Sample records for scrap uranium recycling

  1. Scrap uranium recycling via electron beam melting

    SciTech Connect

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  2. Management of scrap car recycling

    Microsoft Academic Search

    Ching-Hwa Lee

    1997-01-01

    This report describes the current scrap car management system in Taiwan. In Taiwan, most metal scrap for recycling is imported from foreign countries. Since scrap cars contain 80% metal, they are a significant domestic feed source for metal recycling industries in Taiwan. However, many scrap cars are abandoned on the street by the last owner, causing traffic and environmental problems.

  3. Fernald scrap metal recycling and beneficial reuse

    SciTech Connect

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the {open_quotes}beneficial reuse{close_quotes} concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned.

  4. Scrap tire recycling

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1997-03-01

    As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

  5. Issues in recycling galvanized scrap

    SciTech Connect

    Koros, P.J. [LTV Steel Co., Inc., Cleveland, OH (United States); Hellickson, D.A. [General Motors Corp., Detroit, MI (United States); Dudek, F.J. [Argonne National Lab., IL (United States)

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  6. Scrap car recycling in Taiwan

    SciTech Connect

    Lee, C.H.; Tai, H.S.; Fan, R.K.S.

    1997-12-31

    The official figure of registered automobiles released by the Ministry of Transportation of Taiwan, R.O.C. as of the end of April 1996, is approximately 4.8 millions. Among them, 18% of the cars are between seven and ten years old and 15% of the cars are old than ten years. The result of this large number of old cars is the problem of abandoned cars on the street of Taiwan. This phenomena not only hinders traffic flow but also undermines the living quality in the cities. To minimize these negative effects, EPA has promulgated a Scrap Motor Vehicles Management Regulation to enforce the scrap car recycling in Taiwan. Under this regulation, a buyer of a new vehicle has to pay the Scrap Motor Vehicle Disposal fee (NT$ 3000, or US$ 110 for a car; and NT$ 700, or US$ 25 for a motorcycle). This paper presents the current status of scrap car recycling in Taiwan.

  7. TECHNOLOGIES FOR EFFICIENT MG-SCRAP RECYCLING

    Microsoft Academic Search

    Gerhard Hanko; Gernot Macher

    2003-01-01

    Currently, only high grade clean Mg-scrap without impurities can be recycled easily into high purity alloys. More complex handling is required for old magnesium-base or post consumer scrap e.g. automotive parts and electronic devices. The additional process steps determine the economical attractiveness of Mg-recycling. This article will provide a detailed overview of the current research activities of ecka granules -

  8. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. (Argonne National Lab., IL (United States)); Morgan, W.A.; Kellner, A.W.; Harrison, J. (Metal Recovery Industries, Inc., Hamilton, ON (Canada))

    1992-01-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  9. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A.; Kellner, A.W.; Harrison, J. [Metal Recovery Industries, Inc., Hamilton, ON (Canada)

    1992-08-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  10. Recycling zinc by dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A. [Metal Recovery Industries, Inc., East Chicago, IN (United States)

    1995-06-01

    In response to the worldwide increase in consumption of galvanized steel for automobiles in the last fifteen years, and the increased cost of environmental compliance associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The designed ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested in Hamilton, Ontario for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant in East Chicago, Indiana has designed in a continuous process mode 900 tonnes of loose stamping plant scrap; this scrap typically has residual zinc below 0.1% and sodium dragout below 0.001%. This paper reviews pilot plant performance and the economics of recycling galvanized steel and recovering zinc using a caustic process.

  11. Evaluation of radioactive scrap metal recycling

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  12. Chemical recycling of scrap composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  13. W-scrap recycling by the melt bath technique

    Microsoft Academic Search

    Meinrad Ostermann; Bernhard Kieffer

    1996-01-01

    The so-called ‘Menstruum Process Technology’ presents an interesting and promising method for the direct recycling of tungsten-bearing hard scrap. The present paper describes the conversion of tungsten heavy metal scrap into WC powder by dissolving the hard scrap in an Fe?C or Co?C melt and subsequently precipitating the tungsten carbide.

  14. RECYCLING PROCESS FOR TANTALUM AND SOME OTHER METAL SCRAPS

    Microsoft Academic Search

    Ryosuke Matsuoka; Kunio Mineta; Toru H. Okabe

    A recycling process for tantalum from capacitor scraps using an oxidation process followed by mechanical separation and chemical treatment was investigated. This study demonstrates that sintered tantalum electrodes inside the capacitor scraps can be mechanically collected after the oxidation of the scraps in air, and high-purity tantalum oxide powder (Ta2O5) was efficiently recovered after chemical treatment. By reducing the Ta2O5

  15. Management of scrap computer recycling in Taiwan

    Microsoft Academic Search

    Ching-Hwa Lee; Ssu-Li Chang; King-Min Wang; Lih-Chyi Wen

    2000-01-01

    It is estimated that approximately 300,000 scrap personal computers are generated each year in Taiwan [S.-L. Chang, A Study on the Scrap Computer Treatment Cost, Environment Protection Administration of Taiwan, December 1998 (in Chinese)]. The disposal of such a huge number of scrap computers presents a difficult task for the island due to the scarcity of landfills and incineration facilities

  16. Recycling scheme for scrapped automobiles in Japan

    SciTech Connect

    Suzuki, Masao [AI Tech Associates, Tokyo (Japan); Nakajima, Akira [Car Steel Co., Ltd., Gunnma (Japan); Taya, Sadao [Shinsei Co., Ltd., Osaka (Japan)

    1995-12-31

    Over 5 million cars are scrapped yearly in Japan. After dismantling scrapped automobiles, they are put into a shredder for differential recovery of ferrous and nonferrous metals. The residue, which is called shredder dust, runs over 1.2 million tons per year. This paper reports a entire sequence of scrapping cars in Japan with the following sections: (1) production and scrapped car management, (2) material composition, (3) dismantling, (4) shredder plant, (5) differential recovery of metals including specific gravity and newly developed color separation.

