Science.gov

Sample records for scission-point model

  1. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    NASA Astrophysics Data System (ADS)

    Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.

    2013-12-01

    Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  2. New statistical scission-point model to predict fission fragment observables

    NASA Astrophysics Data System (ADS)

    Lemaître, Jean-François; Panebianco, Stefano; Sida, Jean-Luc; Hilaire, Stéphane; Heinrich, Sophie

    2015-09-01

    The development of high performance computing facilities makes possible a massive production of nuclear data in a full microscopic framework. Taking advantage of the individual potential calculations of more than 7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition, to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited computing cost.

  3. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    NASA Astrophysics Data System (ADS)

    Panebianco, Stefano; Dubray, Nöel; Goriely, Stéphane; Hilaire, Stéphane; Lemaître, Jean-François; Sida, Jean-Luc

    2014-04-01

    Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.

  4. Characterization of the scission point from fission-fragment velocities

    NASA Astrophysics Data System (ADS)

    Caamaño, M.; Farget, F.; Delaune, O.; Schmidt, K.-H.; Schmitt, C.; Audouin, L.; Bacri, C.-O.; Benlliure, J.; Casarejos, E.; Derkx, X.; Fernández-Domínguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Ramos, D.; Rodríguez-Tajes, C.; Roger, T.; Shrivastava, A.

    2015-09-01

    The isotopic yield distributions and kinematic properties of fragments produced in the transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV excitation energy, respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematics of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.

  5. Compound nucleus decay: Comparison between saddle point and scission point barriers

    SciTech Connect

    Santos, T. J.; Carlson, B. V.

    2014-11-11

    One of the principal characteristics of nuclear multifragmentation is the emission of complex fragments of intermediate mass. An extension of the statistical multifragmentation model has been developed, in which the process can be interpreted as the near simultaneous limit of a series of sequential binary decays. In this extension, intermediate mass fragment emissions are described by expressions almost identical to those of light particle emission. At lower temperatures, similar expressions have been shown to furnish a good description of very light intermediate mass fragment emission but not of the emission of heavier fragments, which seems to be determined by the transition density at the saddle-point rather than at the scission point. Here, we wish to compare these different formulations of intermediate fragmment emission and analyze the extent to which they remain distinguishable at high excitation energy.

  6. At and Beyond the Scission Point:. what can we Learn from Scission and Prompt Neutrons?

    NASA Astrophysics Data System (ADS)

    Talou, P.

    2008-04-01

    Scission and prompt neutrons provide indirect clues of the physical processes at play near the scission point when the two fission fragments are finally and forever separated. A scission model based on the approximation of a sudden rupture of the neck between the two nascent fragments is presented. It is used to compute the average number of scission neutrons per fission event in the symmetric fission of 236U. Once the fragments are fully accelerated, they will release their intrinsic excitation energy by emitting so-called prompt neutrons and gamma-rays. Monte Carlo simulations of this evaporation process are presented in the case of the first-chance fission of 235U. Future developments expected in the arenas of experiment, theory and evaluation are discussed.

  7. Nonuniform character of the population of spin projections K for a fissile nucleus at the scission point and anisotropies in the angular distributions of fragments originating from the induced fission of nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Kadmensky, S. S.

    2012-11-15

    It is shown that the emergence of anisotropies in the angular distributions of fragments originating from the spontaneous and induced fission of oriented actinide nuclei is possible only if nonuniformities in the population of the projectionsM (K) of the fissile-nucleus spin onto the z axis of the laboratory frame (fissile-nucleus symmetry axis) appear simultaneously in the vicinity of the scission point but not in the vicinity of the outer saddle point of the deformation potential. The possibilities for creating the orientation of fissile nuclei for spontaneous and induced fission and the effect of these orientations on the anisotropies under analysis are considered. The role of Coriolis interaction as a unique source of the mixing of different-K fissile-nucleus states at all stages of the fission process is studied with allowance for the dynamical enhancement of this interaction for excited thermalized states of the nucleus involved that is characterized by a high energy density. It is shown that the absence of thermalization of excited states of the fissile nucleus that appear because of the effect of nonadiabaticity of its collective deformation motion in the vicinity of the scission point is a condition of conservation of the influence that transition fission states formed at the inner and outer fission barriers exerts on the distribution of the spin projections K for lowenergy spontaneous nuclear fission. It is confirmed that anisotropies observed in the angular distributions of fragments originating from the fission of nuclei that is induced by fast light particles (multiply charged ions) are due to the appearance of strongly excited equilibrium(nonequilibrium) states of the fissile nucleus in the vicinity of its scission point that have a Gibbs (non-Gibbs) distribution of projections K.

  8. Application of the dinuclear system model to fission process

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Shneidman, T. M.; Ventura, A.

    2016-01-01

    A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron-induced fission of 239Pu.

  9. Consistent theoretical model for the description of the neutron-rich fission product yields

    NASA Astrophysics Data System (ADS)

    Rubchenya, V. A.; Äystö, J.

    2012-04-01

    The consistent model for the description of the independent fission product formation cross-section at light projectile energies up to about 100MeV is described. Pre-compound nucleon emission is described in the framework of the two-component exciton model using the Monte Carlo method, which allows one to incorporate a time duration criterion for the pre-equilibrium stage of the reaction. The decay of the excited compound nuclei, formed after the pre-equilibrium neutron and proton emission, is treated within the time-dependent statistical model with the inclusion of the main dynamical effects of nuclear friction on the fission width and saddle-to-scission descent time. For each member of the compound nucleus ensemble at scission point, the primary fragment isobaric chain yields are calculated using the multimodal approach with the inclusion two superasymmetric fission modes. The charge distribution of the primary fragment isobaric chains was considered as a results of frozen quantal fluctuations of the isovector nuclear matter density at the finite scission neck radius. The calculated fission product formation cross-sections in the neutron, proton, and ? -rays induced fission of the heavy actinides are presented.

  10. Fission Yield Predictions with TALYS

    SciTech Connect

    Duijvestijn, M.C.; Koning, A.J.

    2005-05-24

    The nuclear model code TALYS has been extended to enable the prediction of fission yields. The mass yield curves are extracted from temperature-dependent multi-modal random-neck rupture calculations. Charge yields of the fission fragment are determined using the scission-point model and subsequently folded with the mass yields. We present a comparison of several fission-fragment mass yields and isotopic yields with experimental data.

  11. Modeling

    SciTech Connect

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  12. Modeling

    NASA Technical Reports Server (NTRS)

    Zook, H. A.

    1985-01-01

    A prediction of the future population of satellites, satellite fragments, and assorted spacecraft debris in Earth orbit can be reliably made only after three conditions are satisfied: (1) the size and spatial distributions of these Earth-orbiting objects are established at some present-day time; (2) the processes of orbital evolution, explosions, hypervelocity impact fragmentation, and atmospheric drag are understood; and (3) a reasonable traffic model for the future launch rate of Earth-orbiting objects is assumed. The theoretician will then take these three quantities as input data and will carry through the necessary mathematica and numerical analyses to project the present-day orbital population into the future.

  13. Modeling modeling.

    PubMed Central

    Killeen, P R

    1999-01-01

    Models are tools; they need to fit both the hand and the task. Presence or absence of a feature such as a pacemaker or a cascade is not in itself good. Or bad. Criteria for model evaluation involve benefit-cost ratios, with the numerator a function of the range of phenomena explained, goodness of fit, consistency with other nearby models, and intangibles such as beauty. The denominator is a function of complexity, the number of phenomena that must be ignored, and the effort necessary to incorporate the model into one's parlance. Neither part of the ratio can yet be evaluated for MTS, whose authors provide some cogent challenges to SET. PMID:10220934

  14. Fission fragment mass distribution studies in 30Si +180Hf reaction

    NASA Astrophysics Data System (ADS)

    Shamlath, A.; Shareef, M.; Prasad, E.; Sugathan, P.; Thomas, R. G.; Jhingan, A.; Appannababu, S.; Nasirov, A. K.; Vinodkumar, A. M.; Varier, K. M.; Yadav, C.; Babu, B. R. S.; Nath, S.; Mohanto, G.; Mukul, Ish; Singh, D.; Kailas, S.

    2016-01-01

    Fission fragment mass-angle and mass ratio distributions have been measured for the 30Si + 180Hf reaction in the beam energy range 128-148 MeV. Quasifission signature is observed in this reaction, forming the compound system 210Rn. The results are compared with a very asymmetric reaction 16O + 194Pt, forming the same compound nucleus. Calculations assuming saddle point, scission point and DNS models have been performed to interpret the experimental results. The results strongly suggest the entrance channel dependence of quasifission in heavy ion collisions.

  15. Theoretical description of Long Range Alpha particles emitted during spontaneous fission

    NASA Astrophysics Data System (ADS)

    Serot, O.; Wagemans, C.; Carjan, N.

    1998-10-01

    An interpretation of the experimental data concerning the emission of Long Range Alpha (LRA) particles emitted during spontaneous fission of 238,240,242,244Pu isotopes is given. In particular, we show that the LRA emission process is strongly influenced by the spectroscopic factor (related to the ?-cluster preformation probability) and by the fission mode components of each nucleus. Furthermore, the energy transfer probability between the available deformation energy of the scissioning nucleus and the ?-particle is calculated from a sudden approximation model. Lastly, a comparison between our theoretical prediction and the experimental data allowed a determination of the Q?-value at the scission point.

  16. FISSION OF {sup 238}U INDUCED BY INELASTIC SCATTERING OF 120 MeV {alpha}-PARTICLES

    SciTech Connect

    Back, B.B.; Shotter, A.C.; Symons, T.J.M.; Bice, A.; Gelbke, C.K.; Awes, T.C.; Scott, D.K.

    1980-09-01

    The fission decay of {sup 238}U has been measured as function of excitation energy in inelastic scattering of 120 MeV {alpha}-particles. Total kinetic energies and masses of fission fragments were measured by the double energy method. It is observed that the total kinetic energy E{sub K} decreases and that the valley in the mass distribution is reduced when the excitation energy of the system is increased. No indication of anomalous total kinetic energy release in the region of the giant quadrupole resonance has been found. A qualitative interpretation of the data is given on the basis of a static scission point model.

  17. Comparative study of the fragments' mass and energy characteristics in the spontaneous fussion of 238Pu, 240Pu and 242Pu and in the thermal-neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Wagemans, C.; Deruytter, A. J.; Barthélémy, R.

    1992-08-01

    The energy and mass distribution and their correlations have been studied for the spontaneous fission of 238, 240, 242Pu and for the thermal-neutron-induced fission of 239Pu. A comparison of 240Pu(s.f.) and 239Pu(nth,f) shows that the increase in excitation energy mainly results in an increase of the intrinsic excitation energy. A comparison of the results for 238Pu, 240Pu and 242Pu(s.f.) demonstrates the occurence of different fission modes with varying relative probability. These results are discussed in terms of the scission point model as well as in terms of the fission channel model with random neck-rupture.

  18. Study of Fission Barrier Heights of Uranium Isotopes by the Macroscopic-Microscopic Method

    NASA Astrophysics Data System (ADS)

    Zhong, Chun-Lai; Fan, Tie-Shuan

    2014-09-01

    Potential energy surfaces of uranium nuclei in the range of mass numbers 229 through 244 are investigated in the framework of the macroscopic-microscopic model and the heights of static fission barriers are obtained in terms of a double-humped structure. The macroscopic part of the nuclear energy is calculated according to Lublin—Strasbourg-drop (LSD) model. Shell and pairing corrections as the microscopic part are calculated with a folded-Yukawa single-particle potential. The calculation is carried out in a five-dimensional parameter space of the generalized Lawrence shapes. In order to extract saddle points on the potential energy surface, a new algorithm which can effectively find an optimal fission path leading from the ground state to the scission point is developed. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.

  19. Asymmetrical fission and statistical emission of complex fragments from the highly excited {sup 47}V compound nucleus

    SciTech Connect

    Beck, C.; Djerroud, B.; Haas, F.; Freeman, R.M.; Hachem, A.; Heusch, B.; Morsad, A.; Vuillet-A-Crilles, M.; Youlal, M.; Abe, Y.; Dayras, R.; Wieleczko, J.P.; Legrain, R.; Pollaco, E.; Ray, A.; Shapira, D.; Campo, J.G.D.; Kim, H.J.; Cavallaro, S.; De Fillippo, E.; Lanzano, G.; Pagano, A.; Sperduto, M.L.; Matsuse, T.; Sanders, S.J.

    1991-12-31

    The properties of the fully damped (deep-inelastic and orbiting) and fusion (evaporation and fission) processes have been investigated in three entrance channels leading to the same {sup 47} V compound nucleus at high excitation energies. No entrance channel effect has been observed in either the evaporation residue or the fission-like yields in contrast to the {sup 28}Si + {sup 12}C and {sup 24}Mg + {sup 16}O reactions in which the orbiting process still persists. The asymmetrical elemental distributions of the fully energy relaxed fragments are well described by fusion-fission models based respectively on the scission point and saddle point pictures. Finally a general discussion of the competition between orbiting and fusion-fission mechanisms in light heavy-ion reactions is presented in the framework of their calculated available number of open channels.

  20. Asymmetrical fission and statistical emission of complex fragments from the highly excited sup 47 V compound nucleus

    SciTech Connect

    Beck, C.; Djerroud, B.; Haas, F.; Freeman, R.M.; Hachem, A.; Heusch, B.; Morsad, A.; Vuillet-A-Crilles, M.; Youlal, M.; Abe, Y. . Centre de Recherches Nucleaires); Dayras, R.; Wieleczko, J.P.; Legrain, R.; Pollaco, E. ); Ray, A.; Shapira, D.; Campo, J.G.D.; Kim, H.J. (Oak Ridge National Lab., TN (United States

    1991-01-01

    The properties of the fully damped (deep-inelastic and orbiting) and fusion (evaporation and fission) processes have been investigated in three entrance channels leading to the same {sup 47} V compound nucleus at high excitation energies. No entrance channel effect has been observed in either the evaporation residue or the fission-like yields in contrast to the {sup 28}Si + {sup 12}C and {sup 24}Mg + {sup 16}O reactions in which the orbiting process still persists. The asymmetrical elemental distributions of the fully energy relaxed fragments are well described by fusion-fission models based respectively on the scission point and saddle point pictures. Finally a general discussion of the competition between orbiting and fusion-fission mechanisms in light heavy-ion reactions is presented in the framework of their calculated available number of open channels.

  1. Models, Fiction, and Fictional Models

    NASA Astrophysics Data System (ADS)

    Liu, Chuang

    2014-03-01

    The following sections are included: * Introduction * Why Most Models in Science Are Not Fictional * Typically Fictional Models in Science * Modeling the Unobservable * Fictional Models for the Unobservable? * References

  2. Mental Models, Conceptual Models, and Modelling.

    ERIC Educational Resources Information Center

    Greca, Ileana Maria; Moreira, Marco Antonio

    2000-01-01

    Reviews science education research into representations constructed by students in their interactions with the world, its phenomena, and artefacts. Features discussions of mental models, conceptual models, and the activity of modeling. (Contains 30 references.) (Author/WRM)

  3. MODEL DEVELOPMENT - DOSE MODELS

    EPA Science Inventory

    Model Development

    Humans are exposed to mixtures of chemicals from multiple pathways and routes. These exposures may result from a single event or may accumulate over time if multiple exposure events occur. The traditional approach of assessing risk from a single chemica...

  4. Ionospheric modeling

    NASA Astrophysics Data System (ADS)

    Dandekar, B. S.

    1982-01-01

    The purpose of this report is to familiarize a user of ionospheric models with the options presently available for ionospheric prediction and specification. Two types of ionospheric models are available: the numerical-phenomenological and theoretical models. From the numerical type, the ITS-78, IONCAP, and Bent models have been discussed. In the theoretical models the main concern is the number of parameters included in the model. Nine ionoshperic models available have been summarized. The differences and limitations of these models are compared and tabulated. This information will help a user make a judicious selection of an ionospheric model to satisfy his specific needs. The sources for obtaining the programs for these models have been listed for ready reference.

  5. Models, Part IV: Inquiry Models.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Discusses models for information skills that include inquiry-oriented activities. Highlights include WebQuest, which uses Internet resources supplemented with videoconferencing; Minnesota's Inquiry Process based on the Big Six model for information problem-solving; Indiana's Student Inquiry Model; constructivist learning models for inquiry; and…

  6. Supermatrix models

    SciTech Connect

    Yost, S.A.

    1991-05-01

    Radom matrix models based on an integral over supermatrices are proposed as a natural extension of bosonic matrix models. The subtle nature of superspace integration allows these models to have very different properties from the analogous bosonic models. Two choices of integration slice are investigated. One leads to a perturbative structure which is reminiscent of, and perhaps identical to, the usual Hermitian matrix models. Another leads to an eigenvalue reduction which can be described by a two component plasma in one dimension. A stationary point of the model is described.

  7. MODELS - 3

    EPA Science Inventory

    Models-3 is a third generation air quality modeling system that contains a variety of tools to perform research and analysis of critical environmental questions and problems. These tools provide regulatory analysts and scientists with quicker results, greater scientific accuracy ...

  8. ENTRAINMENT MODELS

    EPA Science Inventory

    This presentation presented information on entrainment models. Entrainment models use entrainment hypotheses to express the continuity equation. The advantage is that plume boundaries are known. A major disadvantage is that the problems that can be solved are rather simple. The ...

  9. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Rubesin, Morris W.

    1987-01-01

    Recent developments at several levels of statistical turbulence modeling applicable to aerodynamics are briefly surveyed. Emphasis is on examples of model improvements for transonic, two-dimensional flows. Experience with the development of these improved models is cited to suggest methods of accelerating the modeling process necessary to keep abreast of the rapid movement of computational fluid dynamics into the computation of complex three-dimensional flows.

  10. Radiation Models

    ERIC Educational Resources Information Center

    James, W. G. G.

    1970-01-01

    Discusses the historical development of both the wave and the corpuscular photon model of light. Suggests that students should be informed that the two models are complementary and that each model successfully describes a wide range of radiation phenomena. Cites 19 references which might be of interest to physics teachers and students. (LC)

  11. Phoenix model

    EPA Science Inventory

    Phoenix (formerly referred to as the Second Generation Model or SGM) is a global general equilibrium model designed to analyze energy-economy-climate related questions and policy implications in the medium- to long-term. This model disaggregates the global economy into 26 industr...

  12. Hydrological models are mediating models

    NASA Astrophysics Data System (ADS)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting more importance to identifying and communicating on the many factors involved in model development might increase transparency of model building.

  13. Model Experiments and Model Descriptions

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Ko, Malcolm K. W.; Weisenstein, Debra; Scott, Courtney J.; Shia, Run-Lie; Rodriguez, Jose; Sze, N. D.; Vohralik, Peter; Randeniya, Lakshman; Plumb, Ian

    1999-01-01

    The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.

  14. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    1991-01-01

    The performance of existing two-equation eddy viscosity models was examined. An effort was made to develop better models for near-wall turbulence using direct numerical simulations of plane channel and boundary layer flows. The asymptotic near-wall behavior of turbulence was used to examine the problems of current second order closure models and develop new models with the correct near-wall behavior. Rapid Distortion Theory was used to analytically study the effects of mean deformation on turbulence, obtain analytical solutions for the spectrum tensor, Reynolds stress tensor, anisotropy tensor and its invariants, which can be used in the turbulence model development. The potential of the renormalization group theory in turbulence modeling was studied, as well as compressible turbulent flows, and modeling of bypass transition.

  15. ICRF modelling

    SciTech Connect

    Phillips, C.K.

    1985-12-01

    This lecture provides a survey of the methods used to model fast magnetosonic wave coupling, propagation, and absorption in tokamaks. The validity and limitations of three distinct types of modelling codes, which will be contrasted, include discrete models which utilize ray tracing techniques, approximate continuous field models based on a parabolic approximation of the wave equation, and full field models derived using finite difference techniques. Inclusion of mode conversion effects in these models and modification of the minority distribution function will also be discussed. The lecture will conclude with a presentation of time-dependent global transport simulations of ICRF-heated tokamak discharges obtained in conjunction with the ICRF modelling codes. 52 refs., 15 figs.

  16. Ventilation Model

    SciTech Connect

    H. Yang

    1999-11-04

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future.

  17. Climate Models

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.

    2012-01-01

    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  18. Phenomenological models

    SciTech Connect

    Braby, L.A.

    1990-09-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. A range of models covering different endpoints and phenomena has developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified. 43 refs., 13 figs.

  19. Calorimetry modeling

    SciTech Connect

    Robinson, C.E.

    1990-01-01

    A heat-flow calorimeter has been modeled on a Compaq PC, using the Algor Heat Transfer Modeling and Analysis Program, Algor Interactive Systems, Inc., Pittsburgh, PA. Employed in this application of the Algor finite element analysis program are two-dimensional axisymmetric thermal conductivity elements. The development of a computer calorimeter modeling program allows for the testing of new materials and techniques without actual fabrication of the calorimeter. 2 figs.

  20. Building models

    SciTech Connect

    Burr, M.T.

    1995-04-01

    As developers make progress on independent power projects around the world, models for success are beginning to emerge. Different models are evolving to create ownership structures that accomoate a complex system of regulatory requirements. Other frameworks make use of previously untapped fuel resources, or establish new sources of financing; however, not all models may be applied to a given project. This article explores how developers are finding new alternatives for overcoming development challenges that are common to projects in many countries.

  1. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  2. Scintillation modeling.

    NASA Technical Reports Server (NTRS)

    Fremouw, E. J.; Rino, C. L.

    1972-01-01

    Results of a quantitative attempt to model the scintillation-producing ionospheric irregularities. An empirical model of rms electron-density fluctuation and transverse scale size was employed for this purpose. On the basis of an analysis of diurnal-variation curves for scintillation, it is concluded that in most instances the model will produce better than order-of-magnitude estimates of the strength of scintillation to be expected under average ionospheric conditions. However, a number of significant limitations to the model are noted.

  3. Ventilation Model

    SciTech Connect

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To further satisfy KTI agreements RDTME 3.01 and 3.14 (Reamer and Williams 2001a) by providing the source documentation referred to in the KTI Letter Report, ''Effect of Forced Ventilation on Thermal-Hydrologic Conditions in the Engineered Barrier System and Near Field Environment'' (Williams 2002). Specifically to provide the results of the MULTIFLUX model which simulates the coupled processes of heat and mass transfer in and around waste emplacement drifts during periods of forced ventilation. This portion of the model report is presented as an Alternative Conceptual Model with a numerical application, and also provides corroborative results used for model validation purposes (Section 6.3 and 6.4).

  4. Model Selection for Geostatistical Models

    SciTech Connect

    Hoeting, Jennifer A.; Davis, Richard A.; Merton, Andrew A.; Thompson, Sandra E.

    2006-02-01

    We consider the problem of model selection for geospatial data. Spatial correlation is typically ignored in the selection of explanatory variables and this can influence model selection results. For example, the inclusion or exclusion of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often used approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also employ the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored.

  5. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1995-01-01

    The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.

  6. Modeling Sunspots

    ERIC Educational Resources Information Center

    Oh, Phil Seok; Oh, Sung Jin

    2013-01-01

    Modeling in science has been studied by education researchers for decades and is now being applied broadly in school. It is among the scientific practices featured in the "Next Generation Science Standards" ("NGSS") (Achieve Inc. 2013). This article describes modeling activities in an extracurricular science club in a high…

  7. Entrepreneurship Models.

    ERIC Educational Resources Information Center

    Finger Lakes Regional Education Center for Economic Development, Mount Morris, NY.

    This guide describes seven model programs that were developed by the Finger Lakes Regional Center for Economic Development (New York) to meet the training needs of female and minority entrepreneurs to help their businesses survive and grow and to assist disabled and dislocated workers and youth in beginning small businesses. The first three models…

  8. Modeling Sunspots

    ERIC Educational Resources Information Center

    Oh, Phil Seok; Oh, Sung Jin

    2013-01-01

    Modeling in science has been studied by education researchers for decades and is now being applied broadly in school. It is among the scientific practices featured in the "Next Generation Science Standards" ("NGSS") (Achieve Inc. 2013). This article describes modeling activities in an extracurricular science club in a high…

  9. Computational modelling.

    PubMed

    Dayan, P

    1994-04-01

    Computation modelling is playing an increasingly accepted and important role in neuroscience. It is not a unitary enterprise, though, and the distinction between two different sorts of modelling, one interested in description and the other also in function, is illustrated by their application to activity-dependent developmental plasticity and adult conditioning. PMID:8038579

  10. Phonological Models.

    ERIC Educational Resources Information Center

    Ballard, W.L.

    1968-01-01

    The article discusses models of synchronic and diachronic phonology and suggests changes in them. The basic generative model of phonology is outlined with the author's reinterpretations. The systematic phonemic level is questioned in terms of its unreality with respect to linguistic performance and its lack of validity with respect to historical…

  11. Budget Model.

    ERIC Educational Resources Information Center

    Washington State Board for Community Coll. Education, Olympia.

    Computerized formula-driven budget models are used by the Washington community college system to define resource needs for legislative budget requests and to distribute legislative appropriations among 22 community college districts. This manual outlines the sources of information needed to operate the model and illustrates the principles on which…

  12. Model Execution

    SciTech Connect

    Perumalla, Kalyan S

    2007-01-01

    A computer software-based model is typically designed to produce a trace of system evolution over time. The actual process of computing the model state and producing the state values as the simulation time is advanced is called model execution. Models could be designed with a specific execution technique in mind, or could be generally amenable to multiple different execution techniques. Two popular methods that are used to execute models are: time-stepped method and discrete-event method. Each of these methods could in turn be executed either sequentially (on a single processor), or in parallel (using multiple processors concurrently). In this chapter, we describe the time-stepped and discrete event execution methods and outline some of the common approaches to their sequential and parallel execution. Execution concepts common to the methods are described followed by implementation details of the methods.

  13. Protein structure modeling with MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-01-01

    Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. In this chapter, we present an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains in more than half of all known protein sequences. PMID:24573470

  14. Protein structure modeling with MODELLER.

    PubMed

    Eswar, Narayanan; Eramian, David; Webb, Ben; Shen, Min-Yi; Sali, Andrej

    2008-01-01

    Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. This chapter presents an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of similar protocols (correction of protcols) has resulted in models of useful accuracy for domains in more than half of all known protein sequences. PMID:18542861

  15. OSPREY Model

    SciTech Connect

    Veronica J. Rutledge

    2013-01-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to OSPREY to used and evaluate the model.

  16. Stereometric Modelling

    NASA Astrophysics Data System (ADS)

    Grimaldi, P.

