Science.gov

Sample records for scintillating guides screen

  1. Composite scintillator screen

    SciTech Connect

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  2. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  3. Screen Study Guides.

    ERIC Educational Resources Information Center

    Duncan, Barry

    1969-01-01

    This study guide for Arthur Lipsett's film "Very Nice, Very Nice" is in four parts. First, it describes and evaluates the film, discusses Lipsett's unusual juxtapositions, fast cutting, and fragmented speeches as indications of his satirical intent, and suggests that the only meaningful summation of the film's content is through pattern

  4. Response from inorganic scintillation screens induced by high energetic ions

    NASA Astrophysics Data System (ADS)

    Lieberwirth, A.; Ensinger, W.; Forck, P.; Lederer, S.

    2015-12-01

    Inorganic scintillation screens were irradiated with swift heavy ion beams at GSI accelator facility, using protons up to Uranium ions as projectiles. Beams were extracted from the synchrotron SIS18 with high energy (≈300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was recorded by two different optical setups simultaneously to investigate the light output, profile characteristics and emission spectra. In principle fast extracted beams induce lower light output than slow extracted beams. The output per deposited energy shows a decreasing dependency with respect of the atomic number. Emission spectra showed no significant defects of the materials, neither at irradiation with increasing beam intensity nor during long time irradiation.

  5. Optimization of screening for radioactivity in urine by liquid scintillation.

    SciTech Connect

    Shanks, Sonoya Toyoko; Reese, Robert P.; Preston, Rose T.

    2007-08-01

    Numerous events have or could have resulted in the inadvertent uptake of radionuclides by fairly large populations. Should a population receive an uptake, valuable information could be obtained by using liquid scintillation counting (LSC) techniques to quickly screen urine from a sample of the affected population. This study investigates such LSC parameters as discrimination, quench, volume, and count time to yield guidelines for analyzing urine in an emergency situation. Through analyzing variations of the volume and their relationships to the minimum detectable activity (MDA), the optimum ratio of sample size to scintillating chemical cocktail was found to be 1:3. Using this optimum volume size, the alpha MDA varied from 2100 pCi/L for a 30-second count time to 35 pCi/L for a 1000-minute count time. The typical count time used by the Sandia National Laboratories Radiation Protection Sample Diagnostics program is 30 minutes, which yields an alpha MDA of 200 pCi/L. Because MDA is inversely proportional to the square root of the count time, count time can be reduced in an emergency situation to achieve the desired MDA or response time. Note that approximately 25% of the response time is used to prepare the samples and complete the associated paperwork. It was also found that if the nuclide of interest is an unknown, pregenerated discriminator settings and efficiency calibrations can be used to produce an activity value within a factor of two, which is acceptable for a screening method.

  6. Cerenkov-free scintillation dosimetry in external beam radiotherapy with an air core light guide.

    PubMed

    Lambert, J; Yin, Y; McKenzie, D R; Law, S; Suchowerska, N

    2008-06-01

    Plastic scintillators have many advantages for dosimetry in external beam radiotherapy. The current method of transmitting the scintillation light to a remote detector is through a solid core optical fibre. When exposed in a high energy therapeutic radiotherapy beam this fibre is subject to an unwanted background signal from Cerenkov light which can exceed the scintillation signal at characteristic angles. We have constructed a plastic scintillation dosimeter that uses an air core light guide to transport the light from the scintillator to the light detector. We show that there is sufficient signal propagation in the air core light guide to allow the scintillator signal to be carried outside the primary beam of a radiotherapy linear accelerator and for a dosimeter to be constructed using a scintillator inserted into the end of the light guide. Studies of the background light generated in the air core light guide, as a function of the angle between the beam and the fibre axis, show that there is no characteristic Cerenkov peak generated in the air core. Depth dose measurements using the air core scintillation dosimeter with no correction for Cerenkov are compared to ionization chamber measurements for a 6 MV photon beam and a 9 MeV electron beam. PMID:18490811

  7. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging

    NASA Astrophysics Data System (ADS)

    Trtik, Pavel; Lehmann, Eberhard H.

    2015-07-01

    We demonstrate the feasibility of the production of isotopically-enriched gadolinium oxysulfide scintillator screens for the high spatial-resolution neutron imaging. Approximately 10 g of 157Gd2O2S:Tb was produced in the form of fine powder (particle size approximately 2 ?m). The level of 157Gd enrichment was above 88%. Approximately 2.5 ?m thick 157Gd2O2S:Tb scintillator screens were produced and tested for the absorption power and the light output. The results are compared to the reference screens based on natGd2O2S:Tb. The isotopically enriched screens provided increase by a factor of 3.8 and 3.6 for the absorption power and the light output, respectively. The potential of the scintillator screens based on 157Gd2O2S phosphor for the purpose of the (high-resolution) neutron imaging is discussed.

  8. Screening and Evaluation Tool (SET) Users Guide

    SciTech Connect

    Layne Pincock

    2014-10-01

    This document is the users guide to using the Screening and Evaluation Tool (SET). SET is a tool for comparing multiple fuel cycle options against a common set of criteria and metrics. It does this using standard multi-attribute utility decision analysis methods.

  9. Combinatorial Screening of Advanced Scintillators for High Resolution X-ray Detectors

    SciTech Connect

    Cheng, Shifan; Tao, Dejie; Lynch, Michael; Yuan, Xianglong; Li, Yiqun

    2008-05-12

    The lack of efficient scintillators is a major problem for developing powerful x-ray detectors that are widely used in homeland security, industrial and scientific research. Intematix has developed and applied a high throughput screening process and corresponding crystal growth technology to significantly speed up the discovery process for new efficient scintillators. As a result, Intematix has invented and fabricated three new scintillators both in powder and bulk forms, which possess promising properties such as better radiation hardness and better matching for silicon diode.

  10. Scintillating screens sensitivity and resolution studies for low energy, low intensity beam diagnostics.

    PubMed

    Harasimowicz, Janusz; Cosentino, Luigi; Finocchiaro, Paolo; Pappalardo, Alfio; Welsch, Carsten P

    2010-10-01

    In order to investigate the limits of scintillating screens for beam profile monitoring in the ultra-low energy, ultra-low intensity regime, CsI:Tl, YAG:Ce, and a Tb glass-based scintillating fiber optic plate (SFOP) were tested. The screens response to 200 and 50 keV proton beams with intensities ranging from a few picoampere down to the subfemtoampere region was examined. In the following paper, the sensitivity and resolution studies are presented in detail for CsI:Tl and the SFOP, the two most sensitive screens. In addition, a possible use of scintillators for ultra-low energy antiproton beam monitoring is discussed. PMID:21034082

  11. Ionospheric scintillation by a random phase screen Spectral approach

    NASA Technical Reports Server (NTRS)

    Rufenach, C. L.

    1975-01-01

    The theory developed by Briggs and Parkin, given in terms of an anisotropic gaussian correlation function, is extended to a spectral description specified as a continuous function of spatial wavenumber with an intrinsic outer scale as would be expected from a turbulent medium. Two spectral forms were selected for comparison: (1) a power-law variation in wavenumber with a constant three-dimensional index equal to 4, and (2) Gaussian spectral variation. The results are applied to the F-region ionosphere with an outer-scale wavenumber of 2 per km (approximately equal to the Fresnel wavenumber) for the power-law variation, and 0.2 per km for the Gaussian spectral variation. The power-law form with a small outer-scale wavenumber is consistent with recent F-region in-situ measurements, whereas the gaussian form is mathematically convenient and, hence, mostly used in the previous developments before the recent in-situ measurements. Some comparison with microwave scintillation in equatorial areas is made.

  12. Measurement and Monte Carlo modeling of the spatial response of scintillation screens

    NASA Astrophysics Data System (ADS)

    Pistrui-Maximean, S. A.; Ltang, J. M.; Freud, N.; Koch, A.; Walenta, A. H.; Montarou, G.; Babot, D.

    2007-11-01

    In this article, we propose a detailed protocol to carry out measurements of the spatial response of scintillation screens and to assess the agreement with simulated results. The experimental measurements have been carried out using a practical implementation of the slit method. A Monte Carlo simulation model of scintillator screens, implemented with the toolkit Geant4, has been used to study the influence of the acquisition setup parameters and to compare with the experimental results. An algorithm of global stochastic optimization based on a localized random search method has been implemented to adjust the optical parameters (optical scattering and absorption coefficients). The algorithm has been tested for different X-ray tube voltages (40, 70 and 100 kV). A satisfactory convergence between the results simulated with the optimized model and the experimental measurements is obtained.

  13. Arrays of Segmented, Tapered Light Guides for Use with Large, Planar Scintillation Detectors

    PubMed Central

    Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

    2015-01-01

    Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector’s active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system. PMID:26538685

  14. Energy saving window screen guide device

    SciTech Connect

    Becker, S.L.

    1983-02-22

    The screen or shade for the window is of flexible material so that when in open position it can be pleated. Opposite sides of the screen have tapes sewed on near the edges and male snap fasteners are spaced from each other on the tapes. These fasteners snap into holes in plastic glides which travel along plastic tracks. Either converted by screws or integral with the tracks are angle sealing strips, one flange being on the outside and arranged to prevent air movement from the inside of the screen to the outside, or vice versa, when the screen is closed. Either attached by screws to the track and sealing strip assembly or integral therewith is a mounting rail which is attached by screws to the building or support. A slanting roof is shown having several windows equipped with independently glided screens.

  15. Polycrystalline para-terphenyl scintillator adopted in a β- detecting probe for radio-guided surgery

    NASA Astrophysics Data System (ADS)

    Solfaroli Camillocci, E.; Bellini, F.; Bocci, V.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Morganti, S.; Paramatti, R.; Patera, V.; Pinci, D.; Recchia, L.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Voena, C.

    2015-06-01

    A radio-guided surgery technique exploiting β- emitters is under development. It aims at a higher target-to-background activity ratio implying both a smaller radiopharmaceutical activity and the possibility of extending the technique to cases with a large uptake of surrounding healthy organs. Such technique requires a dedicated intraoperative probe detecting β- radiation. A first prototype has been developed relying on the low density and high light yield of the diphenylbutadiene doped para-therphenyl organic scintillator. The scintillation light produced in a cylindrical crystal, 5 mm in diameter and 3 mm in height, is guided to a photo-multiplier tube by optical fibres. The custom readout electronics is designed to optimize its usage in terms of feedback to the surgeon, portability and remote monitoring of the signal. Tests show that with a radiotracer activity comparable to those administered for diagnostic purposes the developed probe can detect a 0.1 ml cancerous residual of meningioma in a few seconds.

  16. FIELD SCREENING METHODS CATALOG: USER'S GUIDE

    EPA Science Inventory

    The Field Screening Methods Catalog contains a compilation of methods that were identified as being used in EPA Regions. Several methods contain no method performance information, because this information was not available. The Catalog was developed to assist the user in identify...

  17. HYDROCARBON SPILL SCREENING MODEL (HSSM) VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    This users guide describes the Hydrocarbon Spill Screening Model (HSSM). The model is intended for simulation of subsurface releases of light nonaqueous phase liquids (LNAPLs). The model consists of separate modules for LNAPL flow through the vadose zone, spreading in the capil...

  18. Synthesis and Screening of Thin Films in the CeCl3-CeBr3 System for Scintillator Applications

    SciTech Connect

    Matson, Dean W.; Graff, Gordon L.; Male, Jonathan L.; Johnson, Bradley R.; Nie, Zimin; Joly, Alan G.; Olsen, Larry C.

    2010-04-02

    Thin film samples of CeCl3, CeBr3, and combinatorial compositions along the CeCl3-CeBr3 join were produced using thermal evaporation, which is being evaluated as a method for rapid screening of new scintillator materials. The combinatorial thin films were shown to be compositionally reproducible from run-to-run within reasonable limitations. Analytical results suggest a continuous variation in the combinatorial samples in terms of their compositions, crystal structures, and luminescence characteristics.

  19. Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  20. Short Interfering RNA Guide Strand Modifiers from Computational Screening

    PubMed Central

    Onizuka, Kazumitsu; Harrison, Jason G.; Ball-Jones, Alexi A.; Ibarra-Soza, Jos M.; Zheng, Yuxuan; Ly, Diana; Lam, Walter; Mac, Stephanie; Tantillo, Dean J.; Beal, Peter A.

    2013-01-01

    Short interfering RNAs (siRNAs) are promising drug candidates for a wide range of targets including those previously considered undruggable. However, properties associated with the native RNA structure limit drug development and chemical modifications are necessary. Here we describe the structure-guided discovery of functional modifications for the guide strand 5 end using computational screening with the high resolution structure of human Ago2, the key nuclease on the RNA interference pathway. Our results indicate the guide strand 5-end nucleotide need not engage in Watson-Crick (W/C) H-bonding but must fit the general shape of the 5-end binding site in MID/PIWI domains of hAgo2 for efficient knockdown. 1,2,3-Triazol-4-yl bases formed from the CuAAC reaction of azides and 1-ethynylribose, which is readily incorporated into RNA via the phosphoramidite, perform well at the guide strand 5-end. In contrast, purine derivatives with modified Hoogsteen faces or N2 substituents are poor choices for 5-end modifications. Finally, we identified a 1,2,3-triazol-4-yl base incapable of W/C H-bonding that performs well at guide strand position 12, where base pairing to target was expected to be important. This work expands the repertoire of functional nucleotide analogs for siRNAs. PMID:24152142

  1. Modular scintillation camera

    SciTech Connect

    Barrett, H. H.

    1985-04-30

    Improved optical coupling modules to be used in coded-aperture-type radiographic imaging systems. In a first system, a rotating slit coded-aperture is employed between the radioactive object and the module. The module consists of one pair of side-by-side photomultipliers receiving light rays from a scintillation crystal exposed to the object via the coded-aperture. The light rays are guided to the photomultipliers by a mask having a central transverse transparent window, or by a cylindrical lens, the mask or lens being mounted in a light-conveying quartz block assembly providing internal reflections at opposite faces of the assembly. This generates output signals from the photomultipliers which can be utilized to compute one-dimensional coordinate values for restoring the image of the radioactive object on a display screen. In another form of optical coupling module, usable with other types of coded-apertures, four square photomultipliers form a substantially square block and receive light rays from scintillations from a scintillation crystal exposed to the radioactive object via the coded-aperture. The light rays are guided to the photomultipliers by a square mask or a centrally transparent square lens configuration mounted in a light-conveying assembly formed by internally reflecting quartz blocks, the optical rays being directed to the respective photomultipliers so as to generate resultant output signals which can be utilized to compute image coordinate values for two-dimensional representation of the radioactive object being examined.

  2. Experimental validation of Monte Carlo (MANTIS) simulated x-ray response of columnar CsI scintillator screens

    SciTech Connect

    Freed, Melanie; Miller, Stuart; Tang, Katherine; Badano, Aldo

    2009-11-15

    Purpose: MANTIS is a Monte Carlo code developed for the detailed simulation of columnar CsI scintillator screens in x-ray imaging systems. Validation of this code is needed to provide a reliable and valuable tool for system optimization and accurate reconstructions for a variety of x-ray applications. Whereas previous validation efforts have focused on matching of summary statistics, in this work the authors examine the complete point response function (PRF) of the detector system in addition to relative light output values. Methods: Relative light output values and high-resolution PRFs have been experimentally measured with a custom setup. A corresponding set of simulated light output values and PRFs have also been produced, where detailed knowledge of the experimental setup and CsI:Tl screen structures are accounted for in the simulations. Four different screens were investigated with different thicknesses, column tilt angles, and substrate types. A quantitative comparison between the experimental and simulated PRFs was performed for four different incidence angles (0 deg., 15 deg., 30 deg., and 45 deg.) and two different x-ray spectra (40 and 70 kVp). The figure of merit (FOM) used measures the normalized differences between the simulated and experimental data averaged over a region of interest. Results: Experimental relative light output values ranged from 1.456 to 1.650 and were in approximate agreement for aluminum substrates, but poor agreement for graphite substrates. The FOMs for all screen types, incidence angles, and energies ranged from 0.1929 to 0.4775. To put these FOMs in context, the same FOM was computed for 2D symmetric Gaussians fit to the same experimental data. These FOMs ranged from 0.2068 to 0.8029. Our analysis demonstrates that MANTIS reproduces experimental PRFs with higher accuracy than a symmetric 2D Gaussian fit to the experimental data in the majority of cases. Examination of the spatial distribution of differences between the PRFs shows that the main reason for errors between MANTIS and the experimental data is that MANTIS-generated PRFs are sharper than the experimental PRFs. Conclusions: The experimental validation of MANTIS performed in this study demonstrates that MANTIS is able to reliably predict experimental PRFs, especially for thinner screens, and can reproduce the highly asymmetric shape seen in the experimental data. As a result, optimizations and reconstructions carried out using MANTIS should yield results indicative of actual detector performance. Better characterization of screen properties is necessary to reconcile the simulated light output values with experimental data.

  3. Guided-mode resonance assisted directional emission of a wavelength-shifting film for application in scintillation detection.

    PubMed

    Wu, Shuang; Liu, Bo; Zhu, Zhichao; Cheng, Chuanwei; Chen, Hong; Gu, Mu; Chen, Liang; Liu, Jinling; Ouyang, Xiaoping; Xue, Chaofan; Wu, Yanqing

    2016-01-11

    Thin-film luminescent layers as wavelength shifters using in the scintillation detection system suffer with low efficiency due to the total internal reflection and the non-directional emission. In the present work, we design and fabricate a photonic crystal on the surface of LuTaO4:Eu3+ thin-film which is a newly developed luminescent material using in radiation detection systems. The entire structure shows guided-mode resonances with only one TE and TM mode. As a result, the emitting light is effectively extracted. Furthermore, due to only two modes existing in the layer, the directionality of emission is strongly controlled. This result enables the structured LuTaO4:Eu3+ thin-film to be a potential wavelength shifter with high-efficiency. PMID:26832254

  4. About 20% of doctors recommend colorectal screenings per guides

    Cancer.gov

    A study of nearly 1,300 primary care physicians in the United States found that only about 20 percent of those doctors recommend colorectal cancer (CRC) screenings tests to their patients in accordance with current practice guidelines.

  5. Evaluation of powder/granular Gd2O2S:Pr scintillator screens in single photon counting mode under 140 keV excitation

    NASA Astrophysics Data System (ADS)

    David, S.; Georgiou, M.; Loudos, G.; Michail, C.; Fountos, G.; Kandarakis, I.

    2013-01-01

    The aim of this paper is the evaluation of an alternative, low cost solution for the gamma detector in planar imaging. It is based on a powder scintillator, well established in X-ray imaging, and could be further exploited in simultaneous bimodal imaging systems. For this purpose, we have examined the performance of Gd2O2S:Pr powder scintillator, in the form of thick granular screens easily produced in the laboratory by commercially available Gd2O2S:Pr powder. The screen was coupled to a round position sensitive photomultiplier tube (R3292 PSPMT). The system's evaluation was performed in photon counting mode under 99mTc excitation. In all measurements, a general purpose hexagonal parallel collimator was used. Different samples of screens with coating thickness varying from 0.1 g/cm2 to 1.2 g/cm2 were tested. The 0.6 g/cm2 screen, corresponding to ~ 2 mm actual thickness, was found most efficient under 140 keV irradiation. The system`s performance with the proposed screen is reported with the modulation transfer function. Moreover sensitivity, spatial and energy resolution as well as the uniformity response using phantoms were measured. The performance of the proposed screen was compared with two CsI:Tl pixellated crystal arrays with 2 2 3 mm3 and 3 3 5 mm3pixel size. A spatial resolution, of 3 mm FWHM, for a 99mTc line source, was achieved at zero source to collimator distance. In addition, the Gd2O2S:Pr screen showed a slower degradation of the spatial resolution with increasing source to collimator distance e.g at 20 cm, the Gd2O2S:Pr screen showed aq spatial resolution of 8.4 mm while the spatial resolution of the pixellated crystals was 15 mm. Taking into account its easy production, its flexibility due to powder form, the very low cost and the good spatial resolution properties of the proposed alternative detector, powder scintillators could potentially be used for the construction of flexible detector geometries, such as ring type or gamma probes or as a low cost detector solution in educational photon counting imaging applications, complementary to standard X-ray imaging.

  6. Hazard screening application guide. Safety Analysis Report Update Program

    SciTech Connect

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  7. Large-Scale Single-Guide RNA Library Construction and Use for Genetic Screens

    PubMed Central

    Wang, Tim; Lander, Eric S.; Sabatini, David M.

    2016-01-01

    The ability to systematically disrupt genes serves as a powerful tool for understanding their function. The programmable Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system enables efficient targeting of large numbers of genes through the use of single-guide RNA (sgRNA) libraries. In cultured mammalian cells, collections of knockout mutants can be readily generated via transduction of Cas9/sgRNA lentiviral pools, screened for a phenotype of interest, and tracked using high-throughput DNA sequencing. This technique represents the first general method for undertaking systematic loss-of-function genetic screens in mammalian cells. In this chapter, we outline the steps for conducting CRISPR-based screens from the initial library design to final data analysis and provide guidelines for developing an appropriate screening strategy. PMID:26933254

  8. On the response of Y 3Al 5O 12: Ce (YAG: Ce) powder scintillating screens to medical imaging X-rays

    NASA Astrophysics Data System (ADS)

    Kandarakis, I.; Cavouras, D.; Sianoudis, I.; Nikolopoulos, D.; Episkopakis, A.; Linardatos, D.; Margetis, D.; Nirgianaki, E.; Roussou, M.; Melissaropoulos, P.; Kalivas, N.; Kalatzis, I.; Kourkoutas, K.; Dimitropoulos, N.; Louizi, A.; Nomicos, C.; Panayiotakis, G.

    2005-02-01

    The aim of this study was to examine Y 3Al 5O 12:Ce (also known as YAG:Ce) powder scintillator under X-ray imaging conditions. This material shows a very fast scintillation decay time and it has never been used in X-ray medical imaging. In the present study various scintillator layers (screens) with coating thickness ranging from 13 to 166 mg/cm 2 were prepared in our laboratory by sedimentation of Y 3Al 5O 12: Ce powder. Optical emission spectra and light emission efficiency (spectrum area over X-ray exposure) of the layers were measured under X-ray excitation using X-ray tube voltages (80-120 kVp) often employed in general medical radiography and fluoroscopy. Spectral compatibility with various optical photon detectors (photodiodes, photocathodes, charge coupled devices, films) and intrinsic conversion efficiency values were determined using emission spectrum data. In addition, parameters related to X-ray detection, energy absorption efficiency and K-fluorescence characteristic emission were calculated. A theoretical model describing radiation and light transfer through scattering media was used to fit experimental data. Intrinsic conversion efficiency (??0.03-0.05) and light attenuation coefficients (??26.5 cm/g) were derived through this fitting. Y 3Al 5O 12:Ce showed peak emission in the wavelength range 530-550 nm. The light emission efficiency was found to be maximum for the 107 mg/cm 2 layer. Due to its "green" emission spectrum, Y 3Al 5O 12:Ce showed excellent compatibility (of the order of 0.9) with the sensitivity of many currently used photodetectors. Taking into account its very fast response Y 3Al 5O 12:Ce could be considered for application in X-ray imaging especially in various digital detectors.

  9. Experimental study of heavy-ion computed tomography using a scintillation screen and an electron-multiplying charged coupled device camera for human head imaging

    NASA Astrophysics Data System (ADS)

    Muraishi, Hiroshi; Hara, Hidetake; Abe, Shinji; Yokose, Mamoru; Watanabe, Takara; Takeda, Tohoru; Koba, Yusuke; Fukuda, Shigekazu

    2016-03-01

    We have developed a heavy-ion computed tomography (IonCT) system using a scintillation screen and an electron-multiplying charged coupled device (EMCCD) camera that can measure a large object such as a human head. In this study, objective with the development of the system was to investigate the possibility of applying this system to heavy-ion treatment planning from the point of view of spatial resolution in a reconstructed image. Experiments were carried out on a rotation phantom using 12C accelerated up to 430 MeV/u by the Heavy-Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). We demonstrated that the reconstructed image of an object with a water equivalent thickness (WET) of approximately 18 cm was successfully achieved with the spatial resolution of 1 mm, which would make this IonCT system worth applying to the heavy-ion treatment planning for head and neck cancers.

  10. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen.

    PubMed

    Jana, M R; Chung, M; Freemire, B; Hanlet, P; Leonova, M; Moretti, A; Palmer, M; Schwarz, T; Tollestrup, A; Torun, Y; Yonehara, K

    2013-06-01

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and?or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment. PMID:23822337

  11. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,

  12. Imaging performance of a thin Lu2O3:Eu nanophosphor scintillating screen coupled to a high resolution CMOS sensor under X-ray radiographic conditions: comparison with Gd2O2S:Eu conventional phosphor screen

    NASA Astrophysics Data System (ADS)

    Seferis, I.; Michail, C.; Valais, I.; Zeler, J.; Liaparinos, P.; Kalyvas, N.; Fountos, G.; Zych, E.; Kandarakis, I.; Panayiotakis, G.

    2014-03-01

    The purpose of the present study was to experimentally evaluate the imaging characteristics of the Lu2O3:Eu nanophosphor thin screen coupled to a high resolution CMOS sensor under radiographic conditions. Parameters such as the Modulation Transfer Function (MTF), the Normalized Noise Power Spectrum (NNPS) and the Detective Quantum Efficiency (DQE) were investigated at 70 kVp under three exposure levels (20 mAs, 63 mAs and 90 mAs). Since Lu2O3:Eu emits light in the red wavelength range, the imaging characteristics of a 33.3 mg/cm2 Gd2O2S:Eu conventional phosphor screen were also evaluated for comparison purposes. The Lu2O3:Eu nanophosphor powder was produced by the combustion synthesis, using urea as fuel. A scintillating screen of 30.2 mg/cm2 was prepared by sedimentation of the nanophosphor powder on a fused silica substrate. The CMOS/Lu2O3:Eu detector`s imaging characteristics were evaluated using an experimental method proposed by the International Electrotechnical Commission (IEC) guidelines. It was found that the CMOS/Lu2O3:Eu nanophosphor system has higher MTF values compared to the CMOS/Gd2O2S:Eu sensor/screen combination in the whole frequency range examined. For low frequencies (0 to 2 cycles/mm) NNPS values of the CMOS/Gd2O2S:Eu system were found 90% higher compared to the NNPS values of the CMOS/Lu2O3:Eu nanophosphor system, whereas from medium to high frequencies (2 to 13 cycles/mm) were found 40% higher. In contrast with the CMOS/ Gd2O2S:Eu system, CMOS/Lu2O3:Eu nanophosphor system appears to retain high DQE values in the whole frequency range examined. Our results indicate that Lu2O3:Eu nanophosphor is a promising scintillator for further research in digital X-ray radiography.

  13. Biomarker-guided screening of Juzen-taiho-to, an Oriental herbal formulation for immmunostimulation

    PubMed Central

    Takaoka, Anna; Iacovidou, Maria; Hasson, Tal H.; Montenegro, Diego; Li, Xiangming; Tsuji, Moriya; Kawamura, Akira

    2014-01-01

    Juzen-taiho-to (JTT) is an immunostimulatory herbal formulation that is clinically used in East Asia for cancer patients undergoing chemotherapy and radiation. The formulation stimulates various leukocytes, including T, B, and NK cells and macrophages (M?). Although JTT is known to contain numerous compounds with various pharmacological activities, it is not clear which compounds are responsible for the stimulation of individual cell types. Here, we conducted what we call, biomarker-guided screening, to purify compounds responsible for the M? stimulatory activity. To this end, gene expression was analyzed by a DNA array for M? treated with JTT and DMSO (vehicle control), which identified intercellular adhesion molecule 1 (ICAM-1) as a biomarker of M?-stimulation by JTT. A qRT-PCR assay of ICAM-1 was then used to guide the purification of active compounds. The screening resulted in the purification of a glycolipid mixture, containing ?-glucosylceramides. The glycolipid mixture potently stimulated ICAM-1 expression in primary dendritic cells (DC) as well as in primary CD14+ (M?) cells. Identification of this glycolipid mixture opens an opportunity for further studies to understand how plant-derived glycolipids stimulate M? and DC in a safe and effective manner as demonstrated by JTT. PMID:24549928

  14. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  15. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  16. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  17. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  18. Optimization of the Neutron Detector Design Based on the 6LiF/ZnS(Ag) Scintillation Screens for the GAMMA-400 Space Observatory

    NASA Astrophysics Data System (ADS)

    Gnezdilov, I. I.; Dedenko, G. L.; Ibragimov, R. F.; Idalov, V. A.; Kadilin, V. V.; Kaplun, A. A.; Klemetiev, A. V.; Mukhin, V. I.; Taraskin, A. A.; Turin, E. M.; Zaripov, R. N.

    The Neutron Detector (ND) is a new detector sub-system for the future GAMMA-400 space observatory. It aims to complement the instrument's GAMMA-400 electromagnetic calorimeter (CsI(Tl), total depth is 25.0 X0) in identifying cosmic-ray electrons from ? 100 MeV up to 3 TeV. Such electrons are of significant scientific interest, but their identification is complicated by the overwhelmingly more abundant hadronic cosmic rays, hence making significant hadronic rejection power of paramount importance. Particle showers initiated by nuclei in the GAMMA-400 calorimeter have a profile different from an electron-induced electromagnetic cascade, and the hadron rejection power deriving from this difference can be significantly enhanced by making use of the thermal neutron activity at late (>100 ns) times relative to the start of the shower. Indeed hadron-induced showers tend to be accompanied by significantly more neutron activity than electromagnetic showers. In the described ND for capturing thermalized neutrons applied isotope 6Li, which is part of the scintillation screen 6LiF/ZnS(Ag). ND placed are under the electromagnetic calorimeter. The results GEANT4 simulation of the ND shows that ND has high neutron detection efficiency.

  19. Shackleton's Antarctic Adventure: The Greatest Survival Story of All Time. Teacher's Guide To Accompany the Giant-Screen Film.

    ERIC Educational Resources Information Center

    Gibb, Reen

    This teacher's guide was developed to accompany the giant-screen film, "Shackleton's Antarctic Adventure". The activities featured use a multidisciplinary approach and target students ages 7 through 14. Teacher pages include background information and student pages include instructions and additional information for understanding the activity.…

  20. A Guide to Dental Care for the Early and Periodic Screening, Diagnosis, and Treatment Program (EPSDT) Under Medicaid.

    ERIC Educational Resources Information Center

    Lindahl, Roy L.; Young, Wesley O.

    This guide has been developed to assist administrators, providers of dental care, and others involved in carrying out the dental care provisions of the EPSDT program (Early and Periodic Screening, Diagnosis, and Treatment Program). It is intended to assist in the development of programs concerned with the unique characteristics of dental diseases…

  1. T & I--Graphic Arts, Silk Screen Printing. Kit No. 60. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Cope, George

    An instructor's manual and student activity guide on silk screen printing are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry (graphic arts). (This set of materials is one of ninety-two prevocational sets arranged around a cluster of seven vocational offerings: agriculture, home

  2. Taking It to the Pews: A CBPR-Guided HIV Awareness and Screening Project with Black Churches

    ERIC Educational Resources Information Center

    Berkley-Patton, Jannette; Bowe-Thompson, Carole; Bradley-Ewing, Andrea; Hawes, Starlyn; Moore, Erin; Williams, Eric; Martinez, David; Goggin, Kathy

    2010-01-01

    Utilizing a community-based participatory research (CBPR) approach is a potentially effective strategy for exploring the development, implementation, and evaluation of HIV interventions in African American churches. This CBPR-guided study describes a church-based HIV awareness and screening intervention (Taking It to the Pews [TIPS]) that fully

  3. Using adverse outcome pathway analysis to guide development of high-throughput screening assays for thyroid-disruptors

    EPA Science Inventory

    Using Adverse Outcome Pathway Analysis to Guide Development of High-Throughput Screening Assays for Thyroid-Disruptors Katie B. Paul1,2, Joan M. Hedge2, Daniel M. Rotroff4, Kevin M. Crofton4, Michael W. Hornung3, Steven O. Simmons2 1Oak Ridge Institute for Science Education Post...

  4. Taking It to the Pews: A CBPR-Guided HIV Awareness and Screening Project with Black Churches

    ERIC Educational Resources Information Center

    Berkley-Patton, Jannette; Bowe-Thompson, Carole; Bradley-Ewing, Andrea; Hawes, Starlyn; Moore, Erin; Williams, Eric; Martinez, David; Goggin, Kathy

    2010-01-01

    Utilizing a community-based participatory research (CBPR) approach is a potentially effective strategy for exploring the development, implementation, and evaluation of HIV interventions in African American churches. This CBPR-guided study describes a church-based HIV awareness and screening intervention (Taking It to the Pews [TIPS]) that fully…

  5. Scintillation modeling.

    NASA Technical Reports Server (NTRS)

    Fremouw, E. J.; Rino, C. L.

    1972-01-01

    Results of a quantitative attempt to model the scintillation-producing ionospheric irregularities. An empirical model of rms electron-density fluctuation and transverse scale size was employed for this purpose. On the basis of an analysis of diurnal-variation curves for scintillation, it is concluded that in most instances the model will produce better than order-of-magnitude estimates of the strength of scintillation to be expected under average ionospheric conditions. However, a number of significant limitations to the model are noted.

  6. A Guide to Screening for the Early and Periodic Screening, Diagnosis and Treatment Program (EPSDT) Under Medicaid.

    ERIC Educational Resources Information Center

    Frankenburg, William K.; North, A. Frederick, Jr.

    The manual was designed to help public officials, physicians, nurses, and others to plan and implement an Early and Periodic Screening, Diagnosis and Treatment (EPSDT) program under Medicaid. Procedures for carrying out components of an EPSDT program are recommended. Part 1 discusses organization and administration of screening, diagnosis, and

  7. Modeling and prediction of ionospheric scintillation

    NASA Technical Reports Server (NTRS)

    Fremouw, E. J.

    1974-01-01

    Scintillation modeling performed thus far is based on the theory of diffraction by a weakly modulating phase screen developed by Briggs and Parkin (1963). Shortcomings of the existing empirical model for the scintillation index are discussed together with questions of channel modeling, giving attention to the needs of the communication engineers. It is pointed out that much improved scintillation index models may be available in a matter of a year or so.

  8. Focused Decision Support: a Data Mining Tool to Query the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Dataset and Guide Screening Management for the Individual Patient.

    PubMed

    Sharma, Arjun; Hostetter, Jason; Morrison, James; Wang, Kenneth; Siegel, Eliot

    2016-04-01

    The Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial enrolled ~155,000 participants to determine whether certain screening exams reduced mortality from prostate, lung, colorectal, and ovarian cancer. Repurposing the data provides an unparalleled resource for matching patients with the outcomes of demographically or diagnostically comparable patients. A web-based application was developed to query this subset of patient information against a given patient's demographics and risk factors. Analysis of the matched data yields outcome information which can then be used to guide management decisions and imaging software. Prognostic information is also estimated via the proportion of matched patients that progress to cancer. The US Preventative Services Task Force provides screening recommendations for cancers of the breast, colorectal tract, and lungs. There is wide variability in adherence of clinicians to these guidelines and others published by the Fleischner Society and various cancer organizations. Data mining the PLCO dataset for clinical decision support can optimize the use of limited healthcare resources, focusing screening on patients for whom the benefit to risk ratio is the greatest and most efficacious. A data driven, personalized approach to cancer screening maximizes the economic and clinical efficacy and enables early identification of patients in which the course of disease can be improved. Our dynamic decision support system utilizes a subset of the PLCO dataset as a reference model to determine imaging and testing appropriateness while offering prognostic information for various cancers. PMID:26385814

  9. Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens.

    PubMed

    Wang, Tim; Lander, Eric S; Sabatini, David M

    2016-01-01

    The ability to systematically disrupt genes serves as a powerful tool for understanding their function. The programmable CRISPR-Cas9 system enables efficient targeting of large numbers of genes through the use of single guide RNA (sgRNA) libraries. In cultured mammalian cells, collections of knockout mutants can be readily generated by means of transduction of Cas9-sgRNA lentiviral pools, screened for a phenotype of interest, and counted using high-throughput DNA sequencing. This technique represents the first general method for undertaking systematic loss-of-function genetic screens in mammalian cells. Here, we introduce the methodology and rationale for conducting CRISPR-based screens, focusing on distinguishing positive and negative selection strategies. PMID:26933254

  10. Screening for Usher Syndrome: A Hands-On Guide for School Nurses.

    ERIC Educational Resources Information Center

    Houghton, Joan; Coonts, Teresa; Jordan, Beth; Schafer, Jacqueline, Ed.

    This manual was written specifically to help school nurses conduct screenings for Usher syndrome, a genetic condition that involves deafness or hearing loss and the progressive loss of vision. It provides information on the step-by-step process of how to conduct a screening, the actual forms needed for a screening, and resources for referring

  11. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  12. Risk assessment to guide cervical screening strategies in a large Chinese population.

    PubMed

    Zhao, Fang-Hui; Hu, Shang-Ying; Zhang, Qian; Zhang, Xun; Pan, Qin-Jing; Zhang, Wen-Hua; Gage, Julia C; Wentzensen, Nicolas; Castle, Philip E; Qiao, You-Lin; Katki, Hormuzd A; Schiffman, Mark

    2016-06-01

    Three different cervical screening methods [cytology, human papillomavirus(HPV) testing and visual inspection with acetic acid(VIA)] are being considered in China for the national cervical screening program. Comparing risks of CIN3 and cervical cancer (CIN3+) for different results can inform test choice and management guidelines. We evaluated the immediate risk of CIN3+ for different screening results generated from individual and combined tests. We compared tests using a novel statistic designed for this purpose called Mean Risk Stratification (MRS), in a pooled analysis of 17 cross sectional population-based studies of 30,371Chinese women screened with all 3 methods and diagnosed by colposcopically-directed biopsies. The 3 tests combined powerfully distinguished CIN3+ risk; triple-negative screening conferred a risk of 0.01%, while HPV-positive HSIL+ that was VIA-positive yielded a risk of 57.8%. Among the three screening tests, HPV status most strongly stratified CIN3+ risk. Among HPV-positive women, cytology was the more useful second test. In HPV-negative women, the immediate risks of CIN3+ ranged from 0.01% (negative cytology), 0.00% (ASC-US), 1.1% (LSIL), to 6.6 (HSIL+). In HPV-positive women, the CIN3+ risks were 0.9% (negative cytology), 3.6% (ASC-US), 6.3% (LSIL) and 38.5% (HSIL+). VIA results did not meaningful stratify CIN3+ risk among HPV-negative women with negative or ASC-US cytology; however, positive VIA substantially elevated CIN3+ risk for all other, more positive combinations of HPV and cytology compared with a negative VIA. Because all 3 screening tests had independent value in defining risk of CIN3+, different combinations can be optimized as pragmatic strategies in different resource settings. PMID:26800481

  13. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E. (Los Alamos, NM); Fowler, Malcolm M. (Los Alamos, NM)

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  14. The DSM Guided Cannabis Screen (DSM-G-CS): description, reliability, factor structure and empirical scoring with a clinical sample.

    PubMed

    Alexander, Dale; Leung, Patrick

    2011-11-01

    Clinicians need cannabis-specific diagnostic screens compatible with DSM-IV-TR and proposed DSM-5. A clinical sample (n=174) completed the DSM-Guided-Cannabis Screen (DSM-G-CS) 21 and 11 criteria versions and three drug comparison measures. DSM-G-CS descriptive statistics, reliabilities, three factor analyses, and eight ROC and discriminant analyses evaluated construct validity and empirical scoring. DSM-G-CS reliabilities are .88 (21-items) and .85 (11-criteria). Factor analyses (FA) with varimax rotation derived six and three factors explaining 62% to 60% of variances for the DSM-G-CS 21 and 11 respectively, with ≥.400 loadings supporting retention of all items. Cannabis withdrawal subscale reliability .952 (10-items) and FA supported one factor composite item. ROC and discriminant analyses supports DSM-G-CS 1.5 to 2.5 scoring cutoffs as empirically sound, based upon sensitivity-specificity maximums, accuracy probabilities, confidence levels and correctly classified percentages, optimal with Marijuana Screening Inventory (MSI) comparisons. Results support DSM-G-CS construct validity, empirical scoring and compatibility with DSM-IV-TR cannabis abuse or dependence and proposed DSM-5 cannabis use disorder diagnostic models. Clinically, DSM-G-CS scores of two to three (or more) suggest probable cannabis-use disorder, deserving assessment to determine diagnostic accuracy. PMID:21741769

  15. Propagation theory and naturally occurring scintillation

    SciTech Connect

    Rino, C.L.

    1982-01-01

    Results of extensive scintillation measurements made of the DNA wideband satellite are presented, and show a consistent scintillation structure which is in agreement with model predictions based on a simple power-law, phase-screen model. It is shown that the Rice-Rayleigh model is efficient, and that the subtle details of the underlying signal structure are most clearly revealed under strong-scatter conditions.

  16. Walkthrough screening evaluation field guide. Natural phenomena hazards at Department of Energy facilities: Revision 2

    SciTech Connect

    Eder, S.J.; Eli, M.W.; Salmon, M.W.

    1993-11-01

    The US Department of Energy (DOE) has a large inventory of existing facilities. Many of these facilities were not designed and constructed to current natural phenomena hazard (NPH) criteria. The NPH events include earthquakes, extreme winds and tornadoes, and floods. DOE Order 5480.28 establishes policy and requirements for NPH mitigation for DOE facilities. DOE is conducting a multiyear project to develop evaluation guidelines for assessing the condition and determining the need for upgrades at DOE facilities. One element of the NPH evaluation guidelines` development involves the existing systems and components at DOE facilities. This effort is described in detail in a cited reference. In the interim period prior to availability of the final guidelines, DOE facilities are encouraged to implement an NPH walk through screening evaluation process by which systems and components that need attention can be rapidly identified. Guidelines for conducting the walk through screening evaluations are contained herein. The result of the NPH walk through screening evaluation should be a prioritized list of systems and components that need further action. Simple and inexpensive fixes for items identified in the walk through as marginal or inadequate should be implemented without further study. By implementing an NPH walk through screening evaluation, DOE facilities may realize significant reduction in risk from NPH in the short term.