  17. An overview of recycling and treatment of scrap computers.

    PubMed

    Lee, Ching-Hwa; Chang, Chang-Tang; Fan, Kuo-Shuh; Chang, Tien-Chin

    2004-10-18

    In order to recover valuable materials and to minimize the adverse effects of hazardous materials contained in scrap computers, a dismantling practice is commonly adopted to treat scrap computers. By using the dismantling process, both useful and hazardous materials can be manually separated and retrieved. On the basis of the properties of the retrieved materials, they can be sent to appropriate facilities for further recycling or treatment. Among the retrieved materials, the treatment of hazardous materials from cathode ray tubes (CRT) and printed circuit boards with integrated circuits have drawn considerable attention, thus implying that the proper treatment of such materials can greatly assure the successful recycling of scrap computers. For this reason, this study reviews the available technologies which can be applied to treat and recycle cathode ray tube components and printed circuit boards with integrated circuits. Actual recycling data from a scrap computer recycling plant located in Taiwan are also introduced. The data show that this recycling plant can recover 94.75 wt. % and 45.99 wt. % of useful materials from the main machines (i.e., CPU, power supplier, fan, IC boards, DVD drive, CD drive, hard disk, soft disk, shell casing, etc.) and monitors of scrap computers, respectively. PMID:15511578

  18. Fuel element recovery and its relationship to uranium scrap

    Microsoft Academic Search

    1958-01-01

    At the request of the manager of Process Engineering, a study was made of the fuel element recovery operation and its relationship to the HAPO uranium scrap losses. Three fundamental questions formed the basis for this study. They are: What is the amount of the yearly uranium scrap loss at HAPO? What contribution does the existing fuel element recovery process

  19. Feasibility analysis of recycling radioactive scrap steel

    Microsoft Academic Search

    F. Nichols; B. Balhiser; N. Cignetti

    1995-01-01

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons

  20. Assessment of recycling or disposal alternatives for radioactive scrap metal

    SciTech Connect

    Murphie, W.E.; Lilly, M.J. III [US Dept. of Energy, Oak Ridge, TN (United States); Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

    1993-11-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A {open_quotes}tiered{close_quotes} concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

  1. Assessment of recycling or disposal alternatives for radioactive scrap metal

    Microsoft Academic Search

    W. E. Murphie; M. J. Lilly; L. A. Nieves; S. Y. Chen

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and\\/or disposal process alternatives. This effort includes

  2. The current status of scrap metal recycling

    NASA Astrophysics Data System (ADS)

    Spoel, Han

    1990-04-01

    Although millions of tonnes of metals are recycled around the world every year, even more can be done if the proper economic incentives are present. Increasing the rate of recycle will slow the growth of primary production and reduce the potential for environmental overload. But to progress beyond the present state of affairs, public opinion, regulations and economics must combine to encourage the responsible reprocessing of metal wastes.

  3. UTILIZATION OF SCRAP PREPREG WASTES AS A REINFORCEMENT IN A WHOLLY RECYCLED PLASTIC - PHASE I

    EPA Science Inventory

    Foster-Miller proposes to utilize scrap prepreg waste as a reinforcement in recycled polyethylene. By reinforcing recycled plastics such as polyethylene with scrap prepreg and suitable binders, an economical useful product can be obtained. At the same time, this innovation ...

  4. The recycling of standard quality wrought aluminum alloys from low-grade contaminated scrap

    Microsoft Academic Search

    Varuzan Kevorkjjan

    2010-01-01

    In recent decades an increasingly large fraction of the world’s wrought aluminum alloys supply has come from the aluminum\\u000a scrap recovered from industrial waste and discarded post-consumer items. However, replacing even a minor part of primary aluminum\\u000a in wrought alloys with recycled counterpart originated from lower grades of scrap (typically scrap contaminated with various\\u000a non-metallic impurities) without influencing the quality

  5. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.

    PubMed

    Ceballos, Diana M; Gong, Wei; Page, Elena

    2015-07-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees. PMID:25738822

  6. Health risk and impact evaluation for recycling of radioactive scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; W. E. Murphie; M. J. Lilly

    1994-01-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and\\/or disposal process alternatives. This effort includes development of international inventory estimates

  7. The recycling of standard quality wrought aluminum alloys from low-grade contaminated scrap

    NASA Astrophysics Data System (ADS)

    Kevorkjjan, Varužan

    2010-08-01

    In recent decades an increasingly large fraction of the world’s wrought aluminum alloys supply has come from the aluminum scrap recovered from industrial waste and discarded post-consumer items. However, replacing even a minor part of primary aluminum in wrought alloys with recycled counterpart originated from lower grades of scrap (typically scrap contaminated with various non-metallic impurities) without influencing the quality of the allay is very demanding from a metallurgical point of view. This article discusses the two approaches for achieving the requested chemical composition of wrought alloys made from recycled aluminum: (i) before melting, by combining the appropriate qualities and quantities of scrap, primary aluminum, and the alloying elements and (ii) during melting, by diluting impurity content with primary aluminum to the needed level and adding, at the same time, the necessary amount of alloying elements for achieving their standard concentration in diluted melts.

  8. A NOVEL RECYCLING PROCESS OF TITANIUM METAL SCRAPS BY USING CHLORIDE WASTES

    Microsoft Academic Search

    Haiyan Zheng; Toru H. Okabe

    A novel process of recycling titanium metal scraps by utilizing chloride wastes (e.g., FeClx and AlCl3) that are obtained as by-products in the Kroll process or any other chlorination process has been investigated in this study. This is important from the viewpoint of the increase in titanium metal scraps and chloride wastes in the future. Thermodynamic analyses and some primary

  9. RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment

    Microsoft Academic Search

    Jing-Jy Cheng; Bassel Kassas; Charley Yu; John Arnish; Dave LePoire; Shih-Yew Chen; W. A. Williams; A. Wallo; H. Peterson

    2004-01-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the

  10. Scrap tire recycling: Promising high value applications. Final report

    SciTech Connect

    Bauman, B.D.; Leskovyansky, P.J.; Drela, H.

    1993-11-01

    Surface modification of scrap tire rubber (rubber particles treated with chlorine gas) show promise for ameliorating the scrap tire problem (the treated rubber can be used as a component in high- performance, expensive polymer systems). The process has been proven in Phase I. Phase II covers market/applications, process development (Forberg-design mixer reactor was chosen), plant design, capital cost estimate, economics environmental/safety/health, and energy impact. Almost of the small amount of chlorine is consumed. The capital costs for a rubber particle treatment facility are attractive, being at least two orders of magnitude less than that of facilities for making new polymer materials. Large volume markets using treated rubber are needed. The amount of scrap rubber available is small compared to the polymers available for replacement. 7 tabs, 16 figs.

  11. Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap

    SciTech Connect

    Adam C. Powell, IV

    2012-07-19

    Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

  12. ISASMELT™ for the Recycling of E-Scrap and Copper in the U.S. Case Study Example of a New Compact Recycling Plant

    NASA Astrophysics Data System (ADS)

    Alvear Flores, Gerardo R. F.; Nikolic, Stanko; Mackey, Phillip J.

    2014-05-01

    As living standards around the world improve and metal consumption increases, extracting raw materials will likely become more challenging in the future. Although already part of the general metal supply stream, metal recycling has to increase if we are to build a more sustainable society. With the recent widespread adoption of a range of consumer and industrial electronics, the recycling of the so-called electronic scrap ("e-scrap") has also increased in importance. One of the leading technologies for the recycling of e-scrap and copper scrap is the ISASMELT™ Top Submerged Lance technology. This article describes new opportunities for the U.S. recycling industry to yield full value from collected, sorted, and separated waste metals, in particular, e-scrap and lower grade copper scrap by the use of ISASMELT™ technology. The article includes the description of a case study example of a regional, compact ISASMELT™ plant in the United States treating a blend of e-scrap and copper scrap, having a total feed capacity of 75000 t/year of feed. Plants of higher or lower capacity are also discussed.

