Science.gov

Sample records for scintillator detector setup

  1. Laue Diffraction Using Scintillator Detectors

    NASA Astrophysics Data System (ADS)

    Iles, Gail N.; Peetermans, Steven; Schorr, Susan; Lehmann, Eberhard

    The Fast Acquisition Laue Camera for Neutrons (FALCON) is a thermal neutron Laue diffractometer at HZB in Berlin. The instrument comprises two scintillator plate detectors coupled to four iCCD cameras each. One detector is placed in the backscattering position, enabling neutrons to pass through the centre of the detector box. The second detector is free to be placed either in the direct transmission position, or rotated to positions around the sample. The image-intensified CCDs, supplied by Photonic Science Ltd as components of the detector units, are capable of obtaining 20-bit digitization Laue images in under ten seconds. Whilst our instrument will be used as a diffractometer primarily for crystal structure determination, the configuration of the detectors is similar to ICON at PSI in Switzerland, especially in their 'double detector set-up'. In 2015 FALCON enters the commissioning phase whereby one of our activities will be to calibrate the detector units using CONRAD, the cold neutron imaging instrument of HZB. CONRAD will be used to characterise those factors which affect the total efficiency of the detectors i.e. cameras, lenses, CCD chips and the scintillators themselves e.g. homogeneity of the scintillator plate thickness.

  2. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  3. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  4. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A. (Oak Ridge, TN); Chiles, Marion M. (Knoxville, TN)

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  5. Energy resolution of scintillation detectors

    NASA Astrophysics Data System (ADS)

    Moszy?ski, M.; Syntfeld-Ka?uch, A.; Swiderski, L.; Grodzicka, M.; Iwanowska, J.; Sibczy?ski, P.; Szcz??niak, T.

    2016-01-01

    According to current knowledge, the non-proportionality of the light yield of scintillators appears to be a fundamental limitation of energy resolution. A good energy resolution is of great importance for most applications of scintillation detectors. Thus, its limitations are discussed below; which arise from the non-proportional response of scintillators to gamma rays and electrons, being of crucial importance to the intrinsic energy resolution of crystals. The important influence of Landau fluctuations and the scattering of secondary electrons (?-rays) on intrinsic resolution is pointed out here. The study on undoped NaI and CsI at liquid nitrogen temperature with a light readout by avalanche photodiodes strongly suggests that the non-proportionality of many crystals is not their intrinsic property and may be improved by selective co-doping. Finally, several observations that have been collected in the last 15 years on the influence of the slow components of light pulses on energy resolution suggest that more complex processes are taking place in the scintillators. This was observed with CsI(Tl), CsI(Na), ZnSe(Te), and undoped NaI at liquid nitrogen temperature and, finally, for NaI(Tl) at temperatures reduced below 0 °C. A common conclusion of these observations is that the highest energy resolution, and particularly intrinsic resolution measured with the scintillators, characterized by two or more components of the light pulse decay, is obtainable when the spectrometry equipment integrates the whole light of the components. In contrast, the slow components observed in many other crystals degrade the intrinsic resolution. In the limiting case, afterglow could also be considered as a very slow component that spoils the energy resolution. The aim of this work is to summarize all of the above observations by looking for their origin.

  6. Timing resolution of the FINUDA scintillation detectors

    NASA Astrophysics Data System (ADS)

    Dalena, B.; D'Erasmo, G.; Di Santo, D.; Fiore, E. M.; Palomba, M.; Simonetti, G.; Andronenkov, A.; Pantaleo, A.; Paticchio, V.; Faso, D.

    2009-05-01

    Experimental characterizations of scintillation detectors timing performance of the internal (TOFINO) and external (TOFONE) scintillator barrels used in FINUDA experiment are presented. The measurements take advantage of detecting synchronous particle pairs produced in the reactions, namely e+e- pairs from Bhabha collisions between the primary beams and K+K- pairs from ?(1020) decay. The method used for synchronizing the multiple detectors constituting the scintillator barrels is also described as being carried out in two steps: a rough one online by the injection of laser light pulses flashing the scintillators all together, and a fine one offline exploiting the timing features of e+e- and K+K- pairs.

  7. Comparisons of Scintillating Fiber, Diamond Particle Detector

    E-print Network

    McDonald, Kirk

    Comparisons of Scintillating Fiber, Diamond Particle Detector and Beam Current Transformer T. Tsang TP #12;Diamond particle detector Shot # 17017 Shot # 17006 typical diamond detector signal trace from Marcus Palm #12;Nov. 11, 2007, 17000 series data Red: x, diamond particle detector signal @ left 20o

  8. A mobile antineutrino detector with plastic scintillators

    E-print Network

    Yasuhiro Kuroda; Shugo Oguri; Yo Kato; Ryoko Nakata; Yoshizumi Inoue; Chikara Ito; Makoto Minowa

    2012-06-28

    We propose a new type segmented antineutrino detector made of plastic scintillators for the nuclear safeguard application. A small prototype was built and tested to measure background events. A satisfactory unmanned field operation of the detector system was demonstrated. Besides, a detailed Monte Carlo simulation code was developed to estimate the antineutrino detection efficiency of the detector.

  9. Position reconstruction in large-area scintillating fibre detectors

    NASA Astrophysics Data System (ADS)

    Mahata, K.; Johansson, H. T.; Paschalis, S.; Simon, H.; Aumann, T.

    2009-09-01

    A new analysis procedure has been developed for the large-area scintillating fibre detectors with position-sensitive photomultiplier (PSPM) readout used for heavy ions in the LAND set-up at GSI. It includes gain matching of the PSPM, calibration of the PSPM fibre mask and hit reconstruction. This procedure allows for a quasi-online calibration of this tracking device. It also allows for a precise determination of the position close to the intrinsic detector resolution of 1 mm pitch together with careful treatment of individual event accuracies.

  10. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E. (Los Alamos, NM); Fowler, Malcolm M. (Los Alamos, NM)

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  11. Scintillating bar detector for antiproton annihilations measurements

    NASA Astrophysics Data System (ADS)

    Corradini, M.; Leali, M.; Rizzini, E. Lodi; Mascagna, V.; Prest, M.; Vallazza, E.; Venturelli, L.

    2015-08-01

    A detector used in two different experiments of the ASACUSA Collaboration at the CERN Antiproton Decelerator is presented. It consists of several modules, each one made of ~1 m long scintillating bars, which allows the detection of the charged particles produced in the antiproton-nuclei annihilations. The modularity of the detector, its electronics readout and the data acquisition system have been designed to be adapted to different experimental conditions.

  12. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S. (Santa Monica, CA); Hoffman, Edward J. (Los Angeles, CA)

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  13. Current trends in scintillator detectors and materials

    SciTech Connect

    Moses, William W.

    2001-10-23

    The last decade has seen a renaissance in inorganic scintillator development for gamma ray detection. Lead tungstate (PbWO4) has been developed for high energy physics experiments, and possesses exceptionally high density and radiation hardness, albeit with low luminous efficiency. Lutetium orthosilicate or LSO (Lu2SiO5:Ce) possesses a unique combination of high luminous efficiency, high density, and reasonably short decay time, and is now incorporated in commercial positron emission tomography (PET) cameras. There have been advances in understanding the fundamental mechanisms that limit energy resolution, and several recently discovered materials (such as LaBr3:Ce) possess energy resolution that approaches that of direct solid state detectors. Finally, there are indications that a neglected class of scintillator materials that exhibit near band-edge fluorescence could provide scintillators with sub-nanosecond decay times and high luminescent efficiency.

  14. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    SciTech Connect

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today`s and tomorrow`s colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed.

  15. Pulse height model for deuterated scintillation detectors

    NASA Astrophysics Data System (ADS)

    Wang, Haitang; Enqvist, Andreas

    2015-12-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  16. Fast digitizing techniques applied to scintillation detectors

    NASA Astrophysics Data System (ADS)

    Bertalot, L.; Esposito, B.; Kaschuck, Y.; Marocco, D.; Riva, M.; Rizzo, A.; Skopintsev, D.

    2006-01-01

    A 200 MHz 12-bit fast transient recorder card has been used for the digitization of pulses from photomultipliers coupled to organic scintillation detectors. Two modes of operation have been developed at ENEA-Frascati: a) continuous acquisition up to a maximum duration of ˜ 1.3 s corresponding to the full on-board memory (256 MSamples) of the card: in this mode, all scintillation events are recorded; b) non-continuous acquisition in which digitization is triggered by those scintillaton events whose amplitude is above a threshold value: the digitizing interval after each trigger can be set according to the typical decay time of the scintillation events; longer acquisition durations (>1.3 s) can be reached, although with dead time (needed for data storage) which depends on the incoming event rate. Several important features are provided by this novel digital approach: high count rate operation, pulse shape analysis, post-experiment data re-processing, pile-up identification and treatment. In particular, NE213 scintillators have been successfully used with this system for measurements in mixed neutron (n) and gamma ( ?) radiation fields from fusion plasmas: separation between ? and neutron events is made by means of a dedicated software comparing the pulse charge integrated in two different time intervals and simultaneous neutron and ? pulse height spectra can be recorded at total count rates in the MHz range. It has been demonstrated that, for scintillation detection applications, 12-bit fast transient recorder cards offer improved performance with respect to analogue hardware; other radiation detectors where pulse identification or high count rate is required might also benefit from such digitizing techniques.

  17. Nanocomposite scintillator, detector, and method

    DOEpatents

    Cooke, D. Wayne (Santa Fe, NM); McKigney, Edward A. (Los Alamos, NM); Muenchausen, Ross E. (Los Alamos, NM); Bennett, Bryan L. (Los Alamos, NM)

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  18. Scintillation detectors based on silicon microfluidic channels

    NASA Astrophysics Data System (ADS)

    Maoddi, P.; Mapelli, A.; Bagiacchi, P.; Gorini, B.; Haguenauer, M.; Lehmann Miotto, G.; Murillo Garcia, R.; Safai Tehrani, F.; Veneziano, S.; Renaud, P.

    2014-01-01

    Microfluidic channels obtained by SU-8 photolithography and filled with liquid scintillators were recently demonstrated to be an interesting technology for the implementation of novel particle detectors. The main advantages of this approach are the intrinsic radiation resistance resulting from the simple microfluidic circulation of the active medium and the possibility to manufacture devices with high spatial resolution and low material budget using microfabrication techniques. Here we explore a different technological implementation of this concept, reporting on scintillating detectors based on silicon microfluidic channels. A process for manufacturing microfluidic devices on silicon substrates, featuring microchannel arrays suitable for light guiding, was developed. Such process can be in principle combined with standard CMOS processing and lead to a tight integration with the readout photodetectors and electronics in the future. Several devices were manufactured, featuring microchannel geometries differing in depth, width and pitch. A preliminary characterization of the prototypes was performed by means of a photomultiplier tube coupled to the microchannel ends, in order to detect the scintillation light produced upon irradiation with beta particles from a 90Sr source. The photoelectron spectra thus obtained were fitted with the expected output function in order to extract the light yield.

  19. Small inorganic scintillators as neutron detectors

    SciTech Connect

    Bartle, C.M.; Haight, R.C.

    1998-12-01

    Small organic scintillators that exhibit pulse shape differences (PSD) in response to charged particles have been investigated as possible neutron detectors in the energy range from 1 to 200 MeV. Neutrons in this energy range can induce reactions such as (n,p) and (n,alpha) in these scintillators, and the cross sections for these reactions vary with energy. Pulse-height and PSD distributions were measured as a function of neutron energy for small crystals of NaI(Tl) and CsI(Tl) at the LANSCE-WNR pulsed spallation neutron source. PSD information indicating the relative numbers of protons and alphas produced can give information about the neutron spectrum in fast-neutron radiation fields such as those encountered in space exploration.

  20. Nonproportionality of Scintillator Detectors: Theory and Experiment

    SciTech Connect

    Payne, Stephen; Cherepy, Nerine; Hull, Giulia; Valentine, John; Moses, William; Choong, Woon-Seng

    2009-08-17

    On the basis of nonproportionality data obtained for several scintillators, we have developed a theory to describe the carrier dynamics to fit the light yield versus electron energy. The theory of Onsager was adapted to explain how the carriers form excitons or sequentially arrive at the activators to promote the ion to an excited state, and the theory of Birks was employed to allow for exciton-exciton annihilation. We then developed a second theory to deduce the degradation in resolution that results from nonproportionality by evoking Landau fluctuations, which are essentially variations in the deposited energy density that occur as the high energy electron travels along its trajectory. In general there is good agreement with the data, in terms of fitting the nonproportionality curves and reproducing the literature values of nonproportionality's contribution to the scintillator resolution. With the resurgence of interest in developing scintillator detectors that have good energy resolution, an improved understanding of nonproportionality has become a crucial matter since it presents the fundamental limit to the achievable resolution. In order to hasten an improved understanding of scintillator nonproportionality, we have constructed an instrument referred to as SLYNCI (Scintillator Light Yield Nonproportionality Compton Instrument). This is a second-generation instrument to the original device developed by Valentine and coworkers, wherein several new principles of operation have served to increase the data rate by an order of magnitude as discussed in detail in References. In the present article, the focus is on a theory to describe the measured electron response, which is the light yield as a function of the electron energy. To do this, we account for transport of carriers and excitons, in terms of how they transfer their energy to the activators with competition from nonradiative decay pathways. This work builds on the original work of Murray and coworkers, and on the understanding of excitons. We then provide a new theoretical framework from which the nonproportionality data is reduced to a measure of the degradation in resolution. We have utilized data obtained from SLYNCI to obtain accurate nonproportionality data on several scintillators, and have developed a theory to describe the carrier dynamics to fit the data for the light yield versus electron energy.

  1. Fundamental limits of scintillation detector timing precision.

    PubMed

    Derenzo, Stephen E; Choong, Woon-Seng; Moses, William W

    2014-07-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A(-1/2) more than any other factor, we tabulated the parameter B, where R = BA(-1/2). An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons ns(-1). A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons ns(-1). PMID:24874216

  2. Fundamental Limits of Scintillation Detector Timing Precision

    PubMed Central

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-01-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A?1/2 more than any other factor, we tabulated the parameter B, where R = BA?1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons/ns. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons/ns. PMID:24874216

  3. Performance comparison of scintillators for alpha particle detectors

    NASA Astrophysics Data System (ADS)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  4. Neutron detector using lithiated glass-scintillating particle composite

    DOEpatents

    Wallace, Steven (Knoxville, TN); Stephan, Andrew C. (Knoxville, TX); Dai, Sheng (Knoxville, TN); Im, Hee-Jung (Knoxville, TN)

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  5. Optimizing timing performance of silicon photomultiplier-based scintillation detectors

    PubMed Central

    Yeom, Jung Yeol; Vinke, Ruud

    2013-01-01

    Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362–33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm3 and with 3 × 3 × 20 mm3 LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm3 LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15°C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals. PMID:23369872

  6. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  7. Setup optimization toward accurate ageing studies of gas filled detectors

    NASA Astrophysics Data System (ADS)

    Abuhoza, A.; Schmidt, H. R.; Biswas, S.; Frankenfeld, U.; Hehner, J.; Schmidt, C. J.

    2013-08-01

    An infrastructure has been set up at the GSI detector laboratory to study the influence of construction materials on the ageing properties of gas filled detectors, such as multi-wire proportional chamber (MWPC), gas electron multiplier (GEM). Optimization of an ageing setup was performed by observing the variation of the normalized gain obtained using two identical MWPCs. An accuracy in the relative gain measurement below 1% has been achieved by monitoring environmental conditions and by systematic improvements of the measuring equipment. Ageing test of fiberglass G11 has been performed.

  8. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  9. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  10. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  11. Multilayer Scintillation Detector for Nuclear Physics Monitoring of Space Weather

    NASA Astrophysics Data System (ADS)

    Batischev, A. G.; Aleksandrin, S. Yu.; Gurov, Yu. B.; Koldashov, S. V.; Lapushkin, S. V.; Mayorov, A. G.

    The physical characteristics of the multilayer scintillation spectrometer (MSS) for identification and energy measurement of cosmic electrons, positrons and nuclei are considered in this paper. This spectrometer is made on the basis of several plastic scintillator plates with various thick viewed by photomultipliers. Two upper layers are strips of orthogonal scintillators. The nuclei energy measurement range is 3 - 100 MeV/nucleon. Spectrometer is planning for space weather monitoring and investigation of solar-magnetospheric and geophysics effects on satellite. MSS time resolution is about 1 microsecond and it can measure the time profiles of fast processes in the Earth's magnetosphere. Spectrometer experimental characteristics were estimated by means of computer simulation. The ionization loss fluctuations, ion charge exchange during pass through detector and, especially, scintillation quenching effect (Bircs effect) were taken into account in calculations.

  12. Table-top setup for investigating the scintillation properties of liquid argon

    E-print Network

    Heindl, T; Fedenev, A; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A

    2015-01-01

    The spectral and temporal light emission properties of liquid argon have been studied in the context of its use in large liquid rare-gas detectors for detecting Dark Matter particles in astronomy. A table-top setup has been developed. Continuous and pulsed low energy electron beam excitation is used to stimulate light emission. A spectral range from 110 to 1000 nm in wavelength is covered by the detection system with a time resolution on the order of 1 ns.

  13. Scintillation detectors in gamma spectral logging; geometry, absorption and calibration

    USGS Publications Warehouse

    Schimschal, Ulrich

    1980-01-01

    The theory for the evaluation of the effects of geometry in gamma ray absorption is developed for cylindrical scintillation detectors as applicable to borehole gamma spectrometry. The results of a laboratory experiment are shown for comparison. A calibration procedure to determine detector efficiency is given for application to borehole probes. It is shown that the response of a crystal can be separated in terms of geometric effects and instrumentation effects. It is also shown that approximating crystal detectors with point detectors in mathematical theory is grossly oversimplified. (USGS)

  14. The design of the totally active scintillator detector

    NASA Astrophysics Data System (ADS)

    Mefodiev, A. V.; Kudenko, Y. G.

    2015-11-01

    In the project of Advanced European Infrastructures for Detectors at Accelerators (AIDA), the Institute of Nuclear Research designed and tested the Totally Active Scintillator Detector (TASD). This paper reports the results of design of TASD prototype and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. TASD consists of 50 modules of plastic scintillators. Each module is instrumented with one X and one Y plane, with 90 scintillator bars per plane. The bar width, height and length are 1.0 cm, 0.7 cm and 90 cm respectively. The distance between modules can be varied from 0 to 2.5 cm. Other components such as active detectors or passive sheets of material can be inserted in these 2.5 cm gaps if required. The full detector depth can therefore be varied from 75 cm to 200 cm and in its compact form, it is 1 m3 in volume. The paper presents measurement results for the TASD elements that included in the prototype elements (measurement of crosscurrents, the light yield of scintillators, and the characteristics of photodiodes).

  15. Characterization of MRI-compatible PET detector modules by optical excitation of the scintillator material

    NASA Astrophysics Data System (ADS)

    Játékos, Balázs; Kolozsi, Zoltán; Lorincz, Emoke; Ujhelyi, Ferenc; Barócsi, Attila; Erdei, Gábor

    2012-04-01

    In the field of biomedical imaging there is a strong interest in combining modalities of positron emission tomography (PET) and magnetic resonance imaging (MRI). An MRI-compatible PET detector module has to be insensitive to the magnetic field that is why it needs to incorporate avalanche photodiodes (APD) or silicon photomultipliers (SiPM). We propose a new purely optical characterization method for these devices where no nuclear source is needed. In our method we use LED sources for both the direct illumination of silicon sensors and fluorescent excitation of the scintillator material. With this method we can measure the response characteristic and uniformity of pixels in sensor arrays as well as the optical cross-talk between neighboring pixels. In the same experimental setup we can also emulate the pulse response of the detector module (i.e. light-spread over the sensor array from a point source in the scintillator material). We present the detailed construction of the experimental setup and analyze the benefits and drawbacks of this method compared to the nuclear measurements. The viability of the idea is proven through the characterization of a SiPM array and a block detector module based on it.

  16. Monte Carlo simulation of the data acquisition chain of scintillation detectors

    SciTech Connect

    Binda, F.; Ericsson, G.; Hellesen, C.; Hjalmarsson, A.; Eriksson, J.; Skiba, M.; Conroy, S.; Weiszflog, M.

    2014-08-21

    The good performance of a detector can be strongly affected by the instrumentation used to acquire the data. The possibility of anticipating how the acquisition chain will affect the signal can help in finding the best solution among different set-ups. In this work we developed a Monte Carlo code that aims to simulate the effect of the various components of a digital Data Acquisition system (DAQ) applied to scintillation detectors. The components included in the model are: the scintillator, the photomultiplier tube (PMT), the signal cable and the digitizer. We benchmarked the code against real data acquired with a NE213 scintillator, comparing simulated and real signal pulses induced by gamma-ray interaction. Then we studied the dependence of the energy resolution of a pulse height spectrum (PHS) on the sampling frequency and the bit resolution of the digitizer. We found that exceeding some values of the sampling frequency and the bit resolution improves only marginally the performance of the system. The method can be applied for the study of various detector systems relevant for nuclear techniques, such as in fusion diagnostics.

  17. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  18. Performance of a long plastic scintillator detector for neutron studies

    NASA Astrophysics Data System (ADS)

    Celano, L.; Tagliente, G.; D'Erasmo, G.; Pantaleo, A.; Colonna, N.; Fiore, E. M.; Rui, R.

    1997-02-01

    We present the performance of a very long position-sensitive plastic scintillator detector, to be used in hypernuclei studies with the Finuda apparatus at the Da?ne accelerator of Frascati, Italy. The detector response to neutrons of 40 < E < 100 MeV was measured in a dedicated experiment at Triumf, Vancouver. By comparing the measured response functions with the results of a Geant-based simulation, we have estimated the detector efficiency as a function of energy, light output threshold and impact position.

  19. Monte Carlo based calibration of scintillation detectors for laboratory and in situ gamma ray measurements.

    PubMed

    van der Graaf, E R; Limburg, J; Koomans, R L; Tijs, M

    2011-03-01

    The calibration of scintillation detectors for gamma radiation in a well characterized setup can be transferred to other geometries using Monte Carlo simulations to account for the differences between the calibration and the other geometry. In this study a calibration facility was used that is constructed from bricks of well-known activity concentrations of ??K and of radionuclides from the ²³?U- and ²³²Th-series. Transfer of the calibration was attempted to a Marinelli beaker geometry with the detector inside a lead shield and to an in situ application with the detector positioned on a sand bed. In general this resulted in good correspondence (within 5-10%) between the activity concentrations derived using the transferred calibration and activities that were derived by independent measurements. Some discrepancies were identified that were attributed to coincident summing in the natural decay series and interference of radon. PMID:21251733

  20. New approaches in medical imaging using plastic scintillating detectors

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. V.; Anderson, J. A.; Antich, P. P.; Prior, J. O.; Zhang, Y.; Fernando, J.; Constantinescu, A.; Goomer, N. C.; Parkey, R. W.; Fenyves, E.; Chaney, R. C.; Srivastava, S. C.; Mausner, L. F.

    1993-06-01

    A small animal imaging camera was built in our laboratory, using-fast plastic scintillating detectors ( ? = 2-4 ns) and position sensitive photomultipliers (Hamamatsu) digitized using flash ADCs. Pinhole collimators were used for 125I imaging to achieve submillimeter resolution with scintillating plates of 28 mm radius and 1.5 mm thickness. A high resolution PET module was constructed with arrays of 1.0 mm diameter plastic scintillating fibers. The feasibility of high resolution imaging was demonstrated by the study of brain blood flow in a rat using 125I IMP in single photon detection mode and with 64Cu PTSM by using PET mode. Construction of single photon and positron emission tomographic imaging systems for small animals and subsequently for human imaging is in progress.

  1. A directional gamma-ray detector based on scintillator plates

    NASA Astrophysics Data System (ADS)

    Hanna, D.; Sagnières, L.; Boyle, P. J.; MacLeod, A. M. L.

    2015-10-01

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  2. Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors

    E-print Network

    Michael Wurm; Franz von Feilitzsch; Marianne Goeger-Neff; Martin Hofmann; Tobias Lachenmaier; Timo Lewke; Teresa Marrodan Undagoitita; Quirin Meindl; Randoplh Moellenberg; Lothar Oberauer; Walter Potzel; Marc Tippmann; Sebastian Todor; Christoph Traunsteiner; Juergen Winter

    2010-04-06

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, and Dodecane which are under discussion for next-generation experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  3. Development of scintillation detectors based on avalanche microchannel photodiodes

    NASA Astrophysics Data System (ADS)

    Britvitch, I.; Lorenz, E.; Olshevski, A.; Renker, D.; Sadygov, Z.; Scheuermann, R.; Stoykov, A.; Werner, A.; Zheleznykh, I.

    2007-02-01

    Avalanche Microchannel PhotoDiodes (AMPDs) are solid state photodetectors with high internal gain and a density of independent channels up to 10 4/mm 2. They are potential substitutes for photomultiplier tubes in a wide variety of applications in nuclear physics and nuclear medicine, especially when fine segmentation of the detectors and their operation in high magnetic fields is required. In this work, we study the performance of a detector based on a LYSO (2×2×10 mm 3) scintillation crystal and AMPD at detection of 511 keV ?-quanta. The detector shows linear energy response, an energy resolution of ˜12%, and sub-nanosecond time resolution. These characteristics are encouraging for using AMPDs in detector systems of positron emission tomographs (PET) of the next generation.

  4. Position sensitive scintillator based detector improvements by means of an integrated front-end

    NASA Astrophysics Data System (ADS)

    Herrero, V.; Ferrando, N.; Martínez, J. D.; Lerche, Ch. W.; Monzó, J. M.; Mateo, F.; Colom, R. J.; Gadea, R.; Sebastià, A.; Benlloch, J. M.

    2009-06-01

    PESIC is an integrated front-end for multianode photomultiplier based nuclear imaging devices. Its architecture has been designed to improve position sensitive detectors behavior by equalizing its response over its whole area. Its preamplying stage introduces two main benefits: digitally programmable gain adjustment for every photomultiplier output, and isolation from other front-end electronics by means of current buffers. This last feature allows to use different types of photomultipliers and optimizes front-end deadtime, reducing impact position dependent output delay. PESIC also includes an indirect measurement of the depth of interaction of the gamma ray inside the scintillator crystal, based on the width of its light distribution. Test measurements have been carried out in an experimental dual detector PET setup in order to quantify improvements obtained from integrated front-end calibration capabilities.

  5. Antineutrino geophysics with liquid scintillator detectors

    NASA Astrophysics Data System (ADS)

    Rothschild, Casey G.; Chen, Mark C.; Calaprice, Frank P.

    Detecting the antineutrinos emitted by the decay of radioactive elements in the mantle and crust could provide a direct measurement of the total abundance of uranium and thorium in the Earth. In calculating the antineutrino flux at specific sites, the local geology of the crust and the background from the world's nuclear power reactors are important considerations. Employing a global crustal map, with type and thickness data, and using recent estimates of the uranium and thorium distribution in the Earth, we calculate the antineutrino event rate for two new neutrino detectors. We show that spectral features allow terrestrial antineutrino events to be identified above reactor antineutrino backgrounds and that the uranium and thorium contributions can be separately determined.

  6. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and DQE metrics for clinical EPID and CBCT systems based on a novel adaptation of a traditional line-pair resolution bar-pattern. This research provides two significant benefits to radiotherapy: the characterization of a new generation of thick scintillator based megavoltage x-ray imagers for CBCT based IGRT, and the novel adaptation of fundamental imaging metrics from imaging research to routine clinical performance monitoring.

  7. Time-based position estimation in monolithic scintillator detectors.

    PubMed

    Tabacchini, Valerio; Borghi, Giacomo; Schaart, Dennis R

    2015-07-21

    Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest scintillation photons can be recorded by each of the photosensor pixels every time a gamma interaction occurs. Generally, the time stamps are used to determine the gamma interaction time while the light intensities are used to estimate the 3D position of the interaction point. In this work we show that the spatio-temporal distribution of the time stamps also carries information on the location of the gamma interaction point and thus the time stamps can be used as explanatory variables for position estimation. We present a model for the spatial resolution obtainable when the interaction position is estimated using exclusively the time stamp of the first photon detected on each of the photosensor pixels. The model is shown to be in agreement with experimental measurements on a 16?mm??×??16?mm??×??10?mm LSO?:?Ce,0.2%Ca crystal coupled to a digital photon counter (DPC) array where a spatial resolution of 3?mm (root mean squared error) is obtained. Finally we discuss the effects of the main parameters such as scintillator rise and decay time, light output and photosensor single photon time resolution and pixel size. PMID:26133784

  8. Time-based position estimation in monolithic scintillator detectors

    NASA Astrophysics Data System (ADS)

    Tabacchini, Valerio; Borghi, Giacomo; Schaart, Dennis R.

    2015-07-01

    Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest scintillation photons can be recorded by each of the photosensor pixels every time a gamma interaction occurs. Generally, the time stamps are used to determine the gamma interaction time while the light intensities are used to estimate the 3D position of the interaction point. In this work we show that the spatio-temporal distribution of the time stamps also carries information on the location of the gamma interaction point and thus the time stamps can be used as explanatory variables for position estimation. We present a model for the spatial resolution obtainable when the interaction position is estimated using exclusively the time stamp of the first photon detected on each of the photosensor pixels. The model is shown to be in agreement with experimental measurements on a 16?mm??×??16?mm??×??10?mm LSO?:?Ce,0.2%Ca crystal coupled to a digital photon counter (DPC) array where a spatial resolution of 3?mm (root mean squared error) is obtained. Finally we discuss the effects of the main parameters such as scintillator rise and decay time, light output and photosensor single photon time resolution and pixel size.

  9. Scintillator and solid-state neutron detectors and their applications

    NASA Astrophysics Data System (ADS)

    Carturan, Sara Maria; Marchi, Tommaso; Fanchini, Erica; De Vita, Raffaella; Finocchiaro, Paolo; Pappalardo, Alfio

    2014-10-01

    The application range of neutron detectors covers many topics, not only involving experimental research, but spanning tens of industrial, health, transport, cultural heritage fields of interest. Several studies focus on new scintillating materials where the light response, under fast and slow neutrons exposure, is triggered by proton recoil or by the presence of neutron capture materials as 10B, 6Li or 157Gd. Neutron monitors, where the robustness of silicon-based detectors can be fully exploited by coupling with suitable neutron absorber/converter materials, have recently proved their outstanding performances. Discrimination between neutron signals from other radiations, such as - or cosmic rays, is achieved through timing techniques or with pulse shape analysis. Furthermore, the choice of the detection/discrimination techniques depends on the type of application the detector will be used for. An example is Radiation Portal Monitors (RPM) for cargo inspection or luggage control that are required to satisfy specific international standards for and neutron detection efficiencies. This paper is an overview of some of the National Institute of Nuclear Physics (INFN) activities in the field of neutron detection, involving novel technologies. We will describe the most recent advances related to scintillators and silicon-based detectors coupled with thin films of suitable converters for neutron detection and we will discuss applications in the field of nuclear security.

  10. Numerical evaluation of the light transport properties of alternative He-3 neutron detectors using ceramic scintillators

    NASA Astrophysics Data System (ADS)

    Ohzu, A.; Takase, M.; Haruyama, M.; Kurata, N.; Kobayashi, N.; Kureta, M.; Nakamura, T.; Toh, K.; Sakasai, K.; Suzuki, H.; Soyama, K.; Seya, M.

    2015-10-01

    The light transport properties of scintillator light inside alternative He-3 neutron detectors using scintillator sheets have been investigated by a ray-tracing simulation code. The detector consists of a light-reflecting tube, a thin rectangular ceramic scintillator sheet laminated on a glass plate, and two photo-multiplier tubes (PMTs) mounted at both ends of the detector tube. The flashes of light induced on the surface of the scintillator sheet via nuclear interaction between the scintillator and neutrons are detected by the two PMTs. The light output at both ends of various detectors in which the scintillator sheets are installed with several different arrangements were examined and evaluated in comparison with experimental results. The results derived from the simulation reveal that the light transport property is strongly dependent on the arrangement of the scintillator sheet inside the tube and the shape of the tube.

  11. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    SciTech Connect

    Bross, A.D.

    1991-10-26

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs.

  12. Atmospheric Neutron Measurements using a Small Scintillator Based Detector

    NASA Astrophysics Data System (ADS)

    Kole, Merlin; Pearce, Mark; Fukazawa, Yasushi; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mozsi; Moretti, Elena; Yanagida, Takayuki; Chauvin, Maxime; Mikhalev, Victor; Rydstrom, Stefan; Takahashi, Hiromitsu

    PoGOLino is a standalone scintillator-based neutron detector designed for balloon-borne missions. Its main purpose is to provide data of the neutron flux in 2 different energy ranges in the high altitude / high latitude region where the highest neutron flux in the atmosphere is found. Furthermore the influence of the Solar activity upon the neutron environment in this region is relatively strong. As a result both short and long term time fluctuations are strongest in this region. At high altitudes neutrons can form a source of background for balloon-borne scientific measurements. They can furthermore form a major source for single event upsets in electronics. A good understanding of the high altitude / high latitude neutron environment is therefore important. Measurements of the neutron environment in this region are however lacking. PoGOLino contains two 5 mm thick Lithium Calcium Aluminium Fluoride (LiCAF) scintillators used for neutron detection. The LiCAF crystals are sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. The veto system makes measurements of the neutron flux possible even in high radiation environments. One LiCAF detector is shielded with polyethylene while the second remains unshielded, making the detectors sensitive in different energy ranges. The choice of a scintillator crystals as the detection material ensures a high detection efficiency while keeping the instrument small, robust and light weight. The full standalone cylindrical instrument has a radius of 120 mm, a height of 670 mm and a total mass of 13 kg, making it suitable as a piggy back mission. PoGOLino was successfully launched on March 20th 2013 from the Esrange Space Center in Northern Sweden to an altitude of 30.9 km. A detailed description of the detector design is presented, along with results of of the flight. The neutron flux measured during flight is compared to predictions based on PLANETOCOSMICS and Geant4 simulations.

  13. Modular design of long narrow scintillating cells for ILC detector

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Maloney, J.; Rykalin, V.; Schellpfeffer, J.; /Fermilab

    2005-09-01

    The experimental results for the narrow scintillating elements with effective area about 20 cm{sup 2} are reported. The elements were formed from the single piece of scintillator and were read out via wavelength shifting fibers with the MRS (Metal/Resistor/Semiconductor) photodiodes on both ends of each fiber. The formation of the cells from the piece of scintillator by using grooves is discussed. The cell performance was tested using the radioactive source by measuring the PMT current and a single rate after amplifier and discrimination with threshold at about three photo electrons in each channel and quad coincidences (double coincidences between sensors on each fiber and double coincidences between two neighboring fibers). This result is of high importance for large multi-channel systems, i.e. module may be used as an active element for calorimeter or muon system for the design of the future electron-positron linear collider detector because cell effective area can be smoothly enlarged or reduced (to 4 cm{sup 2} definitely).

  14. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 ? detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n, f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  15. Performance characterization of a new high resolution PET scintillation detector.

    PubMed

    Vandenbroucke, A; Foudray, A M K; Olcott, P D; Levin, C S

    2010-10-01

    Performance of a new high resolution PET detection concept is presented. In this new concept, annihilation radiation enters the scintillator detectors edge-on. Each detector module comprises two 8 × 8 LYSO scintillator arrays of 0.91 × 0.91 × 1 mm(3) crystals coupled to two position-sensitive avalanche photodiodes (PSAPDs) mounted on a flex circuit. Appropriate crystal segmentation allows the recording of all three spatial coordinates of the interaction(s) simultaneously with submillimeter resolution. We report an average energy resolution of 14.6 ± 1.7% for 511 keV photons at FWHM. Coincident time resolution was determined to be 2.98 ± 0.13 ns FWHM on average. The coincidence point spread function (PSF) has an average FWHM of 0.837 ± 0.049 mm (using a 500 ?m spherical source) and is uniform across the arrays. Both PSF and coincident time resolution degrade when Compton interactions are included in the data. Different blurring factors were evaluated theoretically, resulting in a calculated PSF of 0.793 mm, in good agreement with the measured value. PMID:20844332

  16. Multi-layer scintillation detector for the MOON double beta decay experiment: Scintillation photon responses studied by a prototype detector MOON-1

    E-print Network

    H. Nakamura; P. Doe; H. Ejiri; S. R. Elliott; J. Engel; M. Finger; M. Finger. Jr; K. Fushimi; V. Gehman; A. Gorin; M. Greenfield; V. H. Hai; R. Hazama; K. Higa; T. Higashiguchi; K. Ichihara; Y. Ikegami; J. Imoto; H. Ishii; T. Itahashi; H. Kaneko; P. Kavitov; H. Kawasuso; V. Kekelidze; K. Matsuoka; T. Mizuhashi; D. Noda; M. Nomachi; K. Onishi; T. Ogama; A. Para; R. G. H. Robertson; M. Sakamoto; T. Sakiuchi; Y. Samejima; Y. Shichijo; T. Shima; Y. Shimada; G. Shirkov; A. Sissakian; M. Slunecka; Y. Sugaya; A. Titov; M. Uenoyama; S. Umehara; A. Urano; V. Vatulin; V. Voronov; J. F. Wilkerson; D. I. Will; K. Yasuda; S. Yoshida; M. Yoshihuku

    2006-09-12

    An ensemble of multi-layer scintillators is discussed as an option of the high-sensitivity detector Mo Observatory Of Neutrinos (MOON) for spectroscopic measurements of neutrino-less double beta decays. A prototype detector MOON-1, which consists of 6 layer plastic-scintillator plates, was built to study the sensitivity of the MOON-type detector. The scintillation photon collection and the energy resolution, which are key elements for the high-sensitivity experiments, are found to be 1835+/-30 photo-electrons for 976 keV electrons and sigma = 2.9+/-0.1% (dE/E = 6.8+/-0.3 % in FWHM) at the Qbb ~ 3 MeV region, respectively. The multi-layer plastic-scintillator structure with good energy resolution as well as good background suppression of beta-gamma rays is crucial for the MOON-type detector to achieve the inverted hierarchy neutrino mass sensitivity.

  17. March 4, 2013 R&D towards large-liquid scintillator detectors and measurement of

    E-print Network

    McDonald, Kirk

    1 March 4, 2013 R&D towards large-liquid scintillator detectors and measurement of neutrino mass hierarchy with reactor antineutrinos at ~60km Large liquid scintillator detectors have been proposed of the fundamental nature of neutrinos with profound impact in the next decade and beyond. Measurement of mass

  18. A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    SciTech Connect

    Shao Yiping; Yao Rutao; Ma Tianyu

    2008-12-15

    The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detection condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.

  19. Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2010-06-18

    Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ((3)H-(241)Am or (90)Sr/(90)Y-(241)Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste. PMID:20685410

  20. Characteristics of scintillation detectors based on inorganic scintillators and SiPM light readout

    NASA Astrophysics Data System (ADS)

    Szcze&?acute; niak, T.; Grodzicka, M.; Moszy?ski, M.; Szaw?owski, M.; Wolski, D.; Baszak, J.

    2013-02-01

    Recently, a silicon photomultiplier (SiPM) became one of the strongest candidates for application in PET-MR or SPECT-MR dual-modality scanners. However, optimization of the scintillation detectors with SiPM light readout requires different approach than in the case of classic photomultipliers. The finite number of micro-cells in a SiPM creates nonlinear response for high number of incident photons. Moreover, the size and total number of micro-cells defines fill factor, which in turn affects the photon detection efficiency (PDE). Response of SiPMs is also highly sensitive to bias voltage causing changes in PDE and excess noise factor (ENF). Finally, each cell posses an effective dead time needed to fully recharge that cell after the photon detection. In this work the listed above unique features of SiPMs are overviewed. The reported data also contain measurements of energy resolution and 22Na time resolution.

  1. Long Baseline Neutrino Experiments with Two-Detector Setup

    NASA Astrophysics Data System (ADS)

    Minakata, Hisakazu

    I discuss why and how powerful is the two-detector setting in neutrino oscillation experiments. I cover three concrete examples: (1) reactor ?13 experiments, (2) T2KK, Tokai-to-Kamioka-Korea two-detector complex for measuring CP violation, determining the neutrino mass hierarchy, and resolving the eight-fold parameter degeneracy, (3) two-detector setting in a neutrino factory at baselines 3000 km and 7000 km for detecting effects of non-standard interactions (NSI) of neutrinos.

  2. Influence of Depth of Interaction upon the Performance of Scintillator Detectors

    PubMed Central

    Brown, Mark S.; Gundacker, Stefan; Taylor, Alaric; Tummeltshammer, Clemens; Auffray, Etiennette; Lecoq, Paul; Papakonstantinou, Ioannis

    2014-01-01

    The uncertainty in time of particle detection within a scintillator detector, characterised by the coinci- dence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no rela- tionship between the CTR and DOI is observed within experimental error. Confinement of the interaction position is seen to degrade the CTR in long scintillator crystals by 10%. PMID:24875832

  3. Structural design of a high energy particle detector using liquid scintillator

    SciTech Connect

    Berg, Timothy John; /Minnesota U.

    1997-02-01

    This thesis presents a design for a 10,000 ton liquid scintillator neutrino detector being considered for the MINOS project at Fermilab. Details of designing, manufacturing, and assembling the active detector components are presented. The detector consists of 1080 magnetized steel absorber planes alternating with 1080 active detector planes. Each active plane is made up of plastic extrusions divided into nearly 400 cells for positional resolution. Life tests on the plastic extrusions determine their feasibility for containing the scintillator. The extrusions are sealed at the bottom, filled with liquid scintillator, and have an optical fiber running the entire length of each cell. The fibers terminate at the top of each extrusion in a manifold. An optical-fiber-light-guide connects the fibers in each manifold to a photo-detector. The photo-detector converts the light signals from the scintillator and optical fibers into electrical impulses for computer analysis.

  4. Physics Potential of an Advanced Scintillation Detector: Introducing THEIA

    E-print Network

    Gabriel D. Orebi Gann; for the THEIA Interest Group

    2015-04-30

    The recent development of water-based liquid scintillator and the concurrent development of high-efficiency and high-precision-timing light sensors has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would span topics in nuclear, high-energy, and astrophysics, ranging from a next-generation neutrinoless double beta decay search capable of covering the inverted hierarchy region of phase space, to supernova neutrino detection, nucleon decay searches, and measurement of the neutrino mass hierarchy and CP violating phase. This paper describes the technical breakthroughs that led to this possibility, and the broad physics program thus enabled. This paper is a summary of a talk presented at the NuPhys 2014 conference in London.

  5. Physics Potential of an Advanced Scintillation Detector: Introducing THEIA

    E-print Network

    Gann, Gabriel D Orebi

    2015-01-01

    The recent development of water-based liquid scintillator and the concurrent development of high-efficiency and high-precision-timing light sensors has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would span topics in nuclear, high-energy, and astrophysics, ranging from a next-generation neutrinoless double beta decay search capable of covering the inverted hierarchy region of phase space, to supernova neutrino detection, nucleon decay searches, and measurement of the neutrino mass hierarchy and CP violating phase. This paper describes the technical breakthroughs that led to this possibility, and the broad physics program thus enabled. This paper is a summary of a talk presented at the NuPhys 2014 conference in London.

  6. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    SciTech Connect

    Bircher, Chad; Shao Yiping

    2012-02-15

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems.

  7. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M. (Knoxville, TN); Mihalczo, John T. (Oak Ridge, TN); Blakeman, Edward D. (Oak Ridge, TN)

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  8. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  9. Two dimensional and linear scintillation detectors for fast neutron imaging — comparative analysis

    NASA Astrophysics Data System (ADS)

    Mikerov, V. I.; Koshelev, A. P.; Ozerov, O. V.; Sviridov, A. S.; Yurkov, D. I.

    2014-05-01

    The paper was aimed to compare performance capabilities of two types of scintillation detectors commonly used for fast neutron imaging: two dimensional and linear ones. Best-case values of quantum efficiency, spatial resolution and capacity were estimated for detectors with plastic converter-screen in case of 14 MeV neutrons. For that there were examined nuclear reactions produced in converter-screen by fast neutrons, spatial distributions of energy release of emerged charged particles and amplitude distributions of scintillations generated by these particles. The paper shows that the efficiency of the linear detector is essentially higher and this detector provides potentially better spatial resolution in comparison with the two dimensional detector. But, the two dimensional detector surpasses the linear one in capacity. The presented results can be used for designing radiographic fast neutron detectors with organic scintillators.

  10. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA

    SciTech Connect

    Glebov, V. Yu.; Forrest, C.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Caggiano, J. A.; Carman, M. L.; Clancy, T. J.; Hatarik, R.; McNaney, J.; Zaitseva, N. P.

    2012-10-15

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  11. Detection of Extensive Cosmic Air Showers by Small Scintillation Detectors with Wavelength-Shifting Fibres

    ERIC Educational Resources Information Center

    Aiola, Salvatore; La Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2012-01-01

    A set of three small scintillation detectors was employed to measure correlated events due to the passage of cosmic muons originating from extensive air showers. The coincidence rate between (any) two detectors was extracted as a function of their relative distance. The difference between the arrival times in three non-aligned detectors was used…

  12. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    NASA Technical Reports Server (NTRS)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  13. Proton-induced radioactivity in NaI (Tl) scintillation detectors

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1977-01-01

    Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.

  14. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    E-print Network

    Tornyi, Tamás Gábor; Guttormsen, Magne; Larsen, Ann-Cecilie; Siem, Sunniva; Krasznahorkay, Attila; Csige, Lóránt

    2013-01-01

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers $60\\%$ of 2$\\pi$. It was designed to be used in conjunction with the SiRi array of ${\\Delta}E-E$ silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly...

  15. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Tornyi, T. G.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.; Krasznahorkay, A.; Csige, L.

    2014-02-01

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers 60% of 2?. It was designed to be used in conjunction with the SiRi array of ?E-E silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and ? decay as a function of excitation energy.