    2012-07-01

    These mandatory guidelines are provided for preparation of papers accepted for publication in the series of Volumes of The The stereometric modelling means modelling achieved with : - the use of a pair of virtual cameras, with parallel axes and positioned at a mutual distance average of 1/10 of the distance camera-object (in practice the realization and use of a stereometric camera in the modeling program); - the shot visualization in two distinct windows - the stereoscopic viewing of the shot while modelling. Since the definition of "3D vision" is inaccurately referred to as the simple perspective of an object, it is required to add the word stereo so that "3D stereo vision " shall stand for "three-dimensional view" and ,therefore, measure the width, height and depth of the surveyed image. Thanks to the development of a stereo metric model , either real or virtual, through the "materialization", either real or virtual, of the optical-stereo metric model made visible with a stereoscope. It is feasible a continuous on line updating of the cultural heritage with the help of photogrammetry and stereometric modelling. The catalogue of the Architectonic Photogrammetry Laboratory of Politecnico di Bari is available on line at: http://rappresentazione.stereofot.it:591/StereoFot/FMPro?-db=StereoFot.fp5&-lay=Scheda&-format=cerca.htm&-view

  17. Phenomenological models.

    PubMed

    Braby, L A

    1991-01-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions which are modified by characteristics of the radiation, the timing of its administration, the chemical and physical environment, and the nature of the biological system. However, it is generally agreed that the health effects in animals originate from changes in individual cells, or possibly small groups of cells, and that these cellular changes are initiated by ionizations and excitations produced by the passage of charged particles through the cells. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. Different phenomena (LET dependence, dose rate effect, oxygen effect etc.) and different end points (cell survival, aberration formation, transformation, etc.) have been observed, and no single model has been developed to cover all of them. Instead, a range of models covering different end points and phenomena have developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified. PMID:1811477

  18. Modular Modeling System Model Builder

    SciTech Connect

    McKim, C.S.; Matthews, M.T.

    1996-12-31

    The latest release of the Modular Modeling System (MMS) Model Builder adds still more time-saving features to an already powerful MMS dynamic-simulation tool set. The Model Builder takes advantage of 32-bit architecture within the Microsoft Windows 95/NT{trademark} Operating Systems to better integrate a mature library of power-plant components. In addition, the MMS Library of components can now be modified and extended with a new tool named MMS CompGen{trademark}. The MMS Model Builder allows the user to quickly build a graphical schematic representation for a plant by selecting from a library of predefined power plant components to dynamically simulate their operation. In addition, each component has a calculation subroutine stored in a dynamic-link library (DLL), which facilitates the determination of a steady-state condition and performance of routine calculations for the component. These calculations, termed auto-parameterization, help avoid repetitive and often tedious hand calculations for model initialization. In striving to meet the needs for large models and increase user productivity, the MMS Model Builder has been completely revamped to make power plant model creation and maintainability easier and more efficient.

  19. Micromolecular modeling

    NASA Astrophysics Data System (ADS)

    Guillet, J. E.

    1984-10-01

    A reaction kinetics based model of the photodegradation process, which measures all important rate constants, and a computerized model capable of predicting the photodegradation rate and failure modes of a 30 year period, were developed. It is shown that the computerized photodegradation model for polyethylene correctly predicts failure of ELVAX 15 and cross linked ELVAX 150 on outdoor exposure. It is indicated that cross linking ethylene vinyl acetate (EVA) does not significantly change its degradation rate. It is shown that the effect of the stabilizer package is approximately equivalent on both polymers. The computerized model indicates that peroxide decomposers and UV absorbers are the most effective stabilizers. It is found that a combination of UV absorbers and a hindered amine light stabilizer (HALS) is the most effective stabilizer system.

  20. Micromolecular modeling

    NASA Technical Reports Server (NTRS)

    Guillet, J. E.

    1984-01-01

    A reaction kinetics based model of the photodegradation process, which measures all important rate constants, and a computerized model capable of predicting the photodegradation rate and failure modes of a 30 year period, were developed. It is shown that the computerized photodegradation model for polyethylene correctly predicts failure of ELVAX 15 and cross linked ELVAX 150 on outdoor exposure. It is indicated that cross linking ethylene vinyl acetate (EVA) does not significantly change its degradation rate. It is shown that the effect of the stabilizer package is approximately equivalent on both polymers. The computerized model indicates that peroxide decomposers and UV absorbers are the most effective stabilizers. It is found that a combination of UV absorbers and a hindered amine light stabilizer (HALS) is the most effective stabilizer system.

  1. Energy Models

    EPA Science Inventory

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  2. Programming models

    SciTech Connect

    Daniel, David J; Mc Pherson, Allen; Thorp, John R; Barrett, Richard; Clay, Robert; De Supinski, Bronis; Dube, Evi; Heroux, Mike; Janssen, Curtis; Langer, Steve; Laros, Jim

    2011-01-14

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  3. Modeling Arcs

    NASA Astrophysics Data System (ADS)

    Insepov, Z.; Norem, J.; Vetizer, S.; Mahalingam, S.

    2011-12-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gradient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  4. Mechanistic models

    SciTech Connect

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) ``interaction`` of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  5. Mechanistic models

    SciTech Connect

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) interaction'' of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  6. Modeling reality

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    Although powerful computers have allowed complex physical and manmade hardware systems to be modeled successfully, we have encountered persistent problems with the reliability of computer models for systems involving human learning, human action, and human organizations. This is not a misfortune; unlike physical and manmade systems, human systems do not operate under a fixed set of laws. The rules governing the actions allowable in the system can be changed without warning at any moment, and can evolve over time. That the governing laws are inherently unpredictable raises serious questions about the reliability of models when applied to human situations. In these domains, computers are better used, not for prediction and planning, but for aiding humans. Examples are systems that help humans speculate about possible futures, offer advice about possible actions in a domain, systems that gather information from the networks, and systems that track and support work flows in organizations.

  7. Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When you submit the form on this page, which includes your email address, you may choose to receive an email notice about a Journal event that interests you. Currently such events include availability of the latest issue of the Journal at JCE Online, expiration of your Journal subscription, shipment of a new JCE Software issue, publication of a new JCE Internet article or its availability for Open Review, and other announcements from the Journal. You may choose any number of these options independently. JCE Online Guestbook. Your Privacy JCE Online promises to you that we will not use the information that you provide in our Guestbook for anything other than our own internal information. We will not provide this information to third parties. We will use the information you provide only in our effort to help make the JCE serve you better. You only need to provide your email address to take advantage of this service; the other information you provide is optional. Molecular Modeling Exercises and Experiments: Mission Statement We are seeking in this JCE Internet feature column to publish molecular modeling exercises and experiments that have been used successfully in undergraduate instruction. The exercises will be published here on JCE Internet. An abstract of published submissions will appear in print in the Journal of Chemical Education. Acceptable exercises could be used in either a chemistry laboratory or a chemistry computer laboratory. The exercise could cover any area of chemistry, but should be limited to undergraduate instructional applications. We envision that most of the exercises/experiments will utilize one of the popular instructional molecular modeling software programs (e.g. HyperChem, Spartan, CAChe, PC Model). Exercises that are specific to a particular modeling program are acceptable, but those usable with any modeling program are preferred. Ideally the exercises/experiments will be of the type where the "correct"answer is not obvious so that the student must discover the solution or provide an explanation. The goal of the exercises should not be specifically to learn molecular modeling, but to use modeling to learn chemistry. Of course, some concepts of modeling have to be addressed in order for the student to effectively utilize molecular modeling (e.g., the distinction between a local and a global energy minimum conformation). We are looking for exercises that go beyond those already published by the molecular modeling software distributors. Each exercise should have a specific goal or objective. Fairly detailed procedures for the exercise should be included. All submissions should indicate the molecular modeling software system (name, version, computer platform and operating system) utilized for the exercise and the chemistry course(s) in which the exercise has been used. Ideally procedures and instructions should not be specific to one particular modeling software system and/or computer platform, but should be general so that they could apply to more than one system. Submissions will be peer reviewed and should be in three parts:

    a. A brief abstract b. The instructions and procedure to be used by the student c. Instructor notes that discuss the objective of the exercise, the results, the selection of the computational method(s), and potential pitfalls and problems.
    Specific guidelines for submission of exercises will be available at the JCE Internet ModelExer site. Feature Editor: Ronald Starkey, Department of Chemistry, University of Wisconsin-Green Bay, Green Bay, WI 54311-7001 Phone: 920/465-2264, or 920/465-2371 Email: starkeyr@uwgb.edu

  8. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  9. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  10. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  11. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  12. Why model?

    PubMed Central

    Wolkenhauer, Olaf

    2013-01-01

    Next generation sequencing technologies are bringing about a renaissance of mining approaches. A comprehensive picture of the genetic landscape of an individual patient will be useful, for example, to identify groups of patients that do or do not respond to certain therapies. The high expectations may however not be satisfied if the number of patient groups with similar characteristics is going to be very large. I therefore doubt that mining sequence data will give us an understanding of why and when therapies work. For understanding the mechanisms underlying diseases, an alternative approach is to model small networks in quantitative mechanistic detail, to elucidate the role of gene and proteins in dynamically changing the functioning of cells. Here an obvious critique is that these models consider too few components, compared to what might be relevant for any particular cell function. I show here that mining approaches and dynamical systems theory are two ends of a spectrum of methodologies to choose from. Drawing upon personal experience in numerous interdisciplinary collaborations, I provide guidance on how to model by discussing the question “Why model?” PMID:24478728

  13. Modeling Lessons

    ERIC Educational Resources Information Center

    Casey, Katherine

    2011-01-01

    As teachers learn new pedagogical strategies, they crave explicit demonstrations that show them how the new strategies will work with their students in their classrooms. Successful instructional coaches, therefore, understand the importance of modeling lessons to help teachers develop a vision of effective instruction. The author, an experienced…

  14. Modeling Lessons

    ERIC Educational Resources Information Center

    Casey, Katherine

    2011-01-01

    As teachers learn new pedagogical strategies, they crave explicit demonstrations that show them how the new strategies will work with their students in their classrooms. Successful instructional coaches, therefore, understand the importance of modeling lessons to help teachers develop a vision of effective instruction. The author, an experienced…

  15. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  16. Atmospheric Modeling

    EPA Science Inventory

    Although air quality models have been applied historically to address issues specific to ambient air quality standards (i.e., one criteria pollutant at a time) or welfare (e.g.. acid deposition or visibility impairment). they are inherently multipollutant based. Therefore. in pri...

  17. Ensemble Models

    EPA Science Inventory

    Ensemble forecasting has been used for operational numerical weather prediction in the United States and Europe since the early 1990s. An ensemble of weather or climate forecasts is used to characterize the two main sources of uncertainty in computer models of physical systems: ...

  18. Criticality Model

    SciTech Connect

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

  19. Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Aritomo, Y.; Hagino, K.; Nishio, K.; Chiba, S.

    2012-04-01

    In order to describe heavy-ion fusion reactions around the Coulomb barrier with an actinide target nucleus, we propose a model which combines the coupled-channels approach and a fluctuation-dissipation model for dynamical calculations. This model takes into account couplings to the collective states of the interacting nuclei in the penetration of the Coulomb barrier and the subsequent dynamical evolution of a nuclear shape from the contact configuration. In the fluctuation-dissipation model with a Langevin equation, the effect of nuclear orientation at the initial impact on the prolately deformed target nucleus is considered. Fusion-fission, quasifission, and deep quasifission are separated as different Langevin trajectories on the potential energy surface. Using this model, we analyze the experimental data for the mass distribution of fission fragments (MDFF) in the reactions of 34,36S + 238U and 30Si + 238U at several incident energies around the Coulomb barrier. We find that the time scale in the quasifission as well as the deformation of fission fragments at the scission point are different between the 30Si + 238U and 36S + 238U systems, causing different mass asymmetries of the quasifission.

  20. Models, Part V: Composition Models.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2003-01-01

    Describes four models: The Authoring Cycle, a whole language approach that reflects the inquiry process; I-Search, an approach to research that uses the power of student interests; Cultural Celebration, using local heritage topics; and Science Lab Report, for the composition of a lab report. (LRW)

  1. Modeling biomembranes.

    SciTech Connect

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas

    2005-11-01

    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  2. Model checking

    NASA Technical Reports Server (NTRS)

    Dill, David L.

    1995-01-01

    Automatic formal verification methods for finite-state systems, also known as model-checking, successfully reduce labor costs since they are mostly automatic. Model checkers explicitly or implicitly enumerate the reachable state space of a system, whose behavior is described implicitly, perhaps by a program or a collection of finite automata. Simple properties, such as mutual exclusion or absence of deadlock, can be checked by inspecting individual states. More complex properties, such as lack of starvation, require search for cycles in the state graph with particular properties. Specifications to be checked may consist of built-in properties, such as deadlock or 'unspecified receptions' of messages, another program or implicit description, to be compared with a simulation, bisimulation, or language inclusion relation, or an assertion in one of several temporal logics. Finite-state verification tools are beginning to have a significant impact in commercial designs. There are many success stories of verification tools finding bugs in protocols or hardware controllers. In some cases, these tools have been incorporated into design methodology. Research in finite-state verification has been advancing rapidly, and is showing no signs of slowing down. Recent results include probabilistic algorithms for verification, exploitation of symmetry and independent events, and the use symbolic representations for Boolean functions and systems of linear inequalities. One of the most exciting areas for further research is the combination of model-checking with theorem-proving methods.

  3. Students' Models of Curve Fitting: A Models and Modeling Perspective

    ERIC Educational Resources Information Center

    Gupta, Shweta

    2010-01-01

    The Models and Modeling Perspectives (MMP) has evolved out of research that began 26 years ago. MMP researchers use Model Eliciting Activities (MEAs) to elicit students' mental models. In this study MMP was used as the conceptual framework to investigate the nature of students' models of curve fitting in a problem-solving environment consisting of…

  4. Biomimetic modelling.

    PubMed Central

    Vincent, Julian F V

    2003-01-01

    Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more complete and certain understanding and the possibility of further revelations for application in engineering. This is a pathway as yet unformalized, and one that offers the possibility that engineers can also be scientists. PMID:14561351

  5. Towards an improved evaluation of neutron-induced fission cross sections on actinides

    SciTech Connect

    Goriely, S.; Hilaire, S.; Koning, A. J.; Capote, R.

    2011-03-15

    Mean-field calculations can now provide all the nuclear ingredients required to describe the fission path from the equilibrium deformation up to the nuclear scission point. The information obtained from microscopic mean-field models has been included in the TALYS reaction code to improve the predictions of neutron-induced fission cross sections. The nuclear inputs concern not only the details of the energy surface along the fission path, but also the coherent estimate of the nuclear level density derived within the combinatorial approach on the basis of the same single-particle properties, in particular at the fission saddle points. The predictive power of such a microscopic approach is tested on the experimental data available for the uranium isotopic chain. It is also shown that the various inputs can be tuned to reproduce, at best, experimental data in one unique coherent framework, so that in a close future it should become possible to make, on the basis of such models, accurate fission-cross-section calculations and the corresponding estimates for nuclei, energy ranges, or reaction channels for which no data exist. Such model uncertainties are usually not taken into account in data evaluations.

  6. Pre-Modeling Ensures Accurate Solid Models

    ERIC Educational Resources Information Center

    Gow, George

    2010-01-01

    Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…

  7. New fission fragment distributions and r-process origin of the rare-earth elements.

    PubMed

    Goriely, S; Sida, J-L; Lemaître, J-F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H-T

    2013-12-13

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140. PMID:24483647

  8. New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Sida, J.-L.; Lemaître, J.-F.; Panebianco, S.; Dubray, N.; Hilaire, S.; Bauswein, A.; Janka, H.-T.

    2013-12-01

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A?140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110?A?170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A?278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A?165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A?140.

  9. Modeling sonoluminescence

    NASA Astrophysics Data System (ADS)

    Chodos, Alan; Groff, Sarah

    1999-03-01

    In single-bubble sonoluminescence, a bubble trapped by a sound wave in a flask of liquid is forced to expand and contract; exactly once per cycle, the bubble emits a very sharp (<50 ps) pulse of visible light. This is a robust phenomenon observable to the naked eye, yet the mechanism whereby the light is produced is not well understood. One model that has been proposed is that the light is ``vacuum radiation'' generated by the coupling of the electromagnetic fields to the surface of the bubble. In this paper, we simulate vacuum radiation by solving Maxwell's equations with an additional term that couples the field to the bubble's motion. We show that, in the static case originally considered by Casimir [Proc. K. Ned. Akad. Nel. 51, 783 (1948)], we reproduce Casimir's result. In a simple purely time-dependent example, we find that an instability occurs and the pulse of radiation grows exponentially. In the more realistic case of spherically symmetric bubble motion, we again find exponential growth in the context of a small-radius approximation.

  10. CISNET lung models: Comparison of model assumptions and model structures

    PubMed Central

    McMahon, Pamela M.; Hazelton, William; Kimmel, Marek; Clarke, Lauren

    2012-01-01

    Sophisticated modeling techniques can be powerful tools to help us understand the effects of cancer control interventions on population trends in cancer incidence and mortality. Readers of journal articles are however rarely supplied with modeling details. Six modeling groups collaborated as part of the National Cancer Institute’s Cancer Intervention and Surveillance Modeling Network (CISNET) to investigate the contribution of US tobacco control efforts towards reducing lung cancer deaths over the period 1975 to 2000. The models included in this monograph were developed independently and use distinct, complementary approaches towards modeling the natural history of lung cancer. The models used the same data for inputs and agreed on the design of the analysis and the outcome measures. This article highlights aspects of the models that are most relevant to similarities of or differences between the results. Structured comparisons can increase the transparency of these complex models. PMID:22882887

  11. Building Mental Models by Dissecting Physical Models

    ERIC Educational Resources Information Center

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…

  12. I&C Modeling in SPAR Models

    SciTech Connect

    John A. Schroeder

    2012-06-01

    The Standardized Plant Analysis Risk (SPAR) models for the U.S. commercial nuclear power plants currently have very limited instrumentation and control (I&C) modeling [1]. Most of the I&C components in the operating plant SPAR models are related to the reactor protection system. This was identified as a finding during the industry peer review of SPAR models. While the Emergency Safeguard Features (ESF) actuation and control system was incorporated into the Peach Bottom Unit 2 SPAR model in a recent effort [2], various approaches to expend resources for detailed I&C modeling in other SPAR models are investigated.

  13. Fission of actinides through quasimolecular shapes

    NASA Astrophysics Data System (ADS)

    Royer, Guy; Zhang, Hongfei; Eudes, Philippe; Moustabchir, Rachid; Moreau, Damien; Jaffré, Muriel; Morabit, Youssef; Particelli, Benjamin

    2013-12-01

    The potential energy of heavy nuclei has been calculated in the quasimolecular shape path from a generalized liquid drop model including the proximity energy, the charge and mass asymmetries and the microscopic corrections. The potential barriers are multiple-humped. The second maximum is the saddle-point. It corresponds to the transition from compact one-body shapes with a deep neck to two touching ellipsoids. The scission point lies at the end of an energy plateau well below the saddle-point and where the effects of the nuclear attractive forces between two separated fragments vanish. The energy on this plateau is the sum of the kinetic and excitation energies of the fragments. The shell and pairing corrections play an essential role to select the most probable fission path. The potential barrier heights agree with the experimental data and the theoretical half-lives follow the trend of the experimental values. A third peak and a shallow third minimum appear in asymmetric decay paths when one fragment is close to a double magic quasi-spherical nucleus, while the smaller one changes from oblate to prolate shapes.

  14. Comparative protein structure modeling using MODELLER.

    PubMed

    Eswar, Narayanan; Webb, Ben; Marti-Renom, Marc A; Madhusudhan, M S; Eramian, David; Shen, Min-Yi; Pieper, Ursula; Sali, Andrej

    2007-11-01

    Functional characterization of a protein sequence is a common goal in biology, and is usually facilitated by having an accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:18429317

  15. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-01-01

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:25199792

  16. Comparative protein structure modeling using Modeller.

    PubMed

    Eswar, Narayanan; Webb, Ben; Marti-Renom, Marc A; Madhusudhan, M S; Eramian, David; Shen, Min-Yi; Pieper, Ursula; Sali, Andrej

    2006-10-01

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:18428767

  17. Comparative Protein Structure Modeling Using Modeller

    PubMed Central

    Eswar, Narayanan; Marti-Renom, Marc A.; Madhusudhan, M.S.; Eramian, David; Shen, Min-yi; Pieper, Ursula

    2014-01-01

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:18428767

  18. Comparisons of debris environment model breakup models

    NASA Astrophysics Data System (ADS)

    Jonas, F.; Yates, K.; Evans, R.

    1993-01-01

    This paper presents a comparison of current spacecraft breakup models used in orbital (space) debris computational environment models. The breakup models to be compared come from the NASA EVOLVE (Evolutionary) model long term debris model, the IMPACT code developed by Aerospace Corp., and the Fragmentation Algorithms for Satellite Targets (FAST) developed by Kaman Sciences. The comparison will show the methodologies and results obtained for each model such as mass versus fragment number distributions. Implications for debris cloud formation will be discussed in terms of the environments produced. No attempt is made to recommend any one model over the other as each were designed and employed for specific purposes in the environment models they are part of or contribute to. The comparisons are intended to provide researchers both quantitative and qualitative information on the models for use in their own research activities.

  19. Geoscientific Model Development - a journal about models, for modellers

    NASA Astrophysics Data System (ADS)

    Lunt, Daniel; Annan, James; Hargreaves, Julia; Rutt, Ian; Sander, Rolf

    2010-05-01

    The journal Geoscientific Model Development arose from the observation that despite modelling being central to climate/earth system science, the models themselves are not generally subject to the same level of scrutiny and peer review as the results they generate. Model descriptions are generally (with some exceptions) difficult to publish independent from scientific results, and so are necessarily space-limited when they do appear. Consequently, it is not uncommon that the description of a given model is spread across several papers, and crucial aspects of the formulation may not be published at all. Issues of reproducibility, platform-dependence, version proliferation and the various fudges and corrections often needed in modelling, are rarely addressed in the literature. GMD aims to change this by providing a place to publish detailed, peer-reviewed descriptions of numerical models, including verification and validation. Model developers can publish an initial description of a numbered version of their model, and address subsequent changes with a sequence of update papers. Thus, a body of citable literature can be developed which provides an authoritative reference for a given version of the model, greatly improving traceability and giving confidence in the provenance of the code. An additional benefit is that the citations generated will at last recognise the important contribution which model developers make to science. The publication process is typical for an open access EGU journal: papers are initially published in an on-line discussion journal (Geoscientific Model Development Discussions), for a period of eight weeks. Anonymous reviews are solicited as normal, but are also published in the discussion journal. Anyone else may contribute to the discussions, if they wish. After the discussion period, the revision/review process operates as normal, until the paper is finally accepted or rejected by the handling topical editor. In this paper we describe the journal, and present statistics of submissions, papers accepted etc. since its first issue in 2008. For more details, see http://www.geoscientific-model-development.net

  20. Model selection for logistic regression models

    NASA Astrophysics Data System (ADS)

    Duller, Christine

    2012-09-01

    Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.

  1. Modeling transient rootzone salinity (SWS Model)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The combined, water quality criteria for irrigation, water and ion processes in soils, and plant and soil response is sufficiently complex that adequate analysis requires computer models. Models for management are also needed but these models must consider that the input requirements must be reasona...

  2. PRECIPITATION SIMULATION MODELS 1425

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precipitation simulation models generate synthesized sequences of precipitation at a range of spatial and temporal scales. Three broad categories are general circulation models, stochastic spatial-temporal rainstorm models and daily precipitation models. Model selection and use should be justified b...

  3. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  4. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  5. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  6. Bohr model as an algebraic collective model

    SciTech Connect

    Rowe, D. J.; Welsh, T. A.; Caprio, M. A.

    2009-05-15

    Developments and applications are presented of an algebraic version of Bohr's collective model. Illustrative examples show that fully converged calculations can be performed quickly and easily for a large range of Hamiltonians. As a result, the Bohr model becomes an effective tool in the analysis of experimental data. The examples are chosen both to confirm the reliability of the algebraic collective model and to show the diversity of results that can be obtained by its use. The focus of the paper is to facilitate identification of the limitations of the Bohr model with a view to developing more realistic, computationally tractable models.

  7. Building mental models by dissecting physical models.

    PubMed

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to ensure focused learning; models that are too constrained require less supervision, but can be constructed mechanically, with little to no conceptual engagement. We propose "model-dissection" as an alternative to "model-building," whereby instructors could make efficient use of supervisory resources, while simultaneously promoting focused learning. We report empirical results from a study conducted with biology undergraduate students, where we demonstrate that asking them to "dissect" out specific conceptual structures from an already built 3D physical model leads to a significant improvement in performance than asking them to build the 3D model from simpler components. Using questionnaires to measure understanding both before and after model-based interventions for two cohorts of students, we find that both the "builders" and the "dissectors" improve in the post-test, but it is the latter group who show statistically significant improvement. These results, in addition to the intrinsic time-efficiency of "model dissection," suggest that it could be a valuable pedagogical tool. © 2015 by The International Union of Biochemistry and Molecular Biology, 44:7-11, 2016. PMID:26712513

  8. Geologic Framework Model Analysis Model Report

    SciTech Connect

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.

  9. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  10. Forest succession models

    SciTech Connect

    Shugart, H.H. Jr.; West, D.C.

    1980-05-01

    Studies in succession attempt to determine the changes in species composition and other ecosystem attributes expected to occur over periods of time. Mathematical models developed in forestry and ecology to study ecological succession are reviewed. Tree models, gap models and forest models are discussed. Model validation or testing procedures are described. Model applications can involve evaluating large-scale and long-term changes in the ambient levels of pollutants and assessing the effects of climate change on the environment. (RJC)

  11. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  12. Modeling of geothermal systems

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  13. Continuous system modeling

    NASA Technical Reports Server (NTRS)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  14. Generalized smooth models

    SciTech Connect

    Glosup, J.

    1992-07-23

    The class of gene linear models is extended to develop a class of nonparametric regression models known as generalized smooth models. The technique of local scoring is used to estimate a generalized smooth model and the estimation procedure based on locally weighted regression is shown to produce local likelihood estimates. The asymptotically correct distribution of the deviance difference is derived and its use in comparing the fits of generalized linear models and generalized smooth models is illustrated. The relationship between generalized smooth models and generalized additive models is discussed, also.

  15. Interfacing materials models with fire field models

    SciTech Connect

    Nicolette, V.F.; Tieszen, S.R.; Moya, J.L.