  17. Tubulin inhibitor identification by bioactive conformation alignment pharmacophore-guided virtual screening.

    PubMed

    Nagarajan, Shanthi; Choi, Min Jeong; Cho, Yong Seo; Min, Sun-Joon; Keum, Gyochang; Kim, Soo Jin; Lee, Chang Sik; Pae, Ae Nim

    2015-11-01

    Microtubules are important cellular component that are critical for proper cellular function. Microtubules are synthesized by polymerization of ?? tubulin heterodimers called protofilaments. Microtubule dynamics facilitate proper cell division during mitosis. Disruption of microtubule dynamics by small-molecule agents inhibits mitosis, resulting in apoptotic cell death and preventing cell cycle progression. To identify a novel small molecule that binds the ?? tubulin interface to affect microtubule dynamics, we developed a bioactive conformation alignment pharmacophore (BCAP) model to screen tubulin inhibitors from a huge database. The application of BCAP model generated based on the known ??-tubulin interface binders enabled us to identify several small-molecules that cause apoptosis in human promyelocytic leukemia (HL-60) cells. Virtual screening combined with an invitro assay yielded 15 cytotoxic molecules. In particular, ethyl 2-(4-(5-methyl-3-nitro-1H-pyrazol-1-yl)butanamido)-4-phenylthiophene-3-carboxylate (H05) inhibited tubulin polymerization with an IC50 of 17.6?m concentration. The virtual screening results suggest that the application of an unbiased BCAP pharmacophore greatly eliminates unlikely compounds from a huge database and maximizes screening success. From the limited compounds tested in the tubulin polymerization inhibitor (TPI) assay, compound H05 was discovered as a tubulin inhibitor. This compound requires further structure activity optimization to identify additional potent inhibitors from the same class of molecules. PMID:25845798

  18. The Study of Zinc Sulphide Scintillator for Fast Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Bin, Tang; Heyong, Huo; Bin, Liu; Ke, Tang; Yong, Sun; Wei, Yin; Chao, Cao

    Fast neutron radiography is a promising application for accelerators. The potential effectiveness of this technique depends on the development of suitable imaging detectors for fast neutrons. Zinc sulphide based scintillators have the largest light output per event in the family of imaging scintillators used so far in fast neutron radiography. This paper investigated different aspects of this scintillator in order to determine the factors which might affect the light output. A mathematical model was established to estimate effectiveness of this scintillator. Zinc sulphide screens were prepared with ZnS particles of different concentration in polypropylene matrix. A 14MeV fast neutron source was used in the experiments. The light output was detected using a CCD camera or a film coupled to the scintillator screen. The results showed that the optimum scintillators is 3-mm in thickness with the weight ratio of 1:1 to 2:1 for ZnS and polypropylene.

  19. Conformation Guides Molecular Efficacy in Docking Screens of Activated ?-2 Adrenergic G Protein Coupled Receptor

    PubMed Central

    2013-01-01

    A prospective, large library virtual screen against an activated ?2-adrenergic receptor (?2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated ?2AR structure returned few hits of only marginal potency. PMID:23485065

  20. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    NASA Astrophysics Data System (ADS)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  1. Scintillator efficiency study with MeV x-rays

    NASA Astrophysics Data System (ADS)

    Baker, Stuart; Brown, Kristina; Curtis, Alden; Lutz, Stephen S.; Howe, Russell; Malone, Robert; Mitchell, Stephen; Danielson, Jeremy; Haines, Todd; Kwiatkowski, Kris

    2014-09-01

    We have investigated scintillator efficiency for MeV radiographic imaging. This paper discusses the modeled detection efficiency and measured brightness of a number of scintillator materials. An optical imaging camera records images of scintillator emission excited by a pulsed x-ray machine. The efficiency of various thicknesses of monolithic LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) are being studied to understand brightness and resolution trade-offs compared with a range of micro-columnar CsI:Tl (thallium-doped cesium iodide) scintillator screens. The micro-columnar scintillator structure apparently provides an optical gain mechanism that results in brighter signals from thinner samples. The trade-offs for brightness versus resolution in monolithic scintillators is straightforward. For higher-energy x-rays, thicker materials generally produce brighter signal due to x-ray absorption and the optical emission properties of the material. However, as scintillator thickness is increased, detector blur begins to dominate imaging system resolution due to the volume image generated in the scintillator thickness and the depth of field of the imaging system. We employ a telecentric optical relay lens to image the scintillator onto a recording CCD camera. The telecentric lens helps provide sharp focus through thicker-volume emitting scintillators. Stray light from scintillator emission can also affect the image scene contrast. We have applied an optical light scatter model to the imaging system to minimize scatter sources and maximize scene contrasts.

  2. Scintillators and applications thereof

    SciTech Connect

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  3. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  4. High latitude scintillations

    NASA Astrophysics Data System (ADS)

    Basu, Santimay; Basu, Sunanda

    High-latitude phase and amplitude scintillations have been observed with quasi-geostationary polar beacon satellites, high-altitude orbiting GPS satellites, and low-altitude orbiting HiLat and Polar Bear satellites. The scintillation behavior observed in the polar cap, cusp, and nightside auroral oval is described. Consideration is given to the possible mechanisms for the generation of irregularities that cause scintillations. The importance of coordinated multitechnique measurements for scintillation studies is stressed.

  5. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  6. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  7. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  8. Expression of Translationally Controlled Tumor Protein (TCTP) Gene of Dirofilaria immitis Guided by Transcriptomic Screening

    PubMed Central

    Fu, Yan; Lan, Jingchao; Wu, Xuhang; Yang, Deying; Zhang, Zhihe; Nie, Huaming; Hou, Rong; Zhang, Runhui; Zheng, Wanpeng; Xie, Yue; Yan, Ning; Yang, Zhi; Wang, Chengdong; Luo, Li; Liu, Li; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong

    2014-01-01

    Dirofilaria immitis (heartworm) infections affect domestic dogs, cats, and various wild mammals with increasing incidence in temperate and tropical areas. More sensitive antibody detection methodologies are required to diagnose asymptomatic dirofilariasis with low worm burdens. Applying current transcriptomic technologies would be useful to discover potential diagnostic markers for D. immitis infection. A filarial homologue of the mammalian translationally controlled tumor protein (TCTP) was initially identified by screening the assembled transcriptome of D. immitis (DiTCTP). A BLAST analysis suggested that the DiTCTP gene shared the highest similarity with TCTP from Loa loa at protein level (97%). A histidine-tagged recombinant DiTCTP protein (rDiTCTP) of 40 kDa expressed in Escherichia coli BL21 (DE3) showed immunoreactivity with serum from a dog experimentally infected with heartworms. Localization studies illustrated the ubiquitous presence of rDiTCTP protein in the lateral hypodermal chords, dorsal hypodermal chord, muscle, intestine, and uterus in female adult worms. Further studies on D. immitis-derived TCTP are warranted to assess whether this filarial protein could be used for a diagnostic purpose. PMID:24623877

  9. Expression of translationally controlled tumor protein (TCTP) gene of Dirofilaria immitis guided by transcriptomic screening.

    PubMed

    Fu, Yan; Lan, Jingchao; Wu, Xuhang; Yang, Deying; Zhang, Zhihe; Nie, Huaming; Hou, Rong; Zhang, Runhui; Zheng, Wanpeng; Xie, Yue; Yan, Ning; Yang, Zhi; Wang, Chengdong; Luo, Li; Liu, Li; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2014-02-01

    Dirofilaria immitis (heartworm) infections affect domestic dogs, cats, and various wild mammals with increasing incidence in temperate and tropical areas. More sensitive antibody detection methodologies are required to diagnose asymptomatic dirofilariasis with low worm burdens. Applying current transcriptomic technologies would be useful to discover potential diagnostic markers for D. immitis infection. A filarial homologue of the mammalian translationally controlled tumor protein (TCTP) was initially identified by screening the assembled transcriptome of D. immitis (DiTCTP). A BLAST analysis suggested that the DiTCTP gene shared the highest similarity with TCTP from Loa loa at protein level (97%). A histidine-tagged recombinant DiTCTP protein (rDiTCTP) of 40 kDa expressed in Escherichia coli BL21 (DE3) showed immunoreactivity with serum from a dog experimentally infected with heartworms. Localization studies illustrated the ubiquitous presence of rDiTCTP protein in the lateral hypodermal chords, dorsal hypodermal chord, muscle, intestine, and uterus in female adult worms. Further studies on D. immitis-derived TCTP are warranted to assess whether this filarial protein could be used for a diagnostic purpose. PMID:24623877

  10. FEDS user`s guide: Facility energy screening. Release 2.10

    SciTech Connect

    Dirks, J.A.

    1995-01-01

    The Facility Energy Decision Screening (FEDS) Model is under development at Pacific Northwest Laboratory (PNL) for the US DOE Federal Energy Management Program (DOE-FEMP) and the US Army Construction Engineering REsearch Laboratory (USA-CERL). FEDS is a multi-level energy analysis software system designed to provide a comprehensive approach to fuel-neutral, technology-independent, integrated (energy) resource planning and acquisition. The FEDS system includes Level-1, which is a top-down, first-pass energy systems analysis and energy resource acquisition decision software model for buildings and facilities, and the Level-2 software model, which allows specific engineering inputs and provides detailed output. The basic intent of the model is to provide an installation with the information necessary to determine the minimum life-cycle cost (LCC) configuration of the installation`s energy generation and consumption infrastructure. The model has no fuel or technology bias; it simply selects the technologies that will provide an equivalent or superior level of service (e.g., heating, cooling, illumination) at the minimum LCC.

  11. Scintillation detector for escaping alphas and tritons in TFTR

    NASA Astrophysics Data System (ADS)

    Zweben, S. J.

    1986-08-01

    A diagnostic for escaping charged fusion products is presently being tested on tokamak fusion test reactor (TFTR). It consists of a 11-in. ZnS scintillator screen located inside a movable probe at the bottom of the TFTR vacuum vessel. The alphas or tritons hit the scintillator screen where they create visible light pulses which are fiber-optically coupled to photomultiplier tubes and/or an intensified video camera for recording and analysis.

  12. Foggy scintillation counting technique.

    PubMed

    Fujii, H; Takiue, M

    2001-10-01

    A new "foggy scintillator" was developed for the measurement of low-energy beta-emitters in air. By the use of an ultrasonic wave generator, a liquid scintillator can be converted into the "foggy scintillator". In order to obtain reasonable detection efficiency, it is necessary to prepare a liquid scintillator with a very high concentration of the first solute (PPO). The foggy scintillation counting technique avoids the trouble of the sample preparation usually necessary for the measurement of radionuclides in air, since the radionuclide in the air can be measured directly. PMID:11545505

  13. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul (Naperville, IL); Para, Adam (St. Charles, IL)

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  14. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    PubMed

    Li, Gang; Diogo, Dorothe; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L; Siminovitch, Katherine A; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Gupta, Namrata; Clemons, Paul A; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M

    2013-05-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P?=?1.410(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ?33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P?=?10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-?B transcription factor. Finally, we develop a high-throughput NF-?B luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-?B signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA. PMID:23696745

  15. Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    PubMed Central

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J.; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L.; Siminovitch, Katherine A.; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Gupta, Namrata; Clemons, Paul A.; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M.

    2013-01-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10−9). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10−9), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA. PMID:23696745

  16. User's Guide to the Water-Analysis Screening Tool (WAST): A Tool for Assessing Available Water Resources in Relation to Aquatic-Resource Uses

    USGS Publications Warehouse

    Stuckey, Marla H.; Kiesler, James L.

    2008-01-01

    A water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in partnership with the Pennsylvania Department of Environmental Protection, to provide an initial screening of areas in the state where potential problems may exist related to the availability of water resources to meet current and future water-use demands. The tool compares water-use information to an initial screening criteria of the 7-day, 10-year low-flow statistic (7Q10) resulting in a screening indicator for influences of net withdrawals (withdrawals minus discharges) on aquatic-resource uses. This report is intended to serve as a guide for using the screening tool. The WAST can display general basin characteristics, water-use information, and screening-indicator information for over 10,000 watersheds in the state. The tool includes 12 primary functions that allow the user to display watershed information, edit water-use and water-supply information, observe effects downstream from edited water-use information, reset edited values to baseline, load new water-use information, save and retrieve scenarios, and save output as a Microsoft Excel spreadsheet.

  17. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  18. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  19. In search of allosteric modulators of a7-nAChR by solvent density guided virtual screening.

    PubMed

    Dey, Raja; Chen, Lin

    2011-04-01

    Nicotinic acetylcholine receptors (nAChR) are pentameric ligand gated ion channels whose activity can be modulated by endogenous neurotransmitters as well as by synthetic ligands that bind the same or distinct sites from the natural ligand. The subtype of ?7 nAChR has been considered as a potenial therapeutic target for Alzheimer's disease, schizophrenia and other neurological and psychiatric disorders. Here we have developed a homology model of ?7 nAChR based on two high resolution crystal structures with Brookhaven Protein Data Bank (PDB) codes 2QC1 and 2WN9 for threading on one monomer and then for building a pentamer, respectively. A number of small molecule binding sites are identified using Pocket Finder (J. An, M. Tortov, and R. Abagyan, Molecular & Cellular Proteomics, 4.6, 752-761 (2005)) of Internal Coordinate Mechanics (ICM). Remarkably, these computer-identified sites match perfectly with ordered solvent densities found in the high-resolution crystal structure of ?1 nAChR, suggesting that the surface cavities in the ?7 nAChR model are likely binding sites of small molecules. A high throughput virtual screening by flexible ligand docking of 5008 small molecule compounds was performed at three potential allosteric modulator (AM) binding sites of ?7 nAChR using Molsoft ICM software (R. Abagyan, M. Tortov and D. Kuznetsov, J Comput Chem 15, 488-506, (1994)). Some experimentally verified allosteric modulators of ?7 like CCMI comp-6, LY 7082101, 5-HI, TQS, PNU-120596, genistein, and NS-1738 ranked among top 100 compounds, while the rest of the compounds in the list could guide further search for new allosteric modulators. PMID:21294583

  20. Optimum design calculations for detectors based on ZnSe(??,?) scintillators

    NASA Astrophysics Data System (ADS)

    Katrunov, K.; Ryzhikov, V.; Gavrilyuk, V.; Naydenov, S.; Lysetska, O.; Litichevskyi, V.

    2013-06-01

    Light collection in scintillators ZnSe(X), where X is an isovalent dopant, was studied using Monte Carlo calculations. Optimum design was determined for detectors of "scintillatorSi-photodiode" type, which can involve either one scintillation element or scintillation layers of large area made of small-crystalline grains. The calculations were carried out both for determination of the optimum scintillator shape and for design optimization of light guides, on the surface of which the layer of small-crystalline grains is formed.

  1. Scintillation crystals for PET.

    PubMed

    Melcher, C L

    2000-06-01

    In PET, inorganic scintillator crystals are used to record gamma-rays produced by the annihilation of positrons emitted by injected tracers. The ultimate performance of the camera is strongly tied to both the physical and scintillation properties of the crystals. For this reason, researchers have investigated virtually all known scintillator crystals for possible use in PET. Despite this massive research effort, only a few different scintillators have been found that have a suitable combination of characteristics, and only 2 (thallium-doped sodium iodide and bismuth germanate) have found widespread use. A recently developed scintillator crystal, cerium-doped lutetium oxyorthosilicate, appears to surpass all previously used materials in most respects and promises to be the basis for the next generation of PET cameras. PMID:10855634

  2. snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome

    PubMed Central

    Yang, Jian-Hua; Zhang, Xiao-Chen; Huang, Zhan-Peng; Zhou, Hui; Huang, Mian-Bo; Zhang, Shu; Chen, Yue-Qin; Qu, Liang-Hu

    2006-01-01

    Small nucleolar RNAs (snoRNAs) represent an abundant group of non-coding RNAs in eukaryotes. They can be divided into guide and orphan snoRNAs according to the presence or absence of antisense sequence to rRNAs or snRNAs. Current snoRNA-searching programs, which are essentially based on sequence complementarity to rRNAs or snRNAs, exist only for the screening of guide snoRNAs. In this study, we have developed an advanced computational package, snoSeeker, which includes CDseeker and ACAseeker programs, for the highly efficient and specific screening of both guide and orphan snoRNA genes in mammalian genomes. By using these programs, we have systematically scanned four humanmammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes. Eighteen novel snoRNAs were further experimentally confirmed with four snoRNAs exhibiting a tissue-specific or restricted expression pattern. The results of this study provide the most comprehensive listing of two families of snoRNA genes in the human genome till date. PMID:16990247

  3. Uterine Fibroids: Correlation of T2 Signal Intensity with Semiquantitative Perfusion MR Parameters in Patients Screened for MR-guided High-Intensity Focused Ultrasound Ablation.

    PubMed

    Kim, Young-Sun; Lee, Jeong-Won; Choi, Chel Hun; Kim, Byoung-Gie; Bae, Duk-Soo; Rhim, Hyunchul; Lim, Hyo Keun

    2016-03-01

    Purpose To evaluate the relationships between T2 signal intensity and semiquantitative perfusion magnetic resonance (MR) parameters of uterine fibroids in patients who were screened for MR-guided high-intensity focused ultrasound (HIFU) ablation. Materials and Methods Institutional review board approval was granted, and informed consents were waived. One hundred seventy most symptom-relevant, nondegenerated uterine fibroids (mean diameter, 7.3 cm; range, 3.0-17.2 cm) in 170 women (mean age, 43.5 years; range, 24-56 years) undergoing screening MR examinations for MR-guided HIFU ablation from October 2009 to April 2014 were retrospectively analyzed. Fibroid signal intensity was assessed as the ratio of the fibroid T2 signal intensity to that of skeletal muscle. Parameters of semiquantitative perfusion MR imaging obtained during screening MR examination (peak enhancement, percentage of relative peak enhancement, time to peak [in seconds], wash-in rate [per seconds], and washout rate [per seconds]) were investigated to assess their relationships with T2 signal ratio by using multiple linear regression analysis. Correlations between T2 signal intensity and independently significant perfusion parameters were then evaluated according to fibroid type by using Spearman correlation test. Results Multiple linear regression analysis revealed that relative peak enhancement showed an independently significant correlation with T2 signal ratio (? = 0.004, P < .001). Submucosal intracavitary (n = 20, ? = 0.275, P = .240) and type III (n = 18, ? = 0.082, P = .748) fibroids failed to show significant correlations between perfusion and T2 signal intensity, while significant correlations were found for all other fibroid types (? = 0.411-0.629, P < .05). Conclusion In possible candidates for MR-guided HIFU ablation, the T2 signal intensity of nondegenerated uterine fibroids showed an independently significant positive correlation with relative peak enhancement in most cases, except those of submucosal intracavitary or type III fibroids. () RSNA, 2015. PMID:26313526

  4. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  5. Cervical Cancer Screening for Patients on the Female-to-Male Spectrum: a Narrative Review and Guide for Clinicians.

    PubMed

    Potter, Jennifer; Peitzmeier, Sarah M; Bernstein, Ida; Reisner, Sari L; Alizaga, Natalie M; Agnor, Madina; Pardee, Dana J

    2015-12-01

    Guidelines for cervical cancer screening have evolved rapidly over the last several years, with a trend toward longer intervals between screenings and an increasing number of screening options, such as Pap/HPV co-testing and HPV testing as a primary screening. However, gynecological recommendations often do not include clinical considerations specific to patients on the female-to-male (FTM) spectrum. Both patients and providers may not accurately assess risk for HPV and other sexually transmitted infections, understand barriers to care, or be aware of recommendations for cervical cancer screening and other appropriate sexual and reproductive health services for this patient population. We review the evidence and provide guidance on minimizing emotional discomfort before, during, and after a pelvic exam, minimizing physical discomfort during the exam, and making adaptations to account for testosterone-induced anatomical changes common among FTM patients. PMID:26160483

  6. Design and Construction Elements for Scintillating Fibre Tracking Detectors

    NASA Astrophysics Data System (ADS)

    Sharpe, Jason Ray

    In many nuclear and particle physics experiments, it is necessary to ascertain precise information about a particle's trajectory, or its position at specific locations (as a means for then determining angle or momentum). A common way to determine this information is by using a scintillating fibre tracker, a device that relies on scintillation light from ionizing charged particles (such as electrons or protons) within scintillating fibres, and guiding the produced scintillation light through standard fibre optics to determine which scintillating fibre detected the particle. This thesis discusses, and presents results for technical issues associated with designing and constructing such a detector: (1) adjacent scintillating fibre-to-fibre cross-talk, and (2) the effect on light transmission of the combination of different fibre-end finishes and clear-to-scintillating fibre optical couplants. These results will be directly incorporated into the construction of a scintillating fibre coordinate detector to be built for future experiments at Jefferson Lab's Hall A in Newport News, VA, USA.

  7. Integration of Microfractionation, qNMR and Zebrafish Screening for the In Vivo Bioassay-Guided Isolation and Quantitative Bioactivity Analysis of Natural Products

    PubMed Central

    Maes, Jan; Siverio-Mota, Dany; Marcourt, Laurence; Munck, Sebastian; Kamuhabwa, Appolinary R.; Moshi, Mainen J.; Esguerra, Camila V.; de Witte, Peter A. M.; Crawford, Alexander D.; Wolfender, Jean-Luc

    2013-01-01

    Natural products (NPs) are an attractive source of chemical diversity for small-molecule drug discovery. Several challenges nevertheless persist with respect to NP discovery, including the time and effort required for bioassay-guided isolation of bioactive NPs, and the limited biomedical relevance to date of in vitro bioassays used in this context. With regard to bioassays, zebrafish have recently emerged as an effective model system for chemical biology, allowing in vivo high-content screens that are compatible with microgram amounts of compound. For the deconvolution of the complex extracts into their individual constituents, recent progress has been achieved on several fronts as analytical techniques now enable the rapid microfractionation of extracts, and microflow NMR methods have developed to the point of allowing the identification of microgram amounts of NPs. Here we combine advanced analytical methods with high-content screening in zebrafish to create an integrated platform for microgram-scale, in vivo NP discovery. We use this platform for the bioassay-guided fractionation of an East African medicinal plant, Rhynchosia viscosa, resulting in the identification of both known and novel isoflavone derivatives with anti-angiogenic and anti-inflammatory activity. Quantitative microflow NMR is used both to determine the structure of bioactive compounds and to quantify them for direct dose-response experiments at the microgram scale. The key advantages of this approach are (1) the microgram scale at which both biological and analytical experiments can be performed, (2) the speed and the rationality of the bioassay-guided fractionation – generic for NP extracts of diverse origin – that requires only limited sample-specific optimization and (3) the use of microflow NMR for quantification, enabling the identification and dose-response experiments with only tens of micrograms of each compound. This study demonstrates that a complete in vivo bioassay-guided fractionation can be performed with only 20 mg of NP extract within a few days. PMID:23700445

  8. Integration of Microfractionation, qNMR and zebrafish screening for the in vivo bioassay-guided isolation and quantitative bioactivity analysis of natural products.

    PubMed

    Bohni, Nadine; Cordero-Maldonado, Mara Lorena; Maes, Jan; Siverio-Mota, Dany; Marcourt, Laurence; Munck, Sebastian; Kamuhabwa, Appolinary R; Moshi, Mainen J; Esguerra, Camila V; de Witte, Peter A M; Crawford, Alexander D; Wolfender, Jean-Luc

    2013-01-01

    Natural products (NPs) are an attractive source of chemical diversity for small-molecule drug discovery. Several challenges nevertheless persist with respect to NP discovery, including the time and effort required for bioassay-guided isolation of bioactive NPs, and the limited biomedical relevance to date of in vitro bioassays used in this context. With regard to bioassays, zebrafish have recently emerged as an effective model system for chemical biology, allowing in vivo high-content screens that are compatible with microgram amounts of compound. For the deconvolution of the complex extracts into their individual constituents, recent progress has been achieved on several fronts as analytical techniques now enable the rapid microfractionation of extracts, and microflow NMR methods have developed to the point of allowing the identification of microgram amounts of NPs. Here we combine advanced analytical methods with high-content screening in zebrafish to create an integrated platform for microgram-scale, in vivo NP discovery. We use this platform for the bioassay-guided fractionation of an East African medicinal plant, Rhynchosia viscosa, resulting in the identification of both known and novel isoflavone derivatives with anti-angiogenic and anti-inflammatory activity. Quantitative microflow NMR is used both to determine the structure of bioactive compounds and to quantify them for direct dose-response experiments at the microgram scale. The key advantages of this approach are (1) the microgram scale at which both biological and analytical experiments can be performed, (2) the speed and the rationality of the bioassay-guided fractionation - generic for NP extracts of diverse origin - that requires only limited sample-specific optimization and (3) the use of microflow NMR for quantification, enabling the identification and dose-response experiments with only tens of micrograms of each compound. This study demonstrates that a complete in vivo bioassay-guided fractionation can be performed with only 20 mg of NP extract within a few days. PMID:23700445

  9. Radio Sources and Scintillation

    NASA Astrophysics Data System (ADS)

    Rickett, Barney

    2001-10-01

    A review is given of the interplay between studies of compact radio sources and the scattering and scintillations that occur as the signals travel through the irregular refractive index of the interstellar and interplanetary plasmas.

  10. The physics analysis and experiment study of zinc sulphide scintillator for fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Wu, Yang; Li, Hang; Sun, Yong; Huo, Heyong; Liu, Bin; Tang, Ke; Yin, Wei; Chao, Chao

    2013-11-01

    Fast neutron radiography is a promising application for accelerator based neutron sources. The potential effectiveness of this technique depends on the development of suitable imaging detectors for fast neutrons. Zinc sulphide based scintillators have the largest light output per event in the family of imaging scintillators used so far in fast neutron radiography. This paper investigated different aspects of this scintillator in order to determine the factors which might affect the light output. A mathematical model was established to estimate effectiveness of this scintillator. Zinc sulphide screens were prepared with ZnS particles of different concentrations in polypropylene matrix. A 14 MeV fast neutron source was used in the experiments. The light output was detected using a CCD camera or a film coupled to the scintillator screen. The results showed that the optimum scintillators is around 3 mm in thickness with the weight ratio of 2:1 for ZnS and polypropylene.

  11. Scintillating fiber tracking techniques

    SciTech Connect

    Ruchti, R.

    1986-02-01

    The current status of the field of scintillating fiber detection and tracking is briefly reviewed, and avenues for further work are suggested. Attention is given to the core material, cladding material, and extra-mural absorber to be used in the scintillating fibers, as well as to the properties of attenuation length, radiation resistance, and fiber profile. Some examples are given of successful recording of tracks and interactions. Current developments are mentioned in relation to plastic and glass fibers and liquid capillaries. (LEW)

  12. Patent foramen ovale and scuba diving: a practical guide for physicians on when to refer for screening

    PubMed Central

    2013-01-01

    Divers are taught some basic physiology during their training. There is therefore some underlying knowledge and understandable concern in the diving community about the presence of a patent foramen ovale (PFO) as a cause of decompression illness (DCI). There is an agreement that PFO screening should not be done routinely on all divers; however, when to screen selected divers is not clear. We present the basic physiology and current existing guidelines for doctors, advice on the management and identify which groups of divers should be referred for consideration of PFO screening. Venous bubbles after diving and right to left shunts are common, but DCI is rare. Why this is the case is not clear, but the divers look to doctors for guidance on PFO screening and closure; both of which are not without risks. Ideally, we should advise and apply guidelines that are consistent and based on best available evidence. We hope this guideline and flow chart helps address these issues with regard to PFOs and diving. PMID:23849539

  13. OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS: USER'S GUIDE VERSION 1.2

    EPA Science Inventory

    The Optimal Well Locator ( OWL) program was designed and developed by USEPA to be a screening tool to evaluate and optimize the placement of wells in long term monitoring networks at small sites. The first objective of the OWL program is to allow the user to visualize the change ...

  14. Patent foramen ovale and scuba diving: a practical guide for physicians on when to refer for screening.

    PubMed

    Sykes, Oliver; Clark, James E

    2013-01-01

    Divers are taught some basic physiology during their training. There is therefore some underlying knowledge and understandable concern in the diving community about the presence of a patent foramen ovale (PFO) as a cause of decompression illness (DCI). There is an agreement that PFO screening should not be done routinely on all divers; however, when to screen selected divers is not clear. We present the basic physiology and current existing guidelines for doctors, advice on the management and identify which groups of divers should be referred for consideration of PFO screening. Venous bubbles after diving and right to left shunts are common, but DCI is rare. Why this is the case is not clear, but the divers look to doctors for guidance on PFO screening and closure; both of which are not without risks. Ideally, we should advise and apply guidelines that are consistent and based on best available evidence. We hope this guideline and flow chart helps address these issues with regard to PFOs and diving. PMID:23849539

  15. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers

    SciTech Connect

    Teymurazyan, A.; Pang, G.

    2012-03-15

    Purpose: Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. Methods: A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Results: Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector response, and water-equivalence of dose response have been investigated. It has been found that the zero frequency DQE of the proposed detector can be up to 37% at 6 MV. The detector, also, is water-equivalent with a relatively uniform response to different energy x-rays as compared to current EPIDs. Conclusions: The results of our simulations show that, using plastic scintillating fibers, it is possible to construct a water-equivalent EPID that has a better energy response and a higher detection efficiency than current flat panel based EPIDs.

  16. Surface preparation and coupling in plastic scintillator dosimetry.

    PubMed

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frdric; Beddar, A Sam; Beaulieu, Luc

    2006-09-01

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity. PMID:17022248

  17. Surface preparation and coupling in plastic scintillator dosimetry

    SciTech Connect

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frederic; Beddar, A. Sam; Beaulieu, Luc

    2006-09-15

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity.

  18. In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery.

    PubMed

    Bogaards, A; Sterenborg, H J C M; Trachtenberg, J; Wilson, B C; Lilge, L

    2007-08-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (~ > or =30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and bioluminescence imaging do not offer such high frame rates. 2D optical fluorescence imaging can provide surface images with high resolution and high throughput. The ability to accurately quantify the fluorescence in vivo is critical to extract functional information of the disease state, however few methods are available. Here, a ratiometric 2D quantification method is introduced. Through mathematical modeling the performance was evaluated using optical properties that resembled biological tissues with the fluorescent marker Protoporhyrin IX. Experimentally the performance was evaluated in optical phantoms with different optical properties employing a novel prototype clinical imaging system. The clinical feasibility of real-time, image-guided surgery was demonstrated in patients undergoing prostatectomy. Discussed are the reasons why the introduced method leads to an increased quantification performance followed by modifications so it can be applied to novel fluorescent molecular markers as phthalocyanine 4 and dual-fluorescent markers. These offer additional advantages as these can provide a linear response to marker concentration and further minimize the dependence on autofluorescence and optical properties, as demonstrated through modeling. PMID:17868102

  19. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  20. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K. (Gainesville, FL)

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  1. Boron loaded scintillator

    SciTech Connect

    Bell, Zane William; Brown, Gilbert Morris; Maya, Leon; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  2. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  3. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder; Paul L. (Richland, WA)

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  4. Laser beam scintillation beyond the turbulent atmosphere A numerical computation

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Taylor, L. S.

    1976-01-01

    The extended Huygens-Fresnel formulation for propagation through turbulence is used to examine scintillation of a finite laser beam. The method is demonstrated analytically for propagation beyond a weak Gaussian phase screen. A numerical integration technique is used to extend the results to a more realistic turbulence model. Results are compared with existing Gaussian beam propagation theory.

  5. Scintillation detectors based on silicon microfluidic channels

    NASA Astrophysics Data System (ADS)

    Maoddi, P.; Mapelli, A.; Bagiacchi, P.; Gorini, B.; Haguenauer, M.; Lehmann Miotto, G.; Murillo Garcia, R.; Safai Tehrani, F.; Veneziano, S.; Renaud, P.

    2014-01-01

    Microfluidic channels obtained by SU-8 photolithography and filled with liquid scintillators were recently demonstrated to be an interesting technology for the implementation of novel particle detectors. The main advantages of this approach are the intrinsic radiation resistance resulting from the simple microfluidic circulation of the active medium and the possibility to manufacture devices with high spatial resolution and low material budget using microfabrication techniques. Here we explore a different technological implementation of this concept, reporting on scintillating detectors based on silicon microfluidic channels. A process for manufacturing microfluidic devices on silicon substrates, featuring microchannel arrays suitable for light guiding, was developed. Such process can be in principle combined with standard CMOS processing and lead to a tight integration with the readout photodetectors and electronics in the future. Several devices were manufactured, featuring microchannel geometries differing in depth, width and pitch. A preliminary characterization of the prototypes was performed by means of a photomultiplier tube coupled to the microchannel ends, in order to detect the scintillation light produced upon irradiation with beta particles from a 90Sr source. The photoelectron spectra thus obtained were fitted with the expected output function in order to extract the light yield.

  6. Bioactivity-guided fast screen and identification of cancer metastasis chemopreventive components from raw extracts of Murraya exotica.

    PubMed

    Jiang, Zhou; Yang, Jina; Pang, Yaqiong; Yang, Xintian; Yu, Suhong; Jia, Lee

    2015-03-25

    Murraya exotica is a traditional Chinese medicine (TCM) widely grown in southeast China. We herein proposed a fast strategy for separation and identification of active components of cancer metastatic chemopreventives from the root, leaf, twig and stem bark extracts that were obtained by reflux in 80% acidic ethanol and then liquid-liquid extraction. High performance liquid chromatography (HPLC) analysis showed that the extract mixtures from leaf, bark and twig were similar, while the root extract contained a characteristic component (CM1). Bioactivity assays revealed that the root extract contained some active components that significantly inhibited cancer cell viability and migration. Ultra performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (UPLC-DAD-ESI-MS) analysis indicated the existence of coumarins in the root and leaf extracts. Semi-preparative chromatographic separation and physicochemical characterization indicated that CM1 was a novel coumarin derivative that warrants further chemopreventive studies on cancer metastasis. The present phytochemical and phytopharmacological studies exemplify a fast strategy for screening and identifying active component(s) from raw extracts of phytomedicines. PMID:25645338

  7. Coherence properties of wideband satellite signals caused by ionospheric scintillation

    NASA Technical Reports Server (NTRS)

    Rufenach, C. L.

    1975-01-01

    Radio scintillation on satellite signals caused by small-scale irregularities in F-region ionospheric electron density can be an important limitation on earth-satellite communication and navigation systems. Scintillation imposes distortion in both amplitude and phase on wideband signals. In the present work, the shallow-modulated phase screen theory is developed in terms of coherence bandwidth including a model based on a turbulent-like power-law description of the irregularities. The model results usually show a greater coherence bandwidth in the signal phase than in the signal amplitude. Therefore, systems that require phase coherence over a large bandwidth should be less affected than those requiring amplitude coherence.

  8. Computer model of high-latitude scintillation. [WBMOD program

    SciTech Connect

    Fremouw, E.J.

    1982-01-01

    The DNA Wideband satellite experiment provided extensive data on scintillation produced in high-altitude structured plasmas. A computer program, WBMOD, is being developed to summarize those data in an applications-oriented way. The program contains the phase-screen scattering theory of Rino and a morphological description of ionospheric irregularities (thus far only at auroral latitudes) based on Wideband observations. It permits a user to compute scintillation indices for both phase and intensity as a function of system operating parameters and solar-ionospheric disturbance level. Correction is made for multiple scatter, and the user may choose either one-way (communication) or two-way (radar) propagation.

  9. MASIV: The Microarcsecond Scintillation-Induced Variability Survey

    NASA Astrophysics Data System (ADS)

    Lovell, J. E. J.; Jauncey, D. L.; Senkbeil, C.; Shabala, S.; Bignall, H. E.; Pursimo, T.; Ojha, R.; Macquart, J.-P.; Rickett, B. J.; Dutka, M.; Kedziora-Chudczer, L.

    2007-07-01

    We are undertaking a large-scale 5 GHz VLA survey of the northern sky to search for rapid intra-day variability (IDV). Over four observing epochs we found that 56% of the sources showed variability on timescales of hours to several days. Fewer variables were detected at high galactic latitudes, supporting interstellar-scintillation as the principal mechanism responsible for IDV. We find evidence that many of the scattering screens are not moving with the local standard of rest. There are few scintillating sources observed at high redshift which may be an indication of scattering in the turbulent intergalactic medium.

  10. Lunar components in Lunping scintillations

    SciTech Connect

    Koster, J.R.; Lue, H.Y.; Wu, Hsi-Shu; Huang, Yinn-Nien

    1993-08-01

    The authors report on an anlysis of a 14 year data set of ionospheric scintillation data for 136 MHz signals transmitted from a Japanese satellite. They use a lunar age superposition method to analyze this data, breaking the data into blocks by seasons of the year. They observe a number of different scintillation types in the record, as well as impacts of lunar tides on the time record. They attempt to provide an origin for the different scintillation types.

  11. Statistical analysis of scintillation data

    SciTech Connect

    Chua, S.; Noonan, J.P.; Basu, S.

    1981-09-01

    The Nakagami-m distribution has traditionally been used successfully to model the probability characteristics of ionospheric scintillations at UHF. This report investigates the distribution properties of scintillation data in the L-band range. Specifically, the appropriateness of the Nakagami-m and lognormal distributions is tested. Briefly the results confirm that the Nakagami-m is appropriate for UHF but not for L-band scintillations. The lognormal provides a better fit to the distribution of L-band scintillations and is an adequate model allowing for an error of + or - 0.1 or smaller in predicted probability with a sample size of 256.

  12. A plastic scintillation counter prototype.

    PubMed

    Furuta, Etsuko; Kawano, Takao

    2015-10-01

    A new prototype device for beta-ray measurement, a plastic scintillation counter, was assembled as an alternative device to liquid scintillation counters. This device uses plastic scintillation sheets (PS sheets) as a sample applicator without the use of a liquid scintillator. The performance was evaluated using tritium labeled compounds, and good linearity was observed between the activity and net count rate. The calculated detection limit of the device was 0.01 Bq mL(-1) after 10 h measurement for 2 mL sample. PMID:26164628

  13. The Next Generation Scintillator-based Electromagnetic Calorimeter Prototype and Beam Test

    NASA Astrophysics Data System (ADS)

    Khan, Adil; The Calice Collaboration

    We are studying next generation scintillation detectors for future collider experiments. For precise energy measurement of energetic jets in future experiments, particle flow algorithm with fine granular scintillator strip calorimeter will play an important role. To establish the technology of the calorimeter, we are studying the properties of small plastic scintillator strips with size of (10-5) x 50 x 3 mm, which is a fundamental component of the calorimeter. As a part of this R&D study, small extruded plastic Scintillator of size 10 x 45 x 3 mm and a tungsten plate with 3.5 mm thick are sampled together to Fabricate a Scintillator base electromagnetic calorimeter prototype. Prototype has a stack of 30 layers, having dimension of 20 x 20 cm. Fine Scintillator strips in successive layers aligned in orthogonal to achieve effective 1 x 1 cm segmentation. The total number of channels is 2160 for readout. scintillation light produced in plastic Scintillator strips enters the wavelength shifting (WLS) fiber placed inside the plastic Scintillator are guided to the sensitive photo detector 1600 pixel MPPC (Multi Pixel Photon Counter) with a sensitive region of 1 x 1 mm2. The electromagnetic calorimeter performance has been studied with test beam during summer 2008 and 2009 at Fermilab. We have injected 1-30 GeV electron and 60 GeV Pion beams and measured energy resolution and linearity of response toward input energy. In this presentation we will present obtained performance of the calorimeter prototype.

  14. Simulating Moving Features in Pulsar Scintillation Arcs

    NASA Astrophysics Data System (ADS)

    Myers, J. A.; Rudolph, M. L.; Stinebring, D. R.; Coles, W. A.; Rickett, B. J.

    2005-12-01

    Pulsar scintillation often shows organized and simple structure in a power spectrum analysis. In particular, the power in the secondary spectrum is frequently organized along parabolas that can be identified with thin scattering screens in the interstellar medium. Hill et al. (2005) showed an example in which substructure moved along a parabolic path in accord with the known motion of the pulsar across the sky and the derived distance to the scattering screen. We report results of a simulation in which coherent electromagnetic waves are propagated through a turbulent phase-changing screen causing interference effects at the observer. The inhomogeneities in the screen are assumed to have a Kolmogorov spectrum and are localized in distinct clouds embedded in the screen. We find movement in the secondary spectrum substructure that is consistent with the observations reported by Hill et al. (2005). We comment on the physical implications of the isolated substructure and its persistence in both the simulation and the observations. This work was supported by the National Science Foundation.

  15. The Origin of Radio Scintillation in the Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Rickett, Barney J.; Redfield, Seth

    2008-03-01

    We study three quasar radio sources (B1257-326, B1519-273, and J1819+385) that show large-amplitude intraday and annual scintillation variability produced by the Earth's motion relative to turbulent-scattering screens located within a few parsecs of the Sun. We find that the lines of sight to these sources pass through the edges of partially ionized warm interstellar clouds where two or more clouds may interact. From the gas flow vectors of these clouds, we find that the relative radial and transverse velocities of these clouds are large and could generate the turbulence that is responsible for the observed scintillation. For all three sight lines the flow velocities of nearby warm local interstellar clouds are consistent with the fits to the transverse flows of the radio scintillation signals.

  16. Investigation of radiation absorption and X-ray fluorescence properties of medical imaging scintillators by Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, D.; Kandarakis, I.; Cavouras, D.; Valais, I.; Linardatos, D.; Michail, C.; David, S.; Gaitanis, A.; Nomicos, C.; Louizi, A.

    2006-09-01

    X-ray absorption and X-ray fluorescence properties of medical imaging scintillating screens were studied by Monte Carlo methods as a function of the incident photon energy and screen-coating thickness. The scintillating materials examined were Gd 2O 2S, (GOS) Gd 2SiO 5 (GSO) YAlO 3 (YAP), Y 3Al 5O 12 (YAG), LuSiO 5 (LSO), LuAlO 3 (LuAP) and ZnS. Monoenergetic photon exposures were modeled in the range from 10 to 100 keV. The corresponding ranges of coating thicknesses of the investigated scintillating screens ranged up to 200 mg cm -2. Results indicated that X-ray absorption and X-ray fluorescence are affected by the incident photon energy and the screen's coating thickness. Regarding incident photon energy, this X-ray absorption and fluorescence was found to exhibit very intense changes near the corresponding K edge of the heaviest element in the screen's scintillating material. Regarding coating thickness, thicker screens exhibited higher X-ray absorption and X-ray fluorescence. Results also indicated that a significant fraction of the generated X-ray fluorescent quanta escape from the scintillating screen. This fraction was found to increase with screen's coating thickness. At the energy range studied, most of the incident photons were found to be absorbed via one-hit photoelectric effect. As a result, the reabsorption of scattered radiation was found to be of rather minor importance; nevertheless this was found to increase with the screen's coating thickness. Differences in X-ray absorption and X-ray fluorescence were found among the various scintillators studied. LSO scintillator was found to be the most attractive material for use in many X-ray imaging applications, exhibiting the best absorption properties in the largest part of the energy range studied. Y-based scintillators were also found to be of significant absorption performance within the low energy ranges.

  17. Free liquid scintillation counting bibliography

    SciTech Connect

    1996-12-31

    Packard Instrument Company announces the availability of its newly updated Bibliography of Packard Tri-Carb Liquid Scintillation Analyzers. This unique new booklet lists 628 references in which Packard Tri-Carb{reg_sign} liquid scintillation analyzers have been used in life science, environmental, nuclear power and archaeological measurements. All listings are cross-referenced by radionuclide, specific field of study and author.