  13. Health risk and impact evaluation for recycling of radioactive scrap metal

    SciTech Connect

    Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States); Murphie, W.E.; Lilly, M.J. III [USDOE, Washington, DC (United States)

    1994-03-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of international inventory estimates for contaminated metals; investigation of international scrap metal markets; assessment of radiological and non-radiological human health risks; impacts on environmental quality and resources; and investigation of social and political factors. The RSM disposal option is being assessed with regard to the environmental and health impacts of replacing the metals if they are withdrawn from use. Impact estimates are developed for steel as an illustrative example because steel comprises a major portion of the scrap metal inventory. Current and potential sources of RSM include nuclear power plants, fuel cycle and weapons production facilities, industrial and medical facilities and equipment, and petroleum and phosphate rock extraction equipment. Millions of metric tons (t) of scrap iron and steel, stainless steel, and copper, as well as lesser quantities of aluminum, nickel, lead, and zirconium, are likely to become available in the future as these facilities are withdrawn from service.

  14. Polyethelene terephthalate (PET) scrap recycling. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available

    1994-07-01

    The bibliography contains citations concerning the recycling of polyethelene terephthalate (PET) products. Discarded bottles and household PET scrap are primary sources of this material. Recycling machinery, processes, and programs are discussed. Cable insulation, sheet films, foam products, and other products made from recycled PET are described. The impact of recycling on resource conservation and waste disposal problems is evaluated. (Contains a minimum of 73 citations and includes a subject term index and title list.)

  15. Looking North at Uranium recovery Recycle Tanks in Red Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North at Uranium recovery Recycle Tanks in Red Room in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  16. Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation

    SciTech Connect

    Reis de Oliveira, Camila, E-mail: Camilareis.oliveira@hotmail.com [Instituto de Quimica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Moura Bernardes, Andrea, E-mail: amb@ufrgs.br [Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGE3M) and Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Gerbase, Annelise Engel, E-mail: agerbase@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Review of the different e-waste collection systems and recycling processes. Black-Right-Pointing-Pointer We present the e-waste collection systems used in Europe and in the US. Black-Right-Pointing-Pointer We present e-waste collection systems used in Asia and Latin America. Black-Right-Pointing-Pointer E-waste management between developed and developing countries is very different. Black-Right-Pointing-Pointer We made a comparison of the world situation to the current Brazilian reality. - Abstract: Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Over the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles.

  17. Resrad-recycle: a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing radioactively surface-contaminated materials and equipment.

    PubMed

    Cheng, Jing-Jy; Kassas, Bassel; Yu, Charley; Amish, John; LePoire, Dave; Chen, Shih-Yew; Williams, W A; Wallo, A; Peterson, H

    2004-11-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data. PMID:15551790

  18. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    NASA Astrophysics Data System (ADS)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  19. Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal

    SciTech Connect

    Pesente, S.; Benettoni, M.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Vanini, S.; Viesti, G.; Zumerle, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Bonomi, G.; Zenoni, A. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Calvini, P.; Squarcia, S. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy)

    2010-08-04

    Experimental tests are reported for the detection of the heavy metal shielding of orphan sources hidden inside scrap metal by using a recently developed muon tomography system. Shielded sources do not trigger alarm in radiation portal commonly employed at the entrance of steel industry using scrap metal. Future systems integrating radiation portals with muon tomography inspection gates will substantially reduce the possibility of accidental melting of radioactive sources securing the use of recycled metal.

  20. Scrap metal recovery process

    Microsoft Academic Search

    1983-01-01

    A method is disclosed for recycling aluminum scrap containing thermal barrier material comprising the steps of comminuting the scrap to short pieces of a predetermined length, conveying the comminuted aluminum scrap to a storage hopper, continuously feeding comminuted aluminum scrap product to an indirect-fired rotary kiln, heating the scrap to a predetermined temperature for a sufficient amount of time to

  1. Advanced technologies for decontamination and conversion of scrap metals

    Microsoft Academic Search

    T. R. Muth; J. Moore; D. Olson; B. Mishra

    1994-01-01

    Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC`s

  2. [Health risk assessment in the metal scrap recycle: the case of Brescia].

    PubMed

    Corsaro, G B; Gabusi, V; Pilisi, A

    2012-01-01

    The recycle of metal scraps is one of the most important industrial activity of Brescia: almost 40% of the metal scraps produced in Italy are reprocessed in this Province. The melting process currently used produces air emissions containing dioxins, PCB and other pollutants which are dispersed in the atmosphere giving a contribution to the general environment pollution. This contribution has been and is being extensively studied in terms of air concentration and soil deposition but, because of its complexity and the difficulty to gather the necessary data, very little investigation has been made up to now on its impact on the health of workers and population. The difficulties are overcome by RAMET, a research Consortium established and financed by the main 24 metallurgical and siderurgical companies of Brescia, which can take advantage of the availability of the production facilities of its shareholders as pilot plants and has access to their database and experience. Starting from this unique favourable condition and in collaboration with the University of Brescia, RAMET is working on a research project having as main objective the assessment of the POPs dose adsorbed and the relevant consequences on workers and public health. The general scheme and organization of this project are given in this paper together with the outlines and the results of the main activities already completed or in progress. PMID:23213800

  3. Recycle of contaminated scrap metal, Volume 1. Semi-annual report, September 1993--January 1996

    SciTech Connect

    NONE

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume I covers: executive summary; task 1.1 design CEP system; Task 1.2 experimental test plan; Task 1.3 experimental testing.

  4. MASS BALANCE APPROACH TO FORMULATE A380.0 ELECTRICAL CONDUIT FITTINGS FROM RECYCLED ALUMINUM ALLOY SCRAPS

    Microsoft Academic Search

    Luay B. Hussain; Woo Eng Soon

    2001-01-01

    This paper describes calculations using the mass balance method on aluminum alloy scraps, including soft drink cans, aluminum engine components, low alloy aluminum materials, and aluminum computer disks, to formulate A380.0 casting alloy. All recycled aluminum alloys from the same source were considered to be identical. Six approaches of mixing by weight percent, with the aid of an X-ray fluorescence

  5. Assessment of potential radiation exposures by uncontrolled recycle or reuse of radioactive scrap metals

    SciTech Connect

    Lee, S.Y.; Lee, K.J.