  16. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    E-print Network

    Tamás Gábor Tornyi; Andreas Görgen; Magne Guttormsen; Ann-Cecilie Larsen; Sunniva Siem; Attila Krasznahorkay; Lóránt Csige

    2013-12-02

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers $60\\%$ of 2$\\pi$. It was designed to be used in conjunction with the SiRi array of ${\\Delta}E-E$ silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and $\\gamma$ decay as a function of excitation energy.

  17. Lithium glass scintillator neutron detector as an improved alternative to the standard 3 he proportional counter

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2011-06-01

    Lithium glass scintillator made from 6Li-enriched substrate is a well known for its neutron detection capability. In spite of neutron interaction, cross section of 6Li happens to be lower than that of 3He. However, the neutron detection efficiency could be higher due to higher volume content of 6Li nuclear in the solid scintillator vs. gas filled proportional counter. At the same time, as lithium glass is sensitive to gamma and charge particle radiation, non-neutron radiation discrimination is required. Our detector is composed of two equal-size cylindrical Li(Ce) glass scintillators. The first one is high-sensitive to thermal neutrons GS-20 (6Li doped), the second one is GS-30 (7Li doped) type Scint-Gobain made lithium glass scintillator. Each of scintillators is coupled with R7400U Hamamatsu subminiature photomultiplier tube, and all assembly is fitted into NP100H 3He tube size. 6Li absorbs thermal neutrons releasing alpha particles and triton with 4.8 MeV total energy deposit inside the scintillator (equivalent to about ~1.3 MeV gamma energy depositions). Because 7Li isotope does not absorb thermal neutrons, and the physical properties of the two scintillators are virtually identical, the difference between these two scintillators could be used to provide neutron dose rate information. Results of study of neutron detector assembled of two Li(Ce) scintillators and NP100H moderator are presented

  18. Impact of geometry on light collection efficiency of scintillation detectors for cryogenic rare event searches

    E-print Network

    F. A. Danevich; V. V. Kobychev; R. V. Kobychev; H. Kraus; V. B. Mikhailik; V. M. Mokina; I. M. Solsky

    2014-04-30

    Simulations of photon propagation in scintillation detectors were performed with the aim to find the optimal scintillator geometry, surface treatment, and shape of external reflector in order to achieve maximum light collection efficiency for detector configurations that avoid direct optical coupling, a situation that is commonly found in cryogenic scintillating bolometers in experimental searches for double beta decay and dark matter. To evaluate the light collection efficiency of various geometrical configurations we used the ZEMAX ray-tracing software. It was found that scintillators in the shape of a triangular prism with an external mirror shaped as truncated cone gives the highest light collection efficiency. The results of the simulations were confirmed by carrying out measurements of the light collection efficiencies of CaWO4 crystal scintillators. A comparison of simulated and measured values of light output shows good agreement

  19. Evaluation of a reflective coating for an organic scintillation detector

    NASA Astrophysics Data System (ADS)

    Tarancón, A.; Marin, E.; Tent, J.; Rauret, G.; Garcia, J. F.

    2012-05-01

    A reflective coating based on white paint, black paint and varnish has been evaluated to determine its reflective capabilities and its potential use in radioactivity detectors based on organic scintillators. Three different white paints, all of which were based on TiO2, were also tested to determine the one with the best performance and lowest radioactivity content. In a first experiment, we evaluated the capability of the reflective coating by measuring 90Sr/90Y with PSm in a polyethylene vial partially painted with EJ510 (Eljen Technology) reflective paint, black paint and varnish. In a second experiment, we compared the performance of the EJ510 to that of other white paints used for artistic purposes (Vallejo and Rembrandt). The results showed that, when a vial was only partially painted with the white paints (keeping a window free of paint to allow photons to exit), the efficiency and spectral distribution of the painted vial was similar to that of a non-painted vial. This behavior showed the efficiency of the reflective coatings. In terms of reflection capabilities, all of the tested paints were equivalent; however, the background was higher for the EJ510 paint. Analyses using high-resolution gamma spectroscopy indicated the presence of natural radionuclides (40K, 226Ra and 228Ra) in the EJ510. On the basis of the results (high reflection capabilities and the absence of radioactive impurities) and its lower cost, the Vallejo paint was selected as the white reflective paint. The final structure of the reflective coating was composed of five white paint layers, a black paint (to avoid external light entrance) and a layer of varnish (to protect the paints).

  20. Optical simulation of monolithic scintillator detectors using GATE/GEANT4.

    PubMed

    van der Laan, D J Jan; Schaart, Dennis R; Maas, Marnix C; Beekman, Freek J; Bruyndonckx, Peter; van Eijk, Carel W E

    2010-03-21

    Much research is being conducted on position-sensitive scintillation detectors for medical imaging, particularly for emission tomography. Monte Carlo simulations play an essential role in many of these research activities. As the scintillation process, the transport of scintillation photons through the crystal(s), and the conversion of these photons into electronic signals each have a major influence on the detector performance; all of these processes may need to be incorporated in the model to obtain accurate results. In this work the optical and scintillation models of the GEANT4 simulation toolkit are validated by comparing simulations and measurements on monolithic scintillator detectors for high-resolution positron emission tomography (PET). We have furthermore made the GEANT4 optical models available within the user-friendly GATE simulation platform (as of version 3.0). It is shown how the necessary optical input parameters can be determined with sufficient accuracy. The results show that the optical physics models of GATE/GEANT4 enable accurate prediction of the spatial and energy resolution of monolithic scintillator PET detectors. PMID:20182005

  1. Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4

    NASA Astrophysics Data System (ADS)

    Hartwig, Zachary S.; Gumplinger, Peter

    2014-02-01

    We present new capabilities of the Geant4 toolkit that enable the precision simulation of organic scintillation detectors within a comprehensive Monte Carlo code for the first time. As of version 10.0-beta, the Geant4 toolkit models the data-driven photon production from any user-defined scintillator, photon transportation through arbitrarily complex detector geometries, and time-resolved photon detection at the light readout device. By fully specifying the optical properties and geometrical configuration of the detector, the user can simulate response functions, photon transit times, and pulse shape discrimination. These capabilities enable detector simulation within a larger experimental environment as well as computationally evaluating novel scintillators, detector geometry, and light readout configurations. We demonstrate agreement of Geant4 with the NRESP7 code and with experiments for the spectroscopy of neutrons and gammas in the ranges 0-20 MeV and 0.511-1.274 MeV, respectively, using EJ301-based organic scintillation detectors. We also show agreement between Geant4 and experimental modeling of the particle-dependent detector pulses that enable simulated pulse shape discrimination.

  2. Combinatorial Screening of Advanced Scintillators for High Resolution X-ray Detectors

    SciTech Connect

    Cheng, Shifan; Tao, Dejie; Lynch, Michael; Yuan, Xianglong; Li, Yiqun

    2008-05-12

    The lack of efficient scintillators is a major problem for developing powerful x-ray detectors that are widely used in homeland security, industrial and scientific research. Intematix has developed and applied a high throughput screening process and corresponding crystal growth technology to significantly speed up the discovery process for new efficient scintillators. As a result, Intematix has invented and fabricated three new scintillators both in powder and bulk forms, which possess promising properties such as better radiation hardness and better matching for silicon diode.

  3. Principal Component Analysis for pulse-shape discrimination of scintillation radiation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2016-01-01

    In this paper, we report on the application of Principal Component analysis (PCA) for pulse-shape discrimination (PSD) of scintillation radiation detectors. The details of the method are described and the performance of the method is experimentally examined by discriminating between neutrons and gamma-rays with a liquid scintillation detector in a mixed radiation field. The performance of the method is also compared against that of the conventional charge-comparison method, demonstrating the superior performance of the method particularly at low light output range. PCA analysis has the important advantage of automatic extraction of the pulse-shape characteristics which makes the PSD method directly applicable to various scintillation detectors without the need for the adjustment of a PSD parameter.

  4. Compensational scintillation detector with a flat energy response for flash X-ray measurements

    SciTech Connect

    Chen Liang; Quan Lin; Zhang Zhongbing; Ouyang Xiaoping; Liu Bin; Liu Jinliang

    2013-01-15

    To measure the intensity of flash X-ray sources directly, a novel scintillation detector with a fast time response and flat energy response is developed by combining film scintillators of doped ZnO crystal and fast organic scintillator together. Through compensation design, the dual-scintillator detector (DSD) achieved a flat energy response to X-rays from tens of keV to several MeV, and sub-nanosecond time response by coupling to ultrafast photo-electronic devices. A prototype detector was fabricated according to the theoretical design; it employed ZnO:In and EJ228 with thicknesses of 0.3 mm and 0.1 mm, respectively. The energy response of this detector was tested on monoenergetic X-ray and {gamma}-ray sources. The detector performs very well with a sensitivity fluctuation below 5% for 8 discrete energy points within the 40-250 keV energy region and for other energies of 662 keV and 1.25 MeV as well, showing good accordance with the theoretical design. Additionally, the detector works properly for the application to the flash X-ray radiation field absolute intensity measurement. This DSD may be very useful for the diagnosis of time-resolved dynamic physical processes of flash X-ray sources without knowing the exact energy spectrum.

  5. Neutron response characterization for an EJ299-33 plastic scintillation detector

    NASA Astrophysics Data System (ADS)

    Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; Flaska, Marek; Becchetti, F. D.; Pozzi, Sara A.

    2014-09-01

    Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland-security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much-expanded range of deployment relative to liquids and crystals. Here, we present a full characterization of pulse-height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light-output relations, energy resolutions, and response matrices are presented for both detectors. A continuous-spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light-output relation on the ability to detect low-energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Nevertheless the EJ299 is likely to bring a modest PSD capability into a array of field applications that are not accessible to liquids or crystals.

  6. Observation of EAS Core with the Small Scintillation Detector at Taro

    NASA Astrophysics Data System (ADS)

    Sakuyama, H.; Kuramochi, Hiroshi; Obara, Hitoshi; Ono, Shunichi; Origasa, Satoru; Mochida, Akinori; Sakayama, Hiroshi; Suzuki, Noboru

    2003-07-01

    We have observed the core structure of extensive air showers(EAS) that primary energy above 1016 eV. To measure the more detail and the correct density of the incident particles near EAS core, we installed 100 small scintillation detectors (using plastic scintillator : 15cm × 15cm × 2.5cm) that are placed on a lattice 10 × 10, and 40cm separation, at Taro Cosmic Ray Lab oratory, at autumn 2002. We report the detail of the small detector, and preliminary results.

  7. The large scintillation charged particles detector of the Tien-Shan complex “ATHLET”

    NASA Astrophysics Data System (ADS)

    Britvich, G. I.; Chernichenko, S. K.; Chubenko, A. P.; Gilitsky, Yu. V.; Kushnirenko, A. E.; Mamidzhanyan, E. A.; Pavlyuchenko, V. P.; Shein, I. V.; Soldatov, A. P.; Shepetov, A. L.; Vasil'chenko, V. G.

    2006-08-01

    A new type of scintillation detectors for the mountain cosmic ray complex ATHLET is designed at the Institute for High Energy Physics (IHEP). The detector is implemented on the basis of 10 mm thick molded polystyrene plates in conjunction with wavelength shifting fibers. It has a 1×1 m2 sensitive area, ˜99% registration efficiency of charged particles and a homogeneity of the scintillation light output better than 90%. Due to its relatively low mass and cost characteristics and the absence of an external high-voltage power source it suits well for the use in wide-spread multi-channel extensive air shower installations.

  8. A Measurement of the Scintillation Light Yield in CD4 Using a Photosensitive GEM Detector

    SciTech Connect

    Azmoun, B.; Azmoun, B.; Caccavano, A.; Rumore, M.; Sinsheimer, J.; Smirnov, N.; Stoll, S.; Woody, C.

    2010-08-01

    The absolute photon yield of scintillation light produced by highly ionizing particles in pure CF{sub 4} has been measured using a photosensitive Gas Electron Multiplier (GEM) detector. The detector consists of two standard GEMs and a CsI coated GEM which acts as a photocathode that is sensitive to the 160 nm scintillation light produced in CF{sub 4}. The light yield was determined in terms of the number of scintillation photons emitted into a 4{pi} solid angle produced per MeV of energy deposited in the gas by a 5.5 MeV alpha particle and found to be 314 {+-} 15 photons per MeV. The quantum yield was determined using a fitting method to determine the number of photoelectrons from the measured pulse height distribution, and by an independent method using the measured gain of the GEM detector. The effect of scintillation light in CF{sub 4} on the performance of Cherenkov detectors, such as the PHENIX Hadron Blind Detector (HBD) at RHIC, is also discussed.

  9. Quantum noise in digital x-ray image detectors with optically coupled scintillators

    SciTech Connect

    Flynn, M.J.; Hames, S.M.; Wilderman, S.J.; Ciarelli, J.J.

    1996-08-01

    Digital x-ray imaging detectors designed to soft x-ray (1 to 50 keV) are significant for medical mammography, dental radiography, microradiography, and microtomography. Detector designs involve either direct absorption of x-rays in solid state devices or thin scintillator screens optically coupled to solid state sensors. Well designed scintillator systems produce 10 or more electrons per detected x-ray and, used with charge coupled devices (CCD), detect 100,000 x-rays per pixel before saturation. However, if the scintillator is directly coupled to the detector, radiation can penetrate to the semiconductor detector with a small number of events producing large charge and noise. The authors have investigated the degradation of image noise by these direct absorption events using numerical models for a laboratory detector system consisting of a 60 {micro}m CsI scintillator optically coupled to a scientific CCD. Monte Carlo methods were used to estimate the charge deposition signal and noise for both the CsI and the semiconductor. Without a fiber optic coupler, direct absorptions dominate the signal and increase the signal variance by a factor of about 30 at energies above 10 keV. With a 3 mm fiber optic coupler, no significant degradation is observed for input energies below 45 keV.

  10. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect

    Winter, B.; King, S. J.; Vallance, C.; Brouard, M.

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  11. Integrated Operation of the G????-400 Gamma-Ray Telescope Scintillation Detector Systems

    NASA Astrophysics Data System (ADS)

    Runtso, Mikhail

    In this paper the question of integrated operation of scintillation detector systems AC (anticoincidence system) and SDC (scintillation detector system of calorimeter) in the G????-400 gamma-ray telescope is discussed. The main problem is the presence of so-called «backsplash current» (BSC) of particles from massive telescope calorimeter when detecting of very high-energy gamma-rays is provided. BSC is a low energy particle flux, moving up from the calorimeter and producing triggering of the AC detector, imitating detection of a charged particle. It is offered to record all events accompanied by BSC that should not result in to overload of the gamma-ray telescope in frequency of triggering. As an indicator to the number of BSC particles in the AC detector we offer the value of energy release in the C3 scintillation detector placing between two parts of the calorimeter (KK1 and KK2). Using mathematical simulation, the threshold on energy release in the C3 detector equal to 280 GeV was determined, at which the losses of gamma-quanta number in events with BSC do not exceed 10%. When detecting protons there are also events with BSC, which will be accompanied by exceeding of the indicated threshold of energy release in the ?3 detector for proton energies above 30 GeV. However, counting rate for such protons will not exceed 200 Hz, that is reasonable for the GAMMA-400 data acquisition system.

  12. Gamma-ray detector employing scintillators coupled to semiconductor drift photodetectors

    DOEpatents

    Iwanczyk, Jan S. (Los Angeles, CA); Patt, Bradley E. (Sherman Oaks, CA)

    2003-01-01

    Radiation detectors according to one embodiment of the invention are implemented using scintillators combined with a semiconductor drift photodetectors wherein the components are specifically constructed in terms of their geometry, dimensions, and arrangement so that the scintillator decay time and drift time in the photodetector pairs are matched in order to achieve a greater signal-to-noise ratio. The detectors may include electronics for amplification of electrical signals produced by the silicon drift photodetector, the amplification having a shaping time optimized with respect to the decay time of the scintillator and time spread of the signal in the silicon drift photodetector to substantially maximize the ratio of the signal to the electronic noise.

  13. A large area plastic scintillation detector with 4-corner-readout

    E-print Network

    Tang, Shu-wen; Zhou, Yong; Sun, Zhi-yu; Zhang, Xue-heng; Wang, Shi-tao; Yue, Ke; Liu, Long-xiang; Fang, Fang; Yan, Duo; Sun, Yu; Wang, Zhao-min

    2015-01-01

    A 760 $\\times$ 760 $\\times$ 30 mm$^3$ plastic scintillation detector viewed by photomultiplier tubes (PMTs) from four corners has been developed, and the detector has been tested with cosmic rays and $\\gamma$ rays. A position-independent effective time T$_{eff}$ has been found, indicating this detector can be used as a TOF detector. The hit position can also be reconstructed by the time from four corners. A TOF resolution of 236 ps and a position resolution of 48 mm have been achieved, and the detection efficiency has also been investigated.

  14. A large area plastic scintillation detector with 4-corner-readout

    E-print Network

    Shu-wen Tang; Yu-hong Yu; Yong Zhou; Zhi-yu Sun; Xue-heng Zhang; Shi-tao Wang; Ke Yue; Long-xiang Liu; Fang Fang; Duo Yan; Yu Sun; Zhao-min Wang

    2015-08-26

    A 760 $\\times$ 760 $\\times$ 30 mm$^3$ plastic scintillation detector viewed by photomultiplier tubes (PMTs) from four corners has been developed, and the detector has been tested with cosmic rays and $\\gamma$ rays. A position-independent effective time T$_{eff}$ has been found, indicating this detector can be used as a TOF detector. The hit position can also be reconstructed by the time from four corners. A TOF resolution of 236 ps and a position resolution of 48 mm have been achieved, and the detection efficiency has also been investigated.

  15. The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Dadykin, V. L.; Yakushev, V. F.; Korchagin, P. V.; Korchagin, V. B.; Malgin, A. S.; Ryassny, F. G.; Ryazhskaya, O. G.; Talochkin, V. P.; Zatsepin, G. T.; Badino, G.

    1985-01-01

    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed.

  16. A Scintillator tile-fiber preshower detector for the CDF Central Calorimeter

    SciTech Connect

    S. Lami

    2004-08-12

    The front face of the CDF central calorimeter is being equipped with a new Preshower detector, based on scintillator tiles read out by WLS fibers. A light yield of about 40 pe/MIP at the tile exit was obtained, exceeding the design requirements.

  17. Probing the Earth’s interior with a large-volume liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Hochmuth, Kathrin A.; Feilitzsch, Franz V.; Fields, Brian D.; Undagoitia, Teresa Marrodán; Oberauer, Lothar; Potzel, Walter; Raffelt, Georg G.; Wurm, Michael

    2007-02-01

    A future large-volume liquid scintillator detector would provide a high-statistics measurement of terrestrial antineutrinos originating from ?-decays of the uranium and thorium chains. In addition, the forward displacement of the neutron in the detection reaction ?+p?n+e provides directional information. We investigate the requirements on such detectors to distinguish between certain geophysical models on the basis of the angular dependence of the geoneutrino flux. Our analysis is based on a Monte-Carlo simulation with different levels of light yield, considering both unloaded and gadolinium-loaded scintillators. We find that a 50 kt detector such as the proposed LENA (Low Energy Neutrino Astronomy) will detect deviations from isotropy of the geoneutrino flux significantly. However, with an unloaded scintillator the time needed for a useful discrimination between different geophysical models is too large if one uses the directional information alone. A Gd-loaded scintillator improves the situation considerably, although a 50 kt detector would still need several decades to distinguish between a geophysical reference model and one with a large neutrino source in the Earth’s core. However, a high-statistics measurement of the total geoneutrino flux and its spectrum still provides an extremely useful glance at the Earth’s interior.

  18. Probing the Earth's interior with a large-volume liquid scintillator detector

    E-print Network

    Kathrin A. Hochmuth; Franz v. Feilitzsch; Brian D. Fields; Teresa Marrodan Undagoitia; Lothar Oberauer; Walter Potzel; Georg G. Raffelt; Michael Wurm

    2006-10-04

    A future large-volume liquid scintillator detector would provide a high-statistics measurement of terrestrial antineutrinos originating from $\\beta$-decays of the uranium and thorium chains. In addition, the forward displacement of the neutron in the detection reaction $\\bar\

  19. Wavelength-Shifting-Fiber Scintillation Detectors for Thermal Neutron Imaging at SNS

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Lowell; Diawara, Yacouba; Ellis, E Darren; Funk, Loren L; Hannan, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A; Wang, Cai-Lin

    2012-01-01

    We have developed wavelength-Shifting-fiber Scintillator Detector (SSD) with 0.3 m2 area per module. Each module has 154 x 7 pixels and a 5 mm x 50 mm pixel size. Our goal is to design a large area neutron detector offering higher detection efficiency and higher count-rate capability for Time-Of-Flight (TOF) neutron diffraction in Spallation Neutron Source (SNS). A ZnS/6LiF scintillator combined with a novel fiber encoding scheme was used to record the neutron events. A channel read-out-card (CROC) based digital-signal processing electronics and position-determination algorithm was applied for neutron imaging. Neutron-gamma discrimination was carried out using pulse-shape discrimination (PSD). A sandwich flat-scintillator detector can have detection efficiency close to He-3 tubes (about 10 atm). A single layer flat-scintillator detector has count rate capability of 6,500 cps/cm2, which is acceptable for powder diffractometers at SNS.

  20. In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector

    SciTech Connect

    Lambert, Jamil; Nakano, Tatsuya; Law, Sue; Elsey, Justin; McKenzie, David R.; Suchowerska, Natalka

    2007-05-15

    The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD{sup TM}) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An {sup 192}Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the {sup 192}Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD{sup TM} was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR {sup 192}Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD{sup TM} has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.

  1. Neutron emission measurement at the HL-2A tokamak device with a liquid scintillation detector

    SciTech Connect

    Xie, Xufei; Chen, Zhongjing; Peng, Xingyu; Yuan, Xi; Zhang, Xing; Cui, Zhiqiang; Du, Tengfei; Hu, Zhimeng; Li, Tao; Fan, Tieshuan Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Gorini, Giuseppe; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2014-10-15

    Neutron emission measurement at the HL-2A tokamak device with a liquid scintillation detector is described. The detector was placed at a location with little structure material in the field of view, and equipped with a gain monitoring system which could provide the possibility to evaluate the gain variation as well as to correct for the detector response. Time trace of the neutron emissivity was obtained and it was consistent with the result of a standard {sup 235}U fission chamber. During the plasma discharge the neutron yield could vary by about four orders of magnitude and the fluctuation of the detector gain was up to about 6%. Pulse height spectrum of the liquid scintillation detector was constructed and corrected with the aid of the gain monitoring system, and the correction was found to be essential for the assessment of the neutron energy spectrum. This successful measurement offered experience and confidence for the application of liquid scintillation detectors in the upcoming neutron camera system.

  2. Design Constraints for a WIMP Dark Matter and pp Solar Neutrino Liquid Neon Scintillation Detector

    E-print Network

    M. G. Boulay; A. Hime; J. Lidgard

    2004-10-18

    Detailed Monte-Carlo simulations were used to evaluate the performance of a liquid neon scintillation detector for dark matter and low-energy solar neutrino interactions. A maximum-likelihood event vertex fitter including PMT time information was developed, which significantly improves position resolution over spatial-only algorithms, and substantially decreases the required detector size and achievable analysis energy threshold. The ultimate sensitivity to WIMP dark matter and the pp flux uncertainty are evaluated as a function of detector size. The dependence on the neon scintillation and PMT properties are evaluated. A 300 cm radius detector would allow a ~13 keV threshold, a pp flux uncertainty of ~1%, and limits on the spin-independent WIMP-nucleon cross-section of ~10^{-46} cm^2 for a 100 GeV WIMP, using commercially available PMTs. Detector response calibration and background requirements for a precision pp measurement are defined. Internal radioactivity requirements for uranium, thorium, and krypton are specified, and it is shown that the PMT data could be used for an in-situ calibration of the troublesome krypton-85. A set of measurements of neon scintillation properties and PMT characteristics are outlined which will be needed in order to evaluate feasibility and fully optimize the design of a neon-based detector.

  3. TH-C-19A-11: Toward An Optimized Multi-Point Scintillation Detector

    SciTech Connect

    Duguay-Drouin, P; Delage, ME; Therriault-Proulx, F; Beddar, S; Beaulieu, L

    2014-06-15

    Purpose: The purpose of this work is to characterize a 2-points mPSDs' optical chain using a spectral analysis to help selecting the optimal components for the detector. Methods: Twenty different 2-points mPSD combinations were built using 4 plastic scintillators (BCF10, BCF12, BCF60, BC430; St-Gobain) and quantum dots (QDs). The scintillator is said to be proximal when near the photodetector, and distal otherwise. A 15m optical fiber (ESKA GH-4001) was coupled to the scintillating component and connected to a spectrometer (Shamrock, Andor and QEPro, OceanOptics). These scintillation components were irradiated at 125kVp; a spectrum for each scintillator was obtained by irradiation of individual scintillator and shielding the second component, thus talking into account light propagation in all components and interfaces. The combined total spectrum was also acquired and involved simultaneous irradiation of the two scintillators for each possible combination. The shape and intensity were characterized. Results: QDs in proximal position absorb almost all the light signal from distal plastic scintillators and emit in its own emission wavelength, with 100% of the signal in the QD range (625–700nm) for the combination BCF12/QD. However, discrimination is possible when QD is in distal position in combination with blue scintillators, total signal being 73% in the blue range (400-550nm) and 27% in QD range. Similar results are obtained with the orange scintillator (BC430). For optimal signal intensity, BCF12 should always be in proximal position, e.g. having 50% more intensity when coupled with BCF60 in distal position (BCF12/BCF60) compared to the BCF60/BCF12 combination. Conclusion: Different combinations of plastic scintillators and QD were built and their emission spectra were studied. We established a preferential order for the scintillating components in the context of an optimized 2-points mPSD. In short, the components with higher wavelength emission spectrum should be distal and lower wavelength in the proximal position.

  4. Scintillator gamma-ray detectors with silicon photomultiplier readouts for high-energy astronomy

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Legere, Jason; Bancroft, Christopher; McConnell, Mark L.; Ryan, James M.; Schwadron, Nathan

    2013-09-01

    Space-based gamma-ray detectors for high-energy astronomy face strict constraints of mass, volume, and power, and must endure harsh operating environments. Scintillator materials have a long history of successful operation under these conditions, and new materials offer greatly improved performance in terms of efficiency, time response, and energy resolution. The use of scintillators in space remains constrained, however, by the mass, volume, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). Recently developed silicon photomultipliers (SiPMs) offer gains and efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, and no high-voltage requirements. We have therefore been investigating the use of SiPM readouts for scintillator gamma-ray detectors, with an emphasis on their suitability for space- and balloonbased instruments for high-energy astronomy. We present our most recent results, including spectroscopy measurements for lanthanum bromide scintillators with SiPM readouts, and pulse-shape discrimination using organic scintillators with SiPM readouts. We also describe potential applications of SiPM readouts to specific highenergy astronomy instrument concepts.

  5. Radioactive threat detection using scintillant-based detectors

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2004-09-01

    An update to the performance of AS&E's Radioactive Threat Detection sensor technology. A model is presented detailing the components of the scintillant-based RTD system employed in AS&E products aimed at detecting radiological WMD. An overview of recent improvements in the sensors, electrical subsystems and software algorithms are presented. The resulting improvements in performance are described and sample results shown from existing systems. Advanced and future capabilities are described with an assessment of their feasibility and their application to Homeland Defense.

  6. A New Columnar CsI(Tl) Scintillator for iQID detectors

    PubMed Central

    Han, Ling; Miller, Brian W.; Barber, H. Bradford; Nagarkar, Vivek V.; Furenlid, Lars R.

    2015-01-01

    A 1650 ?m thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 ?m-thickness columnar CsI(Tl) scintillator, the 1650 ?m thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation. PMID:26146444

  7. A region segmentation based algorithm for building a crystal position lookup table in a scintillation detector

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Peng; Yun, Ming-Kai; Liu, Shuang-Quan; Fan, Xin; Cao, Xue-Xiang; Chai, Pei; Shan, Bao-Ci

    2015-03-01

    In a scintillation detector, scintillation crystals are typically made into a 2-dimensional modular array. The location of incident gamma-ray needs be calibrated due to spatial response nonlinearity. Generally, position histograms-the characteristic flood response of scintillation detectors-are used for position calibration. In this paper, a position calibration method based on a crystal position lookup table which maps the inaccurate location calculated by Anger logic to the exact hitting crystal position has been proposed. Firstly, the position histogram is preprocessed, such as noise reduction and image enhancement. Then the processed position histogram is segmented into disconnected regions, and crystal marking points are labeled by finding the centroids of regions. Finally, crystal boundaries are determined and the crystal position lookup table is generated. The scheme is evaluated by the whole-body positron emission tomography (PET) scanner and breast dedicated single photon emission computed tomography scanner developed by the Institute of High Energy Physics, Chinese Academy of Sciences. The results demonstrate that the algorithm is accurate, efficient, robust and applicable to any configurations of scintillation detector. Supported by National Natural Science Foundation of China (81101175) and XIE Jia-Lin Foundation of Institute of High Energy Physics (Y3546360U2)

  8. Improved Growth Methods for LaBr3 Scintillation Radiation Detectors

    SciTech Connect

    McGregor, Douglas S

    2011-05-01

    The objective is to develop advanced materials for deployment as high-resolution gamma ray detectors. Both LaBr3 and CeBr3 are advanced scintillation materials, and will be studied in this research. Prototype devices, in collaboration Sandia National Laboratories, will be demonstrated along with recommendations for mass production and deployment. It is anticipated that improved methods of crystal growth will yield larger single crystals of LaBr3 for deployable room-temperature operated gamma radiation spectrometers. The growth methods will be characterized. The LaBr3 and CeBr3 scintillation crystals will be characterized for light yield, spectral resolution, and for hardness.

  9. Searching for Dark Matter Annihilation to Monoenergetic Neutrinos with Liquid Scintillation Detectors

    E-print Network

    Jason Kumar; Pearl Sandick

    2015-07-12

    We consider searches for dark matter annihilation to monoenergetic neutrinos in the core of the Sun. We find that liquid scintillation neutrino detectors have enhanced sensitivity to this class of dark matter models, due to the energy and angular resolution possible for electron neutrinos and antineutrinos that scatter via charged-current interactions. In particular we find that KamLAND, utilizing existing data, could provide better sensitivity to such models than any current direct detection experiment for $m_X \\lesssim 15$ GeV. KamLAND's sensitivity is signal-limited, and future liquid scintillation or liquid argon detectors with similar energy and angular resolution, but with larger exposure, will provide significantly better sensitivity. These detectors may be particularly powerful probes of dark matter with mass $\\mathcal{O}(10)$ GeV.

  10. Simulation tool for optical design of PET detector modules including scintillator material and sensor array

    SciTech Connect

    Jatekos, B.; Erdei, G.; Lorincz, E.

    2011-07-01

    The appearance of single photon avalanche diodes (SPADs) in the field of PET detector modules made it necessary to apply more complex optical design methods to refine the performance of such assemblies. We developed a combined simulation tool that is capable to model complex detector structures including scintillation material, light guide, light collection optics and sensor, correctly taking into account the statistical behavior of emission of scintillation light and its absorbance in SPADs. As a validation we compared simulation results obtained by our software and another optical design program. Calculations were performed for a simple PET detector arrangement used for testing purposes. According to the results, deviation of center of gravity coordinates between the two simulations is 0.0195 mm, the average ratio of total counts 1.0052. We investigated the error resulting from finite sampling in wavelength space and we found that 20 nm pitch is sufficient for the simulation in case of the given spectral dependencies. (authors)

  11. Hybrid metal organic scintillator materials system and particle detector

    DOEpatents

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  12. Investigation of ZnO-Based Polycrystalline Ceramic Scintillators for Use as ?-Particle Detectors

    SciTech Connect

    Neal, John S; DeVito, David M; Armstrong, Beth L; Hong, Mei; Kesanli, Banu; Yang, Xiaocheng; Giles, N. C.; Howe, Jane Y; Ramey, Joanne Oxendine; Wisniewski, Dariusz J; Wisniewski, Monica; Munir, Zuhair; Boatner, Lynn A

    2009-01-01

    ZnO-based scintillators are particularly well-suited for use as the associated particle detector in a deuterium-tritium (D-T) neutron generator. Application requirements include the exclusion of organic materials, outstanding timing resolution, and high radiation resistance. ZnO, ZnO:Ga, ZnO:In, ZnO:In,Li, and ZnO:Er,Li have demonstrated fast (sub-nanosecond) decay times with relatively low light yields. ZnO:Ga has been used in a powder form as the associated particle detector for a D-T neutron generator. Unfortunately, detectors using powders are difficult to assemble and the light yield from powders is less than satisfactory. Single crystal ZnO of sufficient size has only recently become available. New applications for D-T neutron generators require better timing resolution and higher count rates than are currently available with associated particle detectors using YAP:Ce as the scintillator. Recent work suggests that ZnO-based scintillators can provide alpha-particle-excited light yields comparable to YAP:Ce scintillators. ZnO-based polycrystalline ceramic scintillators offer the advantages of high light yield, ease of fabrication, low cost, and robust mechanical properties. Precursor powders used in these studies include ZnO and ZnO:Ga powders synthesized using solution phase, urea precipitation, and combustion synthesis techniques as well as ZnO powder from a commercial vendor. Precursor powders have been sintered using uniaxial hot pressing and spark plasma sintering techniques. Photoluminescence measurements have confirmed that, for most samples, the emissions from these sintered bodies consist primarily of slow, visible emissions rather than the desired, sub-nanosecond near-band-edge emissions. Subsequent hydrogen treatments have shown significant improvements in the luminescence characteristics of some ceramic bodies while other samples have shown no change in luminescence.

  13. Detector block based on arrays of 144 SiPMs and monolithic scintillators: A performance study

    NASA Astrophysics Data System (ADS)

    González, A. J.; Conde, P.; Iborra, A.; Aguilar, A.; Bellido, P.; García-Olcina, R.; Hernández, L.; Moliner, L.; Rigla, J. P.; Rodríguez-Álvarez, M. J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Torres, J.; Vidal, L. F.; Benlloch, J. M.

    2015-07-01

    We have developed a detector block composed by a monolithic LYSO scintillator coupled to a custom made 12×12 SiPMs array. The design is mainly focused to applications such as Positron Emission Tomography. The readout electronics is based on 3 identical and scalable Application Specific Integrated Circuits (ASIC). We have determined the main performance of the detector block namely spatial, energy, and time resolution but also the system capability to determine the photon depth of interaction, for different crystal surface treatments. Intrinsic detector spatial resolution values as good as 1.7 mm FWHM and energies of 15% for black painted crystals were measured.

  14. SU-E-T-423: TrueBeam Small Field Dosimetry Using Commercial Plastic Scintillation and Other Stereotactic Detectors

    SciTech Connect

    Pino, R; Therriault-Proulx, F; Wang, X; Yang, J; Beddar, S

    2014-06-01

    Purpose: To perform dose profile and output factor (OF) measurements with the Exradin W1 plastic scintillation detector (PSD) for small fields made by the high-definition multi-leaf collimator (MLC) on the TrueBeam STx system and to compare them to values measured with an IBA CC01 ionization chamber and a Sun Nuclear Edge detector diode for 6 MV photon beams. Methods: The Exradin W1 is a new small volume near-water equivalent and energy independent PSD manufactured by Standard Imaging, Inc. All measurements were performed in an IBA Blue Phantom water tank. Square MLC-shaped fields with sides ranging from 0.5 cm to 2 cm and jawshaped fields with sides ranging from 1 cm to 40 cm were measured using an SAD setup at 10 cm depth. Dose profile and percent depth dose (PDD) measurements were also taken under the same conditions for MLC fields 0.5×0.5 and 1×1 cm2 in size with jaws at 2×2cm2. The CC01 and W1 were vertically mounted. Results: OFs measured with the W1 for jaw only square fields were consistent with the ones measured with a Farmers PTW TN33013 ion chamber (1.8% maximum deviation). OF and penumbra measurement results are presented below. PDDs measured for all detectors are within 1.5% for the 0.5×0.5 cm2 and within 1% for the 1×1 cm2 MLC fields.Output factors:MLC size W1 CC01 EDGE0.5cm 0.555 0.541 0.5851.0cm 0.716 0.702 0.7331.5cm 0.779 0.761 0.7772.0cm 0.804 0.785 0.796Penumbras (mm):MLC size W1 CC01 EDGE0.5cm 2.7 2.9 2.51.0cm 3.0 3.4 2. Conclusion: OFs measured for small MLC fields were consistent with the ones measured with the other stereotactic detectors. Measured penumbras are consistent with detector size. The Exradin W1 PSD is an excellent choice for characterizing MLC-shaped small beam dosimetry used for stereotactic radiosurgery and body radiation therapy. Sam Beddar would like to disclose a NIH/NCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: “Water-Equivalent Plastic Scintillation Detectors for Small Field Radiotherapy”.

  15. A Neutron Detector Constructed Using Shards of ^6Li-loaded Glass Scintillator

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Czirr, Bart; Rees, Lawrence

    2012-10-01

    Because of a global shortage of ^3He, an essential component of many neutron detectors, much work is currently being done to develop new neutron detectors based on alternative materials for homeland security applications. One of the possible replacements for ^3He is Ce^3+-activated, ^6Li-loaded glass scintillator. Although this material has been widely used in neutron detectors for over half a century, its relatively high gamma sensitivity has made it unattractive for use in radiation portal monitors. We have tested a new technique for reducing the gamma sensitivity of a neutron detector based on ^6Li glass. Our prototype neutron detector consists of small (about 1 mm^3) shards of ^6Li-loaded glass scintillator embedded in optical epoxy. Mineral oil is placed behind the glass and epoxy for moderation. Our tests indicate that this detector can achieve a gamma sensitivity that is at least 100 times lower than a comparable neutron detector constructed using a thin sheet of ^6Li glass. Modeling performed using the particle transport codes MCNP and PENELOPE suggests that the gamma sensitivity of the glass shards is lower because more high-energy Compton electrons escape them before depositing their full energy.

  16. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fischer, V.; Chirac, T.; Lasserre, T.; Volpe, C.; Cribier, M.; Durero, M.; Gaffiot, J.; Houdy, T.; Letourneau, A.; Mention, G.; Pequignot, M.; Sibille, V.; Vivier, M.

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water ?erenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.

  17. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    E-print Network

    V. Fischer; T. Chirac; T. Lasserre; C. Volpe; M. Cribier; M. Durero; J. Gaffiot; T. Houdy; A. Letourneau; G. Mention; M. Pequignot; V. Sibille; M. Vivier

    2015-08-25

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Cerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data

  18. Iterative Monte Carlo simulation with the Compton kinematics-based GEB in a plastic scintillation detector

    NASA Astrophysics Data System (ADS)

    Kim, Chankyu; Kim, Yewon; Moon, Myungkook; Cho, Gyuseong

    2015-09-01

    Plastic scintillators have been used for gamma ray detection in the fields of dosimetry and homeland security because of their desired characteristics such as a fast decay time, a low production cost, availability in a large-scale, and a tissue-equivalence. Gaussian energy broadening (GEB) in MCNP simulation is an effective treatment for tallies to calculate the broadened response function of a detector similarly to measured spectra. The full width at half maximum (FWHM) of a photopeak has been generally used to compute input parameters required for the GEB treatment. However, it is hard to find the photopeak in measured gamma spectra with plastic scintillators so that computation of the input parameters for the GEB has to be taken with another way. In this study, an iterative method for the GEB treated MCNP simulation to calculate the response function of a plastic scintillator is suggested. Instead of the photopeak, Compton maximum and Compton edge were used to estimate energy broadening in the measured spectra and to determine the GEB parameters. In a demonstration with a CsI(Tl) scintillator, the proposed iterative simulation showed the similar gamma spectra to the existing method using photopeaks. The proposed method was then applied to a polystyrene scintillator, and the simulation result were in agreement with the measured spectra with only a little iteration.

  19. Organic scintillation detector response simulation using non-analog MCNPX-PoliMi

    SciTech Connect

    Prasad, S.; Clarke, S. D.; Pozzi, S. A.; Larsen, E. W.

    2012-07-01

    Organic liquid scintillation detectors are valuable for the detection of special nuclear material since they are capable of detecting both neutrons and gamma rays. Scintillators can also provide energy information which is helpful in identification and characterization of the source. In order to design scintillation based measurement systems appropriate simulation tools are needed. MCNPX-PoliMi is capable of simulating scintillation detector response; however, simulations have traditionally been run in analog mode which leads to long computation times. In this paper, non-analog MCNPX-PoliMi mode which uses variance reduction techniques is applied and tested. The non-analog MCNPX-PoliMi simulation test cases use source biasing, geometry splitting and a combination of both variance reduction techniques to efficiently simulate pulse height distribution and then time-of-flight for a heavily shielded case with a {sup 252}Cf source. An improvement factor (I), is calculated for distributions in each of the three cases above to analyze the effectiveness of the non-analog MCNPX-PoliMi simulations in reducing computation time. It is found that of the three cases, the last case which uses a combination of source biasing and geometry splitting shows the most improvement in simulation run time for the same desired variance. For pulse height distributions speedup ranging from a factor 5 to 25 is observed, while for time-of-flights the speedup factors range from 3 to 10. (authors)

  20. Reflection properties of scintillator-septum candidates for a pixelated MeV detector

    NASA Astrophysics Data System (ADS)

    Shin, Mihye; Star-Lack, Josh; Janecek, Martin; Abel, Eric; Shedlock, Daniel; Fahrig, Rebecca

    2014-03-01

    In order to predict and improve the performance of pixelated detectors, it is important to understand the optical properties of the basic unit of the scintillating structure in the detector. To measure one of the essential optical properties, reflectance, we have used a device composed of a laser and photodiode array. We have also developed an analytical model of the optical phenomena based on Snell's law and the Fresnel equations to simply analyze measured results and reflectance parameters at the interface. The computed and experimentally measured results typically have good agreement, validating the analytical model and measurements. The optical parameters are used as inputs to GEANT4 [1]. The simulations are then leveraged to optimize an imager design before a prototype is built. The optical reflectance was measured by using relatively inexpensive samples. A sample has scintillator, glue, and septum (reflector) layers, and each sample has a different scintillator surface (polished/rough) and/or reflector [ESR film/aluminum-sputtered (coated) ESR film] condition. A high-refractive-index hemisphere was attached on the top surface of a sample to increase the maximum incidence angle at the scintillator-glue interface from 27° to 52°. The sample including ESR film demonstrated average reflectance approximately 1.3 times higher than that from the sample with aluminum-sputtered ESR film as a reflector, and the polished surface condition showed higher reflectance than the rough-cut surface condition.

  1. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    NASA Astrophysics Data System (ADS)

    Lombigit, L.; Yussup, N.; Mohd, Ibrahim, Maslina; Rahman, Nur Aira Abd; Rawi, M. Z. M.

    2015-04-01

    A digital n/? pulse shape discrimination (PSD) system is currently under development at Instrumentation & Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/? PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  2. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    SciTech Connect

    Lombigit, L. Yussup, N. Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M.

    2015-04-29

    A digital n/? pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/? PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  3. Scintillating-fiber imaging detector for 14-MeV neutrons

    SciTech Connect

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Heaton, G.W.; Nelson, M.B.; Mant, G.; Lehr, D.E.

    1994-07-25

    The authors have created a detector to image the neutrons emitted by imploded inertial-confinement fusion targets. The 14-MeV neutrons, which are produced by deuterium-tritium fusion events in the target, pass through an aperture to create an image on the detector. The neutron radiation is converted to blue light (430 nm) with a 20-cm-square array of plastic scintillating fibers. Each fiber is 10-cm long with a 1-mm-square cross section; approximately 35-thousand fibers make up the array. The resulting blue-light image is reduced and amplified by a sequence of fiber-optic tapers and image intensifiers, then acquired by a CCD camera. The fiber-optic readout system was tested optically for overall throughput the resolution. The authors plan to characterize the scintillator array reusing an ion-beam neutron source as well as DT-fusion neutrons emitted by inertial confinement targets. Characterization experiments will measure the light-production efficiency, spatial resolution, and neutron scattering within the detector. Several neutron images of laser-fusion targets have been obtained with the detector. Several neutron images of laser-fusion targets have been obtained with the detector. They describe the detector and their characterization methods, present characterization results, and give examples of the neutron images.

  4. Arrays of Segmented, Tapered Light Guides for Use with Large, Planar Scintillation Detectors

    PubMed Central

    Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

    2015-01-01

    Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector’s active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system. PMID:26538685

  5. Development of cryogenic low background detector based on enriched zinc molybdate crystal scintillators to search for neutrinoless double beta decay of $^{100}$Mo

    E-print Network

    Chernyak, Dmitry

    2015-01-01

    ZnMoO$_4$ scintillators with a mass of $\\sim$ 0.3 kg, as well as Zn$^{100}$MoO$_4$ crystals enriched in the isotope $^{100}$Mo were produced for the first time by using the low-thermal-gradient Czochralski technique. The optical and luminescent properties of the produced crystals were studied to estimate the progress in crystal growth quality. The low-temperature tests with a 313 g ZnMoO$_4$ and two enriched Zn$^{100}$MoO$_4$ crystals were performed aboveground in the Centre de Sciences Nucl\\'eaires et de Sciences de la Mati\\`ere. The low background measurements with a three ZnMoO$_4$ and two enriched detectors installed in the EDELWEISS set-up at the Laboratoire Souterrain de Modane were carried out. To optimize the light collection in ZnMoO$_4$ scintillating bolometers, we have simulated the collection of scintillation photons in a detector module for different geometries by Monte Carlo method using the GEANT4 package. Response to the 2$\

  6. Development of cryogenic low background detector based on enriched zinc molybdate crystal scintillators to search for neutrinoless double beta decay of $^{100}$Mo

    E-print Network

    Dmitry Chernyak

    2015-07-16

    ZnMoO$_4$ scintillators with a mass of $\\sim$ 0.3 kg, as well as Zn$^{100}$MoO$_4$ crystals enriched in the isotope $^{100}$Mo were produced for the first time by using the low-thermal-gradient Czochralski technique. The optical and luminescent properties of the produced crystals were studied to estimate the progress in crystal growth quality. The low-temperature tests with a 313 g ZnMoO$_4$ and two enriched Zn$^{100}$MoO$_4$ crystals were performed aboveground in the Centre de Sciences Nucl\\'eaires et de Sciences de la Mati\\`ere. The low background measurements with a three ZnMoO$_4$ and two enriched detectors installed in the EDELWEISS set-up at the Laboratoire Souterrain de Modane were carried out. To optimize the light collection in ZnMoO$_4$ scintillating bolometers, we have simulated the collection of scintillation photons in a detector module for different geometries by Monte Carlo method using the GEANT4 package. Response to the 2$\

  7. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Moessbauer Spectroscopy

    SciTech Connect

    Prochazka, R.; Frydrych, J.; Pechousek, J.