  18. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng (Knoxville, TN); Kesanli, Banu (Mersin, TR); Neal, John S. (Knoxville, TN)

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  19. Development of intrinsic IPT scintillator

    SciTech Connect

    Bross, A.D.

    1989-07-31

    We report on the development of a new polystyrene based plastic scintillator. Optical absorption, fluorescence and light output measurements are presented. Preliminary results of radiation damage effects are also given and compared to the effects on a commercial plastic scintillator, NE 110. 6 refs., 12 figs.

  20. Scintillation detector for carbon-14

    NASA Technical Reports Server (NTRS)

    Knoll, G. F.; Rogers, W. L.

    1971-01-01

    Detector consists of plastic, cylindrical double-wall scintillation cell, which is filled with gas to be analyzed. Thin, inner cell wall is isolated optically from outer (guard) scintillator wall by evaporated-aluminum coating. Bonding technique provides mechanical support to cell wall when device is exposed to high temperatures.

  1. Hybrid scintillators for neutron discrimination

    SciTech Connect

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  2. Scintillation light transport and detection

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.; Lillie, R. A.

    1987-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 18 350 cm 3).

  3. Scintillator based beta batteries

    NASA Astrophysics Data System (ADS)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  4. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry.

    PubMed

    Winter, B; King, S J; Brouard, M; Vallance, C

    2014-02-01

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation. PMID:24593353

  5. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect

    Winter, B.; King, S. J.; Vallance, C.; Brouard, M.

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  6. Perils of the GPS phase scintillation index (?$\\phi$)

    NASA Astrophysics Data System (ADS)

    Beach, Theodore L.

    2006-10-01

    The phase scintillation index (??), equal to the standard deviation of measured phase, is often used to characterize Global Positioning System (GPS) observations in ionospheric environments that may be scintillated. Since ?? is dominated by large-scale fluctuations, questions of usage and interpretation exist as will be illustrated here. Beyond traditional concerns with detrending, multipath and receiver phase noise, there are at least two issues to be considered. The first is the marginal suitability of ?? to characterize a power law phase screen with a poorly defined low-frequency component (e.g., outer scale). Second, observed ?? parameters may not be relevant to GPS receiver tracking impacts. These arguments are outlined here in greater detail and are illustrated with simple one-dimensional phase screen propagation modeling results. The conclusion is that GPS ?? values depend critically on the circumstances of measurement and are difficult to compare among observations without additional knowledge, particularly of relative ionospheric drift and irregularity orientation, that may not be available from an isolated GPS receiver. The development of suitable alternative measures requires careful consideration of the elements of GPS scintillation and its impacts. The broader GPS scintillation community should take an active role in developing suitable replacement measures for ??.

  7. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  8. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  9. Properties of scintillator solutes

    SciTech Connect

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  10. Recent Advances in Ceramic Scintillators

    SciTech Connect

    Van Loef, Edgar V.; Wang, Yimin; Glodo, Jarek; Shah, Kanai S.; Brecher, Charles; Lempicki, Alex

    2008-07-01

    A review is presented of recent ceramic scintillator R and D. Attention is focussed on Ce doped gamma-ray scintillators for medical imaging applications. Ceramic scintillators discussed in detail include SrHfO{sub 3}:Ce and Lu{sub 2}Hf{sub 2}O{sub 7}:Ce. These materials combine a high density and high atomic number with fast emission and a good light yield and may find practical application in medical imaging modalities such as Positron Emission Tomography and Computed Tomography. (authors)

  11. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  12. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  13. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  14. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom (Sterling, VA); Spector, Garry B. (Fairfax, VA)

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  15. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  16. Thermal neutron scintillators using unenriched boron nitride and zinc sulfide

    NASA Astrophysics Data System (ADS)

    McMillan, J. E.; Cole, A. J.; Kirby, A.; Marsden, E.

    2015-06-01

    Thermal neutron detectors based on powdered zinc sulfide intimately mixed with a neutron capture compound have a history as long as scintillation technique itself. We show that using unenriched boron nitride powder, rather than the more commonly used enriched lithium fluoride, results in detection screens which produce less light but which are very considerably cheaper. Methods of fabricating large areas of this material are presented. The screens are intended for the production of large area low cost neutron detectors as a replacement for helium-3 proportional tubes.

  17. Development of the dual scintillator sheet and Phoswich detector for simultaneous Alpha- and Beta-rays measurement

    SciTech Connect

    Seo, B.K.; Kim, G.H.; Park, C.H.; Jung, Y.H.; Jung, C.H.; Lee, K.W.; Han, M.J.

    2007-07-01

    Thin sheet type of ZnS(Ag)/plastic dual scintillator for simultaneous counting of alpha- and beta-particles using a organic and inorganic scintillator widely used in the radiation measurement was manufactured, which could be applicable in the contamination monitoring systems. Counting materials were manufactured by solidification of the scintillator solution which mixed scintillator, solvent, and polymer. Prepared dual scintillator is a counting material which can simultaneously measure the alpha- and beta-particles. It was divided into two parts : an inorganic scintillator layer for alpha-particle detection and an organic one for beta-particle detection. The organic layer was composed of 2,5-diphenyloxazole [PPO] and 1,4,-bis[5-phenyl(oxazolyl)benzene] [POPOP] acting as the scintillator and polysulfone acting as the polymer. The inorganic layer was composed of ZnS(Ag) as scintillator and polysulfone as paste. The ZnS(Ag) scintillator layer was printed onto the organic layer using screen printing method. To estimate the detection ability of the prepared counting materials, alpha-particle emitting nuclide, Am-241, and beta emitting nuclide, Sr/Y-90, were used. The scintillations produced by interaction between radiation and scintillator were measured by photomultiplier tube. The overall counting results reveal that the developed detector is efficient for simultaneous counting of alpha- and beta-particles. For application test, the dual scintillator was fabricated with a Phoswich detector for monitoring the in-pipe alpha and beta contamination. To deploy inside a pipe, two types of Phoswich detectors, sheets and cylinders, were prepared. For in-pipe monitoring, it was found that the cylindrical type was excellent. In the study, polymer composite counting material and Phoswich detectors were prepared using organic and inorganic scintillator for detecting different radiations. In the future, it will be applied to the contamination monitoring system for nuclear decommissioning sites, waste treatment sites, and similar areas. (authors)

  18. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  19. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  20. PMT calibration of a scintillation detector using primary scintillation

    NASA Astrophysics Data System (ADS)

    Freitas, E. D. C.; Fernandes, L. M. P.; Yahlali, N.; Pérez, J.; Álvarez, V.; Borges, F. I. G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Díaz, J.; Esteve, R.; Ferrario, P.; Ferreira, A. L.; Gehman, V. M.; Goldschmidt, A.; Gómez, H.; Gómez-Cadenas, J. J.; González Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez Lema, G.; Miller, T.; Monrabal, F.; Monserrate, M.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Pérez, J.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; Dos Santos, J. M. F.; Seguí, L.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J.; Monteiro, C. M. B.

    2015-02-01

    We have studied the calibration of PMTs in scintillation detectors, inducing single electron response on the PMT from primary scintillation produced by x-ray interaction. The results agree with those obtained by the commonly used single electron response (SER) method, which uses LED light pulses to induce the PMT SER. The use of the primary scintillation for PMT calibration will be convenient in situations where the PMT is already in situ, when it becomes difficult or even impossible to apply the SER method, e.g. in commercial sealed scintillator/PMT devices. Furthermore, we have experimentally investigated the possibility of fitting the high-charge tail of the PMT SER pulse-height distribution to an exponential function, inferring the PMT gain from the inverse of the exponent. The results of the exponential fit method agree with those obtained by the SER method for pulse-height distributions resulting from an average number of around 1.0 photoelectrons reaching the first dynode per light/scintillation pulse. The SER method has higher precision and, therefore, is used in a larger number of applications. Nevertheless, the exponential fit method will be useful in situations where the single photoelectron peak is under the background or noise peak and it may present an alternative, simple way, for relative gain calibration of PMT arrays as well as for monitoring the PMT gain variations.

  1. Optimisation of nasal swab analysis by liquid scintillation counting.

    PubMed

    Dai, Xiongxin; Liblong, Aaron; Kramer-Tremblay, Sheila; Priest, Nicholas; Li, Chunsheng

    2012-06-01

    When responding to an emergency radiological incident, rapid methods are needed to provide the physicians and radiation protection personnel with an early estimation of possible internal dose resulting from the inhalation of radionuclides. This information is needed so that appropriate medical treatment and radiological protection control procedures can be implemented. Nasal swab analysis, which employs swabs swiped inside a nostril followed by liquid scintillation counting of alpha and beta activity on the swab, could provide valuable information to quickly identify contamination of the affected population. In this study, various parameters (such as alpha/beta discrimination, swab materials, counting time and volume of scintillation cocktail etc) were evaluated in order to optimise the effectiveness of the nasal swab analysis method. An improved nasal swab procedure was developed by replacing cotton swabs with polyurethane-tipped swabs. Liquid scintillation counting was performed using a Hidex 300SL counter with alpha/beta pulse shape discrimination capability. Results show that the new method is more reliable than existing methods using cotton swabs and effectively meets the analysis requirements for screening personnel in an emergency situation. This swab analysis procedure is also applicable to wipe tests of surface contamination to minimise the source self-absorption effect on liquid scintillation counting. PMID:22562962

  2. Weak Interstellar Scintillation of Pulsar B0809+74

    NASA Astrophysics Data System (ADS)

    Coles, Wm. A.; Rickett, Barney J.; Markkanen, Jussi

    1998-05-01

    The nearby pulsar B0809+74 should be in the regime of weak interstellar scintillation at all frequencies above about 1 GHz, based on extrapolating 400 MHz observations using a Kolmogorov spectral model. The predicted time scale at 933 MHz is about 1 hr. The source is circumpolar at the EISCAT-Sodankyla site in Finland, and we were able to take advantage of a receiver test to observe it continuously at 933 MHz for 80 hours. The observations showed that the source was on the edge of weak scintillation with a scintillation index S_rms/ = 0.90, and a time scale of 1.9 hr. The 80 hr observation was long enough to provide a reliable estimate of the intensity structure function, which we have compared with a weak scintillation theoretical model. The model includes the distribution of interstellar plasma turbulence along the line-of-sight; its spectral exponent; and the velocities of the pulsar, the observer and the turbulent plasma. The observations are consistent with a Kolmogorov spectrum and various distributions of turbulence along the line-of-sight, including a thin screen. In this paper we will show the range of models which provide an adequate match to the observations, including the model proposed by Bhat et al. (submitted to MNRAS 1998) in which there is enhanced scattering at the edge of the local super-bubble.

  3. Newborn Screening

    MedlinePLUS

    ... Screening for CCHDs Sickle Cell Disease Laboratory SCID Quality Assurance Training and Resources Partners Newborn Screening Lab Bulletin ... Programs Early Hearing Detection and Intervention Newborn Screening Quality Assurance Program Newborn Screening Translation Research Initiative Newborn Screening ...

  4. Structural design of a high energy particle detector using liquid scintillator

    SciTech Connect

    Berg, Timothy John; /Minnesota U.

    1997-02-01

    This thesis presents a design for a 10,000 ton liquid scintillator neutrino detector being considered for the MINOS project at Fermilab. Details of designing, manufacturing, and assembling the active detector components are presented. The detector consists of 1080 magnetized steel absorber planes alternating with 1080 active detector planes. Each active plane is made up of plastic extrusions divided into nearly 400 cells for positional resolution. Life tests on the plastic extrusions determine their feasibility for containing the scintillator. The extrusions are sealed at the bottom, filled with liquid scintillator, and have an optical fiber running the entire length of each cell. The fibers terminate at the top of each extrusion in a manifold. An optical-fiber-light-guide connects the fibers in each manifold to a photo-detector. The photo-detector converts the light signals from the scintillator and optical fibers into electrical impulses for computer analysis.

  5. Plastic scintillation dosimetry: comparison of three solutions for the Cerenkov challenge

    NASA Astrophysics Data System (ADS)

    Liu, P. Z. Y.; Suchowerska, N.; Lambert, J.; Abolfathi, P.; McKenzie, D. R.

    2011-09-01

    In scintillation dosimetry, a Cerenkov background signal is generated when a conventional fibre optic is exposed to radiation produced by a megavoltage linear accelerator. Three methods of measuring dose in the presence of Cerenkov background are compared. In the first method, a second background fibre is used to estimate the Cerenkov signal in the signal fibre. In the second method, a colour camera is used to measure the combined scintillation and Cerenkov light in two wavelength ranges and a mathematical process is used to extract the scintillation signal. In the third method, a hollow air core light guide is used to carry the scintillation signal through the primary radiation field. In this paper, the strengths and weaknesses of each dosimetry system are identified and recommendations for the optimum method for common clinical dosimetry situations are made.

  6. An imaging technique for detection and absolute calibration of scintillation light

    SciTech Connect

    Pappalardo, Alfio; Cosentino, Luigi; Finocchiaro, Paolo

    2010-03-15

    Triggered by the need of a detection system to be used in experiments of nuclear fusion in laser-generated plasmas, we developed an imaging technique for the measurement and calibration of the scintillation light yield of scintillating materials. As in such experiments, all the reaction products are generated in an ultrashort time frame, the event-by-event data acquisition scheme is not feasible. As an alternative to the emulsion technique (or the equivalent CR39 sheets) we propose a scintillating screen readout by means of a high performance charge coupled device camera. Even though it is not strictly required in the particular application, this technique allows the absolute calibration of the scintillation light yield.

  7. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  8. Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators.

    PubMed

    El-Mohri, Youcef; Antonuk, Larry E; Zhao, Qihua; Choroszucha, Richard B; Jiang, Hao; Liu, Langechuan

    2011-03-21

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (?2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the detective quantum efficiency (DQE) performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ?11 mm thick CsI:Tl and Bi(4)Ge(3)O(12) (BGO) crystals were evaluated. Each scintillator consists of 120 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360 tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ?0.28 to ?1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ?4 cGy--a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ?2.76%. Results of contrast, noise and contrast-to-noise ratio are presented as a function of dose and compared to those from a conventional MV AMFPI. PMID:21325709

  9. Scintillation at two optical frequencies.

    PubMed

    Hubbard, W B; Reitsema, H J

    1981-09-15

    Stellar scintillation data were obtained on a single night at a variety of zenith distances and azimuths, using a photon-counting photometer recording at 100 Hz simultaneously at wavelengths of 0.475 microm and 0.870 microm. Orientable apertures of 42-cm diam separated by 1 m were used to establish the average upper atmosphere wind direction and velocity. Dispersion in the earth's atmosphere separate the average optical paths at the two wavelengths, permitting a reconstruction of the spatial cross-correlation function for scintillations, independent of assumptions about differential fluid motions. Although there is clear evidence of a complicated velocity field, scintillation power was predominantly produced by levels at pressures of 130 +/- 30 mbar. The data are not grossly inconsistent with layers of isotropic Kolmogorov turbulence, but there is some evidence for deviation from the Kolmogorov spectral index and/or anisotropy. PMID:20333125

  10. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G. ); Blackburn, R. )

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  11. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  12. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F. Patrick

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  13. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A. (Oak Ridge, TN); Chiles, Marion M. (Knoxville, TN)

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  14. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  15. Liquid scintillating fiber calorimetry prototype

    SciTech Connect

    Gui, M.; Brookes, D.; David, A.

    1995-08-01

    A full size liquid scintillating fiber spaghetti-hadronic calorimeter has been constructed and tested using cosmic rays at Texas A and M University. The purpose of this research is to find practical solutions for detectors to be used in extremely high radiation environments. The details of design and construction of this module are presented. The advantages of using liquid scintillating materials were investigated. Relevant subjects are addressed. Cosmic ray test results are compared with that of GEANT Monte Carlo simulations. Over all, they agree well with each other. The conclusion is that calorimeters utilizing this technique can be used in high radiation environments such as SSC colliding area.

  16. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  17. Scintillator Cosmic Ray Super Telescope

    NASA Astrophysics Data System (ADS)

    Gonzlez, L. X.; Valds-Galicia, J. F.; Matsubara, Y.; Nagai, Y.; Itow, Y.; Sako, T.; Lpez, D.; Mitsuka, G.; Munakata, K.; Kato, C.; Yasue, S.; Kosai, M.; Tsurusashi, M.; Nakamo, Y.; Shibata, S.; Takamaru, H.; Kojima, H.; Tsuchiya, H.; Watanabe, K.; Koi, T.; Fragoso, E.; Hurtado, A.; Musalem, O.

    2013-04-01

    The Scintillator Cosmic Ray Super Telescope (SciCRST) is a new experiment to detect solar neutrons, and also it is expected to work as a muon and cosmic ray detector. The SciCRST consist of 14,848 plastic scintillator bars, and it will be installed at the top of Sierra Negra volcano, Mexico, 4580 m.a.s.l. We use a prototype, called as miniSciBar, to test the hardware and software of the final experiment. In this paper, we present the status and details of the experiment, and results of the prototype.

  18. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  19. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    PubMed

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. PMID:25497719

  20. Photonic crystal scintillators and methods of manufacture

    SciTech Connect

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  1. Composite scintillators for detection of ionizing radiation

    DOEpatents

    Dai, Sheng (Knoxville, TN) [Knoxville, TN; Stephan, Andrew Curtis (Knoxville, TN) [Knoxville, TN; Brown, Suree S. (Knoxville, TN) [Knoxville, TN; Wallace, Steven A. (Knoxville, TN) [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  2. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  3. Scintillation mechanisms in Ce3+ doped halide scintillators

    NASA Astrophysics Data System (ADS)

    Dorenbos, Pieter

    2005-01-01

    Last couple of years witnessed the development of various new Ce3+ doped halide scintillators (LaCl3, LaBr3, LuI3, Cs2LiYCl6, Cs2LiYBr6) that possess excellent gamma ray or thermal neutron detection properties. The scintillation pulse in LaBr3:Ce3+ is 20 times faster than in the most commonly used scintillator NaI:Tl. This, combined with a more then two times better energy resolution and higher gamma ray stopping power, makes it ideally suited for many different applications. In this work the scintillation properties and mechanisms of Ce3+ doped inorganic halide (Cl, Br, I) compounds are reviewed; especially the role of Vk centers and self trapped excitons (STEs) in the energy transfer from the ionization track to Ce3+ is treated. Aspects of the lifetime and thermal stability of the self trapped exciton, the migration speed of Vk centers and STEs, spectral overlap between STE emission and Ce3+ absorption, and the influence of the type of anion (Cl, Br, I) are addressed.

  4. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of naphthalene modifies the shape of the pulses produced by alpha and beta particles leading to better alpha/beta separation.

  5. Two dimensional and linear scintillation detectors for fast neutron imaging comparative analysis

    NASA Astrophysics Data System (ADS)

    Mikerov, V. I.; Koshelev, A. P.; Ozerov, O. V.; Sviridov, A. S.; Yurkov, D. I.

    2014-05-01

    The paper was aimed to compare performance capabilities of two types of scintillation detectors commonly used for fast neutron imaging: two dimensional and linear ones. Best-case values of quantum efficiency, spatial resolution and capacity were estimated for detectors with plastic converter-screen in case of 14 MeV neutrons. For that there were examined nuclear reactions produced in converter-screen by fast neutrons, spatial distributions of energy release of emerged charged particles and amplitude distributions of scintillations generated by these particles. The paper shows that the efficiency of the linear detector is essentially higher and this detector provides potentially better spatial resolution in comparison with the two dimensional detector. But, the two dimensional detector surpasses the linear one in capacity. The presented results can be used for designing radiographic fast neutron detectors with organic scintillators.

  6. SNO+ Scintillator Purification and Assay

    SciTech Connect

    Ford, R.; Vazquez-Jauregui, E.; Chen, M.; Chkvorets, O.; Hallman, D.

    2011-04-27

    We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  7. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vzquez-Juregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  8. Scintillating fiber ribbon --- tungsten calorimeter

    SciTech Connect

    Bross, A.; Crisler, M.; Kross, B.; Wrbanek, J.

    1989-07-14

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs.

  9. Interstellar Scintillation and Intraday Variability

    NASA Astrophysics Data System (ADS)

    Rickett, B. J.

    Sources that are compact enough to show intrinsic variability on times of a day or less (IDV) at cm wavelengths must also show interstellar scintillation (ISS) on similar timescales. However for many IDV sources, the variations could be entirely due to ISS, reducing the implied brightness temperatures to $\\sim 1013$~K or less.

  10. Method of making a scintillator waveguide

    DOEpatents

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder, Paul L. (Richland, WA)

    2000-01-01

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  11. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  12. Energy resolution of scintillation detectors

    NASA Astrophysics Data System (ADS)

    Moszyński, M.; Syntfeld-Każuch, A.; Swiderski, L.; Grodzicka, M.; Iwanowska, J.; Sibczyński, P.; Szczęśniak, T.

    2016-01-01

    According to current knowledge, the non-proportionality of the light yield of scintillators appears to be a fundamental limitation of energy resolution. A good energy resolution is of great importance for most applications of scintillation detectors. Thus, its limitations are discussed below; which arise from the non-proportional response of scintillators to gamma rays and electrons, being of crucial importance to the intrinsic energy resolution of crystals. The important influence of Landau fluctuations and the scattering of secondary electrons (δ-rays) on intrinsic resolution is pointed out here. The study on undoped NaI and CsI at liquid nitrogen temperature with a light readout by avalanche photodiodes strongly suggests that the non-proportionality of many crystals is not their intrinsic property and may be improved by selective co-doping. Finally, several observations that have been collected in the last 15 years on the influence of the slow components of light pulses on energy resolution suggest that more complex processes are taking place in the scintillators. This was observed with CsI(Tl), CsI(Na), ZnSe(Te), and undoped NaI at liquid nitrogen temperature and, finally, for NaI(Tl) at temperatures reduced below 0 °C. A common conclusion of these observations is that the highest energy resolution, and particularly intrinsic resolution measured with the scintillators, characterized by two or more components of the light pulse decay, is obtainable when the spectrometry equipment integrates the whole light of the components. In contrast, the slow components observed in many other crystals degrade the intrinsic resolution. In the limiting case, afterglow could also be considered as a very slow component that spoils the energy resolution. The aim of this work is to summarize all of the above observations by looking for their origin.

  13. Detection of six rapidly scintillating active galactic nuclei and the diminished variability of J1819+3845

    NASA Astrophysics Data System (ADS)

    Koay, J. Y.; Bignall, H. E.; Macquart, J.-P.; Jauncey, D. L.; Rickett, B. J.; Lovell, J. E. J.

    2011-10-01

    The extreme, intra-hour and >10% rms flux density scintillation observed in AGNs such as PKS 0405-385, J1819+3845 and PKS 1257-326 at cm wavelengths has been attributed to scattering in highly turbulent, nearby regions in the interstellar medium. Such behavior has been found to be rare. We searched for rapid scintillators among 128 flat spectrum AGNs and analyzed their properties to determine the origin of such rapid and large amplitude radio scintillation. The sources were observed at the VLA at 4.9 and 8.4 GHz simultaneously at two hour intervals over 11 days. We detected six rapid scintillators with characteristic time-scales of <2 h, none of which have rms variations >10%. We found strong lines of evidence linking rapid scintillation to the presence of nearby scattering regions, estimated to be <12 pc away for ~200 ?as sources and <250 pc away for ~10 ?as sources. We attribute the scarcity of rapid and large amplitude scintillators to the requirement of additional constraints, including large source compact fractions. J1819+3845 was found to display ~2% rms variations at ~6 h time-scales superposed on longer >11 day variations, suggesting that the highly turbulent cloud responsible for its extreme scintillation has moved away, with its scintillation now caused by a more distant screen ?50 to 150 pc away.

  14. Impact of equatorial ionospheric irregularities on GNSS receivers using real and synthetic scintillation signals

    NASA Astrophysics Data System (ADS)

    Ghafoori, F.; Skone, S.

    2015-04-01

    The impact of L-band equatorial ionospheric scintillation on Global Navigation Satellite Systems (GNSS) receivers is investigated in this paper using both real and synthetic scintillation data. To this end, various low-latitude data sets, recorded during the most recent solar maximum, are exploited in post-processing to develop and verify realistic simulation tools and evaluate GNSS receiver performance. A scintillation simulation model is implemented based on the phase screen formulation of Dr. Charles Rino (1979, 1982, and 2011) which allows oblique signal propagation in an anisotropic propagation medium with multiple irregularity layers (or phase screens) for multiple GNSS frequencies. The observed real scintillation parameters are used to drive GNSS signal simulations. The subsequent simulated GNSS signal time series are verified through comparison with real data for different signal tracking states including the most severe and challenging tracking scenarios. Using both real and synthetic data sets, the impact of scintillation on observation quality and receiver performance is evaluated in terms of probability of loss of phase and frequency lock, as well as the correlation of disturbed L-band signals transmitted by GNSS satellites on the same transionsopheric path.

  15. Diffractive interstellar scintillation of the quasar J1819+3845 at ?21 cm

    NASA Astrophysics Data System (ADS)

    Macquart, J.-P.; de Bruyn, A. G.

    2006-01-01

    We report the discovery of fast, frequency-dependent intensity variations from the scintillating intra-day variable quasar J1819+3845 at ? 21 cm which resemble diffractive interstellar scintillations observed in pulsars. The observations were taken with the Westerbork Synthesis Radio Telescope on a dozen occasions in the period between Aug. 2002 and Jan. 2005. The data were sampled at both high temporal and high frequency resolution and have an overall simultaneous frequency span of up to 600 MHz. In constructing the light curves and dynamic spectra the confusion from background sources has been eliminated. The timescale (down to 20 min) and the bandwidth (frequency decorrelation bandwidth of 160 MHz) of the observed variations jointly imply that the component of the source exhibiting this scintillation must possess a brightness temperature well in excess of the inverse Compton limit. A specific model in which both the source and scintillation pattern are isotropic implies a brightness temperature 0.5 1013 zpc K, where previous estimates place the distance to the scattering medium in the range zpc=4-12 pc, yielding a minimum brightness temperature >20 times the inverse Compton limit. An independent estimate of the screen distance using the 21 cm scintillation properties alone indicates a minimum screen distance of z ? 40 pc and a brightness temperature above 2 1014 K. There is no evidence for anisotropy in the scattering medium or source from the scintillation characteristics, but these estimates may be reduced by a factor comparable to the axial ratio if the source is indeed elongated. The observed scintillation properties of J1819+3845 at 21 cm are compared with those at 6 cm, where a significantly larger source size has been deduced for the bulk of the emission by Dennett-Thorpe & de Bruyn (2003). However, opacity effects within the source and the different angular scales probed in the regimes of weak and strong scattering complicate this comparison.

  16. Fast response neutron scintillation detector for FIRE-X

    NASA Astrophysics Data System (ADS)

    Arikawa, Y.; Nakai, M.; Watari, T.; Hosoda, H.; Takeda, K.; Fujiwara, T.; Furukawa, Y.; Norimatsu, T.; Shiraga, H.; Sarukura, N.; Azechi, H.

    2008-05-01

    We have been developing fast responding neutron detectors with a view to revealing the effect of additional laser heating in FIREX-I (Fast Ignition Realization Experiment) by measuring the burn time with a time resolution under 100 ps at the relatively low neutron yield (about 106). The detector is constructed with a thin plastic-scintillaotor (BC-422), a micro-channel-plate photomultiplier tube (MCP-PMT) and a bundle optical fiber as a light-guide. The rise time of a neutron signal from the detector is measured to be 220 ps. The time-determination error for measuring burn time is estimated to be less than ± 46 ps from the data of characterization experiments measuring the transit time distribution of signals, and calculated values of Doppler broadening and the uncertainty of the scintillation time due to the thickness of the scintillator. In the future with more neutron yield, we will construct a scintillation-fiber-streak camera to detect burn history.

  17. Scintillator diagnostics for the detection of laser accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Cook, N.; Tresca, O.; Lefferts, R.

    2014-09-01

    Laser plasma interaction with ultraintense pulses present exciting schemes for accelerating ions. One of the advantages conferred by using a gaseous laser and target is the potential for a fast (several Hz) repetition rate. This requires diagnostics which are not only suited for a single shot configuration, but also for repeated use. We consider several scintillators as candidates for an imaging diagnostic for protons accelerated to MeV energies by a CO2 laser focused on a gas jet target. We have measured the response of chromium-doped alumina (chromox) and polyvinyl toluene (PVT) screens to protons in the 2-8 MeV range. We have calibrated the luminescent yield in terms of photons emitted per incident proton for each scintillator. We also discuss how light scattering and material properties affect detector resolution. Furthermore, we consider material damage and the presence of an afterglow under intense exposures. Our analysis reveals a near order of magnitude greater yield from chromox in response to proton beams at > 8 MeV energies, while scattering effects favor PVT-based scintillators at lower energies.

  18. Adaptive triggering for scintillation signals

    NASA Astrophysics Data System (ADS)

    Vesic, J.; Vencelj, M.; Strnisa, K.; Savran, D.

    2015-04-01

    Due to the stochastic nature of the pulse creation in a scintillation detector the output pulses are not all of the same shape but rather 'noised' with statistical fluctuations on the pulse tails, which may induce false triggers. The current state of the art in solving this kind of problems is either introducing a deadtime after each pulse which makes the detector inefficient at higher count rates or raising the trigger threshold above the fluctuactions level, which on the other side, lowers the dynamic range of the detector from the low energy side. In order to meet the ever growing demand for high precision/efficient experiments the solutions to these limitations are highly desirable. We propose a new method, the adaptive triggering for scintillation signals.

  19. Silicon photomultipliers for scintillating trackers

    NASA Astrophysics Data System (ADS)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  20. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either large scale (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or small scale (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric station in Cairo, Egypt (lat= 29.8641 , long= 31.3172 ). It was observed that the level of asymmetry was significantly increased during the main phase of the geomagnetic storm. This was due to the changes in ionization, which in turn produced large gradients along occulted ray path in the ionosphere. A very good correlation was found between the evaluated ionospheric asymmetry index and the S4 scintillation index. Additionally, the correlation between evaluated ionospheric asymmetry and errors related to the RO inversion products such as peak electron density (delta NmF2) and Vertical TEC (delta VTEC) estimates also showed promising results. This work is carried out under the framework of the TRANSMIT project (Training Research and Applications Network to Support the Mitigation of Ionospheric Threats - www.transmit-ionosphere.net). [1]Basu Sa. and Basu Su., (1981), Equatorial Scintillation - A Review, Journal of Atmospheric and Solar-Terrestrial Physics, 43, p. 473. [2]Davies K., (1990), Ionospheric Radio, IEEE Electromagnetic Waves Series 31, Peter Peregrinus Ltd. [3]Spencer, P., Mitchell, C.N., (2007) Imaging of fast moving electron-density structures in the polar cap, Annals of Geophysics, vol. 50, no. 3, pp. 427-434. [4]Shaikh, M.M., Notarpietro, R., Nava, B., (2013) The Impact of Spherical Symmetry Assumption on Radio Occultation Data Inversion in the Ionosphere: An Assessment Study, Advances in Space Research, doi: http://dx.doi.org/10.1016/j.asr.2013.10.025.

  1. The ring shaped plastic scintillator detector STAR for forward angle reconstruction

    NASA Astrophysics Data System (ADS)

    Sauer, M.; Fuchs, A.; Grabmayr, P.; Leypoldt, J.

    1996-02-01

    The STAR-detector was built as one component of a 4?-detector setup for the test of the Gerasimov-Drell-Hearn sum rule. The STAR-detector will be employed to determine charged hadronic particle rates at small forward angles 1.7 ? ? ? 16.5 and to suppress atomic events. It consists of a scintillator plate and nine concentric scintillator rings with decreasing diameters. Each ring covers a polar angular range of ?? ? 1.85 and is realized by two half-rings with separate light readout. The optimized shape of the rings and the light guides was found through simulations with the Monte Carlo program SIMLIGHT.

  2. Secondary scintillation yield in pure xenon

    NASA Astrophysics Data System (ADS)

    Monteiro, C. M. B.; Fernandes, L. M. P.; Lopes, J. A. M.; Coelho, L. C. C.; Veloso, J. F. C. A.; dos Santos, J. M. F.; Giboni, K.; Aprile, E.

    2007-05-01

    The xenon secondary scintillation yield was studied as a function of the electric field in the scintillation region, in a gas proportional scintillation counter operated at room temperature. A large area avalanche photodiode was used for the readout of the VUV secondary scintillation produced in the gas, together with the 5.9 keV x-rays directly absorbed in the photodiode. The latter was used as a reference for the determination of the number of charge carriers produced by the scintillation pulse and, thus, the number of VUV photons impinging the photodiode. A value of 140 photons/kV was obtained for the scintillation amplification parameter. The attained results are in good agreement with those predicted, for room temperature, by Monte Carlo simulation and Boltzmann calculations, as well as with those obtained for saturated xenon vapour, at cryogenic temperatures, and are about a factor of two higher than former results measured at room temperature.

  3. A Review of Ionospheric Scintillation Models

    NASA Astrophysics Data System (ADS)

    Priyadarshi, S.

    2015-03-01

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  4. Morphology of auroral zone radio wave scintillation

    SciTech Connect

    Rino, C.L.; Matthews, S.J.

    1980-08-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.

  5. Weak-scintillation light yield determination

    SciTech Connect

    Mandzhukov, I.G.; Mandzhukova, B.V.

    1987-12-01

    The pulse-height distribution produced by weak scintillations is simulated as a Poisson distribution if the mean number of photoelectrons collected at the first dynode is of the order of one. This method enables one to determine the scintillation yield also when the photomultiplier does not show a peak in the single-electron pulses. Scintillation yields have been determined for some aqueous solutions of sodium salicylate and for aromatic solvents (benzene, toluene, and xylene) on internal irradiation by ..cap alpha.. particles.

  6. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of the scintillation measurements, and to highlight some of the scientific results obtained to date. Special emphasis is placed on comparing the remote sensing features of planetary and terrestrial scintillation measurements, and on contrasting spacecraft and natural radio source scintillation measurements. I will first discuss planetary atmospheres and ionospheres, and then the solar wind.

  7. Recording of relativistic particles in thin scintillators

    SciTech Connect

    Tolstukhin, I A.; Somov, Alexander S.; Somov, S. V.; Bolozdynya, A. I.

    2014-11-01

    Results of investigating an assembly of thin scintillators and silicon photomultipliers for registering relativistic particles with the minimum ionization are presented. A high efficiency of registering relativistic particles using an Ej-212 plastic scintillator, BSF-91A wavelength-shifting fiber (Saint-Gobain), and a silicon photomultiplier (Hamamtsu) is shown. The measurement results are used for creating a scintillation hodoscope of the magnetic spectrometer for registering ? quanta in the GlueX experiment.

  8. Neutron position-sensitive scintillation detector

    DOEpatents

    Strauss, Michael G. (Downers Grove, IL); Brenner, Raul (Woodridge, IL)

    1984-01-01

    A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.

  9. Timing resolution of the FINUDA scintillation detectors

    NASA Astrophysics Data System (ADS)

    Dalena, B.; D'Erasmo, G.; Di Santo, D.; Fiore, E. M.; Palomba, M.; Simonetti, G.; Andronenkov, A.; Pantaleo, A.; Paticchio, V.; Faso, D.

    2009-05-01

    Experimental characterizations of scintillation detectors timing performance of the internal (TOFINO) and external (TOFONE) scintillator barrels used in FINUDA experiment are presented. The measurements take advantage of detecting synchronous particle pairs produced in the reactions, namely e+e- pairs from Bhabha collisions between the primary beams and K+K- pairs from ?(1020) decay. The method used for synchronizing the multiple detectors constituting the scintillator barrels is also described as being carried out in two steps: a rough one online by the injection of laser light pulses flashing the scintillators all together, and a fine one offline exploiting the timing features of e+e- and K+K- pairs.

  10. Liquid Scintillator Development for KamLAND

    NASA Astrophysics Data System (ADS)

    Iwamoto, Toshiyuki

    2001-10-01

    KamLAND(Kamioka Liquid scintillator Anti-Neutrino Detector) is a one kiloton liquid scintillator neutrino detector. Its principal goal is to investigate neutrino oscillations by studying the flux and the energy spectra of antineutrinos produced by Japanese commercial nuclear reactors. Good performance in terms of the light output, transparency and particle identification and etc. are necessary for the KamLAND. We tested the various kinds of liquid scintillator and selected one based on mineral oil. The various properties of that were tested. I will describe the KamLAND liquid scintillator and results of those studies.

  11. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  12. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F. (630 Sylvan Pl., Batavia, IL 60510); Sparrow, Robert W. (28 Woodlawn Dr., Sturbridge, MA 01566)

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  13. Waveshifters and Scintillators for Ionizing Radiation Detection

    SciTech Connect

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  14. Formula optimization of the Jiashitang scar removal ointment and antiinflammatory compounds screening by NF-?B bioactivity-guided dual-luciferase reporter assay system.

    PubMed

    Gao, Jie; Tao, Jin; Zhang, Nannan; Liu, Yanjie; Jiang, Min; Hou, Yuanyuan; Wang, Qian; Bai, Gang

    2015-02-01

    Inflammation plays a role in scar formation; therefore, decreasing inflammation benefits scar removal. Jiashitang scar removal ointment (JST) is a commercially available traditional Chinese medicinal formulation. It is composed of extracts from Carthamus tinctorius L. (Car), Rheum officinale Baill. (Rhe), Salvia miltiorrhiza Beg. (Sal), and Panax notoginseng (Burk.) F.?H. Chen (Pan), which are all herbs with potent antiinflammatory activities. Our aims are to optimize the formula of JST and to elucidate its antiinflammatory active components. Response surface methodology was applied to optimize proportions of the four herb extracts. The antiinflammatory effects were evaluated using in vitro and in vivo models. To screen for active components in this formula, a bioactivity-based ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analysis was performed. After optimization, the antiinflammatory effects of the new formula were significantly superior to the original one. Screening identified 13 active ingredients: a series of saffiomin, emodin, salvianolic acid, tanshinone, and triterpenoid saponin derivatives. These active ingredients were predicted to exert nuclear factor-?B inhibiting effects through MAPK, PI3K/AKT, and NIK-IKK pathways. In conclusion, the original formula was successfully optimized with more potent antiinflammatory activity. These methods can be applied to researches of other formulas. PMID:25363818

  15. 4/6-GHz ionospheric scintillation measurements during the peak of sunspot cycle 21

    SciTech Connect

    Fang, D.J.; Pontes, M.S.

    1981-01-01

    Analyses of power spectral density confirm an f to the -3 dependence for weak scintillations, which, it is noted, can be explained by the conventional weak scattering theory for a thick screen with a power law electron density fluctuation spectrum of p equals 4. Data gathered from 1977 to 1980 at the Hong Kong Earth Station provide further insight into 4- and 6-GHz scintillations during maximum solar activity. Such characteristics as occurrence frequencies, durations, global scales, and spectral roll-off slopes are unique in that they had not been observed in previous years. Peak-to-peak fluctuations of up to 14-dB magnitude are observed for which the f to the -3 power spectrum dependence is no longer valid. In terms of cumulative statistics, a model of scintillation increase as a function of solar activities is developed for engineering applications.

  16. Spectral analysis of scintillation data taken from an aircraft. Part I. Final report Oct 76-Oct 79

    SciTech Connect

    Barrett, T.B.

    1980-02-01

    This report provides theoretical background material for the development of a thin phase screen model for radio scintillation. This model is then used to derive an expression for the expected amplitude scintillation spectra (spectral density funciton) which might be observed in a geometry which includes a satellite based transmitter, an aircraft based receiver and a 'thin', intermediate scintillation-producing medium. A computer procedure was developed for testing the model under various geometries and for various parameters describing the 'bulk' properties statistical properties of the medium. In addition to the development of a theoretical model, this report includes material on experimental spectral analysis and, in particular, details on a spectral analysis procedure which was used on amplitude scintillation and data gathered from an aircraft in geomagnetic equatorial regions.

  17. Scintillation properties of lead sulfate

    SciTech Connect

    Moses, W.W.; Derenzo, S.E. ); Shlichta, P.J. )

    1991-11-01

    We report on the scintillation properties of lead sulfate (PbSO{sub 4}), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm{sup 3}, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO{sub 4} crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45{degrees}C to 4, 900 photons/MeV at room temperature (+25{degrees}C) and 68,500 photons/MeV at {minus}145{degrees}C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO{sub 4} (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs.

  18. Photodetectors for scintillator proportionality measurement

    NASA Astrophysics Data System (ADS)

    Moses, William W.; Choong, Woon-Seng; Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, John D.

    2009-10-01

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high (50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  19. Photodetectors for Scintillator Proportionality Measurement

    SciTech Connect

    Moses, William W.; Choong, Woon-Seng; Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, J.D.

    2010-10-18

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high ({approx}50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  20. Structure-guided design of fluorescent S-adenosylmethionine analogs for a high-throughput screen to target SAM-I riboswitch RNAs.

    PubMed

    Hickey, Scott F; Hammond, Ming C

    2014-03-20

    Many classes of S-adenosylmethionine (SAM)-binding RNAs and proteins are of interest as potential drug targets in diverse therapeutic areas, from infectious diseases to cancer. In the former case, the SAM-I riboswitch is an attractive target because this structured RNA element is found only in bacterial mRNAs and regulates multiple genes in several human pathogens. Here, we describe the synthesis of stable and fluorescent analogs of SAM in which the fluorophore is introduced through a functionalizable linker to the ribose. A Cy5-labeled SAM analog was shown to bind several SAM-I riboswitches via in-line probing and fluorescence polarization assays, including one from Staphylococcus aureus that controls the expression of SAM synthetase in this organism. A fluorescent ligand displacement assay was developed and validated for high-throughput screening of compounds to target the SAM-I riboswitch class. PMID:24560607

  1. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  2. Epoxy resins produce improved plastic scintillators

    NASA Technical Reports Server (NTRS)

    Markley, F. W.

    1967-01-01

    Plastic scintillator produced by the substitution of epoxy resins for the commonly used polystyrene is easy to cast, stable at room temperature, and has the desirable properties of a thermoset or cross-linked system. Such scintillators can be immersed directly in strong solvents, an advantage in many chemical and biological experiments.

  3. Binderless composite scintillator for neutron detection

    DOEpatents

    Hodges, Jason P [Knoxville, TN; Crow, Jr; Lowell, M [Oak Ridge, TN; Cooper, Ronald G [Oak Ridge, TN

    2009-03-10

    Composite scintillator material consisting of a binderless sintered mixture of a Lithium (Li) compound containing .sup.6Li as the neutron converter and Y.sub.2SiO.sub.5:Ce as the scintillation phosphor, and the use of this material as a method for neutron detection. Other embodiments of the invention include various other Li compounds.