    1995-12-01

    For flame spread over solid materials, there has traditionally been a large technology gap between fundamental combustion research and the somewhat simplistic approaches used for practical, real-world applications. Recent advances in computational hardware and computational fluid dynamics (CFD)-based software have led to the development of fire field models. These models, when used in conjunction with material burning models, have the potential to bridge the gap between research and application by implementing physics-based engineering models in a transient, multi-dimensional tool. This paper discusses the coupling that is necessary between fire field models and burning material models for the simulation of solid material fires. Fire field models are capable of providing detailed information about the local fire environment. This information serves as an input to the solid material combustion submodel, which subsequently calculates the impact of the fire environment on the material. The response of the solid material (in terms of thermal response, decomposition, charring, and off-gassing) is then fed back into the field model as a source of mass, momentum and energy. The critical parameters which must be passed between the field model and the material burning model have been identified. Many computational issues must be addressed when developing such an interface. Some examples include the ability to track multiple fuels and species, local ignition criteria, and the need to use local grid refinement over the burning material of interest.

  16. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    SciTech Connect

    Clinton Lum

    2002-02-04

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM.

  17. Scaled models, scaled frequencies, and model fitting

    NASA Astrophysics Data System (ADS)

    Roxburgh, Ian W.

    2015-12-01

    I show that given a model star of mass M, radius R, and density profile ρ(x) [x = r/R], there exists a two parameter family of models with masses Mk, radii Rk, density profile ρk(x) = λρ(x) and frequencies νknℓ = λ1/2νnℓ, where λ,Rk/RA are scaling factors. These models have different internal structures, but all have the same value of separation ratios calculated at given radial orders n, and all exactly satisfy a frequency matching algorithm with an offset function determined as part of the fitting procedure. But they do not satisfy ratio matching at given frequencies nor phase shift matching. This illustrates that erroneous results may be obtained when model fitting with ratios at given n values or frequency matching. I give examples from scaled models and from non scaled evolutionary models.

  18. To model or not to model?

    PubMed

    Fletcher, Daniel A

    2011-04-01

    In theory, the combination of mathematical modeling with experimental studies can be a powerful and compelling approach to understanding cell biology. In practice, choosing appropriate problems, identifying willing and able collaborators, and publishing the resulting research can be remarkably challenging. To provide perspective on the question of whether and when to combine modeling and experiments, a panel of experts at the 2010 ASCB Annual Meeting shared their personal experiences and advice on how to use modeling effectively. PMID:21454831

  19. Modelling Holocene climate trends: A model intercomparison

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerrit

    2013-04-01

    For the paleomodel intercomparison, we compared the results from scenarios with identical forcing for the mid-to-late Holocene period: varying Earth's orbital parameters, fixed level of greenhouse gas concentrations, fixed land-sea mask and orography. 18 paleoclimate modelling groups are involved in this initiative, working on transient Holocene simulations. One major issue of both the modelling and reconstruction side were the quantification of uncertainties, and the evaluation of trend and variability patterns beyond a single proxy and beyond a single model simulation. The goal is to obtain robust results of trend patterns, seasonality changes, as well as transitions on a regional scale. The major objective is to investigate the spatio-temporal pattern of temperature and precipitation changes during Holocene as derived from integrations with a set comprehensive global climate models (GCMs), Earth system models of intermediate complexity (EMICs), as well as conceptual-statistical models. In the conceptual-statistical model by Laepple and Lohmann (2009) a rigorous simple concept is proposed: The temperature response on astronomical timescales has the same function as the response to seasonal insolation variations. The general pattern of surface temperatures in the models shows a high latitude cooling and a low latitude warming. Our analysis shows common patterns of temperature changes, especially for the respective summer seasons. This is a common feature for all model considered. Due to strong differences in atmospheric dynamics and sea ice, we find significant differences in the winter patterns. The precipitation trends show a clear difference between GCMs and EMICs mainly because the treatment of the hydological cycle in the tropics. Most models show a southward movement of the ITCZ. Using statistical analysis of the model variability modes and their amplitude during the Holocene, we reveal a strong heterogeneity in temperature and precipitation pattern and no common response in trend and variability, although a tendency towards NAO- and SOI- (El Nino-like) is detected. Our approach is to obtain, through ensemble runs for climate model output, a range of solutions that can be then compared and evaluated for their consistency with the range of uncertainty given by the palaeoclimate proxies. This approach allows a much more congruent way of comparison between proxy data and model result because both investigations will provide a range of possible climate change where the errors in the estimates are accounted for. We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. Independently of the choice of the climate model, we observe significant mismatches between modelled and reconstructed amplitudes in the trends for the last 6000 years.

  20. Derivative scalar coupling model versus ?-? model

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Kang; Onley, D. S.

    1991-11-01

    The relativistic derivative scalar coupling model of Zimanyi and Moszkowski, which is based on the original ?-? model, is investigated both for infinite symmetric nuclear matter and finite spherical nuclei. We find that while this model yields satisfactory compressibility in nuclear matter, and consequently gives good total binding energies for finite nuclei, it however fails to give the right spin-orbit interaction in finite nuclei. Calculated results are shown for 16O and compared to the ?-? model and experimental data; the origin of the discrepancy is discussed.

  1. Multimodeling and Model Abstraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multiplicity of models of the same process or phenomenon is the commonplace in environmental modeling. Last 10 years brought marked interest to making use of the variety of conceptual approaches instead of attempting to find the best model or using a single preferred model. Two systematic approa...

  2. Generative Models of Disfluency

    ERIC Educational Resources Information Center

    Miller, Timothy A.

    2010-01-01

    This thesis describes a generative model for representing disfluent phenomena in human speech. This model makes use of observed syntactic structure present in disfluent speech, and uses a right-corner transform on syntax trees to model this structure in a very natural way. Specifically, the phenomenon of speech repair is modeled by explicitly…

  3. Generative Models of Disfluency

    ERIC Educational Resources Information Center

    Miller, Timothy A.

    2010-01-01

    This thesis describes a generative model for representing disfluent phenomena in human speech. This model makes use of observed syntactic structure present in disfluent speech, and uses a right-corner transform on syntax trees to model this structure in a very natural way. Specifically, the phenomenon of speech repair is modeled by explicitly…

  4. Efficient polarimetric BRDF model.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D

    2015-11-30

    The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing. PMID:26698753

  5. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  6. Solar Flare Models

    NASA Astrophysics Data System (ADS)

    Forbes, T.; Murdin, P.

    2000-11-01

    Even though FLARES have been observed on the Sun for nearly 150 years, their origin remains a mystery. At the present time there is no generally accepted model which explains why they occur, but there do exist models which successfully explain certain limited aspects such as the formation of flare loops and ribbons. Before discussing particular models, we review the constraints imposed on models ...

  7. Qualitative Student Models.

    ERIC Educational Resources Information Center

    Clancey, William J.

    The concept of a qualitative model is used as the focus of this review of qualitative student models in order to compare alternative computational models and to contrast domain requirements. The report is divided into eight sections: (1) Origins and Goals (adaptive instruction, qualitative models of processes, components of an artificial…

  8. AIDS Epidemiological models

    NASA Astrophysics Data System (ADS)

    Rahmani, Fouad Lazhar

    2010-11-01

    The aim of this paper is to present mathematical modelling of the spread of infection in the context of the transmission of the human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS). These models are based in part on the models suggested in the field of th AIDS mathematical modelling as reported by ISHAM [6].

  9. Calibrated Properties Model

    SciTech Connect

    C.F. Ahlers, H.H. Liu

    2001-12-18

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M&O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  10. Calibrated Properties Model

    SciTech Connect

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  11. Stable models of superacceleration

    SciTech Connect

    Kaplinghat, Manoj; Rajaraman, Arvind

    2007-05-15

    We discuss an instability in a large class of models where dark energy is coupled to matter. In these models the mass of the scalar field is much larger than the expansion rate of the Universe. We find models in which this instability is absent, and show that these models generically predict an apparent equation of state for dark energy smaller than -1, i.e., superacceleration. These models have no acausal behavior or ghosts.

  12. Introduction to Adjoint Models

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.

  13. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  14. ADAPT model: Model use, calibration and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents an overview of the Agricultural Drainage and Pesticide Transport (ADAPT) model and a case study to illustrate the calibration and validation steps for predicting subsurface tile drainage and nitrate-N losses from an agricultural system. The ADAPT model is a daily time step field ...

  15. Model Shrinkage for Discriminative Language Models

    NASA Astrophysics Data System (ADS)

    Oba, Takanobu; Hori, Takaaki; Nakamura, Atsushi; Ito, Akinori

    This paper describes a technique for overcoming the model shrinkage problem in automatic speech recognition (ASR), which allows application developers and users to control the model size with less degradation of accuracy. Recently, models for ASR systems tend to be large and this can constitute a bottleneck for developers and users without special knowledge of ASR with respect to introducing the ASR function. Specifically, discriminative language models (DLMs) are usually designed in a high-dimensional parameter space, although DLMs have gained increasing attention as an approach for improving recognition accuracy. Our proposed method can be applied to linear models including DLMs, in which the score of an input sample is given by the inner product of its features and the model parameters, but our proposed method can shrink models in an easy computation by obtaining simple statistics, which are square sums of feature values appearing in a data set. Our experimental results show that our proposed method can shrink a DLM with little degradation in accuracy and perform properly whether or not the data for obtaining the statistics are the same as the data for training the model.

  16. Geochemistry Model Validation Report: External Accumulation Model

    SciTech Connect

    K. Zarrabi

    2001-09-27

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation, density of accumulation, and the geometry of the accumulation zone. The density of accumulation and the geometry of the accumulation zone are calculated using a characterization of the fracture system based on field measurements made in the proposed repository (BSC 2001k). The model predicts that accumulation would spread out in a conical accumulation volume. The accumulation volume is represented with layers as shown in Figure 1. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance.

  17. Model Validation Status Review

    SciTech Connect

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and engineered barriers, plus the TSPA model itself Description of the model areas is provided in Section 3, and the documents reviewed are described in Section 4. The responsible manager for the Model Validation Status Review was the Chief Science Officer (CSO) for Bechtel-SAIC Co. (BSC). The team lead was assigned by the CSO. A total of 32 technical specialists were engaged to evaluate model validation status in the 21 model areas. The technical specialists were generally independent of the work reviewed, meeting technical qualifications as discussed in Section 5.

  18. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP, LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir Space Station. This report gives the details of the model-data comparisons-summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a combination report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian-trapped radiation models.

  19. Advancements in turbulence modeling

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Shih, T. H.

    1989-01-01

    Direct simulation data are used to test newly proposed nonlinear models in the Reynolds stress anisotropy for the rapid pressure-strain terms. It is found that the nonlinear models will perform better than the linear models. In addition to testing the rapid pressure-strain models, a new k-epsilon model is proposed for near-wall flow simulation. The model is proposed for near-wall flow simulation. The model was developed by fitting low-Reynolds number data from a direct simulation of a channel flow. A new wall-correction for the eddy-viscosity as well as wall-corrections for the epsilon-equation are proposed. The model will give better predictions of the turbulent kinetic profile in the near-wall region than existing models.

  20. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP. LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir space station. This report gives the details of the model-data comparisons -- summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a companion report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian trapped radiation models.

  1. All models are wrong.

    PubMed

    Hickerson, Michael J

    2014-06-01

    As the field of phylogeography has continued to move in the model-based direction, researchers continue struggling to construct useful models for inference. These models must be both simple enough to be tractable yet contain enough of the complexity of the natural world to make meaningful inference. Beyond constructing such models for inference, researchers explore model space and test competing models with the data on hand, with the goal of improving the understanding of the natural world and the processes underlying natural biological communities. Approximate Bayesian computation (ABC) has increased in recent popularity as a tool for evaluating alternative historical demographic models given population genetic samples. As a thorough demonstration, Pelletier & Carstens (2014) use ABC to test 143 phylogeographic submodels given geographically widespread genetic samples from the salamander species Plethodon idahoensis (Carstens et al. 2014) and, in so doing, demonstrate how the results of the ABC model choice procedure are dependent on the model set one chooses to evaluate. PMID:24931159

  2. Modeling volatility using state space models.

    PubMed

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years). PMID:9730016

  3. Antibody modeling assessment II. Structures and models.

    PubMed

    Teplyakov, Alexey; Luo, Jinquan; Obmolova, Galina; Malia, Thomas J; Sweet, Raymond; Stanfield, Robyn L; Kodangattil, Sreekumar; Almagro, Juan Carlos; Gilliland, Gary L

    2014-08-01

    To assess the state-of-the-art in antibody structure modeling, a blinded study was conducted. Eleven unpublished Fab crystal structures were used as a benchmark to compare Fv models generated by seven structure prediction methodologies. In the first round, each participant submitted three non-ranked complete Fv models for each target. In the second round, CDR-H3 modeling was performed in the context of the correct environment provided by the crystal structures with CDR-H3 removed. In this report we describe the reference structures and present our assessment of the models. Some of the essential sources of errors in the predictions were traced to the selection of the structure template, both in terms of the CDR canonical structures and VL/VH packing. On top of this, the errors present in the Protein Data Bank structures were sometimes propagated in the current models, which emphasized the need for the curated structural database devoid of errors. Modeling non-canonical structures, including CDR-H3, remains the biggest challenge for antibody structure prediction. PMID:24633955

  4. Reliability model generator

    NASA Technical Reports Server (NTRS)

    McMann, Catherine M. (Inventor); Cohen, Gerald C. (Inventor)

    1991-01-01

    An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.

  5. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  6. Reduced Vector Preisach Model

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)

    2002-01-01

    A new vector Preisach model, called the Reduced Vector Preisach model (RVPM), was developed for fast computations. This model, derived from the Simplified Vector Preisach model (SVPM), has individual components that like the SVPM are calculated independently using coupled selection rules for the state vector computation. However, the RVPM does not require the rotational correction. Therefore, it provides a practical alternative for computing the magnetic susceptibility using a differential approach. A vector version, using the framework of the DOK model, is implemented. Simulation results for the reduced vector Preisach model are also presented.

  7. Holographic Twin Higgs Model

    NASA Astrophysics Data System (ADS)

    Geller, Michael; Telem, Ofri

    2015-05-01

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at mKK , naturally allowing for mKK beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  8. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider. PMID:26024160

  9. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  10. Modeling Guru: Knowledge Base for NASA Modelers

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the same document, even allowing the author to select those who may edit and approve the document. To maintain knowledge integrity, all documents are moderated before they are visible to the public. Modeling Guru, running on Clearspace by Jive Software, has been an active resource to the NASA modeling and HEC communities for more than a year and currently has more than 100 active users. SIVO will soon install live instant messaging support, as well as a user-customizable homepage with social-networking features. In addition, SIVO plans to implement a large dataset/file storage capability so that users can quickly and easily exchange datasets and files with one another. Continued active community participation combined with periodic software updates and improved features will ensure that Modeling Guru remains a vibrant, effective, easy-to-use tool for the NASA scientific community.

  11. Biosphere Model Report

    SciTech Connect

    D.W. Wu; A.J. Smith

    2004-11-08

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  12. Develop a Model Component

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a fluid component, a discrete pressure switch. The switch takes a fluid pressure input, and if the pressure is greater than a designated cutoff pressure, the switch would stop fluid flow.

  13. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  14. Aggregation in ecosystem models and model stability

    NASA Astrophysics Data System (ADS)

    Giricheva, Evgeniya

    2015-05-01

    Using a multimodal approach to research ecosystems improves usage of available information on an object. This study presents several models of the Bering Sea ecosystem. The ecosystem is considered as a closed object, that is, the influence of the environment is not provided. We then add the links with the external medium in the models. The models differ in terms of the degree and method of grouping components. Our method is based on the differences in habitat and food source of groups, which allows us to determine the grouping of species with a greater effect on system dynamics. In particular, we determine whether benthic fish aggregation or pelagic fish aggregation can change the consumption structure of some groups of species, and consequently, the behavior of the entire model system.

  15. Nonlinear Modeling by Assembling Piecewise Linear Models

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  16. Solid Waste Projection Model: Model user's guide

    SciTech Connect

    Stiles, D.L.; Crow, V.L.

    1990-08-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab.

  17. TMDL RUSLE MODEL

    EPA Science Inventory

    We developed a simplified spreadsheet modeling approach for characterizing and prioritizing sources of sediment loadings from watersheds in the United States. A simplified modeling approach was developed to evaluate sediment loadings from watersheds and selected land segments. ...

  18. Protein solubility modeling.

    PubMed

    Agena, S M; Pusey, M L; Bogle, I D

    1999-07-20

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. PMID:10397850

  19. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanis?aw J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  20. Models (Part 1).

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Defines models and describes information search models that can be helpful to instructional media specialists in meeting users' abilities and information needs. Explains pathfinders and Kuhlthau's information search process, including the pre-writing information search process. (LRW)

  1. Modeling EERE deployment programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  2. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  3. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  4. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  5. System Advisor Model

    Energy Science and Technology Software Center (ESTSC)

    2010-03-01

    The System Advisor Model (SAM) is a performance and economic model designed to facilitate decision making for people involved in the renewable energy industry, ranging from project managers and engineers to incentive program designers, technology developers, and researchers.

  6. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  7. Of Molecules and Models.

    ERIC Educational Resources Information Center

    Brinner, Bonnie

    1992-01-01

    Presents an activity in which models help students visualize both the DNA process and transcription. After constructing DNA, RNA messenger, and RNA transfer molecules; students model cells, protein synthesis, codons, and RNA movement. (MDH)

  8. METEOROLOGICAL AND TRANSPORT MODELING

    EPA Science Inventory

    Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...

  9. Communication system modeling

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Wetherington, R. D.

    1971-01-01

    This report presents the results of work on communications systems modeling and covers three different areas of modeling. The first of these deals with the modeling of signals in communication systems in the frequency domain and the calculation of spectra for various modulations. These techniques are applied in determining the frequency spectra produced by a unified carrier system, the down-link portion of the Command and Communications System (CCS). The second modeling area covers the modeling of portions of a communication system on a block basis. A detailed analysis and modeling effort based on control theory is presented along with its application to modeling of the automatic frequency control system of an FM transmitter. A third topic discussed is a method for approximate modeling of stiff systems using state variable techniques.

  10. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  11. PERSISTENCE IN MODEL ECOSYSTEMS

    EPA Science Inventory

    Mathematical models aid in understanding environmental systems and in developing testable hypotheses relevant to the fate and ecological effects of toxic substances in such systems. Within the framework of microcosm or laboratory ecosystem modeling, some differential equation mod...

  12. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  13. Evaluation of comparative protein modeling by MODELLER.

    PubMed

    Sali, A; Potterton, L; Yuan, F; van Vlijmen, H; Karplus, M

    1995-11-01

    We evaluate 3D models of human nucleoside diphosphate kinase, mouse cellular retinoic acid binding protein I, and human eosinophil neurotoxin that were calculated by MODELLER, a program for comparative protein modeling by satisfaction of spatial restraints. The models have good stereochemistry and are at least as similar to the crystallographic structures as the closest template structures. The largest errors occur in the regions that were not aligned correctly or where the template structures are not similar to the correct structure. These regions correspond predominantly to exposed loops, insertions of any length, and non-conserved side chains. When a template structure with more than 40% sequence identity to the target protein is available, the model is likely to have about 90% of the mainchain atoms modeled with an rms deviation from the X-ray structure of approximately 1 A, in large part because the templates are likely to be that similar to the X-ray structure of the target. This rms deviation is comparable to the overall differences between refined NMR and X-ray crystallography structures of the same protein. PMID:8710825

  14. Modeling and model simplification of aeroelastic vehicles

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Buttrill, Carey S.; Schmidt, David K.

    1990-01-01

    The rigid-body degrees of freedom and elastic degrees of freedom of aeroelastic vehicles are typically treated separately in dynamic analysis. Such a decoupling, however, is not always justified and modeling assumptions that imply decoupling must be used with caution. The frequency separation between the rigid-body and elastic degrees of freedom for advanced aircraft may no longer be sufficient to permit the typical treatment of the vehicle dynamics. Integrated, elastic vehicle models must be developed initially and simplified in a manner appropriate to and consistent with the intended application. This paper summarizes key results from the research aimed at developing and implementing integrated aeroelastic vehicle models for flight controls analysis and design. Three major areas will be addressed: (1) the accurate representation of the dynamics of aeroelastic vehicles, (2) properties of several model simplification methods, and (3) the importance of understanding the physics of the system being modeled and of having a model which exposes the underlying physical causes for critical dynamic characteristics.

  15. Mathematical circulatory system model

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)

    2010-01-01

    A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.

  16. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  17. Future of groundwater modeling

    USGS Publications Warehouse

    Langevin, Christian D.; Panday, Sorab

    2012-01-01

    With an increasing need to better manage water resources, the future of groundwater modeling is bright and exciting. However, while the past can be described and the present is known, the future of groundwater modeling, just like a groundwater model result, is highly uncertain and any prediction is probably not going to be entirely representative. Thus we acknowledge this as we present our vision of where groundwater modeling may be headed.

  18. Flamelet Radiation Modeling

    NASA Astrophysics Data System (ADS)

    Doom, Jeffrey; Mahesh, Krishnan

    2012-11-01

    A flamelet model is proposed that couples soot and radiation. The soot model from Carbonell et al. (Combust. Flame. 2009) is used. The radiation model is the P1 gray and non-grey model from Modest (Academic Press. 2003) which are cast into the flamelet equations. A sooty ethylene flame is studied and a series of canonical calculations are performed. Results associated with the soot and radiation will be shown and compared to experiment.

  19. Wonderland climate model

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Lacis, A.; Russell, G.; Sato, M.; Lerner, J.; Rind, D.; Stone, P.

    1997-03-01

    We obtain a highly efficient global climate model by defining a sector version (120° of longitude) of the coarse resolution Goddard Institute for Space Studies model II. The geography of Wonderland is chosen such that the amount of land as a function of latitude is the same as on Earth. We show that the zonal mean climate of the Wonderland model is very similar to that of the parent model II.

  20. Hierarchical Bass model

    NASA Astrophysics Data System (ADS)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  1. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  2. Modeling Climate Dynamically

    ERIC Educational Resources Information Center

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  3. A Model Chemistry Class.

    ERIC Educational Resources Information Center

    Summerlin, Lee; Borgford, Christie

    1989-01-01

    Described is an activity which uses a 96-well reaction plate and soda straws to construct a model of the periodic table of the elements. The model illustrates the ionization energies of the various elements. Construction of the model and related concepts are discussed. (CW)

  4. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  5. Modeling and Remodeling Writing

    ERIC Educational Resources Information Center

    Hayes, John R.

    2012-01-01

    In Section 1 of this article, the author discusses the succession of models of adult writing that he and his colleagues have proposed from 1980 to the present. He notes the most important changes that differentiate earlier and later models and discusses reasons for the changes. In Section 2, he describes his recent efforts to model young…

  6. What Is a Model?

    ERIC Educational Resources Information Center

    McNamara, James F.

    1996-01-01

    Uses R.A. Ackoff's connotations to define "model" as noun, adjective, and verb. Researchers should use various types of models (iconic, analogue, or symbolic) for three purposes: to reveal reality, to explain the past and present, and to predict and control the future. Herbert Simon's process model for administrative decision making has widespread…

  7. Developing Structural Equation Models.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.

    1993-01-01

    Structural equation models merge multiple regression, path analysis, and factor analysis techniques into a single data analytic framework. Measurement models are developed to define latent variables, and structural equations are then established among the latent variables. Explains the development of these models. (KS)

  8. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  9. General Graded Response Model.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    This paper describes the graded response model. The graded response model represents a family of mathematical models that deal with ordered polytomous categories, such as: (1) letter grading; (2) an attitude survey with "strongly disagree, disagree, agree, and strongly agree" choices; (3) partial credit given in accord with an individual's degree…

  10. Global Timber Model (GTM)

    EPA Science Inventory

    GTM is an economic model capable of examining global forestry land-use, management, and trade responses to policies. In responding to a policy, the model captures afforestation, forest management, and avoided deforestation behavior. The model estimates harvests in industrial fore...

  11. Surface complexation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adsorption-desorption reactions are important processes that affect the transport of contaminants in the environment. Surface complexation models are chemical models that can account for the effects of variable chemical conditions, such as pH, on adsorption reactions. These models define specific ...

  12. SECOND GENERATION MODEL

    EPA Science Inventory

    One of the environmental and economic models that the U.S. EPA uses to assess climate change policies is the Second Generation Model (SGM). SGM is a 13 region, 24 sector computable general equilibrium (CGE) model of the world that can be used to estimate the domestic and intern...

  13. Models, Norms and Sharing.

    ERIC Educational Resources Information Center

    Harris, Mary B.

    To investigate the effect of modeling on altruism, 156 third and fifth grade children were exposed to a model who either shared with them, gave to a charity, or refused to share. The test apparatus, identified as a game, consisted of a box with signal lights and a chute through which marbles were dispensed. Subjects and the model played the game…

  14. Progress in mix modeling

    SciTech Connect

    Harrison, A.K.

    1997-03-14

    We have identified the Cranfill multifluid turbulence model (Cranfill, 1992) as a starting point for development of subgrid models of instability, turbulent and mixing processes. We have differenced the closed system of equations in conservation form, and coded them in the object-oriented hydrodynamics code FLAG, which is to be used as a testbed for such models.

  15. Modern Media Education Models

    ERIC Educational Resources Information Center

    Fedorov, Alexander

    2011-01-01

    The author supposed that media education models can be divided into the following groups: (1) educational-information models (the study of the theory, history, language of media culture, etc.), based on the cultural, aesthetic, semiotic, socio-cultural theories of media education; (2) educational-ethical models (the study of moral, religions,…

  16. MODAL AEROSOL DYNAMICS MODEL

    EPA Science Inventory

    The Modal Aerosol Dynamics (MAD) model is a computationally efficient model for solving the General Dynamics Equation of Aerosols (GDE) (Friedlander, 1977). The simplifying assumption in the model is that aerosol size distributions can be approximated by overlapping modes, each r...

  17. Models for Products

    ERIC Educational Resources Information Center

    Speiser, Bob; Walter, Chuck

    2011-01-01

    This paper explores how models can support productive thinking. For us a model is a "thing", a tool to help make sense of something. We restrict attention to specific models for whole-number multiplication, hence the wording of the title. They support evolving thinking in large measure through the ways their users redesign them. They assume new…

  18. Two Cognitive Modeling Frontiers

    NASA Astrophysics Data System (ADS)

    Ritter, Frank E.

    This paper reviews three hybrid cognitive architectures (Soar, ACT-R, and CoJACK) and how they can support including models of emotions. There remain problems creating models in these architectures, which is a research and engineering problem. Thus, the term cognitive science engineering is introduced as an area that would support making models easier to create, understand, and re-use.

  19. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  20. Modeling Climate Dynamically

    ERIC Educational Resources Information Center

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  1. Generalized Latent Trait Models.