    2010-07-13

    This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000 ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.

  8. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Prochazka, R.; Pechousek, J.; Frydrych, J.

    2010-07-01

    This work is focused on a development of a compact fast scintillation detector suitable for Mössbauer spectroscopy (low energy X-ray/?-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000 ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.

  9. Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator

    E-print Network

    Seung Kyu Lee; Byoung-Hwi Kang; Gi-Dong Kim; Yong-Kyun Kim

    2011-12-27

    Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutron source. In the results, the designed and fabricated stilbene neutron diagnostic system performed well in discriminating neutrons from gamma-rays under the high magnetic field conditions during KSTAR operation. Fast neutrons of 2.45 MeV were effectively measured and evaluated during the 2011 KSTAR campaign.

  10. Performance comparison of four compact room-temperature detectors – two cadmium zinc telluride (CZT) semiconductor detectors, a LaCl3(Ce) scintillator, and an NaI(Tl) scintillator

    SciTech Connect

    J. K. Hartwell

    2004-10-01

    The performance characteristics of four compact, room-temperature detectors – two scintillators and two semiconductor detectors – have been studied. All are commercially-available detectors. The two scintillators were a Æ13mmX13mm lanthanum chloride [LaCl3(Ce)] detector and a Æ25mmX25mm sodium iodide [NaI(Tl)] detector. The two semiconductor detectors were a 10X10X3 mm3 cadmium zinc telluride (CZT) detector with a coplanar gridded anode and a 5X5X5 mm3 CZT detector with an extended cathode. The efficiency, resolution, and peak shape performance of these devices are compared in this work. Since LaCl3(Ce) is a relatively new commercial scintillator material, additional information on the performance of this detector is presented. Specifically, we discuss the impact of naturally-occurring radioactive 138La on the background spectra measured with this scintillator. Additionally, two of the three LaCl3(Ce) crystals that we obtained commercially were internally contaminated with an alpha particle-emitting radionuclide which we have identified as 227Ac+daughters. This contamination had a profound impact on the usefulness of these two detectors.

  11. Using handheld plastic scintillator detectors to triage individuals exposed to a radiological dispersal device

    SciTech Connect

    Manger, Ryan P; Hertel, Nolan; Burgett, E.; Ansari, A.

    2011-01-01

    After a radiological dispersal device (RDD) event, people could become internally contaminated by inhaling dispersed radioactive particles. A rapid method to screen individuals who are internally contaminated is desirable. Such initial screening can help in prompt identification of those who are highly contaminated and in prioritizing individuals for further and more definitive evaluation such as laboratory testing. The use of handheld plastic scintillators to rapidly screen those exposed to an RDD with gamma-emitting radionuclides was investigated in this study. The Monte Carlo N-Particle transport code was used to model two commercially available plastic scintillation detectors in conjunction with anthropomorphic phantom models to determine the detector response to inhaled radionuclides. Biokinetic models were used to simulate an inhaled radionuclide and its progression through the anthropomorphic phantoms up to 30 d after intake. The objective of the study was to see if internal contamination levels equivalent to 250 mSv committed effective dose equivalent could be detected using these instruments. Five radionuclides were examined: {sup 60}Co, {sup 137}Cs, {sup 192}Ir, {sup 131}I and {sup 241}Am. The results demonstrate that all of the radionuclides except {sup 241}Am could be detected when placing either one of the two plastic scintillator detector systems on the posterior right torso of the contaminated individuals.

  12. Advances in CMOS solid-state photomultipliers for scintillation detector applications

    NASA Astrophysics Data System (ADS)

    Christian, James F.; Stapels, Christopher J.; Johnson, Erik B.; McClish, Mickel; Dokhale, Purushotthom; Shah, Kanai S.; Mukhopadhyay, Sharmistha; Chapman, Eric; Augustine, Frank L.

    2010-12-01

    Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries. This work describes the characterization and performance of these devices for scintillation detector applications. This work also describes the terms contributing to device noise in terms of the excess noise of the SSPM, the binomial statistics governing the number of pixels triggered by a scintillation event, and the background, or thermal, count rate. The fluctuations associated with these terms limit the resolution of the signal pulse amplitude. We explore the use of pixel-level signal conditioning, and characterize the performance of a prototype SSPM device that preserves the digital nature of the signal. In addition, we explore designs of position-sensitive SSPM detectors for medical imaging applications, and characterize their performance.

  13. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Zohm, H.; Collaboration: ASDEX Upgrade Team

    2009-05-15

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  14. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    PubMed Central

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu, Chihray; Yan, Guanghua

    2010-01-01

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm3 and a diode of surface area 0.64 mm2. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10×10 cm2 field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a ±0.7 mm variation in the 80%–20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping parameter between in-plane and cross-plane measurements. This is primarily due to the directional difference in penumbral width measured by the FC65 chamber, which can more than double in profiles obtained with the detector stem parallel compared to perpendicular to the scan direction. For the more symmetric CC13 chamber the variation was only 3% between in-plane and cross-plane measurements. Conclusions: The authors have shown that the detector response varies with detector type, depth, SSD, and detector scan direction. In-plane vs cross-plane scanning can require calculation of a direction dependent response function. The effect of a 10% overall variation in the response function, for an ionization chamber, translates to a small deviation in the penumbra from that of the Edge detector measured profile when deconvolved. Due to the uncertainties introduced by deconvolution the Edge detector would be preferable in obtaining an approximation of the true profile, particularly for field sizes where the energy dependence of the diode can be neglected. However, an averaged response function could be utilized to provide a good approximation of the true profile for large ionization chambers and for larger fields for which diode detectors are not recommended. PMID:20229856

  15. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    SciTech Connect

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping parameter between in-plane and cross-plane measurements. This is primarily due to the directional difference in penumbral width measured by the FC65 chamber, which can more than double in profiles obtained with the detector stem parallel compared to perpendicular to the scan direction. For the more symmetric CC13 chamber the variation was only 3% between in-plane and cross-plane measurements. Conclusions: The authors have shown that the detector response varies with detector type, depth, SSD, and detector scan direction. In-plane vs cross-plane scanning can require calculation of a direction dependent response function. The effect of a 10% overall variation in the response function, for an ionization chamber, translates to a small deviation in the penumbra from that of the Edge detector measured profile when deconvolved. Due to the uncertainties introduced by deconvolution the Edge detector would be preferable in obtaining an approximation of the true profile, particularly for field sizes where the energy dependence of the diode can be neglected. However, an averaged response function could be utilized to provide a good approximation of the true profile for large ionization chambers and for larger fields for which diode detectors are not recommended.

  16. Standardization method of ²²Na using two NaI(Tl) scintillation detectors.

    PubMed

    Sato, Y; Yamada, T; Hasegawa, T

    2014-05-01

    A new standardization method for a sealed (22)Na point source was developed utilizing two NaI(Tl) scintillation detectors. In the proposed method, the count rates of annihilation radiation, gamma rays, their coincidence sum, and the coincidences between the two detectors are used. The equations from which the source activity can be deduced are derived in this work. A series of EGS-5 Monte Carlo calculations were conducted to test the validity of the expressions. The calculated activity agreed within approximately 1 percent with the literature data used as input in the simulations. PMID:24411317

  17. Surface Performance of a Big Liquid Scintillation Detector for Measuring Neutrons

    NASA Astrophysics Data System (ADS)

    Mei, Dongming; Zhang, Chao; Gray, Fred

    2011-10-01

    Characterizing neutron background is extremely important to the success of rare event physics research such as neutrinoless double beta decay and dark matter search. We developed a neutron detector that is built with an aluminum tube filled with 12 liter liquid scintillators. The detector is about one meter in length and five inches in diameter. The inner surface of the detector is painted with specular reflector and there are two 5'' PMTs (Hamamatsu H4144) attached at both ends. The detector is well calibrated with cosmic muons and radioactive sources. Good neutron/gamma discrimination is found from few MeV to 20MeVs. We report the measured result for room neutrons at the surface. This project is supported by NSF PHY-0758120 and 0919278.

  18. Measurement of 238U muonic x-rays with a germanium detector setup

    SciTech Connect

    Esch, Ernst I; Jason, Andrew; Miyadera, Haruo; Hoteling, Nathan J; Heffner, Robert H; Adelmann, Andreas; Stocki, Trevor; Mitchell, Lee

    2009-01-01

    In the field of nuclear non-proliferation muon interactions with materials are of great interest. This paper describes an experiment conducted at the Paul Scherrer Institut (PSI) in Switzerland where a muon beam is stopped in a uranium target. The muons produce characteristic muonic x-rays. Muons will penetrate shielding easily and the produced characteristic x-rays can be used for positive isotope identification. Furthermore, the x-rays for uranium isotopes lie in the energy range of 6-7 MeV, which allows them to have an almost optimal mean free path in heavy shielding such as lead or steel. A measurement was conducted at PSI to prove the feasibility of detecting muonic x-rays from a large sample of depleted uranium (several kilograms) with a germanium detector. In this paper, the experimental setup and analysis of the measurement itself is presented.

  19. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    SciTech Connect

    Jing, T

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N {approximately}20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  20. Development of a fast radiation detector based on barium fluoride scintillation crystal

    SciTech Connect

    Han, Hetong; School of Nuclear Science and Technology, Xi'an Jiaotong University, XJTU, Xi'an 710049, Shaanxi ; Zhang, Zichuan; Weng, Xiufeng; Liu, Junhong; Zhang, Kan; Li, Gang; Guan, Xingyin

    2013-07-15

    Barium fluoride (BaF{sub 2}) is an inorganic scintillation material used for the detection of X/gamma radiation due to its relatively high density, equivalent atomic number, radiation hardness, and high luminescence. BaF{sub 2} has a potential capacity to be used in gamma ray timing experiments due to the prompt decay emission components. It is known that the light output from BaF{sub 2} has three decay components: two prompt of those at approximately 195 nm and 220 nm with a decay constant around 600-800 ps and a more intense, slow component at approximately 310 nm with a decay constant around 630 ns which hinders fast timing experiments. We report here the development of a fast radiation detector based on a BaF{sub 2} scintillation crystal employing a special optical filter device, a multiple reflection multi-path ultraviolet region short-wavelength pass light guides (MRMP-short pass filter) by using selective reflection technique, for which the intensity of the slow component is reduced to less than 1%. The methods used for this study provide a novel way to design radiation detector by utilizing scintillation crystal with several emission bands.

  1. Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2015-01-01

    The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and ?-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.

  2. Development of deep-UV sensitive MPPC for liquid xenon scintillation detector

    NASA Astrophysics Data System (ADS)

    Ootani, W.; Ieki, K.; Iwamoto, T.; Kaneko, D.; Mori, T.; Nakaura, S.; Nishimura, M.; Ogawa, S.; Sawada, R.; Shibata, N.; Uchiyama, Y.; Yoshida, K.; Sato, K.; Yamada, R.

    2015-07-01

    The liquid xenon (LXe) ?-ray detector for the MEG II experiment is based on a highly granular scintillation readout with Multi-Pixel Photon Counters (MPPCs). Here we report on the development of a large-area MPPC sensitive to LXe scintillation light in deep-UV range for the MEG II LXe detector. A prototype model of the deep-UV MPPC with an active area of 12 × 12mm2 was successfully tested in LXe, showing an excellent performance such as a high photon detection efficiency for the LXe scintillation light (about 20% at ?V = 2.5 V), a high internal gain (about 106 at ?V = 2.5 V) and an excellent single photoelectron resolution. The sensor chip of the MPPC is segmented into four sectors, which are then connected in series in order to reduce the overall sensor capacitance. The signal fall time of about 135 ns for the non-segmented sensor was significantly reduced down to 25 ns with the series-connected sensor segments. The preliminary results on the performance of the deep-UV MPPC are presented.

  3. Digital pulse shape discrimination methods for n-? separation in an EJ-301 liquid scintillation detector

    NASA Astrophysics Data System (ADS)

    Wan, Bo; Zhang, Xue-Ying; Chen, Liang; Ge, Hong-Lin; Ma, Fei; Zhang, Hong-Bin; Ju, Yong-Qin; Zhang, Yan-Bin; Li, Yan-Yan; Xu, Xiao-Wei

    2015-11-01

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with an EJ-301 liquid scintillation detector. The module was operated by running programs developed in LabVIEW, with a sampling frequency up to 1.6 GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function was obtained. Digital algorithms for the charge comparison method and zero-crossing method have been developed. The experimental results show that both digital signal processing (DSP) algorithms can discriminate neutrons from ?-rays. Moreover, the zero-crossing method shows better n-? discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) for detectors of two different dimensions were extracted at 9 energy thresholds, and it was found that the smaller detector presented better n-? separation for fission neutrons. Supported by National Natural Science Foundation of China (91226107, 11305229) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03030300)

  4. Scintillation Efficiency for Low-Energy Nuclear Recoils in Liquid-Xenon Dark Matter Detectors

    E-print Network

    Wei Mu; Xiaonu Xiong; Xiangdong Ji

    2013-10-09

    We perform a theoretical study of the scintillation efficiency in the low-energy region crucial for liquid-xenon dark-matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from the experimental data to the low-energy region, and take into account the effects of electrons escaping from the electron-ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoiling energy drops below 3 keV.

  5. Characterizations of BC501A and BC537 liquid scintillator detectors.

    PubMed

    Qin, Jianguo; Lai, Caifeng; Ye, Bangjiao; Liu, Rong; Zhang, Xinwei; Jiang, Li

    2015-10-01

    Two 2?×2? liquid scintillator detectors BC537 and BC501A have been characterized for their responses and efficiencies to ?-ray detection. Light output resolution and response functions were derived by least-squares minimization of a simulated response function, fitted to experimental data. The ?-ray response matrix and detection efficiency were simulated with Monte Carlo (MC) methods and validated. For photon energies below 2.4 MeVee, the resolution, as well as the efficiency, of BC501A is better than BC537 scintillator. The situation is reversed when the energy is higher than 2.4 MeVee. BC537 has higher ?-ray detection efficiency than BC501A if the impinging photon energy is more than 2 MeV due to different ratios of C to H/D atoms. PMID:26123107

  6. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  7. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  8. Scintillator Pad Detector: Very Front End Electronics. Design and Pre-Series

    SciTech Connect

    Luengo, S.; Riera, J.; Tortella, S.; Vilasis-Cardona, X.; Gascon, D.; Comerma, A.; Garrido, L.

    2006-10-27

    The SPD (Scintillator Pad Detector) is a part of LHCb calorimeter which is designed to distinguish electrons and photons for this first level trigger. This detector is a plastic scintillator layer, divided in about 6000 cells of different size to obtain better granularity near the beam. Charged particles will produce, and photons will not, ionisation on the scintillator. This ionisation generates a light pulse that is collected by a Wavelength Shifting (WLS) fibre that is twisted inside the scintillator cell. The light is transmitted through a clear fibre to the readout system. For cost reduction, these 6000 cells are divided in groups using a MAPMT of 64 channels for receiving information in the readout system. The signal outing the SPD PMTs is rather unpredictable as a result of the low photostatistics, 20-30 photoelectrons per MIP, and the response of the WLS fibre, which has low decay time. Then, the signal processing must be performed by first integrating the total charge and later subtracting to avoid pile-up. The SPD Readout system is performed by an ASIC which integrates the signal, makes the pile-up compensation, and compares the level obtained to a programmable threshold (distinguishing electrons and photons), an FPGA which programmes the ASIC thresholds and pile-up subtraction and finally LVDS serializers, in order to send information to the first level trigger system. The design of the VFE unit takes into account not only mechanical constraints, as a result of the little space for the readout electronics but also the radiation quote expected in the environment and the distance between the VFE electronics and the racks were information is sent.

  9. Development of scintillating fiber detector technology for high rate particle tracking

    E-print Network

    E. C. Aschenauer; J. Baehr; V. Gapienko; B. Hoffmann; A. Kharchilava; H. Luedecke; R. Nahnhauer; R. Shanidze

    1997-10-02

    The performance of a scintillating fiber detector prototype for tracking under high rate conditions is investigated. A spatial resolution of about100 micron is aimed for the detector. Further demands are low occupancy and radiation hardness up to 1 Mrad/year. Fibers with different radii and different wavelengths of the scintillation light from different producers have been extensively tested concerning light output, attenuation length and radiation hardness, with and without coupling them to light guides of different length and diameter. In a testrun at a 3 GeV electron beam the space dependent efficiency and spatial resolution of fiber bundels were measured by means of two external reference detectors with a precision of 50 micron. The light output profile across fiber roads has been determined with the same accuracy. Different technologies were adopted for the construction of tracker modules consisting of 14 layers of 0.5 mm fibers and 0.7 mm pitch. A winding technology provides reliable results to produce later fiber modules of about 25 cm x 25 cm area. We conclude that on the basis of these results a fiber tracker for high rate conditions can be built.

  10. Study of digital pulse shape discrimination method for n-? separation of EJ-301 liquid scintillation detector

    E-print Network

    Bo Wan; Xueying Zhang; Liang Chen; Honglin Ge; Fei Ma; Hongbin Zhang; Yongqin Ju; Yanbin Zhang; Yanyan Li; Xiaowei Xu

    2015-02-06

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with EJ-301 liquid scintillation detector. The module was operated by means of running programs developed in LabVIEW with the sampling frequency up to 1.6GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function has been obtained. Digital algorithms for charge comparison method and zero-crossing method have been developed. The experimental results showed that both digital signal processing (DSP) algorithms could discriminate neutrons from gamma-rays. Moreover, the zero-crossing method shows better n-{\\gamma} discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) of two different dimension detectors were extracted at 9 energy thresholds, and it was found that the smaller one presented a better n-{\\gamma} separation property for fission neutrons.

  11. ANTS — a simulation package for secondary scintillation Anger-camera type detector in thermal neutron imaging

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Van Esch, P.; Zeitelhack, K.

    2012-08-01

    A custom and fully interactive simulation package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations) has been developed to optimize the design and operation conditions of secondary scintillation Anger-camera type gaseous detectors for thermal neutron imaging. The simulation code accounts for all physical processes related to the neutron capture, energy deposition pattern, drift of electrons of the primary ionization and secondary scintillation. The photons are traced considering the wavelength-resolved refraction and transmission of the output window. Photo-detection accounts for the wavelength-resolved quantum efficiency, angular response, area sensitivity, gain and single-photoelectron spectra of the photomultipliers (PMTs). The package allows for several geometrical shapes of the PMT photocathode (round, hexagonal and square) and offers a flexible PMT array configuration: up to 100 PMTs in a custom arrangement with the square or hexagonal packing. Several read-out patterns of the PMT array are implemented. Reconstruction of the neutron capture position (projection on the plane of the light emission) is performed using the center of gravity, maximum likelihood or weighted least squares algorithm. Simulation results reproduce well the preliminary results obtained with a small-scale detector prototype. ANTS executables can be downloaded from http://coimbra.lip.pt/~andrei/.

  12. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    SciTech Connect

    Lewis, J. M. Kelley, R. P.; Jordan, K. A.; Murer, D.

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  13. Can scintillation detectors with low spectral resolution accurately determine radionuclides content of building materials?

    PubMed

    Kovler, K; Prilutskiy, Z; Antropov, S; Antropova, N; Bozhko, V; Alfassi, Z B; Lavi, N

    2013-07-01

    The current paper makes an attempt to check whether the scintillation NaI(Tl) detectors, in spite of their poor energy resolution, can determine accurately the content of NORM in building materials. The activity concentrations of natural radionuclides were measured using two types of detectors: (a) NaI(Tl) spectrometer equipped with the special software based on the matrix method of least squares, and (b) high-purity germanium spectrometer. Synthetic compositions with activity concentrations varying in a wide range, from 1/5 to 5 times median activity concentrations of the natural radionuclides available in the earth crust and the samples of popular building materials, such as concrete, pumice and gypsum, were tested, while the density of the tested samples changed in a wide range (from 860 up to 2,410 kg/m(3)). The results obtained in the NaI(Tl) system were similar to those obtained with the HPGe spectrometer, mostly within the uncertainty range. This comparison shows that scintillation spectrometers equipped with a special software aimed to compensate for the lower spectral resolution of NaI(Tl) detectors can be successfully used for the radiation control of mass construction products. PMID:23542118

  14. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; Pozzi, Sara A.; Massey, Thomas N.

    2013-07-01

    Neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(?)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an 27Al target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for the light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.

  15. Alignment of the Near Detector scintillator modules using cosmic ray muons

    SciTech Connect

    Ospanov, Rustem; Lang, Karol; /Texas U.

    2008-05-01

    The authors describe the procedures and the results of the first alignment of the Near Detector. Using 15.5 million cosmic ray muon tracks, collected from October, 2004 through early january, 2005, they derive the effective transverse positions of the calorimeter scintillator modules. The residuals from straight line fits indicate that the current alignment has achieved better than 1 mm precision. They estimate the size of the remaining misalignment and using tracks recorded with a magnetic field test the effect of the magnetic field on the alignment.

  16. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions

    SciTech Connect

    Styron, J. D. Cooper, G. W.; Carpenter, Ken; Bonura, M. A.; Ruiz, C. L.; Hahn, K. D.; Chandler, G. A.; Nelson, A. J.; Torres, J. A.; McWatters, B. R.

    2014-11-15

    A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.

  17. Neutron detector based on Particles of 6Li glass scintillator dispersed in organic lightguide matrix

    NASA Astrophysics Data System (ADS)

    Ianakiev, K. D.; Hehlen, M. P.; Swinhoe, M. T.; Favalli, A.; Iliev, M. L.; Lin, T. C.; Bennett, B. L.; Barker, M. T.

    2015-06-01

    Most 3He replacement neutron detector technologies today have overlapping neutron-gamma pulse-height distributions, which limits their usefulness and performance. Different techniques are used to mitigate this shortcoming, including Pulse Shape Discrimination (PSD) or threshold settings that suppress all gammas as well as much of the neutrons. As a result, count rates are limited and dead times are high when PSD is used, and the detection efficiency for neutron events is reduced due to the high threshold. This is a problem in most applications where the neutron-gamma separation of 3He detectors had been essential. This challenge is especially severe for neutron coincidence and multiplicity measurements that have numerous conflicting requirements such as high detection efficiency, short die-away time, short dead time, and high stability. 6Li-glass scintillators have excellent light output and a single peak distribution, but they are difficult to implement because of their gamma sensitivity. The idea of reducing the gamma sensitivity of 6Li-glass scintillators by embedding small glass particles in an organic light-guide medium was first presented by L.M. Bollinger in the early 60s but, to the best of our knowledge, has never been reduced to practice. We present a proof of principle detector design and experimental data that develop this concept to a large-area neutron detector. This is achieved by using a multi-component optical medium (6Li glass particles attached to a glass supporting structure and a mineral oil light guide) which matches the indices of refraction and minimizes the absorption of the 395 nm scintillator light. The detector design comprises a 10 in. long tube with dual end readout with about 3% volume density of 6Li glass particles installed. The presented experimental data with various neutron and gamma sources show the desired wide gap between the neutron and gamma pulse height distributions, resulting in a true plateau in the counting characteristics similar to that of 3He detectors.

  18. Development of Scintillator Detectors for Fast-Ignition Experiments and Down-Scattered Neutron Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Glebov, V. Yu.; Stoeckl, C.; Theobald, W.; Sangster, T. C.; Marshall, K. L.; Shoup, M. J., III; Buczek, T.; Pruyne, A.; Fox, M.; Duffy, T.; Moran, M. J.; Lauck, R.

    2009-11-01

    A small signal must be recorded after very large DT or hard x-ray signals in a neutron time-of-flight detector to measure down-scattered neutrons in cryogenic DT implosions or to measure neutron yield in the presence of hard x-ray background from an ultrahigh-intensity laser. Several detectors with plastic and liquid scintillators were developed and tested at the Omega/Omega EP Laser Facility in cryogenic DT implosions and integrated fast-ignition experiments. A gated photomultiplier tube was used to eliminate large DT or hard x-ray signals. The liquid scintillator consists of 0.4% PPO, 0.04% MSB dissolved in xylene and saturated with oxygen. The afterglow (long decay constant) with this scintillator is ˜100x less than conventional scintillators. This is an essential property to mitigate the residual scintillator signal in down-scattered neutron measurements and fast-ignition experiments. Detector designs and responses with the different scintillators will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302, DE-FC02-04ER54789, and DE-FG02-05ER54839.

  19. Double {beta} experiments with the help of scintillation and HPGe detectors at Gran Sasso

    SciTech Connect

    Barabash, A.; Konovalov, S. I.; Umatov, V. I.; Belli, P.; D'Angelo, S.; Di Marco, A.; Bernabei, R.; Boiko, R. S.; Chernyak, D. M.; Danevich, F. A.; Kobychev, V. V.; Kropivyansky, B. N.; Kudovbenko, V. M.; Nagorny, S. S.; Podviyanuk, R. B.; Polischuk, O. G.; Tretyak, V. I.; Vyshnevskyi, I. M.; Yurchenko, S. S.; Brudanin, V. B.; and others

    2011-12-16

    A search for double beta decay of {sup 64,70}Zn, {sup 180,186}W was carried out by using low background ZnWO{sub 4} crystal scintillators, while a CeCl{sub 3} scintillation detector was applied to investigate 2{beta} processes in {sup 136,138,142}Ce. A search for 2{beta} decay of {sup 96,104}Ru, {sup 156,158}Dy, {sup 190,198}Pt and study of 2{nu}2{beta} decay of {sup 100}Mo to the first excited 0{sup +} level of {sup 100}Ru were realized by ultra-low background HPGe {gamma} spectrometry. Moreover, CdWO{sub 4} crystal scintillators from enriched {sup 106}Cd and {sup 116}Cd isotopes were developed to search for 2{beta} decay of {sup 106}Cd and {sup 116}Cd. Finally, experiments aimed to investigate {sup 96,104}Ru and {sup 116}Cd are in progress and a new phase of the experiment to search for 2{beta} processes in {sup 106}Cd is in preparation.

  20. The time-walk of analog constant fraction discriminators using very fast scintillator detectors with linear and non-linear energy response

    NASA Astrophysics Data System (ADS)

    Régis, J.-M.; Rudigier, M.; Jolie, J.; Blazhev, A.; Fransen, C.; Pascovici, G.; Warr, N.

    2012-08-01

    The electronic ?-? fast timing technique allows for direct nuclear lifetime determination down to the few picoseconds region by measuring the time difference between two coincident ?-ray transitions. Using high resolution ultra-fast LaBr3(Ce) scintillator detectors in combination with the recently developed mirror symmetric centroid difference method, nuclear lifetimes are measured with a time resolving power of around 5 ps. The essence of the method is to calibrate the energy dependent position (centroid) of the prompt response function of the setup which is obtained for simultaneously occurring events. This time-walk of the prompt response function induced by the analog constant fraction discriminator has been determined by systematic measurements using different photomultiplier tubes and timing adjustments of the constant fraction discriminator. We propose a universal calibration function which describes the time-walk or the combined ?-? time-walk characteristics, respectively, for either a linear or a non-linear amplitude versus energy dependency of the scintillator detector output pulses.

  1. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    NASA Astrophysics Data System (ADS)

    Chen, YongHao; Chen, XiMeng; Lei, JiaRong; An, Li; Zhang, XiaoDong; Shao, JianXiong; Zheng, Pu; Wang, XinHua

    2014-10-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of 241Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of 241Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded 241Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  2. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis

    SciTech Connect

    Xie Xufei; Zhang Xing; Yuan Xi; Chen Jinxiang; Li Xiangqing; Zhang Guohui; Fan Tieshuan; Yuan Guoliang; Yang Jinwei; Yang Qingwei

    2012-09-15

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  3. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis

    NASA Astrophysics Data System (ADS)

    Xie, Xufei; Zhang, Xing; Yuan, Xi; Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Fan, Tieshuan; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2012-09-01

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  4. Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques

    E-print Network

    M. Akashi-Ronquest; P. -A. Amaudruz; M. Batygov; B. Beltran; M. Bodmer; M. G. Boulay; B. Broerman; B. Buck; A. Butcher; B. Cai; T. Caldwell; M. Chen; Y. Chen; B. Cleveland; K. Coakley; K. Dering; F. A. Duncan; J. A. Formaggio; R. Gagnon; D. Gastler; F. Giuliani; M. Gold; V. V. Golovko; P. Gorel; K. Graham; E. Grace; N. Guerrero; V. Guiseppe; A. L. Hallin; P. Harvey; C. Hearns; R. Henning; A. Hime; J. Hofgartner; S. Jaditz; C. J. Jillings; C. Kachulis; E. Kearns; J. Kelsey; J. R. Klein; M. Kuzniak; A. LaTorre; I. Lawson; O. Li; J. J. Lidgard; P. Liimatainen; S. Linden; K. McFarlane; D. N. McKinsey; S. MacMullin; A. Mastbaum; R. Mathew; A. B. McDonald; D. -M. Mei; J. Monroe; A. Muir; C. Nantais; K. Nicolics; J. A. Nikkel; T. Noble; E. O'Dwyer; K. Olsen; G. D. Orebi Gann; C. Ouellet; K. Palladino; P. Pasuthip; G. Perumpilly; T. Pollmann; P. Rau; F. Retiere; K. Rielage; R. Schnee; S. Seibert; P. Skensved; T. Sonley; E. Vazquez-Jauregui; L. Veloce; J. Walding; B. Wang; J. Wang; M. Ward; C. Zhang

    2014-12-12

    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.

  5. Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques

    NASA Astrophysics Data System (ADS)

    Akashi-Ronquest, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bodmer, M.; Boulay, M. G.; Broerman, B.; Buck, B.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chen, Y.; Cleveland, B.; Coakley, K.; Dering, K.; Duncan, F. A.; Formaggio, J. A.; Gagnon, R.; Gastler, D.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grace, E.; Guerrero, N.; Guiseppe, V.; Hallin, A. L.; Harvey, P.; Hearns, C.; Henning, R.; Hime, A.; Hofgartner, J.; Jaditz, S.; Jillings, C. J.; Kachulis, C.; Kearns, E.; Kelsey, J.; Klein, J. R.; Ku?niak, M.; LaTorre, A.; Lawson, I.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Linden, S.; McFarlane, K.; McKinsey, D. N.; MacMullin, S.; Mastbaum, A.; Mathew, R.; McDonald, A. B.; Mei, D.-M.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J. A.; Noble, T.; O'Dwyer, E.; Olsen, K.; Orebi Gann, G. D.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Perumpilly, G.; Pollmann, T.; Rau, P.; Retière, F.; Rielage, K.; Schnee, R.; Seibert, S.; Skensved, P.; Sonley, T.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Wang, B.; Wang, J.; Ward, M.; Zhang, C.

    2015-05-01

    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.

  6. SU-E-T-553: Characterization of Plastic Scintillator Detectors for Radiation Therapy

    SciTech Connect

    Liu, H; Lin, H; Darafsheh, A; Finlay, J; Both, S; Zhu, T

    2014-06-01

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) designed for dosimetry of radiation therapy. Methods: The Exradin W1 Scintillator is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. The Cerenkov emissions were corrected using spectral separation. The optical signal was converted to electronic signal with a photodiode. We measured its dosimetry performance, including percentage depth dose, output factor, dose and dose rate linear response. We compared the dosimetry results with reference ion chamber measurements. Results: The dosimetry results of PSD agree well with reference ion chamber measurements. For percentage depth dose, the differences between PSD and ion chamber results are on average 1.7±1.1% and 0.8±0.8% with a maximum of 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 2% from ion chamber results. The dose linear response is within 1% when dose is larger than 20 MU for both 6 MV and 15 MV. The dose rate linear response is within 1% for the entire dose rate used (100 MU/min to 600MU/min). Conclusions: The current design of PSD is feasible for the dosimtry measurement in radiation therapy. This combination of PSD and photodiode system could be extended to multichannel array detection of dose distribution. It might as well be used as range verification in proton therapy. The work is partially supported by: DOD (W81XWH-09-2-0174) and American Cancer Society (IRG-78-002-28)

  7. Performance assessment of a 2D array of plastic scintillation detectors for IMRT quality assurance

    NASA Astrophysics Data System (ADS)

    Guillot, Mathieu; Gingras, Luc; Archambault, Louis; Beddar, Sam; Beaulieu, Luc

    2013-07-01

    The purposes of this work are to assess the performance of a 2D plastic scintillation detectors array prototype for quality assurance in intensity-modulated radiation therapy (IMRT) and to determine its sensitivity and specificity to positioning errors of one multileaf collimator (MLC) leaf and one MLC leaf bank by applying the principles of signal detection theory. Ten treatment plans (step-and-shoot delivery) and one volumetric modulated arc therapy plan were measured and compared to calculations from two treatment-planning systems (TPSs) and to radiochromic films. The averages gamma passing rates per beam found for the step-and-shoot plans were 95.8% for the criteria (3%, 2 mm), 97.8% for the criteria (4%, 2 mm), and 98.1% for the criteria (3%, 3 mm) when measurements were compared to TPS calculations. The receiver operating characteristic curves for the one leaf errors and one leaf bank errors were determined from simulations (theoretical upper limits) and measurements. This work concludes that arrays of plastic scintillation detectors could be used for IMRT quality assurance in clinics. The use of signal detection theory could improve the quality of dosimetric verifications in radiation therapy by providing optimal discrimination criteria for the detection of different classes of errors.

  8. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  9. A PET detector prototype based on digital SiPMs and GAGG scintillators.

    PubMed

    Schneider, Florian R; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I

    2015-02-21

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm(2), comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm(-3), 520 nm peak emission, 46?000 photons MeV(-1), 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm(3) were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm(3)) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with (18)F was used for tomographic tests. PMID:25633017

  10. Spatial and spectral gamma-ray response of plastic scintillators used in portal radiation detectors; comparison of measurements and simulations

    NASA Astrophysics Data System (ADS)

    Takoudis, G.; Xanthos, S.; Clouvas, A.; Antonopoulos-Domis, M.; Potiriadis, C.; Silva, J.

    2009-02-01

    Portal radiation detectors are commonly used by steel industries in the probing and detection of radioactivity contamination in scrap metal. Furthermore, a large number of portal monitors are installed at the border crossings to prevent illegal radioactive material trafficking. These portal detectors typically consist of either PS (polystyrene) or PVT (polyvinyltoluene) plastic scintillating detectors. Through the electronic circuit of the detector, an energy region-of-interest window can be determined in order to focus on the detection of certain radionuclides. In this study, the spatial response of a portal's PS scintillator to a Cs-137 and a Co-60 source for various energy region-of-interest windows is presented. Furthermore, a number of measured spectra for different source positions on the surface of the scintillating detector are shown. The measured spatial response showed a quantitative and qualitative dependence on the energy window used each time. In addition, measured spectra showed energy shifts for different positions of the two sources on the detector surface. The aforementioned phenomena could not be adequately explained and modelled using gamma-particle transport Monte Carlo simulation tools, such as the MCNP4C2 code. In order to fully explain these phenomena, we performed optical simulations, modelling the transport of the light yield within the detector, using Gate v3.0.0 with Geant 4.8.0p01 of CERN. The results of those simulations are presented and compared to the measured ones.

  11. The new large-sized scintillation charged particles detector for extensive air shower experiments at Tien-Shan

    NASA Astrophysics Data System (ADS)

    Chubenko, A.P.; Shepetov, A.L.; Britvich, G.I.; Chernichenko, S.K.; Gilitsky, Yu.V.; Kushnirenko, A.E.; Mamidzhanyan, E.A.; Pavlyuchenko, V.P.; Shein, I.V.; Soldatov, A.P.; Vasil'chenko, V.G.

    For the newly build extensive air shower array of the Tien-Shan mountain complex ATHLET is designed the new type of a large-size charged particles detector on the basis of the thin molded polystyrene scintillator in conjunction with the wavelength shifting fibers. The 10 mm thick scintillation plates have a 1x1 m2 sensitive area, a 99% registration efficiency of the charged particles and a homogeneity of the scintillation light output better than 90%. Due to their relatively low mass and cost characteristics, the absence of the external high-voltage feeding and a wide dynamic range of the registered signal amplitudes (about 106) detectors of the described type suit well for the use in wide-spread multi-channel extensive air shower installations.

  12. Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-07-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.

  13. On method of muon spectrum measurements by the scintillation detectors of a large thickness T4t sub o

    NASA Technical Reports Server (NTRS)

    Ryazhskaya, O. G.

    1985-01-01

    Various methods for the study of muon spectrum are presented. The direct ones include the muon energy measurements by magnetic spectrometers. The indirect ones deal with the reconstruction of the muon spectrum from the spectrum of secondary particles obtained by burst or calorimeter technique. The burst technique is based on the measurement of the number of cascade particles, mainly in the cascade maximum, by the detectors of small thickness T sub 0. The calorimeter method consist in determination of the cascade energy with help of the cascade curve shape. The multilayer detectors are used for this purpose. They are usually comprised of proportional counters, X-ray emulsion chambers or scintillation counters with the target material placed between them. The scintillation detectors of a large thickness measures the total cascade energy directly and the detector works as a true calorimeter. When the total energy is detected, the cascade spectrum differs from the muon one.

  14. A semi-empirical response function for Gamma-ray of Scintillation detector based on physical interaction mechanism

    E-print Network

    Li, Zhe; Sun, Shifeng; Wang, Baoyi; Wei, Long

    2014-01-01

    Scintillation detector has lower energy resolution for Gamma-ray as compared to semiconductor detector, better spectra analysis method is essential to traditional method. A model for describing the response function of scintillation detector over the range of incident Gamma-ray energies between 0.5 and 1.5 MeV has been established and applied to fitting radiation sources spectra. Each function form for describing the feature of Gamma-ray spectra are based on the analysis of fundamental interaction mechanism. These functions are combined to form a DRF model to fit experiment spectra by weighted least squares fitting method, parameters in this model are obtained simultaneously. Gaussian standard deviation can be calculated out by an individual procedure. Validity of the DRF model is demonstrated by fitting Co-60 and Cs-137 spectra measured by CsI(Tl) detector and comparing them to the normalized equivalent measured spectrum.

  15. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S. (Knoxville, TN); Mihalczo, John T (Oak Ridge, TN)

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  16. Present status of sensitive detector of reactor's antineutrinos using scintillating detectors

    NASA Astrophysics Data System (ADS)

    Fajt, L.; Belov, V.; Burešová, H.; Egorov, V. G.; Fomina, M.; Kuznetsov, A.; Mamedov, F.; Ponomarev, D.; P?idal, P.; Rozova, I.; Špavorová, M.; Štekl, I.; Zhitnikov, I.

    2015-08-01

    In 2011, the reanalysis of the reactor antineutrinos spectra led to the formulation of the Reactor Antineutrino Anomaly (RAA) [1], which indicates the discrepancy between measured and expected antineutrino fluxes on short baselines. This discrepancy appears to favor the existence of the fourth "sterile" neutrino with |?m2|>1 eV2. To confirm or reject this hypothesis a high sensitive antineutrino detector located close to the reactor is required. In addition to that such a detector could be used to online monitor the isotopic composition of the reactor core and to prevent illegal production and removal of239Pu, which is the essential part of nuclear weapons. Detector DANSSino [2] already proved that even a compact antineutrino detector (˜ 1 m3) based on polystyrene is capable of antineutrino detection in the close vicinity of a reactor core (˜ 10 m) with signal to background ratio about one. As a common activity between JINR Dubna and IEAP CTU a new prototype of detector (called S3) has been proposed and is under construction. The construction design, selected results of Monte Carlo simulations and results of benchmark tests are presented.

  17. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Sekonya, K.; Solvyanov, O.

    2015-10-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy and light yield analysis whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs and light loss can be attributed to a breakdown in the light transfer between base and fluor dopants. For doses of 8 MGy to 80 MGy, structural damage leads to possible hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss and light yield loss with increasing dose.

  18. Measurement of loss of DT fusion products using scintillator detectors in TFTR

    SciTech Connect

    Darrow, D.S.; Herrmann, H.W.; Johnson, D.W.; Marsala, R.J.; Palladino, R.W.; Zweben, S.J.; Tuszewski, M.

    1995-03-01

    A poloidal array of MeV ion loss probes previously used to measure DD fusion product loss has been upgraded to measure the loss of alpha particles from DT plasmas in TFTR. The following improvements to the system have been made in preparation for the use of tritium in TFTR: (1) relocation of detectors to a neutronshielded enclosure in the basement to reduce neutron-induced background signals; (2) replacement of ZnS:Cu (P31) scintillators in the probes with the Y{sub 3}Al{sub 5}0{sub 12}:Ce(P46) variety to minimize damage and assure linearity at the fluxes anticipated from DT plasmas; and (3) shielding of the fiber optic bundles which carry the fight from the probes to the detectors to reduce neutron- and gamma-induced light within them. In addition to the above preparations, the probes have been absolutely calibrated for alpha particles by using the Van de Graaf accelerator at Los Alamos National Laboratory. Alpha particle losses from DT plasmas have been observed, and losses at the detector 901 below the midplane are consistent with first orbit loss.

  19. Toward a Real-Time In Vivo Dosimetry System Using Plastic Scintillation Detectors

    SciTech Connect

    Archambault, Louis; Briere, Tina M.; Poenisch, Falk; Beaulieu, Luc; Kuban, Deborah A.; Lee, Andrew; Beddar, Sam

    2010-09-01

    Purpose: In the present study, we have presented and validated a plastic scintillation detector (PSD) system designed for real-time multiprobe in vivo measurements. Methods and Materials: The PSDs were built with a dose-sensitive volume of 0.4 mm{sup 3}. The PSDs were assembled into modular detector patches, each containing five closely packed PSDs. Continuous dose readings were performed every 150 ms, with a gap between consecutive readings of <0.3 ms. We first studied the effect of electron multiplication. We then assessed system performance in acrylic and anthropomorphic pelvic phantoms. Results: The PSDs were compatible with clinical rectal balloons and were easily inserted into the anthropomorphic phantom. With an electron multiplication average gain factor of 40, a twofold increase in the signal/noise ratio was observed, making near real-time dosimetry feasible. Under calibration conditions, the PSDs agreed with the ion chamber measurements to 0.08%. Precision, evaluated as a function of the total dose delivered, ranged from 2.3% at 2 cGy to 0.4% at 200 cGy. Conclusion: Real-time PSD measurements are highly accurate and precise. These PSDs can be mounted onto rectal balloons, transforming these clinical devices into in vivo dose detectors without modifying current clinical practice. Real-time monitoring of the dose delivered near the rectum during prostate radiotherapy should help radiation oncologists protect this sensitive normal structure.

  20. A large area plastic scintillator detector array for fast neutron measurements

    E-print Network

    P. C. Rout; D. R. Chakrabarty; V. M. Datar; Suresh Kumar; E. T. Mirgule; A. Mitra; V. Nanal; R. Kujur

    2008-09-04

    A large area plastic scintillator detector array(~ 1 m x1m) has been set up for fast neutron spectroscopy at the BARC-TIFR Pelletron laboratory, Mumbai. The energy, time and position response has been measured for electrons using radioactive sources and for mono-energetic neutrons using the 7Li(p,n1)7Be*(0.429 MeV) reaction at proton energies between 6.3 and 19 MeV. A Monte Carlo simulation of the energy dependent efficiency of the array for neutron detection is in agreement with the 7Li(p,n1) measurements. The array has been used to measure the neutron spectrum, in the energy range of 4-12 MeV, in the reaction 12C+ 93Nb at E(12C)= 40 MeV. This is in reasonable agreement with a statistical model calculation.

  1. Mass characterization of MaPMT tubes for the LHCb scintillator pad detector

    NASA Astrophysics Data System (ADS)

    Graugés, Eugeni; Comerma, Albert; Garrido, Lluís; Gascón, David; Garra, Jordi; Graciani, Ricardo; Picatoste, Eduard; Aguiló, Ernest; Vilasís-Cardona, Xavier; Gaspar de Valenzuela, Álvaro; Bohner, Gerard; Bonnefoy, Romeo; Borras, David; Cornat, Remi; Crouau, Michel; Deschamps, Olivier; Jacquet, Philippe; Lecoq, Jacques; Monteil, Stephane; Perret, Pascal; Reinmuth, Guy

    2007-03-01

    The final choice as the photomultiplier solution for both the LHCb Pre-Shower (PS) and the Scintillator Pad Detector (SPD) are the R7600-00-M64MOD Hamamatsu 64 channel photomultiplier tubes (MaPMT). A total of 220 units have been purchased to the manufacturer and around 100 units, the part corresponding to the SPD, have been characterized at the photon detection test bench facility in the University of Barcelona (UB) high energy physics group laboratory. There, the crucial features of the tubes such as linearity, gain, channel cross-talk and anode uniformity of response have been measured to ensure the compliance with the specifications agreed with the manufacturer.

  2. Time and position sensitive single photon detector for scintillator read-out

    NASA Astrophysics Data System (ADS)

    Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.

    2012-02-01

    We have developed a photon counting detector system for combined neutron and ? radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy ? radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate ? energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).

  3. Borexino: A real time liquid scintillator detector for low energy solar neutrino study

    E-print Network

    Lino Miramonti

    2002-06-25

    Borexino is a large unsegmented calorimeter featuring 300 tons of liquid scintillator, contained in a 8.5 meter nylon vessel, viewed by 2200 PMTs. The main goal of Borexino is the study, in real time, of low energy solar neutrinos, and in particular, the monoenergetic neutrinos coming from $^7Be$, which is one of the missing links on the solar neutrino problem. The achievement of high radiopurity level, in the order of $10^{-16} g/g$ of U/Th equivalent, necessary to the detection of the low energy component of the solar neutrino flux, was proved in the Borexino prototype: the Counting Test Facility. The detector is located underground in the Laboratori Nazionali del Gran Sasso in the center of Italy at 3500 meter water equivalent depth. In this paper the science and technology of Borexino are reviewed and its main capabilities are presented.