  4. Optimizing light collection from thin scintillators used in a beta-ray camera for surgical use

    SciTech Connect

    Levin, C.S.; MacDonald, L.R.; Tornai, M.P.; Hoffman, E.J.; Park, J.

    1996-06-01

    The authors are developing a 1--2 cm{sup 2} area camera for imaging the distribution of beta-emitting radiopharmaceuticals at the surface of tissue exposed during surgery. The front end consists of a very thin continuous or segmented scintillator sensitive to betas (positrons or electrons) of a few hundred keV, yet insensitive to gamma rays. The light from the scintillator is piped through clear fibers to the photon detector (PD). This approach requires that a sufficient number of scintillation photons be transported from the scintillator, through the fibers to the PD. The scintillator, reflector, surface treatments, geometry, fiber light guides, and optical couplings must be optimized. The authors report here on efforts made to optimize the light collection from <3 mm thick plastic and CaF{sub 2}(Eu) disk coupled to a 5 cm long bundle of clear optical fibers, on average, {approximately}250 photoelectrons are produced at a PMT photocathode for a {sup 204}Tl beta flood source (E{sub max} = 763 keV). This corresponds to a sufficient number of photoelectrons for <1 mm resolution imaging capabilities for the proposed camera.

  5. Empirical modelling of equatorial ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Pasricha, P. K.; Reddy, B. M.

    1986-06-01

    A computer-based model of ionospheric scintillations has been developed by Fremouw (socalled the WBMOD model) to give a mean scintillation index for a given set of observing conditions. The WBMOD model incorporates some of the scintillation observations made with the DNA wideband satellite. A comparison is made between the scintillation morphology observed at an equatorial station Ooty with the one evolved with the WBMOD model. Morphological features at other stations in the equatorial region are briefly described. The WBMOD model predicts the pre-midnight maximum seen at the Indian longitudes. The seasonal pattern reproduced by the model incorporates longitudinal variability. The solar activity dependence in the model seems to be rather high. Empirical expressions giving the dependence of scintillation index on morphological parameters are obtained

  6. Simulation of optical interstellar scintillation

    NASA Astrophysics Data System (ADS)

    Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.

    2013-04-01

    Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected on a longer time scale when the light of remote stars crosses an interstellar turbulent molecular cloud, but it has never been observed at optical wavelengths. The aim of the study described in this paper is to fully simulate the scintillation process, starting from the molecular cloud description as a fractal object, ending with the simulations of fluctuating stellar light curves. Methods: Fast Fourier transforms are first used to simulate fractal clouds. Then, the illumination pattern resulting from the crossing of background star light through these refractive clouds is calculated from a Fresnel integral that also uses fast Fourier transform techniques. Regularisation procedure and computing limitations are discussed, along with the effect of spatial and temporal coherency (source size and wavelength passband). Results: We quantify the expected modulation index of stellar light curves as a function of the turbulence strength - characterised by the diffraction radius Rdiff - and the projected source size, introduce the timing aspects, and establish connections between the light curve observables and the refractive cloud. We extend our discussion to clouds with different structure functions from Kolmogorov-type turbulence. Conclusions: Our study confirms that current telescopes of ~4 m with fast-readout, wide-field detectors have the capability of discovering the first interstellar optical scintillation effects. We also show that this effect should be unambiguously distinguished from any other type of variability through the observation of desynchronised light curves, simultaneously measured by two distant telescopes.

  7. Scintillation Effects on Space Shuttle GPS Data

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  8. The improved scintillation crystal lead tungstate scintillation for PET

    NASA Astrophysics Data System (ADS)

    Wan, Youbao; WU, Rurong; Xiao, Linrong; Zhang, Jianxin; Yang, Peizhi; Yan, Hui

    2009-07-01

    As a valuable material for the detecting of ?-ray, PbWO4 and BaF2:PbWO4 crystals were grown by a novel multi-crucible temperature gradient system developed by ourselves. Utilizing a topical partial heating method, this system can form a topical partial high temperature in its hearth. Thus this system could melt raw materials in step by step as requirement. The advantage of this method is that there would be solid obstruct left on the melt in the procedure of the crystal growing up. The left obstruct could prevent the volatilization of the component in the melt. Hence it is helpful for the composition homogenization in the crystal. The system also offers a sustaining device for multi-crucibles and thus it can grow many crystals simultaneity. The optical properties and scintillation properties of the crystals were studied. The results reveal that the ions doping improves the scintillation properties of the crystal. The transmittance spectra show that the transmittance of BaF2:PbWO4 crystals are better than that of PbWO4 crystals. For the PbWO4 crystals, their absorption edge is at 325nm, and their maximum transmittance is 68%. For the BaF2:PbWO4 crystals, their absorption edge is at 325nm and their maximum transmittance is upto76%. The X-ray excited luminescence spectra shows that the luminescence peak is at 420nm for the samples of PbWO4 crystal while the peak is at 430nm for the samples of BaF2:PbWO4 crystal respectively. The luminescence intensity of the samples of BaF2:PbWO4 crystal is about two times than that of PbWO4 crystal. And their peak shape is different for the two kind of crystal. The light yield of BaF2:PbWO4 crystals is about 2.9 times than that of PbWO4 crystal Analyzing these scintillation properties, we find that the VPb 3+ and VO- defects do harm for the optical properties of the crystal. Ions doping method could reduce the defect concentration and improving its illumination performance of the crystal. Specially, the doped F- ions in O2- site can induce the aberrance of the [WO4]2- tetrahedron and form [WO3F]- tetrahedron which has more active blue light yield, thus improve the light yield of the crystal. The improved light yield of BaF2:PbWO4 crystals is valuable for the medical diagnosing instrument PET and CT with high resolving power

  9. Development of multi-color scintillator based X-ray image intensifier

    NASA Astrophysics Data System (ADS)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi

    2004-12-01

    A multi-color scintillator based high-sensitive, wide dynamic range and long-life X-ray image intensifier has been developed. An europium activated Y 2O 2S scintillator, emitting red, green and blue photons of different intensities, is utilized as the output fluorescent screen of the intensifier. By combining this image intensifier with a suitably tuned high sensitive color CCD camera, it is possible for a sensitivity of the red color component to become six times higher than that of the conventional image intensifier. Simultaneous emission of a moderate green color and a weak blue color covers different sensitivity regions. This widens the dynamic range, by nearly two orders of ten. With this image intensifier, it is possible to image simultaneously complex objects containing various different X-ray transmission from paper, water or plastic to heavy metals. This high sensitivity intensifier, operated at lower X-ray exposure, causes less degradation of scintillator materials and less colorization of output screen glass, and thus helps achieve a longer lifetime. This color scintillator based image intensifier is being introduced for X-ray inspection in various fields.

  10. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    NASA Astrophysics Data System (ADS)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-01

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 0.55 % and 1.31 0.59 % after 0? 80 Gy of proton dose, respectively. Whilst some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  11. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  12. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE PAGESBeta

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  13. Imaging-Based Screening: Understanding the Controversies

    PubMed Central

    Lam, Diana L.; Pandharipande, Pari V.; Lee, Janie M.; Lehman, Constance D.; Lee, Christoph I.

    2014-01-01

    Objective The goals of this article are to provide an overview of controversial aspects of imaging-based screening and to elucidate potential risks that may offset anticipated benefits. Conclusion Current controversial topics associated with imaging-based screening include false-positive results, incidental findings, overdiagnosis, radiation risks, and costs. Alongside the benefits of screening, radiologists should be prepared to discuss these additional diagnostic consequences with providers and patients to better guide shared decision making regarding imaging-based screening. PMID:25341132

  14. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  15. Estimation of Fano factor in inorganic scintillators

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav; Barrett, Harrison H.; Fastje, David; Clarkson, Eric; Furenlid, Lars; Bousselham, Abdelkader; Shah, Kanai S.; Glodo, Jarek

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI2:Eu and CsI:Na scintillator crystals. At 662 keV, SrI2:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr3:Ce scintillator crystals. At 662 keV, LaBr3:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  16. Secondary scintillation yield in pure argon

    NASA Astrophysics Data System (ADS)

    Monteiro, C. M. B.; Lopes, J. A. M.; Veloso, J. F. C. A.; dos Santos, J. M. F.

    2008-10-01

    The secondary scintillation yield is of great importance for simulating double phase detectors, which are used in several of the ongoing Dark Matter search experiments, as well as in the future large-scale particle detectors proposed in Europe as the next generation underground observatories. The argon secondary scintillation yield is studied, at room temperature, as a function of electric field in the gas scintillation gap. A Large Area Avalanche Photodiode (LAAPD) collects the VUV secondary scintillation produced in the gas, as well as the 5.9 keV x-rays directly absorbed in the photodiode. The direct x-rays were used as a reference for the determination of the number of charge carriers produced by the scintillation pulse and, so, the number of photons impinging the LAAPD. A value of 81 photons/kV was obtained for the scintillation amplification parameter, defined as the number of photons produced per drifting electron and per kilovolt. The scintillation yields obtained in this work are in agreement with those obtained by Monte Carlo calculations and a factor of ?10 higher than those determined by the WARP experiment.

  17. Equatorial scintillations: advances since ISEA-6

    SciTech Connect

    Not Available

    1985-01-01

    Our understanding of the morphology of equatorial scintillations has advanced due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the controlling the magnitude of scintillations has been recognized by interpreting scintillation observations inthe light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type was identified. These irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (approx. several hours) of uninterrrupted scintillations.

  18. A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design

    PubMed Central

    2013-01-01

    Background Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. Results We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. Conclusions This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries. PMID:23867016

  19. Screening for drug-induced hepatotoxicity in primary mouse hepatocytes using acetaminophen, amiodarone, and cyclosporin a as model compounds: an omics-guided approach.

    PubMed

    Van Summeren, Anke; Renes, Johan; Lizarraga, Daneida; Bouwman, Freek G; Noben, Jean-Paul; van Delft, Joost H M; Kleinjans, Jos C S; Mariman, Edwin C M

    2013-02-01

    Drug-induced hepatotoxicity is a leading cause of attrition for candidate pharmaceuticals in development. New preclinical screening methods are crucial to predict drug toxicity prior to human studies. Of all in vitro hepatotoxicity models, primary human hepatocytes are considered as 'the gold standard.' However, their use is hindered by limited availability and inter-individual variation. These barriers may be overcome by using primary mouse hepatocytes. We used differential in gel electrophoresis (DIGE) to study large-scale protein expression of primary mouse hepatocytes. These hepatocytes were exposed to three well-defined hepatotoxicants: acetaminophen, amiodarone, and cyclosporin A. Each hepatotoxicant induces a different hepatotoxic phenotype. Based on the DIGE results, the mRNA expression levels of deregulated proteins from cyclosporin A-treated cells were also analyzed. We were able to distinguish cyclosporin A from controls, as well as acetaminophen and amiodarone-treated samples. Cyclosporin A induced endoplasmic reticulum (ER) stress and altered the ER-Golgi transport. Moreover, liver carboxylesterase and bile salt sulfotransferase were differentially expressed. These proteins were associated with a protective adaptive response against cyclosporin A-induced cholestasis. The results of this study are comparable with effects in HepG2 cells. Therefore, we suggest both models can be used to analyze the cholestatic properties of cyclosporin A. Furthermore, this study showed a conserved response between primary mouse hepatocytes and HepG2 cells. These findings collectively lend support for use of omics strategies in preclinical toxicology, and might inform future efforts to better link preclinical and clinical research in rational drug development. PMID:23308384

  20. Screening for Drug-Induced Hepatotoxicity in Primary Mouse Hepatocytes Using Acetaminophen, Amiodarone, and Cyclosporin A as Model Compounds: An Omics-Guided Approach

    PubMed Central

    Van Summeren, Anke; Renes, Johan; Lizarraga, Daneida; Bouwman, Freek G.; Noben, Jean-Paul; van Delft, Joost H. M.; Kleinjans, Jos C. S.

    2013-01-01

    Abstract Drug-induced hepatotoxicity is a leading cause of attrition for candidate pharmaceuticals in development. New preclinical screening methods are crucial to predict drug toxicity prior to human studies. Of all in vitro hepatotoxicity models, primary human hepatocytes are considered as the gold standard. However, their use is hindered by limited availability and inter-individual variation. These barriers may be overcome by using primary mouse hepatocytes. We used differential in gel electrophoresis (DIGE) to study large-scale protein expression of primary mouse hepatocytes. These hepatocytes were exposed to three well-defined hepatotoxicants: acetaminophen, amiodarone, and cyclosporin A. Each hepatotoxicant induces a different hepatotoxic phenotype. Based on the DIGE results, the mRNA expression levels of deregulated proteins from cyclosporin A-treated cells were also analyzed. We were able to distinguish cyclosporin A from controls, as well as acetaminophen and amiodarone-treated samples. Cyclosporin A induced endoplasmic reticulum (ER) stress and altered the ER-Golgi transport. Moreover, liver carboxylesterase and bile salt sulfotransferase were differentially expressed. These proteins were associated with a protective adaptive response against cyclosporin A-induced cholestasis. The results of this study are comparable with effects in HepG2 cells. Therefore, we suggest both models can be used to analyze the cholestatic properties of cyclosporin A. Furthermore, this study showed a conserved response between primary mouse hepatocytes and HepG2 cells. These findings collectively lend support for use of omics strategies in preclinical toxicology, and might inform future efforts to better link preclinical and clinical research in rational drug development. PMID:23308384

  1. A temporal method of avoiding the Cerenkov radiation generated in organic scintillator dosimeters by pulsed mega-voltage electron and photon beams.

    PubMed

    Clift, M A; Johnston, P N; Webb, D V

    2002-04-21

    The output signal of an organic scintillator probe consists of a scintillation signal and Cerenkov and fluorescence radiation (CFR) signal when the probe is exposed to a mega-voltage photon or electron beam. The CFR signal is usually unwanted because it comes from both the scintillator and light guide and so it is not proportional to the absorbed dose in the scintillator. A new organic scintillator detector system has been constructed for absorbed dose measurement in pulsed mega-voltage electron and photon beams that are commonly used in radiotherapy treatment, eliminating most of the CFR signal. The new detector system uses a long decay constant BC-444G (Bicron, Newbury, OH, USA) scintillator which gives a signal that can be time resolved from the prompt CFR signal so that the measured contribution of prompt signal is negligible. The response of the new scintillator detector system was compared with the measurements from a plastic scintillator detector that were corrected for the signal contribution from the CFR, and to appropriately corrected ion chamber measurements showing agreement in the 16 MeV electron beam used. PMID:12030564

  2. Scintillation observations near the sun

    NASA Technical Reports Server (NTRS)

    Coles, W. A.; Rickett, B. J.; Scott, S. L.

    1978-01-01

    Results on the electron density spectrum, the random velocity and the mean velocity of the solar wind in the region from 5 to 100 solar radii are presented. Results are based on intensity scintillations of incoherent radio sources at different locations and different radio frequencies. The shape of the electron density irregularity spectrum is shown to be well modeled by a power law in wavenumber with a slope that abruptly steepens at higher wavenumbers. This two slope power law model is shown to have a break (defined as the wavenumber of the change of slope) that increases with decreasing distance from the Sun. The fractional random velocity is shown to be insignificant at distances of greater than 40 solar radii, but shows a steady increase with decreasing solar distance inside of 40 solar radii.

  3. Separation and purification of α-glucosidase inhibitors from Polygonatum odoratum by stepwise high-speed counter-current chromatography combined with Sephadex LH-20 chromatography target-guided by ultrafiltration-HPLC screening.

    PubMed

    Zhou, Xiaoling; Liang, Junsheng; Zhang, Yi; Zhao, Huading; Guo, Ying; Shi, Shuyun

    2015-03-15

    Although Polygonatum odoratum has been widely used as medicinal plant and food supplement for treating diabetes, little is known regarding its bioactive components. In this study, ultrafiltration-HPLC based ligand screening was developed to screen α-glucosidase inhibitors from P. odoratum for the first time. Then bioactive components were target-guided separated by combining stepwise high-speed counter-current chromatography (HSCCC) using petroleum ether-ethyl acetate-methanol-water (1:4:0.8:4.2, v/v/v/v), (1:4:1.8:3.2, v/v/v/v) and (1:4:2.3:2.7, v/v/v/v) as solvent systems with Sephadex LH-20 chromatography eluted by MeCN-MeOH (1:1, v/v). Five phenethyl cinnamides, N-cis-feruloyloctopamine (1); N-trans-p-coumaroyloctopamine (2), N-trans-feruloyloctopamine (3), N-trans-p-coumaroyltyramine (4) and N-trans-feruloyltyramine (5), and four homoisoflavanones, (3R)-5,7-dihydroxyl-3-(2',4'-dihydroxylbenzyl)-chroman-4-one (6), (3R)-5,7-dihydroxyl-6-methyl-3-(4'-hydroxylbenzyl)-chroman-4-one (7), (3R)-5,7-dihydroxyl-6-methyl-8-methoxyl-3-(4'-hydroxylbenzyl)-chroman-4-one (8); and (3R)-5,7-dihydroxyl-6,8-dimethyl-3-(4'-hydroxylbenzyl)-chroman-4-one) (9), with purity over 98.5% were purified, and their structures were identified by UV, MS, and (1)H NMR. Notably, compounds 2 and 4 were first reported in genus Polygonatum, while compound 1 was first obtained from family Liliaceae. In addition, α-glucosidase inhibitory activities of compounds 1-9 were evaluated, and compounds 2 and 4 exhibited stronger α-glucosidase inhibitory activity with IC50 values of 2.3 and 2.7μM. The results suggested the potential medicinal use of P. odoratum, and the technology could be widely applied for rapid screening and preparative separation of a group of bioactive compounds from complex matrix. PMID:25682336

  4. Health Screening

    MedlinePLUS

    Screenings are tests that look for diseases before you have symptoms. Screening tests can find diseases early, when they're easier ... Overweight and obesity Prostate cancer in men Which tests you need depends on your age, your sex, ...

  5. [Down's syndrome screening in the Czech Republic].

    PubMed

    Louck, J; Springer, D; Zima, T

    2008-06-01

    We have better options how to screen for genetic defects during the last decade, but unfortunately in some areas of the country are not all types of the screening available. Strangely, this effect is caused by our demand for higher quality of our services, especially in ultrasound measurment. Gynaecologists should have good knowledge of all possibilities how to screen, should know the advantages, the disadvantages and the limitations of all screening tests. The article gives an overview of screening tests and it should be a guide for physicians and pregnant women what kind of screening is possible to do and what to expect from it. PMID:18646668

  6. Measurement of light emission in scintillation vials

    SciTech Connect

    Duran Ramiro, M. Teresa; Garcia-Torano, Eduardo

    2005-09-15

    The efficiency and energy resolution of liquid scintillation counting (LSC) systems are strongly dependent on the optical characteristics of scintillators, vials, and reflectors. This article presents the results of measurements of the light-emission profile of scintillation vials. Two measurement techniques, autoradiographs and direct measurements with a photomultiplier tube, have been used to obtain light-emission distribution for standard vials of glass, etched glass and polyethylene. Results obtained with both techniques are in good agreement. For the first time, the effect of the meniscus in terms of light contribution has been numerically estimated. These results can help design LSC systems that are more efficient in terms of light collection.

  7. Cosmic-ray cascades photographed in scintillator

    NASA Technical Reports Server (NTRS)

    Barrowes, S. C.; Huggett, R. W.; Levit, L. B.; Porter, L. G.

    1974-01-01

    Light produced by nuclear-electromagnetic cascades in a plastic scintillator can be photographed, and the resulting images on film used to measure both the energy content of the cascades and also the positions at which the cascades passed through the scintillator. The energy content of a cascade can be measured to 20% and its position determined to plus or minus 0.8 cm in each scintillator. Techniques for photographing the cascades and analyzing the film are described. Sample data are presented and discussed.

  8. Amplitude and phase scintillation study at Chiang Rai, Thailand

    NASA Astrophysics Data System (ADS)

    Gwal, Anurag; Dubey, Smita; Wahi, Rashmi; Feliziani, Alex

    2006-01-01

    Ionospheric scintillation is a rapid variation of amplitude and phase in radio signals caused by irregularities in the ionosphere. We have studied the effect of ionospheric scintillations on Global Positioning System (GPS) signals from the low latitude station at Chiang Rai, Thailand, and also studied the occurrence of scintillation for geomagnetic-quiet and -disturbed conditions. Amplitude and phase scintillation are investigated by using the single-frequency GPS Ionospheric Scintillation Monitor (GISM) at Chiang Rai (lat. 19.57N, Ion. 99.52E). This system is capable of tracking up to 11 GPS satellites at LI frequency of 1575.42 MHz. The purpose of the GISM receiver is to automatically record scintillation parameters of amplitude and phase at a 50 Hz rate averaged over 60 s. The result shows that the amplitude scintillation can occur with or without phase scintillation but phase scintillation is always accompanied by amplitude scintillation.

  9. Chemical compatibility screening test results

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.

  10. New observations of scintillation climatology from the Scintillation Network Decision Aid (SCINDA)

    NASA Astrophysics Data System (ADS)

    Su, Y.; Caton, R. G.; Wiens, K.; Groves, K. M.

    2012-12-01

    The Scintillation Network Decision Aid (SCINDA) was established with three ground sites in the mid-1990's by the Air Force Research Laboratory and has continued to grow into a global scintillation observation network. This system consists of an array of VHF and GPS receivers which continually measure scintillation in the equatorial region. In the past few years, the extended network of ground stations has expanded into the African sector. Initial results from yearly scintillation data obtained from two VHF receivers in Narobi, Kenya and Bahir Dar, Ethiopia in 2011 indicate the presence of scintillation activity throughout the June-July -August (northern summer) season which is inconsistent with current state-of-the-art ionospheric climatology models. It is well known that seasonal equatorial scintillation patterns vary with longitude based on geographical location. For example, the scintillation activity at VHF frequencies are absent in the Pacific sector during the months of November to February while observations from South America show nearly continuous scintillation during this same time period. With little to no ground-based observations, the scintillation climatology over the African region has not been well understood. In the paper, we will present S4 measurements various longitudinal sectors, including the first look at solar maximum type conditions over the African sector, and provide comparisons with output from a global climatology model.

  11. Using handheld plastic scintillator detectors to triage individuals exposed to a radiological dispersal device.

    PubMed

    Manger, R P; Hertel, N E; Burgett, E A; Ansari, A

    2012-06-01

    After a radiological dispersal device (RDD) event, people could become internally contaminated by inhaling dispersed radioactive particles. A rapid method to screen individuals who are internally contaminated is desirable. Such initial screening can help in prompt identification of those who are highly contaminated and in prioritising individuals for further and more definitive evaluation such as laboratory testing. The use of handheld plastic scintillators to rapidly screen those exposed to an RDD with gamma-emitting radionuclides was investigated in this study. The Monte Carlo N-Particle transport code was used to model two commercially available plastic scintillation detectors in conjunction with anthropomorphic phantom models to determine the detector response to inhaled radionuclides. Biokinetic models were used to simulate an inhaled radionuclide and its progression through the anthropomorphic phantoms up to 30 d after intake. The objective of the study was to see if internal contamination levels equivalent to 250 mSv committed effective dose equivalent could be detected using these instruments. Five radionuclides were examined: (60)Co, (137)Cs, (192)Ir, (131)I and (241)Am. The results demonstrate that all of the radionuclides except (241)Am could be detected when placing either one of the two plastic scintillator detector systems on the posterior right torso of the contaminated individuals. PMID:22128361

  12. Using handheld plastic scintillator detectors to triage individuals exposed to a radiological dispersal device

    SciTech Connect

    Manger, Ryan P; Hertel, Nolan; Burgett, E.; Ansari, A.

    2011-01-01

    After a radiological dispersal device (RDD) event, people could become internally contaminated by inhaling dispersed radioactive particles. A rapid method to screen individuals who are internally contaminated is desirable. Such initial screening can help in prompt identification of those who are highly contaminated and in prioritizing individuals for further and more definitive evaluation such as laboratory testing. The use of handheld plastic scintillators to rapidly screen those exposed to an RDD with gamma-emitting radionuclides was investigated in this study. The Monte Carlo N-Particle transport code was used to model two commercially available plastic scintillation detectors in conjunction with anthropomorphic phantom models to determine the detector response to inhaled radionuclides. Biokinetic models were used to simulate an inhaled radionuclide and its progression through the anthropomorphic phantoms up to 30 d after intake. The objective of the study was to see if internal contamination levels equivalent to 250 mSv committed effective dose equivalent could be detected using these instruments. Five radionuclides were examined: {sup 60}Co, {sup 137}Cs, {sup 192}Ir, {sup 131}I and {sup 241}Am. The results demonstrate that all of the radionuclides except {sup 241}Am could be detected when placing either one of the two plastic scintillator detector systems on the posterior right torso of the contaminated individuals.

  13. GEM scintillation readout with avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Conceio, A. S.; Requicha Ferreira, L. F.; Fernandes, L. M. P.; Monteiro, C. M. B.; Coelho, L. C. C.; Azevedo, C. D. R.; Veloso, J. F. C. A.; Lopes, J. A. M.; dos Santos, J. M. F.

    2007-09-01

    The use of the scintillation produced in the charge avalanches in GEM holes as signal amplification and readout is investigated for xenon. A VUV-sensitive avalanche photodiode has been used as photosensor. Detector gains of about 4 104 are achieved in scintillation readout mode, for GEM voltages of 490 V and for a photosensor gain of 150. Those gains are more than one order of magnitude larger than what is obtained using charge readout. In addition, the energy resolutions achieved with the scintillation readout are lower than those achieved with charge readout. The GEM scintillation yield in xenon was measured as a function of GEM voltage, presenting values that are about a half of those achieved for the charge yield, and reach about 730 photons per primary electron at GEM voltages of 490 V.

  14. Probability density function of amplitude scintillations

    NASA Astrophysics Data System (ADS)

    Ortgies, G.

    1985-02-01

    The letter reports on amplitude scintillation measurements of the orbital test satellite (OTS) BO carrier beacon carried out from June to December 1983. The scintillations are here characterized by standard deviations of the amplitude fluctuations and by the distribution of amplitude deviations from their mean. It is known that during scintillations log-amplitudes are normally distributed for short time intervals (1 min). The long-term probability density of amplitude scintillations can be calculated using recorded 1 min standard deviations sigma. The probability density function of log (/sigma - sigma-N//dB) can be well approximated by a Gaussian distribution, where sigma-N is the 1 min standard deviation due to thermal noise alone.

  15. Diffractive Interstellar Scintillation Timescales and Velocities

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Rickett, B. J.

    1998-11-01

    We derive general relationships between the observed timescale of diffractive interstellar scintillations and the physical velocities of the observer, the source, and the scattering medium. Our treatment applies exclusively to saturated scintillations of point sources in the strong scattering regime. We show how scintillation observations may be combined with other observables (proper motion and dispersion measure) to yield (1) improvements in galactic models for the free-electron density and (2) estimates of the distance and transverse velocity of individual pulsars. We explicitly consider cases of current astrophysical interest, including hypervelocity pulsars too far above the Galactic plane to allow distance estimates from dispersion measures alone. We also briefly consider scintillations of extragalactic sources, including gamma-ray burst sources at great distances from the Galaxy.

  16. The Scintillating Optical Fiber Isotope Experiment

    NASA Technical Reports Server (NTRS)

    Binns, W. Robert

    1988-01-01

    This paper describes the Scintillating Optical Fiber Isotope Experiment (SOFIE) which is being developed by Washington University and the University of New Hampshire to study the abundances of cosmic ray isotopes in the iron charge region. This detector system is a Cerenkov-Range-dE/dx experiment and utilizes range and trajectory detectors made of scintillating optical fibers, a fused silica Cerenkov counter, and plastic scintillator dE/dx counters to determine the charge and mass of cosmic ray nuclei. A brief description of the balloon flight instrument presently being developed will be given followed by initial results of an engineering model calibration at the LBL Bevalac heavy ion accelerator. In addition a brief discussion of the potential of scintillating fiber trajectory detectors for use in experiments requiring precise trajectory determination such as those being planned for the NASA Particle Astrophysics Magnet Facility (Astromag) program is presented.

  17. Real-time volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Beddar, S.

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential.

  18. GNSS station characterisation for ionospheric scintillation applications

    NASA Astrophysics Data System (ADS)

    Romano, Vincenzo; Spogli, Luca; Aquino, Marcio; Dodson, Alan; Hancock, Craig; Forte, Biagio

    2013-10-01

    Ionospheric scintillations are fluctuations in the phase and amplitude of the signals from GNSS (Global Navigation Satellite Systems) occurring when they cross regions of electron density irregularities in the ionosphere. Such disturbances can cause serious degradation of several aspects of GNSS system performance, including integrity, accuracy and availability. The two indices adopted worldwide to characterise ionospheric scintillations are: the amplitude scintillation index, S4, which is the standard deviation of the received power normalised by its mean value, and the phase scintillation index, ??, which is the standard deviation of the de-trended carrier phase. Collaborative work between NGI and INGV supports a permanent network of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers that covers a wide range of latitudes in the northern European sector. Data from this network has contributed significantly to several papers during the past few years (see e.g. De Franceschi et al., 2008; Aquino et al., 2009; Spogli et al., 2009, 2010; Alfonsi et al., 2011). In these investigations multipath effects and noise that contaminate the scintillation measurements are largely filtered by applying an elevation angle threshold. A deeper analysis of the data quality and the development of a more complex filtering technique can improve the results obtained so far. The structures in the environment of each receiver in the network which contaminate scintillation measurements should be identified in order to improve the quality of the scintillation and TEC data by removing error sources due to the local environment. The analysis in this paper considers a data set characterised by quiet ionospheric conditions of the mid-latitude station located in Nottingham (UK), followed by a case study of the severe geomagnetic storm, which occurred in late 2003, known generally as the "Halloween Storm".

  19. Ternary liquid scintillator for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  20. Liquid scintillators for optical-fiber applications

    SciTech Connect

    Franks, L.A.; Lutz, S.S.

    1981-06-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  1. Large position sensitive plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Annand, J. R. M.; Crawford, G. I.; Owens, R. O.

    1987-12-01

    Two large plastic scintillators are described, a 1 m square detector with 2 dimensional position sensitivity and a 1.8 0.2 m detector with position sensitivity along its length. Both scintillators are 0.1 m thick. Measurements of pulse height, timing and position resolution, performed using cosmic rays, are presented and the experimental pulse height response is compared with the predictions of Monte Carlo calculations.

  2. Evaluation of clad scintillating light pipes

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Arrays of fibers made of scintillating material were used as position-sensitive detectors or hodoscopes for beam-finding at ion accelerators. Experiments were made with alpha's from an Am241 source incident upon one end of the fiber, the other end being viewed with a photomultiplier tube. The scintillation light was not detected in any of the fibers tested beyond about 5 cm. The effective useful lengths for detection of relativistic heavy ions were given.

  3. Liquid scintillators for optical fiber applications

    DOEpatents

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA)

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  4. A Monte Carlo investigation of Swank noise for thick, segmented, crystalline scintillators for radiotherapy imaging

    PubMed Central

    Wang, Yi; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2009-01-01

    Thick, segmented scintillating detectors, consisting of 2D matrices of scintillator crystals separated by optically opaque septal walls, hold considerable potential for significantly improving the performance of megavoltage (MV) active matrix, flat-panel imagers (AMFPIs). Initial simulation studies of the radiation transport properties of segmented detectors have indicated the possibility of significant improvement in DQE compared to conventional MV AMFPIs based on phosphor screen detectors. It is therefore interesting to investigate how the generation and transport of secondary optical photons affect the DQE performance of such segmented detectors. One effect that can degrade DQE performance is optical Swank noise (quantified by the optical Swank factor Iopt), which is induced by depth-dependent variations in optical gain. In this study, Monte Carlo simulations of radiation and optical transport have been used to examine Iopt and zero-frequency DQE for segmented CsI:Tl and BGO detectors at different thicknesses and element-to-element pitches. For these detectors, Iopt and DQE were studied as a function of various optical parameters, including absorption and scattering in the scintillator, absorption at the top reflector and septal walls, as well as scattering at the side surfaces of the scintillator crystals. The results indicate that Iopt and DQE are only weakly affected by absorption and scattering in the scintillator, as well as by absorption at the top reflector. However, in some cases, these metrics were found to be significantly degraded by absorption at the septal walls and scattering at the scintillator side surfaces. Moreover, such degradations are more significant for detectors with greater thickness or smaller element pitch. At 1.016 mm pitch and with optimized optical properties, 40 mm thick segmented CsI:Tl and BGO detectors are predicted to provide DQE values of ?29% and 42%, corresponding to improvement by factors of ?29 and 42, respectively, compared to that of conventional MV AMFPIs. PMID:19673222

  5. Crystal growth and scintillation properties of strontium iodide scintillators

    SciTech Connect

    van Loef, Edgar; Wilson, Cody; Cherepy, Nerine; Payne, Steven; Choong, Woon-Seng; Moses, William W.; Shah, Kanai

    2009-06-01

    Single crystals of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na were grown from anhydrous iodides by the vertical Bridgman technique in evacuated silica ampoules. Growth rates were of the order of 5-30 mm/day. Radioluminescence spectra of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na exhibit a broad band due to Eu{sup 2+} and Ce{sup 3+} emission, respectively. The maximum in the luminescence spectrum of SrI{sub 2}:Eu is found at 435 nm. The spectrum of SrI{sub 2}:Ce/Na exhibits a doublet peaking at 404 and 435 nm attributed to Ce{sup 3+} emission, while additional impurity - or defected - related emission is present at approximately 525 nm. The strontium iodide scintillators show very high light yields of up to 120,000 photons/MeV, have energy resolutions down to 3% at 662 keV (Full Width Half Maximum) and exhibit excellent light yield proportionality with a standard deviation of less than 5% between 6 and 460 keV.

  6. GPS phase scintillation correlated with auroral forms

    NASA Astrophysics Data System (ADS)

    Hampton, D. L.; Azeem, S. I.; Crowley, G.; Santana, J.; Reynolds, A.

    2013-12-01

    The disruption of radio wave propagation due to rapid changes in electron density caused by auroral precipitation has been observed for several decades. In a few cases the disruption of GPS signals has been attributed to distinct auroral arcs [Kintner, 2007; Garner, 2011], but surprisingly there has been no systematic study of the characteristics of the auroral forms that cause GPS scintillation. In the Fall of 2012 ASTRA deployed four CASES GPS receivers at UAF observatories in Alaska (Kaktovik, Fort Yukon, Poker Flat and Gakona) specifically to address the effects of auroral activity on the high latitude ionosphere. We have initiated an analysis that compares the phase scintillation, recorded at high cadence, with filtered digital all-sky camera data to determine the auroral morphology and electron precipitation parameters that cause scintillation. From correlation studies from a single site (Poker Flat), we find that scintillation is well correlated with discrete arcs that have high particle energy flux (power per unit area), and not as well correlated with pulsating forms which typically have high characteristic energy, but lower energy flux . This indicates that the scintillation is correlated with the magnitude of the change in total electron density as expected. We will also report on ongoing work where we correlate the scintillation from the Fort Yukon receiver with the all-sky images at Poker Flat to determine the altitude that produces the greatest disturbance. These studies are aimed at a model that can predict the expected local disturbance to navigation due to auroral activity.

  7. Validating the use of scintillation proxies to study ionospheric scintillation over the Ugandan region

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2015-06-01

    In this study, we compare the standard scintillation indices (S4 and σΦ) from a SCINDA receiver with scintillation proxies (S4p and | sDPR |) derived from two IGS GPS receivers. Amplitude (S4) and phase (σΦ) scintillation data were obtained from the SCINDA installed at Makerere University (0.34°N, 32.57°E). The corresponding amplitude (S4p) and phase (| sDPR |) scintillation proxies were derived from data archived by IGS GPS receivers installed at Entebbe (0.04°N, 32.44°E) and Mbarara (0.60°S, 30.74°E). The results show that for most of the cases analysed in this study, σΦ and | sDPR | are in agreement. Amplitude scintillation occurrence estimated using the S4p are fairly consistent with the standard S4, mainly between 17:00 UT and 21:00 UT, despite a few cases of over and under estimation of scintillation levels by S4p. Correlation coefficients between σΦ and the | sDPR | proxy revealed positive correlation. Generally, S4p and S4 exhibits both moderate and strong positive correlation. TEC depletions associated with equatorial plasma bubbles are proposed as the cause of the observed scintillation over the region. These equatorial plasma bubbles were evident along the ray paths to satellites with PRN 2, 15, 27 and 11 as observed from MBAR and EBBE. In addition to equatorial plasma bubbles, atmospheric gravity waves with periods similar to those of large scale traveling ionospheric disturbances were also observed as one of the mechanisms for scintillation occurrence. The outcome of this study implies that GPS derived scintillation proxies can be used to quantify scintillation levels in the absence of standard scintillation data in the equatorial regions.

  8. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products. PMID:25734826

  9. Genetic Screening

    PubMed Central

    Burke, Wylie; Tarini, Beth; Press, Nancy A.; Evans, James P.

    2011-01-01

    Current approaches to genetic screening include newborn screening to identify infants who would benefit from early treatment, reproductive genetic screening to assist reproductive decision making, and family history assessment to identify individuals who would benefit from additional prevention measures. Although the traditional goal of screening is to identify early disease or risk in order to implement preventive therapy, genetic screening has always included an atypical element—information relevant to reproductive decisions. New technologies offer increasingly comprehensive identification of genetic conditions and susceptibilities. Tests based on these technologies are generating a different approach to screening that seeks to inform individuals about all of their genetic traits and susceptibilities for purposes that incorporate rapid diagnosis, family planning, and expediting of research, as well as the traditional screening goal of improving prevention. Use of these tests in population screening will increase the challenges already encountered in genetic screening programs, including false-positive and ambiguous test results, overdiagnosis, and incidental findings. Whether this approach is desirable requires further empiric research, but it also requires careful deliberation on the part of all concerned, including genomic researchers, clinicians, public health officials, health care payers, and especially those who will be the recipients of this novel screening approach. PMID:21709145

  10. Amplitude and phase scintillation study at Chiang Rai, Thailand

    NASA Astrophysics Data System (ADS)

    Gwal, A.; Feliziani, A.; Dubey, S.; Wahi, R.; Gwal, A. K.

    Ionospheric scintillation is a rapid variation in the amplitude and phase of radio signals caused by irregularities in the ionosphere. In this paper, we study the effect of ionospheric scintillations on GPS signals from the low latitude station in Chiang Rai, Thailand. Ionospheric amplitude and phase scintillation is investigated by using the single frequency GPS Ionospheric Scintillation Monitor (GISM) at Chiang Rai. This system is capable of tracking up to 11 GPS satellites at the L1 frequency of 1575.42 MHz. The purpose of the GISM receiver is to automatically record scintillation parameters of amplitude and phase at a 50 Hz rate averaged over 60 s. The result shows that amplitude scintillation can occur with or without phase scintillation but phase scintillation is always accompanied by amplitude scintillation.

  11. Interplanetary Scintillation and Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Perez-Enriquez, Roman; Carrillo-Vargas, Armando; Kotsarenko, Anatoly; Lopez Cruz-Abeyro, Jose Antonio

    In this paper the daily values of the global index of interplanetary scintillation, G, obtained from the g-maps of Cambridge Observatory, UK, were analyzed for the period 1991-1994 in relation with the geomagnetic index DST, to determine the possible impact of both large scale events and small scale magnetic irregularities on the magnetosphere of our planet. The analysis consisted of the comparison of the two time series G and DST, as well as a superposed epoch analysis of G with respect to the ocurrence of 16 events where the DST index dropped to less than -70 nT. While the cross-correlation shows that there is a marked anti-correlation with a lag of 2 days, the superposed epoch analysis showed a peak at day zero of 2.93 sigmas that start 2 days before. No peak was found when the analysis was performed on 16 randomly chosen dates in the period. The results indicate that the state of the inner heliosphere as given by the G index may be important in the study of the solar wind related magnetospheric activity.

  12. Efficiency and timing resolution of scintillator tiles read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Pooth, O.; Weingarten, S.; Weinstock, L.

    2016-01-01

    Silicon photomultipliers (SiPM) are semiconductor photo sensors that have the potential to replace photomultiplier tubes (PMT) in various fields of application. We present detectors consisting of 30 × 30 × 0.5 cm3 fast plastic scintillator tiles read out with SiPMs. The detectors offer great electronic and mechanical advantages over the classical PMT-scintillator combination. SiPMs are very compact devices that run independent of magnetic fields at low voltages and no light guides between the scintillator and the SiPM are necessary in the presented layouts. Three prototypes, two of which with integrated wavelength shifting fibres, have been tested in a proton beam at the COSY accelerator at Forschungszentrum Jülich. The different layouts are compared in terms of most probable pulse height, detection efficiency and noise behaviour as well as timing resolution. The spatial distributions of these properties across the scintillator surface are presented. The best layout can be operated at a mean efficiency of bar epsilon=99.9 % while sustaining low noise rates in the order of 10 Hz with a timing resolution of less than 3 ns. Both efficiency and timing resolution show good spatial homogeneity.

  13. Scintillating quantum dots for imaging x-rays (SQDIX) for aircraft inspection

    NASA Astrophysics Data System (ADS)

    Burke, E. R.; DeHaven, S. L.; Williams, P. A.

    2016-02-01

    Scintillation is the process currently employed by conventional X-ray detectors to create X-ray images. Scintillating quantum dots (StQDs) or nano-crystals are novel, nanometer-scale materials that upon excitation by X-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmentally friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread X-ray imaging. Initial work on the scintillating quantum dots for imaging X-rays (SQDIX) system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency of a StQDs based imaging sensor.

  14. Ionosphere scintillations associated with features of equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.; Murthy, B. S.

    1979-01-01

    Amplitude scintillations of radio beacons aboard the ATS-6 satellite on 40 MHz, 140 MHz and 360 MHz recorded during the ATS-6 phase II at an equatorial station Ootacamund (dip 4 deg N) and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for scintillation activity. Only sporadic E events, other than Es-q, Es-c or normal E are found to be associated with intense daytime scintillations. Scintillations are also observed during night Es conditions. The amplitude spread is associated with strong scintillations on all frequencies while frequency spread causes weaker scintillations and that mainly at 40 MHz.

  15. Mid-latitude scintillation model. Technical report, 1 November 1985-31 October 1986

    SciTech Connect

    Robins, R.E.; Secan, J.A.; Fremouw, E.J.