    1999-07-01

    With current waste monitoring technology it is reasonable to assume that much of the material designated as low-level waste, generated within nuclear facilities, is in fact uncontaminated. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective dose of 10 {micro}Sv as a limit for the individual radiation dose and derived the initial control levels of residual radioactivity based on the Publication 30 of the International Commission on Radiological Protection (ICRP). In 1990, new recommendations on radiation protection standards were developed by ICRP to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30. This study summarizes the potential radiation exposure from valuable scrap metal considered for uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people were analyzed and concentrations leading to an individual dose of 10 {micro}Sv/year were calculated for 14 key radionuclides. These potential radiation doses are compared with the results of previous study.

  6. Polyethelene terephthalate (PET) scrap recycling. January 1973-May 1988 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-May 1988

    SciTech Connect

    Not Available

    1988-05-01

    This bibliography contains citations concerning the recycling of polyethelene terephthalate products. Discarded bottles and household PET scrap are primary sources of this material. Recycling machinery, processes, and programs are discussed. Cable insulation, sheet films, foam products, and other products made from recycled polyethelene terephthalate are described. The impact recycling this material has on resource conservation and waste-disposal problems is evaluated. (This updated bibliography contains 209 citations, 34 of which are new entries to the previous edition.)

  7. Polyethelene terephthalate (PET) scrap recycling. January 1973-May 1989 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-May 1989

    SciTech Connect

    Not Available

    1989-06-01

    This bibliography contains citations concerning the recycling of polyethylene terephthalate products. Discarded bottles and household PET scrap are primary sources of this material. Recycling machinery, processes, and programs are discussed. Cable insulation, sheet films, foam products, and other products made from recycled polyethelene terephthalate are described. The impact recycling this material on resource conservation and waste-disposal problems is evaluated. (This updated bibliography contains 270 citations, 61 of which are new entries to the previous edition.)

  8. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    PubMed

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. PMID:25241019

  9. Recovery of uranium from (U,Gd)O 2 nuclear fuel scrap using dissolution and precipitation in carbonate media

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Wook; Hyun, Jun-Taek; Lee, Eil-Hee; Park, Geun-Il; Lee, Kune-Woo; Yoo, Myung-June; Song, Kee-Chan; Moon, Jei-Kwon

    2011-11-01

    This work studied a process to recover uranium from contaminated (U,Gd)O 2 scraps generated from nuclear fuel fabrication processes by using the dissolution of (U,Gd)O 2 scraps in a carbonate with H 2O 2 and the precipitation of the dissolved uranium as UO 4. The dissolution characteristics of uranium, Gd, and impurity metal oxides were tested, and the behaviors of UO 4 precipitation and Gd solubility were evaluated with changes of the pH of the solution. A little Gd was entrained in the UO 4 precipitate to contaminate the uranium precipitate. Below a pH of 3, the uranium dissolved in the form of uranyl peroxo-carbonato complex ions in the carbonate solution was precipitated as UO 4 with a high precipitation yield, and the Gd had a very high solubility. Using these characteristics, the Gd-contaminated UO 4 could be purified using dissolution in a 1-M HNO 3 solution with heating and re-precipitation upon addition of H 2O 2 to the solution. Finally, an environmentally friendly and economical process to recover pure uranium from contaminated (U,Gd)O 2 scraps was suggested.

  10. The Study for Recycling NORM - Contaminated Steel Scraps from Steel Industry

    Microsoft Academic Search

    Kwang-Fu Tsai; Y. S. Lee; H. E. Chao

    2003-01-01

    Since 1994, most of the major steel industries in Taiwan have installed portal monitor to detect the abnormal radiation in metal scrap feed. As a result, the discovery of NORM (Naturally Occurring Radioactive Material) has increased in recent years. In order to save the natural resources and promote radiation protection, an experimental melting process for the NORM contaminated steel scraps

  11. High Purity Germanium Gamma-PHA Assay of Uranium Scrap Cans Used in 321-M Facility

    NASA Astrophysics Data System (ADS)

    Salaymeh, S. R.; Dewberry, R. A.; Casella, V.

    2001-12-01

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control & Accountability, and to meet criticality safety controls. This report describes and documents the use of a portable HPGe detector and EG&G DART system that contains a high voltage power supply, signal processing electronics, a personal computer with Gamma-Vision software, and space to store and manipulate multiple 4096-channel gamma-ray spectra to assay for 235U content. The system was used to assay a large number of scrap cans used to store highly enriched uranium (HEU) chips and filings. This report includes a description of two efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

  12. Development program to recycle and purify plutonium-238 oxide fuel from scrap

    NASA Astrophysics Data System (ADS)

    Schulte, Louis D.; Silver, Gary L.; Avens, Larry R.; Jarvinen, Gordon D.; Espinoza, Jacob; Foltyn, Elizabeth M.; Rinehart, Gary H.

    1997-01-01

    Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory (LANL) has initiated a development program to recover & purify plutonium-238 oxide from impure sources. A glove box line has been designed and a process flowsheet developed to perform this task on a large scale. Our initial effort has focused on purification of 238PuO2 fuel that fails to meet General Purpose Heat Source (GPHS) specifications because of impurities. The most notable non-actinide impurity was silicon, but aluminum, chromium, iron and nickel were also near or in excess of limits specified by GPHS fuel powder specifications. 234U was by far the largest actinide impurity observed in the feed material because it is the daughter product of 238Pu by alpha decay. An aqueous method based on nitric acid was selected for purification of the 238PuO2 fuel. All aqueous processing used high purity reagents, and was performed in PTFE apparatus to minimize introduction of new contaminants. Impure 238PuO2 was finely milled, then dissolved in refluxing HNO3/HF and the solution filtered. The dissolved 238Pu was adjusted to the trivalent state by an excess of reducing reagents to compensate for radiolytic effects, precipitated as plutonium(III) oxalate, and recovered by filtration. The plutonium(III) oxalate was subsequently calcined to convert the plutonium to the oxide. Decontamination factors for silicon, phosphorus and uranium were excellent. Decontamination factors for aluminum, chromium, iron and nickel were very good. The purity of the 238PuO2 recovered from this operation was significantly better than specifications. Efforts continue to develop the capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify 238PuO2 fuel in a glove box environment. Plutonium-238 materials targeted for recovery includes impure oxide and scrap items that are lean in 238Pu values.