  4. Theory and measurement of the energy and risetime resolution of scintillation detectors in hard x ray area

    NASA Astrophysics Data System (ADS)

    Schneider, Juergen

    1990-07-01

    Several scintillation detectors are examined, and the measurement results are compared in order to increase the energy resolution. The uniformity of each detector was estimated by scanning of the detector surface with a monochromatic x-ray source and by measuring the photon peak location in the energy spectrum at each grid point. Computer programs were developed to record energy and rise-time spectral data and to minimize the background radiation effect. A Southampton detector, a four photomultiplier detector, and a Phoswhich detector were studied. The half value width and the center of gravity location in the distributions are found to be strongly dependent on the preamplifier time constant. It is assumed that an improvement of the analog summation of the preamplifier output signal and a reduction of the absorption losses in the detector angles will improve the energy resolution by 20.

  5. Limiting factors for the scintillation detector coincidence resolving time in positron emission tomography

    PubMed Central

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2015-01-01

    We present Monte Carlo computational methods for estimating the coincidence resolving time (CRT) of scintillator detector pairs in positron emission tomography (PET) and present results for Lu2SiO5:Ce (LSO), LaBr3:Ce, and a hypothetical ultra-fast scintillator with a 1 ns decay time. The calculations were applied to both single-ended and double-ended photodetector readout with leading-edge triggering. They explicitly include (1) the intrinsic scintillator properties (luminosity, rise time, decay time, and index of refraction), (2) the exponentially distributed depths of interaction, (3) the optical photon transport efficiency, delay, and time dispersion, (4) the photodetector properties (fill factor, quantum efficiency, transit time jitter, and single electron response), and (5) the determination of the trigger level that optimizes the CRT. The calculations for single-ended readout include the delayed photons from the opposite reflective surface. The calculations for double-ended readout include the simple average of the two photodetector trigger times, as well as more accurate estimators of the annihilation photon entrance time using the pulse height ratio to estimate the depth of interaction and correct for annihilation photon, optical photon, and trigger delays. For time-of-flight (TOF) PET we combine stopping power and TOF information in a figure of merit equal to the sensitivity gain relative to whole-body non-TOF PET using LSO. For LSO, a decay time of 37 ns, a total photoelectron count of 4,000, and a photodetector with 0.2 ns full-width at half-maximum (fwhm) timing jitter, single-ended readout has a CRT of 0.16 ns fwhm and double-ended readout has a CRT of 0.111 ns fwhm. For LaBr3:Ce, a rise time of 0.2 ns, a decay time of 18 ns, and a total of 7,600 photoelectrons the CRT numbers are 0.14 and 0.072 ns fwhm, respectively. For a the ultra-fast scintillator with a decay time of 1 ns and a total of 4,000 photoelectrons, the CRT numbers are 0.070 and 0.020 ns fwhm, respectively. PMID:24922188

  6. Energy resolution of small scintillation detectors with SiPM light readout

    NASA Astrophysics Data System (ADS)

    Grodzicka, M.; Moszy?ski, M.; Szcz??niak, T.; Kapusta, M.; Szaw?owski, M.; Wolski, D.

    2013-02-01

    The development of silicon photomultipliers (SiPMs) with a large number of APD cells and improved linearity of the pulse height response prompted interest in their application to gamma spectrometry with scintillators. Hamamatsu MPPC sensors equipped with 3600 and 14400 APD cells were chosen in our study because of their well pronounced single photoelectron spectra, which allowed us to precisely measure the photoelectron numbers (PHE) or fired APD cells and then to discuss, in a quantitative manner, the obtainable energy resolution. The studied detectors were first characterized in direct detection of laser light pulses and then in gamma spectroscopy with LFS and CsI:Tl crystals. In the study with the laser light pulses the linearity of the MPPC response versus a light pulse intensity monitored with PMT was measured. Two different methods were used for an evaluation of the MPPC response expressed in the number of photoelectrons (PHE) generated by light illumination. The direct method (PHEdir), based on the comparison of the light peak position to that of the single photoelectron peak, determined the upper limit of the PHE. The lower limit of the PHE was derived from an analysis of the measured pulse height resolution under the assumption of Poisson statistics and MPPC excess noise factor (ENF) of 1. Furthermore, the ENF of the MPPC is discussed with respect to the contributions of device dead time, optical cross-talk and after-pulses to the results obtained. In the scintillation tests, measurements of energy resolution and non-proportionality of the light yield were performed with LFS and CsI:Tl crystals, and both types of 3 × 3 mm MPPC detectors were used for light readout. The results are discussed in a quantitative manner based on the measured PHE.

  7. Measuring muon-induced neutrons with liquid scintillation detector at Soudan mine

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mei, D.-M.

    2014-12-01

    We report a direct detection of muon-induced high-energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan mine for about two years. The detector response to energy from a few MeV up to ˜20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the measured muon-induced fast neutron flux is determined to be (2.23 ±0.52 (sta)±0.99 (sys))×10-9 cm-2 s-1 (En >20 MeV ), in a reasonable agreement with the model prediction. The muon flux is found to be (1.65 ±0.02 (sta)±0.1 (sys))×10-7 cm-2 s-1 (E? >1 GeV ), consistent with other measurements. As a result, the muon-induced high-energy gamma-ray flux is simulated to be 7.08 ×10-7 cm-2 s-1 (E? > 1 MeV ) for the depth of Soudan.

  8. Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements.

    PubMed

    Cates, Joshua W; Vinke, Ruud; Levin, Craig S

    2015-07-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector's timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3 × 3 × 20 mm(3) LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162 ± 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559

  9. Characterization of indirect X-ray imaging detector based on nanocrystalline gadolinium oxide scintillators for high-resolution imaging application

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Kyung Cha, Bo; Jeon, Sungchae; Kyung Kim, Ryun; Huh, Young

    2013-01-01

    Nanocrystalline Gd2O3:Eu scintillating powders were successfully synthesized through a co-precipitation process for X-ray imaging detector applications. In this work, as-synthesized sample was further calcinated at different temperature, time with 1-10 h and doped-Eu3+ concentration with 1-10 mol% in the electrical furnace. The characterization such as the crystal structures and microstructure of Gd2O3:Eu scintillator were measured by XRD and SEM experiment. The phase transition from cubic to monoclinic structure was observed at 1300 °C calcination temperature. Dominant emission peak of sample with cubic structure was appeared at 611 nm under 266 nm UV light excitation. After scintillation properties of synthesized Gd2O3:Eu scintillator were investigated, Gd2O3:Eu scintillating films with different thickness was fabricated onto glass substrate by a screen printing method. And then X-ray imaging performance in terms of the light response to X-ray exposure dose, signal-to-noise ratio (SNR) and spatial resolution were measured by combining the fabricated Gd2O3:Eu screen films with a lens-coupled CCD imaging detector under radiographic system conditions.

  10. Characterization of plastic scintillators using magnetic resonance techniques for the upgrade of the Tile Calorimeter in the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Pelwan, C.; Jivan, H.; Joubert, D.; Keartland, J.; Liao, S.; Peters, G.; Sideras-Haddad, E.

    2015-10-01

    In this study we look at radiation damage and its adverse effects on plastic scintillators housed within the Tile Calorimeter (TileCal) of the ATLAS detector. The study focuses on determining how the interaction of ionizing radiation with plastic scintillators effects their efficacy and desired properties such as high light output and fast decay time. Plastic scintillators form an integral part of the ATLAS trigger system and their optimal functionality is paramount to the success of ATLAS. Electron paramagnetic resonance (EPR) provides insight into the electronic structure of the plastics and can characterize the damage caused by ionizing radiation. Density functional theory (DFT) calculations will be performed in order to simulate the EPR signal. Preliminary EPR results investigate four different types of plastic scintillators. These include three polyvinyl-toluene based Eljen technologies: EJ200, EJ208 and EJ260, and one polystyrene based Dubna sample. It has been observed that the Dubna sample, identical on the current scintillator used in the ATLAS detector, undergoes more structural damage when compared to the Eljen samples.

  11. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and ?-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators. The solid angle subtended by the fiber is ?2.2 × 10-5 sr. The final element is a compact and high sensitive spectrometer, QE6500 (Ocean Optics Inc.) with a 2D area detector which allow us to measure simultaneously in the range of 200-1100 nm with a spectral resolution ?1-2 nm. The measured signals were analyzed and stored with the SpectraSuite software [6]. The absolute calibration of the optical system described above was carried out with a HL-2000-CAL Tungsten Halogen Calibration Standard light source which provides absolute intensity values (in ?W/cm2/nm) at the fiber port at wavelengths from 360-1050 nm.The beam fluxes used to irradiate the phosphors were ? 1012 p/cm2s- for the IL yields determination, and up to ten times higher for the degradation analyses.The Rutherford Backscattering Spectrometry (RBS) measurements of the screens were accomplished in the same vacuum chamber using protons at 3 MeV and 5 MeV. Two different energies were employed due to the large difference between the thicknesses of the samples. The proton beam intensity was 10 nA and the beam size 1 mm of diameter. The analysis were performed with a Passivated Implanted Planar Silicon (PIPS) detector of 300 mm2, positioned at 150° and with a 10 ?m thick aluminized mylar foil placed at the detector surface to avoid the light emitted by the scintillators. The RBS spectra were analyzed using the SIMNRA code [7].The scintillators investigated in this work were selected according to their availability, radiation hardness, fast response, and/or prior use in plasma diagnostics. In this paper, three different kinds of materials have been analyzed. The TG-Green (so called by the manufacturer, Sarnoff Corporation, USA) is a Eu doped SrGa2S4 powder substrate with density of 3.65 g/cm3, and presents an emission at 540 nm with a very short decay time.?490 ns [8]. A TG-Green scintillator coating has been applied, for the first time, to a fusion plasma diagnostics for the detection of fast-particle losses on the AUG tokamak [9,10]. The same material supplied by other manufacturer (CIEMAT)

  12. A comparison of performance between organic scintillation crystals and moderated 3He-based detectors for fission neutron detection

    NASA Astrophysics Data System (ADS)

    Robinson, S. M.; Runkle, R. C.; Newby, R. J.

    2011-10-01

    Direct detection of fast neutrons using organic scintillators is one alternative to moderated thermal neutron detectors deployed to detect fission neutrons—a relevant question in light of dwindling 3He supplies. Recent developments in materials science have demonstrated the capability to grow larger crystals in reasonable times. In light of these developments, this study compares the relative performance of a 3He-based neutron module from a commercially available portal monitor with a theoretical organic scintillator of similar overall size. Stilbene serves as a benchmark with its performance estimated from a combination of energy deposition modeled by radiation transport calculations and an assumption of the lowest neutron energy at which pulse shape discrimination can effectively separate neutron and gamma-ray events. Before intrinsic detection efficiencies on par with moderated detector systems can be achieved, the results point to the need for further advances including significant increases in detector size, especially thickness, and/or lower pulse shape discrimination thresholds.

  13. A Comparison of Performance Between Organic Scintillation Crystals and Moderated (3)He-Based Detectors for Fission Neutron Detection

    SciTech Connect

    Robinson, Sharon M; Newby, Robert Jason; Runkle, Robert Charles

    2011-01-01

    Direct detection of fast neutrons using organic scintillators is one alternative to moderated thermal neutron detectors deployed to detect fission neutrons - a relevant question in light of dwindling {sup 3}He supplies. Recent developments in materials science have demonstrated the capability to grow larger crystals in reasonable times. In light of these developments, this study compares the relative performance of a {sup 3}He-based neutron module from a commercially available portal monitor with a theoretical organic scintillator of similar overall size. Stilbene serves as a benchmark with its performance estimated from a combination of energy deposition modeled by radiation transport calculations and an assumption of the lowest neutron energy at which pulse shape discrimination can effectively separate neutron and gamma-ray events. Before intrinsic detection efficiencies on par with moderated detector systems can be achieved, the results point to the need for further advances including significant increases in detector size, especially thickness, and/or lower pulse shape discrimination thresholds.

  14. Estimation of Fano factor in inorganic scintillators

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav; Barrett, Harrison H.; Fastje, David; Clarkson, Eric; Furenlid, Lars; Bousselham, Abdelkader; Shah, Kanai S.; Glodo, Jarek

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI2:Eu and CsI:Na scintillator crystals. At 662 keV, SrI2:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr3:Ce scintillator crystals. At 662 keV, LaBr3:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  15. A position sensitive gamma-ray scintillator detector with enhanced spatial resolution, linearity, and field of view.

    PubMed

    Domingo-Pardo, César; Goel, Namita; Engert, Tobias; Gerl, Juergen; Isaka, Masahiro; Kojouharov, Ivan; Schaffner, Henning

    2009-12-01

    The performance of a position sensitive gamma-ray scintillator detector (PSD) is described. This PSD is based on a lutetium yttrium oxyorthosilicate (LYSO) crystal read out by a crossed-wire anode position sensitive photomultiplier tube (PSPMT). The main difference with respect to similar existing devices is the individual multi-anode readout (IMAR) approach that is followed here. This method allows to exploit better the intrinsic characteristics of the PSPMT, thus yielding better linearity, improved spatial resolution, and a larger field of view. The new detector is intended for the characterization of 3-D position sensitive germanium detectors. PMID:19628451

  16. Local coordination state of rare earth in eutectic scintillators for neutron detector applications

    PubMed Central

    Masai, Hirokazu; Yanagida, Takayuki; Mizoguchi, Teruyasu; Ina, Toshiaki; Miyazaki, Takamichi; Kawaguti, Noriaki; Fukuda, Kentaro

    2015-01-01

    Atomic distribution in phosphors for neutron detection has not been fully elucidated, although their ionization efficiency is strongly dependent on the state of the rare earth in the matrix. In this work, we examine optical properties of Eu-doped 80LiF-20CaF2 eutectics for neutron detector applications based on the Eu distribution. At low concentrations, aggregation of Eu cations is observed, whereas homogeneous atomic dispersion in the CaF2 layer, to substitute Ca2+ ions, is observed in the eutectics at high concentrations. Eu LIII edge X-ray absorption fine structure (XAFS) analysis suggests that neutron responses do not depend on the amount of Eu2+ ions. However, transparency, which depends on an ordered lamellar structure, is found to be important for a high light yield in neutron detection. The results confirm the effectiveness of the basic idea concerning the separation of radiation absorbers and activators in particle radiation scintillation and present potential for further improvement of novel bulk detectors. PMID:26292726

  17. Local coordination state of rare earth in eutectic scintillators for neutron detector applications.

    PubMed

    Masai, Hirokazu; Yanagida, Takayuki; Mizoguchi, Teruyasu; Ina, Toshiaki; Miyazaki, Takamichi; Kawaguti, Noriaki; Fukuda, Kentaro

    2015-01-01

    Atomic distribution in phosphors for neutron detection has not been fully elucidated, although their ionization efficiency is strongly dependent on the state of the rare earth in the matrix. In this work, we examine optical properties of Eu-doped 80LiF-20CaF2 eutectics for neutron detector applications based on the Eu distribution. At low concentrations, aggregation of Eu cations is observed, whereas homogeneous atomic dispersion in the CaF2 layer, to substitute Ca(2+) ions, is observed in the eutectics at high concentrations. Eu LIII edge X-ray absorption fine structure (XAFS) analysis suggests that neutron responses do not depend on the amount of Eu(2+) ions. However, transparency, which depends on an ordered lamellar structure, is found to be important for a high light yield in neutron detection. The results confirm the effectiveness of the basic idea concerning the separation of radiation absorbers and activators in particle radiation scintillation and present potential for further improvement of novel bulk detectors. PMID:26292726

  18. Local coordination state of rare earth in eutectic scintillators for neutron detector applications

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Yanagida, Takayuki; Mizoguchi, Teruyasu; Ina, Toshiaki; Miyazaki, Takamichi; Kawaguti, Noriaki; Fukuda, Kentaro

    2015-08-01

    Atomic distribution in phosphors for neutron detection has not been fully elucidated, although their ionization efficiency is strongly dependent on the state of the rare earth in the matrix. In this work, we examine optical properties of Eu-doped 80LiF-20CaF2 eutectics for neutron detector applications based on the Eu distribution. At low concentrations, aggregation of Eu cations is observed, whereas homogeneous atomic dispersion in the CaF2 layer, to substitute Ca2+ ions, is observed in the eutectics at high concentrations. Eu LIII edge X-ray absorption fine structure (XAFS) analysis suggests that neutron responses do not depend on the amount of Eu2+ ions. However, transparency, which depends on an ordered lamellar structure, is found to be important for a high light yield in neutron detection. The results confirm the effectiveness of the basic idea concerning the separation of radiation absorbers and activators in particle radiation scintillation and present potential for further improvement of novel bulk detectors.

  19. Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance

    SciTech Connect

    Gagnon, Jean-Christophe; Theriault, Dany; Guillot, Mathieu; Archambault, Louis; Beddar, Sam; Gingras, Luc; Beaulieu, Luc

    2012-01-15

    Purpose: To compare the performance of plastic scintillation detectors (PSD) for quality assurance (QA) in stereotactic radiosurgery conditions to a microion-chamber (IC), Gafchromic EBT2 films, 60 008 shielded photon diode (SD) and unshielded diodes (UD), and assess a new 2D crosshair array prototype adapted to small field dosimetry. Methods: The PSD consists of a 1 mm diameter by 1 mm long scintillating fiber (BCF-60, Saint-Gobain, Inc.) coupled to a polymethyl-methacrylate optical fiber (Eska premier, Mitsubishi Rayon Co., Ltd., Tokyo, Japan). Output factors (S{sub c,p}) for apertures used in radiosurgery ranging from 4 to 40 mm in diameter have been measured. The PSD crosshair array (PSDCA) is a water equivalent device made up of 49 PSDs contained in a 1.63 cm radius area. Dose profiles measurements were taken for radiosurgery fields using the PSDCA and were compared to other dosimeters. Moreover, a typical stereotactic radiosurgery treatment using four noncoplanar arcs was delivered on a spherical phantom in which UD, IC, or PSD was placed. Using the Xknife planning system (Integra Radionics Burlington, MA), 15 Gy was prescribed at the isocenter, where each detector was positioned. Results: Output Factors measured by the PSD have a mean difference of 1.3% with Gafchromic EBT2 when normalized to a 10 x 10 cm{sup 2} field, and 1.0% when compared with UD measurements normalized to the 35 mm diameter cone. Dose profiles taken with the PSD crosshair array agreed with other single detectors dose profiles in spite of the presence of the 49 PSDs. Gamma values comparing 1D dose profiles obtained with PSD crosshair array with Gafchromic EBT2 and UD measured profiles shows 98.3% and 100.0%, respectively, of detector passing the gamma acceptance criteria of 0.3 mm and 2%. The dose measured by the PSD for a complete stereotactic radiosurgery treatment is comparable to the planned dose corrected for its SD-based S{sub c,p} within 1.4% and 0.7% for 5 and 35 mm diameter cone, respectively. Furthermore, volume averaging of the IC can be observed for the 5 mm aperture where it differs by as much as 9.1% compared to the PSD measurement. The angular dependency of the UD is also observed, unveiled by an under-response around 2.5% of both 5 and 35 mm apertures. Conclusions: Output Factors and dose profiles measurements performed, respectively, with the PSD and the PSDCA were in agreement with those obtained with the UD and EBT2 films. For stereotactic radiosurgery treatment verification, the PSD gives accurate results compared to the planning system and the IC once the latter is corrected to compensate for the averaging effect of the IC. The PSD provides precise results when used as a single detector or in a dense array, resulting in a great potential for stereotactic radiosurgery QA measurements.

  20. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  1. A new type of thermal-neutron detector based on ZnS(Ag)/LiF scintillator and avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Marin, V. N.; Sadykov, R. A.; Trunov, D. N.; Litvin, V. S.; Aksenov, S. N.; Stolyarov, A. A.

    2015-09-01

    A high-efficiency thermal-neutron detector based on ZnS(Ag)/LiF scintillator is described, which employs a new technique of signal pick-up with the aid of a light guide and avalanche photodiodes instead of optical fibers and photomultipliers. Results of tests on the RADEX pulsed neutron source are presented, in which neutron diffraction patterns of test objects have been obtained.

  2. Determination of mass attenuation coefficients of some boron ores at 59.54keV by using scintillation detector.

    PubMed

    Demir, Faruk

    2010-01-01

    The mass attenuation coefficients of the 59.54keV radiation of (241)Am point source in boron ores such as tincal, ulexite and colemanite were determined experimentally by a scintillation detector and theoretically. Since boron ores contain boron, hydrogen, and a lot of elements, they may be used as shielding against neutrons and gammas simultaneously, e.g. for shielding (241)Am/Be neutron sources, as they emit both gammas and neutrons. PMID:19800806

  3. A Monte Carlo study of an energy-weighted algorithm for radionuclide analysis with a plastic scintillation detector.

    PubMed

    Shin, Wook-Geun; Lee, Hyun-Cheol; Choi, Chang-Il; Park, Chang Soo; Kim, Hong-Suk; Min, Chul Hee

    2015-07-01

    Nuisance and false alarms due to naturally occurring radioactive material (NORM) are major problems facing radiation portal monitors (RPMs) for the screening of illicit radioactive materials in airports and ports. Based on energy-weighted counts, we suggest an algorithm that distinguishes radioactive nuclides with a plastic scintillation detector that has poor energy resolution. Our simulation study, using a Monte Carlo method, demonstrated that man-made radionuclides can be separated from NORM by using a conventional RPM. PMID:25836977

  4. Clinical Trials of a Urethral Dose Measurement System in Brachytherapy Using Scintillation Detectors

    SciTech Connect

    Suchowerska, Natalka; Jackson, Michael; Lambert, Jamil; Yin, Yong Bai; Hruby, George; McKenzie, David R.

    2011-02-01

    Purpose: To report on the clinical feasibility of a novel scintillation detector system with fiberoptic readout that measures the urethral dose during high-dose-rate brachytherapy treatment of the prostate. Methods and Materials: The clinical trial enrolled 24 patients receiving high-dose-rate brachytherapy treatment to the prostate. After the first 14 patients, three improvements were made to the dosimeter system design to improve clinical reliability: a dosimeter self-checking facility; a radiopaque marker to determine the position of the dosimeter, and a more robust optical extension fiber. Results: Improvements to the system design allowed for accurate dose measurements to be made in vivo. A maximum measured dose departure of 9% from the calculated dose was observed after dosimeter design improvements. Conclusions: Departures of the measured from the calculated dose, after improvements to the dosimetry system, arise primarily from small changes in patient anatomy. Therefore, we recommend that patient response be correlated with the measured in vivo dose rather than with the calculated dose.

  5. Novel discrimination parameters for neutron-gamma discrimination with liquid scintillation detectors using wavelet transform

    NASA Astrophysics Data System (ADS)

    Singh, H.; Singh, S.

    2015-06-01

    It has been observed that the discrimination performance of the wavelet transform method strongly depends on definition of discrimination parameters. These parameters are usually obtained from a combination of scaling functions at different scales, which represents the energy density of the wavelet coefficients. In this paper, the discrete wavelet transform (DWT) at minimum possible values of scale was investigated. Novel pulse shape discrimination parameters have been proposed for neutron and gamma discrimination in a mixed radiation field and tested with modeled pulses. The performance of these parameters was also validated in terms of quality of discrimination using experimental data of mixed events from an AmBe source collected with BC501 liquid scintillation detector. The quality of discrimination was evaluated by calculating a figure of merit (FOM) with all parameters under same experimental and simulation conditions. The FOM obtained with the proposed novel parameters was also compared with the charge comparison method. The proposed parameters exhibit better FOM as compared to the charge comparison method when high levels of noise are present in the data.

  6. GIOVE - A New Detector Setup for High Sensitivity Germanium Spectroscopy At Shallow Depth

    E-print Network

    Heusser, Gerd; Hakenmüller, Janina; Laubenstein, Matthias; Lindner, Manfred; Maneschg, Werner; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert

    2015-01-01

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer Veto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut f\\"ur Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of <100 {\\mu}Bq/kg for primordial radionuclides from U and Th in typical {\\gamma} ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  7. GIOVE - A New Detector Setup for High Sensitivity Germanium Spectroscopy At Shallow Depth

    E-print Network

    Gerd Heusser; Marc Weber; Janina Hakenmüller; Matthias Laubenstein; Manfred Lindner; Werner Maneschg; Hardy Simgen; Dominik Stolzenburg; Herbert Strecker

    2015-07-13

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer Veto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut f\\"ur Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of <100 {\\mu}Bq/kg for primordial radionuclides from U and Th in typical {\\gamma} ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  8. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    NASA Astrophysics Data System (ADS)

    Heusser, G.; Weber, M.; Hakenmüller, J.; Laubenstein, M.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H.

    2015-11-01

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ? 100 \\upmu Bq kg^{-1} for primordial radionuclides from U and Th in typical ? ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  9. A universal setup for active control of a single-photon detector

    SciTech Connect

    Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía; Kurtsiefer, Christian; Makarov, Vadim; Gerhardt, Ilja

    2014-01-15

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  10. A universal setup for active control of a single-photon detector.

    PubMed

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors. PMID:24517746

  11. A universal setup for active control of a single-photon detector

    NASA Astrophysics Data System (ADS)

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  12. Low background detector with enriched 116CdWO4 crystal scintillators to search for double beta decay of 116Cd

    E-print Network

    Barabash, A S; Bernabei, R; Boiko, R S; Cappella, F; Caracciolo, V; Chernyak, D M; Cerulli, R; Danevich, F A; Di Vacri, M L; Dossovitskiy, A E; Galashov, E N; Incicchitti, A; Kobychev, V V; Konovalov, S I; Kovtun, G P; Kudovbenko, V M; Laubenstein, M; Mikhlin, A L; Nisi, S; Poda, D V; Podviyanuk, R B; Polischuk, O G; Shcherban, A P; Shlegel, V N; Solopikhin, D A; Stenin, Yu G; Tretyak, V I; Umatov, V I; Vasiliev, Ya V; Virich, V D

    2011-01-01

    A cadmium tungstate crystal boule enriched in $^{116}$Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Resolution Inductively Coupled Plasma Mass-Spectrometry. The crystal scintillators produced from the boule were subjected to characterization that included measurements of transmittance and energy resolution. A low background scintillation detector with two $^{116}$CdWO$_4$ crystal scintillators (586 g and 589 g) was developed. The detector was running over 1727 h deep underground at the Gran Sasso National Laboratories of the INFN (Italy), which allowed to estimate the radioactive contamination of the enriched crystal scintillators. The radiopurity of a third $^{116}$CdWO$_4$ sample (326 g) was tested with the help of ultra-low background high purity germanium $\\gamma$ detector. Monte Carlo simulations of double $\\beta$ processes in $^{116}$Cd were used to estimate ...

  13. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation

    NASA Astrophysics Data System (ADS)

    van Dam, Herman T.; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R.

    2013-05-01

    Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm3, 16 × 16 × 20 mm3, 24 × 24 × 10 mm3, and 24 × 24 × 20 mm3. The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm3 LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.

  14. Development of a new scintillation-trigger detector for the MTV experiment using aluminum-metallized film tape

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yuko; Ozaki, Sachi; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    2014-09-01

    A new type of trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, using aluminum-metallized film tape for wrapping. The MTV experiment aims to perform the finest precision test of time reversal symmetry in nuclear beta decay. In that purpose, we search non-zero T-Violating transverse polarization of electrons emitted from polarized Li-8 nuclei. It uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The trigger-scintillation counter consists of 12-segmented 1 mm thick 300 mm long thin plastic scintillation counters. This counter is placed inside the CDC to generate a trigger signal. The required assembling precision of +-0.5 mm was a tricky point when we tried to use conventional total reflection mode. Indeed, produce an air-layer surrounding the scintillating bar to keep good light transmission was the main issue. For this reason, we tried to use a new wrapping material made of metallized-aluminum tape, which has a good mirror-like reflecting surface on both sides of the tape. Through this report, we will compare detection efficiency and light attenuation between conventional and new wrapping materials.

  15. Study of scintillation, fluorescence and scattering in mineral oil for the MiniBooNE neutrino detector

    SciTech Connect

    Brown, Bruce C.; Brice, Stephen; Hawker, Eric; Maza, Shannon; Meyer, Hans-Otto; Pla-Dalmau, Anna; Tayloe, Rex; Tanaka, Hirohisa A.; Toptygin, Dmitri; /Fermilab /Western Illinois U. /Indiana U. /Princeton U. /Johns Hopkins U.

    2004-11-01

    The MiniBooNE neutrino detector at Fermilab (FNAL) is filled with 250,000 gallons of pure mineral oil. The principal signal for MiniBooNE is light observed in a prompt Cherenkov cone. Scattering and fluorescence modify our detection of this light. Scintillation is also created by ionization in the oil. Studies of fluorescence of this oil have been carried out over a wide spectrum of exciting light and time resolved fluorescence with a narrower range of excitation. Polarized scattering measurements have been carried out at longer wavelengths. Time resolved and spectrally resolved scintillation has been studied with a 200 MeV Proton beam at the Indiana University Cyclotron Facility. Results of these studies will be reported.

  16. Investigation of the influence of an inner gas bubble on the response of a liquid scintillation detector to ?-rays and neutrons

    NASA Astrophysics Data System (ADS)

    Xufei, Xie; Xing, Zhang; Xi, Yuan; Tieshuan, Fan; Jinxiang, Chen; Xiangqing, Li

    2013-09-01

    The influence of an inert gas bubble inside EJ301 cylindrical cell on the response of the liquid scintillation detector to ?-rays and neutrons has been investigated. It is found experimentally that the response of the detector to radiation varies with the detector placement styles. The explanation proposed in this article is that this variation arises from the change of the light transmission process induced by the motion of the inner gas bubble. This assertion has been supported by the simulations of both radiation energy deposition and light transmission process inside the detector with the GEANT4 code. For the recommended detector placement style when the detector is placed horizontally, the variation of the response is smaller than 1.56%, which will increase to about 22% when the detector is placed facing down and the bubble lies between the scintillator and photomultiplier tube.

  17. Directional neutron detectors for use with 14 MeV neutrons :fiber scintillation methods for directional neutron detection.

    SciTech Connect

    Sunnarborg, Duane A.; Peel, Justin D.; Mascarenhas, Nicholas; Mengesha, Wondwosen

    2005-10-01

    Current Joint Test Assembly (JTA) neutron monitors rely on knock-on proton type detectors that are susceptible to X-rays and low energy gamma rays. We investigated two novel plastic scintillating fiber directional neutron detector prototypes. One prototype used a fiber selected such that the fiber width was less than 2.1mm which is the range of a proton in plastic. The difference in the distribution of recoil proton energy deposited in the fiber was used to determine the incident neutron direction. The second prototype measured both the recoil proton energy and direction. The neutron direction was determined from the kinematics of single neutron-proton scatters. This report describes the development and performance of these detectors.

  18. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    SciTech Connect

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.

  19. Development of an optical fiber type detector using a Eu:LiCaAlF6 scintillator for neutron monitoring in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenichi; Kawabata, Yuya; Yamazaki, Atsushi; Uritani, Akira; Iguchi, Tetsuo; Fukuda, Kentaro; Yanagida, Takayuki

    2015-12-01

    We have developed a small neutron detector probe as a thermal neutron flux monitor for boron neutron capture therapy. The detector consists of an optical fiber and a small Eu:LiCaAlF6 scintillator. In order to improve neutron-gamma ray discrimination capability, we use the small-size scintillator, whose size is controlled to be smaller than fast electron range produced by gamma-rays and larger than the range of charged particles induced by 6Li(n,t) reactions. We confirmed the improved neutron-gamma ray discrimination capability by comparing the detector responses between a small-size scintillator and a slab one. We also evaluated the neutron sensitivity of the fabricated optical fiber type neutron detector to be 2×10-4 cm2.

  20. Recent progress of MPPC-based scintillation detectors in high precision X-ray and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Kishimoto, A.; Fujita, T.; Nishiyama, T.; Kurei, Y.; Tsujikawa, T.; Oshima, T.; Taya, T.; Iwamoto, Y.; Ogata, H.; Okochi, H.; Ohsuka, S.; Ikeda, H.; Yamamoto, S.

    2015-06-01

    The multi-pixel photon counter (MPPC) is a promising light sensor for various applications, not only in physics experiments but also in nuclear medicine, industry, and even high-energy astrophysics. In this paper, we present the current status and most recent progress of the MPPC-based scintillation detectors, such as (1) a high-precision X-ray and gamma-ray spectral image sensor, (2) next-generation PET detectors with MRI, TOF, and DOI measurement capabilities, and (3) a compact gamma camera for environmental radiation surveys. We first present a new method of fabricating a Ce:GAGG scintillator plate (1 or 2 mm thick) with ultra-fine resolution (0.2 mm/pixel), cut using a dicing saw to create 50 ?m wide micro-grooves. When the plate is optically coupled with a large-area MPPC array, excellent spatial resolution of 0.48 mm (FWHM) and energy resolution of 14% (FWHM) are obtained for 122 keV gamma rays. Hence, the detector can act as a convenient "multi-color" imaging device that can potentially be used for future SPECT and photon-counting CT. We then show a prototype system for a high-resolution MPPC-based PET scanner that can realize ?1 mm (FWHM) spatial resolution, even under a strong magnetic field of 4.7 T. We develop a front-end ASIC intended for future TOF-PET scanner with a 16-channel readout that achieves a coincidence time resolution of 489 ps (FWHM). A novel design for a module with DOI-measurement capability for gamma rays is also presented by measuring the pulse height ratio of double-sided MPPCs coupled at both ends of scintillation crystal block. Finally, we present the concept of a two-plane Compton camera consisting of Ce:GAGG scintillator arrays coupled with thin MPPC arrays. As a result of the thin and compact features of the MPPC device, the camera not only achieves a small size (14×14×15 cm3) and light weight (1.9 kg) but also excellent sensitivity, compared to the conventional PMT-based pinhole camera used in Fukushima. Finally, we briefly describe a new product recently developed in conjunction with Hamamatsu Photonics K.K. that offers improved sensitivity and angular resolution of ?? ~ 8 ° (FWHM) at 662 keV, by incorporating DOI-segmented scintillator arrays.

  1. Neutron detection and multiplicity counting using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array

    SciTech Connect

    Miller, M.C.

    1998-03-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ({sup 10}B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Both of these characteristics address a fundamental limitation of thermal-neutron multiplicity counters, where {sup 3}He proportional counters are embedded in a polyethylene matrix. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on a pulse-by-pulse basis using custom integrator and timing circuits. In addition, a custom time-tag module was used to provide a time for each detector event. Analysis of the combined energy and time event stream was performed by calibrating each detector`s response and filtering based on the presence of a simultaneous energy deposition corresponding to the {sup 10}B(n,alpha) reaction products in the plastic scintillator (93 keV{sub ee}) and the accompanying neutron-capture gamma ray in the bismuth germanate (478 keV). Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates. Proof-of-principle measurements were conducted with a variety of gamma-ray and neutron sources including {sup 137}Cs, {sup 54}Mn, AmLi, and {sup 252}Cf. Results of this study indicate that a neutron-capture probability of {approximately}10% and a die-away time of {approximately}10 {micro}s are possible with a 4-detector array with a detector volume of 1600 cm{sup 3}. Simulations were performed that indicate neutron-capture probabilities on the order of 50% and die-away times of less than 4 {micro}s are realistically achievable. While further study will be required for practical application of such a detection system, the results obtained in this investigation are encouraging and may lead to a new class of high-efficiency, short die-away time neutron multiplicity counters capable of extending current nondestructive assay methods for special nuclear materials.

  2. Investigation of depth-of-interaction (DOI) effects in single- and dual-layer block detectors by the use of light sharing in scintillators.

    PubMed

    Yamamoto, Seiichi

    2012-01-01

    In block detectors for PET scanners that use different lengths of slits in scintillators to share light among photomultiplier tubes (PMTs), a position histogram is distorted when the depth of interaction (DOI) of the gamma photons is near the PMTs (DOI effect). However, it remains unclear whether a DOI effect is observed for block detectors that use light sharing in scintillators. To investigate the effect, I tested the effect for single- and dual-layer block detectors. In the single-layer block detector, Ce doped Gd?SiO? (GSO) crystals of 1.9 × 1.9 × 15 mm³ (0.5 mol% Ce) were used. In the dual-layer block detector, GSO crystals of a 1.9 × 1.9 × 6 mm³ (1.5 mol% Ce) were used for the front layer and GSO crystals of 1.9 × 1.9 × 9 mm³ (0.5 mol% Ce) for the back layer. These scintillators were arranged to form an 8 × 8 matrix with multi-layer optical film inserted partly between the scintillators for obtaining an optimized position response with use of two dual-PMTs. Position histograms and energy responses were measured for these block detectors at three different DOI positions, and the flood histograms were obtained. The results indicated that DOI effects are observed in both block detectors, but the dual-layer block showed more severe distortion in the position histogram as well as larger energy variations. We conclude that, in the block detectors that use light sharing in the scintillators, the DOI effect is an important factor for the performance of the detectors, especially for DOI block detectors. PMID:21927889

  3. A comparative study of the radiation hardness of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Liao, S.; Erasmus, R.; Jivan, H.; Pelwan, C.; Peters, G.; Sideras-Haddad, E.

    2015-10-01

    The influence of radiation on the light transmittance of plastic scintillators was studied experimentally. The high optical transmittance property of plastic scintillators makes them essential in the effective functioning of the Tile calorimeter of the ATLAS detector at CERN. This significant role played by the scintillators makes this research imperative in the movement towards the upgrade of the tile calorimeter. The radiation damage of polyvinyl toluene (PVT) based plastic scintillators was studied, namely, EJ-200, EJ-208 and EJ-260, all manufactured and provided to us by ELJEN technology. In addition, in order to compare to scintillator brands actually in use at the ATLAS detector currently, two polystyrene (PS) based scintillators and an additional PVT based scintillator were also scrutinized in this study, namely, Dubna, Protvino and Bicron, respectively. All the samples were irradiated using a 6 MeV proton beam at different doses at iThemba LABS Gauteng. The radiation process was planned and mimicked by doing simulations using a SRIM program. In addition, transmission spectra for the irradiated and unirradiated samples of each grade were obtained, observed and analyzed.

  4. Results of low energy background measurements with the Liquid Scintillation Detector (LSD) of the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Aglietta, M.; Badino, G.; Bologna, G. F.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G. C.; Vernetto, S.; Dadykin, V. L.

    1985-01-01

    The 90 tons liquid scintillation detector (LSD) is fully running since October 1984, at a depth of 5,200 hg/sq cm of standard rock underground. The main goal is to search for neutrino bursts from collapsing stars. The experiment is very sensitive to detect low energy particles and has a very good signature to gamma-rays from (n,p) reaction which follows the upsilon e + p yields n + e sup + neutrino capture. The analysis of data is presented and the preliminary results on low energy measurements are discussed.

  5. Resarch investigation on dense scintillation glass for use in total absorption nuclear cascade detectors

    NASA Technical Reports Server (NTRS)

    Hensler, J. R.

    1973-01-01

    Three approaches to the development of a high density scintillation glass were investigated: They include the increase of density of glass systems containing cerium - the only systems which were known to show scintillation, the testing of a novel silicate glass system containing significant concentrations of silver produced by ion exchange and never tested previously, and the hot pressing of a diphasic compact of low density scintillation glass with high density passive glass. In first two cases, while ultraviolet excited fluorescence was maintained in the glasses showing high density, scintillation response to high energy particles was not retained in the case of the cerium containing glasses or developed in the case of the silver containing glasses. In the case of the compacts, the extremely long path length caused by the multiple internal reflections which occur in such a body resulted in attenuation even with glasses of high specific transmission. It is not clear why the scintillation efficiency is not maintained in the higher density cerium containing glasses.

  6. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  7. Plastic scintillation dosimetry: optimal selection of scintillating fibers and scintillators.

    PubMed

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Beddar, A Sam; Roy, René; Beaulieu, Luc

    2005-07-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter. PMID:16121582

  8. Evaluation of the neutron background in a direct WIMP detector with neutron veto system based on Gd-doped liquid scintillator

    SciTech Connect

    Xu, Ye; Ji, XiangPan; Liu, ZeLong; Di, DanNing; Sun, HaoKai; Lei, Yu E-mail: jixiangpan@mail.nankai.edu.cn E-mail: ditan1111@mail.nankai.edu.cn E-mail: mr.yu.lei@gmail.com

    2011-06-01

    A direct WIMP (Weakly Interacting Massive Particle) detector with a neutron veto system is designed to better reject neutrons. Two experimental configurations are studied in the present paper: one is for an Xe detector enclosed in a Gd-loaded scintillator and the other one is for an Xe detector placed inside a reactor neutrino detector. The Gd-doped liquid scintillator (or the neutrino detector) is used as a neutron veto device. The neutron backgrounds for the two experimental designs have been estimated using Geant4 simulations. The results show that the neutron backgrounds can decrease to O(0.1) events per year per tonne of liquid Xenon. We calculate the sensitivities to spin-independent WIMP-nucleon elastic scattering. An exposure of one tonne × year could reach a cross-section of about 6 × 10{sup ?11} pb.

  9. Development of cryogenic phonon detectors based on CaMoO4 and ZnWO4 scintillating crystals for direct dark matter search experiments

    E-print Network

    I. Bavykina; G. Angloher; D. Hauff; M. Kiefer; F. Petricca; F. Proebst

    2008-11-12

    This work reports on the development of the first phonon detectors based on CaMoO4 and ZnWO4 scintillating crystals for the CRESST-II experiment. In particular, a novel technique for the production of the ZnWO4 phonon detector with a separate thermometer carrier was investigated. The influence of the thermal and mechanical treatment on the scintillation light output of CaMoO4 and ZnWO4 crystals at room temperature is discussed.

  10. The neutron detectors based on oxide scintillators for control of fissionable radioactive substances

    NASA Astrophysics Data System (ADS)

    Ryzhikov, V. D.; Grinyov, B. V.; Onyshchenko, G. M.; Piven, L. A.; Lysetska, O. K.; Opolonin, O. D.; Kostioukevitch, S. A.; Smith, C. F.

    2014-09-01

    A large-area X-ray CMOS image sensor (LXCIS) is widely used in mammography, non-destructive inspection, and animal CT. For LXCIS, in spite of weakness such as low spatial and energy resolution, a Indirect method using scintillator like CsI(Tl) or Gd2O2S is still well-used because of low cost and easy manufacture. A photo-diode for X-ray imaging has large area about 50 ~ 200 um as compared with vision image sensors. That is because X-ray has feature of straight and very small light emission of a scintillator. Moreover, notwithstanding several structure like columnar, the scintillator still emit a diffusible light. This diffusible light from scintillator can make spatial crosstalk in X-ray photodiode array because of a large incidence angle. Moreover, comparing with vision image sensors, X-ray sensor doesn't have micro lens for gathering the photons to photo-diode. In this study, we simulated the affection of spatial crosstalk in X-ray sensor by comparing optical sensor. Additionally, the chip, which was fabricated in 0.18 um 1P5M process by Hynix in Korea, was tested to know the effect of spatial crosstalk by changing design parameters. From these works, we found out that spatial crosstalk is affected by pixel pitch, incident angle of photons, and micro lens on each pixels.

  11. Low-energy neutron detector based upon lithium lanthanide borate scintillators

    DOEpatents

    Czirr, John B. (Mapleton, UT)

    1998-01-01

    An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.

  12. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  13. Optimization of the National Superconducting Cyclotron Laboratory Digital Data Acquisition System for use with fast scintillator detectors

    NASA Astrophysics Data System (ADS)

    Prokop, C. J.; Liddick, S. N.; Larson, N. R.; Suchyta, S.; Tompkins, J. R.

    2015-08-01

    The Digital Data Acquisition System (DDAS) at the National Superconducting Cyclotron Laboratory (NSCL) has expanded to instrument arrays composed of fast-scintillator detectors. The expansion has motivated the development of software designed to optimize the time- and energy-resolving capabilities of the system, which is a collection of 16-channel FPGA-programmable modules running 12- and 14-bit ADCs with sampling frequencies of 100 and 250 MSPS, respectively. Using the techniques described herein, the time resolution of the DDAS electronics has been substantially improved. For signal amplitudes occupying < 10 % the full range of the ADC, the time resolution of the DDAS electronics, measured online, has been reduced to < 100 ps and < 40 ps for 100 MSPS and 250 MSPS modules, respectively. A time resolution of ? 350 ps, at 511 keV, between two 38 mm×38 mm lanthanum bromide (LaBr3) detectors, equipped with Hamamatsu R6231 photomultiplier tubes (PMTs), has also been realized. Similar optimization techniques applied to the DDAS energy-extraction algorithms have yielded energy resolutions below 2% at 1.33 MeV for both the 100 and 250 MSPS digitizers using the same LaBr3 detectors. The techniques described in this work are broadly applicable to other digital acquisition systems that are capable of recording the digitized raw detector signals.

  14. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    NASA Astrophysics Data System (ADS)

    Oliveira, L. S. R.; Conti, C. C.; Amorim, A. S.; Balthar, M. C. V.

    2013-03-01

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector's materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  15. Development of a scintillation-fiber detector for real-time particle tracking

    NASA Astrophysics Data System (ADS)

    Lo Presti, D.; Bonanno, D. L.; Longhitano, F.; Pugliatti, C.; Russo, G. V.; Aiello, S.; Cirrone, G. A. P.; Giordano, V.; Leonora, E.; Randazzo, N.; Romano, F.; Russo, M.; Sipala, V.; Stancampiano, C.; Reito, S.

