to describe the implementation of a prototype computer network service to support occupational therapists in their daily work. A customized Quality Function Deployment (QFD) model, including participatory design elements, was used for: (a) identification of the occupational therapists' needs; and (b) for the transformation of these needs to prioritized design attributes. The main purpose of the prototype was to improve the visualization of the design attributes that were found to support the occupational therapists. An additional purpose was to be able to evaluate the design attributes and further improve them. The specific aim of this article is to describe the initial prototype with respect both to the tools and the information content. PMID:10215176

  7. Facebook for Scientists: Requirements and Services for Optimizing How Scientific Collaborations Are Established

    PubMed Central

    Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory

    2008-01-01

    Background As biomedical research projects become increasingly interdisciplinary and complex, collaboration with appropriate individuals, teams, and institutions becomes ever more crucial to project success. While social networks are extremely important in determining how scientific collaborations are formed, social networking technologies have not yet been studied as a tool to help form scientific collaborations. Many currently emerging expertise locating systems include social networking technologies, but it is unclear whether they make the process of finding collaborators more efficient and effective. Objective This study was conducted to answer the following questions: (1) Which requirements should systems for finding collaborators in biomedical science fulfill? and (2) Which information technology services can address these requirements? Methods The background research phase encompassed a thorough review of the literature, affinity diagramming, contextual inquiry, and semistructured interviews. This phase yielded five themes suggestive of requirements for systems to support the formation of collaborations. In the next phase, the generative phase, we brainstormed and selected design ideas for formal concept validation with end users. Then, three related, well-validated ideas were selected for implementation and evaluation in a prototype. Results Five main themes of systems requirements emerged: (1) beyond expertise, successful collaborations require compatibility with respect to personality, work style, productivity, and many other factors (compatibility); (2) finding appropriate collaborators requires the ability to effectively search in domains other than your own using information that is comprehensive and descriptive (communication); (3) social networks are important for finding potential collaborators, assessing their suitability and compatibility, and establishing contact with them (intermediation); (4) information profiles must be complete, correct, up

  8. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This

  9. 47 CFR 54.709 - Computations of required contributions to universal service support mechanisms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Computations of required contributions to universal service support mechanisms. 54.709 Section 54.709 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.709 Computations of required contributions to...

  10. 47 CFR 54.709 - Computations of required contributions to universal service support mechanisms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Computations of required contributions to universal service support mechanisms. 54.709 Section 54.709 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.709 Computations of required contributions to...

  11. Operations analysis (study 2.6). Volume 4: Computer specification; logistics of orbiting vehicle servicing (LOVES)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The logistics of orbital vehicle servicing computer specifications was developed and a number of alternatives to improve utilization of the space shuttle and the tug were investigated. Preliminary results indicate that space servicing offers a potential for reducing future operational and program costs over ground refurbishment of satellites. A computer code which could be developed to simulate space servicing is presented.

  12. 47 CFR 54.709 - Computations of required contributions to universal service support mechanisms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Computations of required contributions to universal service support mechanisms. 54.709 Section 54.709 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.709 Computations of required contributions to...

  13. 14 CFR 13.85 - Filing, service and computation of time.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Filing, service and computation of time. 13.85 Section 13.85 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Transportation Act § 13.85 Filing, service and computation of time. Filing and service of documents under...

  14. 14 CFR 13.85 - Filing, service and computation of time.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Filing, service and computation of time. 13.85 Section 13.85 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Transportation Act § 13.85 Filing, service and computation of time. Filing and service of documents under...

  15. 14 CFR 13.85 - Filing, service and computation of time.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Filing, service and computation of time. 13.85 Section 13.85 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Transportation Act § 13.85 Filing, service and computation of time. Filing and service of documents under...

  16. 14 CFR 13.85 - Filing, service and computation of time.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Filing, service and computation of time. 13.85 Section 13.85 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Transportation Act § 13.85 Filing, service and computation of time. Filing and service of documents under...

  17. Scientific workflow and support for high resolution global climate modeling at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, V.; Mayer, B.; Wang, F.; Hack, J.; McKenna, D.; Hartman-Baker, R.

    2012-04-01

    The Oak Ridge Leadership Computing Facility (OLCF) facilitates the execution of computational experiments that require tens of millions of CPU hours (typically using thousands of processors simultaneously) while generating hundreds of terabytes of data. A set of ultra high resolution climate experiments in progress, using the Community Earth System Model (CESM), will produce over 35,000 files, ranging in sizes from 21 MB to 110 GB each. The execution of the experiments will require nearly 70 Million CPU hours on the Jaguar and Titan supercomputers at OLCF. The total volume of the output from these climate modeling experiments will be in excess of 300 TB. This model output must then be archived, analyzed, distributed to the project partners in a timely manner, and also made available more broadly. Meeting this challenge would require efficient movement of the data, staging the simulation output to a large and fast file system that provides high volume access to other computational systems used to analyze the data and synthesize results. This file system also needs to be accessible via high speed networks to an archival system that can provide long term reliable storage. Ideally this archival system is itself directly available to other systems that can be used to host services making the data and analysis available to the participants in the distributed research project and to the broader climate community. The various resources available at the OLCF now support this workflow. The available systems include the new Jaguar Cray XK6 2.63 petaflops (estimated) supercomputer, the 10 PB Spider center-wide parallel file system, the Lens/EVEREST analysis and visualization system, the HPSS archival storage system, the Earth System Grid (ESG), and the ORNL Climate Data Server (CDS). The ESG features federated services, search & discovery, extensive data handling capabilities, deep storage access, and Live Access Server (LAS) integration. The scientific workflow enabled on

  18. The effects of integrating service learning into computer science: an inter-institutional longitudinal study

    NASA Astrophysics Data System (ADS)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-07-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.

  19. Pre-Service Teachers' Attitudes towards Computer Use: A Singapore Survey

    ERIC Educational Resources Information Center

    Teo, Timothy

    2008-01-01

    The aim of this study is to examine the attitudes towards use of computers among pre-service teachers. A sample of 139 pre-service teachers was assessed for their computer attitudes using a Likert type questionnaire with four factors: affect (liking), perceived usefulness, perceived control, and behavioural intention to use the computer. The…

  20. Assessing Pre-Service Teachers' Computer Phobia Levels in Terms of Gender and Experience, Turkish Sample

    ERIC Educational Resources Information Center

    Ursavas, Omer Faruk; Karal, Hasan

    2009-01-01

    In this study it is aimed to determine the level of pre-service teachers' computer phobia. Whether or not computer phobia meaningfully varies statistically according to gender and computer experience has been tested in the study. The study was performed on 430 pre-service teachers at the Education Faculty in Rize/Turkey. Data in the study were…

  1. The Effects of Integrating Service Learning into Computer Science: An Inter-Institutional Longitudinal Study

    ERIC Educational Resources Information Center

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-01-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…

  2. Pedagogical Strategies to Increase Pre-Service Teachers' Confidence in Computer Learning

    ERIC Educational Resources Information Center

    Chen, Li-Ling

    2004-01-01

    Pre-service teachers' attitudes towards computers significantly influence their future adoption of integrating computer technology into their teaching. What are the pedagogical strategies that a teacher education instructor or an instructional designer can incorporate to enhance a pre-service teacher's comfort level in using computers? In this…

  3. Multithreaded transactions in scientific computing. The Growth06_v2 program

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2009-07-01

    efficient than the previous ones [3]. Summary of revisions:The design pattern (See Fig. 2 of Ref. [3]) has been modified according to the scheme shown on Fig. 1. A graphical user interface (GUI) for the program has been reconstructed. Fig. 2 presents a hybrid diagram of a GUI that shows how onscreen objects connect to use cases. The program has been compiled with English/USA regional and language options. Note: The figures mentioned above are contained in the program distribution file. Unusual features: The program is distributed in the form of source project GROWTH06_v2.dpr with associated files, and should be compiled using Borland Delphi compilers versions 6 or latter (including Borland Developer Studio 2006 and Code Gear compilers for Delphi). Additional comments: Two figures are included in the program distribution file. These are captioned Static classes model for Transaction design pattern. A model of a window that shows how onscreen objects connect to use cases. Running time: The typical running time is machine and user-parameters dependent. References: [1] A. Daniluk, Comput. Phys. Comm. 170 (2005) 265. [2] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing, first ed., Cambridge University Press, 1989. [3] M. Brzuszek, A. Daniluk, Comput. Phys. Comm. 175 (2006) 678.

  4. First-Year Pre-Service Teachers in Taiwan--Do They Enter the Teacher Program with Satisfactory Scientific Literacy and Attitudes Toward Science?

    ERIC Educational Resources Information Center

    Chin, Chi-Chin

    2005-01-01

    Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the…

  5. Computer Classifieds: Electronic Career Services Link Alumni with Employers.

    ERIC Educational Resources Information Center

    Dessoff, Alan L.

    1992-01-01

    Electronic service companies are marketing electronic career services to college and university alumni associations. These electronic alternatives to traditional placement services offer schools a way to provide alumni with a desired service while increasing alumni association revenue. Typically, both applicants and companies pay a fee for a…

  6. Identity Management and Trust Services: Foundations for Cloud Computing

    ERIC Educational Resources Information Center

    Suess, Jack; Morooney, Kevin

    2009-01-01

    Increasingly, IT organizations will move from providing IT services locally to becoming an integrator of IT services--some provided locally and others provided outside the institution. As a result, institutions must immediately begin to plan for shared services and must understand the essential role that identity management and trust services play…

  7. 47 CFR 54.709 - Computations of required contributions to universal service support mechanisms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... universal service support mechanisms. 54.709 Section 54.709 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.709 Computations of required contributions to universal service support mechanisms. (a) Prior to April 1,...

  8. 47 CFR 54.709 - Computations of required contributions to universal service support mechanisms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... universal service support mechanisms. 54.709 Section 54.709 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.709 Computations of required contributions to universal service support mechanisms. (a) Prior to April 1,...

  9. Lowering the Barrier to Cross-Disciplinary Scientific Data Access via a Brokering Service Built Around a Unified Data Model

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Wilson, A.

    2012-12-01

    The steps many scientific data users go through to use data (after discovering it) can be rather tedious, even when dealing with datasets within their own discipline. Accessing data across domains often seems intractable. We present here, LaTiS, an Open Source brokering solution that bridges the gap between the source data and the user's code by defining a unified data model plus a plugin framework for "adapters" to read data from their native source, "filters" to perform server side data processing, and "writers" to output any number of desired formats or streaming protocols. A great deal of work is being done in the informatics community to promote multi-disciplinary science with a focus on search and discovery based on metadata - information about the data. The goal of LaTiS is to go that last step to provide a uniform interface to read the dataset into computer programs and other applications once it has been identified. The LaTiS solution for integrating a wide variety of data models is to return to mathematical fundamentals. The LaTiS data model emphasizes functional relationships between variables. For example, a time series of temperature measurements can be thought of as a function that maps a time to a temperature. With just three constructs: "Scalar" for a single variable, "Tuple" for a collection of variables, and "Function" to represent a set of independent and dependent variables, the LaTiS data model can represent most scientific datasets at a low level that enables uniform data access. Higher level abstractions can be built on top of the basic model to add more meaningful semantics for specific user communities. LaTiS defines its data model in terms of the Unified Modeling Language (UML). It also defines a very thin Java Interface that can be implemented by numerous existing data interfaces (e.g. NetCDF-Java) such that client code can access any dataset via the Java API, independent of the underlying data access mechanism. LaTiS also provides a

  10. Analysis, scientific computing and fundamental studies in fluid mechanics. Summary report number 19, May 1, 1995--April 30, 1996

    SciTech Connect

    1996-07-01

    Summaries are given of the progress on each of the following research projects: (1) a multi-resolution finite element method for computing multiscale solutions; (2) numerical study of free interface problems; (3) numerical simulation of two-dimensional particle coarsening; (4) numerical simulation of three-dimensional water waves; (5) vortex dynamics; (6) vortex models and turbulence; (7) flow in a non-uniform Hele-Shaw cell; (8) numerical analysis/scientific computing.

  11. Above the cloud computing orbital services distributed data model

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2014-05-01

    Technology miniaturization and system architecture advancements have created an opportunity to significantly lower the cost of many types of space missions by sharing capabilities between multiple spacecraft. Historically, most spacecraft have been atomic entities that (aside from their communications with and tasking by ground controllers) operate in isolation. Several notable example exist; however, these are purpose-designed systems that collaborate to perform a single goal. The above the cloud computing (ATCC) concept aims to create ad-hoc collaboration between service provider and consumer craft. Consumer craft can procure processing, data transmission, storage, imaging and other capabilities from provider craft. Because of onboard storage limitations, communications link capability limitations and limited windows of communication, data relevant to or required for various operations may span multiple craft. This paper presents a model for the identification, storage and accessing of this data. This model includes appropriate identification features for this highly distributed environment. It also deals with business model constraints such as data ownership, retention and the rights of the storing craft to access, resell, transmit or discard the data in its possession. The model ensures data integrity and confidentiality (to the extent applicable to a given data item), deals with unique constraints of the orbital environment and tags data with business model (contractual) obligation data.

  12. Computer support of pharmaceutical services for ambulatory patients.

    PubMed

    Weissman, A M; Solomon, D K; Baumgartner, R P; Brady, J A; Peterson, J H; Knight, J L

    1976-11-01

    A prototype computerized pharmaceutical services support system (CPSSS) is described. CPSSS maintains records on approximately 40,000 patients; 1,300 outpatient prescriptions are dispensed per day. Using Univac hardware and software developed inhouse, CPSSS provides an online drug therapy profile. The prescription label, including auxiliary information, storage and stability guidelines as well as the traditional information, is automatically generated. Prior to medication dispensing, all information is verified by a pharmacist after the computer searches the patient medication profile for 5,400 potential drug-drug, 1,500 drug-disease state, over 100 drug-allergy and 200 drug-laboratory test interactions as well as identifying duplicate pharmacological therapy. Retrospectively, the patient population is described as to sex, age and number of diagnoses. The number of prescriptions per physician also is reported. Twenty drugs represent one-half of the total prescriptions, with 32% of patients taking diuretics and 30% taking tranquilizers. All new prescriptions were prospectively reviewed. Approximately 2% had potential interactions or pharmacological duplication of therapy problems. Approximately 30% of all new prescriptions duplicated exactly an active prescription on file. When a pharmacist initiated physician contact as a result of CPSSS and profile review, physicians changed therapy approximately 73% of the time when informed of duplicate therapy, 27% of the time when informed of potential drug-disease state interactions and 32% of the time when informed of potential drug-drug interactions. PMID:998635

  13. The Operation of a Specialized Scientific Information and Data Analysis Center With Computer Base and Associated Communications Network.