    1986-10-31

    Radiowave scintillation in the presence of ionospheric disturbances has the potential to disrupt numerous transionospheric radio and radar systems. This report describes development of a model characterizing the plasma density irregularities that produce scintillation in the naturally disturbed mid-latitude F layer. The model will be incorporated into Program WBMOD, which includes subroutines for computing both link geometry and scintillation indices, the latter by means of phase screen diffraction theory. Earlier versions of WBMOD, were based on extensive analysis of scintillation data collected in the auroral and equatorial zones in Wideband Satellite Mission. The model described herein is based on similarly extensive analysis of Wideband data from one mid latitude station and of data collected from HiLat satellite at another mid latitude station. The model describes irregularities at an effective height of 350 km that are isotropic across the geomagnetic field and elongated by a factor of 10 along the field and whose one-dimensional spatial power spectrum obeys a single regime power law with a (negative) spectral index of 1.5. The height-integrated spectral strength of the irregularities is modeled as a function apex latitude of the point. The report highlights a disagreement by a factor of approximately three between irregularity strength inferred from the two satellites in a region of overlap between the two mid-latitude stations.

  16. Bone Density Screening and Re-screening in Postmenopausal Women and Older Men.

    PubMed

    Gourlay, Margaret L; Overman, Robert A; Ensrud, Kristine E

    2015-12-01

    Clinical practice guidelines universally recommend bone mineral density (BMD) screening to identify osteoporosis in women aged 65 years and older. Risk assessment is recommended to guide BMD screening in postmenopausal women under age 65. Insufficient data are available to inform standard ages to start and stop BMD screening in postmenopausal women. Based on longitudinal studies of incident osteoporosis and fracture in postmenopausal women, an initial BMD test should be ordered for all women aged 65, and the frequency of re-screening should be based on age and BMD T score (more frequent testing for older age and lower T score). Although clinical practice guidelines recommend BMD screening according to risk factors for fracture in postmenopausal women under age 65, no standard approach to risk assessment exists. Minimal evidence is available to guide osteoporosis screening in men, but some experts recommend initiation of BMD screening in men at age 70. PMID:26408154

  17. Characterization of ionospheric scintillation at a geomagnetic equatorial region station

    NASA Astrophysics Data System (ADS)

    Seba, Ephrem Beshir; Gogie, Tsegaye Kassa

    2015-11-01

    In this study, we analyzed ionospheric scintillation at Bahir Dar station, Ethiopia (11.6°N, 37.38°E) using GPS-SCINDA data between August 2010 and July 2011. We found that small scale variation in TEC caused high ionospheric scintillation, rather than large scale variation. We studied the daily and monthly variations in the scintillation index S4 during this year, which showed that scintillation was a post-sunset phenomenon on equinoctial days, with high activity during the March equinox. The scintillation activity observed on solstice days was relatively low and almost constant throughout the day with low post-sunset activity levels. Our analysis of the seasonal and annual scintillation characteristics showed that intense activity occurred in March and April. We also studied the dependence of the scintillation index on the satellite elevation angle and found that scintillation was high for low angles but low for high elevation angles.

  18. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W. (Sparks, NV); Goulding, Frederick S. (Lafayette, CA); Asztalos, Stephen J. (Oakland, CA)

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  19. Current trends in scintillator detectors and materials

    SciTech Connect

    Moses, William W.

    2001-10-23

    The last decade has seen a renaissance in inorganic scintillator development for gamma ray detection. Lead tungstate (PbWO4) has been developed for high energy physics experiments, and possesses exceptionally high density and radiation hardness, albeit with low luminous efficiency. Lutetium orthosilicate or LSO (Lu2SiO5:Ce) possesses a unique combination of high luminous efficiency, high density, and reasonably short decay time, and is now incorporated in commercial positron emission tomography (PET) cameras. There have been advances in understanding the fundamental mechanisms that limit energy resolution, and several recently discovered materials (such as LaBr3:Ce) possess energy resolution that approaches that of direct solid state detectors. Finally, there are indications that a neglected class of scintillator materials that exhibit near band-edge fluorescence could provide scintillators with sub-nanosecond decay times and high luminescent efficiency.

  20. Colon cancer screening

    MedlinePLUS

    Screening for colon cancer; Colonoscopy - screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening ... Colon cancer screening can detect polyps and early cancers in the intestines. This type of screening can find ...

  1. Light scattering and distribution model for scintillation cameras

    NASA Astrophysics Data System (ADS)

    Rioux, Sylvain; Gagnon, Daniel; Lexa, Roger; Valentino, Frank C.

    1993-12-01

    Light distribution in a standard scintillation camera is a complex process. The photons come across many different optical materials and many types of specular and rough optical surfaces. Complexity is further added to the model when the spatial and angular sensitivities of the detection components--the photomultipliers--are considered. To be able to correctly predict the PSF of a gamma camera, we developed a Monte-Carlo ray-tracing model which was subsequently compared to data measured on an existing gamma camera head (PRISM 3000 from Picker International Inc.). The experimental configuration was first replicated: geometry, optical properties of the crystal, light guide, photomultiplier tube window and photocathode, index matching fluid and gamma ray energy. Several other parameters, such as back mirror reflectivity and border reflectivity, were the optimized. Finally an a posteriori modelization of the scattered refracted and reflected fields at the rough interface between the crystal and the light guide was obtained by fitting simulation results to experimental data.

  2. Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications

    SciTech Connect

    Lacroix, Frederic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A. Sam; Beaulieu, Luc

    2008-08-15

    A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility ({+-}0.8%) in-field and good accuracy ({+-}1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber.

  3. The design of the TASD (totally active scintillator detector) prototype

    NASA Astrophysics Data System (ADS)

    Mefodiev, A. V.; Kudenko, Yu. G.

    2015-12-01

    Totally active and magnetic segmented scintillation neutrino detectors are developed for the nextgeneration accelerator neutrino experiments. Such detectors will incorporate scintillation modules with scintillation counters that form X and Y planes. A single counter is a 7 × 10 × 90 mm3 scintillation bar with gluedin wavelength-shifting fibers and micropixel avalanche photodiodes. The results of measurements of the parameters of these detectors are presented.

  4. Development of SiPM-based scintillator tile detectors for a multi-layer fast neutron tracker

    NASA Astrophysics Data System (ADS)

    Preston, R.; Jakubek, J.; Prokopovich, D.; Uher, J.

    2012-10-01

    We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM) readout for use in a multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The thin 15 15 2 mm plastic scintillators require suitable optical readout in order to detect and measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance of the two prototype designs. A deuterium-tritium (DT) fast-neutron source was used to compare the relative light collection efficiency of the two designs. A collimated UV light source was scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of correcting this non-uniformity are discussed.

  5. Near-infrared scintillation of liquid argon

    NASA Astrophysics Data System (ADS)

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.; Rubinov, P.

    2016-03-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 μm < λ < 1.5 μm). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  6. Statistics of time averaged atmospheric scintillation

    SciTech Connect

    Stroud, P.

    1994-02-01

    A formulation has been constructed to recover the statistics of the moving average of the scintillation Strehl from a discrete set of measurements. A program of airborne atmospheric propagation measurements was analyzed to find the correlation function of the relative intensity over displaced propagation paths. The variance in continuous moving averages of the relative intensity was then found in terms of the correlation functions. An empirical formulation of the variance of the continuous moving average of the scintillation Strehl has been constructed. The resulting characterization of the variance of the finite time averaged Strehl ratios is being used to assess the performance of an airborne laser system.

  7. The homestake surface-underground scintillations: Description

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.

    1985-01-01

    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described.

  8. Impact of scintillation of transionospheric communications

    NASA Technical Reports Server (NTRS)

    Blank, H. A.; Golden, T. S.

    1974-01-01

    Analyses of AGC analog data from the Small Astronomy Satellite (SAS) at VHF (136 MHz) have shown amplitude fluctuations in the signals received at several equatorial tracking sites operated by NASA. Coincident digital telemetry data, transmitted from SAS at 1 kbps, has also been analyzed. Errors in data are shown to increase markedly for nighttime satellite passes around the periods of the two equinoxes as compared to the errors observed during other periods. This paper establishes the qualitative and quantitative correlations between the ionospheric scintillation phenomenon and the occurrence of errors. Strong time and geographic cause and effect relationships are established by determining the statistical correlation between scintillation indices and bit error rates.

  9. Evaluations of pure zinc sulfide crystal scintillator

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Fujimoto, Yutaka

    2014-03-01

    Optical and scintillation properties of pure ZnS single crystal were examined. ZnS showed 70% optical transmittance in wavelength longer than 350 nm. In X- and ?-ray induced radioluminescence spectra, intense emission peaks at 440 and 520 nm were observed. The origin of the former and the latter emission peaks were ascribed to zinc vacancy and sulfur vacancy, respectively. The temperature dependence of X-ray radioluminescence was investigated and intensities of both emission peaks monotonically decreased in higher temperatures. Finally, the absolute scintillation light yield of pure ZnS turned out to be 500 photons/5.5 MeV-?.

  10. Optimisation studies for scintillator plate calorimeter

    SciTech Connect

    Job, P.K.; Blair, R.; Price, L.

    1990-12-31

    This note is the preliminary report of the results of optimisation studies at ANL for the proposed scintillator plate calorimeter for SSC. In this note we have tried to optimise some of the basic parameters for the calorimeter with the available simulation tools at ANL. These simulation studies were carried out using EGS4 and GEANT 3.11 (with GHEISHA 7 implementation) on ANL CRAY XMP14 computer. The various input parameters for GEANT and EGS were optimised and validated using the available test beam data. The codes thus validated were used to calculate some of the basic parameters for the scintillator plate calorimeter for SSC with different absorber materials.

  11. New Structured Scintillators for Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Nagarkar, V. V.; Ovechkina, E. E.; Bhandari, H. B.; Soundara-Pandian, L.; More, M. J.; Riedel, R. A.; Miller, S. R.

    We report on the development of novel neutron scintillators fabricated in microcolumnar formats using the physical vapour deposition (PVD) method. Such structures mitigate the conventional trade-off between spatial resolution and detection efficiency by channelling the scintillation light towards the detector while minimizing lateral spread in the film. Consequently, high resolution and high contrast neutron images can be acquired in a time efficient manner. In this paper, we discuss methods and characterization for scintillator films made from three distinct compositions, Thallium (Tl) or Europium (Eu) doped Lithium CesiumIodide (Li3Cs2I5:Tl,Eu, referred to as LCI), Tl or Eudoped Lithium Sodium Iodide (LixNa1-xI:Tl,Eu, referred to as LNI), and Cerium (Ce)-doped Gadolinium Iodide (GdI3:Ce, referred to as GDI). LCI and LNI scintillators are derived from the well-known CsI and NaI scintillators by the incorporation of 6Li into their lattice. Based on our measurements reported here, LCI/LNI scintillators have shown to exhibit bright emissions, fast, sub-microsecond decay, and an ability to effectively discriminate between neutron and gamma interactions using pulse shape (PSD) and/or pulse height (PHD) discrimination. LCI has a density of 4.5 g/cm3, a measured peak emission wavelength of 460 nm (doped with Eu), and a light yield of ?50,000 photons/thermal neutron. LNI has a density of 3.6 g/cm3, an emission peak measured at 420 nm, and a light yield of ?100,000 photons/thermal neutron. The recently discovered GDI exhibits excellent scintillation properties including a bright emission of up to 5,000 photons/thermal neutron interaction, 550 nm green emission, a rise time of ?0.5 ns and a primary decay time of ?38 ns (Glodo et al., 2006). Its high thermal neutron cross-section of ?255 kb makes it an attractive candidate for neutron detection and imaging. Although it has high density of 5.2 gm/cm3 and effective atomic number of 57, its gamma sensitivity can be minimized by lowering the film thickness and its neutron sensitivity can be maximized through the use of enriched Gd. The fabrication of micro-structured films of these materials using an evaporation technique permits the cost-effective volume synthesis of high-quality neutron scintillators over large areas (20 cm x 20 cm) in short time. In addition, the vapour deposition permits stoichiometry and dopant control not possible using conventional crystal growth.

  12. Investigating the temporal resolution limits of scintillation detection from pixellated elements: comparison between experiment and simulation

    NASA Astrophysics Data System (ADS)

    Spanoudaki, V. Ch; Levin, C. S.

    2011-02-01

    This study investigates the physical limitations involved in the extraction of accurate timing information from pixellated scintillation detectors for positron emission tomography (PET). Accurate physical modeling of the scintillation detection process, from scintillation light generation through detection, is devised and performed for varying detector attributes, such as the crystal element length, light yield, decay time and surface treatment. The dependence of light output and time resolution on these attributes, as well as on the photon interaction depth (DoI) of the annihilation quanta within the crystal volume, is studied and compared with experimental results. A theoretical background which highlights the importance of different time blurring factors for instantaneous ('ideal') and exponential ('realistic') scintillation decay is developed and compared with simulated data. For the case of a realistic scintillator, our experimental and simulation findings suggest that dependence of detector performance on DoI is more evident for crystal elements with rough ('as cut') compared to polished surfaces (maximum observed difference of 64% (25%) and 22% (19%) in simulation (measurement) for light output and time resolution, respectively). Furthermore we observe distinct trends of the detector performance dependence on detector element length and surface treatment. For short crystals (3 3 5 mm3) an improvement in light output and time resolution for 'as cut' compared to polished crystals is observed (3% (7%) and 9% (9%) for simulation (measurement), respectively). The trend is reversed for longer crystals (3 3 20 mm3) and an improvement in light output and time uncertainty for polished compared to 'as cut' crystals is observed (36% (6%) and 40% (20%) for simulation (measurement), respectively). The results of this study are used to guide the design of PET detectors with combined time of flight (ToF) and DoI features.

  13. Optimization of the design of thick, segmented scintillators for megavoltage cone-beam CT using a novel, hybrid modeling technique

    SciTech Connect

    Liu, Langechuan; Antonuk, Larry E. El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao

    2014-06-15

    Purpose: Active matrix flat-panel imagers (AMFPIs) incorporating thick, segmented scintillators have demonstrated order-of-magnitude improvements in detective quantum efficiency (DQE) at radiotherapy energies compared to systems based on conventional phosphor screens. Such improved DQE values facilitate megavoltage cone-beam CT (MV CBCT) imaging at clinically practical doses. However, the MV CBCT performance of such AMFPIs is highly dependent on the design parameters of the scintillators. In this paper, optimization of the design of segmented scintillators was explored using a hybrid modeling technique which encompasses both radiation and optical effects. Methods: Imaging performance in terms of the contrast-to-noise ratio (CNR) and spatial resolution of various hypothetical scintillator designs was examined through a hybrid technique involving Monte Carlo simulation of radiation transport in combination with simulation of optical gain distributions and optical point spread functions. The optical simulations employed optical parameters extracted from a best fit to measurement results reported in a previous investigation of a 1.13 cm thick, 1016μm pitch prototype BGO segmented scintillator. All hypothetical designs employed BGO material with a thickness and element-to-element pitch ranging from 0.5 to 6 cm and from 0.508 to 1.524 mm, respectively. In the CNR study, for each design, full tomographic scans of a contrast phantom incorporating various soft-tissue inserts were simulated at a total dose of 4 cGy. Results: Theoretical values for contrast, noise, and CNR were found to be in close agreement with empirical results from the BGO prototype, strongly supporting the validity of the modeling technique. CNR and spatial resolution for the various scintillator designs demonstrate complex behavior as scintillator thickness and element pitch are varied—with a clear trade-off between these two imaging metrics up to a thickness of ∼3 cm. Based on these results, an optimization map indicating the regions of design that provide a balance between these metrics was obtained. The map shows that, for a given set of optical parameters, scintillator thickness and pixel pitch can be judiciously chosen to maximize performance without resorting to thicker, more costly scintillators. Conclusions: Modeling radiation and optical effects in thick, segmented scintillators through use of a hybrid technique can provide a practical way to gain insight as to how to optimize the performance of such devices in radiotherapy imaging. Assisted by such modeling, the development of practical designs should greatly facilitate low-dose, soft tissue visualization employing MV CBCT imaging in external beam radiotherapy.

  14. Monte Carlo investigations of the effect of beam divergence on thick, segmented crystalline scintillators for radiotherapy imaging

    PubMed Central

    Wang, Yi; El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua

    2010-01-01

    The use of thick segmented scintillators in electronic portal imagers offers the potential for significant improvement in x-ray detection efficiency compared to conventional phosphor screens. Such improvement substantially increases the detective quantum efficiency (DQE), leading to the possibility of achieving soft-tissue visualization at clinically-practical (i.e. low) doses using megavoltage (MV) cone-beam computed tomography. While these DQE increases are greatest at zero spatial frequency, they are diminished at higher frequencies as a result of degradation of spatial resolution due to lateral spreading of secondary radiation within the scintillator an effect that is more pronounced for thicker scintillators. The extent of this spreading is even more accentuated for radiation impinging the scintillator at oblique angles of incidence due to beam divergence. In this paper, Monte Carlo simulations of radiation transport, performed to investigate and quantify the effects of beam divergence on the imaging performance of MV imagers based on two promising scintillators (BGO and CsI:T1), are reported. In these studies, 10 40 mm thick scintillators, incorporating low-density polymer, or high-density tungsten septal walls were examined for incident angles corresponding to that encountered at locations up to ~15 cm from the central beam axis (for an imager located 130 cm from a radiotherapy x-ray source). The simulations demonstrate progressively more severe spatial resolution degradation (quantified in terms of the effect on modulation transfer function) as a function of increasing angle of incidence (as well as of scintillator thickness). Since the noise power behavior was found to be largely independent of incident angle, the dependence of the DQE on incident angle is therefore primarily determined by the spatial resolution. The observed DQE degradation suggests that 10 mm thick scintillators are not strongly affected by beam divergence for detector areas up to ~30 30 cm2. For thicker scintillators, the area that is relatively unaffected is significantly reduced, requiring a focused scintillator geometry in order to preserve spatial resolution, and thus DQE. PMID:20526032

  15. Optimization of the design of thick, segmented scintillators for megavoltage cone-beam CT using a novel, hybrid modeling technique

    PubMed Central

    Liu, Langechuan; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao

    2014-01-01

    Purpose: Active matrix flat-panel imagers (AMFPIs) incorporating thick, segmented scintillators have demonstrated order-of-magnitude improvements in detective quantum efficiency (DQE) at radiotherapy energies compared to systems based on conventional phosphor screens. Such improved DQE values facilitate megavoltage cone-beam CT (MV CBCT) imaging at clinically practical doses. However, the MV CBCT performance of such AMFPIs is highly dependent on the design parameters of the scintillators. In this paper, optimization of the design of segmented scintillators was explored using a hybrid modeling technique which encompasses both radiation and optical effects. Methods: Imaging performance in terms of the contrast-to-noise ratio (CNR) and spatial resolution of various hypothetical scintillator designs was examined through a hybrid technique involving Monte Carlo simulation of radiation transport in combination with simulation of optical gain distributions and optical point spread functions. The optical simulations employed optical parameters extracted from a best fit to measurement results reported in a previous investigation of a 1.13 cm thick, 1016 ?m pitch prototype BGO segmented scintillator. All hypothetical designs employed BGO material with a thickness and element-to-element pitch ranging from 0.5 to 6 cm and from 0.508 to 1.524 mm, respectively. In the CNR study, for each design, full tomographic scans of a contrast phantom incorporating various soft-tissue inserts were simulated at a total dose of 4 cGy. Results: Theoretical values for contrast, noise, and CNR were found to be in close agreement with empirical results from the BGO prototype, strongly supporting the validity of the modeling technique. CNR and spatial resolution for the various scintillator designs demonstrate complex behavior as scintillator thickness and element pitch are variedwith a clear trade-off between these two imaging metrics up to a thickness of ?3 cm. Based on these results, an optimization map indicating the regions of design that provide a balance between these metrics was obtained. The map shows that, for a given set of optical parameters, scintillator thickness and pixel pitch can be judiciously chosen to maximize performance without resorting to thicker, more costly scintillators. Conclusions: Modeling radiation and optical effects in thick, segmented scintillators through use of a hybrid technique can provide a practical way to gain insight as to how to optimize the performance of such devices in radiotherapy imaging. Assisted by such modeling, the development of practical designs should greatly facilitate low-dose, soft tissue visualization employing MV CBCT imaging in external beam radiotherapy. PMID:24877827

  16. Upconverting nanoparticles for optimizing scintillator based detection systems

    SciTech Connect

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  17. Detection of charged particles and X-rays by scintillator layers coupled to amorphous silicon photodiode arrays

    SciTech Connect

    Jing, T.; Drewery, J.; Hong, W.S.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.; Goodman, C.A.; Wildermuth, D.

    1995-04-01

    Hydrogenated amorphous silicon (a-Si:H) p-i-n diodes with transparent metallic contacts are shown to be suitable for detecting charged particles, electrons, and X-rays. When coupled to a suitable scintillator using CsI(Tl) as the scintillator we show a capability to detect minimum ionizing particles with S/N {approximately}20. We demonstrate such an arrangement by operating a p-i-n diode in photovoltaic mode (reverse bias). Moreover, we show that a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3-8 higher light sensitivity for shaping times of 1 {mu}s. n-i-n devices have similar optical gain as the p-i-n photoconductor for short integrating times ( < 10{mu}s). However, n-i-n devices exhibit much higher gain for a long term integration (10ms) than the p-i-n ones. High sensitivity photosensors are very desirable for X-ray medical imaging because radiation exposure dose can be reduced significantly. The scintillator CsI layers we made have higher spatial resolution than the Kodak commercial scintillator screens due to their internal columnar structure which can collimate the scintillation light. Evaporated CsI layers are shown to be more resistant to radiation damage than the crystalline bulk CsI(Tl).

  18. Scintillation reduction by multiple phase-locked beams with different polarization angles

    NASA Astrophysics Data System (ADS)

    Ren, Guangsen; Zhu, Rongzhen; Hao, Daoliang; Yao, Mei; Wang, Yanbin; Zhang, Wenpan; Li, Hua

    2015-10-01

    A new approach is presented to reduce turbulence-induced scintillation by use of a phase-locked beams array composed of linearly polarized beams with different polarization angles. The noninterference of orthogonal polarizations suggests that the beams array mentioned above can act effectively as a two-mode partially coherent beam, and the percentage of a single mode is controllable by changing the polarization angles of the beams. Numerical calculation using a multiple-phase screen method is performed to analyze the on-axis scintillation index ?I2 and mean received intensity for the beams array propagating through weak, moderate, and strong turbulence. The effects of different polarization angles on ?I2 and at the receiver are studied. When the turbulence is weak, numerical calculations show that both ?I2 and are closely related to the polarization angles of the beams. And there will be a smaller scintillation index for a phase-locked beams array comprising beams with different polarization angles as compared to a uniformly polarized beams array. As the beams are phase-locked, the mean received intensity provided by them is larger than that provided by an incoherent beams array. For it is quite easy to change the polarization angles, phase-locked beams array comprising beams with different polarization angles can be a promising source in the applications that need a balance between scintillation and mean received intensity in weak turbulence conditions. When the turbulence is moderately strong, incoherent beams array is actually a better choice, because the scintillation index is smaller and the mean received intensity is as much, compared to a phase-locked beams array.

  19. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance of the proposed tracking scheme is assessed by using both simulated and real data. Real data have been collected in Vietnam by using a USRP (Universal Software Radio Peripheral) N210 front end connected to a rubidium oscillator. Selected events are exploited in order to challenge the algorithm with strong phase and amplitude variations. Moreover, simulated data have been collected by using the prototype of a digital front end developed by Novatel, namely the 'Firehose'. Since the latter includes a TCXO oscillator, the proposed tracking scheme is also opportunely modified to take in account the clock error contribution. References 1. R.S., Conker, M. B. El-Arini, C. J. Hegarty, and T. Hsiao, Modelling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci., 38, 1, 1001, doi: 10.1029/2000RS002604, 2003. 2. B. Bougard et al, 'CIGALA: Challenging the Solar Maximum in Brazil with PolaRxS,' ION GNSS, Portland, Sept. 2011.

  20. Hypertension screening

    NASA Technical Reports Server (NTRS)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  1. Vision Screening

    MedlinePLUS

    ... office. Some community screenings use this method. Corneal light reflex testing This simple test can be performed ... focuses on a penlight, the position of the light reflection from the front surface (cornea) of the ...

  2. MRSA Screening

    MedlinePLUS

    ... may be collected from a wound site or skin lesion of a person who has been previously treated for a MRSA infection and cultured similarly. A screening culture identifies the absence or presence of MRSA and ...

  3. Airport Screening

    MedlinePLUS

    ... January 2011. Glossary This fact sheet may use nuclear terms that are unfamiliar. Many of these are ... Institute/Health Physics Society. Radiation safety for personnel security screening systems using x-ray or gamma radiation [ ...

  4. Developmental Screening

    MedlinePLUS

    Learn More about Your Child’s Development: Developmental Monitoring and Screening Taking a first step, waving “bye-bye,” and pointing to something interesting are all developmental milestones, ...

  5. TORCH screen

    MedlinePLUS

    ... different infections in a newborn. TORCH stands for toxoplasmosis , rubella , cytomegalovirus, herpes simplex, and HIV, but it ... used to screen infants for infections such as toxoplasmosis, cytomegalovirus, herpes simplex, syphilis and others. These infections ...

  6. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    SciTech Connect

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today`s and tomorrow`s colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed.

  7. Measurement of imaging properties of scintillating fiber optic plate

    NASA Astrophysics Data System (ADS)

    Zentai, George; Ganguly, Arundhuti; Star-Lack, Josh; Virshup, Gary; Hirsh, Hayley; Shedlock, Daniel; Humber, David

    2014-03-01

    Scintillating Fiber Optic Plates (SFOP) or Fiber Optic Scintillator (FOS) made with scintillating fiber-glass, were investigated for x-ray imaging. Two different samples (T x W x L = 2cm x 5cm x 5cm) were used; Sample A: 10μm fibers, Sample B: 50μm fibers both with statistically randomized light absorbing fibers placed in the matrix. A customized holder was used to place the samples in close contact with photodiodes in an amorphous silicon flat panel detector (AS1000, Varian), typically used for portal imaging. The detector has a 392μm pixel pitch and in the standard configuration uses a gadolinium oxy-sulphide (GOS) screen behind a copper plate. X-ray measurements were performed at 120kV (RQA 9 spectrum), 1MeV (5mm Al filtration) and 6MeV (Flattening Filter Free) for Sample A and the latter 2 spectra for Sample B. A machined edge was used for MTF measurements. The measurements showed the MTF degraded with increased X-ray energies because of the increase in Compton scattering. However, at the Nyquist frequency of 1.3lp/mm, the MTF is still high (FOS value vs. Cu+GOS): (a) 37% and 21% at 120kVp for the 10μm FOS and the Cu+GOS arrays, (b) 31%, 20% and 20% at 1MeV and (c) 17%, 11% and 14% at 6MeV for the 10μm FOS, 50μm FOS and the Cu+GOS arrays. The DQE(0) value comparison were (a) at 120kV ~24% and ~13 % for the 10μm FOS and the Cu+GOS arrays (b) at 1MV 10%, 10% and 7% and (c) at 6MV 12%, ~19% and 1.6% for the 10μm FOS , 50μm FOS and Cu+GOS arrays.

  8. Temperature dependence of BCF plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Wootton, Landon; Beddar, Sam

    2013-05-01

    We examined temperature dependence in plastic scintillation detectors (PSDs) made of BCF-60 or BCF-12 scintillating fiber coupled to optical fiber with cyanoacrylate. PSDs were subjected to a range of temperatures using a temperature-controlled water bath and irradiated at each temperature while either the dose was measured using a CCD camera or the spectral output was measured using a spectrometer. The spectrometer was used to examine the intensity and spectral distribution of scintillation light emitted by the PSDs, Cerenkov light generated within the PSD, and light transmitted through an isolated optical coupling. BCF-60 PSDs exhibited a 0.50% decrease and BCF-12 PSDs a 0.09% decrease in measured dose per C increase, relative to dose measured at 22 C. Spectrometry revealed that the total intensity of the light generated by BCF-60 and BCF-12 PSDs decreased by 0.32% and 0.13%, respectively, per C increase. The spectral distribution of the light changed slightly with temperature for both PSDs, accounting for the disparity between the change in measured dose and total light output. The generation of Cerenkov light was temperature independent. However, light transmitted through optical coupling between the scintillator and the optical fiber also exhibited temperature dependence.

  9. Magnetic fields and SDC endcap scintillator performance

    SciTech Connect

    Green, D.

    1993-01-01

    Many detectors designed to operate in colliders contain both magnetic fields, usually solenoids, and scintillators. The former is known to influence the operation of the latter. A first look is taken in this note at the implications of that influence for the SDC detector.

  10. Optimization of Shielded Scintillator for Neutron Detection

    NASA Astrophysics Data System (ADS)

    Belancourt, Patrick; Morrison, John; Akli, Kramer; Freeman, Richard; High Energy Density Physics Team

    2011-10-01

    The High Energy Density Physics group is interested in the basic science of creating a neutron and gamma ray source. The neutrons and gamma rays are produced by accelerating ions via a laser into a target and creating fusion neutrons and gamma rays. A scintillator and photomultiplier tube will be used to detect these neutrons. Neutrons and photons produce ionizing radiation in the scintillator which then activates metastable states. These metastable states have both short and long decay rates. The initial photon count is orders of magnitude higher than the neutron count and poses problems for accurately detecting the neutrons due to the long decay state that is activated by the photons. The effects of adding lead shielding on the temporal response and signal level of the neutron detector will be studied in an effort to minimize the photon count without significant reduction to the temporal resolution of the detector. MCNP5 will be used to find the temporal response and energy deposition into the scintillator by adding lead shielding. Results from the simulations will be shown. Optimization of our scintillator neutron detection system is needed to resolve the neutron energies and neutron count of a novel neutron and gamma ray source.

  11. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S. (Santa Monica, CA); Hoffman, Edward J. (Los Angeles, CA)

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  12. Waveshifting fiber readout of lanthanum halide scintillators

    NASA Astrophysics Data System (ADS)

    Case, G. L.; Cherry, M. L.; Stacy, J. G.

    2006-07-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6 8 m2 hard X-ray coded aperture imaging telescope operating in the 20 600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr3 and LaCl3) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr3 or LaCl3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance.

  13. Progress in studying scintillator proportionality: Phenomenological model

    SciTech Connect

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  14. Scintillation Properties of Unactivated Calcium Fluoride Crystal

    NASA Astrophysics Data System (ADS)

    Zhu, Y. C.; Lu, J. G.; You, K.; Shao, Y. Y.; Sun, H. S.; Zheng, Z. P.; Ye, M. H.; Cui, F. Z.; Yu, C. J.; Jiang, G. J.

    This paper presents scintillation properties of unactivated calcium fluoride exposed to X-rays and ?-rays from 6 keV to 662 keV. The relative pulse heights and linearity response have been measured. The photoelectron yields have been obtained. A clear full energy photopeak for Cs137 (662 keV) ?-rays has been observed.

  15. Scintillator Development for the PROSPECT Experiment

    NASA Astrophysics Data System (ADS)

    Yeh, Minfang

    2014-03-01

    Doped scintillator is the target material of choice for antineutrino detection as it utilizes the time-delayed coincidence signature of the positron annihilation and neutron capture resulting from the Inverse Beta Decay (IBD) interaction. Additionally, the multiple gamma rays or heavy ions emitted after neutron capture on either Gd or 6Li respectively provide a distinct signal for the identification of antineutrino events and therefore significantly enhance accidental background reduction. The choice of scintillator and dopant depends on the detector requirements and scintillator performance criteria. Both Gd and 6Li doped scintillators have been used in past reactor antineutrino experiments such as Double Chooz, Daya Bay, RENO, and Bugey3 and are currently under investigation by the PROSPECT collaboration. Their properties in terms of light yield, optical transparency, chemical stability and background rejection efficiency using Pulse Shape Discrimination (PSD) will be reported. Research sponsored by the U.S. Department of Energy, Office of Nuclear Physics and Office of High Energy Physics, under contract with Brookhaven National Laboratory-Brookhaven Science Associates.

  16. Neutron guide

    DOEpatents

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  17. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  18. Liquid Scintillator Production for the NOvA Experiment

    SciTech Connect

    Mufson, S.; Baugh, B.; Bower, C.; Coan, T.; Cooper, J.; Corwin, L.; Karty, J.; Mason, P.; Messier, M. D.; Pla-Dalmau, A.; Proudfoot, M.

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was speci#12;cally developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  19. Ionospheric scintillations associated with equatorial E-region

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.

    1978-01-01

    Amplitude scintillations at 40, 140, and 360 MHz recorded at an equatorial station Ootacamund (dip 4 deg N) during the ATS-6 phase II and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for the scintillation activity. Various sporadic E events, but not the Es-q, are associated with intense daytime scintillations. There are no scintillations at times of normal E-layer or cusp type of Es. Scintillations are also present at times of night Es.

  20. Liquid Scintillator Production for the NOvA Experiment

    DOE PAGESBeta

    Mufson, S.; Baugh, B.; Bower, C.; Coan, T.; Cooper, J.; Corwin, L.; Karty, J.; Mason, P.; Messier, M. D.; Pla-Dalmau, A.; et al

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  1. Liquid scintillator production for the NOvA experiment

    NASA Astrophysics Data System (ADS)

    Mufson, S.; Baugh, B.; Bower, C.; Coan, T. E.; Cooper, J.; Corwin, L.; Karty, J. A.; Mason, P.; Messier, M. D.; Pla-Dalmau, A.; Proudfoot, M.

    2015-11-01

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  2. Application of the Strong Scatter Theory to the Interpretation of Ionospheric Scintillation Measurements along Geostationary Satellite Links at VHF and L-band

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Groves, K. M.; Basu, S.; Mackenzie, E.; Sheehan, R. E.

    2013-12-01

    In a previous work, we demonstrated that ionospheric turbulence parameters may be inferred from amplitude scintillations well into in the strong scatter regime [Carrano et al., International Journal of Geophysics, 2012]. This technique, called Iterative Parameter Estimation (IPE), uses the strong scatter theory and numerical inversion to estimate the parameters of an ionospheric phase screen (turbulent intensity, phase spectral index, and irregularity zonal drift) consistent with the observed scintillations. The optimal screen parameters are determined such that the theoretical intensity spectrum on the ground best matches the measured intensity spectrum in a least squares sense. We use this technique to interpret scintillation measurements collected during a campaign at Ascension Island (7.96°S, 14.41°W) in March 2000, led by Santimay Basu and his collaborators from Air Force Research Laboratory. Geostationary satellites broadcasting radio signals at VHF and L-band were monitored along nearly co-linear links, enabling a multi-frequency analysis of scintillations with the same propagation geometry. The VHF data were acquired using antennas spaced in the magnetic east-west direction, which enabled direct measurement of the zonal irregularity drift. We show that IPE analysis of the VHF and L-Band scintillations, which exhibited very different statistics due to the wide frequency separation, yields similar estimates of the phase screen parameters that specify the disturbed ionospheric medium. This agreement provides confidence in our phase screen parameter estimates. It also suggests a technique for extrapolating scintillation measurements to frequencies other than those observed that is valid in the case of strong scatter. We find that IPE estimates of the zonal irregularity drift, made using scintillation observations along single space-to-ground link, are consistent with those measured independently using the spaced antenna technique. This encouraging result suggests one may measure the zonal irregularity drift at scintillation monitoring stations equipped with only a single channel receiver, so that the spaced-antenna technique cannot be employed. We noted that the scintillation index (S4) at L-band commonly exceeded that at VHF early in the evening when the irregularities were most intense, followed by one or more reversals of this trend at later local times as aging irregularities decayed and newly formed bubbles drifted over the station. We use the strong scatter theory to explain this perhaps counter-intuitive situation (one would normally expect a higher S4 at the lower frequency) in terms of strong refractive focusing.

  3. A new type of thermal-neutron detector based on ZnS(Ag)/LiF scintillator and avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Marin, V. N.; Sadykov, R. A.; Trunov, D. N.; Litvin, V. S.; Aksenov, S. N.; Stolyarov, A. A.

    2015-09-01

    A high-efficiency thermal-neutron detector based on ZnS(Ag)/LiF scintillator is described, which employs a new technique of signal pick-up with the aid of a light guide and avalanche photodiodes instead of optical fibers and photomultipliers. Results of tests on the RADEX pulsed neutron source are presented, in which neutron diffraction patterns of test objects have been obtained.

  4. Non-Carbon Dyes For Platic Scintillators- Report

    SciTech Connect

    Teprovich, J.; Colon-Mercado, H.; Gaillard, J.; Sexton, L.; Washington, A.; Ward, P.; Velten, J.

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  5. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-08-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution.

  6. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    SciTech Connect

    Hoerner, Matthew R. Stepusin, Elliott J.; Hyer, Daniel E.; Hintenlang, David E.

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated ionization chamber to measure the reference air kerma. Results: Each detector exhibited counting losses of 5% when irradiated at a dose rate of 26.3 mGy/s (Gadolinium) and 324.3 mGy/s (plastic). The dead time of the gadolinium oxysulfide detector was determined to be 48 ns, while the dead time of the plastic scintillating detector was unable to accurately be calculated due to poor counting statistics from low detected count rates. Noticeable depth/energy dependence was observed for the plastic scintillator for depths greater than 16 cm of acrylic that was not present for measurements using the gadolinium oxysulfide scintillator, leading us to believe that quenching may play a larger role in the depth dependence of the plastic scintillator than the incident x-ray energy spectrum. When properly corrected for dead time effects, the energy response of the gadolinium oxysulfide scintillator is consistent with the plastic scintillator. Using the integrated dual detector method was superior to each detector individually as the depth-dependent measure of dose was correctable to less than 8% between 100 and 135 kV. Conclusions: The dual scintillator fiber-optic detector accommodates a methodology for energy dependent corrections of the plastic scintillator, improving the overall accuracy of the dosimeter across the range of diagnostic energies.

  7. Rod guide

    SciTech Connect

    Sable, D.E.

    1988-11-29

    This patent describes a rod guide assembly for a sucker rod longitudinally reciprocably movable in a well flow conductor comprising: a pair of longitudinally spaced upper and lower stops rigidly secured to a sucker rod; and a guide body movably mounted on the rod between the stops. The stops being spaced from each other a distance slightly greater than the length of the guide body, the upper stop engaging the guide body to move the guide body downwardly with the rod after an initial short downward movement of the rod after initiation of each downward movement of the rod and the lower stop engaging the guide body to move the second guide body upwardly with the rod after initial short upward movement of the rod after initiation of each upward movement of the rod during the longitudinal reciprocatory movement of the rod in a well flow conductor.

  8. A Monte Carlo study of an energy-weighted algorithm for radionuclide analysis with a plastic scintillation detector.

    PubMed

    Shin, Wook-Geun; Lee, Hyun-Cheol; Choi, Chang-Il; Park, Chang Soo; Kim, Hong-Suk; Min, Chul Hee

    2015-07-01

    Nuisance and false alarms due to naturally occurring radioactive material (NORM) are major problems facing radiation portal monitors (RPMs) for the screening of illicit radioactive materials in airports and ports. Based on energy-weighted counts, we suggest an algorithm that distinguishes radioactive nuclides with a plastic scintillation detector that has poor energy resolution. Our simulation study, using a Monte Carlo method, demonstrated that man-made radionuclides can be separated from NORM by using a conventional RPM. PMID:25836977

  9. Dermatological screening.

    PubMed

    Emmett, E A

    1986-10-01

    Occupational skin diseases are the most frequently reported occupational diseases in the US today. In addition, nonoccupational skin diseases are also prevalent among workers. Dermatological screening examinations may be performed to detect conditions that place the worker at increased risk, so that risk might be reduced; detect early signs of specific occupational diseases; or systematically record cutaneous abnormalities so that increases in prevalence or incidence associated with workplace exposures can be identified. Some of the available dermatological screening methods will be discussed, with attention to ways in which the effectiveness of screening may be enhanced. Conditions for which such procedures may be useful include dermatitis, acne, chloracne, pigmentary changes, melanoma, and nonmelanoma skin cancer. The importance of biological monitoring in relation to cutaneous exposure is also discussed. PMID:2945909

  10. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    PubMed Central

    Ingram, W. Scott; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent. PMID:25705066

  11. Attention Guiding in Multimedia Learning

    ERIC Educational Resources Information Center

    Jamet, Eric; Gavota, Monica; Quaireau, Christophe

    2008-01-01

    Comprehension of an illustrated document can involve complex visual scanning in order to locate the relevant information on the screen when this is evoked in spoken explanations. The present study examined the effects of two types of attention-guiding means (color change or step-by-step presentation of diagram elements synchronized with a spoken

  12. A Guide to Desktop Videoconferencing.

    ERIC Educational Resources Information Center

    Maring, Gerald H.; Levy, Erik W.

    This document presents a step-by-step guide to using three desktop videoconferencing applications: CU-SeeMe, iVisit, and NetMeeting. First, hardware and software recommendations for PC-based and Macintosh systems are provided. Illustrations of sample screens accompany the text for each application. The following additional considerations for

  13. Screening for cancer

    SciTech Connect

    Miller, A.B.

    1985-01-01

    This book contains three sections: Fundamentals of Screening, Screening Tests, and Screening for Specific Cancer Sites. Each section consists of several chapters. Some of the chapter titles are: Principles of Screening and of the Evaluation of Screening Programs; Economic Aspects of Screening; Cervical Cytology; Screening Tests for Bladder Cancer; Fecal Occult Blood Testing; Screening for Cancer of the Cervix; Screening for Gastric Cancer; and Screening for Oral Cancer.

  14. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  15. Neutron spectroscopy with scintillation detectors using wavelets

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the effects of photons and allow for source characterization based solely on the neutron response. The unfolding technique was performed through polynomial fitting and optimization techniques in MATLAB, and provided an energy spectrum for the PuBe source.

  16. Nonproportionality of Scintillator Detectors: Theory and Experiment

    SciTech Connect

    Payne, Stephen; Cherepy, Nerine; Hull, Giulia; Valentine, John; Moses, William; Choong, Woon-Seng

    2009-08-17

    On the basis of nonproportionality data obtained for several scintillators, we have developed a theory to describe the carrier dynamics to fit the light yield versus electron energy. The theory of Onsager was adapted to explain how the carriers form excitons or sequentially arrive at the activators to promote the ion to an excited state, and the theory of Birks was employed to allow for exciton-exciton annihilation. We then developed a second theory to deduce the degradation in resolution that results from nonproportionality by evoking Landau fluctuations, which are essentially variations in the deposited energy density that occur as the high energy electron travels along its trajectory. In general there is good agreement with the data, in terms of fitting the nonproportionality curves and reproducing the literature values of nonproportionality's contribution to the scintillator resolution. With the resurgence of interest in developing scintillator detectors that have good energy resolution, an improved understanding of nonproportionality has become a crucial matter since it presents the fundamental limit to the achievable resolution. In order to hasten an improved understanding of scintillator nonproportionality, we have constructed an instrument referred to as SLYNCI (Scintillator Light Yield Nonproportionality Compton Instrument). This is a second-generation instrument to the original device developed by Valentine and coworkers, wherein several new principles of operation have served to increase the data rate by an order of magnitude as discussed in detail in References. In the present article, the focus is on a theory to describe the measured electron response, which is the light yield as a function of the electron energy. To do this, we account for transport of carriers and excitons, in terms of how they transfer their energy to the activators with competition from nonradiative decay pathways. This work builds on the original work of Murray and coworkers, and on the understanding of excitons. We then provide a new theoretical framework from which the nonproportionality data is reduced to a measure of the degradation in resolution. We have utilized data obtained from SLYNCI to obtain accurate nonproportionality data on several scintillators, and have developed a theory to describe the carrier dynamics to fit the data for the light yield versus electron energy.