    ERIC Educational Resources Information Center

    Moustaki, Irini; Knott, Martin

    2000-01-01

    Discusses a general model framework within which manifest variables with different distributions in the exponential family can be analyzed with a latent trait model. Presents a unified maximum likelihood method for estimating the parameters of the generalized latent trait model and discusses the scoring of individuals on the latent dimensions.…

  2. REGULATORY AIR QUALITY MODELS

    EPA Science Inventory

    Appendix W to 40CFR Part 51 (Guideline on Air Quality Models) specifies the models to be used for purposes of permitting, PSD, and SIPs. Through a formal regulatory process this modeling guidance is periodically updated to reflect current science. In the most recent action, thr...

  3. A Model Performance

    ERIC Educational Resources Information Center

    Thornton, Bradley D.; Smalley, Robert A.

    2008-01-01

    Building information modeling (BIM) uses three-dimensional modeling concepts, information technology and interoperable software to design, construct and operate a facility. However, BIM can be more than a tool for virtual modeling--it can provide schools with a 3-D walkthrough of a project while it still is on the electronic drawing board. BIM can…

  4. Model Rockets and Microchips.

    ERIC Educational Resources Information Center

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  5. A GENERAL CROP MODEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural and ecosystem simulation models valuable for technology transfer require a realistic, process-oriented plant model that can be easily applied to different crops, grasses, and woody species. The objective of this chapter was to describe a general plant model that can be easily applied i...

  6. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  7. Modeling and Remodeling Writing

    ERIC Educational Resources Information Center

    Hayes, John R.

    2012-01-01

    In Section 1 of this article, the author discusses the succession of models of adult writing that he and his colleagues have proposed from 1980 to the present. He notes the most important changes that differentiate earlier and later models and discusses reasons for the changes. In Section 2, he describes his recent efforts to model young…

  8. A Model Performance

    ERIC Educational Resources Information Center

    Thornton, Bradley D.; Smalley, Robert A.

    2008-01-01

    Building information modeling (BIM) uses three-dimensional modeling concepts, information technology and interoperable software to design, construct and operate a facility. However, BIM can be more than a tool for virtual modeling--it can provide schools with a 3-D walkthrough of a project while it still is on the electronic drawing board. BIM can…

  9. Modeling Natural Selection

    ERIC Educational Resources Information Center

    Bogiages, Christopher A.; Lotter, Christine

    2011-01-01

    In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…

  10. Model Breaking Points Conceptualized

    ERIC Educational Resources Information Center

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  11. IR DIAL performance modeling

    SciTech Connect

    Sharlemann, E.T.

    1994-07-01

    We are developing a DIAL performance model for CALIOPE at LLNL. The intent of the model is to provide quick and interactive parameter sensitivity calculations with immediate graphical output. A brief overview of the features of the performance model is given, along with an example of performance calculations for a non-CALIOPE application.

  12. JB6 Mouse Model

    Cancer.gov

    JB6 Mouse Model The mouse Balb/C JB6 model (1) is the only well characterized model of genetic variants for a neoplastic transformation response to tumor promoters. These cells are not differentially sensitive to tumor promoter induced mitogenesis or diff

  13. QUALITATIVE ECOLOGICAL MODELING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Students construct qualitative models of an ecosystem and use the models to evaluate the direct and indirect effects that may result from perturbations to the ecosystem. Qualitative modeling is described for use in two procedures, each with different educational goals and student backgrounds in min...

  14. Modeling Natural Selection

    ERIC Educational Resources Information Center

    Bogiages, Christopher A.; Lotter, Christine

    2011-01-01

    In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…

  15. Model Breaking Points Conceptualized

    ERIC Educational Resources Information Center

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  16. Psychometric Latent Response Models.

    ERIC Educational Resources Information Center

    Maris, Eric

    1995-01-01

    Some psychometric models are presented that belong to the larger class of latent response models (LRMs). Following general discussion of LRMs, a method for obtaining maximum likelihood and some maximum "a posteriori" estimates of the parameters of LRMs is presented and applied to the conjunctive Rasch model. (SLD)

  17. Modeling agriculture in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, V. R.; Jacob, R.

    2013-04-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements for soybean, but not as well for maize. CLM-Crop yields were comparable with observations in countries such as the United States, Argentina, and China, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation, in agreement with other modeling studies. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially resulting climate impacts.

  18. Models of Abnormal Scarring

    PubMed Central

    Seo, Bommie F.; Lee, Jun Yong; Jung, Sung-No

    2013-01-01

    Keloids and hypertrophic scars are thick, raised dermal scars, caused by derailing of the normal scarring process. Extensive research on such abnormal scarring has been done; however, these being refractory disorders specific to humans, it has been difficult to establish a universal animal model. A wide variety of animal models have been used. These include the athymic mouse, rats, rabbits, and pigs. Although these models have provided valuable insight into abnormal scarring, there is currently still no ideal model. This paper reviews the models that have been developed. PMID:24078916

  19. Adaptive background model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochun; Xiao, Yijun; Chai, Zhi; Wang, Bangping

    2007-11-01

    An adaptive background model aiming at outdoor vehicle detection is presented in this paper. This model is an improved model of PICA (pixel intensity classification algorithm), it classifies pixels into K-distributions by color similarity, and then a hypothesis that the background pixel color appears in image sequence with a high frequency is used to evaluate all the distributions to determine which presents the current background color. As experiments show, the model presented in this paper is a robust, adaptive and flexible model, which can deal with situations like camera motions, lighting changes and so on.

  20. Modeling Bacterial Infection Phenomena.

    PubMed

    Kier, Lemont B

    2016-01-01

    A series of cellular automata models of bacteria were created, where encounters with models of the immune system and a model of an antibiotic drug were present. The dose of the antibiotic, its potency and the timeliness of its administration were variables. The emergence of antibiotic resistance by the bacteria was an outcome associated with the administration of the drug. The models created in these studies were found to closely relate to clinical experiences, making the general model useful for further simulation studies. PMID:26679632

  1. Laser Range Camera Modeling

    SciTech Connect

    Storjohann, K.

    1990-01-01

    This paper describes an imaging model that was derived for use with a laser range camera (LRC) developed by the Advanced Intelligent Machines Division of Odetics. However, this model could be applied to any comparable imaging system. Both the derivation of the model and the determination of the LRC's intrinsic parameters are explained. For the purpose of evaluating the LRC's extrinsic parameters, i.e., its external orientation, a transformation of the LRC's imaging model into a standard camera's (SC) pinhole model is derived. By virtue of this transformation, the evaluation of the LRC's external orientation can be found by applying any SC calibration technique.

  2. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  3. Complex matrix model duality

    SciTech Connect

    Brown, T. W.

    2011-04-15

    The same complex matrix model calculates both tachyon scattering for the c=1 noncritical string at the self-dual radius and certain correlation functions of operators which preserve half the supersymmetry in N=4 super-Yang-Mills theory. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich-Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces.

  4. CRAC2 model description

    SciTech Connect

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  5. The FREZCHEM Model

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.

    Implementation of the Pitzer approach is through the FREZCHEM (FREEZING CHEMISTRY) model, which is at the core of this work. This model was originally designed to simulate salt chemistries and freezing processes at low temperatures (-54 to 25°C) and 1 atm pressure. Over the years, this model has been broadened to include more chemistries (from 16 to 58 solid phases), a broader temperature range for some chemistries (to 113°C), and incorporation of a pressure dependence (1 to 1000 bars) into the model. Implementation, parameterization, validation, and limitations of the FREZCHEM model are extensively discussed in Chapter 3.

  6. Pediatric Computational Models

    NASA Astrophysics Data System (ADS)

    Soni, Bharat K.; Kim, Jong-Eun; Ito, Yasushi; Wagner, Christina D.; Yang, King-Hay

    A computational model is a computer program that attempts to simulate a behavior of a complex system by solving mathematical equations associated with principles and laws of physics. Computational models can be used to predict the body's response to injury-producing conditions that cannot be simulated experimentally or measured in surrogate/animal experiments. Computational modeling also provides means by which valid experimental animal and cadaveric data can be extrapolated to a living person. Widely used computational models for injury biomechanics include multibody dynamics and finite element (FE) models. Both multibody and FE methods have been used extensively to study adult impact biomechanics in the past couple of decades.

  7. The Milky Way Model

    NASA Astrophysics Data System (ADS)

    Friedman, Robert Bryan

    In this article, I describe constructing a scale model of our galaxy—the Milky Way—and using this model to teach modern astronomy. The Milky Way model expands on concepts usually explored in the more common solar system model. The Milky Way model presents an opportunity to probe a broad array of physical processes and astrophysical systems, as well as multiple astronomical coordinate systems and far more expansive spatial scales. This exercise is kinetic, interactive, and designed to be done in large spaces (such as a gymnasium floor) with students at the middle school to high school levels.

  8. TEAMS Model Analyzer

    NASA Technical Reports Server (NTRS)

    Tijidjian, Raffi P.

    2010-01-01

    The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.

  9. Coalbed methane modeling analysis

    SciTech Connect

    Covatch, G.L.; Layne, A.W.; Salamy, S.P.

    1985-12-01

    Systems analyses or the Department of Energy's (DOE) Coalbed Methane Project (CMP) were performed at the Morgantown Energy Technology Center (METC). In the analyses, both reservoir and stimulation models were evaluated using data from US Steel's Oak Grove Coal Degasification Field. In the first part of the study two reservoir models designed for predicting methane and water production from coalbeds, WELL2D and ARRAY, were evaluated. WELL2D is a two-dimensional, single-well, radial flow model; ARRAY is a two-dimensional, multiwell production model. In the evaluation, the models were used to history match the actual production of the individual wells. The resultant information was then factored into a full-field simulation of the Oak Grove Field. This report summarizes the technical approaches used in the two models, their installation onto the DOE/METC computer system, and gives the results from their evaluation. In the second part of the study, three stimulation models were evaluated to determine their applicability to the CMP. The stimulation models, OSUFRAC (generalized hydraulic fracture), ORUFRAC1 (stress contrast hydraulic fracture model), and TUFRAC (hydraulic fracture proppant placement model), were designed for hydraulic fracturing of homogeneous reservoirs. A summary of the technical approach used in each model and the results of the analyses are presented. 11 refs., 27 figs., 12 tabs.

  10. A model of strength

    USGS Publications Warehouse

    Johnson, Douglas H.; Cook, R.D.

    2013-01-01

    In her AAAS News & Notes piece "Can the Southwest manage its thirst?" (26 July, p. 362), K. Wren quotes Ajay Kalra, who advocates a particular method for predicting Colorado River streamflow "because it eschews complex physical climate models for a statistical data-driven modeling approach." A preference for data-driven models may be appropriate in this individual situation, but it is not so generally, Data-driven models often come with a warning against extrapolating beyond the range of the data used to develop the models. When the future is like the past, data-driven models can work well for prediction, but it is easy to over-model local or transient phenomena, often leading to predictive inaccuracy (1). Mechanistic models are built on established knowledge of the process that connects the response variables with the predictors, using information obtained outside of an extant data set. One may shy away from a mechanistic approach when the underlying process is judged to be too complicated, but good predictive models can be constructed with statistical components that account for ingredients missing in the mechanistic analysis. Models with sound mechanistic components are more generally applicable and robust than data-driven models.

  11. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  12. Animal models of atherosclerosis

    PubMed Central

    Kapourchali, Fatemeh Ramezani; Surendiran, Gangadaran; Chen, Li; Uitz, Elisabeth; Bahadori, Babak; Moghadasian, Mohammed H

    2014-01-01

    In this mini-review several commonly used animal models of atherosclerosis have been discussed. Among them, emphasis has been made on mice, rabbits, pigs and non-human primates. Although these animal models have played a significant role in our understanding of induction of atherosclerotic lesions, we still lack a reliable animal model for regression of the disease. Researchers have reported several genetically modified and transgenic animal models that replicate human atherosclerosis, however each of current animal models have some limitations. Among these animal models, the apolipoprotein (apo) E-knockout (KO) mice have been used extensively because they develop spontaneous atherosclerosis. Furthermore, atherosclerotic lesions developed in this model depending on experimental design may resemble humans’ stable and unstable atherosclerotic lesions. This mouse model of hypercholesterolemia and atherosclerosis has been also used to investigate the impact of oxidative stress and inflammation on atherogenesis. Low density lipoprotein (LDL)-r-KO mice are a model of human familial hypercholesterolemia. However, unlike apo E-KO mice, the LDL-r-KO mice do not develop spontaneous atherosclerosis. Both apo E-KO and LDL-r-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. In addition to mice, rabbits have been used extensively particularly to understand the mechanisms of cholesterol-induced atherosclerosis. The present review paper details the characteristics of animal models that are used in atherosclerosis research. PMID:24868511

  13. Calibrated Properties Model

    SciTech Connect

    T. Ghezzehej

    2004-10-04

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency.

  14. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  15. Standard solar model

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.; Demarque, P.; Kim, Y.-C.; Pinsonneault, M. H.

    1992-01-01

    A set of solar models have been constructed, each based on a single modification to the physics of a reference solar model. In addition, a model combining several of the improvements has been calculated to provide a best solar model. Improvements were made to the nuclear reaction rates, the equation of state, the opacities, and the treatment of the atmosphere. The impact on both the structure and the frequencies of the low-l p-modes of the model to these improvements are discussed. It is found that the combined solar model, which is based on the best physics available (and does not contain any ad hoc assumptions), reproduces the observed oscillation spectrum (for low-l) within the errors associated with the uncertainties in the model physics (primarily opacities).

  16. The phylogenetic mixed model.

    PubMed

    Housworth, Elizabeth A; Martins, Emília P; Lynch, Michael

    2004-01-01

    The phylogenetic mixed model is an application of the quantitative-genetic mixed model to interspecific data. Although this statistical framework provides a potentially unifying approach to quantitative-genetic and phylogenetic analysis, the model has been applied infrequently because of technical difficulties with parameter estimation. We recommend a reparameterization of the model that eliminates some of these difficulties, and we develop a new estimation algorithm for both the original maximum likelihood and new restricted maximum likelihood estimators. The phylogenetic mixed model is particularly rich in terms of the evolutionary insight that might be drawn from model parameters, so we also illustrate and discuss the interpretation of the model parameters in a specific comparative analysis. PMID:14767838

  17. Multiscale Modeling of Recrystallization

    SciTech Connect

    Godfrey, A.W.; Holm, E.A.; Hughes, D.A.; Lesar, R.; Miodownik, M.A.

    1998-12-07

    We propose a multi length scale approach to modeling recrystallization which links a dislocation model, a cell growth model and a macroscopic model. Although this methodology and linking framework will be applied to recrystallization, it is also applicable to other types of phase transformations in bulk and layered materials. Critical processes such as the dislocation structure evolution, nucleation, the evolution of crystal orientations into a preferred texture, and grain size evolution all operate at different length scales. In this paper we focus on incorporating experimental measurements of dislocation substructures, rnisorientation measurements of dislocation boundaries, and dislocation simulations into a mesoscopic model of cell growth. In particular, we show how feeding information from the dislocation model into the cell growth model can create realistic initial microstructure.

  18. Modeling the dentate gyrus.

    PubMed

    Morgan, Robert J; Santhakumar, Vijayalakshmi; Soltesz, Ivan

    2007-01-01

    Computational modeling has become an increasingly useful tool for studying complex neuronal circuits such as the dentate gyrus. In order to effectively apply computational techniques and theories to answer pressing biological questions, however, it is necessary to develop detailed, data-driven models. Development of such models is a complicated process, akin to putting together a jigsaw puzzle with the pieces being such things as cell types, cell numbers, and specific connectivity. This chapter provides a walkthrough for the development of a very large-scale, biophysically realistic model of the dentate gyrus. Subsequently, it demonstrates the utility of a modeling approach in asking and answering questions about both healthy and pathological states involving the modeled brain region. Finally, this chapter discusses some predictions that come directly from the model that can be tested in future experimental approaches. PMID:17765743

  19. Foam process models.

    SciTech Connect

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A.; Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  20. Fuel delivery system model

    SciTech Connect

    Ricci, G.; Verma, A.

    1996-09-01

    A fuel delivery system hydraulic model has been developed by coupling a distributed hydraulic network model with lumped models for the various components of the fuel system like the injectors, regulators, accumulators, etc. The resulting governing equations are linearized around the nominal system pressure and integrated using a fourth order Runge-Kutta algorithm with a variable time-stepping scheme. The model assumes isothermal behavior, negligible frictional losses and single-phase flow. The goal of the model is to study small signal type perturbations around the operating system pressure. Typical outputs from exercising the model are presented. The model can be used to study fuel pressure and velocity transients throughout the system and to design the various fuel system components in a system context.

  1. Multiscale Modeling: A Review

    NASA Astrophysics Data System (ADS)

    Horstemeyer, M. F.

    This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).

  2. Ventilation Model Report

    SciTech Connect

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To asses the impacts of moisture on the ventilation efficiency.

  3. Risk modelling: which models to choose?

    PubMed

    Csicsaky, M J; Roller, M; Pott, F

    1989-01-01

    Using as examples excess lung cancer mortality in coke oven workers and lung tumor induction in rats by inhalation of diesel engine emissions or cadmium chloride aerosol, the maximum likelihood estimate and the upper limit of risk were determined using a set of conventional risk models. The additional safety offered by going to the upper limit of the 95% confidence interval when deriving a unit risk value was found to be less than a factor of 5 in all but one case, and usually much less than 2. It is concluded that the selection of an adequate model is the most critical step in risk assessment, and that an additional safety factor may be required to allow for a better protection of the public in case models other than the most conservative ones come into use. PMID:2637154

  4. Integrated modeling, data transfers, and physical models

    NASA Astrophysics Data System (ADS)

    Brookshire, D. S.; Chermak, J. M.

    2003-04-01

    Difficulties in developing precise economic policy models for water reallocation and re-regulation in various regional and transboundary settings has been exacerbated not only by climate issues but also by institutional changes reflected in the promulgation of environmental laws, changing regional populations, and an increased focus on water quality standards. As complexity of the water issues have increased, model development at a micro-policy level is necessary to capture difficult institutional nuances and represent the differing national, regional and stakeholders' viewpoints. More often than not, adequate "local" or specific micro-data are not available in all settings for modeling and policy decisions. Economic policy analysis increasingly deals with this problem through data transfers (transferring results from one study area to another) and significant progress has been made in understanding the issue of the dimensionality of data transfers. This paper explores the conceptual and empirical dimensions of data transfers in the context of integrated modeling when the transfers are not only from the behavioral, but also from the hard sciences. We begin by exploring the domain of transfer issues associated with policy analyses that directly consider uncertainty in both the behavioral and physical science settings. We then, through a stylized, hybrid, economic-engineering model of water supply and demand in the Middle Rio Grand Valley of New Mexico (USA) analyze the impacts of; (1) the relative uncertainty of data transfers methods, (2) the uncertainty of climate data and, (3) the uncertainly of population growth. These efforts are motivated by the need to address the relative importance of more accurate data both from the physical sciences as well as from demography and economics for policy analyses. We evaluate the impacts by empirically addressing (within the Middle Rio Grand model): (1) How much does the surrounding uncertainty of the benefit transfer, climate information, and other forecast information impact policy decisions in reallocation issues? and (2) Where should research efforts be focused in order to improve analyses on which policy decisions are based?

  5. Modeling agriculture in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, V. R.; Jacob, R.

    2012-12-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements. CLM-Crop yields were comparable with observations in some regions, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially resulting climate impacts.

  6. Constitutive models in LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented and the methods necessary for achieving accurate and efficient solutions have been incorporated. The most important method is the getStress function where the actual material model evaluation takes place. Obviously, all material models incorporate this function. The initialize function is included in most material models. The initialize function is called once at the beginning of an analysis and its primary purpose is to initialize the material state variables associated with the model. Many times, there is some information which can be set once per load step. For instance, we may have temperature dependent material properties in an analysis where temperature is prescribed. Instead of setting those parameters at each iteration in a time step, it is much more efficient to set them once per time step at the beginning of the step. These types of load step initializations are performed in the loadStepInit method. The final function used by many models is the pcElasticModuli method which changes the moduli that are to be used by the elastic preconditioner in Adagio. The moduli for the elastic preconditioner are set during the initialization of Adagio. Sometimes, better convergence can be achieved by changing these moduli for the elastic preconditioner. For instance, it typically helps to modify the preconditioner when the material model has temperature dependent moduli. For many material models, it is not necessary to change the values of the moduli that are set initially in the code. Hence, those models do not have pcElasticModuli functions. All four of these methods receive information from the matParams structure as described by Scherzinger and Hammerand.

  7. Modeling and Prediction Overview

    SciTech Connect

    Ermak, D L

    2002-10-18

    Effective preparation for and response to the release of toxic materials into the atmosphere hinges on accurate predictions of the dispersion pathway, concentration, and ultimate fate of the chemical or biological agent. Of particular interest is the threat to civilian populations within major urban areas, which are likely targets for potential attacks. The goals of the CBNP Modeling and Prediction area are: (1) Development of a suite of validated, multi-scale, atmospheric transport and fate modeling capabilities for chemical and biological agent releases within the complex urban environment; (2) Integration of these models and related user tools into operational emergency response systems. Existing transport and fate models are being adapted to treat the complex atmospheric flows within and around structures (e.g., buildings, subway systems, urban areas) and over terrain. Relevant source terms and the chemical and physical behavior of gas- and particle-phase species (e.g., losses due to deposition, bio-agent viability, degradation) are also being developed and incorporated into the models. Model validation is performed using both laboratory and field data. CBNP is producing and testing a suite of models with differing levels of complexity and fidelity to address the full range of user needs and applications. Lumped-parameter transport models are being developed for subway systems and building interiors, supplemented by the use of computational fluid dynamics (CFD) models to describe the circulation within large, open spaces such as auditoriums. Both sophisticated CFD transport models and simpler fast-response models are under development to treat the complex flow around individual structures and arrays of buildings. Urban parameterizations are being incorporated into regional-scale weather forecast, meteorological data assimilation, and dispersion models for problems involving larger-scale urban and suburban areas. Source term and dose response models are being developed for use in the transport models. ''Rules of thumb'' provide guidance to emergency responders in situations when immediate response is necessary and model simulations are not available. These modeling capabilities and tools are being integrated into operational systems for planning and training, real time emergency response, and post-event consequence analysis. CBNP interior modeling tools are directed in large part toward implementation into the PROTECT system for CB defense of interior infrastructure facilities. CBNP's exterior modeling tools for treating CB releases within the urban environment are integrated into the existing DOE National Atmospheric Release Advisory Center (NARAC), which provides real-time atmospheric hazard assessments. Internet and Web based software tools provide authorized users with secure remote access to the operational NARAC system. NARAC plume dispersion and health-risk predictions, as well as recommended actions, aid emergency managers and first responders in coordinating multi-agency responses.

  8. Modelling Farm Animal Welfare.

    PubMed

    Collins, Lisa M; Part, Chérie E

    2013-01-01

    The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  9. Geochemical modeling: a review

    SciTech Connect

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  10. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  11. Contrasting Disciplinary Models in Education.

    ERIC Educational Resources Information Center

    Morris, Robert C.

    1996-01-01

    Discusses advantages and disadvantages of eight discipline approaches: the Neo-Skinnerian reinforcement model, Redl and Wattenberg's group dynamics model, Kounin's lesson-management model, Ginott's communication model, Dreikurs' student choice model, Canter's Assertive Discipline model, Jones's classroom-management model, and Glasser's…

  12. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  13. Modeling Imports in a Keynesian Expenditure Model

    ERIC Educational Resources Information Center

    Findlay, David W.

    2010-01-01

    The author discusses several issues that instructors of introductory macroeconomics courses should consider when introducing imports in the Keynesian expenditure model. The analysis suggests that the specification of the import function should partially, if not completely, be the result of a simple discussion about the spending and import…

  14. Modeling Imports in a Keynesian Expenditure Model

    ERIC Educational Resources Information Center

    Findlay, David W.

    2010-01-01

    The author discusses several issues that instructors of introductory macroeconomics courses should consider when introducing imports in the Keynesian expenditure model. The analysis suggests that the specification of the import function should partially, if not completely, be the result of a simple discussion about the spending and import…

  15. Multiscale Cancer Modeling

    PubMed Central

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  16. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  17. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  18. Universality in sandpile models

    NASA Astrophysics Data System (ADS)

    Ben-Hur, Asa; Biham, Ofer

    1996-02-01

    A classification of sandpile models into universality classes is presented. On the basis of extensive numerical simulations, in which we measure an extended set of exponents, the Manna two-state model [S. S. Manna,

    J. Phys. A. 24, L363 (1991)
    ] is found to belong to a universality class of random neighbor models which is distinct from the universality class of the original model of Bak, Tang, and Wiesenfeld [P. Bak, C. Tang, and K. Wiesenfeld,
    Phys. Rev. Lett. 59, 381 (1987)
    ]. Directed models are found to belong to a universality class which includes the directed model introduced and solved by Dhar and Ramaswamy [D. Dhar and R. Ramaswamy,
    Phys. Rev. Lett. 63, 1659 (1989)
    ].

  19. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  20. Modelling of biofilm reactors

    SciTech Connect

    Rodrigues, A.; Grasmick, A.; Elmaleh, S.

    1982-10-01

    Comprehensive models of biofilm reactors are developed. Model I assumes a zero-order reaction of a limiting substrate and a diffusional mass transport through the biofilm; in the diffusion-controlled regime the model is fully characterized by one parameter alpha. From this model the conversion of substrate or reactor efficiency can be calculated, for continuously stirred tank reactors (CSTRs) and plug flow reactors respectively, as follows: EA = )alpha(alpha + 2)) 1/2 - alpha; and Ep = (2 alpha) 1/2 - alpha/2: Validation of the model is tested for different experimental systems. Model II includes liquid film mass transfer resistance. The conversion gap between plug flow reactors and CSTRs is always lower than 25% and, as a first approximation, the biofilm reactor design does not then require accurate residence time distribution measurements. (Refs. 23).

  1. Decomposing model systematic error

    NASA Astrophysics Data System (ADS)

    Keenlyside, Noel; Shen, Mao-Lin

    2014-05-01

    Seasonal forecasts made with a single model are generally overconfident. The standard approach to improve forecast reliability is to account for structural uncertainties through a multi-model ensemble (i.e., an ensemble of opportunity). Here we analyse a multi-model set of seasonal forecasts available through ENSEMBLES and DEMETER EU projects. We partition forecast uncertainties into initial value and structural uncertainties, as function of lead-time and region. Statistical analysis is used to investigate sources of initial condition uncertainty, and which regions and variables lead to the largest forecast error. Similar analysis is then performed to identify common elements of model error. Results of this analysis will be used to discuss possibilities to reduce forecast uncertainty and improve models. In particular, better understanding of error growth will be useful for the design of interactive multi-model ensembles.