    ERIC Educational Resources Information Center

    Cottrell, William B.; And Others

    The Nuclear Safety Information Center (NSIC) is a highly sophisticated scientific information center operated at Oak Ridge National Laboratory (ORNL) for the U.S. Atomic Energy Commission. Its information file, which consists of both data and bibliographic information, is computer stored and numerous programs have been developed to facilitate the…

  14. The Goal Specificity Effect on Strategy Use and Instructional Efficiency during Computer-Based Scientific Discovery Learning

    ERIC Educational Resources Information Center

    Kunsting, Josef; Wirth, Joachim; Paas, Fred

    2011-01-01

    Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…

  15. Final Scientific Report: A Scalable Development Environment for Peta-Scale Computing

    SciTech Connect

    Karbach, Carsten; Frings, Wolfgang

    2013-02-22

    This document is the final scientific report of the project DE-SC000120 (A scalable Development Environment for Peta-Scale Computing). The objective of this project is the extension of the Parallel Tools Platform (PTP) for applying it to peta-scale systems. PTP is an integrated development environment for parallel applications. It comprises code analysis, performance tuning, parallel debugging and system monitoring. The contribution of the Juelich Supercomputing Centre (JSC) aims to provide a scalable solution for system monitoring of supercomputers. This includes the development of a new communication protocol for exchanging status data between the target remote system and the client running PTP. The communication has to work for high latency. PTP needs to be implemented robustly and should hide the complexity of the supercomputer's architecture in order to provide a transparent access to various remote systems via a uniform user interface. This simplifies the porting of applications to different systems, because PTP functions as abstraction layer between parallel application developer and compute resources. The common requirement for all PTP components is that they have to interact with the remote supercomputer. E.g. applications are built remotely and performance tools are attached to job submissions and their output data resides on the remote system. Status data has to be collected by evaluating outputs of the remote job scheduler and the parallel debugger needs to control an application executed on the supercomputer. The challenge is to provide this functionality for peta-scale systems in real-time. The client server architecture of the established monitoring application LLview, developed by the JSC, can be applied to PTP's system monitoring. LLview provides a well-arranged overview of the supercomputer's current status. A set of statistics, a list of running and queued jobs as well as a node display mapping running jobs to their compute resources form the

  16. Persistence and Availability of Web Services in Computational Biology

    PubMed Central

    Schultheiss, Sebastian J.; Münch, Marc-Christian; Andreeva, Gergana D.; Rätsch, Gunnar

    2011-01-01

    We have conducted a study on the long-term availability of bioinformatics Web services: an observation of 927 Web services published in the annual Nucleic Acids Research Web Server Issues between 2003 and 2009. We found that 72% of Web sites are still available at the published addresses, only 9% of services are completely unavailable. Older addresses often redirect to new pages. We checked the functionality of all available services: for 33%, we could not test functionality because there was no example data or a related problem; 13% were truly no longer working as expected; we could positively confirm functionality only for 45% of all services. Additionally, we conducted a survey among 872 Web Server Issue corresponding authors; 274 replied. 78% of all respondents indicate their services have been developed solely by students and researchers without a permanent position. Consequently, these services are in danger of falling into disrepair after the original developers move to another institution, and indeed, for 24% of services, there is no plan for maintenance, according to the respondents. We introduce a Web service quality scoring system that correlates with the number of citations: services with a high score are cited 1.8 times more often than low-scoring services. We have identified key characteristics that are predictive of a service's survival, providing reviewers, editors, and Web service developers with the means to assess or improve Web services. A Web service conforming to these criteria receives more citations and provides more reliable service for its users. The most effective way of ensuring continued access to a service is a persistent Web address, offered either by the publishing journal, or created on the authors' own initiative, for example at http://bioweb.me. The community would benefit the most from a policy requiring any source code needed to reproduce results to be deposited in a public repository. PMID:21966383

  17. The impact of the data archiving file format on the sharing of scientific data for use in popular computational environments

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly; Robertson, James

    2010-04-01

    The U.S. Army Research Laboratory (ARL) conducted an initial study on the performance of XML and HDF5 in three popular computational software environments, MATLAB, Octave, and Python, all of which use high-level scripting languages and computational software tools designed for computational processing. Although usable for sharing and exchanging data, the initial results of the study indicated XML has clear limitations in a computational environment. Popular computational tools are unable to handle very large XML formatted files, thus limiting processing of large XML archived data files. We show the breakdown points of XML formatted files for various popular computational tools and explore the performance dependencies of XML and HDF5 formatted files in popular computational environments on the hardware, operating system, and mathematical function. This study also explores the inverse file size relationship between HDF5 and XML data files. Several organizations, including ARL, use both XML and HDF5 for archiving and exchanging data. XML is best suited for storing "light" data (such as metadata) and HDF5 is best suited for storing "heavy" scientific data. Integrating and using both XML and HDF5 for data archiving offers the best solution for data providers and consumers to share information for computational and scientific purposes.

  18. Towards a Pre-computed Relation Matrix for Semantic Web Service

    NASA Astrophysics Data System (ADS)

    Hu, Luokai; Ying, Shi; Zhao, Kai

    Aiming at the complicated semantic matching problem of service's input and output data items in the service composition process, a pre-computed relation matrix for Semantic Web Services is presented. Based on the semantic relation reasoning method of concept in Domain Standard Ontology, the automatic matrix generation algorithm is given. Finally, the matrix based automatic service composition algorithm is proposed. Pre-computed service relation matrix can greatly improve the performance of automatic composition and provide a new approach for organizing the Semantic Web Services connections.

  19. A Cloud-Computing Service for Environmental Geophysics and Seismic Data Processing

    NASA Astrophysics Data System (ADS)

    Heilmann, B. Z.; Maggi, P.; Piras, A.; Satta, G.; Deidda, G. P.; Bonomi, E.

    2012-04-01

    Cloud computing is establishing worldwide as a new high performance computing paradigm that offers formidable possibilities to industry and science. The presented cloud-computing portal, part of the Grida3 project, provides an innovative approach to seismic data processing by combining open-source state-of-the-art processing software and cloud-computing technology, making possible the effective use of distributed computation and data management with administratively distant resources. We substituted the user-side demanding hardware and software requirements by remote access to high-performance grid-computing facilities. As a result, data processing can be done quasi in real-time being ubiquitously controlled via Internet by a user-friendly web-browser interface. Besides the obvious advantages over locally installed seismic-processing packages, the presented cloud-computing solution creates completely new possibilities for scientific education, collaboration, and presentation of reproducible results. The web-browser interface of our portal is based on the commercially supported grid portal EnginFrame, an open framework based on Java, XML, and Web Services. We selected the hosted applications with the objective to allow the construction of typical 2D time-domain seismic-imaging workflows as used for environmental studies and, originally, for hydrocarbon exploration. For data visualization and pre-processing, we chose the free software package Seismic Un*x. We ported tools for trace balancing, amplitude gaining, muting, frequency filtering, dip filtering, deconvolution and rendering, with a customized choice of options as services onto the cloud-computing portal. For structural imaging and velocity-model building, we developed a grid version of the Common-Reflection-Surface stack, a data-driven imaging method that requires no user interaction at run time such as manual picking in prestack volumes or velocity spectra. Due to its high level of automation, CRS stacking

  20. The InSAR Scientific Computing Environment (ISCE): A Python Framework for Earth Science

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Gurrola, E. M.; Agram, P. S.; Sacco, G. F.; Lavalle, M.

    2015-12-01

    The InSAR Scientific Computing Environment (ISCE, funded by NASA ESTO) provides a modern computing framework for geodetic image processing of InSAR data from a diverse array of radar satellites and aircraft. ISCE is both a modular, flexible, and extensible framework for building software components and applications as well as a toolbox of applications for processing raw or focused InSAR and Polarimetric InSAR data. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. Components are independently configurable in a layered manner to provide maximum control. Polymorphism is used to define a workflow in terms of abstract facilities for each processing step that are realized by specific components at run-time. This enables a single workflow to work on either raw or focused data from all sensors. ISCE can serve as the core of a production center to process Level-0 radar data to Level-3 products, but is amenable to interactive processing approaches that allow scientists to experiment with data to explore new ways of doing science with InSAR data. The NASA-ISRO SAR (NISAR) Mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystems. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these new data. NISAR will be but one mission in a constellation of radar satellites in the future delivering such data. ISCE currently supports all publicly available strip map mode space-borne SAR data since ERS and is expected to include support for upcoming missions. ISCE has been incorporated into two prototype cloud-based systems that have demonstrated its elasticity in addressing larger data processing problems in a "production" context and its ability to be

  1. 5 CFR 831.703 - Computation of annuities for part-time service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Computation of annuities for part-time... part-time service. (a) Purpose. The computational method in this section shall be used to determine the annuity for an employee who has part-time service on or after April 7, 1986. (b) Definitions. In...

  2. 5 CFR 831.703 - Computation of annuities for part-time service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Computation of annuities for part-time... part-time service. (a) Purpose. The computational method in this section shall be used to determine the annuity for an employee who has part-time service on or after April 7, 1986. (b) Definitions. In...

  3. Assessing availability of scientific journals, databases, and health library services in Canadian health ministries: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Evidence-informed health policymaking logically depends on timely access to research evidence. To our knowledge, despite the substantial political and societal pressure to enhance the use of the best available research evidence in public health policy and program decision making, there is no study addressing availability of peer-reviewed research in Canadian health ministries. Objectives To assess availability of (1) a purposive sample of high-ranking scientific journals, (2) bibliographic databases, and (3) health library services in the fourteen Canadian health ministries. Methods From May to October 2011, we conducted a cross-sectional survey among librarians employed by Canadian health ministries to collect information relative to availability of scientific journals, bibliographic databases, and health library services. Availability of scientific journals in each ministry was determined using a sample of 48 journals selected from the 2009 Journal Citation Reports (Sciences and Social Sciences Editions). Selection criteria were: relevance for health policy based on scope note information about subject categories and journal popularity based on impact factors. Results We found that the majority of Canadian health ministries did not have subscription access to key journals and relied heavily on interlibrary loans. Overall, based on a sample of high-ranking scientific journals, availability of journals through interlibrary loans, online and print-only subscriptions was estimated at 63%, 28% and 3%, respectively. Health Canada had a 2.3-fold higher number of journal subscriptions than that of the provincial ministries’ average. Most of the organisations provided access to numerous discipline-specific and multidisciplinary databases. Many organisations provided access to the library resources described through library partnerships or consortia. No professionally led health library environment was found in four out of fourteen Canadian health ministries

  4. Computer Networking: Approaches to Quality Service Assurance. Technical Note No. 800.

    ERIC Educational Resources Information Center

    Stillman, Rona B.

    The problem of quality service assurance in a computer networking environment is addressed. In the absence of any direct, well-defined, quantitative measure of service quality and reliability, error collection and analysis is the only basis for service quality control. Therefore, mechanisms are described which facilitate reporting of operational…

  5. Morgan Receives 2013 Paul G. Silver Award for Outstanding Scientific Service: Citation

    NASA Astrophysics Data System (ADS)

    Wang, Kelin

    2014-09-01

    Julia Morgan received her Ph.D. in 1993 from the Cornell University. She joined the Department of Earth Sciences at Rice University in 1999 and has been a full professor since 2009. Julia is well known for a rare combination of skills in field geology and quantitative modeling. Her broad scientific background and leadership quality make her an exemplary leader for a major scientific program as multidisciplinary as Geodynamic Processes at Rifting and Subducting Margins (GeoPRISMS) (http://www.geoprisms.org).

  6. Toward a common component architecture for high-performance scientific computing

    SciTech Connect

    Armstrong, R; Gannon, D; Geist, A; Katarzyna, K; Kohn, S; McInnes, L; Parker, S; Smolinski, B

    1999-06-09

    This paper describes work in progress to develop a standard for interoperability among high-performance scientific components. This research stems from growing recognition that the scientific community must better manage the complexity of multidisciplinary simulations and better address scalable performance issues on parallel and distributed architectures. Driving forces are the need for fast connections among components that perform numerically intensive work and parallel collective interactions among components that use multiple processes or threads. This paper focuses on the areas we believe are most crucial for such interactions, namely an interface definition language that supports scientific abstractions for specifying component interfaces and a ports connection model for specifying component interactions.

  7. ADAPSO Computer Services Industry Directory of Members, 1972-1973.

    ERIC Educational Resources Information Center

    Association of Data Processing Service Organizations, New York, NY.

    The 1972-73 directory of the Association of Data Processing Service Organizations was designed to provide a list of those members subscribe to the Code of Ethical Standards and can be expected to provide reliable and efficient services to the users in the community. The Code is presented, and then full member firms are listed for states in the…

  8. 20 CFR 655.430 - Service and computation of time.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Fair Labor Standards, Office of the Solicitor, U.S. Department of Labor, 200 Constitution Avenue NW... EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Enforcement of H-1A Attestations § 655.430 Service and... authorized where service is by mail. In the interest of expeditious proceedings, the administrative law......

  9. 20 CFR 655.430 - Service and computation of time.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Fair Labor Standards, Office of the Solicitor, U.S. Department of Labor, 200 Constitution Avenue NW... EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Enforcement of H-1A Attestations § 655.430 Service and... authorized where service is by mail. In the interest of expeditious proceedings, the administrative law......

  10. 20 CFR 655.430 - Service and computation of time.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Fair Labor Standards, Office of the Solicitor, U.S. Department of Labor, 200 Constitution Avenue NW... EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Enforcement of H-1A Attestations § 655.430 Service and... authorized where service is by mail. In the interest of expeditious proceedings, the administrative law......