    2013-04-01

    The prototype of the OFFSET (Optical Fiber Folded Scintillating Extended Tracker) tracker is presented. It exploits a novel system for particle tracking, designed to achieve real-time imaging, large detection areas, and a high spatial resolution especially suitable for use in medical diagnostics. The main results regarding the system architecture have been used as a demonstration of the technique which has been patented by the Istituto Nazionale di Fisica Nucleare (INFN). The prototype of this tracker, presented in this paper, has a 20 × 20 cm2 sensitive area, consisting of two crossed ribbons of 500 micron square scintillating fibers. The track position information is extracted in real time in an innovative way, using a reduced number of read-out channels to obtain very large detection area with moderate enough costs and complexity. The performance of the tracker was investigated using beta sources, cosmic rays, and a 62 MeV proton beam.

  16. Proton transfer bis-benzazole fluors and their use in scintillator detectors

    DOEpatents

    Kauffman, J.M.

    1994-03-29

    A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.

  17. Proton transfer bis-benzazole fluors and their use in scintillator detectors

    DOEpatents

    Kauffman, Joel M. (Wayne, PA)

    1994-01-01

    A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.

  18. Cosmic Ray Measurements by Scintillators with Metal Resistor Semiconductor Avalanche Photo Diodes

    ERIC Educational Resources Information Center

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco; Akindinov, Alexandre; Mal'kevich, Dmitry

    2008-01-01

    An educational set-up for cosmic ray physics experiments is described. The detector is based on scintillator tiles with a readout through metal resistor semiconductor (MRS) avalanche photo diode (APD) arrays. Typical measurements of the cosmic angular distribution at sea level and a study of the East-West asymmetry obtained by such a device are…

  19. SU-E-T-476: Quality Assurance for Gamma Knife Perfexion Using the Exradin W1 Plastic Scintillation Detector

    SciTech Connect

    Pino, R; Therriault-Proulx, F; Yang, J; Beddar, S

    2014-06-01

    Purpose: To perform dose profile and output factor measurements for the Exradin W1 plastic scintillation detector (PSD) for the Gamma Knife Perfexion (GKP) collimators in a Lucy phantom and to compare these values to an Exradin A16 ion chamber, EBT3 radiochromic film and treatment planning system (TPS) data. Methods: We used the Exradin W1 PSD which has a small volume, near-water equivalent sensitive element. It has also been shown to be energy independent. This new detector is manufactured and distributed by Standard Imaging, Inc. Measurements were performed for all three collimators (4 mm, 8 mm and 16 mm) for the GKP. The Lucy phantom with the PSD inserted was moved in small steps to acquire profiles in all three directions. EBT3 film was inserted in the Lucy phantom and exposed to a single shot for each collimator. Relative output factors were measured using the three detectors while profiles acquired with the PSD were compared to the ones measured with EBT3 radiochromic film. Results: Measured output factors relative to the largest collimator are as followsCollimator PS EBT3 A1616mm 1.000 1.000 1.0008mm 0.892 0.881 0.8834mm 0.795 0.793 0.727 The nominal (vendor) OFs for GKP are 1.000, 0.900, and 0.814, for collimators 16 mm, 8 mm and 4 mm, respectively. There is excellent agreement between all profiles measured with the PSD and EBT3 as well as with the TPS data provided by the vendor. Conclusion: Output factors measured with the W1 were consistent with the ones measured with EBT3 and A16 ion chamber. Measured profiles are in excellent agreement. The W1 detector seems well suited for beam QA for Gamma Knife due to its dosimetric characteristics. Sam Beddar would like to disclose a NIH/NCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: “Water-Equivalent Plastic Scintillation Detectors for Small Field Radiotherapy”.

  20. Cone beam breast CT with a high pitch (75 ?m), thick (500 ?m) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    SciTech Connect

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2013-10-15

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 ?m), thick (500 ?m) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 ?m), thin (150 ?m) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 ?m), thick (600 ?m) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.Results: The authors have demonstrated that the use of a high pitch (75 ?m) CMOS detector coupled with a thick (500 ?m) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 ?m MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 ?m MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 ?m or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 ?m MCs as compared to 28% visibility achieved by the low pitch (194 ?m) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 ?m) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors.Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 ?m) and thick (500 ?m) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.

  1. Effect of scintillator crystal geometry and surface finishing on depth of interaction resolution in PET detectors: Monte Carlo simulation and experimental results using silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Cuddy, Sarah; Reznik, Alla; Rowlands, John A.; Taghibakhsh, Farhad

    2010-04-01

    Resolution of positron emission tomography (PET) systems benefits from information about depth of interaction (DOI) within scintillation crystals, particularly in small bore scanners or parallel plate detectors. In this investigation, the ability of the dual-ended readout detector module configuration to resolve DOI and crystal index was evaluated for a variety of detector pitches and light guide thicknesses to validate the dual-ended readout method. Experimental results with oneto- one coupling between saw-cut 2mm pitch LYSO scintillation crystals and silicon photomultipliers (SiPMs) achieved 2.1 mm DOI resolution. Monte Carlo simulations were used to investigate the effect of larger detector pitches and varied light guide thickness on the crystal index identification accuracy and DOI resolution for a pixilated crystal array in dual-ended readout configuration. It is reported that the accuracy in identifying a 2 mm scintillation crystal was >80% for detector pitches < 6 mm and that DOI resolution was < 2 mm for all detector pitches and light guide thicknesses.

  2. A detector insert based on continuous scintillators for hybrid MR-PET imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Rato Mendes, P.; Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J. C.; Cela, J. M.; Núñez, L.; Pastrana, M.; Romero, L.; Willmott, C.

    2013-02-01

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR-PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  3. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    NASA Astrophysics Data System (ADS)

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-02-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board-approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily computed tomographic image dataset. The mean difference between measured and calculated doses for the entire patient population was -0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from -3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for four patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient's large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement and reusability.

  4. Plastic scintillator detectors for the study of transfer and breakup reactions at intermediate energies

    SciTech Connect

    Schmidt, H.R.; Bantel, M.; Chan, Y.D.; Gazes, S.M.; Kamermans, R.; Albiston, C.; Wald, S.; Stokstad, R.G.

    1984-10-01

    The detection of light particles associated with projectile like fragments can be used to separate transfer and breakup reactions provided the detectors cover a large solid angle. Three detection systems are described: (1) a ..pi.. detector in the shape of a cube, 20 cm on a side, (2) a X-Y position sensitive ..delta..E-E detector having an area of 20 x 20 cm/sup 2/, and (3) a multi-element detector consisting of eight position sensitive strips. The latter two detectors are of the phoswich type having the thin element of NE102 (tau = 2.5 ns) and the thick element of NE115 (tau = 225 ns). The performance characteristics of the three detectors are described. 6 references, 13 figures.

  5. Further study of CdWO4 crystal scintillators as detectors for high sensitivity double beta experiments: scintillation properties and pulse-shape discrimination

    E-print Network

    L. Bardelli; M. Bini; P. G. Bizzeti; L. Carraresi; F. A. Danevich; T. F. Fazzini; B. V. Grinyov; N. V. Ivannikova; V. V. Kobychev; B. N. Kropivyansky; P. R. Maurenzig; L. L. Nagornaya; S. S. Nagorny; A. S. Nikolaiko; A. A. Pavlyuk; D. V. Poda; I. M. Solsky; M. V. Sopinskyy; Yu. G. Stenin; F. Taccetti; V. I. Tretyak; Ya. V. Vasiliev; S. S. Yurchenko

    2006-08-02

    Energy resolution, light yield, non-proportionality in the scintillation response, alpha/beta ratio, pulse shape for gamma rays and alpha particles were studied with CdWO4 crystal scintillators. Some indication for a difference in the emission spectra for gamma rays and alpha particles was observed. No dependence of CdWO4 pulse shape on emission spectrum wavelengths under laser, alpha particles and gamma ray excitation was observed. Dependence of scintillation pulse shape for gamma quanta and alpha particles and pulse-shape discrimination ability on temperature was measured in the range of 0-24 degrees.

  6. Directional scintillation detector for the detection of the wind of WIMPs

    E-print Network

    Y. Shimizu; M. Minowa; H. Sekiya; Y. Inoue

    2002-09-02

    The quenching factor of the proton recoil in the stilbene scintillator was measured with a 252Cf neutron source and was found to be 0.1 - 0.17 in the recoil energy range between 300 keV and 3 MeV. It was found to depend on the direction of the recoil proton. The directional anisotropy of the quenching factor could be used to detect the wind of the WIMPs caused by the motion of the earth around the galactic center.

  7. Pulse height tests of a large diameter fast LaBr?:Ce scintillation detector.

    PubMed

    Naqvi, A A; Khiari, F Z; Maslehuddin, M; Gondal, M A; Al-Amoudi, O S B; Ukashat, M S; Ilyas, A M; Liadi, F A; Isab, A A; Khateeb-ur Rehman; Raashid, M; Dastageer, M A

    2015-10-01

    The pulse height response of a large diameter fast 100 mm × 100 mm LaBr3:Ce detector was measured for 0.1-10 MeV gamma-rays. The detector has a claimed time resolution of 608 ps for 511 keV gamma rays, but has relatively poor energy resolution due to the characteristics of its fast photomultiplier. The detector pulse height response was measured for gamma rays from cobalt, cesium, and bismuth radioisotope sources as well as prompt gamma rays from thermal neutron capture in water samples contaminated with mercury (3.1 wt%), boron (2.5 wt%), cadmium (0.25 wt%), chromium (52 wt%), and nickel (22 wt%) compounds. The energy resolution of the detector was determined from full width at half maximum (FWHM) of element-characteristic gamma ray peaks in the pulse height spectrum associated with the element present in the contaminated water sample. The measured energy resolution of the 100 mm × 100 mm detector varies from 12.7±0.2% to 1.9±0.1% for 0.1 to 10 MeV gamma rays, respectively. The graph showing the energy resolution ?E/E(%) versus 1/?E? was fitted with a linear function to study the detector light collection from the slope of the curve. The slope of the present 100 mm × 100 mm detector is almost twice as large as the slope of a similar curve of previously published data for a 89 mm × 203 mm LaBr3:Ce detector. This indicates almost two times poorer light collection in the 100 mm × 100 mm detector as compared to the other detector. PMID:26207950

  8. Low background detector with enriched 116CdWO4 crystal scintillators to search for double beta decay of 116Cd

    E-print Network

    A. S. Barabash; P. Belli; R. Bernabei; R. S. Boiko; F. Cappella; V. Caracciolo; D. M. Chernyak; R. Cerulli; F. A. Danevich; M. L. Di Vacri; A. E. Dossovitskiy; E. N. Galashov; A. Incicchitti; V. V. Kobychev; S. I. Konovalov; G. P. Kovtun; V. M. Kudovbenko; M. Laubenstein; A. L. Mikhlin; S. Nisi; D. V. Poda; R. B. Podviyanuk; O. G. Polischuk; A. P. Shcherban; V. N. Shlegel; D. A. Solopikhin; Yu. G. Stenin; V. I. Tretyak; V. I. Umatov; Ya. V. Vasiliev; V. D. Virich

    2011-08-13

    A cadmium tungstate crystal boule enriched in $^{116}$Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Resolution Inductively Coupled Plasma Mass-Spectrometry. The crystal scintillators produced from the boule were subjected to characterization that included measurements of transmittance and energy resolution. A low background scintillation detector with two $^{116}$CdWO$_4$ crystal scintillators (586 g and 589 g) was developed. The detector was running over 1727 h deep underground at the Gran Sasso National Laboratories of the INFN (Italy), which allowed to estimate the radioactive contamination of the enriched crystal scintillators. The radiopurity of a third $^{116}$CdWO$_4$ sample (326 g) was tested with the help of ultra-low background high purity germanium $\\gamma$ detector. Monte Carlo simulations of double $\\beta$ processes in $^{116}$Cd were used to estimate the sensitivity of an experiment to search for double $\\beta$ decay of $^{116}$Cd.

  9. Fast scintillation timing detector using proportional-mode avalanche photodiode for nuclear resonant scattering experiments in high-energy synchrotron X-ray region

    NASA Astrophysics Data System (ADS)

    Inoue, Keisuke; Kishimoto, Shunji

    2016-01-01

    To obtain both a high count rate of >107 s-1 and a detection efficiency sufficient for high-energy X-rays of >30 keV, we propose a scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We here present results obtained with a prototype detector using a lead-loaded plastic scintillator (EJ-256) mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter). The detector was operated at ?35 °C for a better signal-to-noise ratio. Using synchrotron X-rays of 67.41 keV, which is the same energy as the first excited level of 61Ni, we successfully measured pulse-height and time spectra of the scintillation light. A good time resolution of 0.50±0.06 ns (full width at half-maximum) was obtained for 67.41 keV X-rays with a scintillator 3 mm in diameter and 2 mm thick.

  10. Mathematical method for optimal digitization and discrimination of scintillation detectors' pulses

    NASA Astrophysics Data System (ADS)

    Saleh, H. I.

    2015-12-01

    The crystal identification and particle identification require applying pulse shape discrimination (PSD) methods to differentiate between two or more types of scintillation pulses according to their decay times. The sampling rate and the number of used samples of scintillation pulses significantly affect the performance and the complexity of the PSD. Despite their importance, there is no method in the literature, to the best of our knowledge, regarding how to optimally select these parameters. This paper introduces a mathematical analysis of the frequency spectra to determine the most discriminated frequency band of any two different pulse-types. The proposed analysis showed that the most discriminated frequency band depends on the two decay times of the pulse-types. Based on this analysis, a digitization criterion is proposed to determine the optimum sampling rate, number of used samples and the cutoff frequency of the anti-aliasing filter. Furthermore, determining the most discriminated frequency band reduces the number of needed frequency components and provides the highest discrimination performance with the lowest number of required computations. The proposed digitization criterion is applied on two pulse-types with different decay times (20 ns and 40 ns) and shows that the most discriminated frequency is 8 MHz . It also recommends using 32 MHz sampling rate, 8 samples and an anti-aliasing filter with 10 MHz cutoff frequency for these two pulse-types.

  11. A method to correct for temperature dependence and measure simultaneously dose and temperature using a plastic scintillation detector

    NASA Astrophysics Data System (ADS)

    Therriault-Proulx, Francois; Wootton, Landon; Beddar, Sam

    2015-10-01

    Plastic scintillation detectors (PSDs) work well for radiation dosimetry. However, they show some temperature dependence, and a priori knowledge of the temperature surrounding the PSD is required to correct for this dependence. We present a novel approach to correct PSD response values for temperature changes instantaneously and without the need for prior knowledge of the temperature value. In addition to rendering the detector temperature-independent, this approach allows for actual temperature measurement using solely the PSD apparatus. With a temperature-controlled water tank, the temperature was varied from room temperature to more than 40 °C and the PSD was used to measure the dose delivered from a cobalt-60 photon beam unit to within an average of 0.72% from the expected value. The temperature was measured during each acquisition with the PSD and a thermocouple and values were within 1 °C of each other. The depth-dose curve of a 6 MV photon beam was also measured under warm non-stable conditions and this curve agreed to within an average of??-0.98% from the curve obtained at room temperature. The feasibility of rendering PSDs temperature-independent was demonstrated with our approach, which also enabled simultaneous measurement of both dose and temperature. This novel approach improves both the robustness and versatility of PSDs.

  12. A method to correct for temperature dependence and measure simultaneously dose and temperature using a plastic scintillation detector.

    PubMed

    Therriault-Proulx, Francois; Wootton, Landon; Beddar, Sam

    2015-10-21

    Plastic scintillation detectors (PSDs) work well for radiation dosimetry. However, they show some temperature dependence, and a priori knowledge of the temperature surrounding the PSD is required to correct for this dependence. We present a novel approach to correct PSD response values for temperature changes instantaneously and without the need for prior knowledge of the temperature value. In addition to rendering the detector temperature-independent, this approach allows for actual temperature measurement using solely the PSD apparatus. With a temperature-controlled water tank, the temperature was varied from room temperature to more than 40 °C and the PSD was used to measure the dose delivered from a cobalt-60 photon beam unit to within an average of 0.72% from the expected value. The temperature was measured during each acquisition with the PSD and a thermocouple and values were within 1 °C of each other. The depth-dose curve of a 6 MV photon beam was also measured under warm non-stable conditions and this curve agreed to within an average of??-0.98% from the curve obtained at room temperature. The feasibility of rendering PSDs temperature-independent was demonstrated with our approach, which also enabled simultaneous measurement of both dose and temperature. This novel approach improves both the robustness and versatility of PSDs. PMID:26407188

  13. Direct observation of avalanche scintillations in a THGEM-based two-phase Ar avalanche detector using Geiger-mode APD

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Grebenuk, A.; Sokolov, A.; Akimov, D.; Alexandrov, I.; Breskin, A.

    2010-08-01

    A novel concept of optical signal recording in cryogenic two-phase avalanche detectors, with Geiger-mode Avalanche Photodiodes (G-APD) measuring avalanche-scintillation photons in a thick Gas Electron Multiplier (THGEM), has been studied in view of its potential applications in rare-event experiments. The effective detection of avalanche scintillations in THGEM holes has been demonstrated in two-phase Ar with a bare G-APD without wavelength shifter, i.e. insensitive to VUV emission of Ar. At gas-avalanche gain of 400 and under ±70° viewing-angle, the G-APD yielded 640 photoelectrons (pe) per 60 keV X-ray converted in liquid Ar; this corresponds to 0.7 pe per initial (prior to multiplication) electron. The avalanche-scintillation light yield measured by the G-APD was about 0.7 pe per avalanche electron, extrapolated to 4? acceptance. The avalanche scintillations observed occurred presumably in the near infrared (NIR) where G-APDs may have high sensitivity. The measured scintillation yield is similar to that observed by others in the VUV. Other related topics discussed in this work are the G-APD's single-pixel and quenching resistor characteristics at cryogenic temperatures.

  14. Particle identification method in the CsI(Tl) scintillator used for the CHIMERA /4? detector

    NASA Astrophysics Data System (ADS)

    Alderighi, M.; Anzalone, A.; Basssini, R.; Berceanu, I.; Blicharska, J.; Boiano, C.; Borderie, B.; Bougault, R.; Bruno, M.; Calí, C.; Cardella, G.; Cavallaro, Sl.; D'Agostino, M.; D'Andrea, M.; Dayras, R.; de Filippo, E.; Fichera, F.; Geraci, E.; Giustolisi, F.; Grzeszczuk, A.; Guardone, N.; Guazzoni, P.; Guinet, D.; Iacono-Manno, C. M.; Kowalski, S.; La Guidara, E.; Lanchais, A. L.; Lanzalone, G.; Lanzanó, G.; Le Neindre, N.; Li, S.; Maiolino, C.; Majka, Z.; Manfredi, G.; Nicotra, D.; Paduszynski, T.; Pagano, A.; Papa, M.; Petrovici, C. M.; Piasecki, E.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rivet, M. F.; Rosato, E.; Saccá, G.; Sechi, G.; Simion, V.; Sperduto, M. L.; Steckmeyer, J. C.; Trifiró, A.; Trimarchi, M.; Urso, S.; Vannini, G.; Vigilante, M.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W.

    2002-08-01

    The charged particle identification obtained by the analysis of signals coming from the CsI(Tl) detectors of the CHIMERA 4 ? heavy-ion detector is presented. A simple double-gate integration method, with the use of the cyclotron radiofrequency as reference time, results in low thresholds for isotopic particle identification. The dependence of the identification quality on the gate generation timing is discussed. Isotopic identification of light ions up to Beryllium is clearly seen. For the first time also the identification of Z=5 particles is observed. The identification of neutrons interacting with CsI(Tl) by ( n, ?) and ( n, ?) reactions is also discussed.

  15. Registration of reactor neutrinos with the highly segmented plastic scintillator detector DANSSino

    E-print Network

    V. Belov; V. Brudanin; M. Danilov; V. Egorov; M. Fomina; A. Kobyakin; V. Rusinov; M. Shirchenko; Yu. Shitov; A. Starostin; I. Zhitnikov

    2013-05-16

    DANSSino is a simplified pilot version of a solid-state detector of reactor antineutrino (it is being created within the DANSS project and will be installed close to an industrial nuclear power reactor). Numerous tests performed under a 3 GW(th) reactor of the Kalinin NPP at a distance of 11 m from the core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20x20x100 ccm), the pilot detector turned out to be quite sensitive to reactor neutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.

  16. New application of scintillator ZnSe(Te) in scintielectronic detectors for detection of neutrons, medical imaging, explosive detection, and NDT

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Volodymyr D.; Opolonin, Oleksandr D.; Fedorov, Alexander G.; Lysetska, Olena K.; Kostioukevitch, Sergey A.

    2008-08-01

    Scintillators on the basis of AIIBVI compounds, such as ZnSe(Te), can be used for detection of secondary charged particles coming from nuclear reactions in which neutrons interact with target nuclei of atoms present in transparent materials of dispersion scintillation detectors matrices. Using unique properties of scintillator ZnSe(Te) we show possibility of increase detection efficiency for soft x-ray radiation (20 - 90 keV). The amorphous silicon flat panels and the photodiode arrays wide used for non-destructive testing and medical imaging (spatial resolution 20 - 400 mkm). By our estimations, using of such detectors in combination with thin film of ZnSe(Te) can increase efficiency of registration of x-ray radiation (for the source of 60-140kV) in 1,2 - 2 times. We obtained thin films (10-450mkm) of scintillator ZnSe(Te) on the different substrate materials and estimated the relative light yield of the layers deposited on the graphite and Al2O3 ceramic substrates and the bulk ZnSe(Te) crystal. Use of ZnSe(Te) in the low-energy "scintillator - photodiode" type detector allowed to increase accuracy of authentication of explosives (HEIMANN X-RAY INSPECTION SYSTEM EDtS10080). Using the dual energy digital radiography system prototype we obtained the x-ray images (60 projections of each object). These images are basic data for computer tomography and three-dimensional reconstruction of density and effective atomic number. The color identification palette provides clearly show variations of effective atomic number in biological and inorganic objects. So, for example, changes of calcium concentration in a bone. The research described in this publication was supported by STCU #4115 and NATO SfP-982823.

  17. Study of the response of plastic scintillation detectors in small-field 6 MV photon beams by Monte Carlo simulations

    SciTech Connect

    Wang, Lilie L. W.; Beddar, Sam

    2011-03-15

    Purpose: To investigate the response of plastic scintillation detectors (PSDs) in a 6 MV photon beam of various field sizes using Monte Carlo simulations. Methods: Three PSDs were simulated: A BC-400 and a BCF-12, each attached to a plastic-core optical fiber, and a BC-400 attached to an air-core optical fiber. PSD response was calculated as the detector dose per unit water dose for field sizes ranging from 10x10 down to 0.5x0.5 cm{sup 2} for both perpendicular and parallel orientations of the detectors to an incident beam. Similar calculations were performed for a CC01 compact chamber. The off-axis dose profiles were calculated in the 0.5x0.5 cm{sup 2} photon beam and were compared to the dose profile calculated for the CC01 chamber and that calculated in water without any detector. The angular dependence of the PSDs' responses in a small photon beam was studied. Results: In the perpendicular orientation, the response of the BCF-12 PSD varied by only 0.5% as the field size decreased from 10x10 to 0.5x0.5 cm{sup 2}, while the response of BC-400 PSD attached to a plastic-core fiber varied by more than 3% at the smallest field size because of its longer sensitive region. In the parallel orientation, the response of both PSDs attached to a plastic-core fiber varied by less than 0.4% for the same range of field sizes. For the PSD attached to an air-core fiber, the response varied, at most, by 2% for both orientations. Conclusions: The responses of all the PSDs investigated in this work can have a variation of only 1%-2% irrespective of field size and orientation of the detector if the length of the sensitive region is not more than 2 mm long and the optical fiber stems are prevented from pointing directly to the incident source.

  18. SU-C-BRD-06: Results From a 5 Patient in Vivo Rectal Wall Dosimetry Study Using Plastic Scintillation Detectors

    SciTech Connect

    Wootton, L; Kudchadker, R; Lee, A; Beddar, S

    2014-06-15

    Purpose: To evaluate the performance characteristics of plastic scintillation detectors (PSDs) in an in vivo environment for external beam radiation, and to establish the usefulness and ease of implementation of a PSD based in vivo dosimetry system for routine clinical use. Methods: A five patient IRB approved in vivo dosimetry study was performed. Five patients with prostate cancer were enrolled and PSDs were used to monitor rectal wall dose and verify the delivered dose for approximately two fractions each week over the course of their treatment (approximately fourteen fractions), resulting in a total of 142 in vivo measurements. A set of two PSDs was fabricated for each patient. At each monitored fraction the PSDs were attached to the anterior surface of an endorectal balloon used to immobilize the patient's prostate during treatment. A CT scan was acquired with a CTon- rails linear accelerator to localize the detectors and to calculate the dose expected to be delivered to the detectors. Each PSD acquired data in 10 second intervals for the duration of the treatment. The deviation between expected and measured cumulative dose was calculated for each detector for each fraction, and averaged over each patient and the patient population as a whole. Results: The average difference between expected dose and measured dose ranged from -3.3% to 3.3% for individual patients, with standard deviations between 5.6% and 7.1% for four of the patients. The average difference for the entire population was -0.4% with a standard deviation of 2.8%. The detectors were well tolerated by the patients and the system did not interrupt the clinical workflow. Conclusion: PSDs perform well as in vivo dosimeters, exhibiting good accuracy and precision. This, combined with the practicability of using such a system, positions the PSD as a strong candidate for clinical in vivo dosimetry in the future. This work supported in part by the National Cancer Institute through an R01 grant (CA120198-01A2) and by the American Legion Auxiliary through the American Auxiliary Fellowship in Cancer Research.

  19. Simulation studies of a novel scintillator detector with SiPM

    E-print Network

    Hebbeker, Thomas

    . . . . . . . . . . . . . . . . . . . . 13 5 Aachen Muon Detector 14 5.1 Silicon photomultipliers conductivity as a function of the altitude during a balloon ride in heights of up to 5000 meters led him but the final decision for one of these concepts has not yet been made. This work is introducing a novel

  20. Digital processing of signals from LaBr3:Ce scintillation detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Podolyak, Zs; Regan, P. H.

    2014-12-01

    In this paper, we report on the results of digital signal processing of LaBr3(Ce) detectors. The photomultiplier (PMT) output signals from two cylindrical LaBr3(Ce) detectors (1.5'' diameter and 2'' tall) were directly digitized with an ultrafast digitizer (sampling rate up to 4 GSample/s and 10-bits resolution) and the energy and timing information were extracted through offline analysis of the pulses. It is shown that at high sampling rates (4 GS/s) a simple integration of pulses is sufficient to reproduce the analogue energy resolution of the detectors (3.5% at 662 keV energy) and by employing a digital version of constant-fraction discrimination (CFD) timing a time resolution of 240 ps (FWHM) is achieved at the energy lines of 60Co. The effects of pulse sampling rate were studied, indicating a degradation of the performance of the detectors with reducing the pulse sampling rate. In particular, it was found that at sampling rates below 1 GS/s, the digital timing can be limited by the aliasing error. By using an anti-aliasing filter, a time resolution of 375 ps (FWHM) and an energy resolution of 3.5% at 662 keV were achieved with a sampling rate of 500 MS/s.

  1. Study of a Li doped CsI scintillator crystal as a neutron detector

    NASA Astrophysics Data System (ADS)

    Madi Filho, T.; Pereira, M. C. C.; Berretta, J. R.; Cárdenas, J. P. N.

    2015-07-01

    The radiation monitoring system is an important requirement in the premises of a nuclear reactor. A variety of types of radiation (neutrons. gamma. beta and fission products) exist in a reactor. associated to the broad energy spectrum of these radiations. implying the need of detectors to be used in the reactor system and security. as well as radiation monitoring. As the neutron sources are associated to gamma radiation. it is necessary that the neutron detecting system may be capable to discriminate the gamma interference. In our work environment. there are two Nuclear Research Reactors and a neutron irradiator with two AmBe sources (592GBq of Am. each). These conditions warrant the development of new types of detectors. Due to the absence of charge in the neutron. it is necessary to use a converter material that generates radiations capable to produce signals in the detector. Materials with high cross section. like Li or B. are used for this purpose. The CsIcrystal doped with 6Li has been studied. The concentration of the lithium doping element (Li) studied was 10-3M. The detector test was done using an AmBe source (37GBq) and gamma sources. The crystal was coupled to a photomultiplier.

  2. SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security

    E-print Network

    A. Alemberti; M. Battaglieri; E. Botta; R. De Vita; E. Fanchini; G. Firpo

    2014-04-14

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  3. Measuring output factors of small fields formed by collimator jaws and multileaf collimator using plastic scintillation detectors

    SciTech Connect

    Klein, David M.; Tailor, Ramesh C.; Archambault, Louis; Wang, Lilie; Therriault-Proulx, Francois; Beddar, A. Sam

    2010-10-15

    Purpose: As the practice of using high-energy photon beams to create therapeutic radiation fields of subcentimeter dimensions (as in intensity-modulated radiotherapy or stereotactic radiosurgery) grows, so too does the need for accurate verification of beam output at these small fields in which standard practices of dose verification break down. This study investigates small-field output factors measured using a small plastic scintillation detector (PSD), as well as a 0.01 cm{sup 3} ionization chamber. Specifically, output factors were measured with both detectors using small fields that were defined by either the X-Y collimator jaws or the multileaf collimator (MLC). Methods: A PSD of 0.5 mm diameter and 2 mm length was irradiated with 6 and 18 MV linac beams. The PSD was positioned vertically at a source-to-axis distance of 100 cm, at 10 cm depth in a water phantom, and irradiated with fields ranging in size from 0.5x0.5 to 10x10 cm{sup 2}. The field sizes were defined either by the collimator jaws alone or by a MLC alone. The MLC fields were constructed in two ways: with the closed leaves (i.e., those leaves that were not opened to define the square field) meeting at either the field center line or at a 4 cm offset from the center line. Scintillation light was recorded using a CCD camera and an estimation of error in the median-filtered signals was made using the bootstrapping technique. Measurements were made using a CC01 ionization chamber under conditions identical to those used for the PSD. Results: Output factors measured by the PSD showed close agreement with those measured using the ionization chamber for field sizes of 2.0x2.0 cm{sup 2} and above. At smaller field sizes, the PSD obtained output factors as much as 15% higher than those found using the ionization chamber by 0.6x0.6 cm{sup 2} jaw-defined fields. Output factors measured with no offset of the closed MLC leaves were as much as 20% higher than those measured using a 4 cm leaf offset. Conclusions: The authors' results suggest that PSDs provide a useful and possibly superior alternative to existing dosimetry systems for small fields, as they are inherently less susceptible to volume-averaging and perturbation effects than larger, air-filled ionization chambers. Therefore, PSDs may provide more accurate small-field output factor determination, regardless of the collimation mechanism.

  4. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system

    SciTech Connect

    Archambault, L.; Poenisch, F.; Sahoo, N.; Robertson, D.; Lee, A.; Gillin, M. T.; Mohan, R.; Beddar, S.

    2012-03-15

    Purpose: Intensity-modulated proton therapy (IMPT) using spot scanned proton beams relies on the delivery of a large number of beamlets to shape the dose distribution in a highly conformal manner. The authors have developed a 3D system based on liquid scintillator to measure the spatial location, intensity, and depth of penetration (energy) of the proton beamlets in near real-time. Methods: The detector system consists of a 20 x 20 x 20 cc liquid scintillator (LS) material in a light tight enclosure connected to a CCD camera. This camera has a field of view of 25.7 by 19.3 cm and a pixel size of 0.4 mm. While the LS is irradiated, the camera continuously acquires images of the light distribution produced inside the LS. Irradiations were made with proton pencil beams produced with a spot-scanning nozzle. Pencil beams with nominal ranges in water between 9.5 and 17.6 cm were scanned to irradiate an area of 10 x 10 cm square on the surface of the LS phantom. Image frames were acquired at 50 ms per frame. Results: The signal to noise ratio of a typical Bragg peak was about 170. Proton range measured from the light distribution produced in the LS was accurate to within 0.3 mm on average. The largest deviation seen between the nominal and measured range was 0.6 mm. Lateral position of the measured pencil beam was accurate to within 0.4 mm on average. The largest deviation seen between the nominal and measured lateral position was 0.8 mm; however, the accuracy of this measurement could be improved by correcting light scattering artifacts. Intensity of single proton spots were measured with precision ranging from 3 % for the smallest spot intensity (0.005 MU) to 0.5 % for the largest spot (0.04 MU). Conclusions: Our LS detector system has been shown to be capable of fast, submillimeter spatial localization of proton spots delivered in a 3D volume. This system could be used for beam range, intensity and position verification in IMPT.

  5. Effects of High Count Rates and Pulse Pileup in Sodium Iodide Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Flumerfelt, E.; Salvitti, M.; Borgardt, J.; Robinson, S.

    2007-10-01

    Radiation Portal Monitors (RPMs) are a key component for interdicting illicit radioactive material at US border crossings. PVT detectors have been central to this effort, however they lack the capability to identify specific radioisotopes, resulting in the development of NaI detectors that produce a higher resolution spectrum. An experiment was performed using 57Co, 60Co and 137Cs sources to determine the effects of high-count situations and pulse pileup on the spectral profile created by ASPs. Attention was focused on the common spectroscopic problems of peak shifting, count-rate saturation and distortion of spectral features. In these situations, isotope identification algorithms may experience problems such as additional or different sources being detected, or failure to recognize present isotopes. Experimental results were compared to MCNP simulations of the data. One of the ASPs tested has some compensation for high-count effects, and does not show these effects. The other ASP displayed signs of peak shifting but very little evidence of spectral marring. The NaI logs however, exhibited spectral distortion and peak shifting under conditions of pulse pile-up. These results provide foundational information in assessing how these detectors respond to potential saturation scenarios.

  6. TU-F-BRE-01: A High Resolution Micro Fiber Scintillator Detector Optimized for SRS and SBRT in Vivo Real Time Treatment Verification

    SciTech Connect

    Izaguirre, E; Rangaraj, D; Price, S; Knewtson, T; Loyalka, S

    2014-06-15

    Purpose: We have built a high resolution real time scintillating fiber detector prototype to determine in real time the accuracy of stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) treatments when only a fraction of the planned dose was delivered. The motivation of this work is to enhance dose delivery accuracy and to achieve error free radiosurgery. Methods: A high density array of scintillating fibers and a high speed photo detectors array were integrated to implement a high resolution real time dosimeter that can sample with high resolution pulsed SRS and SBRT beams cross sections. The high efficiency of the developed system allows to read each linac pulse in real time and to compute the accumulated dose and dose errors when only a fraction of the beam was delivered. The fibers are highly packed in a substrate that is directly coupled to two 128 pixel arrays with a pitch matching the fiber spacing to achieve accurate spatial localization. The small cross section of the fiber array allows stacking multiple fiber arrays to measure independent angular profiles that are digitally processed in parallel for real time dosimetry. Results: We implemented a high density array detector prototype with a pitch of 0.5 mm, readout speed of 1.2 msec, and a response time of 0.5 usec. The fast reading speed has the capability to determining the dose in flattening free filter beams. The detector can be installed in transmission mode at the output port of a micro-MLC. Treatment deviations smaller than 3% are detected when less than 1/100 of the planned dose was delivered. Conclusions: We built a prototype of a high resolution fiber scintillator array detector for SRS and SBRT in vivo dosimetry. Results show that the developed detector has the potential to assure error free SRS and SBRT treatments.

  7. Time resolution of time-of-flight detector based on multiple scintillation counters readout by SiPMs

    E-print Network

    Cattaneo, P W; Gatti, F; Nishimura, M; Ootani, W; Rossella, M; Shirabe, S; Uchiyama, Y

    2015-01-01

    A new timing detector measuring ~50 MeV/c positrons is under development for the MEG II experiment, aiming at a time resolution $\\sigma_t \\sim 30~\\mathrm{ps}$. The resolution is expected to be achieved by measuring each positron time with multiple counters made of plastic scintillator readout by silicon photomultipliers (SiPMs). The purpose of this work is to demonstrate the time resolution for ~50 MeV/c positrons using prototype counters. Counters with dimensions of $90\\times 40\\times 5~\\mathrm{mm}^3$ readout by three SiPMs at each end were build with SiPMs from Hamamatsu Photonics and AdvanSiD and tested in a positron beam at the DA$\\Phi$NE Beam Test Facility. It was found that the time resolution improves nearly as the square root of the number of counter hits. A time resolution $\\sigma_t=26.2\\pm1.3~\\mathrm{ps}$ was obtained with eight counters with Hamamatsu SiPMs. These results suggest that the design resolution is achievable in the MEG II experiment.

  8. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    NASA Astrophysics Data System (ADS)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  9. Monte Carlo simulation studies on scintillation detectors and image reconstruction of brain-phantom tumors in TOFPET

    PubMed Central

    Mondal, Nagendra Nath

    2009-01-01

    This study presents Monte Carlo Simulation (MCS) results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF) PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu2SiO5: Ce in short LSO), Barium Fluoride (BaF2) and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr3) scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF2 and LaBr3, although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work) method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom. PMID:20098551

  10. Extraction of depth-dependent perturbation factors for parallel-plate chambers in electron beams using a plastic scintillation detector

    SciTech Connect

    Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Cojocaru, Claudiu; Gingras, Luc; Beddar, A. Sam; Beaulieu, Luc

    2010-08-15

    Purpose: This work presents the experimental extraction of the overall perturbation factor P{sub Q} in megavoltage electron beams for NACP-02 and Roos parallel-plate ionization chambers using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6, 12, and 18 MeV clinical electron beams. The authors also measured depth-dose curves using the NACP-02 and PTW Roos chambers. Results: The authors found that the perturbation factors for the NACP-02 and Roos chambers increased substantially with depth, especially for low-energy electron beams. The experimental results were in good agreement with the results of Monte Carlo simulations reported by other investigators. The authors also found that using an effective point of measurement (EPOM) placed inside the air cavity reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: A PSD can be used to experimentally extract perturbation factors for ionization chambers. The dosimetry protocol recommendations indicating that the point of measurement be placed on the inside face of the front window appear to be incorrect for parallel-plate chambers and result in errors in the R{sub 50} of approximately 0.4 mm at 6 MeV, 1.0 mm at 12 MeV, and 1.2 mm at 18 MeV.

  11. SU-F-BRE-07: Experimental Validation of a Lung SBRT Technique Using a Novel, True Volumetric Plenoptic-Plastic-Scintillator Detector

    SciTech Connect

    Goulet, M; Rilling, M; Gingras, L; Beaulieu, L; Archambault, L; Beddar, S

    2014-06-15

    Purpose: Lung SBRT is being used by an increasing number of clinics, including our center which recently treated its first patient. In order to validate this technique, the 3D dose distribution of the SBRT plan was measured using a previously developed 3D detector based on plenoptic camera and plastic scintillator technology. The excellent agreement between the detector measurement and the expected dose from the treatment planning system Pinnacle{sup 3} shows great promise and amply justify the development of the technique. Methods: The SBRT treatment comprised 8 non-coplanar 6MV photon fields with a mean field size of 12 cm{sup 2} at isocentre and a total prescription dose of 12Gy per fraction for a total of 48Gy. The 3D detector was composed of a 10×10×10 cm{sup 2} EJ-260 water-equivalent plastic scintillator embedded inside a truncated cylindrical acrylic phantom of 10cm radius. The scintillation light was recorded using a static R5 light-field camera and the 3D dose was reconstructed at a 2mm resolution in all 3 dimensions using an iterative backprojection algorithm. Results: The whole 3D dose distribution was recorded at a rate of one acquisition per second. The mean absolute dose difference between the detector and Pinnacle{sup 3} was 1.3% over the region with more than 10% of the maximum dose. 3D gamma tests performed over the same region yield passing rates of 98.8% and 96.6% with criteria of 3%/1mm and 2%/1mm, respectively. Conclusion: Experimental results showed that our beam modeling and treatment planning system calculation was adequate for the safe administration of small field/high dose techniques such as SBRT. Moreover, because of the real-time capability of the detector, further validation of small field rotational, dynamic or gated technique can be monitored or verified by this system.

  12. BC404 scintillators as gamma locators studied via Geant4 simulations

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Hoischen, R.; Eisenhauer, K.; Gerl, J.; Pietralla, N.

    2014-05-01

    In many applications in industry and academia, an accurate determination of the direction from where gamma rays are emitted is either needed or desirable. Ion-beam therapy treatments, the search for orphan sources, and homeland security applications are examples of fields that can benefit from directional sensitivity to gamma-radiation. Scintillation detectors are a good option for these types of applications as they have relatively low cost, are easy to handle and can be produced in a large range of different sizes. In this work a Geant4 simulation was developed to study the directional sensitivity of different BC404 scintillator geometries and arrangements. The simulation includes all the physical processes relevant for gamma detection in a scintillator. In particular, the creation and propagation of optical photons inside the scintillator was included. A simplified photomultiplier tube model was also simulated. The physical principle exploited is the angular dependence of the shape of the energy spectrum obtained from thin scintillator layers when irradiated from different angles. After an experimental confirmation of the working principle of the device and a check of the simulation, the possibilities and limitations of directional sensitivity to gamma radiation using scintillator layers was tested. For this purpose, point-like sources of typical energies expected in ion-beam therapy were used. Optimal scintillator thicknesses for different energies were determined and the setup efficiencies calculated. The use of arrays of scintillators to reconstruct the direction of incoming gamma rays was also studied. For this case, a spherical source emitting Bremsstrahlung radiation was used together with a setup consisting of scintillator layers. The capability of this setup to identify the center of the extended source was studied together with its angular resolution.

  13. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  14. Direct and indirect signal detection of 122 keV photons with a novel detector combining a pnCCD and a CsI(Tl) scintillator

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Huth, M.; Hartmann, R.; Abboud, A.; Send, S.; Conka-Nurdan, T.; Shokr, M.; Pietsch, U.; Strüder, L.

    2016-01-01

    By combining a low noise fully depleted pnCCD detector with a CsI(Tl) scintillator, an energy-dispersive area detector can be realized with a high quantum efficiency (QE) in the range from below 1 keV to above 100 keV. In direct detection mode the pnCCD exhibits a relative energy resolution of 1% at 122 keV and spatial resolution of less than 75 ?m, the pixel size of the pnCCD. In the indirect detection mode, i.e. conversion of the incoming X-rays in the scintillator, the measured energy resolution was about 9-13% at 122 keV, depending on the depth of interaction in the scintillator, while the position resolution, extracted with the help of simulations, was 30 ?m only. We show simulated data for incident photons of 122 keV and compare the various interaction processes and relevant physical parameters to experimental results obtained with a radioactive 57Co source.

  15. Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA

    NASA Astrophysics Data System (ADS)

    Doncel, M.; Quintana, B.; Gadea, A.; Recchia, F.; Farnea, E.

    2011-08-01

    In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the ?-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1? solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between ? sources placed at different locations.

  16. Investigation of crystal surface finish and geometry on single LYSO scintillator detector performance for depth-of-interaction measurement with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Bircher, Chad; Shao, Yiping

    2012-11-01

    Depth of Interaction (DOI) information can improve quality of reconstructed images acquired from Positron Emission Tomography (PET), especially in high resolution and compact scanners dedicated for breast, brain, or small animal imaging applications. Additionally, clinical scanners with time of flight capability can also benefit from DOI information. One of the most promising methods of determining DOI in a crystal involves reading the signal from two ends of a scintillation crystal, and calculating the signal ratio between the two detectors. This method is known to deliver a better DOI resolution with rough crystals compared to highly polished crystals. However, what is still not well studied is how much of a tradeoff is involved between spatial, energy, temporal, and DOI resolutions as a function of the crystal surface treatment and geometry with the use of Silicon Photomultipliers (SiPM) as the photo detectors. This study investigates the effects of different crystal surface finishes and geometries on energy, timing and DOI resolutions at different crystal depths. The results show that for LYSO scintillators of 1.5×1.5×20 mm3 and 2×2×20 mm3 with their surfaces finished from 0.5 to 30 ?m roughness, almost the same energy and coincidence timing resolutions were maintained, around 15% and 2.4 ns, respectively across different crystal depths, while the DOI resolutions were steadily improved from worse than 5 mm to better than 2 mm. They demonstrate that crystal roughness, with proper surface preparing, does not have a significant effect on the energy and coincidence timing resolutions in the crystals examined, and there does not appear to be a tradeoff between improving DOI resolution and degrading other detector performances. These results will be valuable to guide the selection of crystal surface conditions for developing a DOI measurable PET detector with a full array of LYSO scintillators coupled to SiPM arrays.

  17. Development of a compact and fast response detector using an Yb:Lu2O3 scintillator for lifetime sensitive positron emission tomography

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Kuroda, R.; Tanaka, M.; Oshima, N.; O'Rourke, B. E.; Suzuki, R.; Toyokawa, H.; Watanabe, K.; Yanagida, T.; Yagi, H.; Yanagitani, T.

    2014-05-01

    We propose a method for obtaining three-dimensional imaging measurements of the defect distribution inside industrial materials by measuring positron lifetimes, in addition to using the imaging technique of positron emission tomography. A compact and fast response detector that uses an Yb3+-doped Lu2O3 scintillator and a photomultiplier tube was developed and tested. Yb3+ charge transfer luminescence exhibits a fast response in the ultraviolet and visible regions. The first measurement of the positron lifetime for a bulk material using an Yb:Lu2O3 scintillator was carried out. The lifetime of positrons created inside an yttria-stabilized zirconia block via pair production produced by ultrashort photon pulses was successfully measured.