  2. Outside users payload model

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The outside users payload model which is a continuation of documents and replaces and supersedes the July 1984 edition is presented. The time period covered by this model is 1985 through 2000. The following sections are included: (1) definition of the scope of the model; (2) discussion of the methodology used; (3) overview of total demand; (4) summary of the estimated market segmentation by launch vehicle; (5) summary of the estimated market segmentation by user type; (6) details of the STS market forecast; (7) summary of transponder trends; (8) model overview by mission category; and (9) detailed mission models. All known non-NASA, non-DOD reimbursable payloads forecast to be flown by non-Soviet-block countries are included in this model with the exception of Spacelab payloads and small self contained payloads. Certain DOD-sponsored or cosponsored payloads are included if they are reimbursable launches.

  3. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  4. AREST model description

    SciTech Connect

    Engel, D.W.; McGrail, B.P.

    1993-11-01

    The Office of Civilian Radioactive Waste Management and the Power Reactor and Nuclear Fuel Development Corporation of Japan (PNC) have supported the development of the Analytical Repository Source-Term (AREST) at Pacific Northwest Laboratory. AREST is a computer model developed to evaluate radionuclide release from an underground geologic repository. The AREST code can be used to calculate/estimate the amount and rate of each radionuclide that is released from the engineered barrier system (EBS) of the repository. The EBS is the man-made or disrupted area of the repository. AREST was designed as a system-level models to simulate the behavior of the total repository by combining process-level models for the release from an individual waste package or container. AREST contains primarily analytical models for calculating the release/transport of radionuclides to the lost rock that surrounds each waste package. Analytical models were used because of the small computational overhead that allows all the input parameters to be derived from a statistical distribution. Recently, a one-dimensional numerical model was also incorporated into AREST, to allow for more detailed modeling of the transport process with arbitrary length decay chains. The next step in modeling the EBS, is to develop a model that couples the probabilistic capabilities of AREST with a more detailed process model. This model will need to look at the reactive coupling of the processes that are involved with the release process. Such coupling would include: (1) the dissolution of the waste form, (2) the geochemical modeling of the groundwater, (3) the corrosion of the container overpacking, and (4) the backfill material, just to name a few. Several of these coupled processes are already incorporated in the current version of AREST.

  5. HOMER® Micropower Optimization Model

    SciTech Connect

    Lilienthal, P.

    2005-01-01

    NREL has developed the HOMER micropower optimization model. The model can analyze all of the available small power technologies individually and in hybrid configurations to identify least-cost solutions to energy requirements. This capability is valuable to a diverse set of energy professionals and applications. NREL has actively supported its growing user base and developed training programs around the model. These activities are helping to grow the global market for solar technologies.

  6. Gauge Messenger Models

    SciTech Connect

    Kim, Hyung Do

    2006-11-28

    We consider gauge messenger models in which X and Y gauge bosons and gauginos are messengers of supersymmetry breaking. In simple gauge messenger models, all the soft parameters except {mu} and B{mu} are calculated in terms of a single scale parameter MSUSY which is proportional to F / MGUT. Unique prediction on dark matter in gauge messenger models is discussed. (Based on hep-ph/0601036 and hep-ph/0607169)

  7. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  8. Solid model design simplification

    SciTech Connect

    Ames, A.L.; Rivera, J.J.; Webb, A.J.; Hensinger, D.M.

    1997-12-01

    This paper documents an investigation of approaches to improving the quality of Pro/Engineer-created solid model data for use by downstream applications. The investigation identified a number of sources of problems caused by deficiencies in Pro/Engineer`s geometric engine, and developed prototype software capable of detecting many of these problems and guiding users towards simplified, useable models. The prototype software was tested using Sandia production solid models, and provided significant leverage in attacking the simplification problem.

  9. Modelling Pediatric Kinematics

    PubMed Central

    van Ratingen, M.R.; Wismans, J.

    1998-01-01

    In the field of pediatric biomechanics, crash dummy and numerical model development suffers from too limited human subject data to directly establish response and injury values. In order to create child crash dummies and numerical models it is necessary to combine the results from real world accident and reconstruction data, scaled adult data and data from animal testing with limited child volunteer data. This paper presents the functional and biomechanical targets for child crash dummies and numerical models.

  10. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  11. Conceptual IT model

    NASA Astrophysics Data System (ADS)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  12. F-14 modeling study

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Baron, S.

    1984-01-01

    Preliminary results in the application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues are discussed in the context of an air to air target tracking task. The closed loop model is described briefly. Then, problem simplifications that are employed to reduce computational costs are discussed. Finally, model results showing sensitivity of performance to various assumptions concerning the simulator and/or the pilot are presented.

  13. Atmospheric prediction model survey

    NASA Technical Reports Server (NTRS)

    Wellck, R. E.

    1976-01-01

    As part of the SEASAT Satellite program of NASA, a survey of representative primitive equation atmospheric prediction models that exist in the world today was written for the Jet Propulsion Laboratory. Seventeen models developed by eleven different operational and research centers throughout the world are included in the survey. The surveys are tutorial in nature describing the features of the various models in a systematic manner.

  14. Liftoff Model for MELCOR.

    SciTech Connect

    Young, Michael F.

    2015-07-01

    Aerosol particles that deposit on surfaces may be subsequently resuspended by air flowing over the surface. A review of models for this liftoff process is presented and compared to available data. Based on this review, a model that agrees with existing data and is readily computed is presented for incorporation into a system level code such as MELCOR. Liftoff Model for MELCOR July 2015 4 This page is intentionally blank

  15. Rat Endovascular Perforation Model

    PubMed Central

    Sehba, Fatima A.

    2014-01-01

    Experimental animal models of aneurysmal subarachnoid hemorrhage (SAH) have provided a wealth of information on the mechanisms of brain injury. The Rat endovascular perforation model (EVP) replicates the early pathophysiology of SAH and hence is frequently used to study early brain injury following SAH. This paper presents a brief review of historical development of the EVP model, details the technique used to create SAH and considerations necessary to overcome technical challenges. PMID:25213427

  16. Geometry of Winter model

    NASA Astrophysics Data System (ADS)

    Aglietti, U. G.; Santini, P. M.

    2015-06-01

    By constructing the Riemann surface controlling the resonance structure of Winter model, we determine the limitations of perturbation theory. We then derive explicit non-perturbative results for various observables in the weak-coupling regime, in which the model has an infinite tower of long-lived resonant states. The problem of constructing proper initial wavefunctions coupled to single excitations of the model is also treated within perturbative and non-perturbative methods.

  17. Modelling urban snowmelt runoff

    NASA Astrophysics Data System (ADS)

    Valeo, C.; Ho, C. L. I.

    2004-12-01

    Few investigations have been made into modelling snowmelt in urban areas; hence, current urban snowmelt routines have adopted parameters and approaches intended for rural areas that are not appropriate in an urban environment. This paper examines problems with current urban snowmelt models and proposes a model that uses parameters developed from field studies focusing exclusively on urban snow. The Urban Snow Model (USM) uses an energy balance scheme at an hourly time step, changes in urban snow albedo, and incorporates eight different types of redistributed snow cover. USM is tested against observed flow data from a small residential community located in Calgary, Alberta. The degree-day method for snowmelt, the SWMM model, and a modified version of USM that incorporates a partial energy budget scheme relying only on net radiation, are also tested against the observed flow data. The full energy budget version of USM outperformed all other models in terms of time to peak, peak flowrate and model efficiency; however, the modified version of USM fared quite well and is recommended when a lack of data exists. The degree-day method and the SWMM models fared poorly and were unable to simulate peak flowrates in most cases. The tests also demonstrated the need to distribute snow into appropriate snow covers in order to simulate peak flowrates accurately and provide good model efficiency.

  18. Visualizing Risk Prediction Models

    PubMed Central

    Van Belle, Vanya; Van Calster, Ben

    2015-01-01

    Objective Risk prediction models can assist clinicians in making decisions. To boost the uptake of these models in clinical practice, it is important that end-users understand how the model works and can efficiently communicate its results. We introduce novel methods for interpretable model visualization. Methods The proposed visualization techniques are applied to two prediction models from the Framingham Heart Study for the prediction of intermittent claudication and stroke after atrial fibrillation. We represent models using color bars, and visualize the risk estimation process for a specific patient using patient-specific contribution charts. Results The color-based model representations provide users with an attractive tool to instantly gauge the relative importance of the predictors. The patient-specific representations allow users to understand the relative contribution of each predictor to the patient’s estimated risk, potentially providing insightful information on which to base further patient management. Extensions towards non-linear models and interactions are illustrated on an artificial dataset. Conclusion The proposed methods summarize risk prediction models and risk predictions for specific patients in an alternative way. These representations may facilitate communication between clinicians and patients. PMID:26176945

  19. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  20. Model Driven Engineering

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  1. NARSTO NE MODEL

    Atmospheric Science Data Center

    2014-04-25

    ... Station Instrument:  Chemiluminescence UV Ozone Detector Location:  Northeastern United States ... Files:  NE Model Readme Hourly Surface Air Quality Ozone & Nitrogen Measurement Sites Related Data:  ...

  2. Selected System Models

    NASA Astrophysics Data System (ADS)

    Schmidt-Eisenlohr, F.; Puñal, O.; Klagges, K.; Kirsche, M.

    Apart from the general issue of modeling the channel, the PHY and the MAC of wireless networks, there are specific modeling assumptions that are considered for different systems. In this chapter we consider three specific wireless standards and highlight modeling options for them. These are IEEE 802.11 (as example for wireless local area networks), IEEE 802.16 (as example for wireless metropolitan networks) and IEEE 802.15 (as example for body area networks). Each section on these three systems discusses also at the end a set of model implementations that are available today.

  3. Railway switch transport model

    NASA Astrophysics Data System (ADS)

    Horvat, Martin; Prosen, Tomaž; Benenti, Giuliano; Casati, Giulio

    2012-11-01

    We propose a simple model of coupled heat and particle transport based on zero-dimensional classical deterministic dynamics, which is reminiscent of a railway switch whose action is a function only of the particle's energy. It is shown that already in the minimal three-terminal model, where the second terminal is considered as a probe with zero net particle and heat currents, one can find extremely asymmetric Onsager matrices as a consequence of time-reversal symmetry breaking of the model. This minimalistic transport model provides a better understanding of thermoelectric heat engines in the presence of time-reversal symmetry breaking.

  4. The Generalized SLW Model

    NASA Astrophysics Data System (ADS)

    Solovjov, Vladimir P.; Andre, Frédéric; Lemonnier, Denis; Webb, Brent W.

    2016-01-01

    The Generalized SLW Method is presented, formulating the SLW method with the help of both the ALBDF and the Inverse ALBDF. The result is two equivalent symmetric models: the SLW Model and the Inverse SLW Model. The advantage of the unified dual formulation and of application of the ALBDF and the Inverse ALBDF is in more efficient implementation of the model and the elimination of the solution of the implicit equations for the absorption cross-sections in the construction of the spectral model in the case of nonisothermal media. The generalized approach explores all possibilities of the SLW method under both direct and inverse formulations including its limiting cases: the minimal one clear gas-one gray gas SLW-1 model, and the case when the number of gray gases approaches infinity termed the Exact SLW model. The present work outlines the steps in a unified construction of the generalized SLW model in isothermal and non-isothermal media, and compares different forms of the modelled radiative quantities in plane parallel media: directional total radiative flux, total emissivity, Planck mean and Rosseland mean absorption coefficients.

  5. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, O.; Griffiths, D.

    2015-05-01

    The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  6. Models of Reality.

    SciTech Connect

    Brown-VanHoozer, S. A.

    1999-06-02

    Conscious awareness of our environment is based on a feedback loop comprised of sensory input transmitted to the central nervous system leading to construction of our ''model of the world,'' (Lewis et al, 1982). We then assimilate the neurological model at the unconscious level into information we can later consciously consider useful in identifying belief systems and behaviors for designing diverse systems. Thus, we can avoid potential problems based on our open-to-error perceived reality of the world. By understanding how our model of reality is organized, we allow ourselves to transcend content and develop insight into how effective choices and belief systems are generated through sensory derived processes. These are the processes which provide the designer the ability to meta model (build a model of a model) the user; consequently, matching the mental model of the user with that of the designer's and, coincidentally, forming rapport between the two participants. The information shared between the participants is neither assumed nor generalized, it is closer to equivocal; thus minimizing error through a sharing of each other's model of reality. How to identify individual mental mechanisms or processes, how to organize the individual strategies of these mechanisms into useful patterns, and to formulate these into models for success and knowledge based outcomes is the subject of the discussion that follows.

  7. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  8. Modelling the magnetic dipole

    NASA Astrophysics Data System (ADS)

    Seleznyova, Kira; Strugatsky, Mark; Kliava, Janis

    2016-03-01

    Three different models of a magnetic dipole, viz., a uniformly magnetised sphere, a circular current loop and a pair of fictitious magnetic charges, have been systematically analysed within the formalism based on the vector potential of the magnetic field. The expressions of the potentials and magnetic fields produced by each dipole model have been obtained. A computer code has been put forward in order to visualise magnetic field lines for different dipole models. It has been shown that the magnetic field outside the uniformly magnetised sphere coincides with that of a point dipole. The other two models give considerably different results at distances small or intermediate in comparison with the dipole size.

  9. Model Error Budgets

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    2008-01-01

    An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.

  10. Lightning return stroke models

    NASA Technical Reports Server (NTRS)

    Lin, Y. T.; Uman, M. A.; Standler, R. B.

    1980-01-01

    We test the two most commonly used lightning return stroke models, Bruce-Golde and transmission line, against subsequent stroke electric and magnetic field wave forms measured simultaneously at near and distant stations and show that these models are inadequate to describe the experimental data. We then propose a new return stroke model that is physically plausible and that yields good approximations to the measured two-station fields. Using the new model, we derive return stroke charge and current statistics for about 100 subsequent strokes.

  11. Wind power prediction models

    NASA Technical Reports Server (NTRS)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  12. Radiation Environment Modeling for Spacecraft Design: New Model Developments

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray

    2006-01-01

    A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.

  13. Operator spin foam models

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Hellmann, Frank; Kami?ski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-05-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin foam models which are not symmetric with respect to one or more moves we consider.

  14. Groundwater Model Validation

    SciTech Connect

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process of stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation data to constrain model input parameters is shown for the second case study using a Bayesian approach known as Markov Chain Monte Carlo. The approach shows a great potential to be helpful in the validation process and in incorporating prior knowledge with new field data to derive posterior distributions for both model input and output.

  15. Why business models matter.

    PubMed

    Magretta, Joan

    2002-05-01

    "Business model" was one of the great buzz-words of the Internet boom. A company didn't need a strategy, a special competence, or even any customers--all it needed was a Web-based business model that promised wild profits in some distant, ill-defined future. Many people--investors, entrepreneurs, and executives alike--fell for the fantasy and got burned. And as the inevitable counterreaction played out, the concept of the business model fell out of fashion nearly as quickly as the .com appendage itself. That's a shame. As Joan Magretta explains, a good business model remains essential to every successful organization, whether it's a new venture or an established player. To help managers apply the concept successfully, she defines what a business model is and how it complements a smart competitive strategy. Business models are, at heart, stories that explain how enterprises work. Like a good story, a robust business model contains precisely delineated characters, plausible motivations, and a plot that turns on an insight about value. It answers certain questions: Who is the customer? How do we make money? What underlying economic logic explains how we can deliver value to customers at an appropriate cost? Every viable organization is built on a sound business model, but a business model isn't a strategy, even though many people use the terms interchangeably. Business models describe, as a system, how the pieces of a business fit together. But they don't factor in one critical dimension of performance: competition. That's the job of strategy. Illustrated with examples from companies like American Express, EuroDisney, WalMart, and Dell Computer, this article clarifies the concepts of business models and strategy, which are fundamental to every company's performance. PMID:12024761

  16. Biosphere Process Model Report

    SciTech Connect

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor. Collectively, the potential human receptor and exposure pathways form the biosphere model. More detailed technical information and data about potential human receptor groups and the characteristics of exposure pathways have been developed in a series of AMRs and Calculation Reports.

  17. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  18. Spiral model pilot project information model

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  19. ATMOSPHERIC MODEL DEVELOPMENT

    EPA Science Inventory

    This task provides credible state of the art air quality models and guidance for use in implementation of National Ambient Air Quality Standards for ozone and PM. This research effort is to develop and improve air quality models, such as the Community Multiscale Air Quality (CMA...

  20. STREAM WATER QUALITY MODEL

    EPA Science Inventory

    QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:

    • One dimensional. The channel is well-mixed vertically a...

  1. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  2. The Rasch Testlet Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Wilson, Mark

    2005-01-01

    The Rasch testlet model for both dichotomous and polytomous items in testlet-based tests is proposed. It can be viewed as a special case of the multidimensional random coefficients multinomial logit model (MRCMLM). Therefore, the estimation procedures for the MRCMLM can be directly applied. Simulations were conducted to examine parameter recovery…

  3. Using the Partnership Model.

    ERIC Educational Resources Information Center

    Wilks, Bob

    This paper provides a case study of the use of the Partnership Model in the development of a film about female menopause. Not only are the film maker and the client involved in the trust based partnership relationship, but the film subjects and audience are also included in the information sharing process. Advantages of the Partnership Model…

  4. Space Station model - early

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Manned Space Laboratory Research. James Hansen wrote: 'Looking like a huge pneumatic tire sitting on a giant car jack [is] Langley's full-size test model of its 24-foot toroidal space station.' The model was being prepared from a visit by NASA Administrator James Webb in December 1961.

  5. Modelling University Governance

    ERIC Educational Resources Information Center

    Trakman, Leon

    2008-01-01

    Twentieth century governance models used in public universities are subject to increasing doubt across the English-speaking world. Governments question if public universities are being efficiently governed; if their boards of trustees are adequately fulfilling their trust obligations towards multiple stakeholders; and if collegial models of…

  6. Tacit Models and Infinity.

    ERIC Educational Resources Information Center

    Fischbein, Efraim

    2001-01-01

    Analyses several examples of tacit influences exerted by mental models on the interpretation of various mathematical concepts in the domain of actual infinity. Specifically addresses the unconscious effect of the figural-pictorial models of statements related to the infinite sets of geometrical points related to the concepts of function and…

  7. PRINCIPLES OF MODELLING

    EPA Science Inventory

    The scope of modelling the behavior of pollutants in the aquatic environment is now immense. n many practical applications, there are effectively no computational constraints on what is possible. here is accordingly an increasing need for a set of principles of modelling that in ...

  8. HYBRID RECEPTOR MODELING

    EPA Science Inventory

    A hybrid receptor model is a specified mathematical procedure which uses not only the ambient species concentration measurements that form the input data for a pure receptor model, but in addition source emission rates or atmospheric dispersion or transformation information chara...

  9. Pathological Gambling: Psychiatric Models

    ERIC Educational Resources Information Center

    Westphal, James R.

    2008-01-01

    Three psychiatric conceptual models: addictive, obsessive-compulsive spectrum and mood spectrum disorder have been proposed for pathological gambling. The objectives of this paper are to (1) evaluate the evidence base from the most recent reviews of each model, (2) update the evidence through 2007 and (3) summarize the status of the evidence for…

  10. Solar Atmosphere Models

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  11. Using Models Effectively

    ERIC Educational Resources Information Center

    Eichinger, John

    2005-01-01

    Models are crucial to science teaching and learning, yet they can create unforeseen and overlooked challenges for students and teachers. For example, consider the time-tested clay volcano that relies on a vinegar and-baking-soda mixture for its "eruption." Based on a classroom demonstration of that geologic model, elementary students may interpret…

  12. Models in Biology.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Addresses the most popular models currently being chosen for biological research and the reasons behind those choices. Among the current favorites are zebra fish, fruit flies, mice, monkeys, and yeast. Concludes with a brief examination of the ethical issues involved, and why some animals may need to be replaced in research with model systems.…

  13. Cultural Assessment Model.

    ERIC Educational Resources Information Center

    Jasso, Ricardo

    The Cultural Assessment Model assumes that Chicano alcohol abusers need to recreate their self-image which has been rejected, ridiculed, and submerged through the process of oppression, thus, resulting in cultural ambivalency and paradoxical behavior. This model identifies cultural values, beliefs, and behavioral characteristics that may be…

  14. Model for Coastal Restoration

    SciTech Connect

    Thom, Ronald M.; Judd, Chaeli

    2007-07-27

    Successful restoration of wetland habitats depends on both our understanding of our system and our ability to characterize it. By developing a conceptual model, looking at different spatial scales and integrating diverse data streams: GIS datasets and NASA products, we were able to develop a dynamic model for site prioritization based on both qualitative and quantitative relationships found in the coastal environment.

  15. Modelling University Governance

    ERIC Educational Resources Information Center

    Trakman, Leon

    2008-01-01

    Twentieth century governance models used in public universities are subject to increasing doubt across the English-speaking world. Governments question if public universities are being efficiently governed; if their boards of trustees are adequately fulfilling their trust obligations towards multiple stakeholders; and if collegial models of…

  16. Modeling for Insights

    SciTech Connect

    Jacob J. Jacobson; Gretchen Matthern

    2007-04-01

    System Dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, System Dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The real power of System Dynamic modeling is gaining insights into total system behavior as time, and system parameters are adjusted and the effects are visualized in real time. System Dynamic models allow decision makers and stakeholders to explore long-term behavior and performance of complex systems, especially in the context of dynamic processes and changing scenarios without having to wait decades to obtain field data or risk failure if a poor management or design approach is used. The Idaho National Laboratory recently has been developing a System Dynamic model of the US Nuclear Fuel Cycle. The model is intended to be used to identify and understand interactions throughout the entire nuclear fuel cycle and suggest sustainable development strategies. This paper describes the basic framework of the current model and presents examples of useful insights gained from the model thus far with respect to sustainable development of nuclear power.

  17. String Model Building

    SciTech Connect

    Raby, Stuart

    2010-02-10

    In this talk I review some recent progress in heterotic and F theory model building. I then consider work in progress attempting to find the F theory dual to a class of heterotic orbifold models which come quite close to the MSSM.

  18. Thermal scale modeling

    NASA Technical Reports Server (NTRS)

    Mac Gregor, R. K.

    1971-01-01

    Complex system study data indicate that factors associated with multilayer insulation pose major problem in scale modeling, that numerical analysis aids correction for known compromises of scaling criteria, and that probable errors in scale modeling experiments fall within range predicted by statistical analysis.

  19. Foundations of Biomolecular Modeling

    PubMed Central

    Jorgensen, William L.

    2014-01-01

    The 2013 Nobel Prize in Chemistry has been awarded to Martin Kaplus, Michael Levitt, and Arieh Warshel for “Development of Multiscale Models for Complex Chemical Systems”. The honored work from the 1970s has provided a foundation for the widespread activities today in modeling organic and biomolecular systems. PMID:24315087

  20. Models and Metaphors

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    2007-01-01

    Humanity delights in spinning conceptual models of the world. These models, in turn, mirror their respective root metaphors. Three root metaphors--spiritual, organic, and mechanical--have dominated western thought. The spiritual metaphor runs from Plato, through Hegel, and connects with Montessori. The organic metaphor extends from Aristotle,…

  1. THE AQUATOX MODEL

    EPA Science Inventory

    This lecture will present AQUATOX, an aquatic ecosystem simulation model developed by Dr. Dick Park and supported by the U.S. EPA. The AQUATOX model predicts the fate of various pollutants, such as nutrients and organic chemicals, and their effects on the ecosystem, including fi...

  2. Systematic Eclectic Models.

    ERIC Educational Resources Information Center

    Mahalik, James R.

    1990-01-01

    Presents and evaluates four systematic eclectic models of psychotherapy: Beutler's eclectic psychotherapy; Howard, Nance, and Myers' adaptive counseling and therapy; Lazarus' multimodal therapy; and Prochaska and DiClemente's transtheoretical approach. Examines support for these models and makes conceptual and empirical recommendations.…

  3. Diabetic atherosclerosis mouse models.

    PubMed

    Wu, Kenneth K; Huan, Youming

    2007-04-01

    Coronary heart disease (CHD) due to atherosclerosis is the leading cause of death in the USA, and accelerated CHD has emerged as a leading cause of morbidity and mortality in diabetic patients in the USA and worldwide. This has highlighted the importance and urgency of studying the mechanism of diabetic atherosclerosis and exploring therapeutic options. Due to its unique advantages over other animal models, the mouse is the most used model for studying the mechanism of diabetes-accelerated atherosclerosis and exploring effective therapeutic approaches. In the past decade, several diabetic atherosclerosis mouse models have been established. Currently, however, there is no ideal animal model for diabetic atherosclerosis. To determine the characteristics of the models that more closely resemble human diabetic atherosclerosis disease, this review focuses on the common diabetic atherosclerosis mouse models with respect to the following issues: (1) whether the mice retain diabetic condition; (2) whether the diabetes accelerates atherosclerosis or increases atherogenic inflammation; (3) whether these factors respond to medical interventions. The discussion is aimed at identifying different diabetic mouse models and their features, in order to heighten awareness of the appropriate models that may provide useful tools for studying the mechanism of diabetes-accelerated atherosclerosis and evaluating therapeutic options. PMID:16979174

  4. The Secondary Triad Model.

    ERIC Educational Resources Information Center

    Reis, Sally M.; Renzulli, Joseph S.

    1989-01-01

    The Secondary Triad Model aids in developing programs to serve secondary-level gifted/talented students. The model involves formation of: an Interdisciplinary Planning Team that organizes program goals and plans enrichment opportunities; and Talent Pool classes, in which the regular curriculum is compacted and students participate in…

  5. Using Models Effectively

    ERIC Educational Resources Information Center

    Eichinger, John

    2005-01-01

    Models are crucial to science teaching and learning, yet they can create unforeseen and overlooked challenges for students and teachers. For example, consider the time-tested clay volcano that relies on a vinegar and-baking-soda mixture for its "eruption." Based on a classroom demonstration of that geologic model, elementary students may interpret…

  6. A night sky model.

    NASA Astrophysics Data System (ADS)

    Erpylev, N. P.; Smirnov, M. A.; Bagrov, A. V.

    A night sky model is proposed. It includes different components of light polution, such as solar twilight, moon scattered light, zodiacal light, Milky Way, air glow and artificial light pollution. The model is designed for calculating the efficiency of astronomical installations.

  7. MAVRIC-I model

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Model for Aeroelastic Validation Research Involving Computation (MAVRIC-I) model mounted in the Transonic Dynamics Tunnel. Group photo, including (from right to left): John Edwards, Z. Martinovic (Lockheed), Vic Spain (Lockheed), Robert Bartels, Don Keller, and Dave Schuster. Photographed in building 648.