  11. Engaging Pre-Service Teachers in Multinational, Multi-Campus Scientific and Mathematical Inquiry

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer Anne; Smith, Walter S.; Walters, Kendra L.; Sherrod, Sonya E.; Mulholland, Judith

    2008-01-01

    Pre-service teachers from Texas and Indiana in the United States and from Queensland, Australia, observed the Moon for a semester and compared and contrasted their findings in asynchronous Internet discussion groups. The 188 pre-service teachers were required to conduct inquiry investigations for their methods coursework which included an initial…

  12. Measuring the Economic Value of the Electronic Scientific Information Services in Portuguese Academic Libraries

    ERIC Educational Resources Information Center

    Melo, Luiza Baptista; Pires, Cesaltina Pacheco

    2011-01-01

    This article has three main objectives: i) to describe the use patterns of electronic and traditional resources in Portuguese academic libraries; ii) to estimate the value of the Portuguese electronic scientific information consortium b-on by using two alternative valuation methodologies; iii) to relate the use patterns with the valuation of b-on.…

  13. The Tentativeness of Scientific Theories: Conceptions of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Jain, Jasmine; Abdullah, Nabilah; Lim, Beh Kian

    2014-01-01

    The recognition of sound understanding of Nature of Science (NOS) in promoting scientific literacy among individuals has heightened the need to probe NOS conceptions among various groups. However, the nature of quantitative studies in gauging NOS understanding has left the understanding on few NOS aspects insufficiently informed. This paper aimed…

  14. Scientific Subsurface data for EPOS - integration of 3D and 4D data services

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Hammitzsch, Martin; Wächter, Joachim

    2016-04-01

    The provision of efficient and easy access to scientific subsurface data sets obtained from field studies and scientific observatories or by geological 3D/4D-modeling is an important contribution to modern research infrastructures as they can facilitate the integrated analysis and evaluation as well as the exchange of scientific data. Within the project EPOS - European Plate Observing System, access to 3D and 4D data sets will be provided by 'WP15 - Geological information and modeling' and include structural geology models as well as numerical models, e.g., temperature, aquifers, and velocity. This also includes validated raw data, e.g., seismic profiles, from which the models where derived. All these datasets are of high quality and of unique scientific value as the process of modeling is time and cost intensive. However, these models are currently not easily accessible for the wider scientific community, much less to the public. For the provision of these data sets a data management platform based on common and standardized data models, protocols, and encodings as well as on a predominant use of Free and Open Source Software (FOSS) has been devised. The interoperability for disciplinary and domain applications thus highly depends on the adoption of generally agreed technologies and standards (OGC, ISO…) originating from Spatial Data Infrastructure related efforts (e.g., INSPIRE). However, since not many standards for 3D and 4D geological data exists, this work also includes new approaches for project data management, interfaces for tools used by the researchers, and interfaces for the sharing and reusing of data.

  15. Applying Service Learning to Computer Science: Attracting and Engaging Under-Represented Students

    ERIC Educational Resources Information Center

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Bean, Karen

    2010-01-01

    This article describes a computer science course that uses service learning as a vehicle to accomplish a range of pedagogical and BPC (broadening participation in computing) goals: (1) to attract a diverse group of students and engage them in outreach to younger students to help build a diverse computer science pipeline, (2) to develop leadership…

  16. Pragmatic Computing - A Semiotic Perspective to Web Services

    NASA Astrophysics Data System (ADS)

    Liu, Kecheng

    The web seems to have evolved from a syntactic web, a semantic web to a pragmatic web. This evolution conforms to the study of information and technology from the theory of semiotics. The pragmatics, concerning with the use of information in relation to the context and intended purposes, is extremely important in web service and applications. Much research in pragmatics has been carried out; but in the same time, attempts and solutions have led to some more questions. After reviewing the current work in pragmatic web, the paper presents a semiotic approach to website services, particularly on request decomposition and service aggregation.

  17. Cloud-based opportunities in scientific computing: insights from processing Suomi National Polar-Orbiting Partnership (S-NPP) Direct Broadcast data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S.

    2013-12-01

    The cloud is proving to be a uniquely promising platform for scientific computing. Our experience with processing satellite data using Amazon Web Services highlights several opportunities for enhanced performance, flexibility, and cost effectiveness in the cloud relative to traditional computing -- for example: - Direct readout from a polar-orbiting satellite such as the Suomi National Polar-Orbiting Partnership (S-NPP) requires bursts of processing a few times a day, separated by quiet periods when the satellite is out of receiving range. In the cloud, by starting and stopping virtual machines in minutes, we can marshal significant computing resources quickly when needed, but not pay for them when not needed. To take advantage of this capability, we are automating a data-driven approach to the management of cloud computing resources, in which new data availability triggers the creation of new virtual machines (of variable size and processing power) which last only until the processing workflow is complete. - 'Spot instances' are virtual machines that run as long as one's asking price is higher than the provider's variable spot price. Spot instances can greatly reduce the cost of computing -- for software systems that are engineered to withstand unpredictable interruptions in service (as occurs when a spot price exceeds the asking price). We are implementing an approach to workflow management that allows data processing workflows to resume with minimal delays after temporary spot price spikes. This will allow systems to take full advantage of variably-priced 'utility computing.' - Thanks to virtual machine images, we can easily launch multiple, identical machines differentiated only by 'user data' containing individualized instructions (e.g., to fetch particular datasets or to perform certain workflows or algorithms) This is particularly useful when (as is the case with S-NPP data) we need to launch many very similar machines to process an unpredictable number of

  18. Certification of version 1.2 of the PORFLO-3 code for the WHC scientific and engineering computational center

    SciTech Connect

    Kline, N.W.

    1994-12-29

    Version 1.2 of the PORFLO-3 Code has migrated from the Hanford Cray computer to workstations in the WHC Scientific and Engineering Computational Center. The workstation-based configuration and acceptance testing are inherited from the CRAY-based configuration. The purpose of this report is to document differences in the new configuration as compared to the parent Cray configuration, and summarize some of the acceptance test results which have shown that the migrated code is functioning correctly in the new environment.

  19. TESOL In-Service Teachers' Attitudes towards Computer Use

    ERIC Educational Resources Information Center

    Rezaee, Abbas Ali; Abidin, Mohd Jafre bin Zainol; Issa, Jinan Hatem; Mustafa, Paiman Omer

    2012-01-01

    The way education is being delivered has been altered via the rapid development of computer technology. This is especially the case in the delivery of English language teaching where the combination of various variables is pertinent to computer attitudes to enhance instructional outcomes. This paper reports the study undertaken to elucidate…

  20. Comparison of Scientific Calipers and Computer-Enabled CT Review for the Measurement of Skull Base and Craniomaxillofacial Dimensions

    PubMed Central

    Citardi, Martin J.; Herrmann, Brian; Hollenbeak, Chris S.; Stack, Brendan C.; Cooper, Margaret; Bucholz, Richard D.

    2001-01-01

    Traditionally, cadaveric studies and plain-film cephalometrics provided information about craniomaxillofacial proportions and measurements; however, advances in computer technology now permit software-based review of computed tomography (CT)-based models. Distances between standardized anatomic points were measured on five dried human skulls with standard scientific calipers (Geneva Gauge, Albany, NY) and through computer workstation (StealthStation 2.6.4, Medtronic Surgical Navigation Technology, Louisville, CO) review of corresponding CT scans. Differences in measurements between the caliper and CT model were not statistically significant for each parameter. Measurements obtained by computer workstation CT review of the cranial skull base are an accurate representation of actual bony anatomy. Such information has important implications for surgical planning and clinical research. ImagesFigure 1Figure 2Figure 3 PMID:17167599

  1. Scientific Grand Challenges: Challenges in Climate Change Science and the Role of Computing at the Extreme Scale

    SciTech Connect

    Khaleel, Mohammad A.; Johnson, Gary M.; Washington, Warren M.

    2009-07-02

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) in partnership with the Office of Advanced Scientific Computing Research (ASCR) held a workshop on the challenges in climate change science and the role of computing at the extreme scale, November 6-7, 2008, in Bethesda, Maryland. At the workshop, participants identified the scientific challenges facing the field of climate science and outlined the research directions of highest priority that should be pursued to meet these challenges. Representatives from the national and international climate change research community as well as representatives from the high-performance computing community attended the workshop. This group represented a broad mix of expertise. Of the 99 participants, 6 were from international institutions. Before the workshop, each of the four panels prepared a white paper, which provided the starting place for the workshop discussions. These four panels of workshop attendees devoted to their efforts the following themes: Model Development and Integrated Assessment; Algorithms and Computational Environment; Decadal Predictability and Prediction; Data, Visualization, and Computing Productivity. The recommendations of the panels are summarized in the body of this report.

  2. Ethics issues in scientific data and service provision: evidence and challenges for the European Plate Observing System (EPOS)

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Freda, Carmela; Haslinger, Florian; Consortium, Epos

    2016-04-01

    Addressing Ethics issues is nowadays a relevant challenge for any initiative, program or project dealing with scientific data and products provision, access to services for scientific purposes and communication with different stakeholders, including society. This is corroborated by the evidence that Ethics has very high priority in EU funded research. Indeed, all the activities carried out under Horizon 2020 must comply with ethical principles and national, Union and international legislation. This implies that "For all activities funded by the European Union, Ethics is an integral part of research from beginning to end, and ethical compliance is seen as pivotal to achieve real research excellence." Here, we present the experience of EPOS, a public pan-European research infrastructure. EPOS aims at integrating data, data products, services and software (DDSS) for solid Earth science generated and provided by monitoring networks, observing systems and facilities belonging to European countries. EPOS fosters the integrated use of multidisciplinary solid Earth data to improve the understanding of physical and chemical processes controlling earthquakes, volcanic eruptions, tsunamis as well as those driving tectonics and surface dynamics. The EPOS integration plan will make significant contributions to understanding and mitigating geo-hazards, yielding data for hazard assessment, data products for engaging different stakeholders, and services for training, education and communication to society. Numerous national research infrastructures engaged in EPOS are deployed for the monitoring of areas prone to geo-hazards and for the surveillance of the national territory including areas used for exploiting geo-resources. The EPOS community is therefore already trained to provide services to public (civil defence agencies, local and national authorities) and private (petroleum industry, mining industry, geothermal companies, aviation security) stakeholders. Our ability to

  3. Scientific and technical services directed toward the development of planetary quarantine measures for automated spacecraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work is reported, which was performed in the specific tasks of the Planetary Quarantine research program for developing parameter specifications of unmanned scientific missions to the planets. The effort was directed principally toward the advancement of the quarantine technology, applicable to all future missions to planets of biological interest. The emphasis of the research was on coordinated evaluation, analysis, documentation, and presentation of PQ requirements for flight projects such as Viking and Pioneer.

  4. High-performance, distributed computing software libraries and services

    Energy Science and Technology Software Center (ESTSC)

    2002-01-24

    The Globus toolkit provides basic Grid software infrastructure (i.e. middleware), to facilitate the development of applications which securely integrate geographically separated resources, including computers, storage systems, instruments, immersive environments, etc.

  5. Guide to computing and communications at Brookhaven National Laboratory

    SciTech Connect

    Berry, H.; Fuchel, K.; Harris, A.

    1991-04-01

    This report contains information on the following topics of computing and communications at Brookhaven National Laboratory: computing hardware and operating systems; support services and facilities; getting started using the Central Scientific Computing Center (CSCF); CSCF software; data communication services; computer networking; personal computers and workstations; file storage and exchange; graphics; telecommunications services; and radio systems.

  6. Providing Assistive Technology Applications as a Service Through Cloud Computing.

    PubMed

    Mulfari, Davide; Celesti, Antonio; Villari, Massimo; Puliafito, Antonio

    2015-01-01

    Users with disabilities interact with Personal Computers (PCs) using Assistive Technology (AT) software solutions. Such applications run on a PC that a person with a disability commonly uses. However the configuration of AT applications is not trivial at all, especially whenever the user needs to work on a PC that does not allow him/her to rely on his / her AT tools (e.g., at work, at university, in an Internet point). In this paper, we discuss how cloud computing provides a valid technological solution to enhance such a scenario.With the emergence of cloud computing, many applications are executed on top of virtual machines (VMs). Virtualization allows us to achieve a software implementation of a real computer able to execute a standard operating system and any kind of application. In this paper we propose to build personalized VMs running AT programs and settings. By using the remote desktop technology, our solution enables users to control their customized virtual desktop environment by means of an HTML5-based web interface running on any computer equipped with a browser, whenever they are. PMID:26132225

  7. An audio- and speech-based interface for computer-controlled scientific instruments.

    PubMed

    Loyd, D B; Phalangas, A C; Barner, K E

    1999-06-01

    Laboratory instruments are intrinsic to research and work in a wide array of scientific fields. They are used for the control of devices, data storage, and data analysis. The control of instruments is increasingly changing from independent on-instrument controls to multiple instrument integrate software control. Unfortunately, the graphical representation of controls and data makes it difficult for an individual with a visual impairment to independently operate laboratory instruments. Alternative interfaces have been previously developed for these individuals but have often proved limited in scope and accuracy, or otherwise expensive. The resulting inaccessibility to affordable and accurate scientific instrumentation, unfortunately, discourages many individuals with a visual impairment from entering scientific fields of research or work. This paper introduces an alternative interface method developed for LabVIEW, National Instruments' instrumentation software package. The method is specifically designed for individuals with visual impairments, and uses alternative navigation techniques as well as audio feedback. The developed user interface uses simple keyboard inputs to traverse through a hierarchical tree-based menu system. Speech and audio tones are used to alert the user to system settings and errors, as well as a help mechanism and data analysis tool. At this time, alternative interfaces have been developed for the following basic laboratory instruments: an oscilloscope and function/arbitrary waveform generator. The interface methodology, however, can be extended to include any scientific instrument that can be controlled by LabVIEW. PMID:10391595

  8. Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments

    ERIC Educational Resources Information Center

    Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile…

  9. Computer Series, 52: Scientific Exploration with a Microcomputer: Simulations for Nonscientists.

    ERIC Educational Resources Information Center

    Whisnant, David M.

    1984-01-01

    Describes two simulations, written for Apple II microcomputers, focusing on scientific methodology. The first is based on the tendency of colloidal iron in high concentrations to stick to fish gills and cause breathing difficulties. The second, modeled after the dioxin controversy, examines a hypothetical chemical thought to cause cancer. (JN)

  10. Morgan Receives 2013 Paul G. Silver Award for Outstanding Scientific Service: Response

    NASA Astrophysics Data System (ADS)

    Morgan, Julia K.

    2014-09-01

    Thank you, Kelin, for your kind words and nomination, and thanks to the Tectonophysics, Seismology, and Geodesy sections for extending this honor. I also want to recognize the efforts of so many others who really drove the GeoPRISMS program; my job was primarily as a facilitator, channeling the great ideas of the community into distinctive scientific opportunities benefiting a large number of researchers, and what a creative, energetic, and generous community it is. It has been particularly satisfying to watch GeoPRISMS grow during my term as chair, especially with the enthusiastic involvement of the students and early-career researchers who are the future of the program.

  11. 5 CFR 630.603 - Computation of service abroad.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 630.603 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE... departure from the post for separation or for assignment in the United States, or on the date of his separation from duty when separated abroad; and (c) Includes (1) absence in a nonpay status up to a...

  12. 20 CFR 655.1030 - Service and computation of time.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Fair Labor Standards, Office of the Solicitor, U.S. Department of Labor, 200 Constitution Avenue NW... EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Enforcement of the Attestation Process for Attestations... authorized where service is by mail. In the interest of expeditious proceedings, the......