  17. Hearing Screening

    ERIC Educational Resources Information Center

    Johnson-Curiskis, Nanette

    2012-01-01

    Hearing levels are threatened by modern life--headsets for music, rock concerts, traffic noises, etc. It is crucial we know our hearing levels so that we can draw attention to potential problems. This exercise requires that students receive a hearing screening for their benefit as well as for making the connection of hearing to listening.

  18. Development of a fast radiation detector based on barium fluoride scintillation crystal

    SciTech Connect

    Han, Hetong; School of Nuclear Science and Technology, Xi'an Jiaotong University, XJTU, Xi'an 710049, Shaanxi ; Zhang, Zichuan; Weng, Xiufeng; Liu, Junhong; Zhang, Kan; Li, Gang; Guan, Xingyin

    2013-07-15

    Barium fluoride (BaF{sub 2}) is an inorganic scintillation material used for the detection of X/gamma radiation due to its relatively high density, equivalent atomic number, radiation hardness, and high luminescence. BaF{sub 2} has a potential capacity to be used in gamma ray timing experiments due to the prompt decay emission components. It is known that the light output from BaF{sub 2} has three decay components: two prompt of those at approximately 195 nm and 220 nm with a decay constant around 600-800 ps and a more intense, slow component at approximately 310 nm with a decay constant around 630 ns which hinders fast timing experiments. We report here the development of a fast radiation detector based on a BaF{sub 2} scintillation crystal employing a special optical filter device, a multiple reflection multi-path ultraviolet region short-wavelength pass light guides (MRMP-short pass filter) by using selective reflection technique, for which the intensity of the slow component is reduced to less than 1%. The methods used for this study provide a novel way to design radiation detector by utilizing scintillation crystal with several emission bands.

  19. Development of an Ultra-Low Background Liquid Scintillation Counter for Trace Level Analysis

    SciTech Connect

    Erchinger, Jennifer L.; Orrell, John L.; Aalseth, Craig E.; Bernacki, Bruce E.; Douglas, Matthew; Finn, Erin C.; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Panisko, Mark E.; Shaff, Sarah M.; Warren, Glen A.; Wright, Michael E.

    2015-09-01

    Low-level liquid scintillation counting (LSC) has been established as one of the radiation detection techniques useful in elucidating environmental processes and environmental monitoring around nuclear facilities. The Ultra-Low Background Liquid Scintillation Counter (ULB-LSC) under construction in the Shallow Underground Laboratory at Pacific Northwest National Laboratory aims to further reduce the MDAs and/or required sample processing. Through layers of passive shielding in conjunction with an active veto and 30 meters water equivalent overburden, the background reduction is expected to be 10 to 100 times below typical analytic low-background liquid scintillation systems. Simulations have shown an expected background of around 14 counts per day. A novel approach to the light collection will use a coated hollow light guide cut into the inner copper shielding. Demonstration LSC measurements will show low-energy detection, spectral deconvolution, and alpha/beta discrimination capabilities, from trials with standards of tritium, strontium-90, and actinium-227, respectively. An overview of the system design and expected demonstration measurements will emphasize the potential applications of the ULB-LSC in environmental monitoring for treaty verification, reach-back sample analysis, and facility inspections.

  20. Monitoring and Forecasting Ionospheric Scintillation at High Latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Prikryl, P.; Jayachandran, P. T.; Chadwick, R.; Kelly, T.

    2013-12-01

    Ionospheric scintillation (rapid signal amplitude fading and phase fluctuation) poses a threat to reliable and safe operation of modern technology that relies on Global Navigation Satellite Systems (GNSS). Ionospheric scintillation of GNSS signal severely degrades positional accuracy, causes cycle slips leading to loss of lock that affects performance of radio communication and navigation systems. At high latitudes, the scintillation is caused by ionospheric irregularities produced through coupling between solar wind plasma and the magnetosphere. Climatology of GPS scintillation at high latitudes in both hemispheres shows that phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. Solar wind disturbances, in particular the co-rotating interaction regions (CIR) on the leading edge of high-speed streams (HSS) and interplanetary coronal mass ejections (ICME), have been closely correlated with the occurrence of scintillation at high latitudes. These results demonstrated a technique of probabilistic forecast of high-latitude phase scintillation occurrence relative to arrival times of HSS and ICME. The Canadian High Arctic Ionospheric Network (CHAIN) has been monitoring GPS ionospheric scintillation and total electron content (TEC) since November 2007. One-minute amplitude and phase scintillation indices from L1 GPS signals and TEC from L1 and L2 GPS signals are computed from amplitude and phase data sampled at 50 Hz. Since 2012, significant expansion of CHAIN has begun with installation of new receivers, each capable of tracking up to 30 satellites including GLONASS and Galileo. The receivers log the raw phase and amplitude of the signal up to a 100-Hz rate for scintillation measurements. We briefly review observations of ionospheric scintillation and highlight new results from CHAIN, including the climatology of scintillation occurrence, collocation with aurora and HF radar backscatter, correlation with CIRs and ICMEs, and the method of probabilistic forecasting of phase scintillation at high latitudes.

  1. Divalent Europium Doped and Un-doped Calcium Iodide Scintillators: Scintillator Characterization and Single Crystal Growth

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S

    2015-01-01

    The alkaline-earth scintillator, CaI2:Eu2+, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.

  2. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-06-01

    The alkaline-earth scintillator, CaI2:Eu2+, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles-so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.

  3. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  4. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward (Pinole, CA); Bourret-Courchesne, Edith (Berkeley, CA); Weber, Marvin J. (Danville, CA); Klintenberg, Mattias K. (Berkeley, CA)

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  5. Plastic fiber scintillator response to fast neutrons

    SciTech Connect

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  6. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    SciTech Connect

    Cherepy, N J; Kuntz, J D; Roberts, J J; Hurst, T A; Drury, O B; Sanner, R D; Tillotson, T M; Payne, S A

    2008-08-24

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed.

  7. Reflectance of polytetrafluoroethylene for xenon scintillation light

    SciTech Connect

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-15

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region ({lambda}{approx_equal}175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  8. Scintillation detectors of Alborz-I experiment

    NASA Astrophysics Data System (ADS)

    Pezeshkian, Yousef; Bahmanabadi, Mahmud; Abbasian Motlagh, Mehdi; Rezaie, Masume

    2015-02-01

    A new air shower experiment of the Alborz Observatory, Alborz-I, located at the Sharif University of Technology, Iran, will be constructed in near future. An area of about 3040 m2 will be covered by 20 plastic scintillation detectors (each with an area of 5050 cm2). A series of experiments have been performed to optimize the height of light enclosures of the detectors for this array and the results have been compared to an extended code simulation of these detectors. Operational parameters of the detector obtained by this code are cross checked by the Geant4 simulation. There is a good agreement between the extended-code and Geant4 simulations. We also present further discussions on the detector characteristics, which can be applicable for all scintillation detectors with a similar configuration.

  9. Automated liquid-scintillation-vial processor

    SciTech Connect

    Owens, G.D.

    1982-07-01

    The automated vial handler for liquid scintillation counting uncaps, fills, and recaps scintillation vials automatically under microcomputer control. A schematic diagram of the design is included along with a detailed description. The reliability of the vial processor was evaluated over a 3 1/2-month period during which 13,103 samples were processed with 208 processing errors occurring in the first pass. This corresponds to a first pass processing accuracy of >98%. The delivery precision of the apparatus was found to be <+1% for each of the cocktails tested. Of the errors, some were due to caps being overtightened by the sample submitters; however, the majority of the other failures were due to a misalignment of the photocell and light source.

  10. Development of High-Resolution Scintillator Systems

    SciTech Connect

    Larry A. Franks; Warnick J. Kernan

    2007-09-01

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma-rays; however, the largest volume achievable is limited by the thickness of the detector which needs to be a small fraction of the average trapping length for electrons. We report results of using HgI2 crystals to fabricate photocells used in the readout of scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Nuclear response from an HgI2 photocell that was optically matched to a cerium-activated scintillator is presented and discussed. Further improvements can be expected by optimizing the transparent contact technology.

  11. Small inorganic scintillators as neutron detectors

    SciTech Connect

    Bartle, C.M.; Haight, R.C.

    1998-12-01

    Small organic scintillators that exhibit pulse shape differences (PSD) in response to charged particles have been investigated as possible neutron detectors in the energy range from 1 to 200 MeV. Neutrons in this energy range can induce reactions such as (n,p) and (n,alpha) in these scintillators, and the cross sections for these reactions vary with energy. Pulse-height and PSD distributions were measured as a function of neutron energy for small crystals of NaI(Tl) and CsI(Tl) at the LANSCE-WNR pulsed spallation neutron source. PSD information indicating the relative numbers of protons and alphas produced can give information about the neutron spectrum in fast-neutron radiation fields such as those encountered in space exploration.

  12. Small Inorganic Scintillators as Neutron Detectors

    SciTech Connect

    Bartle, C.M.; Haight, R.C.

    1998-05-12

    Small organic scintillators that exhibit pulse shape differences (PSD) in response to charged particles have been investigated as possible neutron detectors in the energy range from 1 to 200 MeV. Neutrons in this energy range can induce reactions such as (n,p) and (n,alpha) in these scintillators, and the cross sections for these reactions vary with energy. Pulse-height and PSD distributions were measured as a function of neutron energy for small crystals of NaI(Tl) and CsI(Tl) at the LANSCE-WNR pulsed spallation neutron source. PSD information indicating the relative numbers of protons and alphas produced can give information about the neutron spectrum in fast-neutron radiation fields such as those encountered in space exploration.

  13. Scintillation noise in widefield radio interferometry

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2015-10-01

    In this paper, we consider random phase fluctuations imposed during wave propagation through a turbulent plasma (e.g. ionosphere) as a source of additional noise in interferometric visibilities. We derive expressions for visibility variance for the wide field of view case (FOV 10) by computing the statistics of Fresnel diffraction from a stochastic plasma, and provide an intuitive understanding. For typical ionospheric conditions (diffractive scale 5-20 km at 150 MHz), we show that the resulting ionospheric `scintillation noise' can be a dominant source of uncertainty at low frequencies (? ? 200 MHz). Consequently, low-frequency widefield radio interferometers must take this source of uncertainty into account in their sensitivity analysis. We also discuss the spatial, temporal, and spectral coherence properties of scintillation noise that determine its magnitude in deep integrations, and influence prospects for its mitigation via calibration or filtering.

  14. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  15. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (? ?175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  16. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  17. Studies of NICADD Extruded Scintillator Strips

    SciTech Connect

    Dychkant, Alexandre; et al.

    2005-03-01

    About four hundred one meter long, 10 cm wide and 5 mm thick extruded scintillating strips were measured at four different points. The results of measurements strip responses to a radioactive source {sup 90}Sr are provided, and details of strip choice, preparation, and method of measurement are included. This work was essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  18. Characteristics of Yerevan High Transparency Scintillators

    SciTech Connect

    Zorn, Carl; Asryan, Gegham; Egiyan, Kim; Tarverdyan, M.; Amaryan, Moscov; Amaryan, Moskov; Demirchyan, Raphael; Stepanyan, Stepan; Burkert, Volker; Sharabian, Youri

    1992-08-01

    Optical transmission, light output and time characteristics are given for long scintillator strips fabricated at the Yerevan Physics Institute using the extrusion method. It is shown that at 45% relative (to anthracene) light output, good transmission (2.5/2.9 m attenuation length with photomultiplier direct readout and 3/3.5 m attenuation length fiber readout) and time characteristics (average decay time 2.8 nsec) were obtained.

  19. Simulating Silicon Photomultiplier Response to Scintillation Light

    PubMed Central

    Jha, Abhinav K.; van Dam, Herman T.; Kupinski, Matthew A.; Clarkson, Eric

    2015-01-01

    The response of a Silicon Photomultiplier (SiPM) to optical signals is affected by many factors including photon-detection efficiency, recovery time, gain, optical crosstalk, afterpulsing, dark count, and detector dead time. Many of these parameters vary with overvoltage and temperature. When used to detect scintillation light, there is a complicated non-linear relationship between the incident light and the response of the SiPM. In this paper, we propose a combined discrete-time discrete-event Monte Carlo (MC) model to simulate SiPM response to scintillation light pulses. Our MC model accounts for all relevant aspects of the SiPM response, some of which were not accounted for in the previous models. We also derive and validate analytic expressions for the single-photoelectron response of the SiPM and the voltage drop across the quenching resistance in the SiPM microcell. These analytic expressions consider the effect of all the circuit elements in the SiPM and accurately simulate the time-variation in overvoltage across the microcells of the SiPM. Consequently, our MC model is able to incorporate the variation of the different SiPM parameters with varying overvoltage. The MC model is compared with measurements on SiPM-based scintillation detectors and with some cases for which the response is known a priori. The model is also used to study the variation in SiPM behavior with SiPM-circuit parameter variations and to predict the response of a SiPM-based detector to various scintillators. PMID:26236040

  20. Nanosecond UV-scintillations in cesium iodide

    SciTech Connect

    Gavrilov, V.; Chernov, S.

    1994-12-31

    Interest in the luminescence of pure CsI is mainly caused by the possible application of this crystal as a scintillator with very good timing parameters. Fast UV-luminescence of CsI has been studied by time resolved luminescent spectroscopy. Experimental data support the conclusion that the high temperature (150--500 K) fast UV-luminescence arises from the trapping of free excitons in sites perturbed by lattice defects.

  1. Improved Neutron Scintillators Based on Nanomaterials

    SciTech Connect

    Dennis Friesel, PhD

    2008-06-30

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd{sub 2}O{sub 3} foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved {sup 6}LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  2. Nanophosphor composite scintillators comprising a polymer matrix

    DOEpatents

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  3. Observations of interplanetary scintillation in China

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jia; Peng, Bo

    2013-07-01

    The Sun affects the Earth in multiple ways. In particular, the material in interplanetary space comes from coronal expansion in the form of solar wind, which is the primary source of the interplanetary medium. Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources. In this paper we will discuss the IPS observations in China.

  4. InI photodetectors for scintillation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shah, Kanai S.; Moy, Larry P.; Zhang, John; Medrick, S.; Olschner, Fred; Squillante, Michael R.

    1992-12-01

    Photoconductive detectors have been developed from a new wide bandgap (E(subscript g) equals 2.01 eV) semiconductor, InI, and these photodetectors are intended for use in scintillation spectroscopy of nuclear radiation. InI single crystals were produced using the Bridgman process and these crystals were characterized by measuring their optical transmission spectrum, micro-hardness, electrical resistivity, and charge transport properties. Photodetectors were fabricated from InI crystal slices by evaporating thin (< 100 angstrom) Pd front contacts, and applying graphite back contacts. These photodetectors showed considerable promise due to their high quantum efficiency (> 60%) in the 300 nm to 600 nm wavelength region and their uniform photo-response over the active detector area. Finally, these photodetectors were coupled to CsI(Tl) scintillator and were successfully tested as spectrometers at room temperature by irradiating the scintillator with 5.5 MeV (alpha) particles ((superscript 241)Am source) and 662 keV (gamma) rays ((superscript 137)Cs source).

  5. Scintillators with potential to supersede lanthanum bromide

    SciTech Connect

    Cherepy, Nerine; Payne, Steven; Aszatlos, Steve; Hull, Giulia; Kuntz, J.; Niedermayr, Tom; Pimputkar, S.; Roberts, J.; Sanner, R.; Tillotson, T.; van Loef, Edger; Wilson, Cody; Shah, Kanai; Roy, U.; Hawrami, R.; Burger, Arnold; Boatner, Lynn; Choong, Woon-Seng; Moses, William

    2009-06-01

    New scintillators for high-resolution gamma ray spectroscopy have been identified, grown and characterized. Our development efforts have focused on two classes of high light yield materials: Europium-doped alkaline earth halides and Cerium-doped garnets. Of the halide single crystals we have grown by the Bridgman method - SrI{sub 2}, CaI{sub 2}, SrBr{sub 2}, BaI{sub 2} and BaBr{sub 2} - SrI{sub 2} is the most promising. SrI{sub 2}(Eu) emits into the Eu{sup 2+} band, centered at 435 nm, with a decay time of 1.2 {micro}s and a light yield of up to 115,000 photons/MeV. It offers energy resolution better than 3% FWHM at 662 keV, and exhibits excellent light yield proportionality. Transparent ceramics fabrication allows production of Gadolinium- and Terbium-based garnets which are not growable by melt techniques due to phase instabilities. While scintillation light yields of Cerium-doped ceramic garnets are high, light yield non-proportionality and slow decay components appear to limit their prospects for high energy resolution. We are developing an understanding of the mechanisms underlying energy dependent scintillation light yield non-proportionality and how it affects energy resolution. We have also identified aspects of optical design that can be optimized to enhance energy resolution.

  6. Fast inorganic scintillators - status and outlook

    NASA Astrophysics Data System (ADS)

    Novotny, Rainer W.

    2013-06-01

    Scintillation detectors based on inorganic materials represent one of the most widely applied instrumentation techniques in the fields of nuclear and high-energy physics as well as medical or industrial applications. Driven by experimental requirements the research has focused onto a faster response, shorter decay times and higher compactness implementing high-Z ions. The discovery of the fast core-valence luminescence in BaF2, the allowed electric dipole transitions in Ce3+, and the short radiation lengths of BGO and PbWO4 have set important milestones. However, excellent time resolution is affected as well by the density of photoelectrons produced at the early stage of the signal generation and the integral light output. The paper will give a detailed overview of the present status on fast inorganic scintillators, their performance and the theoretical limitations on achievable energy and time resolutions. The results are illustrated by various applications in research. The state of the art scintillator material will be discussed based on new materials such as LaBr3 or LaCl3, which were doped with rare earth ions such as Ce3+-centers to reach decay times between 20 and 40ns, respectively.

  7. Boron-Loaded Silicone Rubber Scintillators

    SciTech Connect

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  8. Scintillation mechanisms in rare earth orthophosphates

    SciTech Connect

    Wojtowicz, A.J.; Wisniewski, D. |; Lempicki, A.

    1994-12-31

    In this Communication we present results of our studies on scintillation properties of rare earth orthophosphates. Despite of the PO{sub 4} group high frequency vibrations, which limit the conversion efficiency in orthophosphate lattices, some of them are very promising, as evidenced by the exceptionally good scintillation properties of LuPO{sub 4}:Ce. We have studied the following orthophosphate crystals: YbPO{sub 4}:Ce, YbPO{sub 4}, and Lu{sub x}Yb{sup 1-x}PO{sub 4}:Ce. Both Ce and Yb ions scintillate (through d-f transition and charge transfer state decay, respectively) but, unfortunately, they also show strong tendency toward mutual quenching. We propose that nonradiative Yb-Ce energy transfer and the nonradiative decay of the (Yb{sup 2+} + Ce{sup 4+}) charge transfer state are responsible for the observed effect. Therefore ytterbium does not provide cheaper substitute for the optically inactive RE ion (lutetium) in the orthophosphate lattice, on the contrary, it has to be carefully avoided whenever a Ce-activation is used.

  9. Interstellar Scintillation of Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Rickett, Barney

    1998-05-01

    Interstellar scintillation (ISS) causes a Galactic seeing problem for radio astronomy. Thus the flux density from a very compact radio source appears to scintillate on a time scale that ranges from days to minutes depending on the wavelength and Galactic path length. I will review the observed variations from various sources, which are among the most compact cores of active galactic nuclei (AGN). An ISS interpretation of the observed variations yields estimates of the source sizes in the range 0.01 to 10 milliarcsec, often much smaller than the resolution from earth-based VLBI. The recognition of such variations as apparent reduces the implied brightness temperature by a factor as large as one million, compared to the extreme values deduced by interpreting the variations as intrinsic. Some such intraday variable sources also exhibit partially correlated variations in their polarized flux and angle. The changes in interstellar Faradya rotation are too slow to cause such variations by many orders of magnitude. I will report on attempts to model the polarized flux variations as due to independent ISS from polarized components with intrinsic polarization structure in the source at a level of tens of microarcseconds. I will also discuss how Frail et al. (Nature, 389, 261, 1997) used interstellar scintillation to estimate the size of the expanding fireball in the radio afterglow of gamma-ray burst 970508.

  10. Pulse height model for deuterated scintillation detectors

    NASA Astrophysics Data System (ADS)

    Wang, Haitang; Enqvist, Andreas

    2015-12-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  11. Broadband Ionospheric Scintillation Measurements from Space

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  12. Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry

    SciTech Connect

    Archambault, Louis; Beddar, A. Sam; Gingras, Luc

    2006-01-15

    With highly conformal radiation therapy techniques such as intensity-modulated radiation therapy, radiosurgery, and tomotherapy becoming more common in clinical practice, the use of these narrow beams requires a higher level of precision in quality assurance and dosimetry. Plastic scintillators with their water equivalence, energy independence, and dose rate linearity have been shown to possess excellent qualities that suit the most complex and demanding radiation therapy treatment plans. The primary disadvantage of plastic scintillators is the presence of Cerenkov radiation generated in the light guide, which results in an undesired stem effect. Several techniques have been proposed to minimize this effect. In this study, we compared three such techniques--background subtraction, simple filtering, and chromatic removal--in terms of reproducibility and dose accuracy as gauges of their ability to remove the Cerenkov stem effect from the dose signal. The dosimeter used in this study comprised a 6-mm{sup 3} plastic scintillating fiber probe, an optical fiber, and a color charge-coupled device camera. The whole system was shown to be linear and the total light collected by the camera was reproducible to within 0.31% for 5-s integration time. Background subtraction and chromatic removal were both found to be suitable for precise dose evaluation, with average absolute dose discrepancies of 0.52% and 0.67%, respectively, from ion chamber values. Background subtraction required two optical fibers, but chromatic removal used only one, thereby preventing possible measurement artifacts when a strong dose gradient was perpendicular to the optical fiber. Our findings showed that a plastic scintillation dosimeter could be made free of the effect of Cerenkov radiation.

  13. Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation.

    PubMed

    Roncali, Emilie; Schmall, Jeffrey P; Viswanath, Varsha; Berg, Eric; Cherry, Simon R

    2014-04-21

    Current developments in positron emission tomography focus on improving timing performance for scanners with time-of-flight (TOF) capability, and incorporating depth-of-interaction (DOI) information. Recent studies have shown that incorporating DOI correction in TOF detectors can improve timing resolution, and that DOI also becomes more important in long axial field-of-view scanners. We have previously reported the development of DOI-encoding detectors using phosphor-coated scintillation crystals; here we study the timing properties of those crystals to assess the feasibility of providing some level of DOI information without significantly degrading the timing performance. We used Monte Carlo simulations to provide a detailed understanding of light transport in phosphor-coated crystals which cannot be fully characterized experimentally. Our simulations used a custom reflectance model based on 3D crystal surface measurements. Lutetium oxyorthosilicate crystals were simulated with a phosphor coating in contact with the scintillator surfaces and an external diffuse reflector (teflon). Light output, energy resolution, and pulse shape showed excellent agreement with experimental data obtained on 3 3 10 mm crystals coupled to a photomultiplier tube. Scintillator intrinsic timing resolution was simulated with head-on and side-on configurations, confirming the trends observed experimentally. These results indicate that the model may be used to predict timing properties in phosphor-coated crystals and guide the coating for optimal DOI resolution/timing performance trade-off for a given crystal geometry. Simulation data suggested that a time stamp generated from early photoelectrons minimizes degradation of the timing resolution, thus making this method potentially more useful for TOF-DOI detectors than our initial experiments suggested. Finally, this approach could easily be extended to the study of timing properties in other scintillation crystals, with a range of treatments and materials attached to the surface. PMID:24694727

  14. Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation

    NASA Astrophysics Data System (ADS)

    Roncali, Emilie; Schmall, Jeffrey P.; Viswanath, Varsha; Berg, Eric; Cherry, Simon R.

    2014-04-01

    Current developments in positron emission tomography focus on improving timing performance for scanners with time-of-flight (TOF) capability, and incorporating depth-of-interaction (DOI) information. Recent studies have shown that incorporating DOI correction in TOF detectors can improve timing resolution, and that DOI also becomes more important in long axial field-of-view scanners. We have previously reported the development of DOI-encoding detectors using phosphor-coated scintillation crystals; here we study the timing properties of those crystals to assess the feasibility of providing some level of DOI information without significantly degrading the timing performance. We used Monte Carlo simulations to provide a detailed understanding of light transport in phosphor-coated crystals which cannot be fully characterized experimentally. Our simulations used a custom reflectance model based on 3D crystal surface measurements. Lutetium oxyorthosilicate crystals were simulated with a phosphor coating in contact with the scintillator surfaces and an external diffuse reflector (teflon). Light output, energy resolution, and pulse shape showed excellent agreement with experimental data obtained on 3 3 10 mm3 crystals coupled to a photomultiplier tube. Scintillator intrinsic timing resolution was simulated with head-on and side-on configurations, confirming the trends observed experimentally. These results indicate that the model may be used to predict timing properties in phosphor-coated crystals and guide the coating for optimal DOI resolution/timing performance trade-off for a given crystal geometry. Simulation data suggested that a time stamp generated from early photoelectrons minimizes degradation of the timing resolution, thus making this method potentially more useful for TOF-DOI detectors than our initial experiments suggested. Finally, this approach could easily be extended to the study of timing properties in other scintillation crystals, with a range of treatments and materials attached to the surface.

  15. Temperature Dependence of Scintillation Properties of Bright Oxide Scintillators for Well-Logging

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Kurosawa, Shunsuke; Kamada, Kei; Takahashi, Hiromitsu; Fukazawa, Yasushi; Nikl, Martin; Chani, Valery

    2013-07-01

    Scintillation characteristics such as the pulse height, energy resolution, and decay time of single crystals of Tl-doped NaI (Tl:NaI), Ce-doped Lu2SiO5 (Ce:LSO), Ce-doped YAlO3 (Ce:YAP), Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG), Pr-doped Lu3Al5O12 (Pr:LuAG), undoped LuAG, and Ce-doped Y3Al5O12 (Ce:YAG) transparent ceramics were compared at 25-150 C to simulate well logging conditions. For increasing temperature, the light output of the scintillators decreased, mostly because of thermal quenching. Among these samples, Pr:LuAG demonstrated the highest scintillation performance at 150 C.

  16. Phase and coherence analysis of VHF scintillation over Christmas Island

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Mannucci, A. J.; Caton, R.

    2014-03-01

    This short paper presents phase and coherence data from the cross-wavelet transform applied on longitudinally separated very high frequency (VHF) equatorial ionospheric scintillation observations over Christmas Island. The phase and coherence analyses were employed on a pair of scintillation observations, namely, the east-looking and west-looking VHF scintillation monitors at Christmas Island. Our analysis includes 3 years of peak season scintillation data from 2008, 2009 (low solar activity), and 2011 (moderate solar activity). In statistically significant and high spectral coherence regions of the cross-wavelet transform, scintillation observations from the east-looking monitor lead those from the west-looking monitor by about 20 to 60 (40 ± 20) min (most frequent lead times). Using several years (seasons and solar cycle) of lead (or lag) and coherence information of the cross-wavelet transform, we envisage construction of a probability model for forecasting scintillation in the nighttime equatorial ionosphere.

  17. Methods for the continuous production of plastic scintillator materials

    DOEpatents

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  18. Vision Screening

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  19. Probing the gamma-scintillation process in semiconductor nanomaterials using ultrafast transient cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Pietryga, Jeffrey M.; Padilha, Lazaro A.; Bae, Wan Ki; Klimov, Victor I.; Schaller, Richard D.

    2013-05-01

    Energy-resolving gamma-ray detectors are of particular interest for the detection of illicit radioactive materials at border crossings and other portals because they offer fast, contactless screening that can discriminate between dangerous and benign materials. Among detector classes, scintillators offer an intriguing balance between cost and performance, but current technologies rely on single-crystal materials that are not scalable to portal-relevant detector sizes. Thus, there is a recognized need for novel, processible, high-performance scintillating materials or composites. Composites based on semiconductor nanocrystal quantum dots (QDs) are of interest because of their potentially high gamma-stopping power, high emission quantum yields, and low-cost solution synthesis and processing. Yet the performance of these and other granular nanomaterials has not met expectations. We suggest that this is due to the general lack of insight into the gamma-to-photons transduction process within these inherently more complex materials, which reduces the development and refinement of candidates to simple trial-and-error. Here, we describe the development of ultrafast transient cathodoluminescence as a unique spectroscopic tool for probing the population of excited states formed within a material during scintillation, and thus determining the major sources of energy loss. Our analysis shows that in the case of CdSe/ZnS core/shell QDs, any efficiency loss due to previously blamed factors of low-stopping power and high reabsorptive losses are likely dwarfed by the losses attributable to efficient, non-radiative Auger recombination. We examine how we reached this conclusion, and how this insight defines the characteristics needed in the next generation of scintillating QD composites.

  20. Long-term scintillation observations of five pulsars at 1540 MHz

    NASA Astrophysics Data System (ADS)

    Wang, N.; Manchester, R. N.; Johnston, S.; Rickett, B.; Zhang, J.; Yusup, A.; Chen, M.

    2005-03-01

    From 2001 January to 2002 June, we monitored PSRs B0329+54, B0823+26, B1929+10, B2020+28 and B2021+51 using the Nanshan 25-m radio telescope of the Urumqi Observatory to study their diffractive interstellar scintillation (DISS). The average interval between observations was about 9d and the observation duration ranged between 2 and 6h depending on the pulsar. Wide variations in the DISS parameters were observed over the 18-month data span. Despite this, the average scintillation velocities are in excellent agreement with the proper motion velocities. The average two-dimensional autocorrelation function for PSR B0329+54 is well described by a thin-screen Kolmogorov model, at least along the time and frequency axes. Observed modulation indices for the DISS time-scale and bandwidth and the pulsar flux density are greater than values predicted for a Kolmogorov spectrum of electron density fluctuations. Correlated variations over times that are long compared to the nominal refractive scintillation time are observed, suggesting that larger scale density fluctuations are important. For these pulsars, the scintillation bandwidth as a function of frequency has a power-law index (~3.6) much less than that expected for Kolmogorov turbulence (~4.4). Sloping fringes are commonly observed in the dynamic spectra, especially for PSR B0329+54. The detected range of fringe slopes are limited by our observing resolution. Our observations are sensitive to larger-scale fringes and hence smaller refractive angles, corresponding to the central part of the scattering disc.

  1. Scintillations and Lvy Flights through the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Boldyrev, Stanislav; Gwinn, Carl

    2003-02-01

    Temporal broadening of pulsar signals results from electron density fluctuations in the interstellar medium that cause the radiation to travel along paths of different lengths. The theory of Gaussian fluctuations predicts that the pulse temporal broadening should scale with the wavelength as ?4 and with the dispersion measure (DM; proportional to the distance to the pulsar) as DM2. However, for large dispersion measures, DM>20pccm-3, the observed scaling is ?4DM4, contradicting the conventional theory. Although the problem has existed for 30 years, there has been no resolution to this paradox. We suggest that scintillations for distant pulsars are caused by non-Gaussian, spatially intermittent density fluctuations with a power-law-like probability distribution. Such a probability distribution does not have a second moment, and therefore the previously applied conventional Fokker-Planck theory does not hold. Instead, we propose to apply the theory of Lvy distributions (so-called Lvy flights). We show that the observed scaling is recovered for large DM if the density differences, ?N, have Lvy distribution decaying as |?N|-5/3. In the thin-screen approximation, the corresponding tail of the time-profile of the arriving signal is estimated to be I(?)~?-4/3.

  2. Transition effect of air shower particles in plastic scintillators

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Maeda, T.; Kameda, T.; Mizushima, K.; Misaki, Y.

    1985-01-01

    The transition effect of air shower particles in the plastic scintillators near the core was measured by scintillators of various thickness. The air showers selected for the measurement were of 10,000. Results obtained are as follows: (1) the multiplication of shower particles in the scintillators is less than 20% for that of 50 mm thickness; (2) dependence of the transition effect on age parameter is not recognized within the experimental errors.

  3. Systematic studies of small scintillators for new sampling calorimeter

    NASA Astrophysics Data System (ADS)

    Jacosalem, E. P.; Iba, S.; Nakajima, N.; Ono, H.; Sanchez, A. L. C.; Bacala, A. M.; Miyata, H.

    2007-12-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R&D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated ^{90}Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 40 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness.

  4. Slavery Guide.

    ERIC Educational Resources Information Center

    Minneapolis Public Schools, Minn.

    This teachers guide outlines two major objectives for this eighth grade social studies unit: 1) student discovery, practice, and refinement of historical inquiry skills based on primary source work; and, 2) understanding of the concepts and content about slavery as a social institution. The guide also specifies behavioral objectives, teaching

  5. Scintillation-induced Intermittency in SETI

    NASA Astrophysics Data System (ADS)

    Cordes, James M.; Lazio, Joseph W.; Sagan, Carl

    1997-10-01

    We use scattering theory, simulations, and empirical constraints on interstellar scintillations to discuss the intermittency of radio signals from extraterrestrial intelligence (ETI). The number of ETI sources in the Galaxy has a direct influence on the expected dynamic range of fluxes in a survey, through inverse square-law effects and, equally importantly, by the number of independent statistical trials made on modulations caused by interstellar scintillations. We demonstrate that scintillations are very likely to allow initial detections of narrowband signals, while making redetections extremely improbable, a result that follows from the skewed, exponential distribution of the modulation. This conclusion holds for relatively distant sources but does not apply to radio SETI toward nearby stars (<~100 pc). Recent SETI has found nonrepeating, narrowband events that are largely unexplained. We consider three models in order to assess these events and to analyze large surveys in general: (model I) radiometer noise fluctuations; (model II) a population of constant Galactic sources that undergo deep fading and amplification due to interstellar scintillation, consistent with ETI transmissions; and (model III) real, transient signals (or hardware errors) of either terrestrial or extraterrestrial origin. We derive likelihood and Bayesian tests of the models for individual events and globally on entire surveys. Applying them to The Planetary Society/Harvard META data, we find that models II and III are both highly preferred to model I, but that models II and III are about equally likely. In the context of model II, the likelihood analysis indicates that candidate events above threshold (~32 ?) are combinations of large amplitude noise fluctuations and scintillation gains, making it highly probable that events seen once will only very rarely be seen again. Ruling out model II in favor of model III is difficult--to do so, many more reobservations (e.g., thousands) are needed than were conducted in META (hundreds) or the reobservation threshold must be much lower than was used in META. We cannot, therefore, rule out the possibility that META events are real, intrinsically steady ETI signals. Our formalism can be used to analyze any SETI program. We estimate the number of reobservations required to rule out model II in favor of model III, taking into account that reobservations made promptly sample the same scintillation gain as in the original detection, while delayed reobservations sample a decorrelated scintillation modulation. The required number is a strong function of the thresholds used in the original survey and in reobservations. We assess optimal methods for applying statistical tests in future SETI programs that use multiple site and multiple beam observations as well as single site observations. We recommend that results be recorded on many more events than have been made to date. In particular, we suggest that surveys use thresholds that are far below the false-alarm threshold that is usually set to yield a small number of noise-induced ``detections'' in a massive survey. Instead, large numbers of events should be recorded in order to (1) demonstrate that background noise conforms to the distribution expected for it; and (2) investigate departures from the expected noise distribution as due to interference or to celestial signals. In this way, celestial signals can be investigated at levels much smaller than the false-alarm threshold. The threshold level for archiving candidate intensities and their corresponding sky positions is best defined in terms of the recording and computational technology that is available at a cost commensurate with other survey costs.

  6. RADTRAN 5 user guide.

    SciTech Connect

    Kanipe, Frances L.; Neuhauser, Karen Sieglinde

    2003-07-01

    This User Guide for the RADTRAN 5 computer code for transportation risk analysis describes basic risk concepts and provides the user with step-by-step directions for creating input files by means of either the RADDOG input file generator software or a text editor. It also contains information on how to interpret RADTRAN 5 output, how to obtain and use several types of important input data, and how to select appropriate analysis methods. Appendices include a glossary of terms, a listing of error messages, data-plotting information, images of RADDOG screens, and a table of all data in the internal radionuclide library.

  7. Composite solid-state scintillators for neutron detection

    DOEpatents

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  8. Chaotic behavior of ionospheric turbulence from scintillation measurements

    SciTech Connect

    Bhattacharyya, A. )

    1990-05-01

    Ionospheric amplitude and phase scintillation data have been analyzed to estimate the information dimension associated with the attractor of the system. For weak scintillations, both amplitude and phase data yield identical results which demonstrate that spatial fluctuations of electron density in the ionosphere may be characterized by a few degrees of freedom. Stronger scintillations are attributed to steepened density irregularities which cause focusing of the incident radio wave. This results in the amplitude scintillations exhibiting higher dimensional chaos but spatial fluctuations in ionospheric density still involve low dimensional chaos.

  9. Scintillation near the F-layer trough over Northern Europe

    SciTech Connect

    Kersley, L.; Pryse, S.E.; Russell, C.D.

    1990-05-03

    Results are presented of scintillation observations made during a two and a half year period at Lerwick in the Shetland Islands using more than 19000 passes of NNSS satellites. Examples of scintillation morphology, in the region near the scintillation boundary and the F-layer trough, for both amplitude and phase are discussed using exceedence levels for the S sub 4 and sigma sub psi indices respectively. The equatorwards advancement of the scintillation boundary in response to enhanced solar activity during the increasing phase of the solar cycle is shown to be a dominant feature in the observations.

  10. Plasmonic light yield enhancement of a liquid scintillator

    SciTech Connect

    Bignell, Lindsey J.; Jackson, Timothy W.; Mume, Eskender; Center of Excellence in Anti-matter Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra ; Lee, George P.

    2013-05-27

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  11. Multifrequency equatorial ionospheric scintillations in American and Indian zones

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Aarons, J.; Whitney, H. E.; Mullen, J. P.; Pantoja, J.; Deshpande, M. R.; Vats, H. O.; Chandra, H.; Davies, K.

    1980-01-01

    Amplitude scintillations of 40/41, 140 and 360 MHz transmissions recorded at Huancayo (phase I) and at Ootacamund (phase II) of the ATS-6 program are compared. The scintillations were found to be strongest between 20 and 24 hr LT with another peak around midday. The daytime scintillations do not show a significant seasonal variation at either of these stations. The nighttime scintillations were maximum during December solstices at Huancayo and during equinoxes at Ootacamund and suggested to be due to non-q type of sporadic E following the occurrence of counter-electrojet.

  12. Thermostable cocktail for the liquid scintillation counting of heterogeneous media

    SciTech Connect

    Noble, R.C.; Shand, J.H.; Wagstaff, H.F.

    1982-05-01

    Considerable analytical errors arise in the liquid scintillation counting of heterogeneous media as a consequence of gel instability. With large sample numbers, a major causative factor of this instability is temperature changes during the counting period. An emulsifier-scintillation cocktail has been designed to provide stable counting conditions for heterogeneous media over a temperature range of 10-30/sup 0/C, i.e., the wide range of temperature likely to be encountered in liquid scintillation counters lacking sample cooling facilities. A comparison was made with a conventional commercially available emulsifier-scintillator.

  13. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. US Department of Homeland Security.

  14. Phase and coherence of longitudinally separated equatorial ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Mannucci, A. J.

    2013-12-01

    This paper presents the first calculation of phase and coherence of cross-wavelet transform applied on longitudinally separated VHF and L-band equatorial ionospheric scintillation. The cross-wavelet analysis has utilized scintillation observations made over equatorial South America and Christmas Island. Part of the results of this study has been reported recently in the Geophysical Research Letters by Shume and Mannucci (2013). The phase and coherence analysis were employed on pairs of scintillation observations separated by longitudes thereby to develop VHF and L-band scintillation (and equatorial spread F) forecast tools west of observation sites.

  15. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  16. Quadruple screen test

    MedlinePLUS

    ... screen; Multiple marker screening; AFP plus; Triple screen test; AFP maternal; MSAFP; 4-marker screen ... This test is most often done between the 15th and 22nd weeks of the pregnancy. It is most accurate ...

  17. Fundamental study of inorganic-organic hybrid scintillator using Pr:Lu3Al5O12 and plastic scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Kurosawa, Shunsuke; Yokota, Yuui; Yanagida, Takayuki; Nikl, Martin; Yoshikawa, Akira

    2014-01-01

    Read out test of inorganic-organic hybrid scintillator; Pr:LuAG single crystal covered with plastic scintillator BC-499 is demonstrated. Emission peaks of the hybrid scintillator was observed around 430 nm, which suit to the sensitive wavelength of photomultiplier tube (PMT). The Pr:LuAG sample coated with BC-499 showed the better light output than the that of Pr:LuAG itself. Light output was increased up to 30% sing PMT (Hamamatsu R9800). Decay curve of the hybrid scintillator was also measured and successfully modeled. Corporation.

  18. HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations

    SciTech Connect

    Alfred, F.

    1982-01-01

    HF-waves incident on an overdense (HF-frequency < penetration frequency) ionosphere are known to produce large scale electron density irregularities. It is predicted that similar irregularities are formed during underdense HF-modification. The propagation of UHF radio waves originating from radio stars will be affected by such irregularities in the ionosphere. The interest in a scintillation experiment is twofold. One may obtain information on the electron density irregularies and one may learn about the propagation of radio waves through such a perturbed medium. A thin screen (diffractive) theory is derived which allows to draw conclusons on the electron density irregularities from the intensity fluctuations measured on the ground if the phase perturbations are much less than one radian. Since radio stars suitable for scintillation measurements at UHF are very faint an antenna with a large collection area is required. The observations reported in this dissertation were performed with the 300m diameter spherical reflector of the Arecibo Observatory. Successful observations were performed at 430 MHz and at 1400 MHz. Intensity fluctuations at such high frequencies measured with a large antenna suffer severe filtering in the thin phase screen regime. The theory presented in this dissertation includes these filtering effects. Many observations agree with the predictions of that theory. Some observations indicate that refraction effects have to be included to explain the data. HF-induced electron density irregularities were only observed during overdense heating.

  19. A model for the secondary scintillation pulse shape from a gas proportional scintillation counter

    NASA Astrophysics Data System (ADS)

    Kazkaz, K.; Joshi, T. H.