  8. HYBRID RECEPTOR MODELS

    EPA Science Inventory

    A hybrid receptor model is a specified mathematical procedure which uses not only the ambient species concentration measurements that form the input data for a pure receptor model, but in addition source emission rates or atmospheric dispersion or transformation information chara...

  9. MODELING THE AMES TEST

    EPA Science Inventory

    Despite the value and widespread use of the Ames test, little attention has been focused on standardizing quantitative methods of analyzing these data. In this paper, a realistic and statistically tractable model is developed for the evaluation of Ames-type data. The model assume...

  10. Preliminary semiempirical transport models

    SciTech Connect

    Singer, C.E.

    1983-11-01

    A class of semiempirical transport models is proposed for testing against confinement data from tokamaks and for use in operations planning and machine design. A reference model is proposed to be compatible with published confinement data. Theoretical considerations are used to express the anomalous transport coefficients in terms of appropriate dimensionless parameters.

  11. Review of Model Specifications.

    ERIC Educational Resources Information Center

    Prather, James E.

    A salary prediction model for college faculty that is used at Georgia State University was reviewed and tested using multiple regression analysis. Various model specifications, incorporating academic rank, academic discipline, and academic experience, including professional and personal background characteristics, are reviewed. Academic rank is an…

  12. NEP systems model

    NASA Technical Reports Server (NTRS)

    Gilland, Jim; George, Jeffrey A.

    1993-01-01

    Various aspects of nuclear electric propulsion (NEP) systems analysis and modeling are discussed. The following specific topics are covered: (1) systems analysis challenges; (2) goals for NEP systems analysis; (3) the Nuclear Propulsion Office approach; and (4) NEP subsystem model development. The discussion is presented in vugraph form.

  13. Mathematical models of hysteresis

    SciTech Connect

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  14. MODELING PIGEONPEA PHENOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigeonpea (Cajanus cajan (L.) Millsp.) is a widely grown legume in tropical and subtropical areas. A crop simulation model that can assist in farmer decision-making was developed. The phenological module is one of the major elements of the crop model because accurate prediction of the timing of gr...

  15. Computer Model Documentation Guide.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC. Inst. for Computer Sciences and Technology.

    These guidelines for communicating effectively the details of computer model design and operation to persons with varying interests in a model recommend the development of four different types of manuals to meet the needs of managers, users, analysts and programmers. The guidelines for preparing a management summary manual suggest a broad spectrum…

  16. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  17. Model-Based Reasoning

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  18. Automated Student Model Improvement

    ERIC Educational Resources Information Center

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  19. VENTURI SCRUBBER PERFORMANCE MODEL

    EPA Science Inventory

    The paper presents a new model for predicting the particle collection performance of venturi scrubbers. It assumes that particles are collected by atomized liquid only in the throat section. The particle collection mechanism is inertial impaction, and the model uses a single drop...

  20. MODELING WATER QUALITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality models are based on some representation of hydrology and may include movement of surface water, ground water, and mixing of water in lakes and water bodies. Water quality models simulate some combination of sediment, nutrients, heavy metals, xenobiotics, and aquatic biology. Althoug...

  1. Computational Modeling of Tires

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Tanner, John A. (Compiler)

    1995-01-01

    This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.

  2. Multilevel Mixture Factor Models

    ERIC Educational Resources Information Center

    Varriale, Roberta; Vermunt, Jeroen K.

    2012-01-01

    Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…

  3. Modelling Rating Scales.

    ERIC Educational Resources Information Center

    Linacre, John M.

    Determination of the intentions of the test developer is fundamental to the choice of the analytical model for a rating scale. For confirmatory analysis, the developer's intentions inform the choice of the general form of the model, representing the manner in which the respondent interacts with the scale; these intentions also inform the choice of…

  4. Modeling and Interrogative Strategies.

    ERIC Educational Resources Information Center

    Denney, Douglas R.

    Three studies to determine the effects of adult models on interrogative strategies of children (ages 6-11) are reviewed. Two issues are analyzed: (1) the comparative effectiveness of various types of modeling procedures for changing rule-governed behaviors, and (2) the interaction between observational learning and the developmental level of the…

  5. The EMEFS model evaluation

    SciTech Connect

    Barchet, W.R. ); Dennis, R.L. ); Seilkop, S.K. ); Banic, C.M.; Davies, D.; Hoff, R.M.; Macdonald, A.M.; Mickle, R.E.; Padro, J.; Puckett, K. ); Byun, D.; McHenry, J.N.

    1991-12-01

    The binational Eulerian Model Evaluation Field Study (EMEFS) consisted of several coordinated data gathering and model evaluation activities. In the EMEFS, data were collected by five air and precipitation monitoring networks between June 1988 and June 1990. Model evaluation is continuing. This interim report summarizes the progress made in the evaluation of the Regional Acid Deposition Model (RADM) and the Acid Deposition and Oxidant Model (ADOM) through the December 1990 completion of a State of Science and Technology report on model evaluation for the National Acid Precipitation Assessment Program (NAPAP). Because various assessment applications of RADM had to be evaluated for NAPAP, the report emphasizes the RADM component of the evaluation. A protocol for the evaluation was developed by the model evaluation team and defined the observed and predicted values to be used and the methods by which the observed and predicted values were to be compared. Scatter plots and time series of predicted and observed values were used to present the comparisons graphically. Difference statistics and correlations were used to quantify model performance. 64 refs., 34 figs., 6 tabs.

  6. Prewhirl Jet Model

    NASA Technical Reports Server (NTRS)

    Meng, S. Y.; Jensen, M.; Jackson, E. D.

    1985-01-01

    Simple accurate model of centrifugal or rocket engine pumps provides information necessary to design inducer backflow deflector, backflow eliminator and prewhirl jet in jet mixing zones. Jet design based on this model shows improvement in inducer suction performance and reduced cavitation damage.

  7. Modeling Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  8. Dynamic accelerator modeling

    SciTech Connect

    Nishimura, Hiroshi

    1993-05-01

    Object-Oriented Programming has been used extensively to model the LBL Advanced Light Source 1.5 GeV electron storage ring. This paper is on the present status of the class library construction with emphasis on a dynamic modeling.

  9. Modeling Antibody Diversity.

    ERIC Educational Resources Information Center

    Baker, William P.; Moore, Cathy Ronstadt

    1998-01-01

    Understanding antibody structure and function is difficult for many students. The rearrangement of constant and variable regions during antibody differentiation can be effectively simulated using a paper model. Describes a hands-on laboratory exercise which allows students to model antibody diversity using readily available resources. (PVD)

  10. Modelling extended chromospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1986-01-01

    Attention is given to the concept that the warm, partially ionized plasma (presently called chromosphere) associated with such stars as Alpha Boo and Rho Per extends outwards at least several photospheric radii. Calculations are presented for the Mg II K line in light of two input model atmospheres. Specific predictions are deduced from the results obtained by each of the two models.

  11. Stereolithography models. Final report

    SciTech Connect

    Smith, R.E.

    1995-03-01

    This report describes the first stereolithographic models made, which proved in a new release of ProEngineer software (Parametric Technologies, or PTC) and 3D Systems (Valencia, California) software for the SLA 250 machine. They are a model of benzene and the {alpha}-carbon backbone of the variable region of an antibody.

  12. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  13. Evaluating Causal Models.

    ERIC Educational Resources Information Center

    Watt, James H., Jr.

    Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…

  14. MULTIMEDIA EXPOSURE MODELING

    EPA Science Inventory

    This task addresses a number of issues that arise in multimedia modeling with an emphasis on interactions among the atmosphere and multiple other environmental media. Approaches for working with multiple types of models and the data sets are being developed. Proper software tool...

  15. Modeling Water Filtration

    ERIC Educational Resources Information Center

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  16. Canister Model, Systems Analysis

    Energy Science and Technology Software Center (ESTSC)

    1993-09-29

    This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).

  17. Dual-Schemata Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  18. Legal Policy Optimizing Models

    ERIC Educational Resources Information Center

    Nagel, Stuart; Neef, Marian

    1977-01-01

    The use of mathematical models originally developed by economists and operations researchers is described for legal process research. Situations involving plea bargaining, arraignment, and civil liberties illustrate the applicability of decision theory, inventory modeling, and linear programming in operations research. (LBH)

  19. PHOTOCHEMICAL BOX MODEL (PBM)

    EPA Science Inventory

    This magnetic tape contains the FORTRAN source code, sample input data, and sample output data for the Photochemical Box Model (PBM). The PBM is a simple stationary single-cell model with a variable height lid designed to provide volume-integrated hour averages of O3 and other ph...

  20. Updating Situation Models

    ERIC Educational Resources Information Center

    Zwaan, Rolf A.; Madden, Carol J.

    2004-01-01

    The authors examined how situation models are updated during text comprehension. If comprehenders keep track of the evolving situation, they should update their models such that the most current information, the here and now, is more available than outdated information. Contrary to this updating hypothesis, E. J. O'Brien, M. L. Rizzella, J. E.…

  1. Reliability model generator specification

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Mccann, Catherine

    1990-01-01

    The Reliability Model Generator (RMG), a program which produces reliability models from block diagrams for ASSIST, the interface for the reliability evaluation tool SURE is described. An account is given of motivation for RMG and the implemented algorithms are discussed. The appendices contain the algorithms and two detailed traces of examples.

  2. COMMUTER EXPOSURE MODELING METHODOLOGIES

    EPA Science Inventory

    Two methodologies for modeling commuter exposures are proposed: computer-oriented approach and a manual approach. Both modeling methodologies require that major commuter routes, or pathways, be identified and that the traffic on the remainder of the roadway network be treated as ...

  3. Flowfield modeling and diagnostics

    SciTech Connect

    Gupta, A.K.; Lilley, D.G.

    1985-01-01

    This textbook is devoted solely to flowfield modeling and diagnostics; their practical use, recent and current research, and projected developments and trends. It provides an account of the use of a broad range of techniques in industrial and research practice, both with and without combustion. Application ideas are complemented by details about experimental and modeling techniques.

  4. Modelling with Magnets.

    ERIC Educational Resources Information Center

    Gabel, Dorothy; And Others

    1992-01-01

    Chemistry can be described on three levels: sensory, molecular, and symbolic. Proposes a particle approach to teaching chemistry that uses magnets to aid students construct molecular models and solve particle problems. Includes examples of Johnstone's model of chemistry phenomena, a problem worksheet, and a student concept mastery sheet. (MDH)

  5. Fictional models in science

    NASA Astrophysics Data System (ADS)

    Morrison, Margaret

    2014-02-01

    When James Clerk Maxwell set out his famous equations 150 years ago, his model of electromagnetism included a piece of pure fiction: an invisible, all-pervasive "aether" made up of elastic vortices separated by electric charges. Margaret Morrison explores how this and other "fictional" models shape science.

  6. AGRICULTURAL SIMULATION MODEL (AGSIM)

    EPA Science Inventory

    AGSIM is a large-scale econometric simulation model of regional crop and national livestock production in the United States. The model was initially developed to analyze the aggregate economic impacts of a wide variety issues facing agriculture, such as technological change, pest...

  7. Model-Based Reasoning

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  8. Models in Biology.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Addresses the most popular models currently being chosen for biological research and the reasons behind those choices. Among the current favorites are zebra fish, fruit flies, mice, monkeys, and yeast. Concludes with a brief examination of the ethical issues involved, and why some animals may need to be replaced in research with model systems.…

  9. DYNAMIC ESTUARY MODEL PERFORMANCE

    EPA Science Inventory

    Applications of the Dynamic Estuary Model (DEM) to both the Delaware and Potomac Estuaries by the Environmental Protection Agency during the 1970s are summarized and evaluated. Methods for calibrating, refining, and validating this model, and statistics for evaluating its perform...

  10. Erosion by Wind: Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models of wind erosion are used to investigate fundamental processes and guide resource management. Many models are similar in that - temporal variables control soil wind erodibility; erosion begins when friction velocity exceeds a threshold; and transport capacity for saltation/creep is proportion...

  11. Math, Science, and Models

    ERIC Educational Resources Information Center

    Weinburgh, Molly; Silva, Cecilia

    2011-01-01

    For the past five summers, the authors have taught summer school to recent immigrants and refugees. Their experiences with these fourth-grade English language learners (ELL) have taught them the value of using models to build scientific and mathematical concepts. In this article, they describe the use of different forms of 2- and 3-D models to…

  12. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  13. STORM WATER MANAGEMENT MODEL

    EPA Science Inventory

    Storm Water Management Model (SWMM) is a comprehensive model for analysis of quantity and quality problems associated with urban runoff. Both single-event and continuous simulation may be performed on catchments having storm sewers, combined sewers, and natural drainage, for pred...

  14. Modeling Water Filtration

    ERIC Educational Resources Information Center

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  15. Introduction to Population Modeling.

    ERIC Educational Resources Information Center

    Frauenthal, James C.

    The focus is on the formulation and solution of mathematical models with the idea of a population employed mainly as a pedogogical tool. If the biological setting is stripped away, the material can be interpreted as topics or the qualitative behavior of differential and difference equations. The first group of models investigate the dynamics of a…

  16. Modeling cytomegalovirus infection in mouse tumor models.

    PubMed

    Price, Richard Lee; Chiocca, Ennio Antonio

    2015-01-01

    The hypothesis that cytomegalovirus (CMV) modulates cancer is evolving. Originally discovered in glioblastoma in 2002, the number of cancers, where intratumoral CMV antigen is detected, has increased in recent years suggesting that CMV actively affects the pathobiology of certain tumors. These findings are controversial as several groups have also reported inability to replicate these results. Regardless, several clinical trials for glioblastoma are underway or have been completed that target intratumoral CMV with anti-viral drugs or immunotherapy. Therefore, a better understanding of the possible pathobiology of CMV in cancer needs to be ascertained. We have developed genetic, syngeneic, and orthotopic malignant glioma mouse models to study the role of CMV in cancer development and progression. These models recapitulate for the most part intratumoral CMV expression as seen in human tumors. Additionally, we discovered that CMV infection in Trp53(-/+) mice promotes pleomorphic rhabdomyosarcomas. These mouse models are not only a vehicle for studying pathobiology of the viral-tumor interaction but also a platform for developing and testing cancer therapeutics. PMID:25853089

  17. BioVapor Model Evaluation

    EPA Science Inventory

    General background on modeling and specifics of modeling vapor intrusion are given. Three classical model applications are described and related to the problem of petroleum vapor intrusion. These indicate the need for model calibration and uncertainty analysis. Evaluation of Bi...

  18. Developing Climate Model Comparisons

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Lamarque, Jean-Francois; Lawrence, David

    2014-12-01

    Since 1995, the worldwide climate modeling community has designed and participated in a series of intercomparison projects for the purposes of understanding and improving model performance, investigating scientific questions about the climate system, and projecting future climate conditions. These projects have been defined under the umbrella of the Coupled Model Intercomparison Project, and phase 6 of that project (CMIP6) is just getting under way. As in previous phases, many CMIP6 modeling activities interact and overlap with each other. For example, credible projections of future climate conditions require understanding and validating a variety of Earth system model responses, including those to changes in concentrations of greenhouse gases, aerosols and other air pollutants, and land use change.

  19. Criticality Model Report

    SciTech Connect

    J.M. Scaglione

    2003-03-12

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  20. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  1. Conditional statistical model building

    NASA Astrophysics Data System (ADS)

    Hansen, Mads Fogtmann; Hansen, Michael Sass; Larsen, Rasmus

    2008-03-01

    We present a new statistical deformation model suited for parameterized grids with different resolutions. Our method models the covariances between multiple grid levels explicitly, and allows for very efficient fitting of the model to data on multiple scales. The model is validated on a data set consisting of 62 annotated MR images of Corpus Callosum. One fifth of the data set was used as a training set, which was non-rigidly registered to each other without a shape prior. From the non-rigidly registered training set a shape prior was constructed by performing principal component analysis on each grid level and using the results to construct a conditional shape model, conditioning the finer parameters with the coarser grid levels. The remaining shapes were registered with the constructed shape prior. The dice measures for the registration without prior and the registration with a prior were 0.875 +/- 0.042 and 0.8615 +/- 0.051, respectively.

  2. Beyond the Standard Model

    SciTech Connect

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  3. Geophysical nutation model

    NASA Astrophysics Data System (ADS)

    Dehant, Véronique

    2005-01-01

    The nutation model that has been adopted by the IAU in 2000 is the semi-analytical model MHB2000 of Mathews et al. (JGR 107(B4) 10.1028/2001JB000390). We show how robust this model is and examine the information about the interior of the Earth that has been derived. The observations used to derived the parameters of MHB2000 as well as the amplitude of the Earth Free Core Nutation (FCN) are examined in terms of their stability and precision. We examine in parallel the possibilities that are provided by a numerical integration model. Additional contributions from the external geophysical fluids (atmosphere ocean) are also studied. The extension of this model to short-term polar motion induced by the lunisolar forcing is examined as well. The conclusions of the WG related to that work is given.

  4. Varicella infection modeling.

    SciTech Connect

    Jones, Katherine A.; Finley, Patrick D.; Moore, Thomas W.; Nozick, Linda Karen; Martin, Nathaniel; Bandlow, Alisa; Detry, Richard Joseph; Evans, Leland B.; Berger, Taylor Eugen

    2013-09-01

    Infectious diseases can spread rapidly through healthcare facilities, resulting in widespread illness among vulnerable patients. Computational models of disease spread are useful for evaluating mitigation strategies under different scenarios. This report describes two infectious disease models built for the US Department of Veteran Affairs (VA) motivated by a Varicella outbreak in a VA facility. The first model simulates disease spread within a notional contact network representing staff and patients. Several interventions, along with initial infection counts and intervention delay, were evaluated for effectiveness at preventing disease spread. The second model adds staff categories, location, scheduling, and variable contact rates to improve resolution. This model achieved more accurate infection counts and enabled a more rigorous evaluation of comparative effectiveness of interventions.

  5. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  6. Conformal superspace ?-models

    NASA Astrophysics Data System (ADS)

    Mitev, Vladimir; Quella, Thomas; Schomerus, Volker

    2011-09-01

    We review recent developments in the context of two-dimensional conformally invariant ?-models. These quantum field theories play a prominent role in the covariant superstring quantization in flux backgrounds and in the analysis of disordered systems. We present supergroup WZW models as primary examples of logarithmic conformal field theories, whose structure is almost entirely determined by the underlying supergeometry. In particular, we discuss the harmonic analysis on supergroups and supercosets and point out the subtleties of Lie superalgebra representation theory that are responsible for the emergence of logarithmic representations. Furthermore, special types of marginal deformations of supergroup WZW models are studied which only exist if the Killing form is vanishing. We show how exact expressions for anomalous dimensions of boundary fields can be derived using quasi-abelian perturbation theory. Finally, the knowledge of the exact spectrum is used to motivate a duality between the OSP(4|2) symmetric Gross-Neveu model and the S supersphere ?-model.

  7. Integrated Environmental Control Model

    Energy Science and Technology Software Center (ESTSC)

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  8. Direct insolation models

    SciTech Connect

    Bird, R.; Hulstrom, R.L.

    1980-01-01

    Several recently published models of the direct component of the broadband insolation are compared for clear sky conditions. The comparison includes seven simple models and one rigorous model that is used as a basis for determining accuracy. Where possible, the comparison is made between the results of each model for each atmospheric constituent (H/sub 2/O, CO/sub 2/, O/sub 3/, O/sub 2/, aerosol and molecular scattering) separately as well as for the combined effect of all of the constituents. Two optimum simple models of varying degrees of complexity are developed as a result of this comparison. The study indicates: aerosols dominate the attenuation of the direct beam for reasonable atmospheric conditions; molecular scattering is next in importance; water vapor is an important absorber; and carbon dioxide and oxygen are relatively unimportant as attenuators of the broadband solar energy.

  9. XAFS Model Compound Library

    DOE Data Explorer

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  10. MODELING AIRWAY PROBABILITY

    PubMed Central

    Rudyanto, Rina D.; Muñoz-Barrutia, Arrate; Diaz, Alejandro A.; Ross, James; Washko, George R.; Ortiz-de-Solorzano, Carlos; Estepar, Raul San Jose

    2013-01-01

    We present a probability model for lung airways in computed tomography (CT) images. Lung airways are tubular structures that display specific features, such as low intensity and proximity to vessels and bronchial walls. From these features, the posterior probability for the airway feature space was computed using a Bayesian model based on 20 CT images from subjects with different degrees of Chronic Obstructive Pulmonary Disease (COPD). The likelihood probability was modeled using both a Gaussian distribution and a nonparametric kernel density estimation method. After exhaustive feature selection, good specificity and sensitivity were achieved in a cross-validation study for both the Gaussian (0.83, 0.87) and the nonparametric method (0.79, 0.89). The model generalizes well when trained using images from a late stage COPD group. This probability model may facilitate airway extraction and quantitative assessment of lung diseases, which is useful in many clinical and research settings. PMID:24280685

  11. Modeling glacial climates

    NASA Technical Reports Server (NTRS)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  12. A model of plausibility.

    PubMed

    Connell, Louise; Keane, Mark T

    2006-01-01

    Plausibility has been implicated as playing a critical role in many cognitive phenomena from comprehension to problem solving. Yet, across cognitive science, plausibility is usually treated as an operationalized variable or metric rather than being explained or studied in itself. This article describes a new cognitive model of plausibility, the Plausibility Analysis Model (PAM), which is aimed at modeling human plausibility judgment. This model uses commonsense knowledge of concept-coherence to determine the degree of plausibility of a target scenario. In essence, a highly plausible scenario is one that fits prior knowledge well: with many different sources of corroboration, without complexity of explanation, and with minimal conjecture. A detailed simulation of empirical plausibility findings is reported, which shows a close correspondence between the model and human judgments. In addition, a sensitivity analysis demonstrates that PAM is robust in its operations. PMID:21702810

  13. Rainfall erosion model

    NASA Astrophysics Data System (ADS)

    Sukhanovskii, Yu. P.

    2010-09-01

    A model describing rainfall erosion over the course of a long time period is proposed. The model includes: (1) a new equation of detachment of soil particles by water flows based on the Mirtskhulava equation; (2) a new equation for the transport capacity of the flow based on a modified Bagnold equation, which is used in the AGNPS model; (3) modified SCS runoff equation; (4) probability distributions for rainfall. The proposed equations agree satisfactorily with the data of on-site observations of the Moldova and Nizhnedevitsk water-balance stations. The Monte Carlo method is used for numerical modeling of random variables. The results of modeling agree satisfactorily with empirical equations developed for conditions in Russia and the United States. The effect of climatic conditions on the dependence of longtime average annual soil loss on various factors is analyzed. Minimum information is used for assigning the initial data.

  14. VENTILATION MODEL REPORT

    SciTech Connect

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  15. Impedance modelling of pipes

    NASA Astrophysics Data System (ADS)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  16. Atmospheric distribution model

    NASA Astrophysics Data System (ADS)

    Zhang, Han-Wei; Li, Bin-Hua; Yang, Lei; Tie, Qiong-Xian; Mao, Wei

    2005-12-01

    Atmospheric vertical distributions and high altitude surveying techniques are described briefly. The reason why the atmospheric spherically symmetric distribution models are only adopted at present is analyzed. It is demonstrated that astronomical refraction measured models varied with change in observing stations and observation directions already have characteristics of non-spherically symmetric distribution of the real atmosphere over the observing stations so that there is no need to find or build atmospheric distribution models varied with change in topography and seasons. With the measured models, influences of ill selection of atmospheric distribution models can be avoided. All these from one side will ensure success in improving accuracies of the astronomical refraction correction and the radio wave refraction correction and the radio wave refraction delay correction.

  17. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  18. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  19. Anisotropic Rabi model

    NASA Astrophysics Data System (ADS)

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-04-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  20. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  1. A Preliminary Jupiter Model

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.; Militzer, B.

    2016-03-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.

  2. Composite technicolor standard models

    SciTech Connect

    Chivukula, R.S.

    1987-01-01

    In this thesis we introduce the idea of Composite Technicolor Standard Models (CTSM). In these models the quarks, leptons, and technifermions are assumed to be composite particles built from fermions (preons) bound by strong gauge interactions. We argue that if the preon dynamics respects an (SU(3) {times} U(1)){sup 5} flavor symmetry that is explicitly broken only by preon mass terms which are proportional to the quark and lepton mass matrices, then the theory as a natural GIM mechanism which suppresses dangerous flavor changing neutral currents. We show that CTSM effects give rise to a number of small, but observable, deviations from the standard model of electroweak interactions. We discuss the difficulties with anomaly constraints and flavor symmetry breaking involved in building a Composite Technicolor Standard Model. We conclude by constructing a model of quarks with the required symmetry properties.

  3. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  4. Saturn Radiation (SATRAD) Model

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Ratliff, J. M.; Evans, R. W.

    2005-01-01

    The Saturnian radiation belts have not received as much attention as the Jovian radiation belts because they are not nearly as intense-the famous Saturnian particle rings tend to deplete the belts near where their peak would occur. As a result, there has not been a systematic development of engineering models of the Saturnian radiation environment for mission design. A primary exception is that of Divine (1990). That study used published data from several charged particle experiments aboard the Pioneer 1 1, Voyager 1, and Voyager 2 spacecraft during their flybys at Saturn to generate numerical models for the electron and proton radiation belts between 2.3 and 13 Saturn radii. The Divine Saturn radiation model described the electron distributions at energies between 0.04 and 10 MeV and the proton distributions at energies between 0.14 and 80 MeV. The model was intended to predict particle intensity, flux, and fluence for the Cassini orbiter. Divine carried out hand calculations using the model but never formally developed a computer program that could be used for general mission analyses. This report seeks to fill that void by formally developing a FORTRAN version of the model that can be used as a computer design tool for missions to Saturn that require estimates of the radiation environment around the planet. The results of that effort and the program listings are presented here along with comparisons with the original estimates carried out by Divine. In addition, Pioneer and Voyager data were scanned in from the original references and compared with the FORTRAN model s predictions. The results were statistically analyzed in a manner consistent with Divine s approach to provide estimates of the ability of the model to reproduce the original data. Results of a formal review of the model by a panel of experts are also presented. Their recommendations for further tests, analyses, and extensions to the model are discussed.

  5. Maximally Expressive Task Modeling

    NASA Technical Reports Server (NTRS)

    Japp, John; Davis, Elizabeth; Maxwell, Theresa G. (Technical Monitor)

    2002-01-01

    Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiment activities for the Space Station. The equipment used in these experiments is some of the most complex hardware ever developed by mankind, the information sought by these experiments is at the cutting edge of scientific endeavor, and the procedures for executing the experiments are intricate and exacting. Scheduling is made more difficult by a scarcity of space station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling space station experiment operations calls for a "maximally expressive" modeling schema. Modeling even the simplest of activities cannot be automated; no sensor can be attached to a piece of equipment that can discern how to use that piece of equipment; no camera can quantify how to operate a piece of equipment. Modeling is a human enterprise-both an art and a science. The modeling schema should allow the models to flow from the keyboard of the user as easily as works of literature flowed from the pen of Shakespeare. The Ground Systems Department at the Marshall Space Flight Center has embarked on an effort to develop a new scheduling engine that is highlighted by a maximally expressive modeling schema. This schema, presented in this paper, is a synergy of technological advances and domain-specific innovations.