  13. 20 CFR 655.1030 - Service and computation of time.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Fair Labor Standards, Office of the Solicitor, U.S. Department of Labor, 200 Constitution Avenue NW... EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Enforcement of the Attestation Process for Attestations... authorized where service is by mail. In the interest of expeditious proceedings, the......

  14. 20 CFR 655.1030 - Service and computation of time.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Fair Labor Standards, Office of the Solicitor, U.S. Department of Labor, 200 Constitution Avenue NW... EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Enforcement of the Attestation Process for Attestations... authorized where service is by mail. In the interest of expeditious proceedings, the......

  15. Automatic differentiation of C++ codes for large-scale scientific computing.

    SciTech Connect

    Gay, David M.; Bartlett, Roscoe A; Phipps, Eric Todd

    2006-02-01

    We discuss computing first derivatives for models based on elements, such as large-scale finite-element PDE discretizations, implemented in the C++ programming language.We use a hybrid technique of automatic differentiation (AD) and manual assembly, with local element-level derivatives computed via AD and manually summed into the global derivative. C++ templating and operator overloading work well for both forward- and reverse-mode derivative computations. We found that AD derivative computations compared favorably in time to finite differencing for a scalable finite-element discretization of a convection-diffusion problem in two dimensions.

  16. Steps to Opening Scientific Inquiry: Pre-Service Teachers' Practicum Experiences with a New Support Framework

    ERIC Educational Resources Information Center

    Rees, Carol; Pardo, Richard; Parker, Jennifer

    2013-01-01

    This qualitative multiple-comparative case study investigates (1) The reported experiences and impressions of four pre-service teachers (PTs) on practicum placement in four different classrooms (grades 1-9) where a new Steps to Inquiry (SI) framework was being utilized to support students conducting open inquiry; (2) The relative dispositions of…

  17. The Economic Crisis and the Scientific, Technical and Cultural Information Services in Mexico.

    ERIC Educational Resources Information Center

    Fernandez de Zamora, Rosa Maria

    1990-01-01

    Describes the effects of economic factors on information services in Mexico. Topics discussed include librarians' salaries; inadequate library budgets; acquisitions in academic libraries; the development of public libraries; library networks; national databases; microcomputers and library automation; library research; effects of devaluation; and…

  18. Architecture for access to a compute intensive image mosaic service in the NVO

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Curkendall, David; Good, John C.; Jacob, Joseph C.; Katz, Daniel S.; Kong, Mihseh; Monkewitz, Serge; Moore, Reagan; Prince, Thomas A.; Williams, Roy E.

    2002-12-01

    The National Virtual Observatory (NVO) will provide on-demand access to data collections, data fusion services and compute intensive applications. The paper describes the development of a framework that will support two key aspects of these objectives: a compute engine that will deliver custom image mosaics, and a "request management system," based on an e-business applications server, for job processing, including monitoring, failover and status reporting. We will develop this request management system to support a diverse range of astronomical requests, including services scaled to operate on the emerging computational grid infrastructure. Data requests will be made through existing portals to demonstrate the system: the NASA/IPAC Extragalactic Database (NED), the On-Line Archive Science Information Services (OASIS) at the NASA/IPAC Infrared Science Archive (IRSA); the Virtual Sky service at Caltech's Center for Advanced Computing Research (CACR), and the yourSky mosaic server at the Jet Propulsion Laboratory (JPL).

  19. A method for computing the reputation of multimedia services through selection and composition

    NASA Astrophysics Data System (ADS)

    Atrey, Pradeep K.; Hossain, M. Anwar; El Saddik, Abdulmotaleb

    2008-01-01

    Multimedia services are usually selected and composed for processing, analyzing and transporting multimedia data over the Internet for end-users. The selection of these services is often performed based on their reputation, which is usually computed based on the feedback provided by the users. The users' feedback bears many problems including the low incentive for providing ratings and the bias towards positive or negative ratings. To overcome the dependency on the user's feedback, this paper presents a method that dynamically computes the reputation of a multimedia service based on its association with other multimedia services in a composition task. The degree of association between any two services is computed by utilizing the statistics of how often they have been composed together, which is used in our method to show the evolution of reputation over a period of time. The experimental results demonstrate the utility of the proposed method.

  20. Computer Aided Reference Services in the Academic Library: Experiences in Organizing and Operating an Online Reference Service.

    ERIC Educational Resources Information Center

    Hoover, Ryan E.

    1979-01-01

    Summarizes the development of the Computer-Aided Reference Services (CARS) division of the University of Utah Libraries' reference department. Development, organizational structure, site selection, equipment, management, staffing and training considerations, promotion and marketing, budget and pricing, record keeping, statistics, and evaluation…

  1. SEMINAR ON COMPUTATIONAL LINGUISTICS. PUBLIC HEALTH SERVICE PUBLICATION NUMBER 1716.

    ERIC Educational Resources Information Center

    PRATT, ARNOLD W.; AND OTHERS, Eds.

    IN OCTOBER 1966 A SEMINAR WAS HELD IN BETHESDA, MARYLAND ON THE USE OF COMPUTERS IN LANGUAGE RESEARCH. THE ORGANIZERS OF THE CONFERENCE, THE CENTER FOR APPLIED LINGUISTICS AND THE NATIONAL INSTITUTES OF HEALTH, ATTEMPTED TO BRING TOGETHER EMINENT REPRESENTATIVES OF THE MAJOR SCHOOLS OF CURRENT LINGUISTIC RESEARCH. THE PAPERS PRESENTED AT THE…

  2. Scientific Fraud.

    ERIC Educational Resources Information Center

    Goodstein, David

    1991-01-01

    A discussion of fraud in the presentation of results of scientific research cites cases looks at variations in the degree of misrepresentation, kinds and intents of fraud, attention given by public agencies (National Institutes of Health, National Science Foundation, Public Health Service), and differences between scientific and civil fraud. (MSE)

  3. The Representation of Anatomical Structures through Computer Animation for Scientific, Educational and Artistic Applications.

    ERIC Educational Resources Information Center

    Stredney, Donald Larry

    An overview of computer animation and the techniques involved in its creation is provided in the introduction to this masters thesis, which focuses on the problems encountered by students in learning the forms and functions of complex anatomical structures and ways in which computer animation can address these problems. The objectives for,…

  4. UNEDF: Advanced Scientific Computing Transforms the Low-Energy Nuclear Many-Body Problem

    SciTech Connect

    Stoitsov, Mario; Nam, Hai Ah; Nazarewicz, Witold; Bulgac, Aurel; Hagen, Gaute; Kortelainen, E. M.; Pei, Junchen; Roche, K. J.; Schunck, N.; Thompson, I.; Vary, J. P.; Wild, S.

    2011-01-01

    The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper illustrates significant milestones accomplished by UNEDF through integration of the theoretical approaches, advanced numerical algorithms, and leadership class computational resources.

  5. Creating science-driven computer architecture: A new path to scientific leadership

    SciTech Connect

    McCurdy, C. William; Stevens, Rick; Simon, Horst; Kramer, William; Bailey, David; Johnston, William; Catlett, Charlie; Lusk, Rusty; Morgan, Thomas; Meza, Juan; Banda, Michael; Leighton, James; Hules, John

    2002-10-14

    This document proposes a multi-site strategy for creating a new class of computing capability for the U.S. by undertaking the research and development necessary to build supercomputers optimized for science in partnership with the American computer industry.

  6. 34 CFR 365.11 - How is the allotment of Federal funds for State independent living (IL) services computed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... independent living (IL) services computed? 365.11 Section 365.11 Education Regulations of the Offices of the... the allotment of Federal funds for State independent living (IL) services computed? (a) The allotment of Federal funds for State IL services for each State is computed in accordance with the...

  7. 34 CFR 365.11 - How is the allotment of Federal funds for State independent living (IL) services computed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... independent living (IL) services computed? 365.11 Section 365.11 Education Regulations of the Offices of the... the allotment of Federal funds for State independent living (IL) services computed? (a) The allotment of Federal funds for State IL services for each State is computed in accordance with the...

  8. 34 CFR 365.11 - How is the allotment of Federal funds for State independent living (IL) services computed?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... independent living (IL) services computed? 365.11 Section 365.11 Education Regulations of the Offices of the... the allotment of Federal funds for State independent living (IL) services computed? (a) The allotment of Federal funds for State IL services for each State is computed in accordance with the...

  9. 34 CFR 365.11 - How is the allotment of Federal funds for State independent living (IL) services computed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... independent living (IL) services computed? 365.11 Section 365.11 Education Regulations of the Offices of the... the allotment of Federal funds for State independent living (IL) services computed? (a) The allotment of Federal funds for State IL services for each State is computed in accordance with the...

  10. 34 CFR 365.11 - How is the allotment of Federal funds for State independent living (IL) services computed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... independent living (IL) services computed? 365.11 Section 365.11 Education Regulations of the Offices of the... the allotment of Federal funds for State independent living (IL) services computed? (a) The allotment of Federal funds for State IL services for each State is computed in accordance with the...

  11. A Compilation of Information on Computer Applications in Nutrition and Food Service.

    ERIC Educational Resources Information Center

    Casbergue, John P.

    Compiled is information on the application of computer technology to nutrition food service. It is designed to assist dieticians and nutritionists interested in applying electronic data processing to food service and related industries. The compilation is indexed by subject area. Included for each subject area are: (1) bibliographic references,…

  12. Education and Training for Computer-Based Reference Services: Review of Training Efforts to Date.

    ERIC Educational Resources Information Center

    Bourne, Charles P.; Robinson, Jo

    1980-01-01

    Discusses issues regarding training for computer-based reference services, including who is to be trained and who is responsible for training, and summarizes the training offered to date by search service suppliers, database suppliers, library schools, and extension programs. Available training materials are also considered. (Author/FM)

  13. Merging Libraries and Computer Centers: Manifest Destiny or Manifestly Deranged? An Academic Services Perspective.

    ERIC Educational Resources Information Center

    Neff, Raymond K.

    1985-01-01

    Details trends in information access, services, packaging, dissemination, and networking, service fees, archival storage devices, and electronic information packaging that could lead to complete mergers of academic libraries and computing centers with shared responsibilities. University of California at Berkeley's comprehensive strategy for…

  14. To the Pacific: An Exploration of Computer-Based Reference Services.

    ERIC Educational Resources Information Center

    Cound, William T.

    In contrast to the usual approach in computer-based reference services, which is to go into a specific data base to retrieve citations to material on a specific, narrowly-defined topic, this report demonstrates how such services could be useful in a broad approach to a complex subject, using an investigation of trends in the world aluminum…

  15. Relationship between Pre-Service Music Teachers' Personality and Motivation for Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Perkmen, Serkan; Cevik, Beste

    2010-01-01

    The main purpose of this study was to examine the relationship between pre-service music teachers' personalities and their motivation for computer-assisted music instruction (CAI). The "Big Five" Model of Personality served as the framework. Participants were 83 pre-service music teachers in Turkey. Correlation analysis revealed that three…

  16. The Religio-Scientific Frameworks of Pre-Service Primary Teachers: An Analysis of Their Influence on Their Teaching of Science

    ERIC Educational Resources Information Center

    Stolberg, Tonie

    2007-01-01

    Scientific and religious ways of thinking are central to an individual's cognitive and cultural ways of making sense of the world. This paper explores what foundational concepts pre-service primary teachers are employing when they teach science. The study measured the attitudes to science and religion of 92 pre-service primary teachers. The…

  17. Pre-Service Science Teachers' Written Argumentation Qualities: From the Perspectives of Socio- Scientific Issues, Epistemic Belief Levels and Online Discussion Environment

    ERIC Educational Resources Information Center

    Isbilir, Erdinc; Cakiroglu, Jale; Ertepinar, Hamide

    2014-01-01

    This study investigated the relationship between pre-service science teachers' written argumentation levels about socio-scientific issues and epistemic belief levels in an online discussion environment. A mixed-methods approach was used: 30 Turkish pre-service science teachers contributed with their written argumentations to four…

  18. Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence.

    PubMed

    Gimeno-Blanes, Francisco J; Blanco-Velasco, Manuel; Barquero-Pérez, Óscar; García-Alberola, Arcadi; Rojo-Álvarez, José L

    2016-01-01

    Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG) analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indices, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indices in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indices which are tackled from the aforementioned viewpoints, namely, heart rate turbulence (HRT), heart rate variability (HRV), and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future. PMID:27014083

  19. Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence

    PubMed Central

    Gimeno-Blanes, Francisco J.; Blanco-Velasco, Manuel; Barquero-Pérez, Óscar; García-Alberola, Arcadi; Rojo-Álvarez, José L.

    2016-01-01

    Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG) analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indices, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indices in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indices which are tackled from the aforementioned viewpoints, namely, heart rate turbulence (HRT), heart rate variability (HRV), and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future. PMID:27014083

  20. The flight telerobotic servicer: From functional architecture to computer architecture

    NASA Technical Reports Server (NTRS)

    Lumia, Ronald; Fiala, John

    1989-01-01

    After a brief tutorial on the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) functional architecture, the approach to its implementation is shown. First, interfaces must be defined which are capable of supporting the known algorithms. This is illustrated by considering the interfaces required for the SERVO level of the NASREM functional architecture. After interface definition, the specific computer architecture for the implementation must be determined. This choice is obviously technology dependent. An example illustrating one possible mapping of the NASREM functional architecture to a particular set of computers which implements it is shown. The result of choosing the NASREM functional architecture is that it provides a technology independent paradigm which can be mapped into a technology dependent implementation capable of evolving with technology in the laboratory and in space.

  1. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    SciTech Connect

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..; Easter, Richard C; Elliott, Scott M.; Ghan, Steven J.; Liu, Xiaohong; Lowrie, Robert B.; Lucas, Donald D.; Ma, Po-lun; Sacks, William J.; Shrivastava, Manish; Singh, Balwinder; Tautges, Timothy J.; Taylor, Mark A.; Vertenstein, Mariana; Worley, Patrick H.