  13. Benefits of recycling galvanized steel scrap for recovery of high-quality steel and zinc metal

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A. [Metal Recovery Industries, Inc., Hamilton, ON (Canada)

    1991-11-04

    Argonne National Laboratory (ANL) and Metal Recovery Industries, Inc. (MRII), in cost-sharing collaboration, have developed an electrolytic process to separate and recover steel and zinc from galvanized steel scrap. This work has been supported by the US DOE. An assessment of available dezinc technology was begun in 1987 which (1) screened process concepts for separating and recovering zinc and steel from galvanized ferrous scrap, (2) selected electrochemical stripping in hot caustic as the most promising process, (3) evaluated the technical and economic feasibility of the selected process on the basis of fundamental electrochemical studies, (4) experimentally verified the technical and economic feasibility of the process in a phased evaluation from bench-scale controlled experiments through batch tests of actual scrap up to six ton lots, and (5) concluded that the process has technical and economic merit and requires larger- scale evaluation in a continuous mode as the final phase of process development. This work has attracted worldwide interest. Preliminary economic analysis indicates that the cost of the recovered ferrous scrap would be about $150/ton (at a base cost of $110/ton for galvanized scrap), including credit for the co-product zinc. Concentrations of zinc, lead, cadmium and other coating constituents on loose scrap are reduced by a minimum of 98%, with zinc, in particular, reduced to below 0.1%. Removal efficiencies on baled scrap with bulk densities between 60 and 245 pounds per cubic foot range from 80 to 90%. About 1000 tons of galvanized scrap bales have been treated in batch operation at MRII in Hamilton, Ontario. A pilot plant for continuous treatment of 40 ton/day of loose scrap is being built by MRII in East Chicago, Indiana, with operation starting in early 1992. 9 refs.

  14. Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse

    SciTech Connect

    Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

    1994-03-01

    The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals.

  15. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    SciTech Connect

    Mizia, R.E. [ed.] [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States). Metal Recycle; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L. [Oregon Graduate Institute of Science and Technology, Portland, OR (United States). Dept. of Materials Science and Engineering

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.

  16. Investigation of Childhood Lead Poisoning from Parental Take-Home Exposure from an Electronic Scrap Recycling Facility - Ohio, 2012.

    PubMed

    Newman, Nick; Jones, Camille; Page, Elena; Ceballos, Diana; Oza, Aalok

    2015-07-17

    Lead affects the developing nervous system of children, and no safe blood lead level (BLL) in children has been identified. Elevated BLLs in childhood are associated with hyperactivity, attention problems, conduct problems, and impairment in cognition. Young children are at higher risk for environmental lead exposure from putting their hands or contaminated objects in their mouth. Although deteriorating lead paint in pre-1979 housing is the most common source of lead exposure in children, data indicate that ?30% of children with elevated BLLs were exposed through a source other than paint. Take-home contamination occurs when lead dust is transferred from the workplace on employees' skin, clothing, shoes, and other personal items to their car and home. Recycling of used electronics (e-scrap) is a relatively recent source of exposure to developmental neurotoxicants, including lead. In 2010, the Cincinnati Health Department and Cincinnati Children's Hospital Pediatric Environmental Health Specialty Unit (PEHSU) investigated two cases of childhood lead poisoning in a single family. In 2012, CDC's National Institute for Occupational Safety and Health (NIOSH) learned about the lead poisonings during an evaluation of the e-scrap recycling facility where the father of the two children with lead poisoning worked. This report summarizes the case investigation. Pediatricians should ask about parents' occupations and hobbies that might involve lead when evaluating elevated BLLs in children, in routine lead screening questionnaires, and in evaluating children with signs or symptoms of lead exposure. PMID:26182192

  17. Reinforcement of recycled aluminum-alloy scrap with Saffil ceramic fibers

    Microsoft Academic Search

    M Samuel

    2003-01-01

    The development of the automotive industry requires materials to fulfill the following properties; low density, low coefficient of thermal expansion, high wear resistance, high modulus of elasticity, and high strength at ambient and elevated temperatures. Aluminum scrap composite alloys reinforced by ceramic fiber, may fulfill most of the above requirements. In the present work, production of composites by direct conversion

  18. Fernald's dilemma: Recycle the radioactively contaminated scrap metal, or bury it?

    Microsoft Academic Search

    Katherine L. Yuracko; Stanton W. Hadley; Robert D. Perlack; Rafael G. Rivera; T. Randall Curlee

    1997-01-01

    During the past 5 years, a number of US Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and stakeholder

  19. Benefits of recycling galvanized steel scrap for recovery of high-quality steel and zinc metal

    Microsoft Academic Search

    F. J. Dudek; E. J. Daniels; W. A. Morgan

    1991-01-01

    Argonne National Laboratory (ANL) and Metal Recovery Industries, Inc. (MRII), in cost-sharing collaboration, have developed an electrolytic process to separate and recover steel and zinc from galvanized steel scrap. This work has been supported by the US DOE. An assessment of available dezinc technology was begun in 1987 which (1) screened process concepts for separating and recovering zinc and steel

  20. Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material.

    PubMed

    Lefebvre, Olivier; Tan, Zi; Shen, Yujia; Ng, How Y

    2013-01-01

    Microbial fuel cell (MFC) for wastewater treatment is still hindered by the prohibitive cost of cathode material, especially when platinum is used to catalyze oxygen reduction. In this study, recycled scrap metals could be used efficiently as cathode material in a specially-designed MFC. In terms of raw power, the scrap metals ranked as follows: W/Co > Cu/Ni > Inconel 718 > carpenter alloy; however, in terms of cost and long term stability, Inconel 718 was the preferred choice. Treatment performance--assessed on real and synthetic wastewater--was considerably improved either by filling the anode compartment with carbon granules or by operating the MFC in full-loop mode. The latter option allowed reaching 99.7% acetate removal while generating a maximum power of 36 W m(-3) at an acetate concentration of 2535 mg L(-1). Under these conditions, the energy produced by the system averaged 0.1 kWh m(-3) of wastewater treated. PMID:23138054

  1. ECONOMICS OF UNIRRADIATED PROCESSING PHASES OF URANIUM FUEL CYCLES

    Microsoft Academic Search

    J. P. Murray; F. S. Patton; R. F. Hibbs; W. L. Griffith

    1958-01-01

    Expanding reactor programs prescnt industrial opportunities in their ; fuel processing phases. This . paper considers the manufacture of ; unirradiated uranium fuel materials, including the conversion of uranium ; hexafluoride to uranium metal, uranium dioxide, etc.; their subsequent ; fabrication into fuel elements; and the processing and recycle of accrued scrap. ; The intent is to offer potentinl processors

  2. Throughput limitations and pressure relief of the OSUR (Onsite Uranium Recycle) semiworks off-gas system

    Microsoft Academic Search

    1986-01-01

    The Robotics and Fabrication Technology Division operates the Onsite Uranium Recycle (OSUR) semiworks to develop equipment for a uranium conversion process. The process converts uranyl nitrate solution to uranium oxide powder by loading the uranium on ion exchange resin and then burning the resin. With proper loading and burning conditions, the uranium oxide ash is suitable for blending with aluminum