  18. Optimizing light collection from extractive scintillating resin in flow-cell detectors

    NASA Astrophysics Data System (ADS)

    Meldrum, Amy Catherine

    The objectives of this study were to investigate the changes in light collection efficiency for flow cell detector as various parameters are altered to find the optimum flow cell configuration. Columns with inner diameters of 0.16 cm, 0.48 cm, 0.79 cm, and 1.11 cm were packed with synthesized nonporous, un-functionalized beads to measure their detection efficiencies for solutions containing 210Po, 14C, or 90Sr/ 90Y. The average diameter of the beads used in the experiments was 147 microm +/- 33 microm. The highest detection efficiency for 210Po was 15.3 +/- 3.9% with the 1.11 cm diameter column. The 1.11 cm diameter column also yielded the highest detection efficiency of 29.6 +/- 0.8% for 14C. When filled with a 90Sr/ 90Y solution, the 0.79 cm diameter column had the highest detection efficiency of 100 +/- 7.0%. However, for both 14C and 90Sr/90Y, the 0.48 cm, 0.79 cm, and 1.11 cm diameter columns had detection efficiencies within 1-sigma of each other. To investigate the effects of various parameters on the light collection efficiency and detection efficiency, models were built using GATE (GEANT4 Application for Tomographic Emissions) to simulate the columns. Bead diameter, column inner diameter, and source location were varied within the simulations, for beads that were arranged in a body-centered-cubic (BCC) configuration. The highest detection efficiency for 210Po was a point source located within each bead approximately 100 +/- 1.3 %, regardless of column inner diameter or bead diameter. The same was found to be true for both 14C and 90Sr/90Y, wherein the point source configuration yielded the highest detection efficiencies of 93.1 +/- 0.3% and 98.9 +/- 0.2%, respectively, which were approximately equal regardless of bead or column size. These results suggest that if a porous resin were to be synthesized such that the radionuclide of interest could be trapped within a bead, high detection efficiencies could be achieved even with a column with a small inner diameter.

  19. Scintillation properties of SrI_2(Eu^2+) (Strontium iodide doped with europium) for high energy astrophysical detectors: Nonproportionality as a function of temperature and at high gamma-ray energies

    E-print Network

    Perea, R S; Groza, M; Caudel, D; Nowicki, S; Burger, A; Stassun, K G; Peterson, T E

    2014-01-01

    Strontium iodide doped with europium is a new scintillator material being developed as an alternative to lanthanum bromide doped with cerium for use in high energy astrophysical detectors. As with all scintillators, the issue of nonproportionality is important because it affects the energy resolution of the detector. In this study, we investigate how the nonproportionality of strontium iodide doped with europium changes as a function of temperature 16 deg. C to 60 deg. C by heating the strontium iodide doped with europium scintillator separate from the photomultiplier tube. In a separate experiment, we also investigate the nonproportionality at high energies (up to 6 MeV) of strontium iodide doped with europium at a testing facility located at NASA Goddard Space Flight Center. We find that the nonproportionality increases nearly monotonically as the temperature of the strontium iodide doped with europium scintillator is increased, although there is evidence of non-monotonic behavior near 40 deg. C, perhaps du...

  20. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder; Paul L. (Richland, WA)

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  1. Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane

    SciTech Connect

    Taheri, A. Saramad, S.; Ghalenoei, S.; Setayeshi, S.

    2014-01-15

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 ?m, respectively.

  2. 3D Printing of Scintillating Materials

    E-print Network

    Mishnayot, Y; Cooperstein, I; Magdassi, S; Ron, G

    2014-01-01

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  3. 3D Printing of Scintillating Materials

    E-print Network

    Y. Mishnayot; M. Layani; I. Cooperstein; S. Magdassi; G. Ron

    2014-06-15

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  4. Real-time, digital pulse-shape discrimination in non-hazardous fast liquid scintillation detectors: Prospects for safety and security

    SciTech Connect

    Joyce, M. J.; Aspinall, M. D.; Cave, F. D.; Lavietes, A. D.

    2011-07-01

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and {gamma} rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/{gamma}-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flash point and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/{gamma} separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 x 10{sup 6} events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous. (authors)

  5. 950 keV X-Band Linac For Material Recognition Using Two-Fold Scintillator Detector As A Concept Of Dual-Energy X-Ray System

    SciTech Connect

    Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke; Uesaka, Mitsuru; Hashimoto, Eiko

    2011-06-01

    One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code was used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.

  6. Determination of a time-shift in the OPERA set-up using high energy horizontal muons in the LVD and OPERA detectors

    E-print Network

    N. Yu. Agafonova; P. Antonioli; V. V. Ashikhmin; G. Bari; E. Bressan; L. Evans; M. Garbini; P. Giusti; A. S. Malguin; R. Persiani; V. G. Ryasny; O. G. Ryazhskaya; G. Sartorelli; E. Scapparone; M. Selvi; I. R. Shakirianova; L. Votano; H. Wenninger; V. F. Yakushev; A. Zichichi; N. Agafonova; A. Alexandrov; A. Bertolin; R. Brugnera; B. Buttner; V. Chiarella; A. Chukanov; N. D'Ambrosio; G. De Lellis; A. Di Crescenzo; D. Di Ferdinando; N. Di Marco; S. Dmitrievsky; M. Dracos; S. Dusini; J. Ebert; A. Ereditato; T. Ferber; R. A. Fini; A. Garfagnini; G. Giacomelli; C. Göllnitz; Y. Gornushkin; F. Grianti; C. Gustavino; C. Hagner; M. Hierholzer; A. Hollnagel; K. Jakovcic; C. Jollet-Meregaglia; B. Klicek; U. Kose; J. Lenkeit; A. Ljubicic; A. Longhin; A. Malgin; G. Mandrioli; V. Matveev; N. Mauri; E. Medinaceli; A. Meregaglia; M. T. Muciaccia; D. Naumov; A. Olshevsky; A. Paoloni; A. Pastore; L. Patrizii; M. Pozzato; F. Pupilli; G. Rosa; I. Rostovtseva; A. Russo; O. Ryazhskaya; A. Schembri; I. Shakirianova; A. Sheshukov; S. Simone; M. Sioli; C. Sirignano; G. Sirri; M. Spinetti; L. Stanco; M. Stipcevic; M. Tenti; F. Terranova; V. Tioukov; L. Votano; B. Wonsak; V. Yakushev; Y. Zaitsev; S. Zemskova

    2012-06-12

    The purpose of this work is to report the measurement of a time-shift in the OPERA set-up in a totally independent way from Time Of Flight (TOF) measurements of CNGS neutrino events. The LVD and OPERA experiments are both installed in the same laboratory: LNGS. The relative position of the two detectors, separated by an average distance of ~ 160 m, allows the use of very high energy horizontal muons to cross-calibrate the timing systems of the two detectors, using a TOF technique which is totally independent from TOF of CNGS neutrino events. Indeed, the OPERA-LVD direction lies along the so-called "Teramo anomaly", a region in the Gran Sasso massif where LVD has established, many years ago, the existence of an anomaly in the mountain structure, which exhibits a low m. w. e. thickness for horizontal directions. The "abundant" high-energy horizontal muons (nearly 100 per year) going through LVD and OPERA exist because of this anomaly in the mountain orography. The total live time of the data in coincidence correspond to 1200 days from mid 2007 until March 2012. The time coincidence study of LVD and OPERA detectors is based on 306 cosmic horizontal muon events and shows the existence of a negative time shift in the OPERA set-up of the order of deltaT(AB) = - (73 \\pm 9) ns when two calendar periods, A and B, are compared. This result shows a systematic effect in the OPERA timing system from August 2008 until December 2011. The size of the effect is comparable with the neutrino velocity excess recently measured by OPERA. It is probably interesting not to forget that with the MRPC technology developed by the ALICE Bologna group the TOF world record accuracy of 20 ps was reached. That technology can be implemented at LNGS for a high precision determination of TOF with the CNGS neutrino beams of an order of magnitude smaller than the value of the OPERA systematic effect.

  7. Direct Deposition of Microcolumnar Scintillator on CMOS SSPM Array: Toward a Photon Counting Detector for X-Ray/Gamma Ray Imaging

    SciTech Connect

    Prekas, G.; Breen, M.; Sabet, H.; Bhandari, H.; Derderian, G.; Robertson, F. Jr; Stapels, C. J.; Christian, J.; Cool, S.; Nagarkar, V. V.

    2011-12-13

    We are developing a modular, low-cost, photon-counting detector based on a scintillator coupled to a solid-state photodetector. A working prototype was successfully developed by depositing CsI:Tl directly onto a CMOS SSPM array designed by RMD and custom-fabricated by a commercial foundry. The device comprised a 6x6 array of 1.5x1.5 mm{sup 2} macro-pixels, each containing a 36x36 array of resistively coupled micro-pixels, that was subjected to vapor deposition of columnar CsI:Tl. Direct deposition eliminates the gap between the scintillator and SSPM and creates a better optical bond than does index-matching grease. This paper compares the performance of SSPMs with directly deposited CsI:Tl, in terms of signal-to-noise ratio and light spread, against devices using monolithic single crystals or pixelated single crystals coupled to the SSPM. Due to the reduction in light scattering and optical losses in the interface, the directly deposited CsI:Tl demonstrated significantly better position sensitivity, with at least a factor of 2 increase in SNR compared to a single crystal. These data indicate that a photodetector with substantially smaller macro-pixel dimensions than used here could be used to implement a low-energy X-ray/gamma-ray imaging and spectroscopy detector, particularly for applications where high resolution is of prime importance.

  8. A direct method for evaluating the concentration of boric acid in a fuel pool using scintillation detectors for joint-multiplicity measurements

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Pázsit, Imre; Nordlund, Anders; Sarwar, Rashed

    2013-06-01

    The present investigations are aimed at the development of a direct passive non-intrusive method for determining the concentration of boric acid in a spent fuel pool using scintillation detectors with the purpose of correcting joint-multiplicity measurement results. The method utilizes a modified relation between two gamma lines with energy of 480 keV and 2.23 MeV, respectively. The gamma line at 480 keV belongs to the thermal neutron capture in boron. The 2.23 MeV gamma line characterizes the capture of thermal neutrons in hydrogen. Thus, the relation between them can reveal the concentration of the boron in the fuel pool. In order to test this method, first MCNPX and MCNP-PoliMi simulations were performed. Then, based on the results of Monte Carlo simulations, the method was verified by an experimental study with a 241Am-Be source and EJ-309 scintillation detectors. The concentration of boron in water varied from 1550 ppm to 4000 ppm. The results of these tests are provided in the paper and they show that the spectral ratio between these two lines can in principle be used to determine the boron content.

  9. A comparison of digital zero-crossing and charge-comparison methods for neutron/?-ray discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2015-10-01

    In this paper, we have compared the performances of the digital zero-crossing and charge-comparison methods for n/? discrimination with liquid scintillation detectors at low light outputs. The measurements were performed with a 2?×2? cylindrical liquid scintillation detector of type BC501A whose outputs were sampled by means of a fast waveform digitizer with 10-bit resolution, 4 GS/s sampling rate and one volt input range. Different light output ranges were measured by operating the photomultiplier tube at different voltages and a new recursive algorithm was developed to implement the digital zero-crossing method. The results of our study demonstrate the superior performance of the digital zero-crossing method at low light outputs when a large dynamic range is measured. However, when the input range of the digitizer is used to measure a narrow range of light outputs, the charge-comparison method slightly outperforms the zero-crossing method. The results are discussed in regard to the effects of the quantization noise and the noise filtration performance of the zero-crossing filter.

  10. Photofraction of a 5 cm x 2 cm BGO scintillator. [bismuth germanate crystal for use in cosmic gamma ray detector

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.

    1985-01-01

    The photofraction of a 5.1 cm x 2.0 cm bismuth germanate (BGO) scintillator was measured over a gamma-ray energy range of 0.2 to 6.1 MeV. Several methods, used to minimize the effect of room scattering on the measurement, are discussed. These include a gamma-gamma coincidence technique, a beta-gamma coincidence technique, and the use of sources calibrated with a standard 7.6 cm x 7.6 cm sodium iodide scintillator.

  11. Geant4 Monte Carlo simulations for the LPCTrap setup

    NASA Astrophysics Data System (ADS)

    Rodríguez, D.; Ban, G.; Durand, D.; Duval, F.; Fléchard, X.; Liénard, E.; Mauger, F.; Méry, A.; Naviliat-Cuncic, O.; Thomas, J.-C.; Velten, Ph.

    2009-12-01

    The LPCTrap setup at GANIL is fully operational since 2006. The first breakthrough was the detection of 100000 coincidences between the ? particles and the recoil ions from the decay of 6He+ produced by the SPIRAL source. After preparation, the decaying nuclei are confined in a transparent Paul trap which is surrounded by a ? -telescope made of a double-sided silicon strip detector followed by a scintillator, and by a micro-channel plate position-sensitive detector to record in coincidence the ? particles and the recoil ions. Simulations of this system are needed in order to study possible systematic effects and extract with high accuracy the ? - ? angular-correlation coefficient. A code based on Geant4 is well suited for this purpose. In this contribution the results from the simulations compared with those from the experiment will be presented and discussed.

  12. Photonic crystal scintillators and methods of manufacture

    SciTech Connect

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  13. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors.

    SciTech Connect

    Kiff, Scott D.; Reyna, David; Monahan, James; Bowden, Nathaniel S.

    2010-11-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/{sup 6}LiF configurations reliably identify {sup 6}Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  14. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors.

    SciTech Connect

    Kiff, Scott D.; Reyna, David; Monahan, James; Bowden, Nathaniel S.

    2010-10-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/{sup 6}LiF configurations reliably identify {sup 6}Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  15. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  16. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom (Sterling, VA); Spector, Garry B. (Fairfax, VA)

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  17. Study with Cosmic and Test-Beam Particles of Scintillation-Tile Detectors Read Out via Silicon Photomultiplier Devices

    NASA Astrophysics Data System (ADS)

    Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Rama, M.

    2008-06-01

    This paper describes measurements made using counters made of a small (3 × 3 × 0.5 cm3) scintillation tile coupled to a Multi-Photon Pixel Counter (MPPC) produced by Hamamatsu and exposed to an electron beam at the Beam Test Facility in Frascati, and to cosmic rays. We show our first results for charge spectra and efficiency, and a preliminary measurement of device linearity.

  18. A 1 mm Scintillating Fibre Tracker Readout by a Multi-anode Photomultiplier

    E-print Network

    B. D. Leverington; M. Anelli; P. Campana; R. Rosellini

    2011-07-05

    This note describes a prototype particle tracking detector constructed with 1 mm plastic scintillating fibres with a 64 channel Hamamatsu H8500 flat-panel multi-anode photomultiplier readout. Cosmic ray tracks from an array of 11 gas-filled drift tubes were matched to signals in the scintillating fibres in order to measure the resolution and efficiency of tracks reconstructed in the fibre-based tracker. A GEANT4 detector simulation was also developed to compare cosmic ray data with MC results and is discussed in the note. Using the parameters measured in this experimental setup, modified fibre tracker designs are suggested to improve resolution and efficiency in future prototypes to meet modern detector specifications.

  19. Extruded plastic scintillator for MINERvA

    SciTech Connect

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  20. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen (Los Alamos, NM); Burrell, Anthony Keiran (Los Alamos, NM); Bennett, Bryan L. (Los Alamos, NM); Cooke, David Wayne (Santa Fe, NM); Ott, Kevin Curtis (Los Alamos, NM); Bacrania, Minesh Kantilal (Los Alamos, NM); Del Sesto, Rico Emilio (Los Alamos, NM); Gilbertson, Robert David (Los Alamos, NM); Muenchausen, Ross Edward (Los Alamos, NM); McCleskey, Thomas Mark (Los Alamos, NM)

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  1. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  2. Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Ruch, Marc L.; Poitrasson-Riviere, Alexis; Sagadevan, Athena; Clarke, Shaun D.; Pozzi, Sara

    2015-07-01

    We present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.

  3. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  4. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W. (Berkeley, CA)

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  5. Use of the WNR spallation neutron source at LAMPF to determine the absolute efficiency of a neutron scintillation detector

    SciTech Connect

    Staples, P.A.; Egan, J.J.; Kegel, G.H.R.; Woodring, M.L.; DeSimone, D.J.; Lisowski, P.W.

    1994-06-01

    Prompt fission neutron spectrum measurements at the University of Massachusetts Lowell 5.5 MV Van de Graaff accelerator laboratory require that the neutron detector efficiency be well known over a neutron energy range of 100 keV to 20 MeV. The efficiency of the detector, has been determined for energies greater than 5.0 MeV using the Weapons Neutron Research (WNR) white neutron source at the Los Alamos Meson Physics Facility (LAMPF) in a pulsed beam, time-of-flight (TOF) experiment. Carbon matched polyethylene and graphite scatterers were used to obtain a hydrogen spectrum. The detector efficiency was determined using the well known H(n,n) scattering cross section. Results are compared to the detector efficiency calculation program SCINFUL available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

  6. Monte-Carlo simulation of a compact gamma-ray detector using wavelength-shifting fibers coupled to a YAP scintillation crystal

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zong

    2008-05-01

    The production and transportation of fluorescent light produced in wavelength-shifting fibers (WSFs) coupled to YAP scintillation crystal is simulated using the GEANT4 codes. An advantage of the wavelength-shifting fiber readout technique over a direct readout with a position-sensitive photo-sensor is the reduced requirement for position sensitive photomultiplier tube photocathode area. With this gamma-ray detector, the gamma camera is small and flexible and has larger effective field of view and low cost. Simulation results show that a) a mean 12 of photons per 59.5 keV gamma ray interaction is produced in the WSF located nearest to the incident gamma ray, and a spatial resolution of 3.6 mm FWHM is obtained, b) a mean 27 of photons per 140 keV gamma ray interaction is produced and a spatial resolution of 3.1 mm FWHM is obtained. Results demonstrate the feasibility of this concept of a compact gamma-ray detector based on wavelength-shifting fibers readout. However, since the very low photoelectron levels, it is very important to use a photon counting device with good single photo-electron response to readout the WSFs. Supported by National Nature Science Foundation of China (10275063)

  7. Measurement of the {sup 8}B solar neutrino flux with the KamLAND liquid scintillator detector

    SciTech Connect

    Abe, S.; Furuno, K.; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Kibe, Y.; Kimura, W.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, M.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.

    2011-09-15

    We report a measurement of the neutrino-electron elastic scattering rate from {sup 8}B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 {+-} 0.14(stat) {+-} 0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a {sup 8}B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77 {+-} 0.26(stat) {+-} 0.32(syst) x10{sup 6} cm{sup -2}s{sup -1}. The analysis threshold is driven by {sup 208}Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic {sup 11}Be. The measured rate is consistent with existing measurements and with standard solar model predictions which include matter-enhanced neutrino oscillation.

  8. Scintillator material

    DOEpatents

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  9. Scintillator material

    DOEpatents

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  10. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  11. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  12. A technique for verifying the input response function of neutron time-of-flight scintillation detectors using cosmic rays.

    PubMed

    Bonura, M A; Ruiz, C L; Fehl, D L; Cooper, G W; Chandler, G; Hahn, K D; Nelson, A J; Styron, J D; Torres, J A

    2014-11-01

    An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF's) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement. PMID:25430209

  13. A technique for verifying the input response function of neutron time-of-flight scintillation detectors using cosmic rays

    SciTech Connect

    Bonura, M. A.; Cooper, G. W.; Nelson, A. J.; Styron, J. D.; Ruiz, C. L. Fehl, D. L.; Chandler, G.; Hahn, K. D.; Torres, J. A.

    2014-11-15

    An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF’s) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement.

  14. SU-E-T-298: Small Field Total Scatter Factors Using a Commercial Scintillator Detector: Calibration Parameters Are Not Independent of Field Size

    SciTech Connect

    Jornet, N; Carrasco de Fez, P; Jordi, O; Latorre-Musoll, A; Eudaldo, T; Ruiz-Martinez, A; Ribas Morales, M

    2014-06-01

    Purpose: To evaluate the accuracy in total scatter factor (Sc,p) determination for small fields using commercial plastic scintillator detector (PSD). The manufacturer's spectral discrimination method to subtract Cerenkov light from the signal is discussed. Methods: Sc,p for field sizes ranging from 0.5 to 10 cm were measured using PSD Exradin (Standard Imaging) connected to two channel electrometer measuring the signals in two different spectral regions to subtract the Cerenkov signal from the PSD signal. A Pinpoint ionisation chamber 31006 (PTW) and a non-shielded semiconductor detector EFD (Scanditronix) were used for comparison. Measures were performed for a 6 MV X-ray beam. The Sc,p are measured at 10 cm depth in water for a SSD=100 cm and normalized to a 10'10 cm{sup 2} field size at the isocenter. All detectors were placed with their symmetry axis parallel to the beam axis.We followed the manufacturer's recommended calibration methodology to subtract the Cerenkov contribution to the signal as well as a modified method using smaller field sizes. The Sc,p calculated by using both calibration methodologies were compared. Results: Sc,p measured with the semiconductor and the PinPoint detectors agree, within 1.5%, for field sizes between 10'10 and 1'1 cm{sup 2}. Sc,p measured with the PSD using the manufacturer's calibration methodology were systematically 4% higher than those measured with the semiconductor detector for field sizes smaller than 5'5 cm{sup 2}. By using a modified calibration methodology for smalls fields and keeping the manufacturer calibration methodology for fields larger than 5'5cm{sup 2} field Sc,p matched semiconductor results within 2% field sizes larger than 1.5 cm. Conclusion: The calibration methodology proposed by the manufacturer is not appropriate for dose measurements in small fields. The calibration parameters are not independent of the incident radiation spectrum for this PSD. This work was partially financed by grant 2012 of Barcelona board of the AECC.

  15. A compact and high sensitivity positron detector using dual-layer thin GSO scintillators for a small animal PET blood sampling system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Imaizumi, Masao; Shimosegawa, Eku; Kanai, Yasukazu; Sakamoto, Yusuke; Minato, Kotaro; Shimizu, Keiji; Senda, Michio; Hatazawa, Jun

    2010-07-01

    For quantitative measurements of small animals such as mice or rats, a compact and high sensitivity continuous blood sampling detector is required because their blood sampling volume is limited. For this purpose we have developed and tested a new positron detector. The positron detector uses a pair of dual-layer thin gadolinium orthosilicate (GSO) scintillators with different decay times. The front layer detects the positron and the background gamma photons, and the back layer detects the background gamma photons. By subtracting the count rate of the latter from that of the former, the count rate of the positrons can be estimated. The GSO for the front layer has a Ce concentration of 1.5 mol% (decay time of 35 ns), and that for the back layer has a Ce concentration of 0.5 mol% (decay time of 60 ns). By using the pulse shape analysis, the count rate of these two GSOs can be discriminated. The thickness is 0.5 mm, which is thick enough to detect positrons while minimizing the detection of the background gamma photons. These two types of thin GSOs were optically coupled to each other and connected to a metal photomultiplier tube (PMT) through triangular light guides. The signal from the PMT was digitized by 100 MHz free-running A-D converters in the data acquisition system and digitally integrated at two different integration times for the pulse shape analysis. We obtained good separation of the pulse shape distributions of these two GSOs. The energy threshold level was decreased to 80 keV, increasing the sensitivity of the detector. The sensitivity of a small diameter plastic tube was 8.6% and 24% for the F-18 and C-11 positrons, respectively. The count rate performance was linear up to ~50 kcps. The background counts from the gamma photons could be precisely corrected. The time-activity curve (TAC) of the rat artery blood was successfully obtained and showed a good correlation with that measured using a well counter. With these results, we confirmed that the developed blood sampling detector is promising for quantitative measurement for an animal positron emission tomography system.

  16. Method of making a scintillator waveguide

    DOEpatents

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder, Paul L. (Richland, WA)

    2000-01-01

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  17. Thin YAP:Ce and LaBr3:Ce scintillators as proton detectors of a thin-film proton recoil neutron spectrometer for fusion and spallation sources applications

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Nocente, M.; Tardocchi, M.; Fazzi, A.; Hjalmarsson, A.; Rigamonti, D.; Ericsson, G.; Gorini, G.

    2014-07-01

    Two thin inorganic scintillators based on YAP and LaBr3 crystals (1 in. diameter × 0.1 in. height) have been used for proton measurements at the Uppsala tandem accelerator in the energy range 4-8 MeV. Measurements show a comparable good energy resolution for the two detectors, better than 2% (FWHM) for 8 MeV protons, which compares to 3.8% (LaBr3) and 3.7% (YAP) obtained at the 1.3 MeV peak of a 60Co ?-ray source. The main advantages of these crystals are a fast scintillation time (less than 30 ns), an excellent light yield and the capability to operate in large neutron background, which make them ideal candidates as proton detectors of a thin-film proton recoil neutron spectrometer for application on fusion experiments and fast neutron spallation sources.

  18. Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors

    NASA Astrophysics Data System (ADS)

    Modgil, Dimple; Rigie, David S.; Wang, Yuxin; Xiao, Xianghui; Vargas, Phillip A.; La Rivière, Patrick J.

    2015-10-01

    We demonstrate that a dual-layer, dual-color scintillator construct for microscopic CT, originally proposed to increase sensitivity in synchrotron imaging, can also be used to perform material quantification and classification when coupled with polychromatic illumination. We consider two different approaches to data handling: (1) a data-domain material decomposition whose estimation performance can be characterized by the Cramer-Rao lower bound formalism but which requires careful calibration and (2) an image-domain material classification approach that is more robust to calibration errors. The data-domain analysis indicates that useful levels of SNR (>5) could be achieved in one second or less at typical bending magnet fluxes for relatively large amounts of contrast (several mm path length, such as in a fluid flow experiment) and at typical undulator fluxes for small amount of contrast (tens of microns path length, such as an angiography experiment). The tools introduced could of course be used to study and optimize parameters for a wider range of potential applications. The image domain approach was analyzed in terms of its ability to distinguish different elemental stains by characterizing the angle between the lines traced out in a two-dimensional space of effective attenuation coefficient in the front and back layer images. This approach was implemented at a synchrotron and the results were consistent with simulation predictions.

  19. A measurement of the response of an SCG1-C scintillation glass shower detector to 2-17.5 GeV positrons

    NASA Astrophysics Data System (ADS)

    Cox, B.; Hale, G.; Mazur, P. O.; Wagner, R. L.; Wagoner, D. E.; Areti, H.; Conetti, S.; Lebrun, P.; Ryan, T.; Brau, J. E.

    1983-04-01

    The response of an electromagnetic shower counter constructed from the new scintillation glass (SCG1-C, Ohara Optical Glass, Inc.) to positrons in the energy range 2 to 17.5 GeV was measured. The energy resolution of this 18.4 radiation length detector plus its attendant SF5 lead glass shower counter array was measured to be sigma/E = (1.64 plus or minus 0.14)% + (1.13 plus or minus 0.33)%/, square root of E with the constant term dominated by variations in the conversion point of the positron and shower leakage. This counter was found to be linear over the energy range examined. Also measured was the light output of the SCG1-C counter relative to light output of the SF5 lead glass guard blocks using 17.5 GeV positrons. It was found that the sOG1-C counter produces 5.10 plus or minus 0.30 more light at the phototube than the SF5 lead glass counters.

  20. A measurement of the response of an SCG1-C scintillation glass shower detector to 2 17.5 GeV positrons

    NASA Astrophysics Data System (ADS)

    Cox, B.; Hale, G.; Mazur, P. O.; Wagner, R. L.; Wagoner, D. E.; Areti, H.; Conetti, S.; Lebrun, P.; Ryan, T.; Brau, J. E.; Gearhart, R. A.

    1984-02-01

    We have measured the response of an electromagnetic shower counter constructed from the new scintillation glass (SCG1-C, Ohara Optical Glass, Inc.) to positrons in the energy range 2 to 17.5 GeV. We have measured the energy resolution of this 18.4 radiation length detector plus its attendant SF5 lead glass shower counter array to be ?/ E = (1.64±0.14)%+(1.13±0.33)%/? E with the constant term dominated by variations in the variations in the conversion point of the positron and shower leakage. We found this counter to be linear over the energy range examined. We have also measured the light output of the SCG1-C counter relative to light output of the SF5 lead glass guard blocks using 17.5 GeV positrons. We find that the SCG1-C counter produces 5.10±0.30 more light at the phototube than the SF5 lead glass counters.

  1. Liquid scintillator production for the NOvA experiment

    NASA Astrophysics Data System (ADS)

    Mufson, S.; Baugh, B.; Bower, C.; Coan, T. E.; Cooper, J.; Corwin, L.; Karty, J. A.; Mason, P.; Messier, M. D.; Pla-Dalmau, A.; Proudfoot, M.

    2015-11-01

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  2. Liquid scintillator production for the NOvA experiment

    E-print Network

    S. Mufson; B. Baugh; C. Bower; T. E. Coan; J. Cooper; L. Corwin; J. A. Karty; P. Mason; M. D. Messier; A. Pla-Dalmau; M. Proudfoot

    2015-06-30

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  3. Reconstruction algorithm for point source neutron imaging through finite thickness scintillator

    NASA Astrophysics Data System (ADS)

    Wang, H.; Tang, V.; McCarrick, J.; Moran, S.

    2012-11-01

    A new inversion algorithm based on the maximum entropy method (MEM) is proposed to remove unwanted effects in fast neutron imaging which result from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as an input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). The inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. Algorithm details as well as numerical results using MCNP simulated images are presented. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique should also be applicable to high energy gamma or x-ray radiography using thick scintillators.

  4. Radiopure ZnMoO4 scintillating bolometers for the LUMINEU double-beta experiment

    NASA Astrophysics Data System (ADS)

    Poda, D. V.; Armengaud, E.; Arnaud, Q.; Augier, C.; Barabash, A. S.; Benoît, A.; Benoît, A.; Bergé, L.; Boiko, R. S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Censier, B.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; Coron, N.; Coulter, P.; Cox, G. A.; Danevich, F. A.; de Boissière, T.; Decourt, R.; De Jesus, M.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Eitel, K.; Enss, C.; Filosofov, D.; Fleischmann, A.; Fourches, N.; Gascon, J.; Gastaldo, L.; Gerbier, G.; Giuliani, A.; Gros, M.; Hehn, L.; Henry, S.; Hervé, S.; Heuermann, G.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kluck, H.; Kobychev, V. V.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Menshikov, A.; Nasonov, S. G.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Penichot, Y.; Pessina, G.; Piro, M. C.; Plantevin, O.; Redon, T.; Robinson, M.; Rodrigues, M.; Rozov, S.; Sanglard, V.; Schmidt, B.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vagneron, L.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.; Walker, R. J.; Weber, M.; Yakushev, E.; Zhang, X.; Zhdankov, V. N.

    2015-08-01

    The results of R&D of radiopure zinc molybdate (ZnMoO4) based scintillating bolometers for the LUMINEU (Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature) double-beta decay experiment are presented. A dedicated two-stage molybdenum purification technique (sublimation in vacuum and recrystallization from aqueous solutions) and an advanced directional solidification method (the low-thermal-gradient Czochralski technique) were utilized to produce high optical quality large mass (˜1 kg) ZnMoO4 crystal boules and first 100Mo (99.5%) enriched Zn100MoO4 crystal scintillator (mass of ˜0.2 kg). Scintillating bolometers based on ZnMoO4 (? 0.33 kg) and Zn100MoO4 (? 0.06 kg) scintillation elements and high purity Ge wafers were tested in the EDELWEISS set-up at the Modane Underground Laboratory (France). Long term low temperature tests demonstrate excellent detectors' performance and effectiveness of the purification and solidification procedures for the achievement of high radiopurity of the material, in particular with a bulk activity of 228Th and 226Ra below 4 µBq/kg. The adopted protocol was used to produce for the first time a large volume Zn100MoO4 crystal scintillator (mass of ˜1.4 kg, 100Mo enrichment is 99.5%) to search for neutrinoless double-beta decay of 100Mo in the framework of the LUMINEU project.

  5. Segmented crystalline scintillators: Empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(Tl) detector

    SciTech Connect

    Sawant, Amit; Antonuk, Larry E.; El-Mohri, Youcef; Zhao Qihua; Wang Yi; Li Yixin; Du Hong; Perna, Louis

    2006-04-15

    Modern-day radiotherapy relies on highly sophisticated forms of image guidance in order to implement increasingly conformal treatment plans and achieve precise dose delivery. One of the most important goals of such image guidance is to delineate the clinical target volume from surrounding normal tissue during patient setup and dose delivery, thereby avoiding dependence on surrogates such as bony landmarks. In order to achieve this goal, it is necessary to integrate highly efficient imaging technology, capable of resolving soft-tissue contrast at very low doses, within the treatment setup. In this paper we report on the development of one such modality, which comprises a nonoptimized, prototype electronic portal imaging device (EPID) based on a 40 mm thick, segmented crystalline CsI(Tl) detector incorporated into an indirect-detection active matrix flat panel imager (AMFPI). The segmented detector consists of a matrix of 160x160 optically isolated, crystalline CsI(Tl) elements spaced at 1016 {mu}m pitch. The detector was coupled to an indirect detection-based active matrix array having a pixel pitch of 508 {mu}m, with each detector element registered to 2x2 array pixels. The performance of the prototype imager was evaluated under very low-dose radiotherapy conditions and compared to that of a conventional megavoltage AMFPI based on a Lanex Fast-B phosphor screen. Detailed quantitative measurements were performed in order to determine the x-ray sensitivity, modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). In addition, images of a contrast-detail phantom and an anthropomorphic head phantom were also acquired. The prototype imager exhibited approximately 22 times higher zero-frequency DQE ({approx}22%) compared to that of the conventional AMFPI ({approx}1%). The measured zero-frequency DQE was found to be lower than theoretical upper limits ({approx}27%) calculated from Monte Carlo simulations, which were based solely on the x-ray energy absorbed in the detector--indicating the presence of optical Swank noise. Moreover, due to the nonoptimized nature of this prototype, the spatial resolution was observed to be significantly lower than theoretical expectations. Nevertheless, due to its high quantum efficiency ({approx}55%), the prototype imager exhibited significantly higher DQE than that of the conventional AMFPI across all spatial frequencies. In addition, the frequency-dependent DQE was observed to be relatively invariant with respect to the amount of incident radiation, indicating x-ray quantum limited behavior. Images of the contrast-detail phantom and the head phantom obtained using the prototype system exhibit good visualization of relatively large, low-contrast features, and appear significantly less noisy compared to similar images from a conventional AMFPI. Finally, Monte Carlo-based theoretical calculations indicate that, with proper optimization, further, significant improvements in the DQE performance of such imagers could be achieved. It is strongly anticipated that the realization of optimized versions of such very high-DQE EPIDs would enable megavoltage projection imaging at very low doses, and tomographic imaging from a 'beam's eye view' at clinically acceptable doses.

  6. A comparative study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic dosimeters: The case of the CyberKnife

    SciTech Connect

    Morin, J.; Beliveau-Nadeau, D.; Chung, E.; Seuntjens, J.; Theriault, D.; Archambault, L.; Beddar, S.; Beaulieu, L.

    2013-01-15

    Purpose: Small-field dosimetry is challenging, and the main limitations of most dosimeters are insufficient spatial resolution, water nonequivalence, and energy dependence. The purpose of this study was to compare plastic scintillation detectors (PSDs) to several commercial stereotactic dosimeters by measuring total scatter factors and dose profiles on a CyberKnife system. Methods: Two PSDs were developed, having sensitive volumes of 0.196 and 0.785 mm{sup 3}, and compared with other detectors. The spectral discrimination method was applied to subtract Cerenkov light from the signal. Both PSDs were compared to four commercial stereotactic dosimeters by measuring total scatter factors, namely, an IBA dosimetry stereotactic field diode (SFD), a PTW 60008 silicon diode, a PTW 60012 silicon diode, and a microLion. The measured total scatter factors were further compared with those of two independent Monte Carlo studies. For the dose profiles, two commercial detectors were used for the comparison, i.e., a PTW 60012 silicon diode and Gafchromics EBT2. Total scatter factors for a CyberKnife system were measured in circular fields with diameters from 5 to 60 mm. Dose profiles were measured for the 5- and 60-mm cones. The measurements were performed in a water tank at a 1.5-cm depth and an 80-cm source-axis distance. Results: The total scatter factors measured using all the detectors agreed within 1% with the Monte Carlo values for cones of 20 mm or greater in diameter. For cones of 10-20 mm in diameter, the PTW 60008 silicon diode was the only dosimeter whose measurements did not agree within 1% with the Monte Carlo values. For smaller fields (<10 mm), each dosimeter type showed different behaviors. The silicon diodes over-responded because of their water nonequivalence; the microLion and 1.0-mm PSD under-responded because of a volume-averaging effect; and the 0.5-mm PSD was the only detector within the uncertainties of the Monte Carlo simulations for all the cones. The PSDs, the PTW 60012 silicon diode, and the Gafchromics EBT2 agreed within 2% and 0.2 mm (gamma evaluation) for the measured dose profiles except in the tail of the 60-mm cone. Conclusions: Silicon diodes can be used to accurately measure small-field dose profiles but not to measure total scatter factors, whereas PSDs can be used to accurately measure both. The authors' measurements show that the use of a 1.0-mm PSD resulted in a negligible volume-averaging effect (under-response of Almost-Equal-To 1%) down to a field size of 5 mm. Therefore, PSDs are strong candidates to become reference radiosurgery detectors for beam characterization and quality assurance measurements.

  7. Exceptional sensitivity to neutrino parameters with a two-baseline Beta-beam set-up

    NASA Astrophysics Data System (ADS)

    Agarwalla, Sanjib Kumar; Choubey, Sandhya; Raychaudhuri, Amitava

    2008-12-01

    We examine the reach of a Beta-beam experiment with two detectors at carefully chosen baselines for exploring neutrino mass parameters. Locating the source at CERN, the two detectors and baselines are: (a) a 50 kton iron calorimeter (ICAL) at a baseline of around 7150 km which is roughly the magic baseline, e.g., ICAL@INO, and (b) a 50 kton Totally Active Scintillator Detector at a distance of 730 km, e.g., at Gran Sasso. We choose 8B and 8Li source ions with a boost factor ? of 650 for the magic baseline while for the closer detector we consider 18Ne and 6He ions with a range of Lorentz boosts. We find that the locations of the two detectors complement each other leading to an exceptional high sensitivity. With ?=650 for 8B/ 8Li and ?=575 for 18Ne/ 6He and total luminosity corresponding to 5×(1.1×10) and 5×(2.9×10) useful ion decays in neutrino and antineutrino modes respectively, we find that the two-detector set-up can probe maximal CP violation and establish the neutrino mass ordering if sin2? is 1.4×10 and 2.7×10, respectively, or more. The sensitivity reach for sin2? itself is 5.5×10. With a factor of 10 higher luminosity, the corresponding sin2? reach of this set-up would be 1.8×10, 4.6×10 and 5.3×10 respectively for the above three performance indicators. CP violation can be discovered for 64% of the possible ? values for sin2??10 ( ?8×10), for the standard luminosity (10 times enhanced luminosity). Comparable physics performance can be achieved in a set-up where data from CERN to INO@ICAL is combined with that from CERN to the Boulby mine in United Kingdom, a baseline of 1050 km.

  8. AMoRE: Collaboration for searches for the neutrinoless double-beta decay of the isotope of {sup 100}Mo with the aid of {sup 40}Ca{sup 100}MoO{sub 4} as a cryogenic scintillation detector

    SciTech Connect

    Khanbekov, N. D.

    2013-09-15

    The AMoRE (Advanced Mo based Rare process Experiment) Collaboration is planning to employ {sup 40}Ca{sup 100}MoO{sub 4} single crystals as a cryogenic Scintillation detector for studying the neutrinoless double-beta decay of the isotope {sup 100}Mo. A simultaneous readout of phonon and scintillation signals is performed in order to suppress the intrinsic background. The planned sensitivity of the experiment that would employ 100 kg of {sup 40}Ca{sup 100}MoO{sub 4} over five years of data accumulation would be T{sub 1/2}{sup 0{nu}} = 3 Multiplication-Sign 10{sup 26} yr, which corresponds to values of the effective Majorana neutrino mass in the range of Left-Pointing-Angle-Bracket m{sub {nu}} Right-Pointing-Angle-Bracket {approx} 0.02-0.06 eV.

  9. Calibration methodology for a dual-ended readout silicon photomultiplier based depth-of-interaction PET detector module

    SciTech Connect

    Xi, Wenze; McKisson, John E.; Weisenberger, Andrew G.; Lee, Seung Joon; Taylor, William Mark; Stepanyan, Armenak; Zorn, Carl J.

    2012-11-01

    We developed a novel calibration methodology for a PET detector with dual-ended readout of an LYSO array by two silicon photomultipliers (SiPMs). By introducing a detector gain balancing step in the calibration process, improved depth-of-interaction calibration uniformity and accuracy can be achieved. The entire calibration process has four steps: scintillation crystal array mappings for two SiPM readouts, detector gain balancing, energy calibration, and depth-of-interaction calibration. This document provides a detailed description on the detector calibration system setup.

  10. Measurement of prompt fission neutron spectrum using a gamma tag double time-of-flight setup

    NASA Astrophysics Data System (ADS)

    Blain, Ezekiel

    Current uncertainties in the prompt fission neutron spectrum have a significant effect of up to 4% on keff for reactor criticality and safety calculations. Therefore, a method was developed at RPI to improve the accuracy of the measurement of the prompt fission neutron spectrum. This method involves using an array of BaF2 gamma detectors to tag that a fission event has occurred, and a double time-of-flight setup to obtain the prompt fission neutron spectrum as a function of incident neutron energy. The gamma tagging method improves upon conventional fission chambers by allowing for much larger sample sizes to be utilized while not suffering from effects of discriminator level on the shape of the prompt fission neutron spectrum. A coincidence requirement on an array of 4 BaF2 gamma detectors is used to determine the timing of the fission event. Furthermore, a method is under development for the use of thin plastic scintillators for measurement of the prompt fission neutron spectrum with low energies. Measurements with spontaneous fission of . {252} Cf show good agreement with previous datasets and current evaluations as well as providing accurate data down to 50 keV with the plastic scintillator detector. Preliminary incident neutron beam analysis was performed with 238U and shows good agreement with the current evaluations demonstrating the feasibility of the gamma tagging method for in beam prompt fission neutron spectrum measurements of various isotopes.

  11. Non-Carbon Dyes For Platic Scintillators- Report

    SciTech Connect

    Teprovich, J.; Colon-Mercado, H.; Gaillard, J.; Sexton, L.; Washington, A.; Ward, P.; Velten, J.

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  12. Liquid scintillator production for the NOvA experiment

    E-print Network

    Mufson, S; Bower, C; Coan, T; Cooper, J; Corwin, L; Karty, J; Mason, P; Pla-Dalmau, A; Proudfoot, M

    2015-01-01

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator to its detectors as its active detector medium. The composition of the scintillator was developed to meet the requirements of the experiment. The scintillator was shipped to the NOvA near and far detectors using dedicated stainless steel tanker trailers. A rigorous set of quality control procedures were put in place to assure that the liquid scintillator was blended to satisfy the transparency, light yield, and conductivity requirements. The incoming components, the blended scintillator, and the scintillator in the transport tanker trailers were all qualified with these procedures, which ensured that the NOvA scintillator was high quality and met its performance requirements.

  13. A comparison of collimator geometries for imaging mixed radiation fields with fast liquid organic scintillators

    SciTech Connect

    Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.

    2011-07-01

    As a result of recent advances in digital pulse-shape discrimination methods it has become possible to image mixed fields (radiation environments compromising both neutrons and gamma rays) relatively quickly with a single, organic liquid 'fast' scintillator within a heavy metal collimator. The use of a liquid scintillator has significant benefits over other techniques for imaging radiation environments as the acquired data can be analysed to provide separate information about the gamma and neutron emissions from a source (or sources) in a single scan. The imaging resolution achieved is fundamentally related to the detector efficiency and to the collimator geometry. In this paper the impact of using two different geometries of tungsten collimator are compared experimentally and three different materials considered in the Monte Carlo simulation, in order to determine the optimum set-up for mixed-field imaging. The measurements were performed in the low-scatter facility of the National Physical Laboratory, Teddington. (authors)

  14. Development and Test of a Neutron Imaging Setup at the PGAA Instrument at FRM II

    NASA Astrophysics Data System (ADS)

    Söllradl, S.; Mühlbauer, M. J.; Kudejova, P.; Türler, A.

    We report on the developments of a neutron tomography setup at the instrument for prompt gamma-ray activation analysis (PGAA) at the Maier-Leibnitz Zentrum(MLZ). The recent developments are driven by the idea of combining the spatial information obtained with neutron tomography with the elemental information determined with PGAA, i.e. to further combine both techniques to an investigative technique called prompt gamma activation imaging (PGAI).At the PGAA instrument, a cold neutron flux of up to 6 x 1010 cm-2 s-1 (thermal equivalent) is available in the focus of an elliptically tapered neutron guide. In the reported experiments, the divergence of the neutron beam was investigated, the resolution of the installed detector system tested, and a proof-of-principle tomography experiment performed. In our study a formerly used camera box was upgraded with a better camera and an optical resolution of 8 line pairs/mm was achieved. The divergence of the neutron beam was measured by a systematic scan along the beam axis. Based on the acquired data, a neutron imaging setup with a L/D ratio of 200 was installed. The resolution of the setup was testedin combination with a gadolinium test target and different scintillator screens. The test target was irradiated at two positions to determine the maximum resolution and the resolution at the actual sample position. The performance of the installed tomography setup was demonstrated bya tomography experiment of an electric amplifier tube.

  15. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  16. Scintillation Mathematics

    E-print Network

    Baxter, Paul D.

    and a rain gauge. COST 280 MCM4 4 #12; ' & $ % Example Italsat Trace #15; Time series of severe rain of tropospheric scintillation. #15; The data has been divided into rain and non­rain periods by using a radiometer rain effects for an observed attenuation trace. #15; In the wavelet transform, W , effects due to rain

  17. A Model for the Secondary Scintillation Pulse Shape from a Gas Proportional Scintillation Counter

    E-print Network

    Kazkaz, Kareem

    2015-01-01

    Proportional scintillation counters (PSCs), both single- and dual-phase, can measure the scintillation (S1) and ionization (S2) channels from particle interactions within the detector volume. The signal obtained from these detectors depends first on the physics of the medium (the initial scintillation and ionization), and second how the physics of the detector manipulates the resulting photons and liberated electrons. In this paper we develop a model of the detector physics that incorporates event topology, detector geometry, electric field configuration, purity, optical properties of components, and wavelength shifters. We present an analytic form of the model, which allows for general study of detector design and operation, and a Monte Carlo model which enables a more detailed exploration of S2 events. This model may be used to study systematic effects in currents detectors such as energy and position reconstruction, pulse shape discrimination, event topology, dead time calculations, purity, and electric fi...