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  2. Multithreaded transactions in scientific computing: New versions of a computer program for kinematical calculations of RHEED intensity oscillations

    NASA Astrophysics Data System (ADS)

    Brzuszek, Marcin; Daniluk, Andrzej

    2006-11-01

    Writing a concurrent program can be more difficult than writing a sequential program. Programmer needs to think about synchronisation, race conditions and shared variables. Transactions help reduce the inconvenience of using threads. A transaction is an abstraction, which allows programmers to group a sequence of actions on the program into a logical, higher-level computation unit. This paper presents multithreaded versions of the GROWTH program, which allow to calculate the layer coverages during the growth of thin epitaxial films and the corresponding RHEED intensities according to the kinematical approximation. The presented programs also contain graphical user interfaces, which enable displaying program data at run-time. New version program summaryTitles of programs:GROWTHGr, GROWTH06 Catalogue identifier:ADVL_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVL_v2_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version:ADVL Does the new version supersede the original program:No Computer for which the new version is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the new version has been tested: Windows 9x, XP, NT Programming language used:Object Pascal Memory required to execute with typical data:More than 1 MB Number of bits in a word:64 bits Number of processors used:1 No. of lines in distributed program, including test data, etc.:20 931 Number of bytes in distributed program, including test data, etc.: 1 311 268 Distribution format:tar.gz Nature of physical problem: The programs compute the RHEED intensities during the growth of thin epitaxial structures prepared using the molecular beam epitaxy (MBE). The computations are based on the use of kinematical diffraction theory [P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, A.S. Arrott, Surf. Sci. 216 (1989) 222. [1

  3. Modelling the Influences of Beliefs on Pre-Service Teachers' Attitudes towards Computer Use

    ERIC Educational Resources Information Center

    Teo, Timothy

    2012-01-01

    The purpose of this study is to examine the pre-service teachers' attitudes toward computers use. The impact of five variables (perceived usefulness, perceived ease of use, subjective norm, facilitating conditions, and technological complexity) on attitude towards computer was assessed. Data were collected from 230 preservice teachers through…

  4. Computing Services Planning, Downsizing, and Organization at the University of Alberta.

    ERIC Educational Resources Information Center

    Beltrametti, Monica

    1993-01-01

    In a six-month period, the University of Alberta (Canada) campus computing services department formulated a strategic plan, and downsized and reorganized to meet financial constraints and respond to changing technology, especially distributed computing. The new department is organized to react more effectively to trends in technology and user…

  5. Investigating Pre-Service Early Childhood Teachers' Attitudes towards the Computer Based Education in Science Activities

    ERIC Educational Resources Information Center

    Yilmaz, Nursel; Alici, Sule

    2011-01-01

    The purpose of this study was to investigate pre-service early childhood teachers' attitudes towards using Computer Based Education (CBE) while implementing science activities. More specifically, the present study examined the effect of different variables such as gender, year in program, experience in preschool, owing a computer, and the…

  6. 77 FR 27263 - Computer Matching Between the Selective Service System and the Department of Education

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... the Computer Matching and Privacy Protection Act of 1988 (Pub. L. 100-503), and the Office of Management and Budget (OMB) Guidelines on the Conduct of Matching Programs (54 FR 25818 (June 19, 1989)), and... Computer Matching Between the Selective Service System and the Department of Education AGENCY:...

  7. "Scientific" Creationism Is Not Based on Scientific Research.

    ERIC Educational Resources Information Center

    Cole, Henry P.; Scott, Eugenie C.

    "Science Citation Index" is a service that lists the contents of over 3,000 of the most important science journals and proceedings. A computer search of the Index was conducted using the terms "creationism,""scientific creationism,""special creation,""biblical creation," as well as related terms. The file searched extended from January 1978 until…

  8. Community Coordinated Modeling Center (CCMC): Using innovative tools and services to support worldwide space weather scientific communities and networks

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.

    2012-12-01

    the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;

  9. Computer assisted vehicle service featuring signature analysis and artificial intelligence

    SciTech Connect

    Boscove, J.A.; Kurtz, H.L.; Prince, J.E.; Wiegand, W.P.

    1989-01-03

    This patent describes a diagnostic method for use in diagnosing a vehicle utilizing a diagnostic system, the vehicle having an on-board computer control system for monitoring and controlling vehicle functions and the diagnostic system including a technician terminal having a diagnostic controller for processing diagnostic signals representative of vehicle conditions the controller having data entry means, data output means and storage means for storing vehicle parameters and diagnostic routines and the technician terminal having a display means for providing instructions for fault repair sequences.

  10. Steps to Opening Scientific Inquiry: Pre-Service Teachers' Practicum Experiences with a New Support Framework

    NASA Astrophysics Data System (ADS)

    Rees, Carol; Pardo, Richard; Parker, Jennifer

    2013-04-01

    This qualitative multiple-comparative case study investigates (1) The reported experiences and impressions of four pre-service teachers (PTs) on practicum placement in four different classrooms (grades 1-9) where a new Steps to Inquiry (SI) framework was being utilized to support students conducting open inquiry; (2) The relative dispositions of the PTs toward conducting open inquiry, as indicated by their core conceptions regarding science, the purpose of education, effective teaching, and the capacity of students. Findings indicate that (1) although there were differences in the experiences of the four PTs, all four had an opportunity to observe and/or facilitate students conducting open inquiry with the SI framework, and after the practicum, all of them reported that they would like to include open inquiry in their own classrooms in the future; (2) one PT already possessed core conceptions indicative of a favorable disposition toward open inquiry before the placement; another altered her core conceptions substantially toward a favorable disposition during the placement; a third altered her conceptions regarding the capacity of students; and one PT maintained core conceptions indicative of a disposition that was not favorable to open inquiry despite the pronouncements that she would like to conduct open inquiry with students in their own future classroom. Possible reasons for the differences in the responses of the four pre-services teachers to the practicum placement are discussed.

  11. A new distributed computing model of mobile spatial information service grid based on mobile agent

    NASA Astrophysics Data System (ADS)

    Tian, Gen; Liu, Miao-long

    2009-10-01

    A new distributed computing model of mobile spatial information service is studied based on grid computing environment. Key technologies are presented in the model, including mobile agent (MA) distributed computing, grid computing, spatial data model, location based service (LBS), global positioning system (GPS), code division multiple access (CDMA), transfer control protocol/internet protocol (TCP/IP), and user datagram protocol (UDP). In order to deal with the narrow bandwidth and instability of the wireless internet, distributed organization of tremendous spatial data, limited processing speed and low memory of mobile devices, a new mobile agent based mobile spatial information service grid (MSISG) architecture is further proposed that has good load balance, high processing efficiency, less network communication and thus suitable for mobile distributed computing environment. It can provide applications of spatial information distributed computing and mobile service. The theories and technologies architecture of MSISG are built originally from the base, including spatial information mobile agent model, distributed grid geographic information system (GIS) server model, mobile agent server model and mobile GIS client model. An application system for MSISG is therefore developed authorship by visual c++ and embedded visual c++. A field test is carried out through this system in Shanghai, and the results show that the proposed model and methods are feasible and adaptable for mobile spatial information service.

  12. A new distributed computing model of mobile spatial information service grid based on mobile agent

    NASA Astrophysics Data System (ADS)

    Tian, Gen; Liu, Miao-long

    2008-10-01

    A new distributed computing model of mobile spatial information service is studied based on grid computing environment. Key technologies are presented in the model, including mobile agent (MA) distributed computing, grid computing, spatial data model, location based service (LBS), global positioning system (GPS), code division multiple access (CDMA), transfer control protocol/internet protocol (TCP/IP), and user datagram protocol (UDP). In order to deal with the narrow bandwidth and instability of the wireless internet, distributed organization of tremendous spatial data, limited processing speed and low memory of mobile devices, a new mobile agent based mobile spatial information service grid (MSISG) architecture is further proposed that has good load balance, high processing efficiency, less network communication and thus suitable for mobile distributed computing environment. It can provide applications of spatial information distributed computing and mobile service. The theories and technologies architecture of MSISG are built originally from the base, including spatial information mobile agent model, distributed grid geographic information system (GIS) server model, mobile agent server model and mobile GIS client model. An application system for MSISG is therefore developed authorship by visual c++ and embedded visual c++. A field test is carried out through this system in Shanghai, and the results show that the proposed model and methods are feasible and adaptable for mobile spatial information service.

  13. Opportunities and challenges of cloud computing to improve health care services.

    PubMed

    Kuo, Alex Mu-Hsing

    2011-01-01

    Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed. PMID:21937354

  14. Opportunities and Challenges of Cloud Computing to Improve Health Care Services

    PubMed Central

    2011-01-01

    Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed. PMID:21937354

  15. Teaching scientific principles through a computer-based, design-centered learning environment

    NASA Astrophysics Data System (ADS)

    Wolfe, Michael Brian

    Research on science instruction indicates that the traditional science classroom is not always effective in improving students' scientific understanding. Physics courses, in particular, do not promote the ability to apply scientific principles for many reasons, based on their focus on procedural problem-solving and lab exercises. In this dissertation, I propose the Designing-to-Learn Architecture (DTLA), a design-centered goal-based scenario (GBS) architecture, theoretically grounded in the literature on design-centered learning environments, goal-based scenarios, intelligent tutoring systems and simulations. The DTLA offers an alternative approach to addressing the issues encountered in the traditional science classroom. The architecture consists of an artifact with associated design goals; components with component options; a simulation; a reference database; and guided tutorials. I describe the design of Goin' Up?, the prototype DTL application, serving as the basis for evaluating the effectiveness of the DTLA. I present results of interview and testing protocols from the formative evaluation of Goin' Up?, suggesting that learning outcomes, though not statistically significant, could be improved through DTLA enhancements informed by usage patterns in software sessions. I conclude with an analysis of the results and suggestions for improvements to the DTLA, including additional components to address reflection, provide support for novice designers, and offer tutorial guidance on the analysis of the artifact.

  16. The Impact of Misspelled Words on Automated Computer Scoring: A Case Study of Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Ha, Minsu; Nehm, Ross H.

    2016-06-01

    Automated computerized scoring systems (ACSSs) are being increasingly used to analyze text in many educational settings. Nevertheless, the impact of misspelled words (MSW) on scoring accuracy remains to be investigated in many domains, particularly jargon-rich disciplines such as the life sciences. Empirical studies confirm that MSW are a pervasive feature of human-generated text and that despite improvements, spell-check and auto-replace programs continue to be characterized by significant errors. Our study explored four research questions relating to MSW and text-based computer assessments: (1) Do English language learners (ELLs) produce equivalent magnitudes and types of spelling errors as non-ELLs? (2) To what degree do MSW impact concept-specific computer scoring rules? (3) What impact do MSW have on computer scoring accuracy? and (4) Are MSW more likely to impact false-positive or false-negative feedback to students? We found that although ELLs produced twice as many MSW as non-ELLs, MSW were relatively uncommon in our corpora. The MSW in the corpora were found to be important features of the computer scoring models. Although MSW did not significantly or meaningfully impact computer scoring efficacy across nine different computer scoring models, MSW had a greater impact on the scoring algorithms for naïve ideas than key concepts. Linguistic and concept redundancy in student responses explains the weak connection between MSW and scoring accuracy. Lastly, we found that MSW tend to have a greater impact on false-positive feedback. We discuss the implications of these findings for the development of next-generation science assessments.

  17. The Impact of Misspelled Words on Automated Computer Scoring: A Case Study of Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Ha, Minsu; Nehm, Ross H.

    2016-01-01

    Automated computerized scoring systems (ACSSs) are being increasingly used to analyze text in many educational settings. Nevertheless, the impact of misspelled words (MSW) on scoring accuracy remains to be investigated in many domains, particularly jargon-rich disciplines such as the life sciences. Empirical studies confirm that MSW are a pervasive feature of human-generated text and that despite improvements, spell-check and auto-replace programs continue to be characterized by significant errors. Our study explored four research questions relating to MSW and text-based computer assessments: (1) Do English language learners (ELLs) produce equivalent magnitudes and types of spelling errors as non-ELLs? (2) To what degree do MSW impact concept-specific computer scoring rules? (3) What impact do MSW have on computer scoring accuracy? and (4) Are MSW more likely to impact false-positive or false-negative feedback to students? We found that although ELLs produced twice as many MSW as non-ELLs, MSW were relatively uncommon in our corpora. The MSW in the corpora were found to be important features of the computer scoring models. Although MSW did not significantly or meaningfully impact computer scoring efficacy across nine different computer scoring models, MSW had a greater impact on the scoring algorithms for naïve ideas than key concepts. Linguistic and concept redundancy in student responses explains the weak connection between MSW and scoring accuracy. Lastly, we found that MSW tend to have a greater impact on false-positive feedback. We discuss the implications of these findings for the development of next-generation science assessments.

  18. VLab: a service oriented architecture for first principles computations of planetary materials properties

    NASA Astrophysics Data System (ADS)

    da Silva, C. R.; da Silveira, P.; Wentzcovitch, R. M.; Pierce, M.; Erlebacher, G.

    2007-12-01

    We present an overview of the VLab, a system developed to handle execution of extensive workflows generated by first principles computations of thermoelastic properties of minerals. The multiplicity (102-3) of tasks derives from sampling of parameter space with variables such as pressure, temperature, strain, composition, etc. We review the algorithms of physical importance that define the system's requirements, its underlying service oriented architecture (SOA), and metadata. The system architecture emerges naturally. The SOA is a collection of web-services providing access to distributed computing nodes, controlling workflow execution, monitoring services, and providing data analyses tools, visualization services, data bases, and authentication services. A usage view diagram is described. We also show snapshots taken from the actual operational procedure in VLab. Research supported by NSF/ITR (VLab)

  19. VLab: A Service Oriented Architecture for Distributed First Principles Materials Computations

    NASA Astrophysics Data System (ADS)

    da Silva, Cesar; da Silveira, Pedro; Wentzcovitch, Renata; Pierce, Marlon; Erlebacher, Gordon

    2008-03-01

    We present an overview of VLab, a system developed to handle execution of extensive workflows generated by first principles computations of thermoelastic properties of minerals. The multiplicity (10^2-3) of tasks derives from sampling of parameter space with variables such as pressure, temperature, strain, composition, etc. We review the algorithms of physical importance that define the system's requirements, its underlying service oriented architecture (SOA), and metadata. The system architecture emerges naturally. The SOA is a collection of web-services providing access to distributed computing nodes, workflow control, and monitoring services, and providing data analysis tools, visualization services, data bases, and authentication services. A usage view diagram is described. We also show snapshots taken from the actual operational procedure in VLab.

  20. Service-Oriented Architecture for NVO and TeraGrid Computing

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Miller, Craig; Williams, Roy; Steenberg, Conrad; Graham, Matthew

    2008-01-01

    The National Virtual Observatory (NVO) Extensible Secure Scalable Service Infrastructure (NESSSI) is a Web service architecture and software framework that enables Web-based astronomical data publishing and processing on grid computers such as the National Science Foundation's TeraGrid. Characteristics of this architecture include the following: (1) Services are created, managed, and upgraded by their developers, who are trusted users of computing platforms on which the services are deployed. (2) Service jobs can be initiated by means of Java or Python client programs run on a command line or with Web portals. (3) Access is granted within a graduated security scheme in which the size of a job that can be initiated depends on the level of authentication of the user.