  3. Recycling radioactive scrap metal by producing concrete shielding with steel granules

    Microsoft Academic Search

    Sappok

    1996-01-01

    Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel

  4. Scrap tires

    SciTech Connect

    Not Available

    1988-12-01

    Scrap tires, one small part of the country's massive solid waste problem, are causing a disproportional headache. A city the size of Newark, N.J., for example, can pay up to $700,000 a year just to bury its waste tires, assuming it can find landfills to accept them. Many landfills no longer do, and in some areas, it is actually illegal. So stockpiles of scrap tires mount up and illegal dumping runs rampant. Scrap tires represent less than 1 percent of the nation's total solid waste. While we generate approximately a ton of solid waste per year per person, or 250,000,000 tons, we generate only one 20-pound tire per person, or 2,500,000 tons. Despite this small percentage, these tires present a special disposal/reuse challenge because of their size, shape, and physicochemical nature. Classified as a special waste, they are not generally collected with household waste by municipal authorities. Notwithstanding the unique disposal/reuse challenges of scrap tires, it must be stressed that a tire is essentially a petrochemical product than can be reused, can be a source of recoverable petrochemicals, or can be used as a fuel with a higher Btu value than coal. Thus what appears as a waste disposal challenge is also a resource recovery opportunity. Unfortunately, at present, only 30 percent of the country's scrap tires are being reclaimed or recycled. In terms of options, there are three viable areas in which to approach the waste tire problem: whole tire applications; physically processed tire applications; and physicochemical processes.

  5. Structural insulated panels produced from recycled Expanded-Polystrene (EPS) foam scrap. Final report

    SciTech Connect

    Grinnell, A.

    1996-11-01

    This report documents a research project undertaken to assess the feasibility of using scrap reground expanded polystyrene (EPS) in the manufacture of structural insulated panels (SIPs) in order to save material costs and reduce the amount of EPS waste products to be disposed. The project team, managed by Steven Winter Associates, Inc., a Norwalk, Connecticut-based building systems research and consulting firm included: Thermal Foams, Inc., a Buffalo-based manufacturer of EPS products; BASF Corp., the world`s largest producer of EPS beads; Oak Ridge National Laboratory, which performed thermal tests (ASTM C-518); RADCO, Inc. which performed material properties tests: density (ASTM C-303), flexural strength (ASTM C-203), tensile strength (ASTM D-1623), and transverse load test of SIPs panels (ASTM E-72). The report documents the manufacturing and testing process and concludes that there was relatively little difference in the thermal and structural characteristics under normal loading conditions of the panels tested with varying amount of regrind (from 10% - 25%) and those made with 100% virgin beads. The report recommends that additional tests be undertaken, but suggests that, based on the test results, reground EPS can be successfully used in the cores of SIPs in amounts up to 25%.

  6. Recycle of contaminated scrap metal, comprehensive executive summary. Final report, September 30, 1993--March 31, 1996

    SciTech Connect

    NONE

    1997-06-01

    R&D activities have demonstrated Catalytic Extraction Processing (CEP) to be a robust, one-step process process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. The feed size and composition compatible with CEP have been increased in a short period of time, and additional R&D should lead to the ability to accept a drum (and larger?) size feed of completely uncharacterized waste. Experiments have validated the CPU (Catalytic Processing Unit). Two commercial facilities have been commissioned and are currently processing mixed low level wastes. Expansion of CEP to transuranic and high level wastes should be the next step in the development and deployment of CEP for recycle, reuse, and disposal of materials from DOE decontamination and decommissioning activities.

  7. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    Microsoft Academic Search

    Timothy W. Ellis; Frederick A. Schmidt

    1995-01-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant

  8. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    Microsoft Academic Search

    T. W. Ellis; F. A. Schmidt

    1995-01-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material

  9. The Scrap Map: An Environmental Publication for Grades K-6.

    ERIC Educational Resources Information Center

    Institute of Scrap Recycling Industries, Inc., Washington, DC.

    This document contains materials for a 10-day teaching unit on solid waste recycling for grades K-6. Included are: (1) "The Scrap Map," which shows recycling cycles for metals and paper, and a cryptic word puzzle; (2) three pamphlets on recycling paper, nonferrous scrap metals, and scrap iron and steel; (3) a list of the chapters of the Institute…

  10. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  11. Reduction of scrap losses in Zircaloy2 clad zirconium-uranium alloy tube coextrusion

    Microsoft Academic Search

    W. H. Clemans; K. E. Conlin

    1989-01-01

    Westinghouse Hanford has developed a new driver element for production of special nuclear material through neutron bombardment of a target element in a nuclear reactor. The driver element is a tube fabricated using zirconium\\/9.3 wt % enriched uranium alloy clad ID and OD with metallurgically bonded Zircaloy-2. Because of the high cost of the core material, it was necessary to

  12. High Purity Germanium Gamma-PHA Assay of Uranium in Scrap Cans for 321-M Facility

    SciTech Connect

    Salaymeh, S.R.

    2002-03-22

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. This report includes a description of two efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

  13. Recycling

    NSDL National Science Digital Library

    sgp0002

    2010-03-27

    You will be learning all about recycling and asking questions as you learn more about recycling. Afterward, you will be making recycling bins that we will use in our classroom. Click on each of the different links and research about recycling. Find out what recycling is, what can be recycled, and why we should recycle. As you find information, add it to the "describing wheel" that is given to you by Ms. Pollak. Answer the main question: What is recycling? Come ...

  14. [Recycle of contaminated scrap metal]: Task 1.3.2, Bulk solids feed system. Topical report, October 1993-- January 1996

    SciTech Connect

    NONE

    1996-07-01

    A critical requirement in DOE`s efforts to recycle, reuse, and dispose of materials from its decontamination and decommissioning activities is the design of a robust system to process a wide variety of bulk solid feeds. The capability to process bulk solids will increase the range of materials and broaden the application of Catalytic Extraction Processing (CEP). The term bulk solids refers to materials that are more economically fed into the top of a molten metal bath than by submerged injection through a tuyere. Molten Metal Technology, Inc. (MMT) has characterized CEP`s ability to process bulk solid feed materials and has achieved significant growth in the size of bulk solid particles compatible with Catalytic Extraction Processing. Parametric experimental studies using various feed materials representative of the components of various DOE waste streams have validated design models which establish the reactor operating range as a function of feed material, mass flow rate, and particle size. MMT is investigating the use of a slurry system for bulk solid addition as it is the most efficient means for injecting soils, sludges, and similar physical forms into a catalytic processing unit. MMT is continuing to evaluate condensed phase product removal systems and alternative energy addition sources to enhance the operating efficiency of bulk solids CEP units. A condensed phase product removal system capable of on-demand product removal has been successfully demonstrated. MMT is also investigating the use of a plasma arc torch to provide supplemental heating during bulk solids processing. This comprehensive approach to bulk solids processing is expected to further improve overall process efficiency prior to the deployment of CEP for the recycle, reuse, and disposal of materials from DOE decontamination and decommissioning Activities.