  18. Scintillator Cosmic Ray Super Telescope

    NASA Astrophysics Data System (ADS)

    González, L. X.; Valdés-Galicia, J. F.; Matsubara, Y.; Nagai, Y.; Itow, Y.; Sako, T.; López, D.; Mitsuka, G.; Munakata, K.; Kato, C.; Yasue, S.; Kosai, M.; Tsurusashi, M.; Nakamo, Y.; Shibata, S.; Takamaru, H.; Kojima, H.; Tsuchiya, H.; Watanabe, K.; Koi, T.; Fragoso, E.; Hurtado, A.; Musalem, O.

    2013-04-01

    The Scintillator Cosmic Ray Super Telescope (SciCRST) is a new experiment to detect solar neutrons, and also it is expected to work as a muon and cosmic ray detector. The SciCRST consist of 14,848 plastic scintillator bars, and it will be installed at the top of Sierra Negra volcano, Mexico, 4580 m.a.s.l. We use a prototype, called as miniSciBar, to test the hardware and software of the final experiment. In this paper, we present the status and details of the experiment, and results of the prototype.

  19. Adaptive triggering for scintillation signals

    NASA Astrophysics Data System (ADS)

    Vesic, J.; Vencelj, M.; Strnisa, K.; Savran, D.

    2015-04-01

    Due to the stochastic nature of the pulse creation in a scintillation detector the output pulses are not all of the same shape but rather 'noised' with statistical fluctuations on the pulse tails, which may induce false triggers. The current state of the art in solving this kind of problems is either introducing a deadtime after each pulse which makes the detector inefficient at higher count rates or raising the trigger threshold above the fluctuactions level, which on the other side, lowers the dynamic range of the detector from the low energy side. In order to meet the ever growing demand for high precision/efficient experiments the solutions to these limitations are highly desirable. We propose a new method, the adaptive triggering for scintillation signals.

  20. Detectors

    DOEpatents

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM); Allander, Krag (Los Alamos, NM)

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  1. The homestake surface-underground scintillations: Description

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.

    1985-01-01

    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described.

  2. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  3. Extruded scintillator for the calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.; /SUNY, Stony Brook

    2006-08-01

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R&D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  4. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  5. SNO+ Scintillator Purification and Assay

    SciTech Connect

    Ford, R.; Vazquez-Jauregui, E.; Chen, M.; Chkvorets, O.; Hallman, D.

    2011-04-27

    We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  6. Secondary scintillation yield in pure argon

    NASA Astrophysics Data System (ADS)

    Monteiro, C. M. B.; Lopes, J. A. M.; Veloso, J. F. C. A.; dos Santos, J. M. F.

    2008-10-01

    The secondary scintillation yield is of great importance for simulating double phase detectors, which are used in several of the ongoing Dark Matter search experiments, as well as in the future large-scale particle detectors proposed in Europe as the next generation underground observatories. The argon secondary scintillation yield is studied, at room temperature, as a function of electric field in the gas scintillation gap. A Large Area Avalanche Photodiode (LAAPD) collects the VUV secondary scintillation produced in the gas, as well as the 5.9 keV x-rays directly absorbed in the photodiode. The direct x-rays were used as a reference for the determination of the number of charge carriers produced by the scintillation pulse and, so, the number of photons impinging the LAAPD. A value of 81 photons/kV was obtained for the scintillation amplification parameter, defined as the number of photons produced per drifting electron and per kilovolt. The scintillation yields obtained in this work are in agreement with those obtained by Monte Carlo calculations and a factor of ?10 higher than those determined by the WARP experiment.

  7. Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.

  8. Silicon photomultipliers for scintillating trackers

    NASA Astrophysics Data System (ADS)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (?106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  9. Performance of scintillation materials at cryogenic temperatures

    E-print Network

    V. B. Mikhailik; H. Kraus

    2010-01-29

    An increasing number of applications of scintillators at low temperatures, particularly in cryogenic experiments searching for rare events, has motivated the investigation of scintillation properties of materials over a wide temperature range. This paper provides an overview of the latest results on the study of luminescence, absorption and scintillation properties of materials selected for rare event searches so far. These include CaWO4, ZnWO4, CdWO4, MgWO4, CaMoO4, CdMoO4, Bi4Ge3O12, CaF2, MgF2, ZnSe and AL2O3-Ti. We discuss the progress achieved in research and development of these scintillators, both in material preparation and in the understanding of scintillation mechanisms, as well as the underlying physics. To understand the origin of the performance limitation of self-activated scintillators we employed a semi-empirical model of conversion of high energy radiation into light and made appropriate provision for effects of temperature and energy transfer. We conclude that the low-temperature value of the light yield of some modern scintillators, namely CaWO4, CdWO4 and Bi4Ge3O12, is close to the theoretical limit. Finally, we discuss the advantages and limitations of different materials with emphasis on their application as cryogenic phonon-scintillation detectors (CPSD) in rare event search experiments.

  10. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    SciTech Connect

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Wright, Michael E.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.

  11. Neutron Detection using Lithium Glass Scintillator

    NASA Astrophysics Data System (ADS)

    Wallace, Adam; Rees, Lawrence; Czirr, Bart

    2011-10-01

    We have developed a neutron detector using a thin sheet of lithium-6 glass scintillator. Lithium-6 has a high capture cross-section for neutrons, giving high neutron detection efficiency. One of the difficulties of neutron detection is discriminating between neutron and gamma radiation. We have measured the gamma sensitivity of our detector to be one in 10,000. For nuclear non-proliferation applications, radioactive sources may be shielded. Unlike most neutron detectors, lithium glass detectors are more efficient at detecting neutrons if the source is shielded. We are testing different configurations to optimize the detector's neutron capture efficiency.

  12. A Model for the Secondary Scintillation Pulse Shape from a Gas Proportional Scintillation Counter

    E-print Network

    Kareem Kazkaz; Tenzing Henry Yatish Joshi

    2015-12-16

    Proportional scintillation counters (PSCs), both single- and dual-phase, can measure the scintillation (S1) and ionization (S2) channels from particle interactions within the detector volume. The signal obtained from these detectors depends first on the physics of the medium (the initial scintillation and ionization), and second how the physics of the detector manipulates the resulting photons and liberated electrons. In this paper we develop a model of the detector physics that incorporates event topology, detector geometry, electric field configuration, purity, optical properties of components, and wavelength shifters. We present an analytic form of the model, which allows for general study of detector design and operation, and a Monte Carlo model which enables a more detailed exploration of S2 events. This model may be used to study systematic effects in currents detectors such as energy and position reconstruction, pulse shape discrimination, event topology, dead time calculations, purity, and electric field uniformity. We present a comparison of this model with experimental data collected with an argon gas proportional scintillation counter (GPSC), operated at 20 C and 1 bar, and irradiated with an internal, collimated 55Fe source. Additionally we discuss how the model may be incorporated in Monte Carlo simulations of both GPSCs and dual-phase detectors, increasing the reliability of the simulation results and allowing for tests of the experimental data analysis algorithms.

  13. Exceptional Sensitivity to Neutrino Parameters with a Two Baseline Beta-Beam Set-up

    E-print Network

    Sanjib Kumar Agarwalla; Sandhya Choubey; Amitava Raychaudhuri

    2008-07-28

    We examine the reach of a Beta-beam experiment with two detectors at carefully chosen baselines for exploring neutrino mass parameters. Locating the source at CERN, the two detectors and baselines are: (a) a 50 kton iron calorimeter (ICAL) at a baseline of around 7150 km which is roughly the magic baseline, e.g., ICAL@INO, and (b) a 50 kton Totally Active Scintillator Detector at a distance of 730 km, e.g., at Gran Sasso. We choose 8B/8Li source ions with a boost factor \\gamma of 650 for the magic baseline while for the closer detector we consider 18Ne/6He ions with a range of Lorentz boosts. We find that the locations of the two detectors complement each other leading to an exceptional high sensitivity. With \\gamma=650 for 8B/8Li and \\gamma=575 for 18Ne/6He and total luminosity corresponding to 5\\times (1.1 \\times 10^{18}) and 5\\times (2.9\\times 10^{18}) useful ion decays in neutrino and antineutrino modes respectively, we find that our two detector set-up can probe maximal CP violation and establish the neutrino mass ordering if \\sin^22\\theta_{13} is 1.4\\times 10^{-4} and 2.7\\times 10^{-4}, respectively, or more. The sensitivity reach for \\sin^22\\theta_{13} itself is 5.5 \\times 10^{-4}. With a factor of 10 higher luminosity, the corresponding \\sin^22\\theta_{13} reach of this set-up would be 1.8\\times 10^{-5}, 4.6\\times 10^{-5} and 5.3\\times 10^{-5} respectively for the above three performance indicators. CP violation can be discovered for 64% of the possible \\delta_{CP} values for \\sin^22\\theta_{13} \\geq 10^{-3} (\\geq 8\\times 10^{-5}), for the standard luminosity (10 times enhanced luminosity). Comparable physics performance can be achieved in a set-up where data from CERN to INO@ICAL is combined with that from CERN to the Boulby mine in United Kingdom, a baseline of 1050 km.

  14. Scintillator efficiency study with MeV x-rays

    NASA Astrophysics Data System (ADS)

    Baker, Stuart; Brown, Kristina; Curtis, Alden; Lutz, Stephen S.; Howe, Russell; Malone, Robert; Mitchell, Stephen; Danielson, Jeremy; Haines, Todd; Kwiatkowski, Kris

    2014-09-01

    We have investigated scintillator efficiency for MeV radiographic imaging. This paper discusses the modeled detection efficiency and measured brightness of a number of scintillator materials. An optical imaging camera records images of scintillator emission excited by a pulsed x-ray machine. The efficiency of various thicknesses of monolithic LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) are being studied to understand brightness and resolution trade-offs compared with a range of micro-columnar CsI:Tl (thallium-doped cesium iodide) scintillator screens. The micro-columnar scintillator structure apparently provides an optical gain mechanism that results in brighter signals from thinner samples. The trade-offs for brightness versus resolution in monolithic scintillators is straightforward. For higher-energy x-rays, thicker materials generally produce brighter signal due to x-ray absorption and the optical emission properties of the material. However, as scintillator thickness is increased, detector blur begins to dominate imaging system resolution due to the volume image generated in the scintillator thickness and the depth of field of the imaging system. We employ a telecentric optical relay lens to image the scintillator onto a recording CCD camera. The telecentric lens helps provide sharp focus through thicker-volume emitting scintillators. Stray light from scintillator emission can also affect the image scene contrast. We have applied an optical light scatter model to the imaging system to minimize scatter sources and maximize scene contrasts.

  15. GEM scintillation readout with avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Conceição, A. S.; Requicha Ferreira, L. F.; Fernandes, L. M. P.; Monteiro, C. M. B.; Coelho, L. C. C.; Azevedo, C. D. R.; Veloso, J. F. C. A.; Lopes, J. A. M.; dos Santos, J. M. F.

    2007-09-01

    The use of the scintillation produced in the charge avalanches in GEM holes as signal amplification and readout is investigated for xenon. A VUV-sensitive avalanche photodiode has been used as photosensor. Detector gains of about 4 × 104 are achieved in scintillation readout mode, for GEM voltages of 490 V and for a photosensor gain of 150. Those gains are more than one order of magnitude larger than what is obtained using charge readout. In addition, the energy resolutions achieved with the scintillation readout are lower than those achieved with charge readout. The GEM scintillation yield in xenon was measured as a function of GEM voltage, presenting values that are about a half of those achieved for the charge yield, and reach about 730 photons per primary electron at GEM voltages of 490 V.

  16. The Virtual Slice Setup

    PubMed Central

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-01-01

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables which in any case are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out – alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 minutes/hour on a laptop. PMID:18452996

  17. Energy resolution of gamma-ray spectroscopy of JET plasmas with a LaBr{sub 3} scintillator detector and digital data acquisition

    SciTech Connect

    Nocente, M.; Tardocchi, M.; Grosso, G.; Perelli Cippo, E.; Pietropaolo, A.; Proverbio, I.; Gorini, G.; Chugunov, I.; Gin, D.; Shevelev, A.; Pereira, R. C.; Fernandes, A. M.; Neto, A.; Sousa, J.; Murari, A.; Collaboration: JET-EFDA Contributors

    2010-10-15

    A new high efficiency, high resolution, fast {gamma}-ray spectrometer was recently installed at the JET tokamak. The spectrometer is based on a LaBr{sub 3}(Ce) scintillator coupled to a photomultiplier tube. A digital data acquisition system is used to allow spectrometry with event rates in excess of 1 MHz expected in future JET DT plasmas. However, at the lower rates typical of present day experiments, digitization can degrade the energy resolution of the system, depending on the algorithms used for extracting pulse height information from the digitized pulses. In this paper, the digital and analog spectrometry methods were compared for different experimental conditions. An algorithm based on pulse shape fitting was developed, providing energy resolution equivalent to the traditional analog spectrometry method.

  18. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...gamma) camera. (a) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include signal...

  19. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...gamma) camera. (a) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include signal...

  20. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...gamma) camera. (a) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include signal...

  1. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include signal analysis and display equipment, patient and...

  2. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  3. Scintillators and applications thereof

    SciTech Connect

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  4. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  5. Technical manual: a survey of scintillating medium for high-energy particle detection

    E-print Network

    Baitenov, Adil; Beznosko, Dmitriy

    2016-01-01

    There are various particle detection methods used nowadays and the most common is using scintillators. Among scintillating materials, solid plastic and water-based liquid scintillators (WbLS) are the latest development. In particular, WbLS allows researchers to apply different particle detection methods for increased experiment efficiency. This survey attempts to make an overview on detection methods and detectors in high-energy physics using scintillators. It is meant as a summary for those new to scintillator detectors and looking for general material on the topic.

  6. Status report on dark matter search with low activity scintillators

    NASA Astrophysics Data System (ADS)

    Bacci, C.; Belli, P.; Bernabei, R.; Dai, C.; Di Nicolantonio, W.; Ding, L. K.; Gaillard-Lecanu, E.; Giraud-Heraud, Y.; Kuang, H. H.; Incicchitti, A.; Mallet, J.; Mosca, L.; Prosperi, D.; Tao, C.; Chambon, B.; Chazal, V.; De Jésus, M.; Drain, D.; Messous, Y.; Pastor, C.; BPRS (Beijing, Paris, Roma, Saclay) Collaboration

    1994-05-01

    The BPRS experiment is dedicated to particle Dark Matter search with low activity scintillators. Preliminary results on Weakly Interacting Massive Particles (WIMPs) have been already obtained with NaI(Tl) and CaF 2(Eu) target-detectors. New detector developments are in progress. A new search for Strongly Interacting Massive Particles (SIMPs) with NaI(Tl) scintillators have been also performed.

  7. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  8. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  9. Fluorescent compounds for plastic scintillation applications

    SciTech Connect

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2{prime}-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a {sup 60}C source have also been performed.

  10. The Use of Energy Information in Plastic Scintillator Material

    SciTech Connect

    Ely, James H.; Anderson, Kevin K.; Bates, Derrick J.; Kouzes, Richard T.; Lopresti, Charles A.; Runkle, Robert C.; Siciliano, Edward R.; Weier, Dennis R.

    2008-06-15

    Plastic scintillator material is often used for gamma-ray detection in many applications due to its relatively good sensitivity and cost-effectiveness compared to other detection materials. However, due to the dominant Compton scattering interaction mechanism, full energy peaks are not observed in plastic scintillator spectra and isotopic identification is impossible. Typically plastic scintillator detectors are solely gross count detectors. In some safeguards and security applications, such as radiation portal monitors for vehicle screening, naturally-occurring radioactive material (NORM) often triggers radiation alarms and results in innocent or nuisance alarms. The limited energy information from plastic scintillator material can be used to discriminate the NORM from targeted materials and reduce the nuisance alarm rate. An overview of the utilization of the energy information from plastic scintillator material will be presented, with emphasis on the detection capabilities and potential limitations for safeguards and security applications. (PIET-43741-TM-490)

  11. The Study of Zinc Sulphide Scintillator for Fast Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Bin, Tang; Heyong, Huo; Bin, Liu; Ke, Tang; Yong, Sun; Wei, Yin; Chao, Cao

    Fast neutron radiography is a promising application for accelerators. The potential effectiveness of this technique depends on the development of suitable imaging detectors for fast neutrons. Zinc sulphide based scintillators have the largest light output per event in the family of imaging scintillators used so far in fast neutron radiography. This paper investigated different aspects of this scintillator in order to determine the factors which might affect the light output. A mathematical model was established to estimate effectiveness of this scintillator. Zinc sulphide screens were prepared with ZnS particles of different concentration in polypropylene matrix. A 14MeV fast neutron source was used in the experiments. The light output was detected using a CCD camera or a film coupled to the scintillator screen. The results showed that the optimum scintillators is 3-mm in thickness with the weight ratio of 1:1 to 2:1 for ZnS and polypropylene.

  12. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    E-print Network

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  13. Shaped detector

    SciTech Connect

    Carlson, R.W.

    1981-09-29

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier.

  14. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul (Naperville, IL); Para, Adam (St. Charles, IL)

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  15. Scintillation fluctuations of optical communication lasers in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Panich, Michael G.; Coffaro, Joseph T.; Belichki, Sara B.; Splitter, Landon J.; Phillips, Ronald L.; Andrews, Larry C.; Fountain, Wayne; Tucker, Frank M.

    2014-06-01

    The purpose of this research is to evaluate scintillation fluctuations on optical communication lasers and evaluate potential system improvements to reduce scintillation effects. This research attempts to experimentally verify mathematical models developed by Andrews and Phillips [1] for scintillation fluctuations in atmospheric turbulence using two different transmitting wavelengths. Propagation range lengths and detector quantities were varied to confirm the theoretical scintillation curve. In order to confirm the range and wavelength dependent scintillation curve, intensity measurements were taken from a 904nm and 1550nm laser source for an assortment of path distances along the 1km laser range at the Townes Laser Institute. The refractive index structure parameter (Cn2) data was also taken at various ranges using two commercial scintillometers. This parameter is used to characterize the strength of atmospheric turbulence, which induces scintillation effects on the laser beam, and is a vital input parameter to the mathematical model. Data was taken and analyzed using a 4-detector board array. The material presented in this paper outlines the verification and validation of the theoretical scintillation model, and steps to improve the scintillation fluctuation effects on the laser beam through additional detectors and a longer transmitting wavelength. Experimental data was post processed and analyzed for scintillation fluctuations of the two transmitting wavelengths. The results demonstrate the benefit of additional detectors and validate a mathematical model that can be scaled for use in a variety of communications or defense applications. Scintillation is a problem faced by every free space laser communication system and the verification of an accurate mathematical model to simulate these effects has strong application across the industry.

  16. Setup for testing LHCb Inner Tracker Modules

    E-print Network

    P. Vazquez Regueiro; D. Esperante Pereira; H. Voss; L. Nicolas

    2010-10-18

    The Inner Tracker of the LHCb experiment is a silicon microstrip detector consisting of 336 detector modules with either one or two sensors. The module production is now underway and we present here the setup employed for module testing during the production. The setup is based on the same electronics that will be used in the final experiment. We perform burn-in and ageing tests with the help of a custom made Temperature Cycling Box controlled with LabVIEW under Windows. The DAQ is done in another PC running Linux. Here we integrate the different C/C++ libraries used to communicate to the LHCb Time and Fast Control system,Experiment Control System and Data Acquisition.

  17. The gas scintillation proportional counter

    NASA Astrophysics Data System (ADS)

    Sims, M. R.; Peacock, A.; Taylor, B. G.

    1984-03-01

    The gas scintillation proportional counter has seen rapid development in recent years as a broad-band spectrometer for X-ray astronomy. It may be used in the conjunction with grazing incidence optics or coded aperture masks to produce spectral images of the X-ray sky. Its performance characteristics such as spatial resolution, energy resolution and background rejection efficiency will be described. Reference will be made in large part to work conducted over the last few years at SSD/ESTEC and to work undertaken by the Columbia and Los Alamos groups and at MSSL. The gas scintillator may be coupled to a variety of readout systems including an array of photomultipliers, a microchannel plate or a photoionisation detector. Their relative merits will be reviewed. At high pressures (˜ 3-5 atm) the imaging gas scintillator can be used in nuclear medicine, where its spatial resolution and energy resolution can provide higher resolution images with better contrast than the standard gamma camera.

  18. Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography

    E-print Network

    L. Raczynski; P. Moskal; P. Kowalski; W. Wislicki; T. Bednarski; P. Bialas; E. Czerwinski; L . Kaplon; A. Kochanowski; G. Korcyl; J. Kowal; T. Kozik; W. Krzemien; E. Kubicz; M. Molenda; I. Moskal; Sz. Niedzwiecki; M. Palka; M. Pawlik-Niedzwiecka; Z. Rudy; P. Salabura; N. G. Sharma; M. Silarski; A. Slomski; J. Smyrski; A. Strzelecki; A. Wieczorek; M. Zielinski; N. Zon

    2014-07-31

    Currently inorganic scintillator detectors are used in all commercial Time of Flight Positron Emission Tomograph (TOF-PET) devices. The J-PET collaboration investigates a possibility of construction of a PET scanner from plastic scintillators which would allow for single bed imaging of the whole human body. This paper describes a novel method of hit-position reconstruction based on sampled signals and an example of an application of the method for a single module with a 30 cm long plastic strip, read out on both ends by Hamamatsu R4998 photomultipliers. The sampling scheme to generate a vector with samples of a PET event waveform with respect to four user-defined amplitudes is introduced. The experimental setup provides irradiation of a chosen position in the plastic scintillator strip with an annihilation gamma quanta of energy 511~keV. The statistical test for a multivariate normal (MVN) distribution of measured vectors at a given position is developed, and it is shown that signals sampled at four thresholds in a voltage domain are approximately normally distributed variables. With the presented method of a vector analysis made out of waveform samples acquired with four thresholds, we obtain a spatial resolution of about 1 cm and a timing resolution of about 80 ps

  19. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  20. Counterintuitive MCNPX Results for Scintillator Surface Roughness Effect

    SciTech Connect

    2012-08-12

    We have reported on our recent MCNPX simulation results of energy deposition for a group of 8 scintillation detectors, coupled with various rough surface patterns. The MCNPX results generally favored the detectors with various rough surface patterns. The observed MCNPX results are not fully explained by this work.

  1. The COMPASS setup for physics with hadron beams

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Adolph, C.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Bade?ek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M. L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Desforge, D.; Dinkelbach, A. M.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d`Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jörg, P.; Joosten, R.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M. A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D. V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J.-M.; Rocco, E.; Rossiyskaya, N. S.; Rousse, J.-Y.; Ryabchikov, D. I.; Rychter, A.; Samartsev, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Terça, G.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-04-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This paper describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  2. The field of view of a scintillator pair for cosmic rays

    E-print Network

    Schultheiss, N G

    2016-01-01

    Particles in an extended air shower (EAS), initiated by a cosmic ray primary, lead to two nearly simultaneous detections in a scintillator pair. The angle of the EAS and the axis through both scintillators can be reconstructed using the time difference of the detections and the distance between the scintillators. The acceptances of a scintillator along the axis through the scintillators and perpendicularly on this axis follow the same distribution in theory. Using a data set with two perpendicular detector pairs this theory is verified. The distribution of possible origins of cosmic ray primaries, and the resulting EAS, can thus be described using the perpendicular distribution for a given time difference.

  3. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L. (Albuquerque, NM)

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  4. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  5. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    NASA Astrophysics Data System (ADS)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  6. Study of scintillation in natural and synthetic quartz and methacrylate

    E-print Network

    J. Amare; S. Borjabad; S. Cebrian; C. Cuesta; D. Fortuno; E. Garcia; C. Ginestra; H. Gomez; D. C. Herrera; M. Martinez; M. A. Olivan; Y. Ortigoza; A. Ortiz de Solorzano; C. Pobes; J. Puimedon; M. L. Sarsa; J. A. Villar; P. Villar

    2014-03-27

    Samples from different materials typically used as optical windows or light guides in scintillation detectors were studied in a very low background environment, at the Canfranc Underground Laboratory, searching for scintillation. A positive result can be confirmed for natural quartz: two distinct scintillation components have been identified, not being excited by an external gamma source. Although similar effect has not been observed neither for synthetic quartz nor for methacrylate, a fast light emission excited by intense gamma flux is evidenced for all the samples in our measurements. These results could affect the use of these materials in low energy applications of scintillation detectors requiring low radioactive background conditions, as they entail a source of background.

  7. Optimization of Shielded Scintillator for Neutron Detection

    NASA Astrophysics Data System (ADS)

    Belancourt, Patrick; Morrison, John; Akli, Kramer; Freeman, Richard; High Energy Density Physics Team

    2011-10-01

    The High Energy Density Physics group is interested in the basic science of creating a neutron and gamma ray source. The neutrons and gamma rays are produced by accelerating ions via a laser into a target and creating fusion neutrons and gamma rays. A scintillator and photomultiplier tube will be used to detect these neutrons. Neutrons and photons produce ionizing radiation in the scintillator which then activates metastable states. These metastable states have both short and long decay rates. The initial photon count is orders of magnitude higher than the neutron count and poses problems for accurately detecting the neutrons due to the long decay state that is activated by the photons. The effects of adding lead shielding on the temporal response and signal level of the neutron detector will be studied in an effort to minimize the photon count without significant reduction to the temporal resolution of the detector. MCNP5 will be used to find the temporal response and energy deposition into the scintillator by adding lead shielding. Results from the simulations will be shown. Optimization of our scintillator neutron detection system is needed to resolve the neutron energies and neutron count of a novel neutron and gamma ray source.

  8. Waveshifting fiber readout of lanthanum halide scintillators

    NASA Astrophysics Data System (ADS)

    Case, G. L.; Cherry, M. L.; Stacy, J. G.

    2006-07-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6 8 m2 hard X-ray coded aperture imaging telescope operating in the 20 600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr3 and LaCl3) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr3 or LaCl3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance.

  9. Outward atmospheric scintillation effects and inward atmospheric scintillation effects comparisons for direct detection ladar applications

    NASA Astrophysics Data System (ADS)

    Youmans, Douglas G.

    2014-06-01

    Atmospheric turbulence produces intensity modulation or "scintillation" effects on both on the outward laser-mode path and on the return backscattered radiation path. These both degrade laser radar (ladar) target acquisition, ranging, imaging, and feature estimation. However, the finite sized objects create scintillation averaging on the outgoing path and the finite sized telescope apertures produce scintillation averaging on the return path. We expand on previous papers going to moderate to strong turbulence cases by starting from a 20kft altitude platform and propagating at 0° elevation (with respect to the local vertical) for 100km range to a 1 m diameter diffuse sphere. The outward scintillation and inward scintillation effects, as measured at the focal plane detector array of the receiving aperture, will be compared. To eliminate hard-body surface speckle effects in order to study scintillation, Goodman's M-parameter is set to 106 in the analytical equations and the non-coherent imaging algorithm is employed in Monte Carlo realizations. The analytical equations of the signal-to-noise ratio (SNRp), or mean squared signal over a variance, for a given focal plane array pixel window of interest will be summarized and compared to Monte Carlo realizations of a 1m diffuse sphere.

  10. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    NASA Astrophysics Data System (ADS)

    Liao, Can; Yang, Haori

    2015-07-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial.

  11. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  12. Lanthanum halide nanoparticle scintillators for nuclear radiation detection

    SciTech Connect

    Guss, Paul; Guise, Ronald; O'Brien, Robert; Lowe, Daniel; Kang Zhitao; Menkara, Hisham; Nagarkar, Vivek V.

    2013-02-14

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  13. Improved ?-? Coincidence Detector For Radioxenon Detection

    SciTech Connect

    Cooper, Matthew W.; Carman, April J.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; Litke, Kevin E.; McIntyre, Justin I.; Morris, Scott J.; Ripplinger, Michael D.; Suarez, Reynold

    2005-08-31

    The Automated Radio-xenon Analyzer/Sampler (ARSA), built by Pacific Northwest National Laboratory (PNNL), can collect and detect several radioxenon isotopes. ARSA is very sensitive to 133Xe, 131mXe, 133mXe and 135Xe due to the compact high efficiency ?-? coincidence detector it uses. For this reason it is an excellent treaty monitoring and environmental sampling device. Although the system is shown to be both robust and reliable, based on several field tests, it is also complex due to a detailed photomultiplier tube gain matching regime. This complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint. To reduce these issues a simplified ??? coincident detector has been developed. A comparison of three different well detectors has been completed. In addition, a new plastic scintillator gas cell was constructed. The new simplified detector system has been demonstrated to equal or better performance compared with the original ARSA design in spectral resolution and efficiency and significantly easier to setup and calibrate.

  14. Comparative photoluminescence study of crystalline and nanostructured scintillators

    NASA Astrophysics Data System (ADS)

    McKinney, George; McDonald, Warren; Tzolov, Marian

    2014-03-01

    Scintillators are widely used for conversion of high energy radiation/particles to visible light which can be either directly observed or further converted to electrical signal in photomultipliers or solid state detectors. We compare the light emission properties of traditional crystalline scintillators with nanostructured films created in our laboratory with the potential for use as scintillators. We have studied zinc oxide (ZnO) nanowires, zinc tungstate (ZnWO4) thin films, commercially available crystals of ZnO, ZnWO4 and commercial scintillators of yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP). We will present the photoluminescence emission spectra, the intensity dependence of the emission, and the photoluminescence excitation spectra. We have found that the emission spectrum of zinc oxide nanowires becomes very intense at high excitation intensities and becomes comparable with the emission from the commercial scintillators. The excitation spectra indicate the presence of subgap electronic states in the nanostructured samples and in the commercial scintillators. This study contributes to our effort of creating electron detectors for scanning electron microscopy using nanostructured scintillators.

  15. Trigger and electronics issues for scintillating fiber tracking

    SciTech Connect

    Baumbaugh, A.E.

    1994-01-01

    Scintillating Fiber technology has made great advances and has demonstrated great promise for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation floors available, make them very promising for use at high luminosity experiments at today`s and tomorrow`s colliding and fixed target experiments where high rate capability is essential. This paper will discuss some of the system aspects which should be considered by anyone attempting to design a scintillating fiber tracking system and high speed tracking trigger. As the reader will see, seemingly simple decisions can have far reaching effects on overall system performance.

  16. Quenching the scintillation in CF4 Cherenkov gas radiator

    NASA Astrophysics Data System (ADS)

    Blake, T.; D`Ambrosio, C.; Easo, S.; Eisenhardt, S.; Fitzpatrick, C.; Forty, R.; Frei, C.; Gibson, V.; Gys, T.; Harnew, N.; Hunt, P.; Jones, C. R.; Lambert, R. W.; Matteuzzi, C.; Muheim, F.; Papanestis, A.; Perego, D. L.; Piedigrossi, D.; Plackett, R.; Powell, A.; Topp-Joergensen, S.; Ullaland, O.; Websdale, D.; Wotton, S. A.; Wyllie, K.

    2015-08-01

    CF4 is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF4 is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  17. Ionization and scintillation of nuclear recoils in gaseous xenon

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gil, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Moiseenko, A.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J.; Yahlali, N.

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope ?-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  18. Reflectance of polytetrafluoroethylene for xenon scintillation light

    SciTech Connect

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-15

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region ({lambda}{approx_equal}175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  19. New electronically black neutron detectors

    SciTech Connect

    Drake, D.M.; Feldman, W.C.; Hurlbut, C.

    1986-03-01

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors.

  20. Flexible composite radiation detector

    DOEpatents

    Cooke, D. Wayne (Santa Fe, NM); Bennett, Bryan L. (Los Alamos, NM); Muenchausen, Ross E. (Los Alamos, NM); Wrobleski, Debra A. (Los Alamos, NM); Orler, Edward B. (Los Alamos, NM)

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  1. Analysis of Silicon Photomultiplier Detector Waveforms from Cosmic Rays using Digital Signal Processing Techniques

    NASA Astrophysics Data System (ADS)

    Castro, Juan; Zavala, Favian; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    Silicon photomultiplier detectors exhibit high gain, low operating voltage, are insensitive to magnetic fields, and can detect light at the single photon level, making them very attractive for applications in fields such as particle physics, astrophysics, and medical physics. However, they exhibit effects that may prevent their optimal operation, including thermally induced high dark count rate, after pulse effects, and cross talk produced from photons in nearby pixels. In this presentation, we describe our coincidence setup using two scintillator pads and a Hamamatsu multipixel photon counter (MPPC) to gather cosmic ray produced signal pulses, and our methods of analysis for the detector waveforms. In particular, we discuss our methods of digitization, software implementation of low pass and Gaussian type filters, and the application of a domino ring sampler (DRS4) digitizing board to obtain signal waveforms to determine the operating characteristics for these detectors. Department of Education grant number P031S90007.

  2. Nanophosphor composite scintillators comprising a polymer matrix

    DOEpatents

    Muenchausen, Ross Edward (Los Alamos, NM); Mckigney, Edward Allen (Los Alamos, NM); Gilbertson, Robert David (Los Alamos, NM)

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  3. Neutron Scattering Facility for Characterization of CRESST and EURECA Detectors at mK Temperatures

    E-print Network

    J. -C. Lanfranchi; C. Ciemniak; C. Coppi; F. von Feilitzsch; A. Gütlein; H. Hagn; C. Isaila; J. Jochum; M. Kimmerle; S. Pfister; W. Potzel; W. Rau; S. Roth; K. Rottler; C. Sailer; S. Scholl; I. Usherov; W. Westphal

    2008-10-01

    CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) is an experiment located at the Gran Sasso underground laboratory and aimed at the direct detection of dark matter in the form of WIMPs. The setup has just completed a one year commissioning run in 2007 and is presently starting a physics run with an increased target mass. Scintillating $\\mathrm{CaWO_4}$ single crystals, operated at temperatures of a few millikelvin, are used as target to detect the tiny nuclear recoil induced by a WIMP. The powerful background identification and rejection of $\\alpha$, e$^{-}$ and $\\gamma$ events is realized via the simultaneous measurement of a phonon and a scintillation signal generated in the $\\mathrm{CaWO_4}$ crystal. However, neutrons could still be misidentified as a WIMP signature. Therefore, a detailed understanding of the individual recoil behaviour in terms of phonon generation and scintillation light emission due to scattering on Ca, O or W nuclei, respectively, is mandatory. The only setup which allows to perform such measurements at the operating temperature of the CRESST detectors has been installed at the Maier-Leibnitz-Accelerator Laboratory in Garching and is presently being commissioned. The design of this neutron scattering facility is such that it can also be used for other target materials, e.g. $\\mathrm{ZnWO_4}$, $\\mathrm{PbWO_4}$ and others as foreseen in the framework of the future multitarget tonne-scale experiment EURECA (European Underground Rare Event Calorimeter Array).

  4. Gravitational Interstellar Scintillation

    E-print Network

    Redouane Al Fakir

    2008-05-23

    Gravitation could modulate the interstellar scintillation of pulsars in a way that is analogous to refractive interstellar scintillation (RISS). While RISS occurs when a large ionized cloud crosses the pulsar line-of-sight, gravitational interstellar scintillation (GISS) occurs when a compact gravitational deflector lies very near to that line-of-sight. However, GISS differs from RISS in at least two important respects: It has a very distinctive and highly predictible time signature, and it is non-dispersive. We find two very different astronomical contexts where GISS could cause observable diffraction-pattern distortions: Highly inclined binary pulsars, and the kind of compact interstellar clouds suspected of causing extreme scattering events.

  5. Scintillation properties of lead sulfate

    SciTech Connect

    Moses, W.W.; Derenzo, S.E. ); Shlichta, P.J. )

    1991-11-01

    We report on the scintillation properties of lead sulfate (PbSO{sub 4}), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm{sup 3}, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO{sub 4} crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45{degrees}C to 4, 900 photons/MeV at room temperature (+25{degrees}C) and 68,500 photons/MeV at {minus}145{degrees}C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO{sub 4} (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs.

  6. Radio Sources and Scintillation

    NASA Astrophysics Data System (ADS)

    Rickett, Barney

    2001-10-01

    A review is given of the interplay between studies of compact radio sources and the scattering and scintillations that occur as the signals travel through the irregular refractive index of the interstellar and interplanetary plasmas.

  7. Monte Carlo calculation of the spatial response (Modulated Transfer Function) of a scintillation flat panel and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Juste, Belén; Miró, Rafael; Monasor, Paula; Verdú, Gumersindo

    2015-11-01

    Phosphor screens are commonly used in many X-ray imaging applications. The design and optimization of these detectors can be achieved using Monte Carlo codes to simulate radiation transport in scintillation materials and to improve the spatial response. This work presents an exhaustive procedure to measure the spatial resolution of a scintillation flat panel image and to evaluate the agreement with data obtained by simulation. To evaluate the spatial response we have used the Modulated Transfer Function (MTF) parameter. According to this, we have obtained the Line Spread Function (LSF) of the system since the Fourier Transform (FT) of the LSF gives the MTF. The experimental images were carried out using a medical X-ray tube (Toshiba E7299X) and a flat panel (Hammamatsu C9312SK). Measurements were based on the slit methodology experimental implementation, which measures the response of the system to a line. LSF measurements have been performed using a 0.2 mm wide lead slit superimposed over the flat panel. The detector screen was modelled with MCNP (version 6) Monte Carlo simulation code in order to analyze the effect of the acquisition setup configuration and to compare the response of scintillator screens with the experimental results. MCNP6 offers the possibility of studying the optical physics parameters (optical scattering and absorption coefficients) that occur in the phosphor screen. The study has been tested for different X-ray tube voltages, from 100 to 140 kV. An acceptable convergence between the MTF results obtained with MCNP6 and the experimental measurements have been obtained.

  8. Majorana Thermosyphon Prototype Experimental Setup

    SciTech Connect

    Reid, Douglas J.; Guzman, Anthony D.; Munley, John T.

    2011-08-01

    This report presents the experimental setup of Pacific Northwest National Laboratory’s MAJORANA DEMONSTRATOR thermosyphon prototype cooling system. A nitrogen thermosyphon prototype of such a system has been built and tested at PNNL. This document presents the experimental setup of the prototype that successfully demonstrated the heat transfer performance of the system.

  9. Apple Mail IMAP Setup Guide

    E-print Network

    Chin, Wei Ngan

    Apple Mail IMAP Setup Guide Apple Mail ­ IMAP Setup Guide Page 1 of 6 #12 email account in Apple Mail using IMAP. IMAP stands for Internet Message Access Protocol and forth between these computers. B. Configure IMAP on Apple Mail 1. From Apple Mail menu bar, click

  10. Apple Mail POP Setup Guide

    E-print Network

    Chin, Wei Ngan

    Apple Mail POP Setup Guide Apple Mail ­ POP Setup Guide Page 1 of 6 #12;A in Apple Mail using POP. POP is the acronym for Post Office Protocol which defines a method for mail of a multimedia mail message) B. Configure POP on Apple Mail 1. From Apple Mail menu bar, click on Mail

  11. Limits on the spatial resolution of monolithic scintillators read out by APD arrays.

    PubMed

    van der Laan, D J Jan; Maas, Marnix C; Bruyndonckx, Peter; Schaart, Dennis R

    2012-10-21

    Cramér-Rao theory can be used to derive the lower bound on the spatial resolution achievable with position-sensitive scintillation detectors as a function of the detector geometry and the pertinent physical properties of the scintillator, the photosensor and the readout electronics. Knowledge of the Cramér-Rao lower bound (CRLB) can for example be used to optimize the detector design and to test the performance of the method used to derive position information from the detector signals. Here, this approach is demonstrated for monolithic scintillator detectors for positron emission tomography. Two detector geometries are investigated: a 20 × 10 × 10 mm(3) and a 20 × 10 × 20 mm(3) monolithic LYSO:Ce(3+) crystal read out by one or two Hamamatsu S8550SPL avalanche photodiode (APD) arrays, respectively. The results indicate that in these detectors the CRLB is primarily determined by the APD excess noise factor and the number of scintillation photons detected. Furthermore, it is shown that the use of a k-nearest neighbor (k-NN) algorithm for position estimation allows the experimentally obtained spatial resolution to closely approach the CRLB. The approach outlined in this work can in principle be applied to any scintillation detector in which position information is encoded in the distribution of the scintillation light over multiple photosensor elements. PMID:23001515

  12. The spectral imaging facility: Setup characterization.

    PubMed

    De Angelis, Simone; Ammannito, Eleonora; Di Iorio, Tatiana; De Sanctis, Maria Cristina; Manzari, Paola Olga; Liberati, Fabrizio; Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo; Mugnuolo, Raffaele

    2015-09-01

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated. PMID:26429423

  13. The spectral imaging facility: Setup characterization

    NASA Astrophysics Data System (ADS)

    De Angelis, Simone; Ammannito, Eleonora; Di Iorio, Tatiana; De Sanctis, Maria Cristina; Manzari, Paola Olga; Liberati, Fabrizio; Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo; Mugnuolo, Raffaele

    2015-09-01

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  14. Atmospheric scintillation in astronomical photometry

    NASA Astrophysics Data System (ADS)

    Osborn, J.; Föhring, D.; Dhillon, V. S.; Wilson, R. W.

    2015-09-01

    Scintillation noise due to the Earth's turbulent atmosphere can be a dominant noise source in high-precision astronomical photometry when observing bright targets from the ground. Here we describe the phenomenon of scintillation from its physical origins to its effect on photometry. We show that Young's scintillation-noise approximation used by many astronomers tends to underestimate the median scintillation noise at several major observatories around the world. We show that using median atmospheric optical turbulence profiles, which are now available for most sites, provides a better estimate of the expected scintillation noise and that real-time turbulence profiles can be used to precisely characterize the scintillation-noise component of contemporaneous photometric measurements. This will enable a better understanding and calibration of photometric noise sources and the effectiveness of scintillation correction techniques. We also provide new equations for calculating scintillation noise, including for extremely large telescopes where the scintillation noise will actually be lower than previously thought. These equations highlight the fact that scintillation noise and shot noise have the same dependence on exposure time and so if an observation is scintillation limited, it will be scintillation limited for all exposure times. The ratio of scintillation noise to shot noise is also only weakly dependent on telescope diameter and so a bigger telescope may not yield a reduction in fractional scintillation noise.

  15. A compound crystal with film scintillator for electron detection

    NASA Astrophysics Data System (ADS)

    McKinney, George; McDonnald, Warren; Tzolov, Marian

    2015-03-01

    Yttrium Aluminum Garnets (YAG) and Yttrium Aluminum Perovskite (YAP) are widely used as electron detectors. This application requires a top conducting layer which hinders their application at low electron energies. We have developed a layer of zinc tungstate which delivers conductivity large enough to prevent charging while still being an efficient scintillator. For better coupling between the two systems we have studied their optical properties. Ce doping is an essential element in YAP and YAG in order for them to be efficient scintillators. We have studied the Ce content and we show that higher Ce content leads to reabsorption in the YAP scintillators. These details were revealed by using photoluminescence emission and excitation spectroscopy. The absorption spectrum for the YAG scintillators coincides with the excitation for the main emission lines. The optical studies of the zinc tungstate films and a single crystal have shown that the films are more efficient light emitters. We have integrated the zinc tungstate films with YAG scintillators and we will report on the performance of this compound scintillator. It is expected that it will perform well at low and high electron energies, which makes it a very cost effective platform for electron detectors.

  16. New Structured Scintillators for Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Nagarkar, V. V.; Ovechkina, E. E.; Bhandari, H. B.; Soundara-Pandian, L.; More, M. J.; Riedel, R. A.; Miller, S. R.

    We report on the development of novel neutron scintillators fabricated in microcolumnar formats using the physical vapour deposition (PVD) method. Such structures mitigate the conventional trade-off between spatial resolution and detection efficiency by channelling the scintillation light towards the detector while minimizing lateral spread in the film. Consequently, high resolution and high contrast neutron images can be acquired in a time efficient manner. In this paper, we discuss methods and characterization for scintillator films made from three distinct compositions, Thallium (Tl) or Europium (Eu) doped Lithium CesiumIodide (Li3Cs2I5:Tl,Eu, referred to as LCI), Tl or Eudoped Lithium Sodium Iodide (LixNa1-xI:Tl,Eu, referred to as LNI), and Cerium (Ce)-doped Gadolinium Iodide (GdI3:Ce, referred to as GDI). LCI and LNI scintillators are derived from the well-known CsI and NaI scintillators by the incorporation of 6Li into their lattice. Based on our measurements reported here, LCI/LNI scintillators have shown to exhibit bright emissions, fast, sub-microsecond decay, and an ability to effectively discriminate between neutron and gamma interactions using pulse shape (PSD) and/or pulse height (PHD) discrimination. LCI has a density of 4.5 g/cm3, a measured peak emission wavelength of 460 nm (doped with Eu), and a light yield of ?50,000 photons/thermal neutron. LNI has a density of 3.6 g/cm3, an emission peak measured at 420 nm, and a light yield of ?100,000 photons/thermal neutron. The recently discovered GDI exhibits excellent scintillation properties including a bright emission of up to 5,000 photons/thermal neutron interaction, 550 nm green emission, a rise time of ?0.5 ns and a primary decay time of ?38 ns (Glodo et al., 2006). Its high thermal neutron cross-section of ?255 kb makes it an attractive candidate for neutron detection and imaging. Although it has high density of 5.2 gm/cm3 and effective atomic number of 57, its gamma sensitivity can be minimized by lowering the film thickness and its neutron sensitivity can be maximized through the use of enriched Gd. The fabrication of micro-structured films of these materials using an evaporation technique permits the cost-effective volume synthesis of high-quality neutron scintillators over large areas (20 cm x 20 cm) in short time. In addition, the vapour deposition permits stoichiometry and dopant control not possible using conventional crystal growth.