  1. A Queue Simulation Tool for a High Performance Scientific Computing Center

    NASA Technical Reports Server (NTRS)

    Spear, Carrie; McGalliard, James

    2007-01-01

    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.

  2. IMPLEMENTING SCIENTIFIC SIMULATION CODES HIGHLY TAILORED FOR VECTOR ARCHITECTURES USING CUSTOM CONFIGURABLE COMPUTING MACHINES

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.

    2006-01-01

    The motivation for this work comes from an observation that amidst the push for Massively Parallel (MP) solutions to high-end computing problems such as numerical physical simulations, large amounts of legacy code exist that are highly optimized for vector supercomputers. Because re-hosting legacy code often requires a complete re-write of the original code, which can be a very long and expensive effort, this work examines the potential to exploit reconfigurable computing machines in place of a vector supercomputer to implement an essentially unmodified legacy source code. Custom and reconfigurable computing resources could be used to emulate an original application's target platform to the extent required to achieve high performance. To arrive at an architecture that delivers the desired performance subject to limited resources involves solving a multi-variable optimization problem with constraints. Prior research in the area of reconfigurable computing has demonstrated that designing an optimum hardware implementation of a given application under hardware resource constraints is an NP-complete problem. The premise of the approach is that the general issue of applying reconfigurable computing resources to the implementation of an application, maximizing the performance of the computation subject to physical resource constraints, can be made a tractable problem by assuming a computational paradigm, such as vector processing. This research contributes a formulation of the problem and a methodology to design a reconfigurable vector processing implementation of a given application that satisfies a performance metric. A generic, parametric, architectural framework for vector processing implemented in reconfigurable logic is developed as a target for a scheduling/mapping algorithm that maps an input computation to a given instance of the architecture. This algorithm is integrated with an optimization framework to arrive at a specification of the architecture parameters

  3. Distributed management of scientific projects - An analysis of two computer-conferencing experiments at NASA

    NASA Technical Reports Server (NTRS)

    Vallee, J.; Gibbs, B.

    1976-01-01

    Between August 1975 and March 1976, two NASA projects with geographically separated participants used a computer-conferencing system developed by the Institute for the Future for portions of their work. Monthly usage statistics for the system were collected in order to examine the group and individual participation figures for all conferences. The conference transcripts were analysed to derive observations about the use of the medium. In addition to the results of these analyses, the attitudes of users and the major components of the costs of computer conferencing are discussed.

  4. Thinking and Behaving Scientifically in Computer Science: When Failure is an Option!

    ERIC Educational Resources Information Center

    Venables, Anne; Tan, Grace

    2006-01-01

    In a Finnish study of four different academic disciplines, Ylijoki (2000) found that in Computer Science there was a disparity between the conceptions held by undergraduate students and staff about their discipline; students viewed it as being far more pragmatic and results focused than did their instructors. Not surprisingly, here at our…

  5. SciCADE 95: International conference on scientific computation and differential equations

    SciTech Connect

    1995-12-31

    This report consists of abstracts from the conference. Topics include algorithms, computer codes, and numerical solutions for differential equations. Linear and nonlinear as well as boundary-value and initial-value problems are covered. Various applications of these problems are also included.

  6. Conducting Scientific Research on Learning and Health Behavior Change with Computer-Based Health Games

    ERIC Educational Resources Information Center

    Mayer, Richard E.; Lieberman, Debra A.

    2011-01-01

    This article is a guide for researchers interested in assessing the effectiveness of serious computer-based games (or video games, digital games, or electronic games) intended to improve health and health care. It presents a definition of health games, a rationale for their use, an overview of the current state of research, and recommendations for…

  7. Applying service learning to computer science: attracting and engaging under-represented students

    NASA Astrophysics Data System (ADS)

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Bean, Karen

    2010-09-01

    This article describes a computer science course that uses service learning as a vehicle to accomplish a range of pedagogical and BPC (broadening participation in computing) goals: (1) to attract a diverse group of students and engage them in outreach to younger students to help build a diverse computer science pipeline, (2) to develop leadership and team skills using experiential techniques, and (3) to develop student attitudes associated with success and retention in computer science. First, we describe the course and how it was designed to incorporate good practice in service learning. We then report preliminary results showing a positive impact of the course on all pedagogical goals and discuss the implications of the results for broadening participation in computing.

  8. Leveraging Data Intensive Computing to Support Automated Event Services

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Freeman, Shawn M.; Kuo, Kwo-Sen

    2012-01-01

    A large portion of Earth Science investigations is phenomenon- or event-based, such as the studies of Rossby waves, mesoscale convective systems, and tropical cyclones. However, except for a few high-impact phenomena, e.g. tropical cyclones, comprehensive records are absent for the occurrences or events of these phenomena. Phenomenon-based studies therefore often focus on a few prominent cases while the lesser ones are overlooked. Without an automated means to gather the events, comprehensive investigation of a phenomenon is at least time-consuming if not impossible. An Earth Science event (ES event) is defined here as an episode of an Earth Science phenomenon. A cumulus cloud, a thunderstorm shower, a rogue wave, a tornado, an earthquake, a tsunami, a hurricane, or an EI Nino, is each an episode of a named ES phenomenon," and, from the small and insignificant to the large and potent, all are examples of ES events. An ES event has a finite duration and an associated geolocation as a function of time; its therefore an entity in four-dimensional . (4D) spatiotemporal space. The interests of Earth scientists typically rivet on Earth Science phenomena with potential to cause massive economic disruption or loss of life, but broader scientific curiosity also drives the study of phenomena that pose no immediate danger. We generally gain understanding of a given phenomenon by observing and studying individual events - usually beginning by identifying the occurrences of these events. Once representative events are identified or found, we must locate associated observed or simulated data prior to commencing analysis and concerted studies of the phenomenon. Knowledge concerning the phenomenon can accumulate only after analysis has started. However, except for a few high-impact phenomena. such as tropical cyclones and tornadoes, finding events and locating associated data currently may take a prohibitive amount of time and effort on the part of an individual investigator. And

  9. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  10. Eighth SIAM conference on parallel processing for scientific computing: Final program and abstracts

    SciTech Connect

    1997-12-31

    This SIAM conference is the premier forum for developments in parallel numerical algorithms, a field that has seen very lively and fruitful developments over the past decade, and whose health is still robust. Themes for this conference were: combinatorial optimization; data-parallel languages; large-scale parallel applications; message-passing; molecular modeling; parallel I/O; parallel libraries; parallel software tools; parallel compilers; particle simulations; problem-solving environments; and sparse matrix computations.

  11. Comparison of scientific computing platforms for MCNP4A Monte Carlo calculations

    SciTech Connect

    Hendricks, J.S.; Brockhoff, R.C. . Applied Theoretical Physics Division)

    1994-04-01

    The performance of seven computer platforms is evaluated with the widely used and internationally available MCNP4A Monte Carlo radiation transport code. All results are reproducible and are presented in such a way as to enable comparison with computer platforms not in the study. The authors observed that the HP/9000-735 workstation runs MCNP 50% faster than the Cray YMP 8/64. Compared with the Cray YMP 8/64, the IBM RS/6000-560 is 68% as fast, the Sun Sparc10 is 66% as fast, the Silicon Graphics ONYX is 90% as fast, the Gateway 2000 model 4DX2-66V personal computer is 27% as fast, and the Sun Sparc2 is 24% as fast. In addition to comparing the timing performance of the seven platforms, the authors observe that changes in compilers and software over the past 2 yr have resulted in only modest performance improvements, hardware improvements have enhanced performance by less than a factor of [approximately]3, timing studies are very problem dependent, MCNP4Q runs about as fast as MCNP4.

  12. Industrial information database service by personal computer network 'Saitamaken Industrial Information System'

    NASA Astrophysics Data System (ADS)

    Sugahara, Keiji

    Saitamaken Industrial Information System provides onlined database services, which does not rely on computers for the whole operation, but utilizes computers, optical disk files or facsimiles for certain operations as we think fit. It employes the method of providing information for various, outputs, that is, image information is sent from optical disk files to facsimiles, or other information is provided from computers to terminals as well as facsimiles. Locating computers as a core in the system, it enables integrated operations. The system at terminal side was developed separately with functions such as operation by turnkey style, down-loading of statistical information and the newest menu.

  13. Consumer Satisfaction with Telerehabilitation Service Provision of Alternative Computer Access and Augmentative and Alternative Communication

    PubMed Central

    LOPRESTI, EDMUND F.; JINKS, ANDREW; SIMPSON, RICHARD C.

    2015-01-01

    Telerehabilitation (TR) services for assistive technology evaluation and training have the potential to reduce travel demands for consumers and assistive technology professionals while allowing evaluation in more familiar, salient environments for the consumer. Sixty-five consumers received TR services for augmentative and alternative communication or alternative computer access, and consumer satisfaction was compared with twenty-eight consumers who received exclusively in-person services. TR recipients rated their TR services at a median of 6 on a 6-point Likert scale TR satisfaction questionnaire, although individual responses did indicate room for improvement in the technology. Overall satisfaction with AT services was rated highly by both in-person (100% satisfaction) and TR (99% satisfaction) service recipients. PMID:27563382

  14. Consumer Satisfaction with Telerehabilitation Service Provision of Alternative Computer Access and Augmentative and Alternative Communication.

    PubMed

    Lopresti, Edmund F; Jinks, Andrew; Simpson, Richard C

    2015-01-01

    Telerehabilitation (TR) services for assistive technology evaluation and training have the potential to reduce travel demands for consumers and assistive technology professionals while allowing evaluation in more familiar, salient environments for the consumer. Sixty-five consumers received TR services for augmentative and alternative communication or alternative computer access, and consumer satisfaction was compared with twenty-eight consumers who received exclusively in-person services. TR recipients rated their TR services at a median of 6 on a 6-point Likert scale TR satisfaction questionnaire, although individual responses did indicate room for improvement in the technology. Overall satisfaction with AT services was rated highly by both in-person (100% satisfaction) and TR (99% satisfaction) service recipients. PMID:27563382

  15. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    SciTech Connect

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  16. Characterizing the use of health care services delivered via computer networks.

    PubMed Central

    Brennan, P F

    1995-01-01

    OBJECTIVE: Evaluators must develop methods to characterize the use of the rapidly proliferating electronic networks that link patients with health services. In this article the 4-S framework is proposed for characterizing the use of health services delivered via computer networks. The utility of the 4-S framework is illustrated using data derived from a completed, randomized field experiment in which 47 caregivers of persons who had Alzheimer's disease accessed ComputerLink, a special computer network providing information, communication, and decision support to homebound caregivers of persons who have Alzheimer's disease. DESIGN: Human-computer interaction theories characterize the use of health services delivered via computer networks in behavioral terms. The 4-S framework incorporates perspectives based on user (subject) behavior: access to and use of the total system, use of specific services, behavior within single sessions, and enduring behavioral characteristics. The 4-S framework was tested in a secondary analysis of data from over 3,800 uses of ComputerLink. MEASUREMENT: The 4-S framework was instantiated using data obtained from the ComputerLink evaluation. Three types of secondary data were obtained. A passive monitor of access to the computer network provided quantitative information, such as time of day when access occurred, duration of access, and sequence of services used. Full-text messages were available from the public message postings. Subjective appraisal of use was obtained from self-reporting by users at the end of the experiment. RESULTS: The components of the 4-S framework were suitable to characterize operational aspects of ComputerLink use by Alzheimer's disease caregivers. Through application of the 4-S framework, an understanding of both quantitative use and qualitative use emerged (e.g., insight was gained into the differential use of specific services). CONCLUSIONS: The 4-S framework provided a mechanism for combining various measures

  17. Computer simulation and performance assessment of the packet-data service of the Aeronautical Mobile Satellite Service (AMSS)

    NASA Technical Reports Server (NTRS)

    Ferzali, Wassim; Zacharakis, Vassilis; Upadhyay, Triveni; Weed, Dennis; Burke, Gregory

    1995-01-01

    The ICAO Aeronautical Mobile Communications Panel (AMCP) completed the drafting of the Aeronautical Mobile Satellite Service (AMSS) Standards and Recommended Practices (SARP's) and the associated Guidance Material and submitted these documents to ICAO Air Navigation Commission (ANC) for ratification in May 1994. This effort, encompassed an extensive, multi-national SARP's validation. As part of this activity, the US Federal Aviation Administration (FAA) sponsored an effort to validate the SARP's via computer simulation. This paper provides a description of this effort. Specifically, it describes: (1) the approach selected for the creation of a high-fidelity AMSS computer model; (2) the test traffic generation scenarios; and (3) the resultant AMSS performance assessment. More recently, the AMSS computer model was also used to provide AMSS performance statistics in support of the RTCA standardization activities. This paper describes this effort as well.

  18. INFN-Pisa scientific computation environment (GRID, HPC and Interactive Analysis)

    NASA Astrophysics Data System (ADS)

    Arezzini, S.; Carboni, A.; Caruso, G.; Ciampa, A.; Coscetti, S.; Mazzoni, E.; Piras, S.

    2014-06-01

    The INFN-Pisa Tier2 infrastructure is described, optimized not only for GRID CPU and Storage access, but also for a more interactive use of the resources in order to provide good solutions for the final data analysis step. The Data Center, equipped with about 6700 production cores, permits the use of modern analysis techniques realized via advanced statistical tools (like RooFit and RooStat) implemented in multicore systems. In particular a POSIX file storage access integrated with standard SRM access is provided. Therefore the unified storage infrastructure is described, based on GPFS and Xrootd, used both for SRM data repository and interactive POSIX access. Such a common infrastructure allows a transparent access to the Tier2 data to the users for their interactive analysis. The organization of a specialized many cores CPU facility devoted to interactive analysis is also described along with the login mechanism integrated with the INFN-AAI (National INFN Infrastructure) to extend the site access and use to a geographical distributed community. Such infrastructure is used also for a national computing facility in use to the INFN theoretical community, it enables a synergic use of computing and storage resources. Our Center initially developed for the HEP community is now growing and includes also HPC resources fully integrated. In recent years has been installed and managed a cluster facility (1000 cores, parallel use via InfiniBand connection) and we are now updating this facility that will provide resources for all the intermediate level HPC computing needs of the INFN theoretical national community.

  19. An Analysis on the Effect of Computer Self-Efficacy over Scientific Research Self-Efficacy and Information Literacy Self-Efficacy

    ERIC Educational Resources Information Center

    Tuncer, Murat

    2013-01-01

    Present research investigates reciprocal relations amidst computer self-efficacy, scientific research and information literacy self-efficacy. Research findings have demonstrated that according to standardized regression coefficients, computer self-efficacy has a positive effect on information literacy self-efficacy. Likewise it has been detected…

  20. Development of high performance scientific components for interoperability of computing packages

    SciTech Connect

    Gulabani, Teena Pratap

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achieved by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.