  15. Feasibility study of a portable smelter for scrap metals

    Microsoft Academic Search

    Cavendish

    1976-01-01

    The use of a portable smelter to process uranium-contaminated scrap metals was studied. Objectives were to convert scrap metal located at many diverse sites into a form which would be suitable for unlicensed sale and reduce the problems associated with storing the scrap. The Foundry Design Company study indicated the portable smelter concept was feasible from an equipment and transportation

  16. Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant

    SciTech Connect

    Kluth, T.; Quade, U.; Lederbrink, F. W.

    2003-02-26

    Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

  17. Railroading Scrap

    ERIC Educational Resources Information Center

    Kakela, Peter

    1975-01-01

    This article focuses on the environmental benefits of recycling mainly iron and steel, as well as the current status of such recycling processes. It also examines some of the economic constraints working against recycling, and offers suggestions for correcting the problem. (Author/MA)

  18. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    SciTech Connect

    Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

    2012-07-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

  19. Homologation and functionalization of carbon monoxide by a recyclable uranium complex

    PubMed Central

    Gardner, Benedict M.; Stewart, John C.; Davis, Adrienne L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2012-01-01

    Carbon monoxide (CO) is in principle an excellent resource from which to produce industrial hydrocarbon feedstocks as alternatives to crude oil; however, CO has proven remarkably resistant to selective homologation, and the few complexes that can effect this transformation cannot be recycled because liberation of the homologated product destroys the complexes or they are substitutionally inert. Here, we show that under mild conditions a simple triamidoamine uranium(III) complex can reductively homologate CO and be recycled for reuse. Following treatment with organosilyl halides, bis(organosiloxy)acetylenes, which readily convert to furanones, are produced, and this was confirmed by the use of isotopically 13C-labeled CO. The precursor to the triamido uranium(III) complex is formed concomitantly. These findings establish that, under appropriate conditions, uranium(III) can mediate a complete synthetic cycle for the homologation of CO to higher derivatives. This work may prove useful in spurring wider efforts in CO homologation, and the simplicity of this system suggests that catalytic CO functionalization may soon be within reach. PMID:22652572

  20. Advanced technologies for decontamination and conversion of scrap metals

    SciTech Connect

    Muth, T.R. [Manufacturing Sciences Corp., Oak Ridge, TN (United States); Moore, J.; Olson, D.; Mishra, B. [Colorado School of Mines, Golden, CO (United States)

    1994-12-31

    Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC`s vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC`s rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines.

  1. Uranium Recycle by Ion Exchange and Calcination - Summary of Design Development and Equipment Design

    SciTech Connect

    Hathcock, D.J.; A.J. Duncan

    2005-10-31

    Technical information for the process of recovery of uranium from uranyl nitrate hexahydrate solutions that was developed as part of the Onsite Uranium Recycle (OSUR) project conducted at the Savannah River Site in the 1980's is summarized. The process involves an ion-exchange process to load the uranyl species from solution onto a cation resin that is subsequently dried using a microwave oven, and then calcined using a rotary calciner to produce U{sub 3}O{sub 8} powder. The information in this report was compiled to support critical decisions for new facilities and processes at the Y-12 National Security Complex. The information includes a detailed description of the process and process equipment that were developed for the OSUR project including the technical bases for the materials selection and process conditions. Additional process considerations and recommendations to for a new-design facility are also provided.

  2. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  3. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  4. Catalytic extraction processing of contaminated scrap metal

    Microsoft Academic Search

    T. P. Griffin; J. E. Johnston

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which

  5. Aqueous processing of U-10Mo scrap for high performance research reactor fuel

    NASA Astrophysics Data System (ADS)

    Youker, Amanda J.; Stepinski, Dominique C.; Maggos, Laura E.; Bakel, Allen J.; Vandegrift, George F.

    2012-08-01

    The Global Threat Reduction Initiative (GTRI) Conversion program, which is part of the US government's National Nuclear Security Administration (NNSA), supports the conversion of civilian use of highly enriched uranium (HEU) to low enriched uranium (LEU) for reactor fuel and targets. The reason for conversion is to eliminate the use of any material that may pose a threat to the United States or other foreign countries. High performance research reactors (HPRRs) cannot make the conversion to a standard LEU fuel because they require a more dense fuel to meet their performance requirements. As a result, a more dense fuel consisting of a monolithic uranium-molybdenum alloy containing 10% (w/w) Mo with Al cladding and a Zr bonding-layer is being considered. Significant losses are expected in the fabrication of this fuel, so a means to recycle the scrap pieces is needed. Argonne National Laboratory has developed an aqueous-processing flowsheet for scrap recovery in the fuel fabrication process for high-density LEU-monolithic fuel based on data found in the literature. Experiments have been performed to investigate dissolution conditions for solutions containing approximately 20 g-U/L and 50 g-U/L with and without Fe(NO3)3. HNO3 and HF concentrations have been optimized for timely dissolution of the fuel scrap and prevention of the formation of the U-Zr2 intermetallic, explosive complex, while meeting the requirements needed for further processing.

  6. Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor

    SciTech Connect

    C. Fiorina; N. E. Stauff; F. Franceschini; M. T. Wenner; A. Stanculescu; T. K. Kim; A. Cammi; M. E. Ricotti; R. N. Hill; T. A. Taiwo; M. Salvatores

    2013-12-01

    The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associated with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.

  7. Characterization of shredded television scrap and implications for materials recovery.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2007-01-01

    Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations. PMID:16624540

  8. Recycling

    NSDL National Science Digital Library

    Miss Sykes

    2005-10-20

    Let\\'s learn how to reduce, reuse and recycle waste! BUILDING YOUR KNOWLEDGE ABOUT RECYCLING 1. Learn the abc\\'s of recycling found here A is for Air. Be sure to click on each letter of the alphabet and read what it stands for. 2. Read the Adventures of the Garbage Gremlin in this Comic Book. 3. Steel is used to build cars, household appliances and cans. Read ...

  9. Iron and steel recycling in the United States in 1998

    USGS Publications Warehouse

    Fenton, Michael D.

    2001-01-01

    Consumption of iron and steel scrap and the health of the scrap industry depend directly on the health of the steelmaking industry. The United States, as well as most of the world, is expected to consume increasing amounts of scrap as a steadily increasing population demands more steel products. World resources of scrap should be sufficient for the foreseeable future. An estimated 75 million metric tons (Mt) of scrap was generated during 1998 in the United States, and 35 Mt of old scrap and 18 Mt of new scrap was consumed. The recycling efficiency was calculated to be 52%, and the recycling rate was found to be 41%. (See appendix for definitions.)

  10. Gold recycling in the United States in 1998

    USGS Publications Warehouse

    Amey, Earle B.