    2016-03-01

    Proportional scintillation counters (PSCs), both single- and dual-phase, can measure the scintillation (S1) and ionization (S2) channels from particle interactions within the detector volume. The signal obtained from these detectors depends first on the physics of the medium (the initial scintillation and ionization), and second how the physics of the detector manipulates the resulting photons and liberated electrons. In this paper we develop a model of the detector physics that incorporates event topology, detector geometry, electric field configuration, purity, optical properties of components, and wavelength shifters. We present an analytic form of the model, which allows for general study of detector design and operation, and a Monte Carlo model which enables a more detailed exploration of S2 events. This model may be used to study systematic effects in current detectors such as energy and position reconstruction, pulse shape discrimination, event topology, dead time calculations, purity, and electric field uniformity. We present a comparison of this model with experimental data collected with an argon gas proportional scintillation counter (GPSC), operated at 20 C and 1 bar, and irradiated with an internal, collimated 55Fe source. Additionally we discuss how the model may be incorporated in Monte Carlo simulations of both GPSCs and dual-phase detectors, increasing the reliability of the simulation results and allowing for tests of the experimental data analysis algorithms.

  20. Application of refractive scintillation theory to radio transmission through the ionosphere and the solar wind, and to reflection from a rough ocean

    NASA Astrophysics Data System (ADS)

    Booker, H. G.

    1981-11-01

    The theory of diffractive scattering by small-scale irregularities is combined with the results of Booker and MajidiAhi (1981) concerning refractive scattering by large-scale irregularities in a phase-changing screen, in a study of three intensity scintillation phenomena: (1) the reflection of radio and optical waves from an ocean surface disturbed by a spectrum of water waves; (2) the scintillation of VHF, UHF and SHF radio waves traversing the ionospheric F-region; and (3) the scintillation of the radio waves mentioned while traversing the solar wind. Spectral diagrams are drawn to show how the outer, inner, Fresnel, focal, lens and peak scales vary with such relevant parameters as electromagnetic wave-frequency for the ocean, RMS fractional fluctuation of ionization density for the ionosphere, and distance of closest approach to the sun for the solar wind.

  1. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or ? rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm10 cm10 cm cube and a 10-cm diameter10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted ? background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were used to investigate how the neutron beam and accelerator background environment affected the detector response. We find relatively good agreement between our results and the modeling; however, the observed response could not be fully accounted for due to events with pulse pile up, thus leading to contamination of the neutron PSD selected events.

  2. Li2Se as a Neutron Scintillator

    DOE PAGESBeta

    Du, Mao-Hua; Shi, Hongliang; Singh, David J.

    2015-06-23

    We show that Li2Se:Te is a potential neutron scintillator material based on density functional calculations. Li2Se exhibits a number of properties favorable for efficient neutron detection, such as a high Li concentration for neutron absorption, a small effective atomic mass and a low density for reduced sensitivity to background gamma rays, and a small band gap for a high light yield. Our calculations show that Te doping should lead to the formation of deep acceptor complex VLi-TeSe, which can facilitate efficient light emission, similar to the emission activation in Te doped ZnSe.

  3. Fundamental Limits of Scintillation Detector Timing Precision

    PubMed Central

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-01-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm 3 mm 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A?1/2 more than any other factor, we tabulated the parameter B, where R = BA?1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons/ns. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons/ns. PMID:24874216

  4. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  5. Fundamental limits of scintillation detector timing precision.

    PubMed

    Derenzo, Stephen E; Choong, Woon-Seng; Moses, William W

    2014-07-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm 3 mm 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A(-1/2) more than any other factor, we tabulated the parameter B, where R = BA(-1/2). An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons ns(-1). A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons ns(-1). PMID:24874216

  6. Fundamental limits of scintillation detector timing precision

    NASA Astrophysics Data System (ADS)

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-07-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm 3 mm 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10?000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A-1/2 more than any other factor, we tabulated the parameter B, where R = BA-1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10?000 photoelectrons ns-1. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10?000 photoelectrons ns-1.

  7. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  8. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGESBeta

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  9. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; Dejongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.; Scene Collaboration

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V /cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V /cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from Krm83 internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  10. Medication Guide

    MedlinePLUS

    ... to the disease. Read more » Alternative Medicine Eye Drop Tips Financial Assistance Find a Doctor Glaucoma Surgery Living With Glaucoma Low Vision Resources Medication Guide Resources on the Web » See All Articles Help the Cause Glaucoma affects ...

  11. Digital breast tomosynthesis (3D-mammography) screening: A pictorial review of screen-detected cancers and false recalls attributed to tomosynthesis in prospective screening trials.

    PubMed

    Houssami, Nehmat; Lång, Kristina; Bernardi, Daniela; Tagliafico, Alberto; Zackrisson, Sophia; Skaane, Per

    2016-04-01

    This pictorial review highlights cancers detected only at tomosynthesis screening and screens falsely recalled in the course of breast tomosynthesis screening, illustrating both true-positive (TP) and false-positive (FP) detection attributed to tomosynthesis. Images and descriptive data were used to characterise cases of screen-detection with tomosynthesis, sourced from prospective screening trials that performed standard (2D) digital mammography (DM) and tomosynthesis (3D-mammography) in the same screening participants. Exemplar cases from four trials highlight common themes of relevance to screening practice including: the type of lesions frequently made more conspicuous or perceptible by tomosynthesis (spiculated masses, and architectural distortions); the histologic findings (both TP and FP) of tomosynthesis-only detection; and the need to extend breast work-up protocols (additional imaging including ultrasound and MRI, and tomosynthesis-guided biopsy) if tomosynthesis is adopted for primary screening. PMID:27017251

  12. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  13. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  14. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  15. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  16. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  17. Engineering Electronic Band Structure for New Elpasolite Scintillators

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua; Biswas, Koushik; Singh, David

    2012-02-01

    The utilization of scintillator materials is one of the primary methods for radiation detection. Elpasolites are a large family of quaternary halides that have recently attracted considerable interest for their potential applications as ?-ray and neutron scintillators. A large number (on the order of 10^3) of different chemical compositions exist in the elpasolite family of compounds. This wide range of compositions offers numerous opportunities for fine-tuning the material chemistry to target specific scintillation properties, but they also pose significant challenges in identifying the most promising ones. Many elpasolite scintillator materials currently under development suffer from low light output and long scintillation decay time. The low light output is partially due to a large band gap while the long scintillation decay time is a result of the slow carrier transport to Ce impurities, where carriers recombine to emit photons. We suggest that these problems may be mitigated by optimizing the band gap and carrier mobility by selecting constituent elements of proper electronegativity. For example, cations with lower electronegativity may lower the conduction band and increase the conduction band dispersion simultaneously, resulting in higher light output and faster scintillation. We demonstrate by first-principles calculations that the strategy of manipulating electronegativity can lead to a number of new elpasolite compounds that are potentially brighter and faster scintillators.

  18. Statistical characteristics of low-latitude ionospheric scintillation over China

    NASA Astrophysics Data System (ADS)

    Liu, Kangkang; Li, Guozhu; Ning, Baiqi; Hu, Lianhuan; Li, Hongke

    2015-03-01

    The Global Positioning System (GPS) L-band ionospheric scintillation produced by electron density irregularities in the ionospheric E- and F-regions, is mainly a low- and high-latitude phenomenon. In this study, the statistical behavior of GPS ionospheric scintillation over a Chinese low-latitude station Sanya (18.3N, 109.6E; dip lat: 12.8N) has been investigated. A detailed study on the seasonal and solar activity dependence of scintillation occurrence during July 2004-December 2012 show that the amplitude scintillation pattern, with a maximum occurrence during equinox of solar maximum, agrees with plasma bubble observations by in situ satellites in this longitude. A few daytime periodic scintillation events are found during June solstice months of solar minimum. Interestingly, a significant equinoctial asymmetry of scintillation onset time is found in 2011-2012. The initiation of scintillation during September-October is on average earlier than that of March-April about 25 min. Meanwhile, the zonal drifts of irregularities estimated using two spatially separated GPS receivers over Sanya show a similar behavior during the two equinoxes, slowly decreasing from 150 m/s at post-sunset to 50 m/s near midnight. The possible mechanisms responsible for the occurrence characteristics of GPS scintillation over Sanya, and relevant aspects of the zonal drifts of the irregularities are discussed.

  19. Statistics of ionospheric scintillation occurrence over European high latitudes

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Aquino, M.

    2014-12-01

    Rapid fluctuation in the amplitude and phase of transionospheric radio signals caused by small scale ionospheric plasma density irregularities is known as scintillation. Over the high latitudes, irregularities causing scintillation are associated with large scale plasma structures and scintillation occurrence is mainly enhanced during geomagnetic storms. This paper presents a statistical analysis of scintillation occurrence on GPS L1C/A signal at a high latitude station located in Bronnoysund (geographic latitude 65.5N, geographic longitude 12.2E; corrected geomagnetic (CGM) latitude 62.77N), Norway, during the periods around the peaks of solar cycles 23 (2002-2003) and 24 (2011-2013). The analysis revealed that the scintillation occurrence at Bronnoysund during both the solar maximum periods maximises close to the midnight magnetic local time (MLT) sector. A higher occurrence of scintillation is observed on geomagnetically active days during both the solar maximum periods. The seasonal pattern of scintillation occurrence indicated peaks during the summer and equinoctial months. A comparison with the interplanetary magnetic field (IMF) components By and Bz showed an association of scintillation occurrence with the southward IMF Bz conditions.

  20. Wavelet-based analogous phase scintillation index for high latitudes

    NASA Astrophysics Data System (ADS)

    Ahmed, A.; Tiwari, R.; Strangeways, H. J.; Dlay, S.; Johnsen, M. G.

    2015-08-01

    The Global Positioning System (GPS) performance at high latitudes can be severely affected by the ionospheric scintillation due to the presence of small-scale time-varying electron density irregularities. In this paper, an improved analogous phase scintillation index derived using the wavelet-transform-based filtering technique is presented to represent the effects of scintillation regionally at European high latitudes. The improved analogous phase index is then compared with the original analogous phase index and the phase scintillation index for performance comparison using 1 year of data from Trondheim, Norway (63.41N, 10.4E). This index provides samples at a 1 min rate using raw total electron content (TEC) data at 1 Hz for the prediction of phase scintillation compared to the scintillation monitoring receivers (such as NovAtel Global Navigation Satellite Systems Ionospheric Scintillation and TEC Monitor receivers) which operate at 50 Hz rate and are thus rather computationally intensive. The estimation of phase scintillation effects using high sample rate data makes the improved analogous phase index a suitable candidate which can be used in regional geodetic dual-frequency-based GPS receivers to efficiently update the tracking loop parameters based on tracking jitter variance.

  1. Problems in data treatment for ionospheric scintillation measurements

    NASA Astrophysics Data System (ADS)

    Forte, B.; Radicella, S. M.

    2002-12-01

    Ionospheric scintillation data detrending is reviewed in this paper. The attention is focused on satellite to ground links (mainly GPS) data. The problem of a fixed ("frozen") cutoff frequency is pointed out. A possible explanation of the presence of "phase without amplitude" scintillations is given as a result of erroneous data detrending.

  2. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  3. A study of GPS ionospheric scintillations observed at Guilin

    NASA Astrophysics Data System (ADS)

    Zou, Yuhua; Wang, Dongli

    2009-12-01

    The occurrence of strong ionospheric scintillations with S4>=0.2 was studied using global positioning system (GPS) measurements at Guilin (25.29N, 110.33E; geomagnetic: 15.04N, 181.98E), a station located near the northern crest of equatorial anomaly in China. The results are presented for data collected from January 2007 to December 2008. The results show that amplitude scintillations occurred only during the first five months of the considered years. Nighttime amplitude scintillations, observed mainly in the south of Guilin, always occurred with phase scintillations, total electron content (TEC) depletions, and Rate Of change of TEC (ROT) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations usually occurred in most of the azimuth directions. GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively.

  4. Purification of KamLAND-Zen liquid scintillator

    SciTech Connect

    Ikeda, Haruo

    2013-08-08

    KamLAND-Zen is neutrino-less double-beta decay search experiment using enriched 300 kg of {sup 136}Xe dissolved in pure liquid scintillator. This report is purification work of liquid scintillator for KamLAND-Zen experiment before installation in the inner-balloon and background rejection processes after installation.

  5. Performance comparison of scintillators for alpha particle detectors

    NASA Astrophysics Data System (ADS)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  6. Note: Absolute calibration of two DRZ phosphor screens using ultrashort electron bunch.

    PubMed

    Wu, Y C; Zhu, B; Dong, K G; Yan, Y H; Gu, Y Q

    2012-02-01

    This article gives the absolute calibration of two types phosphor screens (DRZ) that were used to detect and characterize electron bunches driven by laser-plasma accelerator. The test was performed with picoseconds electron bunch at a radio frequency linear electron accelerator in Tsinghua University. The photons emitted from DRZ screens showed good linear responses to the charge of incident electron bunch and cosine angular distribution in space. An energy conversional efficiency of effective scintillant matter was also calculated. PMID:22380135

  7. Note: Absolute calibration of two DRZ phosphor screens using ultrashort electron bunch

    SciTech Connect

    Wu, Y. C.; Zhu, B.; Dong, K. G.; Yan, Y. H.; Gu, Y. Q.

    2012-02-15

    This article gives the absolute calibration of two types phosphor screens (DRZ) that were used to detect and characterize electron bunches driven by laser-plasma accelerator. The test was performed with picoseconds electron bunch at a radio frequency linear electron accelerator in Tsinghua University. The photons emitted from DRZ screens showed good linear responses to the charge of incident electron bunch and cosine angular distribution in space. An energy conversional efficiency of effective scintillant matter was also calculated.

  8. Monte Carlo calculation of the spatial response (Modulated Transfer Function) of a scintillation flat panel and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Juste, Beln; Mir, Rafael; Monasor, Paula; Verd, Gumersindo

    2015-11-01

    Phosphor screens are commonly used in many X-ray imaging applications. The design and optimization of these detectors can be achieved using Monte Carlo codes to simulate radiation transport in scintillation materials and to improve the spatial response. This work presents an exhaustive procedure to measure the spatial resolution of a scintillation flat panel image and to evaluate the agreement with data obtained by simulation. To evaluate the spatial response we have used the Modulated Transfer Function (MTF) parameter. According to this, we have obtained the Line Spread Function (LSF) of the system since the Fourier Transform (FT) of the LSF gives the MTF. The experimental images were carried out using a medical X-ray tube (Toshiba E7299X) and a flat panel (Hammamatsu C9312SK). Measurements were based on the slit methodology experimental implementation, which measures the response of the system to a line. LSF measurements have been performed using a 0.2 mm wide lead slit superimposed over the flat panel. The detector screen was modelled with MCNP (version 6) Monte Carlo simulation code in order to analyze the effect of the acquisition setup configuration and to compare the response of scintillator screens with the experimental results. MCNP6 offers the possibility of studying the optical physics parameters (optical scattering and absorption coefficients) that occur in the phosphor screen. The study has been tested for different X-ray tube voltages, from 100 to 140 kV. An acceptable convergence between the MTF results obtained with MCNP6 and the experimental measurements have been obtained.

  9. Bismuth germanate scintillators: Applications in nuclear safeguards and health physics

    NASA Astrophysics Data System (ADS)

    Moss, C. E.; Dowdy, E. J.; Lucas, M. C.

    1986-01-01

    Bismuth germanate (BGO) scintillators are preferable to NaI(Tl) scintillators or germanium detectors for some applications. We describe two systems based on BGO scintillators for applications in nuclear safeguards and health physics. The first system, which consists of eight scintillators and a computer-based data acquisition system, is very efficient. The second, which consists of one scintillator and a small analyzer, is less efficient but portable. A computer code that uses measured response functions and photopeak efficiencies, unfolds the BGO distributions measured with these systems to determine gamma-ray flux spectra and dose rates. One application of these systems is the accurate determination of flux spectra and dose rates from containers of uranium or plutonium. A second application determined these quantities from a replica of Little Boy, the device exploded over Hiroshima.

  10. Ionospheric irregularities causing scintillation of GHz frequency radio signals

    NASA Technical Reports Server (NTRS)

    Wernik, A. W.; Liu, C. H.

    1974-01-01

    Consideration of the recently observed phenomenon of scintillation of satellite signals at GHz frequency range. Based on the scintillation data and results from in situ measurements, several ionospheric irregularity models with different power spectra are studied. Scintillation index is computed for the various models and compared with observed results. Both magnitude and frequency dependence of the scintillation index are investigated. It is found that a thick irregularity slab of the order of 200 km with an electron density fluctuation of about 20 per cent of its background value and with a nonmonotonic power spectrum may account for the maximum observed values of the scintillation index as well as its frequency dependence. Some future observations and measurements are suggested.

  11. Comparison of tropospheric scintillation prediction models of the Indonesian climate

    NASA Astrophysics Data System (ADS)

    Chen, Cheng Yee; Singh, Mandeep Jit

    2014-12-01

    Tropospheric scintillation is a phenomenon that will cause signal degradation in satellite communication with low fade margin. Few studies of scintillation have been conducted in tropical regions. To analyze tropospheric scintillation, we obtain data from a satellite link installed at Bandung, Indonesia, at an elevation angle of 64.7 and a frequency of 12.247 GHz from 1999 to 2000. The data are processed and compared with the predictions of several well-known scintillation prediction models. From the analysis, we found that the ITU-R model gives the lowest error rate when predicting the scintillation intensity for fade at 4.68%. However, the model should be further tested using data from higher-frequency bands, such as the K and Ka bands, to verify the accuracy of the model.

  12. Measurement of ortho-positronium properties in liquid scintillators

    SciTech Connect

    Perasso, S.; Franco, D.; Tonazzo, A.; Consolati, G.; Hans, S.; Yeh, M.; Jollet, C.; Meregaglia, A.

    2013-08-08

    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.

  13. Screening for cardiovascular disease before kidney transplantation.

    PubMed

    Palepu, Sneha; Prasad, G V Ramesh

    2015-12-24

    Pre-kidney transplant cardiac screening has garnered particular attention from guideline committees as an approach to improving post-transplant success. Screening serves two major purposes: To more accurately inform transplant candidates of their risk for a cardiac event before and after the transplant, thereby informing decisions about proceeding with transplantation, and to guide pre-transplant management so that post-transplant success can be maximized. Transplant candidates on dialysis are more likely to be screened for coronary artery disease than those not being considered for transplantation. Thorough history and physical examination taking, resting electrocardiography and echocardiography, exercise stress testing, myocardial perfusion scintigraphy, dobutamine stress echocardiography, cardiac computed tomography, cardiac biomarker measurement, and cardiac magnetic resonance imaging all play contributory roles towards screening for cardiovascular disease before kidney transplantation. In this review, the importance of each of these screening procedures for both coronary artery disease and other forms of cardiac disease are discussed. PMID:26722655

  14. Screening for cardiovascular disease before kidney transplantation

    PubMed Central

    Palepu, Sneha; Prasad, G V Ramesh

    2015-01-01

    Pre-kidney transplant cardiac screening has garnered particular attention from guideline committees as an approach to improving post-transplant success. Screening serves two major purposes: To more accurately inform transplant candidates of their risk for a cardiac event before and after the transplant, thereby informing decisions about proceeding with transplantation, and to guide pre-transplant management so that post-transplant success can be maximized. Transplant candidates on dialysis are more likely to be screened for coronary artery disease than those not being considered for transplantation. Thorough history and physical examination taking, resting electrocardiography and echocardiography, exercise stress testing, myocardial perfusion scintigraphy, dobutamine stress echocardiography, cardiac computed tomography, cardiac biomarker measurement, and cardiac magnetic resonance imaging all play contributory roles towards screening for cardiovascular disease before kidney transplantation. In this review, the importance of each of these screening procedures for both coronary artery disease and other forms of cardiac disease are discussed. PMID:26722655

  15. Newborn Screening

    PubMed Central

    Pitt, James J

    2010-01-01

    Early detection of many disorders, mainly inherited, is feasible with population-wide analysis of newborn dried blood spot samples. Phenylketonuria was the prototype disorder for newborn screening (NBS) and early dietary treatment has resulted in vastly improved outcomes for this disorder. Testing for primary hypothyroidism and cystic fibrosis (CF) was later added to NBS programs following the development of robust immunoassays and molecular testing. Current CF testing usually relies on a combined immunoreactive trypsin/mutation detection strategy. Multiplex testing for approximately 25 inborn errors of metabolism using tandem mass spectrometry is a relatively recent addition to NBS. The simultaneous introduction of many disorders has caused some re-evaluation of the traditional guidelines for NBS, because very rare disorders or disorders without good treatments can be included with minimal effort. NBS tests for many other disorders have been developed, but these are less uniformly applied or are currently considered developmental. This review focuses on Australasian NBS practices. PMID:20498829

  16. Characterization of cerium fluoride nanocomposite scintillators

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Brown, Leif O; Couture, Aaron J; Mckigney, Edward A; Muenchausen, Ross E; Del Sesto, Rico E; Gilbertson, Robert D; Mccleskey, T Mark; Reifarth, Rene

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  17. Scintillating Bolometers for Double Beta Decay Search

    NASA Astrophysics Data System (ADS)

    Gorla, P.; Arnaboldi, C.; Beeman, J.; Capelli, S.; Giachero, A.; Gironi, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.

    2008-05-01

    In the field of Double Beta Decay searches the possibility to have high resolution detectors in which a very large part of the natural background can be discriminated with respect to the tiny expected signal, results very appealing. This very interesting possibility can be fulfilled in the case of a scintillating crystal bolometer containing a DBD emitter whose transition energy exceeds the one of the natural 2615 keV gamma line of 208Tl. We present the results achieved in the development of bolometric light detectors for double beta searches. The detectors are 1 mm thick germanium disk coated with a layer of SiO2 in order to increase the light collection. The adopted temperature sensors are NTD Ge thermistors optimized to work at temperatures between 9 and 13 mK. A light detector with a considerable large area (35 cm2) was constructed and run in a test measurement. A 140 g CdWO4 crystal (116Cd has a DBD transition energy of 2802 keV) was operated as bolometer and the scintillation light was read by the light detector. The excellent results combined with extreme easy light detector assembly represent the first tangible proof demonstrating the feasibility of this kind of technique.

  18. Buried plastic scintillator muon telescope (BATATA)

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; de Donato, C.; D'Olivo, J. C.; Guzmán, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patiño Salazar, E.; Salazar Ibarguen, H.; Sánchez, F. A.; Supanitsky, A. D.; Valdés-Galicia, J. F.; Vargas Treviño, A. D.; Vergara Limón, S.; Villaseñor, L. M.; Auger Collaboration

    2010-05-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm2. Each layer is 4m2 and is composed by 49 rectangular strips of 4cm×2m, oriented at a 90∘ angle with respect to its companion layer, which gives an xy-coincidence pixel of 4×4cm2. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  19. A large-area two-dimensional scintillator detector with a wavelength-shifting fibre readout for a time-of-flight single-crystal neutron diffractometer

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Kawasaki, T.; Hosoya, T.; Toh, K.; Oikawa, K.; Sakasai, K.; Ebine, M.; Birumachi, A.; Soyama, K.; Katagiri, M.

    2012-09-01

    A two-dimensional scintillator-based neutron detector that has a neutron-sensitive area of 256256 mm2 with a pixel size of 4 mm was developed. The detector was designed to be compact and modular with the smallest dead area for the SENJU time-of-flight Laue single-crystal diffractometer to be constructed in the Materials and Life Science Experimental Facility at the Japanese Proton Accelerator Research Complex. The detector employed wavelength-shifting (WLS) fibres to collect scintillation light generated in a neutron-sensitive scintillator. The 64 WLS fibres with a diameter of 1 mm were regularly spaced at a pitch of 4 mm both in the x and y directions to produce a detector with a large neutron-sensitive area and a small number of electronics channels. Two ZnS/10B2O3 scintillator screens with an optimised scintillator thickness sandwiched the cross-arranged WLS fibre arrays to ensure a high detection efficiency for thermal neutrons. The prototype detector exhibited a detector efficiency of 401%(meanSD) for 1.6 neutrons and a 60Co gamma-ray sensitivity of 6.00.110-6, which fulfilled the required detector specifications for SENJU.

  20. Scintillation fluctuations of optical communication lasers in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Panich, Michael G.; Coffaro, Joseph T.; Belichki, Sara B.; Splitter, Landon J.; Phillips, Ronald L.; Andrews, Larry C.; Fountain, Wayne; Tucker, Frank M.

    2014-06-01

    The purpose of this research is to evaluate scintillation fluctuations on optical communication lasers and evaluate potential system improvements to reduce scintillation effects. This research attempts to experimentally verify mathematical models developed by Andrews and Phillips [1] for scintillation fluctuations in atmospheric turbulence using two different transmitting wavelengths. Propagation range lengths and detector quantities were varied to confirm the theoretical scintillation curve. In order to confirm the range and wavelength dependent scintillation curve, intensity measurements were taken from a 904nm and 1550nm laser source for an assortment of path distances along the 1km laser range at the Townes Laser Institute. The refractive index structure parameter (Cn2) data was also taken at various ranges using two commercial scintillometers. This parameter is used to characterize the strength of atmospheric turbulence, which induces scintillation effects on the laser beam, and is a vital input parameter to the mathematical model. Data was taken and analyzed using a 4-detector board array. The material presented in this paper outlines the verification and validation of the theoretical scintillation model, and steps to improve the scintillation fluctuation effects on the laser beam through additional detectors and a longer transmitting wavelength. Experimental data was post processed and analyzed for scintillation fluctuations of the two transmitting wavelengths. The results demonstrate the benefit of additional detectors and validate a mathematical model that can be scaled for use in a variety of communications or defense applications. Scintillation is a problem faced by every free space laser communication system and the verification of an accurate mathematical model to simulate these effects has strong application across the industry.

  1. Optimization of the Performance of Segmented Scintillators for Radiotherapy Imaging through Novel Binning Techniques

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Choroszucha, Richard B.; Zhao, Qihua; Jiang, Hao; Liu, Langechuan

    2014-01-01

    Thick, segmented crystalline scintillators have shown increasing promise as replacement x-ray converters for the phosphor screens currently used in active matrix flat-panel imagers (AMFPIs) in radiotherapy, by virtue of providing over an order of magnitude improvement in the DQE. However, element-to-element misalignment in current segmented scintillator prototypes creates a challenge for optimal registration with underlying AMFPI arrays, resulting in degradation of spatial resolution. To overcome this challenge, a methodology involving the use of a relatively high resolution AMFPI array in combination with novel binning techniques is presented. The array, which has a pixel pitch of 0.127 mm, was coupled to prototype segmented scintillators based on BGO, LYSO and CsI:Tl materials, each having a nominal element-to-element pitch of 1.016 mm and thickness of ~1 cm. The AMFPI systems incorporating these prototypes were characterized at a radiotherapy energy of 6 MV in terms of MTF, NPS, DQE, and reconstructed images of a resolution phantom acquired using a cone-beam CT geometry. For each prototype, the application of 88 pixel binning to achieve a sampling pitch of 1.016 mm was optimized through use of an alignment metric which minimized misregistration and thereby improved spatial resolution. In addition, the application of alternative binning techniques that exclude the collection of signal near septal walls resulted in further significant improvement in spatial resolution for the BGO and LYSO prototypes, though not for the CsI:Tl prototype due to the large amount of optical cross-talk resulting from significant light spread between scintillator elements in that device. The efficacy of these techniques for improving spatial resolution appears to be enhanced for scintillator materials that exhibit mechanical hardness, high density and high refractive index, such as BGO. Moreover, materials that exhibit these properties as well as offer significantly higher light output than BGO, such as CdWO4, should provide the additional benefit of preserving DQE performance. PMID:24487347

  2. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators. The solid angle subtended by the fiber is ∼2.2 × 10-5 sr. The final element is a compact and high sensitive spectrometer, QE6500 (Ocean Optics Inc.) with a 2D area detector which allow us to measure simultaneously in the range of 200-1100 nm with a spectral resolution ∼1-2 nm. The measured signals were analyzed and stored with the SpectraSuite software [6]. The absolute calibration of the optical system described above was carried out with a HL-2000-CAL Tungsten Halogen Calibration Standard light source which provides absolute intensity values (in μW/cm2/nm) at the fiber port at wavelengths from 360-1050 nm.The beam fluxes used to irradiate the phosphors were ∼ 1012 p/cm2s- for the IL yields determination, and up to ten times higher for the degradation analyses.The Rutherford Backscattering Spectrometry (RBS) measurements of the screens were accomplished in the same vacuum chamber using protons at 3 MeV and 5 MeV. Two different energies were employed due to the large difference between the thicknesses of the samples. The proton beam intensity was 10 nA and the beam size 1 mm of diameter. The analysis were performed with a Passivated Implanted Planar Silicon (PIPS) detector of 300 mm2, positioned at 150° and with a 10 μm thick aluminized mylar foil placed at the detector surface to avoid the light emitted by the scintillators. The RBS spectra were analyzed using the SIMNRA code [7].The scintillators investigated in this work were selected according to their availability, radiation hardness, fast response, and/or prior use in plasma diagnostics. In this paper, three different kinds of materials have been analyzed. The TG-Green (so called by the manufacturer, Sarnoff Corporation, USA) is a Eu doped SrGa2S4 powder substrate with density of 3.65 g/cm3, and presents an emission at 540 nm with a very short decay time.≈490 ns [8]. A TG-Green scintillator coating has been applied, for the first time, to a fusion plasma diagnostics for the detection of fast-particle losses on the AUG tokamak [9,10]. The same material supplied by other manufacturer (CIEMAT) has been used to compare the yields for both samples. We will refer to these screens as TGa and TGb for the corresponding to Sarnoff Co. and CIEMAT, respectively. The P46 is a rare earth oxide Y3Al5O12 (YAG) doped with Ce by 0.15% CeO2, manufactured by Proxitronic GmbH, Germany. The luminescence emission consists in a broad peak, centered at 550 nm with a stated decay time constant of 70 ns. [11]. The P46 has been widely applied to fusion plasma diagnostic and in particular to fast-ion loss detection on several devices such as TFTR and NSTX [12,13]. Finally, the P56 scintillator is a Eu doped Y2O3 powder substrate, Y2O3:Eu3+, manufactured by AST Corporation, England. Although this material has a high efficiency, its light emission has a long decay time of 2 ms [14], making the P56 unsuitable to follow the frequency of the MHD fluctuations.The samples were deposited using different processes directly by the manufacturers on 2 mm thick stainless steel plates. It is important to remind that reflections on the substrate may contribute to a luminescence enhancement of the thin scintillator screens. Therefore, the screens under study here as well as the experimental set-up were designed to mimic the real operation of a fast-ion loss detector.

  3. Groundwater Screen

    Energy Science and Technology Software Center (ESTSC)

    1993-11-09

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non radioactive substances from surface or buried sources and release to percolation ponds. The code calculates the limiting soil concentration or effluent release concentration such that, after leaching and transport to the aquifer, regulatory contaminant levels in groundwater are not exceeded. The code uses a mass conservation approach to model three processes: Contaminant release from a source volume, contaminant transport inmore » the unsaturated zone, and contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. Transport in the unsaturated zone is described by a plug flow model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation in groundwater. Concentration as a function of time at a user specified receptor point and maximum concentration averaged over the exposure interval are also calculated. In addition, the code calculates transport and impacts of radioactive progeny. Input to GWSCREEN is through one, free format ASCII file. This code was designed for assessment and screening of the groundwater pathway when field data is limited. It was not intended to be a predictive tool.« less

  4. Electronic Structure Engineering of Elpasolites for Brighter and Faster Scintillators

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua; Biswas, Koushik

    2013-03-01

    Utilization of scintillator materials is one of the primary methods for radiation detection. Elpasolites are a large family of quaternary halides that have attracted considerable interest for their potential applications as ?-ray and neutron scintillators. However, many elpasolite scintillator materials currently under development suffer from low light yield and long scintillation decay time. The low light yield is partially due to a large band gap while the long scintillation decay time is a result of slow carrier transport to Ce dopants, where electrons and holes recombine to emit photons. We suggest that these problems may be mitigated by optimizing the band gap and carrier mobility by selecting constituent elements of proper electronegativity. For example, cations with lower electronegativity may lower the conduction band and increase the conduction band dispersion simultaneously, resulting in higher light yield and faster scintillation. First-principles calculations of electronic structure, small polarons, and Ce dopants in Cs2LiYCl6 and Cs2AgYCl6 compounds show that the strategy of manipulating electronegativity can lead to brighter and faster elpasolite-based scintillators. This work was supported by the U.S. DOE Office of Nonproliferation Research and Development NA22.

  5. Luminescence and scintillation properties of rare-earth-doped LuF3 scintillation crystals

    NASA Astrophysics Data System (ADS)

    Pejchal, Jan; Fukuda, Kentaro; Kurosawa, Shunsuke; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    The Nd-doped and Er-doped LuF3 single crystals were grown by the micro-pulling-down method to study their scintillation properties in the vacuum-ultraviolet (VUV) region. The doubly Nd-Er codoped single crystal was grown to study possibility of scintillation performance improvement by energy transfer from Er3+ to Nd3+ ions. The LiF flux was to avoid phase transition below melting temperature. The 1%Nd-doped sample showed the highest overall scintillation efficiency under X-ray excitation which was 7 times as high as that of the LaF3:Nd 8% standard. The leading Nd3+ 5d-4f emission was situated at 176 nm, while the Er3+ 5d-4f emission for Er-doped samples was observed at 163 nm, which better matches the sensitivity of some VUV-sensitive photodetectors. The optimum Er concentration was determined to be around 1-3 mol%. No Er3+ 5d-4f emission was observed for the doubly Er,Nd-codoped sample due to energy transfer from the Er3+ to Nd3+ ions. Slight improvement of the light yield was observed in the doubly-doped sample with respect to the Nd-only doped one.

  6. Regional Arctic observations of TEC gradients and scintillations

    NASA Astrophysics Data System (ADS)

    Durgonics, Tibor; Heg, Per; Benzon, Hans-Henrik

    2015-04-01

    In recent years, there has been growing scientific interest in Arctic ionospheric properties and variations. However our understanding of the fundamental ionospheric processes present in this area is still incomplete. GNSS networks present in Greenland today make it possible to acquire near-real time observations of the state and variations of the high-latitude ionosphere. This data can be employed to obtain relevant geophysical variables and statistics. In our study GPS-derived total electron content (TEC) measurements have been complemented with amplitude scintillation indices (S4), and phase scintillation indices (??). The investigation of the relationship between these geophysical variables will likely lead to new ways to study the underlying physical processes and to build tools for monitoring and predicting large-scale patterns in Arctic TEC and scintillations. A number of specific ionosphere events will be presented and the underlying geophysical process will be identified and described. In particular, results will be presented where large-scale gradients in the regional TEC are compared with the growth of scintillations. The statistics of the scintillations will be investigated, with emphasis on how well the scintillations follow the Nakagami-m distribution. The spectra of both the intensities and phase will be calculated, and the corner frequency of these spectra will also be determined. These corner frequencies will be used to compute a number of important geophysical and ionospheric parameters. Furthermore, we will discuss how the spectral characteristics of the scintillations during large TEC gradients vary, and how values of the power spectra slopes change during increasing scintillations. These values will be validated against values found in prior studies. TEC and scintillation time-series and maps will also be presented over the Greenlandic region. We will show how the expansion of the auroral oval during geomagnetic storms can be detected from GNSS-derived data. We will then investigate the correlation between TEC and ionospheric indices.

  7. The Oriented Scintillation Spectrometer Experiment - Instrument description

    NASA Technical Reports Server (NTRS)

    Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Purcell, W. R.; Grabelsky, D. A.; Ulmer, M. P.; Hillis, D. A.; Jung, G. V.; Cameron, R. A.

    1993-01-01

    The Oriented Scintillation Spectrometer Experiment on the Arthur Holly Compton Gamma Ray Observatory satellite uses four actively shielded NaI (Tl)-CsI(Na) phoswich detectors to provide gamma-ray line and continuum detection capability in the 0.05-10 MeV energy range. The instrument includes secondary capabilities for gamma-ray and neutron detection between 10 and 250 MeV. The detectors have 3.8 deg x 11.04 deg (FWHM) fields of view defined by tungsten collimators. Each detector has an independent, single-axis orientation system which permits offset pointing from the spacecraft Z-axis for background measurements and multitarget observations. The instrument, and its calibration and performance, are described.

  8. High-Density, Scintillating, Fluoride Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Xie, Qiuchen

    2014-03-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Here, we propose to use high density, scintillating, fluoride glasses as active media in calorimeters. CHG3 is a special example of this glass family, which has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. In this presentation, the results from a computational study on the performances of the two different designs of CHG3 glass calorimeters are reported. First design reads the signal directly from the edge of the glass plate; the second design utilizes wavelength-shifting fibers to carry the signal out of the glass plate. Each simulation model is a sampling calorimeter with 20 alternating layers of glass and iron absorber. By changing the absorber thickness we tested hadronic as well as electromagnetic capabilities of the calorimeter models.

  9. Sound and Light from Fractures in Scintillators

    NASA Astrophysics Data System (ADS)

    Tantot, A.; Santucci, S.; Ramos, O.; Deschanel, S.; Verdier, M.-A.; Mony, E.; Wei, Y.; Ciliberto, S.; Vanel, L.; Di Stefano, P. C. F.

    2013-10-01

    Prompted by intriguing events observed in certain particle-physics searches for rare events, we study light and acoustic emission simultaneously in some inorganic scintillators subject to mechanical stress. We observe mechanoluminescence in Bi4Ge3O12, CdWO4, and ZnWO4, in various mechanical configurations at room temperature and ambient pressure. We analyze the temporal and amplitude correlations between the light emission and the acoustic emission during fracture. A novel application of the precise energy calibration of Bi4Ge3O12 provided by radioactive sources allows us to deduce that the fraction of elastic energy converted to light is at least 310-5.

  10. SSPM Scintillator Readout for Gamma Radiation Detection

    SciTech Connect

    Baker, S A; Wendelberger, B; Young, J A; Green, J A; Guise, R E; Franks, L

    2011-09-01

    Silicon-based photodetectors offer several benefits relative to photomultiplier tubebased scintillator systems. Solid-state photomultipliers (SSPM) can realize the gain of a photomultiplier tube (PMT) with the quantum efficiency of silicon. The advantages of the solid-state approach must be balanced with adverse trade-offs, for example from increased dark current, to optimize radiation detection sensitivity. We are designing a custom SSPM that will be optimized for green emission of thallium-doped cesium iodide (CsI(Tl)). A typical field gamma radiation detector incorporates thallium doped sodium iodide (NaI(Tl)) and a radiation converter with a PMT. A PMTs sensitivity peaks in the blue wavelengths and is well matched to NaI(Tl). This paper presents results of photomultiplier sensitivity relative to conventional SSPMs and discusses model design improvements. Prototype fabrications are in progress.

  11. Measurement of rain parameters by optical scintillation.

    PubMed

    Wang, T I; Lerfald, G; Lawrence, R S; Clifford, S F

    1977-08-01

    We describe a technique for measuring path-averaged rain parameters by analyzing the rainfall-induced scintillations of a laser beam. From the time-lagged covariance function of two vertically spaced line detectors, we determine the average rainfall rate and drop-size distribution along the optical path. This technique requires no prior assumption of the form of the drop-size distribution. Sample measurements on a 140-m path confirm that the path-averaged drop-size distribution of a steady rain follows a Marshall-Palmer distribution. The optically measured path-averaged rain rate also shows good agreement with conventional tipping-bucket rain-gauge data. PMID:20168902

  12. Liquid scintillation counting analysis of cadmium-109

    SciTech Connect

    Robinson, M.K.; Barfuss, D.W. )

    1991-04-01

    Recently the authors have used radiolabled cadmium-109 to measure the transport of inorganic cadmium in renal proximal tubules. An anomaly discovered in the liquid scintillation counting analysis of Cd-109 which is not attributable to normal decay; it consists of a significant decrease in the measured count rate of small amounts of sample. The objective is to determine whether the buffer solution used in the membrane transport studies is causing precipitation of the cadmium or whether cadmium is being adsorbed by the glass. It was important to determine whether the procedure could be modified to correct this problem. The problem does not appear to be related to the use of the buffer or to adsorption of Cd onto glass. Correction based on using triated L-glucose in all of these experiments and calculating a correction factor for the concentration of cadmium.

  13. OFFSET: Optical Fiber Folded Scintillating Extended Tracker

    NASA Astrophysics Data System (ADS)

    Lo Presti, D.; Aiello, S.; Bonanno, D. L.; Cirrone, G. A. P.; Leonora, E.; Longhitano, F.; Pugliatti, C.; Randazzo, N.; Romano, F.; Russo, G. V.; Russo, M.; Stancampiano, C.; Sipala, V.

    2014-02-01

    The OFFSET collaboration aims at the development of a novel system for tracking charged particles, designed to achieve real-time imaging, large detection areas, and a high spatial resolution especially suitable for use in medical diagnostics. This paper presents the first prototype of this tracker, having a 2020 cm2 sensitive area made by two crossed ribbons of 500 ?m square scintillating fibers. The track position information is extracted in real time using a reduced number of read-out channels to obtain very large detection area at moderate cost and complexity. The performance of the tracker was investigated using ? sources, cosmic rays and a 62 MeV proton beam.

  14. Understanding Breast Changes: A Health Guide for Women

    MedlinePLUS

    ... Breast & Gynecologic Cancers Breast Cancer Screening Research Understanding Breast Changes: A Health Guide for Women You may ... this information as an e-book or PDF . Breast Changes Check with your health care provider if ...

  15. Statistical distribution of GPS amplitude scintillations

    NASA Astrophysics Data System (ADS)

    Akala, A. O.; Doherty, P. H.

    2012-01-01

    This study presents complementary cumulative distribution function (CCDF) as a statistical distribution apparatus for fitting GPS scintillations data. Three years of data at three levels of solar activity, 2002 (high), 2004 (moderate) and 2008 (low) from an equatorial anomaly crest station; Bogota (4.4N, 74.1W, dip 16.0N) [Colombia] in the West Coast of South America were used for the investigation. These data were grouped into daily, monthly and seasonal sets at three levels of solar activity, and tests were introduced on them to reject data from non-ionospheric sources of scintillation, such as multipath. Before fitting each set of data on a CCDF, the data were first visualized with the aid of scatter plots whereby the distributions exhibit non-Gaussian behavior. As a case study, at S4=0.3 threshold, during the year 2002 and 2004, the months of May-July showed probability of occurrence of the order of 0.01 (1% of the observed samples of a given set) for each month, while in 2008, this trend persisted to August (May-August, probability of occurrence of 0.01 or less (1%)). The tails of January and March's distributions were observed to be the heaviest at S4=0.3, although, a relatively heavy tail at this threshold was also observed during the month of November in the year 2004, and during March Equinox and December Solstice in terms of seasons. The heaviness of the tail at this threshold relaxes as solar activity decreases. The calculated probability of occurrences and those derived from the statistical distribution scheme show good consistency. The results presented in this study may be of assistance for future modeling and simulation studies.