  17. Cathodoluminescence studies of commercial and nano-structured scintillators

    NASA Astrophysics Data System (ADS)

    McDoanld, Warren; McKinney, George; Tzolov, Marian

    2014-03-01

    Scintillators have applications in fundamental research and in consumer products, e.g. detectors, scanners, and televisions. This research focused on analyzing the cathodoluminescence of different single-crystal scintillators with an originally developed method for evaluation of their performance, which allows for a direct comparison of different scintillators. We have studied yttrium aluminum garnet (YAG), yttrium aluminum perovskite (YAP) scintillators, zinc oxide single crystal, zinc tungstate single crystal, zinc oxide nanowires, and zinc tungstate film. The commercial scintillators are covered with conductive film which prevents low energy electrons from effectively interacting with the scintillator. We have varied the voltage accelerating the electrons with the intention of finding the threshold below which this effect will impact the performance of the scintillators. The same procedure was followed for the nanowires and zinc tungstate film which have enough conductivity and don't require a top conducting film. The threshold was established to be around 3 kV for the YAG and there is no threshold for the films, which perform much better at these low voltages. This property of the films has the potential for application in desktop scanning electron microscopes, where the accelerating voltage is low. The voltage dependence of the cathodoluminescence intensity follows an exponential trend and we present a model explaining it.

  18. A Scintillator Purification Plant and Fluid Handling System for SNO+

    E-print Network

    Richard J. Ford; for the SNO+ Collaboration

    2015-06-29

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  19. A Scintillator Purification Plant and Fluid Handling System for SNO+

    E-print Network

    Ford, Richard J

    2015-01-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  20. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  1. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor (Berkeley, CA)

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  2. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  3. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or ? rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted ? background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were used to investigate how the neutron beam and accelerator background environment affected the detector response. We find relatively good agreement between our results and the modeling; however, the observed response could not be fully accounted for due to events with pulse pile up, thus leading to contamination of the neutron PSD selected events.

  4. Neutron imaging using the anisotropic response of crystalline organic scintillators.

    SciTech Connect

    Brubaker, Erik; Steele, John T.

    2010-11-01

    An anisotropy in a scintillator's response to neutron elastic scattering interactions can in principle be used to gather directional information about a neutron source using interactions in a single detector. In crystalline organic scintillators, such as anthracene, both the amplitude and the time structure of the scintillation light pulse vary with the direction of the proton recoil with respect to the crystalline axes. Therefore, we have investigated the exploitation of this effect to enable compact, high-efficiency fast neutron detectors that have directional sensitivity via a precise measurement of the pulse shape. We report measurements of the pulse height and shape dependence on proton recoil angle in anthracene, stilbene, p-terphenyl, diphenyl anthracene (DPA), and tetraphenyl butadiene (TPB). Image reconstruction for simulated neutron sources is demonstrated using maximum likelihood methods for optimal directional sensitivity.

  5. Collider shot setup for Run 2 observations and suggestions

    SciTech Connect

    Annala, J.; Joshel, B.

    1996-01-31

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This is the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb{sup {minus}1}/week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb{sup {minus}1} for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent `components`: procedures, hardware, controls, and sociology. These components don`t directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components.

  6. Surface preparation and coupling in plastic scintillator dosimetry

    SciTech Connect

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frederic; Beddar, A. Sam; Beaulieu, Luc

    2006-09-15

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity.

  7. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  8. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  9. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    DOEpatents

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  10. Imaging results and TOF studies with axial PET detectors

    NASA Astrophysics Data System (ADS)

    Joram, Christian

    2013-12-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the field of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations (<2 mm FWHM in all three coordinates over the complete field of view) and also demonstrated the ability to include Compton interactions (inter-crystal scatter) in the reconstruction without noticeable performance loss. Our recent studies focus on a TOF extension of the AX-PET concept making use of the novel digital SiPM detectors by Philips. After reproducing comparable energy and spatial resolution on a small digital AX-PET set-up with 100 mm long crystals, we demonstrated a coincidence resolving time of about 210 ps FWHM.

  11. The physics analysis and experiment study of zinc sulphide scintillator for fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Wu, Yang; Li, Hang; Sun, Yong; Huo, Heyong; Liu, Bin; Tang, Ke; Yin, Wei; Chao, Chao

    2013-11-01

    Fast neutron radiography is a promising application for accelerator based neutron sources. The potential effectiveness of this technique depends on the development of suitable imaging detectors for fast neutrons. Zinc sulphide based scintillators have the largest light output per event in the family of imaging scintillators used so far in fast neutron radiography. This paper investigated different aspects of this scintillator in order to determine the factors which might affect the light output. A mathematical model was established to estimate effectiveness of this scintillator. Zinc sulphide screens were prepared with ZnS particles of different concentrations in polypropylene matrix. A 14 MeV fast neutron source was used in the experiments. The light output was detected using a CCD camera or a film coupled to the scintillator screen. The results showed that the optimum scintillators is around 3 mm in thickness with the weight ratio of 2:1 for ZnS and polypropylene.

  12. Precision Lifetime Measurements Using LaBr3 Detectors With Stable and Radioactive Beams

    NASA Astrophysics Data System (ADS)

    Regan, P. H.; Podolyák, Zs.; Alharbi, T.; Mason, P. J. R.; Bruce, A. M.; Townsley, C.; Roberts, O. J.; M?rginean, N.; M?rginean, R.; Ghit?, D.; Mullholland, K.; Smith, J. F.; Britton, R.; Patel, Z.; Nakhostin, M.; Rice, S.; Wilson, E.; Alazemi, N.; Alkhomashi, N.; Bucurescu, D.; Cata-Danil, G.; Deleanu, D.; Filipescu, D.; Glodariu, T.; Cata-Danil, I.; Mihai, C.; Negret, A.; Nita, C. R.; Sava, T.; Stroe, L.; Suliman, G.; Detistov, P.; Garg, U.; Bender, P. C.; Algora, A.; Liddick, S.; Cooper, N.; Werner, V.; Lalkovski, S.; Kisyov, S.; Browne, F.; Söderström, P.-A.; Watanabe, H.; Sumikama, T.

    2013-12-01

    A range of high resolution gamma-ray spectroscopy measurements have been carried out using arrays which include a number of Cerium-doped Lanthanum-Tribromide (LrBr3(Ce)) scintillation detectors used in conjunction with high-resolution hyper-pure germanium detectors. Examples of the spectral and temporal responses of such set-ups, using both standard point radioactive sources 152Eu and 56Co, and in-beam fusionevaporation reaction experiments for precision measurements of nuclear excited states in 34P and 138Ce are presented. The current and future use of such arrays at existing (EURICA at RIKEN) and future (NUSTAR at FAIR) secondary radioactive beam facilities for precision measurements of excited nuclear state lifetimes in the 10 ps to 10 ns regime are also discussed.

  13. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K. (Gainesville, FL)

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  14. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  15. Boron loaded scintillator

    SciTech Connect

    Bell, Zane William; Brown, Gilbert Morris; Maya, Leon; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  16. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  17. 3.2 Silicon Detector Hodoscopes 77 multi-strip

    E-print Network

    Hörandel, Jörg R.

    B105 is seen. For comparison, Fig. 10 also show the results obtained with a single foil radiator scintillator scintillator Fig. 3.24. The CRN detector inside a container. The two gas Cherenkov detectors were operated at 1 atm with a mix- ture of 80% N2 and 20%CO2. The latter had been added to suppress

  18. Understanding the SNO+ Detector

    NASA Astrophysics Data System (ADS)

    Kamdin, K.

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  19. The Ultimate Neutrino Detector

    E-print Network

    McDonald, Kirk

    opportunities with the NuMI beam · Liquid Argon detector for the NuMI off- axis experiment · `Other' physics coordinates [Gatti, Padovini, Quartapelle,Greenlaw,Radeka IEEE Trans. NS- 26 (2) (1979) 2910] · Signals: Electric field Ionization density scintillation · Experiment: (dQ/dx) ~ 55,000 e/cm@400-500 V/m #12;Adam

  20. Understanding the SNO+ Detector

    SciTech Connect

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  1. Understanding the SNO+ Detector

    DOE PAGESBeta

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore »which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  2. Influence of backscattering on the spatial resolution of semiconductor X-ray detectors

    NASA Astrophysics Data System (ADS)

    Hoheisel, M.; Korn, A.; Giersch, J.

    2005-07-01

    Pixelated X-ray detectors using semiconductor layers or scintillators as absorbers are widely used in high-energy physics, medical diagnosis, or non-destructive testing. Their good spatial resolution performance makes them particularly suitable for applications where fine details have to be resolved. Intrinsic limitations of the spatial resolution have been studied in previous simulations. These simulations focused on interactions inside the conversion layer. Transmitted photons were treated as a loss. In this work, we also implemented the structure behind the conversion layer to investigate the impact of backscattering inside the detector setup. We performed Monte Carlo simulations with the program ROSI ( Roentgen Simulation) which is based on the well-established EGS4 algorithm. Line-spread functions of different fully implemented detectors were simulated. In order to characterize the detectors' spatial resolution, the modulation transfer functions (MTF) were calculated. The additional broadening of the line-spread function by carrier transport has been ignored in this work. We investigated two different detector types: a directly absorbing pixel detector where a semiconductor slab is bump-bonded to a readout ASIC such as the Medipix-2 setup with Si or GaAs as an absorbing semiconductor layer, and flat-panel detectors with a Se or a CsI converter. We found a significant degradation of the MTF compared to the case without backscattering. At energies above the K-edge of the backscattering material the spatial resolution drops and can account for the observed low-frequency drop of the MTF. Ignoring this backscatter effect might lead to misinterpretations of the charge sharing effect in counting pixel detectors.

  3. Solid state detectors in nuclear medicine.

    PubMed

    Darambara, D G; Todd-Pokropek, A

    2002-03-01

    Since Nuclear Medicine diagnostic applications are growing fast, room temperature semiconductor detectors such CdTe and CdZnTe either in the form of single detectors or as segmented monolithic detectors have been investigated aiming to replace the NaI scintillator. These detectors have inherently better energy resolution that scintillators coupled to photodiodes or photomultiplier tubes leading to compact imaging systems with higher spatial resolution and enhanced contrast. Advantages and disadvantages of CdTe and CdZnTe detectors in imaging systems are discussed and efforts to develop semiconductor-based planar and tomographic cameras as well as nuclear probes are presented. PMID:12072840

  4. Characterization of cerium fluoride nanocomposite scintillators

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Brown, Leif O; Couture, Aaron J; Mckigney, Edward A; Muenchausen, Ross E; Del Sesto, Rico E; Gilbertson, Robert D; Mccleskey, T Mark; Reifarth, Rene

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  5. Setup reduction approaches for machining

    SciTech Connect

    Gillespie, L.K.

    1997-04-01

    Rapid setup is a common improvement approach in press working operations such as blanking and shearing. It has paid major dividends in the sheet metal industry. It also has been a major improvement thrust for high-production machining operations. However, the literature does not well cover all the setup operations and constraints for job shop work. This review provides some insight into the issues involved. It highlights the floor problems and provides insights for further improvement. The report is designed to provide a quick understanding of the issues.

  6. Improvement of {gamma}-ray energy resolution of LaBr{sub 3}:Ce{sup 3+} scintillation detectors by Sr{sup 2+} and Ca{sup 2+} co-doping

    SciTech Connect

    Alekhin, M. S.; Haas, J. T. M. de; Khodyuk, I. V.; Dorenbos, P.; Kraemer, K. W.; Menge, P. R.; Ouspenski, V.

    2013-04-22

    Commercially available LaBr{sub 3}:5% Ce{sup 3+} scintillators show with photomultiplier tube readout about 2.7% energy resolution for the detection of 662 keV {gamma}-rays. Here we will show that by co-doping LaBr{sub 3}:Ce{sup 3+} with Sr{sup 2+} or Ca{sup 2+} the resolution is improved to 2.0%. Such an improvement is attributed to a strong reduction of the scintillation light losses that are due to radiationless recombination of free electrons and holes during the earliest stages (1-10 ps) inside the high free charge carrier density parts of the ionization track.

  7. Development of a simple-material discrimination method with three plastic scintillator strips for visualizing nuclear reactors

    NASA Astrophysics Data System (ADS)

    Takamatsu, k.; Tanaka, h.; Shoji, d.

    2012-04-01

    The Fukushima Daiichi nuclear disaster is a series of equipment failures and nuclear meltdowns, following the T¯o hoku earthquake and tsunami on 11 March 2011. We present a new method for visualizing nuclear reactors. Muon radiography based on the multiple Coulomb scattering of cosmic-ray muons has been performed. In this work, we discuss experimental results obtained with a cost-effective simple detection system assembled with three plastic scintillator strips. Actually, we counted the number of muons that were not largely deflected by restricting the zenith angle in one direction to 0.8o. The system could discriminate Fe, Pb and C. Materials lighter than Pb can be also discriminated with this system. This method only resolves the average material distribution along the muon path. Therefore the user must make assumptions or interpretations about the structure, or must use more than one detector to resolve the three dimensional material distribution. By applying this method to time-dependent muon radiography, we can detect changes with time, rendering the method suitable for real-time monitoring applications, possibly providing useful information about the reaction process in a nuclear reactor such as burnup of fuels. In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. Monitoring the burnup of fuels as a nondestructive inspection technique can contribute to safer operation. In nuclear reactor, the total mass is conserved so that the system cannot be monitored by conventional muon radiography. A plastic scintillator is relatively small and easy to setup compared to a gas or layered scintillation system. Thus, we think this simple radiographic method has the potential to visualize a core directly in cases of normal operations or meltdown accidents. Finally, we considered only three materials as a first step in this work. Further research is required to improve the ability of imaging the material distribution in a mass-conserved system.

  8. Scintillating bolometers for Double Beta Decay search

    E-print Network

    Gironi, Luca

    2009-01-01

    In the field of Double Beta Decay (DBD) searches, the use of high resolution detectors in which background can be actively discriminated is very appealing. Scintillating bolometers containing a Double Beta Decay emitter can largely fulfill this very interesting possibility. In this paper we present the latest results obtained with CdWO4 and CaMoO4 crystals. Moreover we report, for the first time, a very interesting feature of CaMoO4 bolometers: the possibility to discriminate beta-gamma events from those induced by alpha particles thanks to different thermal pulse shape.

  9. Proportional counter for X-ray analysis of lunar and planetary surfaces. [a position sensitive scintillating imaging proportional counter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A position sensitive proportional scintillation detector was developed and evaluated for use in applications involving X-ray imaging as well as spectroscopy. Topics covered include limitations of the proportional scintillation counter for use in space; purification of the xenon gas in the detector, and the operation of the detector system. Results show that the light signal in a proportional scintillation detector remains well localized. With modest electric fields in xenon, the primary electrons from a photoelectric absorption of an X-ray can be brought a distance of a few millimeters to a higher field region without spreading more than a millimeter or so. Therefore, it is possible to make a proportional scintillation detector with good position sensitivity that could be used to calibrate out the difference in light collection over its sensitive volume.

  10. 8. Particle detectors 8.1 Emulsions

    E-print Network

    Pohl, Martin Karl Wilhelm

    8. Particle detectors 8.1 Emulsions Nuclear emulsions can be used to give 3-dimensional information-altitude balloons. A second way of measuring energetic charged particles involves scintillation detectors. Here of the detectors is low, so they are not ideal at particle energies below about 100 keV, but they are simple

  11. Lobster provided monitoring: Software setup

    E-print Network

    Thain, Douglas

    DATA MONITORING Lobster provided monitoring: CPU efficiency Software setup overhead Lost job runtime due to eviction and worker connectivity issues Cache population period Lobster is a workflow capabilities to yield a comprehensive system. Because it only requires standard permissions, Lobster can deploy

  12. Development of fiber-optic radiation sensor for gamma-ray spectroscopy: comparative study on efficiency of LYSO:Ce, YSO:Ce, and BGO scintillation crystals

    NASA Astrophysics Data System (ADS)

    Jeon, D.; Yoo, W. J.; Shin, S. H.; Hong, S.; Kim, S. G.; Sim, H. I.; Jang, K. W.; Cho, S.; Lee, B.

    2013-09-01

    In this study, we fabricated a fiber-optic radiation sensor using three kinds of inorganic scintillation crystals with the same dimension, such as LYSO:Ce, YSO:Ce, and BGO. Gamma-ray energy spectra for Cs-137 were measured with three kinds of inorganic scintillators to select an optimum scintillator that is suitable to use for gamma-ray energy spectroscopy. The total counts of the scintillating lights, were also obtained according to the activity of Cs-137. As a result, the energy spectra measured using the three scintillators were clearly different, thereby they showed clear distinction about the energy resolution and position of the inherent photopeak of Cs-137. Although all scintillators had a linear response over the activity of Cs-137, we selected LYSO:Ce as an optimum scintillator because it provided good energy resolution and the highest light output in our experimental setup.

  13. AMIGA at the Auger Observatory: the scintillator module testing system

    NASA Astrophysics Data System (ADS)

    Platino, M.; Hampel, M. R.; Almela, A.; Krieger, A.; Gorbeña, D.; Ferrero, A.; De La Vega, G.; Lucero, A.; Suarez, F.; Videla, M.; Wainberg, O.; Etchegoyen, A.

    2011-06-01

    AMIGA is an extension of the Pierre Auger Observatory that will consist of 85 detector pairs each one composed of a surface water-Cherenkov detector and a buried muon counter. Each muon counter has an area of 30 m2 and is made of scintillator strips with doped optical fibers glued to them, which guide the light to 64 pixels photomultiplier tubes. The detector pairs are arranged at 433 m and 750 m array spacings. In this paper we present the testing and initial calibration system for the scintillator modules that constitute each muon counter of AMIGA. The scintillator modules are tested with a "scanner" that consists of an x-y positioning system that moves a 5 mCi 137Cs radioactive source over the module taking data at fixed locations. The scanner both tests the module for possible fabrication defects and stores the light-attenuation curve parameters. A complete scanning process of a 64 strip scintillator module has been performed and results are presented. Also, attenuation curves obtained with scanner and with background muons are compared with satisfactory results.

  14. Study of rare alpha decays with scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Cardani, L.

    2013-08-01

    Rare ? decays can be studied with an unprecedented sensitivity by means of scintillating bolometers, as these detectors can provide a large source mass as well as an excellent resolution and can disentangle the nature of the interacting particle thanks to the different light yield. As an example of the results that can be obtained with this technique, I report the conclusive test on the identification of 209Bi decay and the measurement of the half-life of this isotope. In addition, I present a measurement with a PbWO4 scintillating bolometer, in which the lead isotopes decays were studied.

  15. Composite scintillator screen

    DOEpatents

    Zeman, Herbert D. (1687 Peach St., Memphis, TN 38112)

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  16. Lunar components in Lunping scintillations

    SciTech Connect

    Koster, J.R.; Lue, H.Y.; Wu, Hsi-Shu; Huang, Yinn-Nien

    1993-08-01

    The authors report on an anlysis of a 14 year data set of ionospheric scintillation data for 136 MHz signals transmitted from a Japanese satellite. They use a lunar age superposition method to analyze this data, breaking the data into blocks by seasons of the year. They observe a number of different scintillation types in the record, as well as impacts of lunar tides on the time record. They attempt to provide an origin for the different scintillation types.

  17. Introducing Third-Year Undergraduates to GEANT4 Simulations of Light Transport and Collection in Scintillation Materials

    ERIC Educational Resources Information Center

    Riggi, Simone; La Rocca, Paola; Riggi, Francesco

    2011-01-01

    GEANT4 simulations of the processes affecting the transport and collection of optical photons generated inside a scintillation detector were carried out, with the aim to complement the educational material offered by textbooks to third-year physics undergraduates. Two typical situations were considered: a long scintillator strip with and without a…

  18. Neutron crosstalk between liquid scintillators

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-09-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  19. Studying the energy dependence of intrinsic conversion efficiency of single crystal scintillators under X-ray excitation

    NASA Astrophysics Data System (ADS)

    Kalyvas, N.; Valais, I.; David, S.; Michail, Ch.; Fountos, G.; Liaparinos, P.; Kandarakis, I.

    2014-05-01

    Single crystal scintilators are used in various radiation detectors applications. The efficiency of the crystal can be determined by the Detector Optical Gain (DOG) defined as the ratio of the emitted optical photon flux over the incident radiation photons flux. A parameter affecting DOG is the intrinsic conversion efficiency ( n C ) giving the percentage of the X-ray photon power converted to optical photon power. n C is considered a constant value for X-ray energies in the order of keV although a non-proportional behavior has been reported. In this work an analytical model, has been utilized to single crystals scintillators GSO:Ce, LSO:Ce and LYSO:Ce to examine whether the intrinsic conversion efficiency shows non proportional behavior under X-ray excitation. DOG was theoretically calculated as a function of the incident X-ray spectrum, the X-ray absorption efficiency, the energy of the produced optical photons and the light transmission efficiency. The theoretical DOG values were compared with experimental data obtained by irradiating the crystals with X-rays at tube voltages from 50 to 140 kV and by measuring the light energy flux emitted from the irradiated screen. An initial value for n C (calculated from literature data) was assumed for the X-ray tube voltage of 50 kV. For higher X-ray tube voltages the optical photon propagation phenomena was assumed constant and any deviations between experimental and theoretical data were associated with changes in the intrinsic conversion efficiency. The experimental errors were below 7% for each experimental setup. The behavior of n C values for LSO:Ce and LYSO:Ce were found very similar, i.e., ranging with values from 0.089 at 50 kV to 0.015 at 140 kV, while for GSO:Ce, n C demonstrated a peak at 80 kV.

  20. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    SciTech Connect

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel

    2011-12-13

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  1. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    SciTech Connect

    Collier, Michael

    2002-12-17

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  2. Scintillation Response of Liquid Xenon to Low Energy Nuclear Recoils

    E-print Network

    E. Aprile; K. L. Giboni; P. Majewski; K. Ni; M. Yamashita; R. Hasty; A. Manzur; D. N. McKinsey

    2005-03-29

    Liquid Xenon (LXe) is expected to be an excellent target and detector medium to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs). Knowledge of LXe ionization and scintillation response to low energy nuclear recoils expected from the scattering of WIMPs by Xe nuclei is important for determining the sensitivity of LXe direct detection experiments. Here we report on new measurements of the scintillation yield of Xe recoils with kinetic energy as low as 10 keV. The dependence of the scintillation yield on applied electric field was also measured in the range of 0 to 4 kV/cm. Results are in good agreement with recent theoretical predictions that take into account the effect of biexcitonic collisions in addition to the nuclear quenching effect.

  3. Gadolinium loaded plastic scintillators for high efficiency neutron detection

    NASA Astrophysics Data System (ADS)

    Ovechkina, Lena; Riley, Kent; Miller, Stuart; Bell, Zane; Nagarkar, Vivek

    2009-08-01

    Gadolinium has the highest thermal neutron absorption cross section of any naturally occurring element, and emits conversion electrons as well as atomic X-rays in over 50% of its neutron captures, which makes it a useful dopant in scintillators for detecting thermal neutrons. Gadolinium isopropoxide was studied as a possible dopant for styrene-based plastic scintillators as a convenient and inexpensive method to produce high-efficiency thermal neutron detectors. Plastic scintillators with gadolinium weight concentrations of up to 3% were transparent, uniform and defect-free and were characterized with spectral measurements performed under x-ray and neutron irradiation. The new material has the same characteristic emission of styrene with a maximum at approximately 425 nm, and a light output of 76% relative to the undoped plastic. A 13 mm thick sample containing 0.5% gadolinium by weight detected 46% of incident thermal neutrons, which makes this an attractive material for a variety of applications.

  4. New concepts for HgI2 scintillator gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1994-01-01

    The primary goals of this project are development of the technology for HgI2 photodetectors (PD's), development of a HgI2/scintillator gamma detector, development of electronics, and development of a prototype gamma spectrometer. Work on the HgI2 PD's involved HgI2 purification and crystal growth, detector surface and electrical contact studies, PD structure optimization, encapsulation and packaging, and testing. Work on the HgI2/scintillator gamma detector involved a study of the optical - mechanical coupling for the optimization of CsI(Tl)/HgI2 gamma ray detectors and determination of the relationship between resolution versus scintillator type and size. The development of the electronics focused on low noise amplification circuits using different preamp input FET's and the use of a coincidence technique to maximize the signal, minimize the noise contribution in the gamma spectra, and improve the overall system resolution.

  5. DSB:Ce3+ scintillation glass for future

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Akchurin, N.; Benaglia, A.; Borisevich, A.; Cowden, C.; Damgov, J.; Dormenev, V.; Dragoiu, C.; Dudero, P.; Korjik, M.; Kozlov, D.; Kunori, S.; Lecoq, P.; Lee, S. W.; Lucchini, M.; Mechinsky, V.; Pauwels, K.

    2015-02-01

    One of the main challenges for detectors at future high-energy collider experiments is the high precision measurement of hadron and jet energy and momentum. One possibility to achieve this is the dual-readout technique, which allows recording simultaneously scintillation and Cherenkov light in an active medium in order to extract the electromagnetic fraction of the total shower energy on an event- by-event basis. Making use of this approach in the high luminosity LHC, however, puts stringent requirements on the active materials in terms of radiation hardness. Consequently, the R&D carried out on suitable scintillating materials focuses on the detector performance as well as on radiation tolerance. Among the different scintillating materials under study, scintillating glasses can be a suitable solution due to their relatively simple and cost effective production. Recently a new type of inorganic scintillating glass: Cerium doped DSB has been developed by Radiation Instruments and New Components LLC in Minsk for oil logging industry. This material can be produced either in form of bulk or fiber shape with diameter 0.3-2mm and length up to 2000 mm. It is obtained by standard glass production technology at temperature 1400°C with successive thermal annealing treatment at relatively low temperature. The production of large quantities is relatively easy and the production costs are significantly lower compared to crystal fibers. Therefore, this material is considered as an alternative and complementary solution to crystal fibers in view of a production at industrial scale, as required for a large dual readout calorimeter. In this paper, the first results on optical, scintillation properties as well as the radiation damage behaviour obtained on different samples made with different raw materials and various cerium concentrations will be presented.

  6. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1996-12-31

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  7. Scintillation light transport and detection

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.; Lillie, R. A.

    1987-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 × 18 × 350 cm 3).

  8. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng (Knoxville, TN); Kesanli, Banu (Mersin, TR); Neal, John S. (Knoxville, TN)

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  9. Hybrid scintillators for neutron discrimination

    SciTech Connect

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  10. Design and Performance of Neutron Detector N*

    NASA Astrophysics Data System (ADS)

    Pawelczak, Iwona; Toke, Jan; Tsai, Yun-Tse; Udo Schröder, W.

    2008-04-01

    The design of the N* Detector (``Neutron Sandwich Transmuter/Activation-? Radiator'') and its response to neutrons are described. The N* is a high efficiency plastic-scintillation detector with sensitivity to neutrons in a wide energy range and multi-hit information. The device consists of a stack of plastic scintillator slabs (Saint Gobain BC-408) alternating with thin radiator films (PDMS), which are loaded with 0.5% (by weight) of Gd. The stack is coupled to a photomultiplier tube. The scintillator plays the dual role of a neutron moderator and a ?-radiation detector. Scintillation light is produced in response to both, the prompt moderation process and the delayed emission of Gd-capture ?-rays. The design and experimental results with respect to light response, energy and time resolution, and detection efficiency will be discussed, along with comparison to Monte Carlo simulations.

  11. Neutron coincidence detectors employing heterogeneous materials

    DOEpatents

    Czirr, J. Bartley (Mapleton, UT); Jensen, Gary L. (Orem, UT)

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  12. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  13. Silicon photomultiplier choice for the scintillating fibre tracker in second generation proton computed tomography scanner

    SciTech Connect

    Gearhart, A.; Johnson, E.; Medvedev, V.; Ronzhin, A.; Rykalin, V.; Rubinov, P.; Sleptcov, V.; /Unlisted, RU

    2012-03-01

    Scintillating fibers are capable of charged particle tracking with high position resolution, as demonstrated by the central fiber tracker of the D0 experiment. The charged particles will deposit less energy in the polystyrene scintillating fibers as opposed to a typical silicon tracker of the same thickness, while SiPM's are highly efficient at detecting photons created by the passage of the charged particle through the fibers. The current prototype of the Proton Computed Tomography (pCT) tracker uses groups of three 0.5 mm green polystyrene based scintillating fibers connected to a single SiPM, while first generation prototype tracker used Silicon strip detectors. The results of R&D for the Scintillating Fiber Tracker (SFT) as part of the pCT detector are outlined, and the premise for the selection of SiPM is discussed.

  14. Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0???) search

    NASA Astrophysics Data System (ADS)

    Freitas, E. D. C.; Monteiro, C. M. B.; Ball, M.; Gómez-Cadenas, J. J.; Lopes, J. A. M.; Lux, T.; Sánchez, F.; dos Santos, J. M. F.

    2010-02-01

    The search for neutrinoless double beta decay (0???) is an important topic in contemporary physics with many active experiments. New projects are planning to use high-pressure xenon gas as both source and detection medium. The secondary scintillation processes available in noble gases permit large amplification with negligible statistical fluctuations, offering the prospect of energy resolution approaching the Fano factor limit. This Letter reports results for xenon secondary scintillation yield, at room temperature, as a function of electric field in the gas scintillation gap for pressures ranging from 2 to 10 bar. A Large Area Avalanche Photodiode (LAAPD) collected the VUV secondary scintillation produced in the gas. X-rays directly absorbed in the LAAPD are used as a reference for determining the number of charge carriers produced by the scintillation pulse and, hence, the number of photons impinging the LAAPD. The number of photons produced per drifting electron and per kilovolt, the so-called scintillation amplification parameter, displays a small increase with pressure, ranging from 141±6 at 2 bar to 170±10 at 8 bar. In our setup, this parameter does not increase above 8 bar due to non-negligible electron attachment. The results are in good agreement with those presented in the literature in the 1 to 3 bar range. The increase of the scintillation amplification parameter with pressure for high gas densities has been also observed in former work at cryogenic temperatures.

  15. Head & base production optimization : setup time reduction

    E-print Network

    Guo, Haiqing

    2009-01-01

    At Schlumberger, the make-to-order strategy and number of Head & Base product types (about 1000 types) requires a flexible manufacturing system in which the machine setup is frequent. However, the lengthy CNC machine setup ...

  16. Response from inorganic scintillation screens induced by high energetic ions

    NASA Astrophysics Data System (ADS)

    Lieberwirth, A.; Ensinger, W.; Forck, P.; Lederer, S.

    2015-12-01

    Inorganic scintillation screens were irradiated with swift heavy ion beams at GSI accelator facility, using protons up to Uranium ions as projectiles. Beams were extracted from the synchrotron SIS18 with high energy (?300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was recorded by two different optical setups simultaneously to investigate the light output, profile characteristics and emission spectra. In principle fast extracted beams induce lower light output than slow extracted beams. The output per deposited energy shows a decreasing dependency with respect of the atomic number. Emission spectra showed no significant defects of the materials, neither at irradiation with increasing beam intensity nor during long time irradiation.

  17. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    SciTech Connect

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  18. Scintillator based beta batteries

    NASA Astrophysics Data System (ADS)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  19. The magnetized steel and scintillator calorimeters of the MINOS experiment

    SciTech Connect

    Michael, : D.G.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the 'atmospheric neutrino' sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  20. Development of a Segmented Scintillator for Decay Studies

    NASA Astrophysics Data System (ADS)

    Alshudifat, Mohammad; Grzywacz, R.; Paulauskas, S. V.

    A new detector was developed, which will enable future studies of neutron-rich isotopes. It is intended for use in fragmentation type experiments, which require segmentation in order to enable implantation-decay correlations. In addition, the detector requires good timing resolution for neutron time-of-flight experiments. A Position Sensitive Photo-Multiplier Tube (PSPMT) from Hamamatsu coupled with a fast pixelated plastic scintillator was used. Position localization of the nuclear radiation interaction with the detector has been achieved for energies up to 5 MeV. The detector provides sub-nanosecond time resolution through the use of a pulse-shape analysis algorithm, which is sufficient for time-of-flight experiments. The detector was tested with a laser pulserin order to simulate 1 GeV implantation energy and found to be capable to be used with high-energy heavy ions.

  1. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water ?erenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  2. Application of WLS strips for position determination in Strip PET tomograph based on plastic scintillators

    E-print Network

    J. Smyrski; P. Moskal; T. Bednarski; P. Bia?as; E. Czerwi?ski; ?. Kap?on; A. Kochanowski; G. Korcyl; J. Kowal; P. Kowalski; T. Kozik; W. Krzemie?; M. Molenda; Sz. Nied?wiecki; M. Pa?ka; M. Pawlik; L. Raczy?ski; Z. Rudy; P. Salabura; N. G. Sharma; M. Silarski; A. S?omski; A. Strzelecki; W. Wi?licki; M. Zieli?ski; N. Zo?

    2013-11-24

    A method of determination of a gamma quantum absorption point in a plastic scintillator block using a matrix of wavelength-shifting (WLS) strips is proposed. Application of this method for improvement of position resolution in newly proposed PET detectors based on plastic scintillators is presented. The method enables to reduce parallax errors in reconstruction of images which occurs in the presently used Positron Emission Tomography scanners.

  3. A simple technique for gamma ray and cosmic ray spectroscopy using plastic scintillator

    E-print Network

    Akhilesh P. Nandan; Sharmili Rudra; Himangshu Neog; S. Biswas; S. Mahapatra; B. Mohanty; P. K. Samal

    2015-04-10

    A new and simple technique has been developed using plastic scintillator detectors for gamma ray and cosmic ray spectroscopy without single channel analyzer (SCA) or multichannel analyzer (MCA). In these experiments only a leading edge discriminator (LED) and NIM scalers have been used. Energy calibration of gamma spectra in plastic scintillators has been done using Co$^{60}$ and Cs$^{137}$ sources. The details experimental technique, analysis procedure and experimental results has been presented in this article.

  4. A scintillating fiber-optic active target (SFT) for studies of high energy photoproduction

    SciTech Connect

    Ruchti, R.; Baumbaugh, B.; Bishop, J.; Busenitz, J.; Cason, N.; Cunningham, J.; Gardner, R.; Kennedy, C.; Mannel, E.; Mountain, R.J.

    1988-02-01

    A high resolution, gateable, Scintillating Fiber Target (SFT) has been developed for Fermilab Experiment E687 to study charm and beauty particle production and decay in high energy photon interactions. The detector consists of a scintillating target of either GS1 Cerium glass fibers or polystyrene fibers of 29..mu..m cross section, a multi-stage image intensifier and an intensified CCD or SIT/VIDICON camera system used in conjunction with a custom-built video data acquisition system.

  5. Measurement of $?$-particle quenching in LAB based scintillator in independent small-scale experiments

    E-print Network

    B. von Krosigk; M. Chen; S. Hans; A. R. Junghans; T. Kögler; C. Kraus; L. Kuckert; X. Liu; R. Nolte; H. M. O'Keeffe; H. S. Wan Chan Tseung; J. R. Wilson; A. Wright; M. Yeh; K. Zuber

    2015-10-02

    The $\\alpha$-particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, $\\alpha$-particles were produced in the scintillator via $^{12}$C($n$,$\\alpha$)$^9$Be reactions. In the second approach, the scintillator was loaded with 2% of $^{\\mathrm{nat}}$Sm providing an $\\alpha$-emitter, $^{147}$Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants $^{222}$Rn, $^{218}$Po and $^{214}$Po provided the $\\alpha$-particle signal. The behavior of the observed $\\alpha$-particle light outputs are in agreement with each case successfully described by Birks' law. The resulting Birks parameter $kB$ ranges from $(0.0071\\pm0.0003)$ cm/MeV to $(0.0076\\pm0.0003)$ cm/MeV. In the first approach, the $\\alpha$-particle light response was measured simultaneously with the light response of recoil protons produced via neutron-proton elastic scattering. This enabled a first time a direct comparison of $kB$ describing the proton and the $\\alpha$-particle response of LAB based scintillator. The observed $kB$ values describing the two light response functions deviate by more than $5\\sigma$. The presented results are valuable for all current and future detectors, using LAB based scintillator as target, since they depend on an accurate knowledge of the scintillator response to different particles.

  6. Discrimination between Nuclear Recoils and Electron Recoils by Simultaneous Detection of Phonons and Scintillation Light

    E-print Network

    P. Meunier; M. Bravin; M. Bruckmayer; S. Giordano; M. Loidl; O. Meier; F. Proebst; W. Seidel; M. Sisti; L. Stodolsky; S. Uchaikin; L. Zerle

    1999-06-08

    We have developed a detector, consisting of a cryogenic calorimeter with a scintillating crystal as absorber, and a second calorimeter for the detection of the scintillation light, both operated at 12 mK. Using a CaWO4 crystal with a mass of 6g as scintillating absorber, we have achieved a discrimination of nuclear recoils against electron recoils with a suppression factor of 99.7% at energies above 15 keV. This novel method will be applied for background rejection in the CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) experiment looking for dark matter Weakly Interacting Massive Particles (WIMPs).

  7. A Highly Efficient Neutron Veto Using Boron-Loaded Liquid Scintillator

    SciTech Connect

    Wright, A.; Mosteiro, P.; Loer, B.; Calaprice, F.

    2011-04-27

    By surrounding a dark matter detector with a layer of boron-loaded liquid scintillator, a highly efficient neutron veto can be produced. In Monte Carlo studies, a one meter thick layer of scintillator has a veto efficiency greater than 99.5% for nuclear recoil events induced by radiogenic neutrons, and a veto efficiency of more than 95% for nuclear recoil events produced by cosmogenic neutrons. The use of boron-loaded scintillator both reduces the veto-induced dead time by decreasing the neutron capture time and allows high neutron detection efficiency to be achieved in a relatively compact geometry.

  8. Measurements of Scintillation Efficiency and Pulse-Shape for Low Energy Recoils in Liquid Xenon

    E-print Network

    D. Akimov; A. Bewick; D. Davidge; J. Dawson; A. S. Howard; I. Ivaniouchenkov; W. G. Jones; M. Joshi; V. A. Kudryavtsev; T. B. Lawson; V. Lebedenko; M. J. Lehner; P. K. Lightfoot; I. Liubarsky; R. Luscher; J. E. McMillan; C. D. Peak; J. J. Quenby; N. J. C. Spooner; T. J. Sumner; D. R. Tovey; C. K. Ward

    2001-06-08

    Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.

  9. Testing the LENS Scintillation Lattice with MicroLENS

    NASA Astrophysics Data System (ADS)

    Afanasieva, Liudmyla

    2012-10-01

    The LENS Collaboration is developing a next-generation instrument to precisely measure the full spectrum of solar neutrinos, including low energy neutrinos from hydrogen fusion (pp-neutrinos). Detection lies in charged-current capture of neutrinos on 115In in metal-loaded scintillator. The detector architecture employs a lattice structure with a low index of refraction immersed into scintillator to provide precise time and spatial resolution to distinguish the neutrino signal from background. A first generation prototype, microLENS, has been constructed and is currently operating. Measurements with microLENS test the basic optical properties of the lattice detector architecture that is fundamental to the approach. Results from measurements with the microLENS prototype will be discussed.

  10. Scintillation time dependence and pulse shape discrimination in liquid argon

    E-print Network

    W. H. Lippincott; K. J. Coakley; D. Gastler; A. Hime; E. Kearns; D. N. McKinsey; J. A. Nikkel; L. C. Stonehill

    2008-09-23

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background and statistics-limited level of electronic recoil contamination to be $7.6\\times10^{-7}$ between 60 and 128 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 72 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination using the measured scintillation time dependence and predict the sensitivity to WIMP-nucleon scattering in three configurations of a liquid argon dark matter detector.

  11. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  12. Drift scintillation meter

    NASA Astrophysics Data System (ADS)

    1984-03-01

    This is the final report for the subject contract under which The University of Texas at Dallas (UTD) built, tested and delivered an engineering model and three flight versions of the Drift Scintillation Meter (DSM) to the Air Force Geophysics Laboratory for flight on the Air Force DMSP satellites. The report is divided into three sections. Section 1 contains the instrument description and theory of operation. Section 2 contains a description of planned spacecraft-level instrument testing, stimulation requirements and instrument handling and safety. Section 3 contains an instrument interconnection diagram and a list of the schematics, drawings, parts lists and wiring lists that describe the as-built configuration of the instrument. This documentation is available in the R&D Equipment Information Reports that were submitted to AFGL after each instrument delivery.

  13. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  14. Properties of scintillator solutes

    SciTech Connect

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  15. Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling

    NASA Astrophysics Data System (ADS)

    Staelens, Steven; Strul, Daniel; Santin, Giovanni; Vandenberghe, Stefaan; Koole, Michel; D'Asseler, Yves; Lemahieu, Ignace; Van de Walle, Rik

    2003-09-01

    Geant4 application for tomographic emission (GATE) is a recently developed simulation platform based on Geant4, specifically designed for PET and SPECT studies. In this paper we present validation results of GATE based on the comparison of simulations against experimental data, acquired with a standard SPECT camera. The most important components of the scintillation camera were modelled. The photoelectric effect, Compton and Rayleigh scatter are included in the gamma transport process. Special attention was paid to the processes involved in the collimator: scatter, penetration and lead fluorescence. A LEHR and a MEGP collimator were modelled as closely as possible to their shape and dimensions. In the validation study, we compared the simulated and measured energy spectra of different isotopes: 99mTc, 22Na, 57Co and 67Ga. The sensitivity was evaluated by using sources at varying distances from the detector surface. Scatter component analysis was performed in different energy windows at different distances from the detector and for different attenuation geometries. Spatial resolution was evaluated using a 99mTc source at various distances. Overall results showed very good agreement between the acquisitions and the simulations. The clinical usefulness of GATE depends on its ability to use voxelized datasets. Therefore, a clinical extension was written so that digital patient data can be read in by the simulator as a source distribution or as an attenuating geometry. Following this validation we modelled two additional camera designs: the Beacon transmission device for attenuation correction and the Solstice scanner prototype with a rotating collimator. For the first setup a scatter analysis was performed and for the latter design, the simulated sensitivity results were compared against theoretical predictions. Both case studies demonstrated the flexibility and accuracy of GATE and exemplified its potential benefits in protocol optimization and in system design.

  16. Gamma scintillator system using boron carbide for neutron detection

    NASA Astrophysics Data System (ADS)

    Ben-Galim, Y.; Wengrowicz, U.; Raveh, A.; Orion, I.

    2014-08-01

    A new approach for neutron detection enhancement to scintillator gamma-ray detectors is suggested. By using a scintillator coupled with a boron carbide (B4C) disc, the 478 keV gamma-photon emitted from the excited Li in 94% of the 10B(n,?)7Li interactions was detected. This suggests that the performance of existing gamma detection systems in Homeland security applications can be improved. In this study, a B4C disc (2 in. diameter, 0.125 in. thick) with ~19.8% 10B was used and coupled with a scintillator gamma-ray detector. In addition, the neutron thermalization moderator was studied in order to be able to increase the neutron sensitivity. An improvement in the detector which is easy to assemble, affordable and efficient was demonstrated. Furthermore, a tailored Monte-Carlo code written in MATLAB was developed for validation of the proposed application through efficiency estimation for thermal neutrons. Validation of the code was accomplished by showing that the MATLAB code results were well correlated to a Monte-Carlo MCNP code results. The measured efficiency of the assembled experimental model was observed to be in agreement with both models calculations.

  17. Experimental comparison of high-density scintillators for EMCCD-based gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Heemskerk, Jan W. T.; Kreuger, Rob; Goorden, Marlies C.; Korevaar, Marc A. N.; Salvador, Samuel; Seeley, Zachary M.; Cherepy, Nerine J.; van der Kolk, Erik; Payne, Stephen A.; Dorenbos, Pieter; Beekman, Freek J.

    2012-07-01

    Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO4 and transparent polycrystalline ceramics of Lu2O3:Eu and (Gd,Lu)2O3:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV (99mTc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO4, Lu2O3:Eu and (Gd,Lu)2O3:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu2O3:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these ‘slow’ dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras.

  18. Experimental comparison of high-density scintillators for EMCCD-based gamma ray imaging.

    PubMed

    Heemskerk, Jan W T; Kreuger, Rob; Goorden, Marlies C; Korevaar, Marc A N; Salvador, Samuel; Seeley, Zachary M; Cherepy, Nerine J; van der Kolk, Erik; Payne, Stephen A; Dorenbos, Pieter; Beekman, Freek J

    2012-07-21

    Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO? and transparent polycrystalline ceramics of Lu?O?:Eu and (Gd,Lu)?O?:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV ((99m)Tc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO?, Lu?O?:Eu and (Gd,Lu)?O?:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu?O?:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these 'slow' dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras. PMID:22722678

  19. Light collection optimization in scintillator-based gamma-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Hull, G.; Du, S.; Niedermayr, T.; Payne, S.; Cherepy, N.; Drobshoff, A.; Fabris, L.

    2008-04-01

    Scintillator-based gamma-ray detectors are being actively pursued for homeland security applications. A key property of such detectors is their energy resolution which enables faster detection and more precise identification of gamma-ray sources. In order to obtain the best energy resolution with a given scintillator material, it is crucial to collect the largest fraction possible of the light emitted after gamma-ray absorption. Different techniques to maximize the light collection efficiency were investigated and tested experimentally. In particular, the effect of the scintillator geometry has been simulated with Detect2000. Also, a number of wrapping materials have been tested for their reflectivity and their performance in terms of improving the energy resolution in a BGO-based gamma-ray detector. The best results were obtained with a tapered cylinder geometry and the GORE DRP tape.

  20. Estimation of Cn2 based on scintillation of fixed targets imaged through atmospheric turbulence.

    PubMed

    Gulich, Damián; Funes, Gustavo; Pérez, Darío; Zunino, Luciano

    2015-12-01

    We define a pixel-based scintillation index for dynamic incoherent imaging of fixed high-contrast targets through atmospheric turbulence. We propose a simple setup to study this parameter varying the Cn2 constant in controlled laboratory conditions (weak fluctuation regime). We find the semi-empirical relationship between the pixel-based scintillation index and the index of refraction structure constant, which we then employ to estimate Cn2 successfully in an independent case in which this value was not known beforehand. PMID:26625071