  6. Slim Battery Modelling Features

    NASA Astrophysics Data System (ADS)

    Borthomieu, Y.; Prevot, D.

    2011-10-01

    Saft has developed a life prediction model for VES and MPS cells and batteries. The Saft Li-ion Model (SLIM) is a macroscopic electrochemical model based on energy (global at cell level). The main purpose is to predict the battery performances during the life for GEO, MEO and LEO missions. This model is based on electrochemical characteristics such as Energy, Capacity, EMF, Internal resistance, end of charge voltage. It uses fading and calendar law effects on energy and internal impedance vs. time, temperature, End of Charge voltage. Based on the mission profile, satellite power system characteristics, the model proposes the various battery configurations. For each configuration, the model gives the battery performances using mission figures and profiles: power, duration, DOD, end of charge voltages, temperatures during eclipses and solstices, thermal dissipations and cell failures. For the GEO/MEO missions, eclipse and solstice periods can include specific profile such as plasmic propulsion fires and specific balancing operations. For LEO missions, the model is able to simulate high power peaks to predict radar pulses. Saft's main customers have been using the SLIM model available in house for two years. The purpose is to have the satellite builder power engineers able to perform by themselves in the battery pre-dimensioning activities their own battery simulations. The simulations can be shared with Saft engineers to refine the power system designs. This model has been correlated with existing life and calendar tests performed on all the VES and MPS cells. In comparing with more than 10 year lasting life tests, the accuracy of the model from a voltage point of view is less than 10 mV at end Of Life. In addition, thethe comparison with in-orbit data has been also done. b This paper will present the main features of the SLIM software and outputs comparison with real life tests. b0

  7. Tsunami Modeling: Development of Benchmarked Models

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.; Synolakis, C. E.

    2008-12-01

    We discuss the progress towards the development of benchmarked models for forecasting tsunami inundation. Tsunami hydrodynamics has progressed slower than research in other natural hazards, because for several decades only the largest tsunamis were being reported. With the exception of the 1960 and 1964 events, there had been only qualitative information on inundation. While the basic equations for analysis have been known for decades, the existing synthesis leading to real time forecasts as currently available had to await the development of sophisticated modeling tools, the large-scale laboratory experiments in the 1980s-1990s and the tsunameter recordings of 2003 and since. The field survey results in the 1990s (Synolakis and Okal, 2005) served as crude proxies to free-field tsunami recordings and allowed for the validation and verification of numerical procedures. State-of-the-art inundation and forecasting codes have evolved through a painstaking process of careful validation and verification which can be traced back to the 1990 NSF Catalina workshop on Long-Wave Runup Models (Liu et al., 1991). Operational tsunami forecasting was only made possible through the availability of deep ocean measurements. We will describe this journey from development of the basic field equations to forecasts, through the scientific milestones that served as benchmarks and reality checks. In summary, as research in live networks -where problems and solution ideas arise spontaneously- tsunami hydrodynamic modeling was driven by milestone scientific meetings, and post tsunami surveys that kept identifying novel problem geometries and previously unrecognized phenomena. We discuss necessary validation and verification steps for numerical codes to be used for inundation mapping, design and operations (Synolakis et al., 2007). Liu, P. L.-F., C. E. Synolakis and H. H. Yeh, 1991. Report on the International Workshop on Long-Wave Run- up. J. Fluid Mech., 229, 675-688. Synolakis, C. E. and E. A. Okal, 2005. 1992-2002: perspective on a decade of post tsunami surveys. Adv. Nat. Technol. Hazards, 23, 1-30. Synolakis, C. E., E. N. Bernard, V. V. Titov, U. Kanoglu and F. Gonzalez, 2007. Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. NOAA OAR Special Report, Contribution No 3053, NOAA/OAR/PMEL, Seattle, WA, 55 pp.

  8. Atmospheric Models for Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta L.; Keller, Vernon W.

    2004-01-01

    There are eight destinations in the solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithm, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan.

  9. XPAL modeling and theory

    NASA Astrophysics Data System (ADS)

    Palla, Andrew D.; Carroll, David L.; Verdeyen, Joseph T.; Heaven, Michael C.

    2011-03-01

    The exciplex pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane, by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (exciplexes or excimers). The blue satellites of the alkali D2 lines provide an advantageous pathway for optically pumping atomic alkali lasers on the principal series (resonance) transitions with broad linewidth (>2 nm) semiconductor diode lasers. Because of the addition of atomic collision pairs and exciplex states, modeling of the XPAL system is more complicated than classic diode pumped alkali laser (DPAL) modeling. The BLAZE-V model is utilized for high-fidelity simulations. BLAZE-V is a time-dependent finite-volume model including transport, thermal, and kinetic effects appropriate for the simulation of a cylindrical closed cell XPAL system. The model is also regularly used for flowing gas laser simulations and is easily adapted for DPAL. High fidelity calculations of pulsed XPAL operation as a function of temperature and pressure are presented along with a theoretical analysis of requirements for optical transparency in XPAL systems. The detailed modeling predicts higher XPAL performance as the rare gas pressure increases, and that higher output powers are obtainable with higher temperature. The theoretical model indicates that the choice of alkali and rare gas mixture can significantly impact the required intensities for optical transparency.

  10. Meshfree magnetotelluric modelling

    NASA Astrophysics Data System (ADS)

    Wittke, J.; Tezkan, B.

    2014-08-01

    We present a new approach for 2-D magnetotelluric forward numerical modelling in contrast to traditional numerical methods like finite elements or finite differences. The method used for solving the partial differential equations is based on a mesh-free technique which does not need an underlaying mesh or grid. We use the Meshless Local Petrov-Galerkin (MLPG) method in combination with radial basis functions to simulate the response of a given conductivity model to a plane-wave source. We compare the mesh-free solution with known simulation programs and simple analytical solutions. Furthermore, we discuss the new magnetotelluric modelling method in terms of implementation and stability. First, we study the convergence and discretization errors of the new method with a simple half-space conductivity model. Then we compare our mesh-free simulation results with simple 2-D conductivity models with the results of a well-known finite element program. In the end, we provide a smooth conductivity model calculated with the mesh-free approach. The modelling results, even with randomly distributed nodes, are in a good agreement with those obtained by the finite element method.

  11. Model molecules mimicking asphaltenes.

    PubMed

    Sjöblom, Johan; Simon, Sébastien; Xu, Zhenghe

    2015-04-01

    Asphalthenes are typically defined as the fraction of petroleum insoluble in n-alkanes (typically heptane, but also hexane or pentane) but soluble in toluene. This fraction causes problems of emulsion formation and deposition/precipitation during crude oil production, processing and transport. From the definition it follows that asphaltenes are not a homogeneous fraction but is composed of molecules polydisperse in molecular weight, structure and functionalities. Their complexity makes the understanding of their properties difficult. Proper model molecules with well-defined structures which can resemble the properties of real asphaltenes can help to improve this understanding. Over the last ten years different research groups have proposed different asphaltene model molecules and studied them to determine how well they can mimic the properties of asphaltenes and determine the mechanisms behind the properties of asphaltenes. This article reviews the properties of the different classes of model compounds proposed and present their properties by comparison with fractionated asphaltenes. After presenting the interest of developing model asphaltenes, the composition and properties of asphaltenes are presented, followed by the presentation of approaches and accomplishments of different schools working on asphaltene model compounds. The presentation of bulk and interfacial properties of perylene-based model asphaltene compounds developed by Sjöblom et al. is the subject of the next part. Finally the emulsion-stabilization properties of fractionated asphaltenes and model asphaltene compounds is presented and discussed. PMID:25638443

  12. Biophysical models in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Scholz, M.; Elsaesser, T.

    One major rationale for the application of ion beams in tumor therapy is their increased relative biological effectiveness RBE in the Bragg peak region For dose prescription the increased effectiveness has to be taken into account in treatment planning Hence the complex dependencies of RBE on the dose level biological endpoint position in the field etc require biophysical models which have to fulfill two important criteria simplicity and quantitative precision Simplicity means that the number of free parameters should be kept at a minimum Due to the lack of precise quantitative data at least at present this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production processing and repair of biological damages Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues thus even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome The paper will give a general introduction into the field followed by a brief description of a specific model the so called Local Effect Model LEM This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now The model is based on the knowledge of charged particle track structure in combination with the response of the biological objects to conventional photon radiation The model will be critically discussed with respect to other

  13. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  14. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  15. Model for macroevolutionary dynamics

    PubMed Central

    Maruvka, Yosef E.; Shnerb, Nadav M.; Kessler, David A.; Ricklefs, Robert E.

    2013-01-01

    The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21–87], which neglects extinction, or a simple birth–death (speciation–extinction) process. Here, we extend the more recent development of a generic, neutral speciation–extinction (of species)–origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom–sized taxonomic groups. The model’s predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution. PMID:23781101

  16. Computationally modeling interpersonal trust

    PubMed Central

    Lee, Jin Joo; Knox, W. Bradley; Wormwood, Jolie B.; Breazeal, Cynthia; DeSteno, David

    2013-01-01

    We present a computational model capable of predicting—above human accuracy—the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust. PMID:24363649

  17. SPAR Model Structural Efficiencies

    SciTech Connect

    John Schroeder; Dan Henry

    2013-04-01

    The Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are supporting initiatives aimed at improving the quality of probabilistic risk assessments (PRAs). Included in these initiatives are the resolution of key technical issues that are have been judged to have the most significant influence on the baseline core damage frequency of the NRC’s Standardized Plant Analysis Risk (SPAR) models and licensee PRA models. Previous work addressed issues associated with support system initiating event analysis and loss of off-site power/station blackout analysis. The key technical issues were: • Development of a standard methodology and implementation of support system initiating events • Treatment of loss of offsite power • Development of standard approach for emergency core cooling following containment failure Some of the related issues were not fully resolved. This project continues the effort to resolve outstanding issues. The work scope was intended to include substantial collaboration with EPRI; however, EPRI has had other higher priority initiatives to support. Therefore this project has addressed SPAR modeling issues. The issues addressed are • SPAR model transparency • Common cause failure modeling deficiencies and approaches • Ac and dc modeling deficiencies and approaches • Instrumentation and control system modeling deficiencies and approaches

  18. The timbre model

    NASA Astrophysics Data System (ADS)

    Jensen, Kristoffer

    2002-11-01

    A timbre model is proposed for use in multiple applications. This model, which encompasses all voiced isolated musical instruments, has an intuitive parameter set, fixed size, and separates the sounds in dimensions akin to the timbre dimensions as proposed in timbre research. The analysis of the model parameters is fully documented, and it proposes, in particular, a method for the estimation of the difficult decay/release split-point. The main parameters of the model are the spectral envelope, the attack/release durations and relative amplitudes, and the inharmonicity and the shimmer and jitter (which provide both for the slow random variations of the frequencies and amplitudes, and also for additive noises). Some of the applications include synthesis, where a real-time application is being developed with an intuitive gui, classification, and search of sounds based on the content of the sounds, and a further understanding of acoustic musical instrument behavior. In order to present the background of the model, this presentation will start with sinusoidal A/S, some timbre perception research, then present the timbre model, show the validity for individual music instrument sounds, and finally introduce some expression additions to the model.

  19. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  20. Functional Generalized Additive Models

    PubMed Central

    McLean, Mathew W.; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online. PMID:24729671

  1. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online. PMID:24729671

  2. Invertebrate models of alcoholism.

    PubMed

    Scholz, Henrike; Mustard, Julie A

    2013-01-01

    For invertebrates to become useful models for understanding the genetic and physiological mechanisms of alcoholism related behaviors and the predisposition towards alcoholism, several general requirements must be fulfilled. The animal should encounter ethanol in its natural habitat, so that the central nervous system of the organism will have evolved mechanisms for responding to ethanol exposure. How the brain adapts to ethanol exposure depends on its access to ethanol, which can be regulated metabolically and/or by physical barriers. Therefore, a model organism should have metabolic enzymes for ethanol degradation similar to those found in humans. The neurons and supporting glial cells of the model organism that regulate behaviors affected by ethanol should share the molecular and physiological pathways found in humans, so that results can be compared. Finally, the use of invertebrate models should offer advantages over traditional model systems and should offer new insights into alcoholism-related behaviors. In this review we will summarize behavioral similarities and identified genes and mechanisms underlying ethanol-induced behaviors in invertebrates. This review mainly focuses on the use of the nematode Caenorhabditis elegans, the honey bee Apis mellifera and the fruit fly Drosophila melanogaster as model systems. We will discuss insights gained from those studies in conjunction with their vertebrate model counterparts and the implications for future research into alcoholism and alcohol-induced behaviors. PMID:21472534

  3. GIA Ice Models

    NASA Astrophysics Data System (ADS)

    Kachuck, Samuel; Cathles, Larry; Amantov, Aleksey

    2013-04-01

    Defining the ice load in a way that avoids circularity is perhaps the most difficult aspect of GIA modeling. At any instant of past time the global land-supported ice load must honor the meltwater curve and the known edges of the ice, but within these constraints the ice mass can be swapped to a considerable extent between the various glacial systems and parts of those systems. In our models, ice thickness is controlled by the effective basal shear stress (EBSS). This parameter incorporates the sub-ice lithology (e.g., whether the ice rests on sediment of crystalline rock), the relative local snow accumulation rate, and the local basal shear strength (which presumably depends most strongly on sub-ice temperature). The effective basal shear stress can be fairly easily modified to construct an ice model. The ice model is evaluated by the geological reasonability of its changes in EBSS in space and time, and by how well it matches measured GIA data. The risk that an incorrect earth model can be forced to fit the GIA data by manipulating the ice model (the circularity mentioned above) can be minimized by evaluating the longest wavelength deformations (peripheral bulge behavior) before proceeding to the shorter wavelength deformations (local emergence variations). The poster will describe how we have proceeded in this fashion to develop a framework for interpreting GIA data in Norway. The poster will be augmented by computer software that compares emergence data to models at specific sites in Norway.

  4. SMC: SCENIC Model Control

    NASA Technical Reports Server (NTRS)

    Srivastava, Priyaka; Kraus, Jeff; Murawski, Robert; Golden, Bertsel, Jr.

    2015-01-01

    NASAs Space Communications and Navigation (SCaN) program manages three active networks: the Near Earth Network, the Space Network, and the Deep Space Network. These networks simultaneously support NASA missions and provide communications services to customers worldwide. To efficiently manage these resources and their capabilities, a team of student interns at the NASA Glenn Research Center is developing a distributed system to model the SCaN networks. Once complete, the system shall provide a platform that enables users to perform capacity modeling of current and prospective missions with finer-grained control of information between several simulation and modeling tools. This will enable the SCaN program to access a holistic view of its networks and simulate the effects of modifications in order to provide NASA with decisional information. The development of this capacity modeling system is managed by NASAs Strategic Center for Education, Networking, Integration, and Communication (SCENIC). Three primary third-party software tools offer their unique abilities in different stages of the simulation process. MagicDraw provides UMLSysML modeling, AGIs Systems Tool Kit simulates the physical transmission parameters and de-conflicts scheduled communication, and Riverbed Modeler (formerly OPNET) simulates communication protocols and packet-based networking. SCENIC developers are building custom software extensions to integrate these components in an end-to-end space communications modeling platform. A central control module acts as the hub for report-based messaging between client wrappers. Backend databases provide information related to mission parameters and ground station configurations, while the end user defines scenario-specific attributes for the model. The eight SCENIC interns are working under the direction of their mentors to complete an initial version of this capacity modeling system during the summer of 2015. The intern team is composed of four students in Computer Science, two in Computer Engineering, one in Electrical Engineering, and one studying Space Systems Engineering.

  5. Testing modeling frameworks

    NASA Astrophysics Data System (ADS)

    Hill, Mary; Ye, Ming; Foglia, Laura; Lu, Dan

    2015-04-01

    Modeling frameworks include many ideas about, for example, how to parameterize models, conduct sensitivity analysis (including identifying observations and parameters important to calibration and prediction), quantify uncertainty, and so on. Of concern in this talk is meaningful testing of how ideas proposed for any modeling framework perform. The design of meaningful tests depends on the aspect of the framework being tested and the timing of system dynamics. Consider a situation in which the aspect being tested is prediction accuracy and the quantities of concern are readily measured and change quickly, such as for precipitation, floods, or hurricanes. In such cases meaningful tests involve comparing simulated and measured values and tests can be conducted daily, hourly or even more frequently. Though often challenged by measurement difficulties, this remains the simplest circumstance for conducting meaningful tests of modeling frameworks. If measurements are not readily available and(or) the system responds to changes over decades or centuries, as generally occurs for climate change, saltwater intrusion of groundwater systems, and dewatering of aquifers, prediction accuracy needs to be evaluated in other ways. Often these require high performance computing. For example, complex and simple models can be compared or cross-validation experiments can be conducted. Both can require massive computational resources for any but the simplest of problems. Testing other aspects of a modeling framework can require different types of tests. For example, testing methods of identifying observations or parameters important to model calibration or predictions might entail evaluation of many circumstances for methods that are themselves commonly computationally demanding. Again, high performance computing is needed even when the goal is to include computationally frugal methods in the modeling framework. In this talk we discuss the importance of such testing, stress the need to design and implement tests when any modeling framework is developed, and provide examples of tests from several recent publications.

  6. Modeling the equatorial electrojet

    SciTech Connect

    Stening, R.J.

    1985-02-01

    The equivalent circuit method has been modified to give greater accuracy and greater detail near the equator in order to model the equatorial electrojet. Electron collision frequencies used in the conductivity model are consistent with laboratory measurements. Variations with longitude are allowed, and the electrojet in the model is driven by suitable emf's generated by a global thermotidal wind system. The height of maximum current density in the Indian electrojet provided by the model at 104 km is consistent with some observations. The model gives the same height in Peru when an electron density profile typical of that region is used. The form of the electron density profile is shown to have a considerable affect on the current profile. The calculated variation with latitude of high-integrated current density gives good agreement. The two-layer equivalent circuit model is more successful than the single-layer model in modeling the latitude profile of the jet, but the observed depression in ..delta..H near 4/sup 0/ dip latitude requires much larger changes in currents with latitude than either model can provide. The theory that currents are limited by the two-stream instability does not agree with measured altitude profiles of the jet. Before latitude variations of ..delta..H and ..delta..Z on the ground can satisfactorily be explained, greater understanding of the contribution of conductivity anomalies to internal components will be required, but with suitable assumptions, a good fit with observed results is obtained. The effects produced by a simple local F region wind system are also investigated. A discrepancy with the observed relationship between integrated current densities and ..delta..H still awaits explanation.

  7. SSCL groundwater model

    SciTech Connect

    Romero, V.; Bull, J.; Stapleton, G.; Baker, S.; Goss, D.; Coulson, L.

    1994-02-01

    Activation of groundwater due to accelerator operations has been a consideration since the conceptual stages of the SSC. Prior to site selection, an elementary hydrological model assuming a porous medium with a shallow well in proximity to the tunnel was used to determine the radionuclide concentrations in the water pumped from a well. The model assumed that radionuclides produced within a few feet of the tunnel would migrate to the shallow well and be diluted as the well drew water from a conically symmetric region. After the Ellis County site was selected, the compatibility of this model with the site specific geology was evaluated. The host geology at the selected site is low permeability rock, Austin chalk, shale, and marl, however, vertical fractures do exist. Since the host rock has a low permeability, groundwater in proximity to the tunnel would have to travel primarily through fractures. This hydrology is not compatible with the above mentioned model since water does not percolate uniformly from the surrounding rock into local wells. The amount of dilution of activated water will vary significantly depending on the specific relationship of the well to the activation zone. A further complication in the original model is that it assumes the high energy particles escaping from the accelerator enclosure are localized. The model does not provide for particles being lost over a large area as will happen with routine operational losses. These losses will be distributed along the accelerator over the life of the project. The SSCL groundwater model has been recast to account for the site specific hydrology and both point and distributed losses. Using the new groundwater model, the SSC accelerators are designed to limit the activation concentration in the water located one meter outside the accelerator enclosure to meet the federal drinking water standards. This technical note provides the details of this model.

  8. The Deep Model.

    PubMed

    Wang, Panqu; Cottrell, Garrison

    2015-01-01

    "The Model" (a.k.a. "TM", Dailey and Cottrell, 1999) is a biologically-plausible neurocomputational model designed for face and object recognition. Developed over the last 25 years, TM has been successfully used to model many cognitive phenomena, such as facial expression perception (Dailey et al., 2002), recruitment of the FFA for other categories of expertise (Tong et al., 2008), and the experience moderation effect on the correlation between face and object recognition (Wang et al., 2014). However, as TM is a "shallow" model, it cannot develop rich feature representations needed for challenging computer vision tasks. Meanwhile, the recent deep convolutional neural network techniques produce state-of-the-art results for many computer vision benchmarks, but they have not been used in cognitive modeling. The deep architecture allows the network to develop rich high level features, which generalize really well to other novel visual tasks. However, the deep learning models use a fully supervised training approach, which seems implausible for early visual system. Here, "The Deep Model" (TDM) tries to bridge TM and deep learning models together to create a "gradually" supervised deep architecture which can be both biologically-plausible and perform well on computer vision tasks. We show that, by using the sparse PCA and RICA algorithms on natural image datasets, we can obtain center surround color-opponent receptive field that represent LGN cells, and Gabor-like filters that represent V1 simple cells. This suggests that the unsupervised learning approach is what is used in the development of the early visual system. We employ this insight to develop a gradually supervised deep neural network and test it on some standard computer vision and cognitive modeling tasks. Meeting abstract presented at VSS 2015. PMID:26326779

  9. Turbulence Modeling Workshop

    NASA Technical Reports Server (NTRS)

    Rubinstein, R. (Editor); Rumsey, C. L. (Editor); Salas, M. D. (Editor); Thomas, J. L. (Editor); Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Advances in turbulence modeling are needed in order to calculate high Reynolds number flows near the onset of separation and beyond. To this end, the participants in this workshop made the following recommendations. (1) A national/international database and standards for turbulence modeling assessment should be established. Existing experimental data sets should be reviewed and categorized. Advantage should be taken of other efforts already under-way, such as that of the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) consortium. Carefully selected "unit" experiments will be needed, as well as advances in instrumentation, to fill the gaps in existing datasets. A high priority should be given to document existing turbulence model capabilities in a standard form, including numerical implementation issues such as grid quality and resolution. (2) NASA should support long-term research on Algebraic Stress Models and Reynolds Stress Models. The emphasis should be placed on improving the length-scale equation, since it is the least understood and is a key component of two-equation and higher models. Second priority should be given to the development of improved near-wall models. Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) would provide valuable guidance in developing and validating new Reynolds-averaged Navier-Stokes (RANS) models. Although not the focus of this workshop, DNS, LES, and hybrid methods currently represent viable approaches for analysis on a limited basis. Therefore, although computer limitations require the use of RANS methods for realistic configurations at high Reynolds number in the foreseeable future, a balanced effort in turbulence modeling development, validation, and implementation should include these approaches as well.

  10. Freeze Prediction Model

    NASA Technical Reports Server (NTRS)

    Morrow, C. T. (principal investigator)

    1981-01-01

    Measurements of wind speed, net irradiation, and of air, soil, and dew point temperatures in an orchard at the Rock Springs Agricultural Research Center, as well as topographical and climatological data and a description of the major apple growing regions of Pennsylvania were supplied to the University of Florida for use in running the P-model, freeze prediction program. Results show that the P-model appears to have considerable applicability to conditions in Pennsylvania. Even though modifications may have to be made for use in the fruit growing regions, there are advantages for fruit growers with the model in its present form.

  11. Diagnositcs With Adjoint Modelling

    NASA Astrophysics Data System (ADS)

    Blessing, S.; Fraedrich, K.; Kirk, E.; Lunkeit, F.

    The potential usefulness of an adjoint primitive equations global atmospheric circu- lation model for climate diagnostics is demonstrated in a feasibility study. A daily NAO-type index is calculated as one-point correlation of the 300 hPa streamfunction anomaly. By application of the adjoint model we diagnose its temperature forcing on short timescales in terms of spatial temperature sensitivity patterns at different time lags, which, in a first order approximation, induce growth of the index. The dynamical relevance of these sensitivity patterns is confirmed by lag-correlating the index time series and the projection time series of the model temperature on these sensitivity patterns.

  12. Aviation Safety Simulation Model

    NASA Technical Reports Server (NTRS)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  13. F-14 modeling study

    NASA Technical Reports Server (NTRS)

    Levison, William H.

    1988-01-01

    This study explored application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues. The model was applied to two data bases: (1) a NASA ground based simulation of an air-to-air tracking task in which nonvisual cueing devices were explored, and (2) a ground based and inflight study performed by the Calspan Corporation to explore the effects of simulator delay on attitude tracking performance. The model predicted the major performance trends obtained in both studies. A combined analytical and experimental procedure for exploring simulator fidelity issues is outlined.

  14. TUTORIAL: Validating biorobotic models

    NASA Astrophysics Data System (ADS)

    Webb, Barbara

    2006-09-01

    Some issues in neuroscience can be addressed by building robot models of biological sensorimotor systems. What we can conclude from building models or simulations, however, is determined by a number of factors in addition to the central hypothesis we intend to test. These include the way in which the hypothesis is represented and implemented in simulation, how the simulation output is interpreted, how it is compared to the behaviour of the biological system, and the conditions under which it is tested. These issues will be illustrated by discussing a series of robot models of cricket phonotaxis behaviour. .

  15. Animal Model of Dermatophytosis

    PubMed Central

    Shimamura, Tsuyoshi; Kubota, Nobuo; Shibuya, Kazutoshi

    2012-01-01

    Dermatophytosis is superficial fungal infection caused by dermatophytes that invade the keratinized tissue of humans and animals. Lesions from dermatophytosis exhibit an inflammatory reaction induced to eliminate the invading fungi by using the host's normal immune function. Many scientists have attempted to establish an experimental animal model to elucidate the pathogenesis of human dermatophytosis and evaluate drug efficacy. However, current animal models have several issues. In the present paper, we surveyed reports about the methodology of the dermatophytosis animal model for tinea corporis, tinea pedis, and tinea unguium and discussed future prospects. PMID:22619489

  16. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  17. Information Modelling in Physics

    NASA Astrophysics Data System (ADS)

    Marchetti, Vincent

    1999-10-01

    Information modelling is a technique for formal and graphical analysis of relations among concepts and data. It is the basis for the STEP international standard for exchange of manufacturing and engineering data. One part of the standard under development will be an information model of mathematical expressions describing physical objects and phenomena. An example will be presented of its application to mathematical expressions arising in elementary physics. This example will demonstrate how such an information model presents a description more extensive than that of the notation generally used.