  16. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S. (Knoxville, TN); Mihalczo, John T (Oak Ridge, TN)

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  17. Ionization and scintillation of nuclear recoils in gaseous xenon

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gil, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Moiseenko, A.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J.; Yahlali, N.

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  18. Neutron detector using lithiated glass-scintillating particle composite

    DOEpatents

    Wallace, Steven (Knoxville, TN); Stephan, Andrew C. (Knoxville, TX); Dai, Sheng (Knoxville, TN); Im, Hee-Jung (Knoxville, TN)

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  19. Calibration of Small Plastic Scintillators for Imaging Applications

    SciTech Connect

    Pozzi, S.

    2005-01-19

    This report presents the results of measurements and simulations performed with 12 small plastic scintillation detectors manufactured by Scionix for imaging applications. The scintillator is equivalent to a Bicron BC-420 plastic scintillator. A gamma calibration is presented to determine the voltage to be applied on each detector to ensure uniform detector operation. Time of flight measurements performed with a Cf-252 source are also presented. Comparisons between experimental data and data from the Monte Carlo simulations show good agreement for time lags of 0 to 70 ns.

  20. Quenching the scintillation in CF4 Cherenkov gas radiator

    NASA Astrophysics Data System (ADS)

    Blake, T.; D`Ambrosio, C.; Easo, S.; Eisenhardt, S.; Fitzpatrick, C.; Forty, R.; Frei, C.; Gibson, V.; Gys, T.; Harnew, N.; Hunt, P.; Jones, C. R.; Lambert, R. W.; Matteuzzi, C.; Muheim, F.; Papanestis, A.; Perego, D. L.; Piedigrossi, D.; Plackett, R.; Powell, A.; Topp-Joergensen, S.; Ullaland, O.; Websdale, D.; Wotton, S. A.; Wyllie, K.

    2015-08-01

    CF4 is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF4 is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  1. Trigger and electronics issues for scintillating fiber tracking

    SciTech Connect

    Baumbaugh, A.E.

    1994-01-01

    Scintillating Fiber technology has made great advances and has demonstrated great promise for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation floors available, make them very promising for use at high luminosity experiments at today`s and tomorrow`s colliding and fixed target experiments where high rate capability is essential. This paper will discuss some of the system aspects which should be considered by anyone attempting to design a scintillating fiber tracking system and high speed tracking trigger. As the reader will see, seemingly simple decisions can have far reaching effects on overall system performance.

  2. Reduction of scintillation in optical modulating retro-reflector links.

    PubMed

    Rabinovich, W S; Mahon, R; Ferraro, M; Goetz, P G; Murphy, J L

    2014-11-17

    Optical modulating retro-reflectors enable free-space optical links that have greatly reduced pointing requirements and do not require a laser at one end of the link. However, these types of links can exhibit very high optical scintillation due to the double passage of the beam through the atmosphere. This high scintillation causes fades and surges that can lead to packet errors in the link. It is shown that scintillation can be greatly reduced through a combination of techniques including retro-reflector diversity, aperture averaging and bistatic optical interrogation. Improvements of 20 dB in link performance are demonstrated. PMID:25402097

  3. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-01

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.

  4. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.

    PubMed

    Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-01

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector. PMID:26233375

  5. A 2-phase liquid scintillation assay for glycolipid synthetases

    SciTech Connect

    Hospattankar, A.V.; Radin, N.S.

    1981-10-01

    Glycolipid synthetases can be assayed conveniently by incubating the lipid substrate with the radiosugar-labeled nucleotide in a small plastic scintillation vial. At the end of the incubation period, water and perchloric acid are added, then n-butanol, then a toluene-based scintillation cocktail. The radioactive lipid partitions into the scintillation fluid, leaving excess sugar nucleotide in the aqueous phase. Only a small fraction of the total radioactivity in the aqueous layer is detectable. This method is illustrated for ceramide:UDP-glucose glucosyltransferase. The approach should be applicable to other lipid synthetases that can be assayed with radioactive hydrophilic substrate.

  6. Screening for VHL

    MedlinePLUS

    ... Us Search Patients & Caregivers / What is VHL? / Screening Regular check-ups and screening are important for anyone ... given the unpredictability of the condition. Early detection, regular screening and appropriate treatment can greatly reduce the ...

  7. RBC Antibody Screen

    MedlinePLUS

    ... limited. Home Visit Global Sites Search Help? RBC Antibody Screen Share this page: Was this page helpful? ... Indirect Coombs Test; Indirect Anti-human Globulin Test; Antibody Screen Formal name: Red Blood Cell Antibody Screen ...

  8. Stomach (Gastric) Cancer Screening

    MedlinePLUS

    ... Stomach Cancer Prevention Stomach Cancer Screening Research Stomach (Gastric) Cancer Screening–Patient Version (PDQ®) What is screening? Screening ... are called diagnostic tests . General Information About Stomach (Gastric) Cancer Key Points Stomach cancer is a disease in ...

  9. Breast Cancer Screening Methods

    MedlinePLUS Videos and Cool Tools

    ... medlineplus/videos/news/Screening_Methods_123015.html Breast Cancer Screening Methods HealthDay News Video - December 31, 2015 ... this page, please enable JavaScript. Play video: Breast Cancer Screening Methods For closed captioning, click the CC ...

  10. Effect of scintillator crystal geometry and surface finishing on depth of interaction resolution in PET detectors: Monte Carlo simulation and experimental results using silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Cuddy, Sarah; Reznik, Alla; Rowlands, John A.; Taghibakhsh, Farhad

    2010-04-01

    Resolution of positron emission tomography (PET) systems benefits from information about depth of interaction (DOI) within scintillation crystals, particularly in small bore scanners or parallel plate detectors. In this investigation, the ability of the dual-ended readout detector module configuration to resolve DOI and crystal index was evaluated for a variety of detector pitches and light guide thicknesses to validate the dual-ended readout method. Experimental results with oneto- one coupling between saw-cut 2mm pitch LYSO scintillation crystals and silicon photomultipliers (SiPMs) achieved 2.1 mm DOI resolution. Monte Carlo simulations were used to investigate the effect of larger detector pitches and varied light guide thickness on the crystal index identification accuracy and DOI resolution for a pixilated crystal array in dual-ended readout configuration. It is reported that the accuracy in identifying a 2 mm scintillation crystal was >80% for detector pitches < 6 mm and that DOI resolution was < 2 mm for all detector pitches and light guide thicknesses.

  11. Homebuyer's Guide.

    ERIC Educational Resources Information Center

    Sindt, Roger P.; Harris, Jack

    Designed to assist prospective buyers in making such important decisions as whether to buy a new or older home and within what price range, the guide provides information on the purchase process. Discussion of the purchase process covers the life-cycle costs (recurring homeownership costs that must be met every month); selection of a home;

  12. Freestyle Guide.

    ERIC Educational Resources Information Center

    Science Research Associates, Inc., Chicago, IL.

    This booklet serves as an introduction to the concept of Freestyle, a career awareness project designed to encourage nine- to twelve-year-olds to freely explore their interests, develop their skills, and choose their career paths. The booklet includes an explanation of the Freestyle project, goals, and components (t.v. programs, project guide,

  13. Persuasion Guide.

    ERIC Educational Resources Information Center

    1971

    In this teacher's guide to the textbook called "Persuasion" the emphasis is on assisting the teacher to develop in his students the skills of critical and creative thinking. Each instructional unit moves from the experience of persuasive techniques, through critical analysis, to the creative practice of the technique in question. Essays on…

  14. Teachers Guide.

    ERIC Educational Resources Information Center

    Linsky, Ronald B.; Schnitger, Ronald L.

    This guide provides teachers with copies of the materials given to students participating in the oceanography program of the Orange County Floating Laboratory Program and provides information concerning colleges and universities offering courses in oceanography and marine science, source of films, and sources of publications concerning the Navy's…

  15. Homebuyer's Guide.

    ERIC Educational Resources Information Center

    Sindt, Roger P.; Harris, Jack

    Designed to assist prospective buyers in making such important decisions as whether to buy a new or older home and within what price range, the guide provides information on the purchase process. Discussion of the purchase process covers the life-cycle costs (recurring homeownership costs that must be met every month); selection of a home;…

  16. Teachers Guide.

    ERIC Educational Resources Information Center

    Linsky, Ronald B.; Schnitger, Ronald L.

    This guide provides teachers with copies of the materials given to students participating in the oceanography program of the Orange County Floating Laboratory Program and provides information concerning colleges and universities offering courses in oceanography and marine science, source of films, and sources of publications concerning the Navy's

  17. Coatings Guide

    EPA Science Inventory

    The Coatings Guide is a free online information resource that focuses on alternative, low-emission coatings for metal, plastic, and architectural substrates. Developed cooperatively by the U.S. EPA's Office of Research and Development and Research Triangle Institute (RTI) Interna...

  18. Instructor Guide.

    ERIC Educational Resources Information Center

    Langer, Philip; Borg, Walter R.

    This Instructor Guide is designed to acquaint the teacher educator with the Utah State University Protocol Project training materials. It deals with the protocol materials generally and with each module specifically, including the following: (a) an introduction to, and rationale for protocol modules; (b) ways of identifying specific kinds of

  19. Putting the Screen in Screening

    PubMed Central

    Harris, Sion Kim; Knight, John R.

    2014-01-01

    Alcohol is strongly linked to the leading causes of adolescent and adult mortality and health problems, making medical settings such as primary care and emergency departments important venues for addressing alcohol use. Extensive research evidence supports the effectiveness of alcohol screening and brief interventions (SBIs) in medical settings, but this valuable strategy remains underused, with medical staff citing lack of time and training as major implementation barriers. Technology-based tools may offer a way to improve efficiency and quality of SBI delivery in such settings. This review describes the latest research examining the feasibility and efficacy of computer- or other technology-based alcohol SBI tools in medical settings, as they relate to the following three patient populations: adults (18 years or older); pregnant women; and adolescents (17 years or younger). The small but growing evidence base generally shows strong feasibility and acceptability of technology-based SBI in medical settings. However, evidence for effectiveness in changing alcohol use is limited in this young field. PMID:26259001

  20. Improvement of medical imaging with enhanced light extraction of scintillators by integrated nanophotonics

    NASA Astrophysics Data System (ADS)

    Ye, Mao; Yi, Ya Sha

    2015-08-01

    Scintillators are important functional parts in x-ray and ?-radiation medical imaging instruments, while the high refractive index of scintillation materials significantly reduced the light yield from the scintillators to the detectors, which limited acquired image quality. In this paper, we reviewed two ways to improve the light yield of scintillators via nano photonic devices based on different scintillation materials and integrated nano structures.

  1. Lanthanum halide scintillators for time-of-flight 3-D pet

    DOEpatents

    Karp, Joel S.; Surti, Suleman

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  2. Co-doping effects on luminescence and scintillation properties of Ce doped Lu3Al5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Nikl, Martin; Kurosawa, Shunsuke; Beitlerova, Alena; Nagura, Aya; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-05-01

    The Mg, Ca, Sr and Ba 200 ppm co-doped Ce:Lu3Al5O12 single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of the co-doping. The scintillation decays were accelerated by both Mg and Ca co-dopants. The Mg co-doped samples showed the fastest decay and the highest light yield among the co-doped samples.

  3. Cytomegalovirus in pregnancy: to screen or not to screen

    PubMed Central

    2013-01-01

    Background Cytomegalovirus (CMV) infection is now the commonest congenital form of infective neurological handicap, recognized by the Institute of Medicine as the leading priority for the developed world in congenital infection. In the absence of an effective vaccine, universal screening for CMV in pregnancy has been proposed, in order that primary infection could be diagnosed and- potentially- the burden of disability due to congenital CMV prevented. Discussion Universal screening for CMV to identify seronegative women at the beginning of pregnancy could potentially reduce the burden of congenital CMV in one of three ways. The risk of acquiring the infection during pregnancy has been shown to be reduced by institution of simple hygiene measures (primary prevention). Among women who seroconvert during pregnancy, CMV hyperimmune globulin (CMV HIG) shows promise in reducing the risk of perinatal transmission (secondary prevention), and CMV HIG and/ or antivirals may be effective in reducing the risk of clinical sequelae among those known to be infected (tertiary prevention). The reports from these studies have re-ignited interest in universal screening for CMV, but against the potential benefit of these exciting therapies needs to be weighed the challenges associated with the implementation of any universal screening in pregnancy. These include; the optimal test, and timing of screening, to maximize detection; an approach to the management of equivocal results, and the cost effectiveness of the proposed screening program. In this article, we provide an overview of current knowledge and ongoing trials in the prevention, diagnosis and management of congenital CMV. Recognising that CMV screening is already being offered to many patients on an ad hoc basis, we also provide a management algorithm to guide clinicians and assist in counseling patients. Summary We suggest that- on the basis of current data- the criteria necessary to recommend universal screening for CMV are not yet met, but this position is likely to change if trials currently underway confirm that CMV HIG and/ or antivirals are effective in reducing the burden of congenital CMV disease. PMID:23594714

  4. Comparison of scintillators for single shot imaging of laser accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Cook, Nathan

    2012-03-01

    The application of intense laser pulses incident on specialized targets provides exciting new means for generating energetic beams of protons and ions. Recent work has demonstrated the utility of these beams of particles in a variety of applications, from inertial confinement fusion to radiation therapy. These applications require precise control, and subsequently precise feedback from the beam. Imaging techniques can provide the necessary shot-to-shot characterization to be effective as diagnostics. However, the utility of imaging methods scales with the capability of scintillating materials to emit well characterized and consistent radiation upon irradiance by a charged particle beam. We will discuss three candidates for an ideal diagnostic for MeV range protons and light ions. CsI:Tl^+ and Al2O3:Cr^3+ are two inorganic scintillators which exhibit excellent response to hadrons in this energy range. They are compared with the combination diagnostic micro-channel plate with a P43 phosphor screen, which offers advantages in refresh rate and resolution over direct exposure methods. Ultimately we will determine which candidate performs optimally as part of a robust, inexpensive diagnostic for laser accelerated protons and light ions.

  5. Investigating the response of scintillators for the detection of laser accelerated protons

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Tresca, Olivier; Yakimenko, Vitaly

    2013-04-01

    Radiation pressure acceleration with ultraintense laser pulses presents an exciting new scheme for obtaining energetic protons from a gas jet target. One of the advantages conferred by using a gaseous laser and target is the potential for a fast (1 Hz) repetition rate. This requires diagnostics which are not only comprehensive for a single shot, but also capable of repeated use. We consider several scintillators as candidates for an imaging diagnostic for protons accelerated to MeV energies by a CO2 laser focused on a gas jet target. We have measured the response of chromium-doped alumina (Chromox), CsI:Tl, and a polyvinyl toluene (PVT) screen to protons in the 2-12 MeV range using a CCD camera. We have calibrated the luminescent yield in terms of photons emitted per incident proton for each scintillator. We also discuss photon scattering in each and determine its impact on their respective resolutions. In addition, we consider the impact of radiation intensity on the materials, including radiation damage and the presence of an afterglow. Our analysis reveals a near order of magnitude greater yield from Chromox in response to proton beams in this energy range. Moreover, Chromox displays improved radiation resistance, making it the best choice for a flexible diagnostic tool

  6. Interpretation and modeling of quasiperiodic diffraction patterns observed in equatorial VHF scintillation due to plasma bubbles

    NASA Technical Reports Server (NTRS)

    Franke, S. J.; Liu, C. H.; Mcclure, J. P.

    1984-01-01

    Quasiperiodic diffraction patterns have been observed in VHF scintillation recorded at Ascension Island in 1981. The patterns occur most often at the beginning or end of a scintillation patch and are shown to be consistent with those expected from irregularities having east-west scale sizes of a few hundred meters that are associated with the walls (edges) of equatorial plasma bubbles. By adjusting the geophysical parameters in a computer simulation of the amplitude fluctuations expected simultaneously at VHF, L-Band and C-Band, we model a specific event in detail. The model contains information on the size and strength of the structures that cause the regular fading patterns. In addition, multi-frequency diffraction patterns are computed for a 'phase screen' model based on high resolution measurements of a structured plasma bubble wall made using the AE-E satellite. The results are qualitatively very similar to the observations. Finally, implications of the model results for the extraction of information about the vertical structure of the irregularities are discussed.

  7. Emergence and disappearance of microarcsecond structure in the scintillating quasar J1819+3845

    NASA Astrophysics Data System (ADS)

    Macquart, J.-P.; de Bruyn, A. G.

    2007-09-01

    The 4.8-GHz light curves of the scintillating intraday variable quasar J1819+3845 during 2004-2005 exhibit sharp structure, down to a time-scale of 15min, that was absent from light curves taken prior to this period and from the 2006 light curves. Analysis of the light curve power spectra show that the variations must be due to the emergence of new structure in the source. The power spectra yield a scattering screen distance of 3.8 +/- 0.3pc for a best-fitting vISS = 59 +/- 0.5kms-1 or 2.0 +/- 0.3pc for the scintillation velocity reported by Dennett-Thorpe & de Bruyn. The scattering medium is required to be exceptionally turbulent, with C2N >~ 0.7?L-1pcm-20/3 for scattering material of thickness ?Lpcpc along the ray path. The 2004 power spectrum can be explained in terms of a double source with a component separation 240 +/- 15?as in 2004.

  8. Multilayer Scintillation Detector for Nuclear Physics Monitoring of Space Weather

    NASA Astrophysics Data System (ADS)

    Batischev, A. G.; Aleksandrin, S. Yu.; Gurov, Yu. B.; Koldashov, S. V.; Lapushkin, S. V.; Mayorov, A. G.

    The physical characteristics of the multilayer scintillation spectrometer (MSS) for identification and energy measurement of cosmic electrons, positrons and nuclei are considered in this paper. This spectrometer is made on the basis of several plastic scintillator plates with various thick viewed by photomultipliers. Two upper layers are strips of orthogonal scintillators. The nuclei energy measurement range is 3 - 100 MeV/nucleon. Spectrometer is planning for space weather monitoring and investigation of solar-magnetospheric and geophysics effects on satellite. MSS time resolution is about 1 microsecond and it can measure the time profiles of fast processes in the Earth's magnetosphere. Spectrometer experimental characteristics were estimated by means of computer simulation. The ionization loss fluctuations, ion charge exchange during pass through detector and, especially, scintillation quenching effect (Bircs effect) were taken into account in calculations.

  9. Bismuth germanate scintillators: Applications in nuclear safeguards and health physics

    NASA Astrophysics Data System (ADS)

    Moss, C. E.; Dowdy, E. J.; Lucas, M. C.

    Bismuth germanate (BGO) scintillators are preferable to NaI(Tl) scintillators or germanium detectors for some applications in nuclear safeguards and health physics. The first system, which consists of eight scintillators and a computer-based data acquisition system, is very efficient. The second, which consists of one scintillator and a small analyzer, is less efficient but portable. A computer code that uses measured response functions and photopeak efficiencies, unfolds the BGO distributions measured with these systems to determine gamma-ray flux spectra and dose rates. One application of these systems is the accurate determination of flux spectra and dose rates from containers of uranium or plutonium. A second application determined these quantities from a replica of Little Boy, the device exploded over Hiroshima.

  10. Bismuth germanate scintillators: applications in nuclear safeguards and health physics

    SciTech Connect

    Moss, C.E.; Dowdy, E.J.; Lucas, M.C.

    1985-05-01

    Bismuth germanate (BGO) scintillators are preferable to NaI(Tl) scintillators or germanium detectors for some applications in nuclear safeguards and health physics. The first system, which consists of eight scintillators and a computer-based data acquisition system, is very efficient. The second, which consists of one scintillator and a small analyzer, is less efficient but portable. A computer code that uses measured response functions and photopeak efficiencies, unfolds the BGO distributions measured with these systems to determine gamma-ray flux spectra and dose rates. One application of these systems is the accurate determination of flux spectra and dose rates from containers of uranium or plutonium. A second application determined these quantities from a replica of Little Boy, the device exploded over Hiroshima. 7 refs., 6 figs.

  11. Simultaneous observations of equatorial ionospheric scintillation on four frequencies

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Deshpande, M. R.; Vadher, N. M.; Davies, K.; Parikh, P. B.

    1978-01-01

    The variation with frequency of ionospheric scintillations, simultaneously observed at 40, 140, 360, and 860 MHz at equatorial latitudes, was studied. The ATS 6 geostationary satellite was equipped with radio beacons at 40, 140, and 360 MHz, and also with a television downlink at 860 MHz. The signals were recorded at Ootacamund, India (dip 4 deg N) and were most common between 2000 and 2300 LT. It was found that the spectral index of an expression used by Aarons et al (1967) was not constant but decreased with increasing magnitude of scintillations. For weak scintillations the spectral index (referred to as the exponent) was found to be close to 1.0. The analysis of the records involved scaling at 15-sec intervals and the calculation of the average scintillation index.

  12. Experimental efforts and results in finding new heavy scintillators

    SciTech Connect

    Derenzo, S.E.; Moses, W.W.

    1992-09-01

    New heavy scintillators are being discovered with increasing frequency. In recent years NaI(Tl) (with its high light output and energy resolution) has been joined by BGO (with its high stopping power), BaF{sub 2} (with its excellent timing resolution), and CeF{sub 3} (with its speed and short Moliere radius). More than 10 potentially useful scintillators have been under development in the past five years, such as PbSO{sub 4} and Lu{sub 2}SiO{sub 5}(Ce). We tabulate the characteristics of these and other scintillators, including wavelength, luminous efficiency, decay time, and initial intensity. We describe a search strategy and the prospects for finding the ``ideal`` heavy scintillator, which would combine the light output of NaI(Tl) and CsI(Tl), the stopping power of BGO, and the speed of BaF{sub 2} and ZnO(Ga).

  13. Robust detection of ionospheric scintillations using MF-DFA technique

    NASA Astrophysics Data System (ADS)

    Miriyala, Sridhar; Koppireddi, Padma Raju; Chanamallu, Srinivasa Rao

    2015-12-01

    The performance of Global Navigation Satellite System (GNSS) receivers is limited by the ionospheric scintillation effects that cause signal degradation due to refraction, reflection and scattering of the signals. Hence, there is a need to develop an ionospheric scintillation detection technique for robust GNSS receivers. In this paper, a new algorithm based on multifractal detrended fluctuation analysis (MF-DFA) is proposed for detecting the ionospheric irregularities. The ionospheric and scintillation GNSS data recorded at Koneru Lakshmaiah (KL) University, Guntur, India, was considered for the analysis. The carrier to noise ratio ( C/ N 0) time series data of GNSS satellite vehicles that are affected due to scintillations was decomposed using adaptive time-frequency methods like empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and complementary ensemble empirical mode decomposition (CEEMD). It was observed that the CEEMD method combined with MF-DFA provides better results as compared to the EMD and EEMD techniques.

  14. Final LDRD report : advanced plastic scintillators for neutron detection.

    SciTech Connect

    Vance, Andrew L.; Mascarenhas, Nicholas; O'Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  15. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  16. Investigation of Plastic Scintillator Detector Configurations for Neutron Studies

    NASA Astrophysics Data System (ADS)

    Matei, Catalin; Bardayan, D. W.; Blackmon, J. C.; Howard, J. A.; Cizewski, J. A.; O'Malley, P. D.; Pain, S. D.; Peters, W. A.; Grzywacz, R. K.; Jones, K. L.; Liddick, S. N.

    2007-10-01

    Plastic scintillation products are widely used for detecting nuclear radiation. Measurements of the response of plastic scintillator detectors to different radiations are important in the design phase of a detection system and as an initial input in Monte Carlo simulation codes. We performed test measurements of the light response, attenuation length, time and position resolution, and detection efficiency of Bicron BC408 plastic scintillator. Four plastic scintillator bars of dimensions 2.9x2.9x60 cm^3 and 5x5x200 cm^3 have been developed to be used in (d,n) and beta-delayed neutron studies. The detectors were constructed with different reflecting materials, optical couplings and photomultiplier tube assemblies. Measurements are compared with predictions from the Monte Carlo simulation code GEANT4. Details of the experimental configuration and results will be presented.

  17. A more rugged ZnS(Ag) alpha scintillation detector

    SciTech Connect

    McElhaney, S.A.; Ramsey, J.A.; Bauer, M.L.; Chiles, M.M. )

    1990-04-01

    Conventional alpha scintillation detectors comprise a phosphor-coated light-pipe covered by a thin aluminized Mylar layer. This opaque radiation entrance window serves as a shield against ambient light entering the detector with minimum alpha attenuation. Unfortunately, Mylar is extremely fragile and easily punctured or torn by sticks, stones, and screws encountered during regular radiation surveys. The authors have been developing an alpha scintillation detector more rugged and durable than conventional models. This paper presents the scintillator assembly, which consists of a mixture of silver-activated zinc sulfide (ZnS(Ag)) and clear epoxy. The ZnS(Ag) scintillation powder is mixed with a low-viscosity, optically transparent epoxy and poured into a glass-smooth mold of desired shape and size.

  18. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  19. Designing and Implementing an Early Literacy Screening Protocol: Suggestions for the Speech-Language Pathologist.

    ERIC Educational Resources Information Center

    Justice, Laura M.; Invernizzi, Marcia A.; Meier, Joanne D.

    2002-01-01

    This article provides a rationale for incorporating early literacy screening into speech language services for young children with communication impairments. Recommendations concern identifying which children and what areas of literacy should be targeted for screening. Guidelines for interpreting findings and for using screening to guide early

  20. High effective atomic number polymer scintillators for gamma ray spectroscopy

    DOEpatents

    Cherepy, Nerine Jane; Sanner, Robert Dean; Payne, Stephen Anthony; Rupert, Benjamin Lee; Sturm, Benjamin Walter

    2014-04-15

    A scintillator material according to one embodiment includes a bismuth-loaded aromatic polymer having an energy resolution at 662 keV of less than about 10%. A scintillator material according to another embodiment includes a bismuth-loaded aromatic polymer having a fluor incorporated therewith and an energy resolution at 662 keV of less than about 10%. Additional systems and methods are also presented.

  1. Liquid scintillators and composites in fast neutron detection

    NASA Astrophysics Data System (ADS)

    Iwanowska, J.; Swiderski, L.; Moszynski, M.

    2012-04-01

    Helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. One of the option is application of liquid scintillators widely used in detection of fast neutrons, mostly in physics experiments, especially in applications where large volumes are required. Moreover, recently studied 10B loaded liquid scintillators cover detection of neutrons down to thermal energy. The several years' studies of liquid scintillators in our laboratory, brought us a knowledge about their efficiency to neutron detection, gamma sensitivity, etc. We have also tested composite scintillators, which are an alternative to organic single crystals, used in the 70's last century. In the report, we will present the results of the study of several liquid scintillators, also 10B loaded, as well as high flashpoint ones. We also show the neutron detection properties of some samples of composite scintillators. Composites are based on small grains of p-terphenyl or stilbene, introduced into a polymer matrix, which acts as a diffuser. The composite is encapsulated in a housing made of organic glass. P-terphenyl and stilbene are organic scintillators, which were commonly used in the seventies last century. They are characterized by good neutron/gamma discrimination properties. The present studies covers neutron/gamma discrimination by the zero-crossing method, a comparison of detection efficiency of liquid scintillators to 3He detectors and methods to reduce their gamma-ray sensitivity. In conclusion, a detection system, based on several small liquid cells of 2'' 2'', is preferred, with pulse shape discrimination circuit equipped with the pile-up rejection circuit (PUR), as well as lead and tin shielding.

  2. Scintillation-camera simulator for remote-data acquisition testing.

    PubMed

    Kan, M K

    1979-10-01

    A device based on an 8080 microprocessor was assembled for the generation of image data in a manner similar to that of the scintillation camera. This "simulator" thus permits testing of the integrity of systems for the acquisition of data over long transmission lines, without tying up the portable scintillation camera. The simulator has improved the reliability of remote-data collections and has increased the efficiency of utilization of the camera. PMID:536759

  3. Ternary liquid scintillator for optical-fiber applications

    SciTech Connect

    Franks, L.A.; Lutz, S.S.

    1981-06-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  4. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.

  5. Lanthanum Halide Nanoparticle Scintillators for Nuclear Radiation Detection

    SciTech Connect

    Guss, P. P., Guise, R., Yuan, D., Mukhopadhyay, S., O'Brien, R., Lowe, D.

    2013-02-01

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum tribromide, lanthanum trifluoride, or cerium tribromide. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  6. Lanthanum halide nanoparticle scintillators for nuclear radiation detection

    SciTech Connect

    Guss, Paul; Guise, Ronald; O'Brien, Robert; Lowe, Daniel; Kang Zhitao; Menkara, Hisham; Nagarkar, Vivek V.

    2013-02-14

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  7. Status report on dark matter search with low activity scintillators

    NASA Astrophysics Data System (ADS)

    Bacci, C.; Belli, P.; Bernabei, R.; Dai, C.; Di Nicolantonio, W.; Ding, L. K.; Gaillard-Lecanu, E.; Giraud-Heraud, Y.; Kuang, H. H.; Incicchitti, A.; Mallet, J.; Mosca, L.; Prosperi, D.; Tao, C.; Chambon, B.; Chazal, V.; De Jsus, M.; Drain, D.; Messous, Y.; Pastor, C.; BPRS (Beijing, Paris, Roma, Saclay) Collaboration

    1994-05-01

    The BPRS experiment is dedicated to particle Dark Matter search with low activity scintillators. Preliminary results on Weakly Interacting Massive Particles (WIMPs) have been already obtained with NaI(Tl) and CaF 2(Eu) target-detectors. New detector developments are in progress. A new search for Strongly Interacting Massive Particles (SIMPs) with NaI(Tl) scintillators have been also performed.

  8. What Do Scintillations Tell Us about the Ionized ISM?

    NASA Astrophysics Data System (ADS)

    Rickett, B. J.

    2007-07-01

    I review what has been learned about the fine structure in the ionized interstellar medium from radio scintillation and scattering -- first, as it constrains the wavenumber spectrum of the electron density and second in terms of evidence from parabolic scintillation arcs for discrete structures on scales less than about 1 AU, which must be very widely distributed to account for the incidence of discrete parabolic arcs and Extreme Scattering Events.

  9. Quantum tunneling and low temperature delayed recombination in scintillating materials

    NASA Astrophysics Data System (ADS)

    Mihkov, E.; Schulman, L. S.; Jar, V.; Do?ekalov, Z.; Nikl, M.

    2013-07-01

    We study the origin of the low temperature contribution to delayed recombination decay in scintillating materials. This contribution represents the loss of fast scintillation light even at the lowest temperatures. The possible role of quantum effects, as previously suggested, is tested both experimentally and theoretically. The experiments were performed on Lu2Si2O7:Pr3+ crystals. The results suggest that quantum tunneling between the luminescence center and a nearby defect is a good candidate for explaining the observed phenomena.

  10. Development of a fast scintillator based beam phase measurement system for compact superconducting cyclotrons

    SciTech Connect

    Bhattacharjee, Tanushyam; Kanti Dey, Malay; Dhara, Partha; Roy, Suvodeep; Debnath, Jayanta; Balakrishna Bhole, Rajendra; Dutta, Atanu; Pradhan, Jedidiah; Pal, Sarbajit; Pal, Gautam; Roy, Amitava; Chakrabarti, Alok

    2013-05-15

    In an isochronous cyclotron, measurements of central phase of the ion beam with respect to rf and the phase width provide a way to tune the cyclotron for maximum energy gain per turn and efficient extraction. We report here the development of a phase measurement system and the measurements carried out at the Variable Energy Cyclotron Centre's (VECC's) K= 500 superconducting cyclotron. The technique comprises detecting prompt {gamma}-rays resulting from the interaction of cyclotron ion beam with an aluminium target mounted on a radial probe in coincidence with cyclotron rf. An assembly comprising a fast scintillator and a liquid light-guide inserted inside the cyclotron was used to detect the {gamma}-rays and to transfer the light signal outside the cyclotron where a matching photo-multiplier tube was used for light to electrical signal conversion. The typical beam intensity for this measurement was a few times 10{sup 11} pps.

  11. VHF and L-band scintillation characteristics over an Indian low latitude station, Waltair (17.7° N, 83.3° E)

    NASA Astrophysics Data System (ADS)

    Rama Rao, P. V. S.; Tulasi Ram, S.; Niranjan, K.; Prasad, D. S. V. V. D.; Gopi Krishna, S.; Lakshmi, N. K. M.

    2005-10-01

    Characteristics of simultaneous VHF (244 MHz) and L-band (1.5 GHz) scintillations recorded at a low-latitude station, Waltair (17.7° N, 83.3° E), during the low sunspot activity year of March 2004 to March 2005, suggest that the occurrence of scintillations is mainly due to two types, namely the Plasma Bubble Induced (PBI), which maximizes during the post sunset hours of winter and equinoctial months, and the Bottom Side Sinusoidal (BSS) type, which maximizes during the post-midnight hours of the summer solstice months. A detailed study on the spectral characteristics of the scintillations at both the frequencies show that the post-sunset scintillations are strong with fast fading (≈40 fad/min) and are multiple in nature in scattering, giving rise to steep spectral slopes, whereas the post-midnight scintillations, which occur mostly on the VHF signal with low fading rate (≈4 fad/min), are of the BSS type, often showing typical Fresnel oscillations with reduced roll off spectral slopes, indicating that the type of irregularity resembles a thin screen structure giving rise to weak scattering. Using the onset times of several similar scintillation patches across the two satellite (FLEETSAT 73° E, INMARSAT 65° E) ray paths (sub-ionospheric points are separated by 82 km), the East ward movement of the irregularity patches is found to vary from 150 to 250 m/s during the post sunset hours and decrease slowly during the post midnight hours. Further, the east-west extent of the PBI type of irregularities is found to vary from 100 to 500 km, while that of the BSS type extend up to a few thousand kilometers. Keywords. Ionosphere (Ionospheric irregularities; Auroral ionosphere; Electric fields and currents)

  12. An auroral scintillation observation using precise, collocated GPS receivers

    NASA Astrophysics Data System (ADS)

    Garner, T. W.; Harris, R. B.; York, J. A.; Herbster, C. S.; Minter, C. F., III; Hampton, D. L.

    2011-02-01

    On 10 January 2009, an unusual ionospheric scintillation event was observed by a Global Positioning System (GPS) receiver station in Fairbanks, Alaska. The receiver station is part of the National Geospatial-Intelligence Agency's (NGA) Monitoring Station Network (MSN). Each MSN station runs two identical geodetic-grade, dual-frequency, full-code tracking GPS receivers that share a common antenna. At the Fairbanks station, a third separate receiver with a separate antenna is located nearby. During the 10 January event, ionospheric conditions caused two of the receivers to loose lock on a single satellite. The third receiver tracked through the scintillation. The region of scintillation was collocated with an auroral arc and a slant total electron content (TEC) increase of 5.71 TECu (TECu = 1016/m2). The response of the full-code tracking receivers to the scintillation is intriguing. One of these receivers lost lock, but the other receiver did not. This fact argues that a receiver's internal state dictates its reaction to scintillation. Additionally, the scintillation only affected the L2 signal. While this causes the L1 signal to be lost on the semicodelessly receiver, the full-code tracking receiver only lost the L1 signal when the receiver attempted to reacquire the satellite link.

  13. Computer Simulation of the Light Yield Nonlinearity of Inorganic Scintillators

    SciTech Connect

    Kerisit, Sebastien N.; Rosso, Kevin M.; Cannon, Bret D.; Gao, Fei; Xie, YuLong

    2009-06-01

    To probe the nature of the physical processes responsible for the nonlinear photon response of inorganic scintillators, we have combined a Monte Carlo (MC) code for calculating the microscopic spatial distributions of electron-hole pairs with a kinetic Monte Carlo (KMC) model of energy-transfer processes. In this publication, we focus on evaluating the contribution of an annihilation mechanism between self-trapped excitons (STE) to the photon response of pure CsI and Ce-doped LaBr3. A KMC model of scintillation mechanisms in pure CsI was developed previously and we introduce in this publication a similar model for Ce-doped LaBr3. We show that the KMC scintillation model is able to reproduce both the kinetics and efficiency of the scintillation process in Ce-doped LaBr3. Relative light output curves were generated at several temperatures for both scintillators from simulations carried out at 2, 5, 10, 20, 100, and 400 keV. These simulations suggest that STE-STE annihilation can account for the initial rise in relative light yield with increasing incident energy. This is due to the fact that the proportion of high-density regions decreases as the incident energy increases thus reducing the likelihood for STE-STE encounter. In addition, the simulations clearly show a lack of temperature dependence of the relative light output, in agreement with a majority of experimental work on the temperature dependence of nonlinearity in inorganic scintillators.

  14. Development of High Resolution Scintillator Systems Based on Photocell Technology

    SciTech Connect

    W.J. Kernan; L.A. Franks; M. Groza; A. Burger

    2006-01-01

    Inorganic scintillator/photomultiplier-based spectrometers are the systems of choice for a multitude of X-ray and gamma radiation measurement applications. Despite widespread use, they have numerous shortcomings. The most serious shortcoming is the relatively poor energy resolution that makes isotope identification problematic, particularly in the case of trace quantities. Energy resolution in scintillator/photomultiplier tube (PMT) spectrometers is governed by a combination of the crystal intrinsic resolution that includes non-linearity effects, photomultiplier statistics, and the variability in the probability of a scintillation photon generating a photoelectron at the photocathode. It is evident that energy resolution in these systems is linked to both the physics of light generation in the scintillator and the characteristics of the PMT. PMTs also present design problems, especially in the case of handheld and portable instruments, due to their considerable weight and volume. Additionally, PMTs require well-regulated high voltage, and are vulnerable to magnetic fields. The objective of this work is to provide instrument designers of scintillation-based gamma-ray spectrometers with superior energy resolution and greatly reduced weight and volume. It is planned to achieve this advancement by optimizing the performance of a new class of inorganic scintillators by matching their emission spectra with the enhanced quantum efficiency of certain photocells.

  15. A compound crystal with film scintillator for electron detection

    NASA Astrophysics Data System (ADS)

    McKinney, George; McDonnald, Warren; Tzolov, Marian

    2015-03-01

    Yttrium Aluminum Garnets (YAG) and Yttrium Aluminum Perovskite (YAP) are widely used as electron detectors. This application requires a top conducting layer which hinders their application at low electron energies. We have developed a layer of zinc tungstate which delivers conductivity large enough to prevent charging while still being an efficient scintillator. For better coupling between the two systems we have studied their optical properties. Ce doping is an essential element in YAP and YAG in order for them to be efficient scintillators. We have studied the Ce content and we show that higher Ce content leads to reabsorption in the YAP scintillators. These details were revealed by using photoluminescence emission and excitation spectroscopy. The absorption spectrum for the YAG scintillators coincides with the excitation for the main emission lines. The optical studies of the zinc tungstate films and a single crystal have shown that the films are more efficient light emitters. We have integrated the zinc tungstate films with YAG scintillators and we will report on the performance of this compound scintillator. It is expected that it will perform well at low and high electron energies, which makes it a very cost effective platform for electron detectors.

  16. Response of plastic scintillators to low-energy photons.

    PubMed

    Peralta, Luis; Rgo, Florbela

    2014-08-21

    Diagnostic radiology typically uses x-ray beams between 25 and 150?kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100?kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0?mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35?keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span. PMID:25079252

  17. Broadband meter-wavelength observations of ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Fallows, R. A.; Coles, W. A.; McKay-Bukowski, D.; Vierinen, J.; Virtanen, I. I.; Postila, M.; Ulich, Th.; Enell, C.-F.; Kero, A.; Iinatti, T.; Lehtinen, M.; Orisp, M.; Raita, T.; Roininen, L.; Turunen, E.; Brentjens, M.; Ebbendorf, N.; Gerbers, M.; Grit, T.; Gruppen, P.; Meulman, H.; Norden, M. J.; de Reijer, J.-P.; Schoenmakers, A.; Stuurwold, K.

    2014-12-01

    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally, these observations are relatively narrow band. With Low-Frequency Array (LOFAR) technology at the Kilpisjrvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a three-octave bandwidth. "Parabolic arcs," which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broadband observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250 MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments and indicate that scattering is most likely to be associated more with the topside ionosphere than the F region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.

  18. Observations of GPS scintillation during an isolated auroral substorm

    NASA Astrophysics Data System (ADS)

    Hosokawa, Keisuke; Otsuka, Yuichi; Ogawa, Yasunobu; Tsugawa, Takuya

    2014-12-01

    This paper reports simultaneous observations of ionospheric scintillation during an auroral substorm that were made using an all-sky full-color digital single-lens reflex (DSLR) camera (ASC) and a Global Positioning System (GPS) ionospheric scintillation and total electron content monitor (GISTM) in Tromsø (69.60 N, 19.20 E), Norway. On the night of November 19, 2009, a small substorm occurred in northern Scandinavia. The ASC captured its temporal evolution from the beginning of the growth phase to the end of the recovery phase. The amplitude scintillation, as monitored by the S4 index from the GISTM, did not increase in any substorm phase. By contrast, phase scintillation, as measured by the σ φ index, occurred when discrete auroral arcs appeared on the GPS signal path. In particular, the phase scintillation was significantly enhanced for a few minutes immediately after the onset of the expansion phase. During this period, bright and discrete auroral forms covered the entire sky, which implies that structured precipitation on the scale of a few kilometers to a few tens of kilometers dominated the electron density distribution in the E region. Such inhomogeneous ionization structures probably produced significant changes in the refractive index and eventually resulted in the enhancement of the phase scintillation.

  19. Response of plastic scintillators to low-energy photons

    NASA Astrophysics Data System (ADS)

    Peralta, Luis; Rêgo, Florbela

    2014-08-01

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  20. Data Quality Screening Service

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Lynnes, Christopher; Hearty, Thomas; Won, Young-In; Fox, Peter; Zednik, Stephan

    2013-01-01

    A report describes the Data Quality Screening Service (DQSS), which is designed to help automate the filtering of remote sensing data on behalf of science users. Whereas this process often involves much research through quality documents followed by laborious coding, the DQSS is a Web Service that provides data users with data pre-filtered to their particular criteria, while at the same time guiding the user with filtering recommendations of the cognizant data experts. The DQSS design is based on a formal semantic Web ontology that describes data fields and the quality fields for applying quality control within a data product. The accompanying code base handles several remote sensing datasets and quality control schemes for data products stored in Hierarchical Data Format (HDF), a common format for NASA remote sensing data. Together, the ontology and code support a variety of quality control schemes through the implementation of the Boolean expression with simple, reusable conditional expressions as operands. Additional datasets are added to the DQSS simply by registering instances in the ontology if they follow a quality scheme that is already modeled in the ontology. New quality schemes are added by extending the ontology and adding code for each new scheme.