  1. The Automatic Parallelisation of Scientific Application Codes Using a Computer Aided Parallelisation Toolkit

    NASA Technical Reports Server (NTRS)

    Ierotheou, C.; Johnson, S.; Leggett, P.; Cross, M.; Evans, E.; Jin, Hao-Qiang; Frumkin, M.; Yan, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. Historically, the lack of a programming standard for using directives and the rather limited performance due to scalability have affected the take-up of this programming model approach. Significant progress has been made in hardware and software technologies, as a result the performance of parallel programs with compiler directives has also made improvements. The introduction of an industrial standard for shared-memory programming with directives, OpenMP, has also addressed the issue of portability. In this study, we have extended the computer aided parallelization toolkit (developed at the University of Greenwich), to automatically generate OpenMP based parallel programs with nominal user assistance. We outline the way in which loop types are categorized and how efficient OpenMP directives can be defined and placed using the in-depth interprocedural analysis that is carried out by the toolkit. We also discuss the application of the toolkit on the NAS Parallel Benchmarks and a number of real-world application codes. This work not only demonstrates the great potential of using the toolkit to quickly parallelize serial programs but also the good performance achievable on up to 300 processors for hybrid message passing and directive-based parallelizations.

  2. 5 CFR 847.905 - How is the present value of an immediate annuity with credit for NAFI service computed?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... annuity with credit for NAFI service computed? 847.905 Section 847.905 Administrative Personnel OFFICE OF... CURRENT AND FORMER EMPLOYEES OF NONAPPROPRIATED FUND INSTRUMENTALITIES Computing the Retirement Annuity....905 How is the present value of an immediate annuity with credit for NAFI service computed? (a)...

  3. An analysis of the structure and evolution of the scientific collaboration network of computer intelligence in games

    NASA Astrophysics Data System (ADS)

    Lara-Cabrera, R.; Cotta, C.; Fernández-Leiva, A. J.

    2014-02-01

    Games constitute a research domain that is attracting the interest of scientists from numerous disciplines. This is particularly true from the perspective of computational intelligence. In order to examine the growing importance of this area in the gaming domain, we present an analysis of the scientific collaboration network of researchers working on computational intelligence in games (CIG). This network has been constructed from bibliographical data obtained from the Digital Bibliography & Library Project (DBLP). We have analyzed from a temporal perspective several properties of the CIG network at the macroscopic, mesoscopic and microscopic levels, studying the large-scale structure, the growth mechanics, and collaboration patterns among other features. Overall, computational intelligence in games exhibits similarities with other collaboration networks such as for example a log-normal degree distribution and sub-linear preferential attachment for new authors. It also has distinctive features, e.g. the number of papers co-authored is exponentially distributed, the internal preferential attachment (new collaborations among existing authors) is linear, and fidelity rates (measured as the relative preference for publishing with previous collaborators) grow super-linearly. The macroscopic and mesoscopic evolution of the network indicates the field is very active and vibrant, but it is still at an early developmental stage. We have also analyzed communities and central nodes and how these are reflected in research topics, thus identifying active research subareas.

  4. An Architecture and Supporting Environment of Service-Oriented Computing Based-On Context Awareness

    NASA Astrophysics Data System (ADS)

    Ma, Tianxiao; Wu, Gang; Huang, Jun

    Service-oriented computing (SOC) is emerging to be an important computing paradigm of the next future. Based on context awareness, this paper proposes an architecture of SOC. A definition of the context in open environments such as Internet is given, which is based on ontology. The paper also proposes a supporting environment for the context-aware SOC, which focus on services on-demand composition and context-awareness evolving. A reference implementation of the supporting environment based on OSGi[11] is given at last.

  5. Enabling Water Quality Management Decision Support and Public Outreach Using Cloud-Computing Services

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Scanlon, B. R.; Uhlman, K.

    2013-12-01

    Watershed management is a participatory process that requires collaboration among multiple groups of people. Environmental decision support systems (EDSS) have long been used to support such co-management and co-learning processes in watershed management. However, implementing and maintaining EDSS in-house can be a significant burden to many water agencies because of budget, technical, and policy constraints. Basing on experiences from several web-GIS environmental management projects in Texas, we showcase how cloud-computing services can help shift the design and hosting of EDSS from the traditional client-server-based platforms to be simple clients of cloud-computing services.

  6. Computer-mediated scaffolding for collaborative argumentation on socio-scientific issues

    NASA Astrophysics Data System (ADS)

    Rosborough, David

    Socioscientific Issues (SSI) education attempts to engage students in informal argumentation on controversial socioscientific issues. In this thesis, a computer-supported collaborative learning (CSCL) tool to support and scaffold student argumentation, called ArgueMint, is designed and implemented. A design research study was undertaken to examine how the software was used by pairs of students in a face-to-face setting, and to improve its usefulness and usability. Written output and transcripts were analysed for evidence of good argumentation, aspects of socioscientific inquiry and collaboration, and usability. The students in the study tended to consider multiple perspectives and support claims made in their argument, while they did not tend to consistently identify weaknesses in their arguments. Proposed directions for further development of ArgueMint, as well as questions for further research, are identified.

  7. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    NASA Astrophysics Data System (ADS)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  8. Three-dimensional dynamics of scientific balloon systems in response to sudden gust loadings. [including a computer program user manual

    NASA Technical Reports Server (NTRS)

    Dorsey, D. R., Jr.

    1975-01-01

    A mathematical model was developed of the three-dimensional dynamics of a high-altitude scientific research balloon system perturbed from its equilibrium configuration by an arbitrary gust loading. The platform is modelled as a system of four coupled pendula, and the equations of motion were developed in the Lagrangian formalism assuming a small-angle approximation. Three-dimensional pendulation, torsion, and precessional motion due to Coriolis forces are considered. Aerodynamic and viscous damping effects on the pendulatory and torsional motions are included. A general model of the gust field incident upon the balloon system was developed. The digital computer simulation program is described, and a guide to its use is given.

  9. Applying analytic hierarchy process to assess healthcare-oriented cloud computing service systems.

    PubMed

    Liao, Wen-Hwa; Qiu, Wan-Li

    2016-01-01

    Numerous differences exist between the healthcare industry and other industries. Difficulties in the business operation of the healthcare industry have continually increased because of the volatility and importance of health care, changes to and requirements of health insurance policies, and the statuses of healthcare providers, which are typically considered not-for-profit organizations. Moreover, because of the financial risks associated with constant changes in healthcare payment methods and constantly evolving information technology, healthcare organizations must continually adjust their business operation objectives; therefore, cloud computing presents both a challenge and an opportunity. As a response to aging populations and the prevalence of the Internet in fast-paced contemporary societies, cloud computing can be used to facilitate the task of balancing the quality and costs of health care. To evaluate cloud computing service systems for use in health care, providing decision makers with a comprehensive assessment method for prioritizing decision-making factors is highly beneficial. Hence, this study applied the analytic hierarchy process, compared items related to cloud computing and health care, executed a questionnaire survey, and then classified the critical factors influencing healthcare cloud computing service systems on the basis of statistical analyses of the questionnaire results. The results indicate that the primary factor affecting the design or implementation of optimal cloud computing healthcare service systems is cost effectiveness, with the secondary factors being practical considerations such as software design and system architecture. PMID:27441149

  10. VisPortal: Increasing Scientific Productivity by Simplifying Access to and Use of Remote Computational Resources

    SciTech Connect

    Siegerist, Cristina; Shalf, John; Bethel, E. Wes

    2004-01-01

    Our goal is to simplify and streamline the process of using remotely located visual data analysis software tools. This discussion presents an example of an easy-to-use interface that mediates access to and use of diverse and powerful visual data analysis resources. The interface is presented via a standard web browser, which is ubiquitous and a part of every researchers work environment. Through the web interface, a few mouse clicks are all that is needed to take advantage of powerful, remotely located software resources. The VisPortal project is the software that provides diverse services to remotely located users through their web browser. Using standard Globus-grid middleware and off-the-shelf web automation, the VisPortal hides the underlying complexity of resource selection and distributed application management. The portal automates complex workflows that would otherwise require a substantial amount of manual effort on the part of the researcher. With a few mouse clicks, a researcher can quickly perform complex tasks like creating MPEG movies, scheduling file transfers, launching components of a distributed application, and accessing specialized resources.

  11. A Framework for Safe Composition of Heterogeneous SOA Services in a Pervasive Computing Environment with Resource Constraints

    ERIC Educational Resources Information Center

    Reyes Alamo, Jose M.

    2010-01-01

    The Service Oriented Computing (SOC) paradigm, defines services as software artifacts whose implementations are separated from their specifications. Application developers rely on services to simplify the design, reduce the development time and cost. Within the SOC paradigm, different Service Oriented Architectures (SOAs) have been developed.…

  12. A Computational Unification of Scientific Law:. Spelling out a Universal Semantics for Physical Reality

    NASA Astrophysics Data System (ADS)

    Marcer, Peter J.; Rowlands, Peter

    2013-09-01

    The principal criteria Cn (n = 1 to 23) and grammatical production rules are set out of a universal computational rewrite language spelling out a semantic description of an emergent, self-organizing architecture for the cosmos. These language productions already predicate: (1) Einstein's conservation law of energy, momentum and mass and, subsequently, (2) with respect to gauge invariant relativistic space time (both Lorentz special & Einstein general); (3) Standard Model elementary particle physics; (4) the periodic table of the elements & chemical valence; and (5) the molecular biological basis of the DNA / RNA genetic code; so enabling the Cybernetic Machine specialist Groups Mission Statement premise;** (6) that natural semantic language thinking at the higher level of the self-organized emergent chemical molecular complexity of the human brain (only surpassed by that of the cosmos itself!) would be realized (7) by this same universal semantic language via (8) an architecture of a conscious human brain/mind and self which, it predicates consists of its neural / glia and microtubule substrates respectively, so as to endow it with; (9) the intelligent semantic capability to be able to specify, symbolize, spell out and understand the cosmos that conceived it; and (10) provide a quantum physical explanation of consciousness and of how (11) the dichotomy between first person subjectivity and third person objectivity or `hard problem' is resolved.

  13. The Remote NetCDF Invocation (RNI) middleware platform. Making Scientific Datasets Available for Ubiquitous Computing.

    NASA Astrophysics Data System (ADS)

    Zednik, S. T.; Garcia, J. H.; Fox, P.; West, P.

    2007-12-01

    Large holding of NetCDF data, such as in the Earth System Grid (ESG) or the Community Spectro-Polarimetric Analysis Center (CSAC) are vast repositories of data, making it if not impossible, but impractical for users to download and replicate the complete database. Furthermore, each individual dataset is a combination of hundreds of individual NetCDF files. Therefore requesting such dataset for analysis is an expensive transaction for individuals seeking ubiquitous computing. Since the current state of networks can provide for access to individual pieces of the dataset with enough reliability and speed, we seek a solution that will avoid the bulk download of the dataset required a priori, and will instead request needed portions of the dataset just-in-time. In order to achieve this, we modify the NetCDF C library to execute Remote NetCDF Invocation (RNI), that is, to operate on remote dataset, over HTTPS and gsiFTP protocols, individual NetCDF Application Programming Interface (API) calls as if they were local. This mechanism resembles the well known Remote Procedure Call (RPC) yet it radically differs on the binding between local and remote operations. Our design is based on the extensibility mechanism provided by the popular OPeNDAP Back-End Server (BES) middleware platform with Globus GridFTP and Apache modules acting as the proxy transport mechanism (binding) between the local and remote transactions. This paper describes the architecture as well as how we address the technical challenges for the complete system.

  14. ODI - Portal, Pipeline, and Archive (ODI-PPA): a web-based astronomical compute archive, visualization, and analysis service

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Harbeck, Daniel R.; Boroson, Todd; Liu, Wilson; Kotulla, Ralf; Shaw, Richard; Henschel, Robert; Rajagopal, Jayadev; Stobie, Elizabeth; Knezek, Patricia; Martin, R. Pierre; Archbold, Kevin

    2014-07-01

    The One Degree Imager-Portal, Pipeline, and Archive (ODI-PPA) is a web science gateway that provides astronomers a modern web interface that acts as a single point of access to their data, and rich computational and visualization capabilities. Its goal is to support scientists in handling complex data sets, and to enhance WIYN Observatory's scientific productivity beyond data acquisition on its 3.5m telescope. ODI-PPA is designed, with periodic user feedback, to be a compute archive that has built-in frameworks including: (1) Collections that allow an astronomer to create logical collations of data products intended for publication, further research, instructional purposes, or to execute data processing tasks (2) Image Explorer and Source Explorer, which together enable real-time interactive visual analysis of massive astronomical data products within an HTML5 capable web browser, and overlaid standard catalog and Source Extractor-generated source markers (3) Workflow framework which enables rapid integration of data processing pipelines on an associated compute cluster and users to request such pipelines to be executed on their data via custom user interfaces. ODI-PPA is made up of several light-weight services connected by a message bus; the web portal built using Twitter/Bootstrap, AngularJS and jQuery JavaScript libraries, and backend services written in PHP (using the Zend framework) and Python; it leverages supercomputing and storage resources at Indiana University. ODI-PPA is designed to be reconfigurable for use in other science domains with large and complex datasets, including an ongoing offshoot project for electron microscopy data.

  15. Customer Service: What I Learned When I Bought My New Computer

    ERIC Educational Resources Information Center

    Neugebauer, Roger

    2009-01-01

    In this article, the author relates that similar to the time he bought his new computer, he had the opportunity to experience poor customer service when he and his wife signed their child up for a preschool program. They learned that the staff at the preschool didn't want parents looking over their shoulders and questioning their techniques. He…

  16. The ALL-OUT Library; A Design for Computer-Powered, Multidimensional Services.

    ERIC Educational Resources Information Center

    Sleeth, Jim; LaRue, James

    1983-01-01

    Preliminary description of design of electronic library and home information delivery system highlights potentials of personal computer interface program (applying for service, assuring that users are valid, checking for measures, searching, locating titles) and incorporation of concepts used in other information systems (security checks,…

  17. A Comparison of Postsecondary Students with Disabilities and Service Providers: Views about Computer and Information Technologies.

    ERIC Educational Resources Information Center

    Fichten, Catherine S.; Barile, Maria; Asuncion, Jennison; Judd, Darlene; Alapin, Iris; Reid, Evelyn; Lavers, Jason; Genereux, Christian; Guimont, Jean-Pierre; Schipper, Fay

    This report discusses a study involving 37 Canadian college and university students with disabilities and 30 Disabled Student Services (DSS) personnel that explored the use of computers in postsecondary education. Students were enrolled in community and junior colleges, universities, and postsecondary distance education institutions. Results…

  18. Deploying the Win TR-20 computational engine as a web service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite its simplicity and limitations, the runoff curve number method remains a widely-used hydrologic modeling tool, and its use through the USDA Natural Resources Conservation Service (NRCS) computer application WinTR-20 is expected to continue for the foreseeable future. To facilitate timely up...