  18. Computer Modeling Of Atomization

    NASA Technical Reports Server (NTRS)

    Giridharan, M.; Ibrahim, E.; Przekwas, A.; Cheuch, S.; Krishnan, A.; Yang, H.; Lee, J.

    1994-01-01

    Improved mathematical models based on fundamental principles of conservation of mass, energy, and momentum developed for use in computer simulation of atomization of jets of liquid fuel in rocket engines. Models also used to study atomization in terrestrial applications; prove especially useful in designing improved industrial sprays - humidifier water sprays, chemical process sprays, and sprays of molten metal. Because present improved mathematical models based on first principles, they are minimally dependent on empirical correlations and better able to represent hot-flow conditions that prevail in rocket engines and are too severe to be accessible for detailed experimentation.

  19. Dynamical model for thyroid

    NASA Astrophysics Data System (ADS)

    Rokni Lamooki, Gholam Reza; Shirazi, Amir H.; Mani, Ali R.

    2015-05-01

    Thyroid's main chemical reactions are employed to develop a mathematical model. The presented model is based on differential equations where their dynamics reflects many aspects of thyroid's behavior. Our main focus here is the well known, but not well understood, phenomenon so called as Wolff-Chaikoff effect. It is shown that the inhibitory effect of intake iodide on the rate of one single enzyme causes a similar effect as Wolff-Chaikoff. Besides this issue, the presented model is capable of revealing other complex phenomena of thyroid hormones homeostasis.

  20. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

    2007-11-08

    The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

  1. Temperature Dependent Pspice Model

    SciTech Connect

    Tolbert, Leon M; Cui, Yutian; Chinthavali, Madhu Sudhan

    2012-01-01

    This paper provides a behavioral model in Pspice for a silicon carbide (SiC) power MOSFET rated at 1200 V / 20 A for a wide temperature range. The Pspice model is built using device parameters extracted through experiment. The static and dynamic behavior of the SiC power MOSFET is simulated and compared to the measured data to show the accuracy of the Pspice model. The switching losses are obtained from experiment under multiple operation conditions. The temperature dependent behavior has been simulated and analyzed. Then the parasitics in the circuit have been studied and the effects on the switching behavior are simulated and discussed.

  2. Stochastic ontogenetic growth model

    NASA Astrophysics Data System (ADS)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  3. Hierarchical model of matching

    NASA Technical Reports Server (NTRS)

    Pedrycz, Witold; Roventa, Eugene

    1992-01-01

    The issue of matching two fuzzy sets becomes an essential design aspect of many algorithms including fuzzy controllers, pattern classifiers, knowledge-based systems, etc. This paper introduces a new model of matching. Its principal features involve the following: (1) matching carried out with respect to the grades of membership of fuzzy sets as well as some functionals defined on them (like energy, entropy,transom); (2) concepts of hierarchies in the matching model leading to a straightforward distinction between 'local' and 'global' levels of matching; and (3) a distributed character of the model realized as a logic-based neural network.

  4. Modeling Compressed Turbulence

    SciTech Connect

    Israel, Daniel M.

    2012-07-13

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  5. Sandia Material Model Driver

    Energy Science and Technology Software Center (ESTSC)

    2005-09-28

    The Sandia Material Model Driver (MMD) software package allows users to run material models from a variety of different Finite Element Model (FEM) codes in a standalone fashion, independent of the host codes. The MMD software is designed to be run on a variety of different operating system platforms as a console application. Initial development efforts have resulted in a package that has been shown to be fast, convenient, and easy to use, with substantialmore » growth potential.« less

  6. Expert Models and Modeling Processes Associated with a Computer-Modeling Tool

    ERIC Educational Resources Information Center

    Zhang, BaoHui; Liu, Xiufeng; Krajcik, Joseph S.

    2006-01-01

    Holding the premise that the development of expertise is a continuous process, this study concerns expert models and modeling processes associated with a modeling tool called Model-It. Five advanced Ph.D. students in environmental engineering and public health used Model-It to create and test models of water quality. Using "think aloud" technique…

  7. Expert Models and Modeling Processes Associated with a Computer-Modeling Tool

    ERIC Educational Resources Information Center

    Zhang, BaoHui; Liu, Xiufeng; Krajcik, Joseph S.

    2006-01-01

    Holding the premise that the development of expertise is a continuous process, this study concerns expert models and modeling processes associated with a modeling tool called Model-It. Five advanced Ph.D. students in environmental engineering and public health used Model-It to create and test models of water quality. Using "think aloud" technique…

  8. Refining climate models

    ScienceCinema

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2014-06-26

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  9. HOMER® Energy Modeling Software

    SciTech Connect

    2000-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  10. Using the Partnership Model

    ERIC Educational Resources Information Center

    Wilks, Bob

    1977-01-01

    Demonstrates how the Partnership Model can be utilized in the real world by showing how it served as a guide during the production of a film on female menopause for the College of Human Medicine. (MH)

  11. Supersymmetric sigma models

    SciTech Connect

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.

  12. Maximally Expressive Modeling

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth; Richardson, Lea

    2004-01-01

    Planning and scheduling systems organize tasks into a timeline or schedule. Tasks are logically grouped into containers called models. Models are a collection of related tasks, along with their dependencies and requirements, that when met will produce the desired result. One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed; the information sought is at the cutting edge of scientific endeavor; and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a maximally expressive modeling schema.

  13. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  14. Community Atmosphere Model

    Energy Science and Technology Software Center (ESTSC)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  15. Software development: Stratosphere modeling

    NASA Technical Reports Server (NTRS)

    Chen, H. C.

    1977-01-01

    A more comprehensive model for stratospheric chemistry and transport theory was developed for the purpose of aiding predictions of changes in the stratospheric ozone content as a consequence of natural and anthropogenic processes. This new and more advanced stratospheric model is time dependent and the dependent variables are zonal means of the relevant meteorological quantities which are functions of latitude and height. The model was constructed by the best mathematical approach on a large IBM S360 in American National Standard FORTRAN. It will be both a scientific tool and an assessment device used to evaluate other models. The interactions of dynamics, photochemistry and radiation in the stratosphere can be governed by a set of fundamental dynamical equations.

  16. Modelling Cometary Sodium Tails

    NASA Astrophysics Data System (ADS)

    Birkett, K. S.; Jones, G. H.; Coates, A. J.

    2013-09-01

    Neutral sodium is readily observed in cometary spectra and can be seen to form its own distinct tail around high activity comets. We present a brief overview of neutral sodium tail observations to date and discuss the importance of theoretical modelling in understanding these data. We have developed a new, 3D Monte-Carlo model of cometary sodium that incorporates several advancements over previous models. It includes weightings due to solar flux variation with heliocentric distance, and comprehensive handling of the Swings and Greenstein effects on the neutral sodium tail, which can have particularly dramatic effects in near-Sun comets. Some preliminary results from this model are presented, including predictions of the structure of the eagerly anticipated neutral sodium tail at Comet C/2012 S1 (ISON).

  17. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  18. Modeling cooling coils

    SciTech Connect

    Theerakulpisut, S.; Priprem, S.

    1998-01-01

    Finned-tube heat exchangers commonly used as cooling coils in air conditioning systems undergo complex heat transfer and dehumidification. Due to the presence of water film on the outside surface of the coils, the general approach for an analysis of dry surface is not adequate to predict the performance of such coils. This paper presents a modeling procedure for cooling coils with dehumidification based on the approach of Threlkeld. In order to verify the calculational results of the model, experiments were conducted with an aim to determine the outlet air conditions as well as some other parameters required as the inputs to the model. Comparison between the simulation and experimental results reveals that the model is accurate and suitable for predicting the performance of cooling coils with dehumidification.

  19. HOMER® Energy Modeling Software

    Energy Science and Technology Software Center (ESTSC)

    2000-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  20. UPDATING APPLIED DIFFUSION MODELS

    EPA Science Inventory

    Most diffusion models currently used in air quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Socie...

  1. Battery Life Predictive Model

    Energy Science and Technology Software Center (ESTSC)

    2009-12-31

    The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.

  2. Dietary Exposure Potential Model

    EPA Science Inventory

    Existing food consumption and contaminant residue databases, typically products of nutrition and regulatory monitoring, contain useful information to characterize dietary intake of environmental chemicals. A PC-based model with resident database system, termed the Die...

  3. Exhaust Effluent Diffusion Model

    NASA Technical Reports Server (NTRS)

    Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.

    1985-01-01

    Rocket Exhaust Effluent Diffusion Model (REEDM) predicts concentrations, dosages, and depositions downwind from normal and abnormal launches of rocket vehicles at NASA's Kennedy Space Center. REEDM written in FORTRAN IV for interactive execution.

  4. Solar Furnance Model

    ERIC Educational Resources Information Center

    Palmer, Dennis L.; Olsen, Richard W.

    1977-01-01

    Described is how to build a solar furnace model. A detailed list of materials and methods are included along with diagrams. This particular activity is part of an audiotutorial unit concerned with the energy crisis and energy alternatives. (MA)

  5. Colorado Model Rocketry Workshop.

    ERIC Educational Resources Information Center

    Galindez, Peter

    1978-01-01

    Describes a summer workshop course in rocketry offered to educators and sponsored by industry. The participants built various model rockets and equipment and worked on challenging practical problems and activities. (GA)

  6. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  7. MODELING TREE LEVEL PROCESSES

    EPA Science Inventory

    An overview of three main types of simulation approach (explanatory, abstraction, and estimation) is presented, along with a discussion of their capabilities limitations, and the steps required for their validation. A process model being developed through the Forest Response Prog...

  8. Droplets in Ising models

    NASA Astrophysics Data System (ADS)

    Stauffer, D.

    1990-09-01

    The Swendsen-Wang cluster flipping algorithm gives a better way to simulate equilibrium critical phenomena. This review summarizes recent applications, in particular of Wang and Kertész, to better understand the Ising model.

  9. Molecular Modeling and Bioinformatics

    Cancer.gov

    Dr. Byungkook Lee, Ph.D. Head, Molecular Modeling and Bioinformatics Section Laboratory of Molecular Biology Building 37, Room 5120 37 Convent Drive, MSC 4262 Bethesda, MD 20891 We use theoretical and computational techniques to help solve biological and

  10. Multidimensional Speckle Noise Model

    NASA Astrophysics Data System (ADS)

    López-Martínez, Carlos; Fàbregas, Xavier; Pottier, Eric

    2005-12-01

    One of the main problems of SAR imagery is the presence of speckle noise, originated by the inherent coherent nature of this type of systems. For one-dimensional SAR systems it has been demonstrated that speckle can be considered as a multiplicative noise term. Nevertheless, this simple model cannot be exported when multidimensional SAR imagery is addressed. This paper is devoted to present the latest advances into the definition of a multidimensional speckle noise model which does not depend on the data dimensionality. Speckle noise may be modeled by multiplicative and additive noise sources, whose combination is determined by the data's correlation structure. The validity of the proposed model is demonstrated by its application to a real L-band multidimensional SAR dataset acquired by the German ESAR sensor.

  11. Modelling bursty time series

    NASA Astrophysics Data System (ADS)

    Vajna, Szabolcs; Tóth, Bálint; Kertész, János

    2013-10-01

    Many human-related activities show power-law decaying interevent time distribution with exponents usually varying between 1 and 2. We study a simple task-queuing model, which produces bursty time series due to the non-trivial dynamics of the task list. The model is characterized by a priority distribution as an input parameter, which describes the choice procedure from the list. We give exact results on the asymptotic behaviour of the model and we show that the interevent time distribution is power-law decaying for any kind of input distributions that remain normalizable in the infinite list limit, with exponents tunable between 1 and 2. The model satisfies a scaling law between the exponents of interevent time distribution (?) and autocorrelation function (?): ? + ? = 2. This law is general for renewal processes with power-law decaying interevent time distribution. We conclude that slowly decaying autocorrelation function indicates long-range dependence only if the scaling law is violated.

  12. Analytic pulsar models

    NASA Technical Reports Server (NTRS)

    Adams, R. C.; Cohen, J. M.; Adler, R. J.; Sheffield, C.

    1974-01-01

    An analytical procedure is given for solving the Einstein equations of a rotating fluid body. It is demonstrated that an analytic model of uniform denisty, representing a slowly rotating neutron star, can describe both differentially and uniformly rotating stars.

  13. Stochastic modelling of intermittency.

    PubMed

    Stemler, Thomas; Werner, Johannes P; Benner, Hartmut; Just, Wolfram

    2010-01-13

    Recently, methods have been developed to model low-dimensional chaotic systems in terms of stochastic differential equations. We tested such methods in an electronic circuit experiment. We aimed to obtain reliable drift and diffusion coefficients even without a pronounced time-scale separation of the chaotic dynamics. By comparing the analytical solutions of the corresponding Fokker-Planck equation with experimental data, we show here that crisis-induced intermittency can be described in terms of a stochastic model which is dominated by state-space-dependent diffusion. Further on, we demonstrate and discuss some limits of these modelling approaches using numerical simulations. This enables us to state a criterion that can be used to decide whether a stochastic model will capture the essential features of a given time series. PMID:19948556

  14. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  15. The Cultural Bridge Model.

    ERIC Educational Resources Information Center

    West, Edith A.

    1993-01-01

    Offers a cultural bridge model that would enhance the health care of the American Indian population. Suggests that transcultural nursing should transcend the realm of thought and become an integrated part of daily practice. (Author)

  16. Contact dynamics math model

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  17. Ellipsoid-cylinder model

    NASA Astrophysics Data System (ADS)

    Barberis, D.

    1994-08-01

    The data presented in this contribution were obtained in the F2 subsonic wind tunnel of the ONERA Fauga-Mauzac Center. The objective of this work was to obtain detailed experimental data on a separated vortex flow. The model shape has been chosen to be as simple as possible in order to facilitate the mathematical modeling. This model has been defined after preliminary studies in a water tunnel. The present document reports the results obtained with an axisymmetric model at incidence. Attention has been focused on the boundary layer evolution in the zone of separation and on the mechanism leading to the formation of a well detached primary vortex. The flow has been investigated in great detail by using several experimental techniques: surface flow visualizations, surface pressure measurements, field explorations by multihole pressure probes, and an LDV system.

  18. Refining climate models

    SciTech Connect

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2012-10-31

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  19. Models of multiquark states

    SciTech Connect

    Lipkin, H.J.

    1986-01-01

    The success of simple constituent quark models in single-hardon physics and their failure in multiquark physics is discussed, emphasizing the relation between meson and baryon spectra, hidden color and the color matrix, breakup decay modes, coupled channels, and hadron-hadron interactions via flipping and tunneling of flux tubes. Model-independent predictions for possible multiquark bound states are considered and the most promising candidates suggested. A quark approach to baryon-baryon interactions is discussed.

  20. OCH Strap Model Test

    SciTech Connect

    Weber, K.; /Fermilab

    1987-08-26

    The OCH Model was stacked using the appropriate spacers between each absorber plate. Steel bars measuring 3-inch wide by 1/4-inch thick were welded, using 1/8-inch fillet weld, along all the corner edges, except the outer radius edges. On the outer radius, the straps were bolted to the end plates and to plates 9 and 17. The straps on the outer radius were also set in towards the center by approximately 3-inches. The spacers were then knocked out. Twelve strain gauges were mounted on the model. See figure 1 and the OCH strap Model log book for locations. Each rosette was centered in the gap between two absorber plates. The finite element plate model can predict the primary deformations of the OH module in both the cantilever and crushing modes to within 11% of the measured values. The primary stresses away from the support plate for the cantilever mode can be predicted to within 13% by this model. Near the support plate where large shear stresses exists, ANSYS will overpredict the measured stresses substantially. This is probably due to the models inherent inability to allow for shear stress concentrations at the welds. The same over-prediction was seen in the side straps during the OH crush test comparison and is probably attributable to the high shear force in this mode. The simple finite element plate model will provide suitable model of OH module stiffness for use in the analysis of the module assembly. The calculation of shear stresses can be improved by applying the ANSYS calculated inter-element forces to traditional weld strength calculations

  1. Argentina wheat yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.

  2. Argentina soybean yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A trend variable was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.

  3. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  4. Rotational modeling of Hyperion

    NASA Astrophysics Data System (ADS)

    Harbison, Rebecca A.; Thomas, Peter C.; Nicholson, Philip C.

    2011-05-01

    Saturn's moon, Hyperion, is subject to strongly-varying solid body torques from its primary and lacks a stable spin state resonant with its orbital frequency. In fact, its rotation is chaotic, with a Lyapunov timescale on the order of 100 days. In 2005, Cassini made three close passes of Hyperion at intervals of 40 and 67 days, when the moon was imaged extensively and the spin state could be measured. Curiously, the spin axis was observed at the same location within the body, within errors, during all three fly-bys—~ 30° from the long axis of the moon and rotating between 4.2 and 4.5 times faster than the synchronous rate. Our dynamical modeling predicts that the rotation axis should be precessing within the body, with a period of ~ 16 days. If the spin axis retains its orientation during all three fly-bys, then this puts a strong constraint on the in-body precessional period, and thus the moments of inertia. However, the location of the principal axes in our model are derived from the shape model of Hyperion, assuming a uniform composition. This may not be a valid assumption, as Hyperion has significant void space, as shown by its density of 544± 50 kg m-3 (Thomas et al. in Nature 448:50, 2007). This paper will examine both a rotation model with principal axes fixed by the shape model, and one with offsets from the shape model. We favor the latter interpretation, which produces a best-fit with principal axes offset of ~ 30° from the shape model, placing the A axis at the spin axis in 2005, but returns a lower reduced ? 2 than the best-fit fixed-axes model.

  5. Modelling Heart Rate Kinetics

    PubMed Central

    Zakynthinaki, Maria S.

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual’s cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  6. SSUSI Aurora Forecast Model

    NASA Astrophysics Data System (ADS)

    Hsieh, S. W.; Zhang, Y.; Schaefer, R. K.; Romeo, G.; Paxton, L.

    2013-12-01

    A new capability has been developed at JHU/APL for forecasting the global aurora quantities based on the DMSP SSUSI data and the TIMED/GUVI Global Aurora Model. The SSUSI Aurora Forecast Model predicts the electron energy flux, mean energy, and equatorward boundary in the auroral oval for up to 1 day or 15 DMSP orbits in advance. In our presentation, we will demonstrate this newly implemented capability and its results. The future improvement plan will be discussed too.

  7. Geysers injection modeling

    SciTech Connect

    Pruess, K.

    1994-04-01

    Our research is concerned with mathematical modeling techniques for engineering design and optimization of water injection in vapor-dominated systems. The emphasis in the project has been on the understanding of physical processes and mechanisms during injection, applications to field problems, and on transfer of numerical simulation capabilities to the geothermal community. This overview summarizes recent work on modeling injection interference in the Southeast Geysers, and on improving the description of two-phase flow processes in heterogeneous media.

  8. Modeling armed conflicts.

    PubMed

    Kress, Moshe

    2012-05-18

    Armed conflicts have been prevalent throughout history, in some cases having very great consequences. To win, one needs to understand the characteristics of an armed conflict and be prepared with resources and capabilities for responding to its specific challenges. An important tool for understanding these characteristics and challenges is a model--an abstraction of the field of conflict. Models have evolved through the years, addressing different conflict scenarios with varying techniques. PMID:22605764

  9. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  10. Experimental Models of Cryptococcosis

    PubMed Central

    Sabiiti, Wilber; May, Robin C.; Pursall, E. Rhiannon

    2012-01-01

    Cryptococcosis is a life-threatening fungal disease that infects around one million people each year. Establishment and progression of disease involves a complex interplay between the fungus and a diverse range of host cell types. Over recent years, numerous cellular, tissue, and animal models have been exploited to probe this host-pathogen interaction. Here we review the range of experimental models that are available for cryptococcosis research and compare the relative advantages and limitations of the different systems. PMID:22007224

  11. Modeling using optimization routines

    NASA Technical Reports Server (NTRS)

    Thomas, Theodore

    1995-01-01

    Modeling using mathematical optimization dynamics is a design tool used in magnetic suspension system development. MATLAB (software) is used to calculate minimum cost and other desired constraints. The parameters to be measured are programmed into mathematical equations. MATLAB will calculate answers for each set of inputs; inputs cover the boundary limits of the design. A Magnetic Suspension System using Electromagnets Mounted in a Plannar Array is a design system that makes use of optimization modeling.

  12. Apache Scale Model Helicopter

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Langley Research Centers (LaRC) Electromagnetics Research Branch (ERB) performs antenna radiation pattern measurements on a communications antenna mounted on a 1/7th scale model of a US ARMY Apache Helicopter. The NASA LaRC ERB participates in a government industry, and university sponsored helicopter consortium to advance computational electromagnetics (CEM) code development for antenna radiation pattern predictions. Scale model antenna measurements serve as verification tools and are an integral part of the CEM code development process.

  13. Theory Modeling and Simulation

    SciTech Connect

    Shlachter, Jack

    2012-08-23

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  14. Model compilation: An approach to automated model derivation

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Baudin, Catherine; Iwasaki, Yumi; Nayak, Pandurang; Tanaka, Kazuo

    1990-01-01

    An approach is introduced to automated model derivation for knowledge based systems. The approach, model compilation, involves procedurally generating the set of domain models used by a knowledge based system. With an implemented example, how this approach can be used to derive models of different precision and abstraction is illustrated, and models are tailored to different tasks, from a given set of base domain models. In particular, two implemented model compilers are described, each of which takes as input a base model that describes the structure and behavior of a simple electromechanical device, the Reaction Wheel Assembly of NASA's Hubble Space Telescope. The compilers transform this relatively general base model into simple task specific models for troubleshooting and redesign, respectively, by applying a sequence of model transformations. Each transformation in this sequence produces an increasingly more specialized model. The compilation approach lessens the burden of updating and maintaining consistency among models by enabling their automatic regeneration.

  15. Causal Rasch models

    PubMed Central

    Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.

    2013-01-01

    Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726

  16. Heterogeneous conductorlike solvation model

    NASA Astrophysics Data System (ADS)

    Si, Dejun; Li, Hui

    2009-07-01

    A heterogeneous conductorlike solvation model (conductorlike screening model/conductorlike polarizable continuum model) that uses different local effective dielectrics for different portions of the solute cavity surface is implemented for quantum chemical Hartree-Fock and Kohn-Sham methods. A variational treatment is used to form the heterogeneous solvation operator, so a simple analytic expression of the energy gradients, which are vital for geometry optimization and molecular dynamics simulation, is derived and implemented. Using the new Fixed Points with Variable Areas surface tessellation scheme, continuous and smooth potential energy surfaces as well as analytic gradients are obtained for this heterogeneous model. Application of the heterogeneous solvation model to a realistic quantum model consisting of 101 atoms for the type-1 Cu center in rusticyanin shows that the desolvation due to protein burial can likely raise the reduction potential by ˜200 mV and, including the heterogeneity in geometry optimization, can likely affect the results by ˜2 kcal/mol or ˜70 mV.

  17. MARR: active vision model

    NASA Astrophysics Data System (ADS)

    Podladchikova, Lubov N.; Gusakova, Valentina I.; Shaposhnikov, Dmitry G.; Faure, Alain; Golovan, Alexander V.; Shevtsova, Natalia A.

    1997-09-01

    Earlier, the biologically plausible active vision, model for multiresolutional attentional representation and recognition (MARR) has been developed. The model is based on the scanpath theory of Noton and Stark and provides invariant recognition of gray-level images. In the present paper, the algorithm of automatic image viewing trajectory formation in the MARR model, the results of psychophysical experiments, and possible applications of the model are considered. Algorithm of automatic image viewing trajectory formation is based on imitation of the scanpath formed by operator. Several propositions about possible mechanisms for a consecutive selection of fixation points in human visual perception inspired by computer simulation results and known psychophysical data have been tested and confirmed in our psychophysical experiments. In particular, we have found that gaze switch may be directed (1) to a peripheral part of the vision field which contains an edge oriented orthogonally to the edge in the point of fixation, and (2) to a peripheral part of the vision field containing crossing edges. Our experimental results have been used to optimize automatic algorithm of image viewing in the MARR model. The modified model demonstrates an ability to recognize complex real world images invariantly with respect to scale, shift, rotation, illumination conditions, and, in part, to point of view and can be used to solve some robot vision tasks.

  18. Integrated Watershed Modeling

    NASA Astrophysics Data System (ADS)

    Bagulho Galvão, P.; Neves, R.; Silva, A.; Chambel Leitão, P.; Braunchweig, F.

    2004-05-01

    Integrated systems that bring together EO data, local measurements and modeling tools, are a fundamental instrument to help decision making in watershed and land use management. The BASINS system (EPA http://www.epa.gov/OST/BASINS/) follows this philosophy, merging data from local measurement with modeling tools (HSPF, SWAT, PLOAD, QUAL2E). However, remote sensed data is still used in a very static way (usually to define land cover, see corine land cover project). This approach is being replaced with operational methods that use EO data (such as land surface temperature, vegetation state, soil moisture, surface roughness) for both inputs and validation. The development of integrated watershed models that dynamically interact with remote sensed data opens interesting prospective to the validation and improvement of such models. This paper describes the possible data contribution of remote sensing to the needs associated with state of the art watershed models, including well know systems (such as SWAT or HSPF) and a system still under development (MOHID LAND). Application of such models is shown at two pilot sites, which were selected under EU projects, TempQsim and Interreg II B - ICRW.

  19. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, Paul D.; Comfort, Richard H.

    1999-01-01

    Over 40 years of ground and spacecraft plasmaspheric measurements have resulted in many statistical descriptions of plasmaspheric properties. In some cases, these properties have been represented as analytical descriptions that are valid for specific regions or conditions. For the most part, what has not been done is to extend regional empirical descriptions or models to the plasmasphere as a whole. In contrast, many related investigations depend on the use of representative plasmaspheric conditions throughout the inner magnetosphere. Wave propagation, involving the transport of energy through the magnetosphere, is strongly affected by thermal plasma density and its composition. Ring current collisional and wave particle losses also strongly depend on these quantities. Plasmaspheric also plays a secondary role in influencing radio signals from the Global Positioning System satellites. The Global Core Plasma Model (GCPM) is an attempt to assimilate previous empirical evidence and regional models for plasmaspheric density into a continuous, smooth model of thermal plasma density in the inner magnetosphere. In that spirit, the International Reference Ionosphere is currently used to complete the low altitude description of density and composition in the model. The models and measurements on which the GCPM is currently based and its relationship to IRI will be discussed.

  20. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.