  19. Investigation of Pre-Service Physical Education Teachers' Attitudes Towards Computer Technologies (Case of Turkey)

    ERIC Educational Resources Information Center

    Can, Suleyman

    2015-01-01

    Elicitation of pre-service physical education teachers' attitudes towards computer technologies seems to be of great importance to satisfy the conditions to be met for the conscious and effective use of the technologies required by the age to be used in educational settings. In this respect, the purpose of the present study is to investigate…

  20. Changes in Pre-Service Teachers' Algebraic Misconceptions by Using Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Lin, ByCheng-Yao; Ko, Yi-Yin; Kuo, Yu-Chun

    2014-01-01

    In order to carry out current reforms regarding algebra and technology in elementary school mathematics successfully, pre-service elementary mathematics teachers must be equipped with adequate understandings of algebraic concepts and self-confidence in using computers for their future teaching. This paper examines the differences in preservice…

  1. 14 CFR 13.85 - Filing, service and computation of time.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Filing, service and computation of time. 13.85 Section 13.85 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES Orders of Compliance Under the Hazardous Materials Transportation Act § 13.85...

  2. 29 CFR 500.220 - Service of determinations and computation of time.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Service of determinations and computation of time. 500.220 Section 500.220 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS MIGRANT AND SEASONAL AGRICULTURAL WORKER PROTECTION Administrative Proceedings...

  3. 29 CFR 500.220 - Service of determinations and computation of time.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Service of determinations and computation of time. 500.220 Section 500.220 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS MIGRANT AND SEASONAL AGRICULTURAL WORKER PROTECTION Administrative Proceedings...

  4. Enhancing User Satisfaction with University Computing Center Services. IR Applications, Volume 13, July 31, 2007

    ERIC Educational Resources Information Center

    Liu, Chung-Tzer; Du, Timon C.; Kuo, Fonchu

    2007-01-01

    To provide quality education, a university needs to make available a well-equipped computing center. However, such centers are expensive, and their provision is a problem for administrators when budgets are tight. Hence, it is important that money be invested in services that will enhance user satisfaction the most. This study explores the…

  5. Pre-Service Teachers' Opinions about the Course on Scientific Research Methods and the Levels of Knowledge and Skills They Gained in This Course

    ERIC Educational Resources Information Center

    Tosun, Cemal

    2014-01-01

    The purpose of this study was to ascertain whether the pre-service teachers taking the Scientific Research Methods course attained basic research knowledge and skills. In addition, the impact of the process, which is followed while implementing the course, on the students' anxiety and attitude during the course is examined. Moreover, the…

  6. Model-Driven Development for scientific computing. An upgrade of the RHEEDGr program

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2009-11-01

    Model-Driven Engineering (MDE) is the software engineering discipline, which considers models as the most important element for software development, and for the maintenance and evolution of software, through model transformation. Model-Driven Architecture (MDA) is the approach for software development under the Model-Driven Engineering framework. This paper surveys the core MDA technology that was used to upgrade of the RHEEDGR program to C++0x language standards. New version program summaryProgram title: RHEEDGR-09 Catalogue identifier: ADUY_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 21 263 No. of bytes in distributed program, including test data, etc.: 1 266 982 Distribution format: tar.gz Programming language: Code Gear C++ Builder Computer: Intel Core Duo-based PC Operating system: Windows XP, Vista, 7 RAM: more than 1 MB Classification: 4.3, 7.2, 6.2, 8, 14 Does the new version supersede the previous version?: Yes Nature of problem: Reflection High-Energy Electron Diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the Molecular Beam Epitaxy (MBE). The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. Solution method: The calculations are based on the use of a dynamical diffraction theory in

  7. The Earth Exploration Toolbook and DLESE Data Services Workshops: Facilitating the Use of Geoscience Data to Convey Scientific Concepts to Students

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Dahlman, L.; McAuliffe, C.; Domenico, B.; Taber, M. R.

    2005-12-01

    Although Earth science data and tools are officially freely available to the public, specific data are generally difficult to find, and are often provided in formats that are difficult to use. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) and DLESE (Digital Library for Earth Systems Education) Data Services (http://www.dlese.org/cms/dataservices/) projects are working to facilitate the use of these data and analysis tools by teachers and students, and can serve as mechanisms, facilitated by eGY, for extending the reach of data resulting from the various I*Y scientific efforts. The EET gives educators and students an easy way to learn how to use Earth science data and data analysis tools for learning. Modules (called chapters) in the EET provide step-by-step instructions for accessing and analyzing Earth science datasets within the context of compelling case studies. Each chapter also provides pedagogical information to help the teacher use the data with their students. To introduce datasets and analysis tools to teachers, and to encourage them to use them with their students, the EET team provides telecon-online teacher professional development workshops. During these workshops teachers are guided through the use of a specific EET chapter. When a workshop is complete, participants have the software and data they have worked with installed and available on their own computers. We have run 17 of these workshops reaching over 230 teachers. New EET chapters can be developed through the use of an EET chapter template. The template provides a mechanism by which those outside the project can make their datasets and data analysis tools more accessible to teachers and students, and assures that new chapters are consistent with the EET format and that users have access to the support they need. The development of new EET chapters is facilitated through the DLESE Data Services Workshops. During these workshops data providers, tool developers, scientists

  8. TimeSet: A computer program that accesses five atomic time services on two continents

    NASA Technical Reports Server (NTRS)

    Petrakis, P. L.

    1993-01-01

    TimeSet is a shareware program for accessing digital time services by telephone. At its initial release, it was capable of capturing time signals only from the U.S. Naval Observatory to set a computer's clock. Later the ability to synchronize with the National Institute of Standards and Technology was added. Now, in Version 7.10, TimeSet is able to access three additional telephone time services in Europe - in Sweden, Austria, and Italy - making a total of five official services addressable by the program. A companion program, TimeGen, allows yet another source of telephone time data strings for callers equipped with TimeSet version 7.10. TimeGen synthesizes UTC time data strings in the Naval Observatory's format from an accurately set and maintained DOS computer clock, and transmits them to callers. This allows an unlimited number of 'freelance' time generating stations to be created. Timesetting from TimeGen is made feasible by the advent of Becker's RighTime, a shareware program that learns the drift characteristics of a computer's clock and continuously applies a correction to keep it accurate, and also brings .01 second resolution to the DOS clock. With clock regulation by RighTime and periodic update calls by the TimeGen station to an official time source via TimeSet, TimeGen offers the same degree of accuracy within the resolution of the computer clock as any official atomic time source.

  9. A Comparative Study of Scientific Publications in Health Care Sciences and Services from Mainland China, Taiwan, Japan, and India (2007–2014)

    PubMed Central

    Lv, Yipeng; Tang, Bihan; Liu, Xu; Xue, Chen; Liu, Yuan; Kang, Peng; Zhang, Lulu

    2015-01-01

    In this study, we aimed to compare the quantity and quality of publications in health care sciences and services journals from the Chinese mainland, Taiwan, Japan, and India. Journals in this category of the Science Citation Index Expanded were included in the study. Scientific papers were retrieved from the Web of Science online database. Quality was measured according to impact factor, citation of articles, number of articles published in top 10 journals, and the 10 most popular journals by country (area). In the field of health care sciences and services, the annual incremental rates of scientific articles published from 2007 to 2014 were higher than rates of published scientific articles in all fields. Researchers from the Chinese mainland published the most original articles and reviews and had the highest accumulated impact factors, highest total article citations, and highest average citation. Publications from India had the highest average impact factor. In the field of health care sciences and services, China has made remarkable progress during the past eight years in the annual number and percentage of scientific publications. Yet, there is room for improvement in the quantity and quality of such articles. PMID:26712774

  10. The Effects of Mentored Problem-Based STEM Teaching on Pre-Service Elementary Teachers: Scientific Reasoning and Attitudes Toward STEM Subjects

    NASA Astrophysics Data System (ADS)

    Caliendo, Julia C.

    Problem-based learning in clinical practice has become an integral part of many professional preparation programs. This quasi-experimental study compared the effect of a specialized 90-hour field placement on elementary pre-service teachers' scientific reasoning and attitudes towards teaching STEM (science, technology, engineering, and math) subjects. A cohort of 53 undergraduate elementary education majors, concurrent to their enrollment in science and math methods classes, were placed into one of two clinical practice experiences: (a) a university-based, problem-based learning (PBL), STEM classroom, or (b) a traditional public school classroom. Group gain scores on the Classroom Test of Scientific Reasoning (CTSR) and the Teacher Efficacy and Attitudes Toward STEM Survey-Elementary Teachers (T-STEM) survey were calculated. A MANCOVA revealed that there was a significant difference in gain scores between the treatment and comparison groups' scientific reasoning (p = .011) and attitudes towards teaching STEM subjects (p = .004). The results support the hypothesis that the pre-service elementary teachers who experienced STEM mentoring in a PBL setting will have an increase in their scientific reasoning and produce positive attitudes towards teaching STEM subjects. In addition, the results add to the existing research suggesting that elementary pre-service teachers require significant academic preparation and mentored support in STEM content.

  11. A computer-assisted quality assurance system for an emergency medical service.

    PubMed

    Stewart, R D; Burgman, J; Cannon, G M; Paris, P M

    1985-01-01

    A busy urban emergency medical service answering more than 50,000 calls each year developed a plan for quality assurance using a computer-assisted model designed to employ a full-time quality assurance officer whose work was supplemented with computer evaluation of EMS field reports. The development of standardized reporting formats, protocols and computer programs enabled a significant improvement in detection of errors of documentation and patient care. Investigated cases rose dramatically in the month following implementation of the system, from five patient care errors per month to 35 (P less than .05), and from 50 documentation errors to 265 per month (P less than .05). Our experience indicates that computer-assisted evaluation of field performance, as judged by prehospital records, is a useful tool to ensure standards in patient care and EMS recordkeeping. PMID:3964999

  12. Computer-Based Information Services for Education and the Social Sciences in New Zealand: A Review of Recent Developments.

    ERIC Educational Resources Information Center

    Pickens, Keith

    1990-01-01

    Describes the development of computer-based information services in New Zealand for education and the social sciences. Highlights include national systems; the influence of personal computer technology on the development of information services; the lack of a national information policy; and the lack of standardized software. (13 references) (LRW)

  13. Pre-Service English Language Teachers' Perceptions of Computer Self-Efficacy and General Self-Efficacy

    ERIC Educational Resources Information Center

    Topkaya, Ece Zehir

    2010-01-01

    The primary aim of this study is to investigate pre-service English language teachers' perceptions of computer self-efficacy in relation to different variables. Secondarily, the study also explores the relationship between pre-service English language teachers' perceptions of computer self-efficacy and their perceptions of general self-efficacy.…

  14. 22 CFR 19.4 - Special rules for computing creditable service for purposes of payments to former spouses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Special rules for computing creditable service for purposes of payments to former spouses. 19.4 Section 19.4 Foreign Relations DEPARTMENT OF STATE... DISABILITY SYSTEM § 19.4 Special rules for computing creditable service for purposes of payments to...

  15. 22 CFR 19.4 - Special rules for computing creditable service for purposes of payments to former spouses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Special rules for computing creditable service for purposes of payments to former spouses. 19.4 Section 19.4 Foreign Relations DEPARTMENT OF STATE... DISABILITY SYSTEM § 19.4 Special rules for computing creditable service for purposes of payments to...

  16. 22 CFR 19.4 - Special rules for computing creditable service for purposes of payments to former spouses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Special rules for computing creditable service for purposes of payments to former spouses. 19.4 Section 19.4 Foreign Relations DEPARTMENT OF STATE... DISABILITY SYSTEM § 19.4 Special rules for computing creditable service for purposes of payments to...

  17. 22 CFR 19.4 - Special rules for computing creditable service for purposes of payments to former spouses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Special rules for computing creditable service for purposes of payments to former spouses. 19.4 Section 19.4 Foreign Relations DEPARTMENT OF STATE... DISABILITY SYSTEM § 19.4 Special rules for computing creditable service for purposes of payments to...

  18. An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Little, M. M.

    2013-12-01

    NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.

  19. Pacesetters in the Computer Age of Nursing: Service, Education and Research

    PubMed Central

    Hott, Jacqueline Rose; O'Donohue, Nancy; Hart, Julianne M.; Lombardi, Gloria; Abbey, June C.

    1984-01-01

    MARNA, the Mid-Atlantic Regional Nursing Association, a special project grant of the Division of Nursing, U.S. Dept. of HHS, was begun in July, 1981, and has been refunded until August, 1986. A major goal of MARNA is to provide a forum for nursing issues facing its member agencies. The overall purpose of this presentation is to address issues related to the use of computers in nursing service, education and research. By learning from outstanding pacesetters, leaders in their field in the use of computers, collaborative efforts within the region can be enhanced.

  20. Handling the Diversity in the Coming Flood of InSAR Data with the InSAR Scientific Computing Environment

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G. F.; Agram, P. S.; Lavalle, M.; Zebker, H. A.

    2014-12-01

    The NASA ESTO-developed InSAR Scientific Computing Environment (ISCE) provides acomputing framework for geodetic image processing for InSAR sensors that ismodular, flexible, and extensible, enabling scientists to reduce measurementsdirectly from a diverse array of radar satellites and aircraft to newgeophysical products. ISCE can serve as the core of a centralized processingcenter to bring Level-0 raw radar data up to Level-3 data products, but isadaptable to alternative processing approaches for science users interested innew and different ways to exploit mission data. This is accomplished throughrigorous componentization of processing codes, abstraction and generalization ofdata models, and a xml-based input interface with multi-level prioritizedcontrol of the component configurations depending on the science processingcontext. The proposed NASA-ISRO SAR (NISAR) Mission would deliver data ofunprecedented quantity and quality, making possible global-scale studies inclimate research, natural hazards, and Earth's ecosystems. ISCE is planned tobecome a key element in processing projected NISAR data into higher level dataproducts, enabling a new class of analyses that take greater advantage of thelong time and large spatial scales of these new data than current approaches.NISAR would be but one mission in a constellation of radar satellites in thefuture delivering such data. ISCE has been incorporated into two prototypecloud-based systems that have demonstrated its elasticity to addressing largerdata processing problems in a "production" context and its ability to becontrolled by individual science users on the cloud for large data problems.