    2001-01-01

    In 1998, 175 metric tons (t) of refined gold was recovered by U.S. refiners from old and new scrap. The overall recycling rate was 29 percent when scrap consumption was compared with apparent domestic supply. Sources of old scrap includes discarded jewelry, dental materials, plating solutions, and electronic equipment. A very high old scrap recycling efficiency of 96 percent was reached in 1998, the supply of old scrap peaked, gold prices were at an 18-year low, and substantial amounts of old scrap were exported. U.S. net exports of old scrap had a gold content of 28 t.

  11. Furnace for processing scrap and waste products

    Microsoft Academic Search

    I. B. Kudzagov

    2006-01-01

    The company METPROMMASh has been developing and introducing metallurgical technologies and equipment for the nonferrous metals\\u000a sector for more than 10 years. A particular focus of the company has been the construction of furnaces for recycling aluminum-and\\u000a copper-bearing scrap and waste products. Furnaces made by METPROMMASh are currently being used by shops and factories that\\u000a recycle nonferrous metals, these furnaces

  12. Recycling light metals: Optimal thermal decoating

    Microsoft Academic Search

    Anne Kvithyld; C. E. M. Meskers; Sean Gaal; Markus Reuter; Thorvald Abel Engh

    2008-01-01

    Thermal de-coating of painted and lacquered scrap is one of the new innovations developed for aluminum recycling. If implemented\\u000a in all recycling and optimized as suggested in this article, recovery would be improved with considerable economic impact.\\u000a Generally, contaminated scrap is difficult to recycle. Direct re-melting of coated scrap results in the generation of gaseous\\u000a emissions, with increased metal oxidation,

  13. A Practical Recycling Project . . .

    ERIC Educational Resources Information Center

    Durant, Raymond H.; Mikuska, James M.

    1973-01-01

    Descirbes a school district's recycling program of aluminum lunch trays that are collected after their use. The trays are used as scrap metal in industrial education workshop and used for sand castings. (PS)

  14. Cobalt recycling in the United States in 1998

    USGS Publications Warehouse

    Shedd, Kim B.

    2002-01-01

    This report is one of a series of reports on metals recycling. It defines and quantifies the 1998 flow of cobalt-bearing materials in the United States, from imports and stock releases through consumption and disposition, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of cobalt?s many and diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 1998, an estimated 32 percent of U.S. cobalt supply was derived from scrap. The ratio of cobalt consumed from new scrap to that from old scrap was estimated to be 50:50. Of all the cobalt in old scrap available for recycling, an estimated 68 percent was either consumed in the United States or exported to be recycled.

  15. Tungsten recycling in the United States in 2000

    USGS Publications Warehouse

    Shedd, Kim B.

    2011-01-01

    This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.

  16. Feasibility of re-melting NORM-contaminated scrap metal

    SciTech Connect

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  17. Aluminum recycling in the United States in 2000

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2006-01-01

    As one of a series of reports on metals recycling, this report discusses the flow of aluminum from production through its uses with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2000. This materials flow study includes a description of aluminum supply and demand factors for the United States to illustrate the extent of aluminum recycling and to identify recycling trends. Understanding the system of materials flow from source to ultimate disposition can assist in improving the management of natural resources in a manner that is compatible with sound environmental practices. In 2000, the old scrap recycling efficiency for aluminum was estimated to be 42 percent. Almost 60 percent of the aluminum that was recycled in 2000 came from new scrap, and the recycling rate was estimated to be 36 percent. The principal source of old scrap was recycled aluminum beverage cans.

  18. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  19. A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries.

    PubMed

    Zhang, Xihua; Xie, Yongbing; Cao, Hongbin; Nawaz, Faheem; Zhang, Yi

    2014-09-01

    To solve the recycling challenge for aqueous binder based lithium-ion batteries (LIBs), a novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps generated during manufacturing process is proposed in this study. Trifluoroacetic acid (TFA) is employed to separate the cathode material from the aluminum foil. The effects of TFA concentration, liquid/solid (L/S) ratio, reaction temperature and time on the separation efficiencies of the cathode material and aluminum foil are investigated systematically. The cathode material can be separated completely under the optimal experimental condition of 15vol.% TFA solution, L/S ratio of 8.0 mL g(-1), reacting at 40°C for 180 min along with appropriate agitation. LiNi1/3Co1/3Mn1/3O2 is successfully resynthesized from the separated cathode material by solid state reaction method. Several kinds of characterizations are performed to verify the typical properties of the resynthesized LiNi1/3Co1/3Mn1/3O2 powder. Electrochemical tests show that the initial charge and discharge capacities of the resynthesized LiNi1/3Co1/3Mn1/3O2 are 201 mAh g(-)(1) and 155.4 mAh g(-1) (2.8-4.5 V, 0.1C), respectively. The discharge capacity remains at 129 mAh g(-1) even after 30 cycles with a capacity retention ratio of 83.01%. PMID:24973865

  20. Tantalum recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of tantalum in the United States in 1998 with emphasis on the extent to which tantalum was recycled/reused. Tantalum was mostly recycled from new scrap that was generated during the manufacture of tantalum-related electronic components and new and old scrap products of tantalum-containing cemented carbides and superalloys. In 1998, about 210 metric tons of tantalum was recycled/reused, with about 43% derived from old scrap. The tantalum recycling rate was calculated to be 21%, and tantalum scrap recycling efficiency, 35%.

  1. Germanium recycling in the United States in 2000

    USGS Publications Warehouse

    Jorgenson, John D.

    2006-01-01

    This report describes the recycling flow of germanium in the United States in 2000, as well as other germanium material flow streams. Germanium was recycled mostly from new scrap that was generated during the manufacture of germanium-containing fiber optic cables and from new and old scrap products of germanium-containing infrared imaging devices. In 2000, about 11.5 metric tons of germanium was recycled, about 40 percent of which was derived from old scrap. The germanium recycling rate was estimated to be 50 percent, and germanium scrap recycling efficiency, 76 percent.

  2. Release of Residues from Melting NORM-Contaminated Steel Scrap - A German Approach

    SciTech Connect

    Quade, U.; Thierfeldt, S.; Wvrlen, S.

    2003-02-24

    As many raw materials like crude oil, natural gas, mineral sands, phosphor ores and others are contaminated by radionuclides from the Uranium and/or Thorium decay chain (NORM), also plants for processing these materials became contaminated during operation. When plants are shut down, large quantities of pipes, valves, pumps and other components have to be scrapped. As scrap yards and steel mills are equipped by large detector systems to avoid an input of radioactivity into the steel cycle, decontamination is required before recycling. Siempelkamp is operating a melting plant for processing NORM and/or chemically/ toxically contaminated steel scrap. Beside the decontaminated steel as output, residues like slag and filter dust have to be managed within the range of licensed values. Based on the European Safety Standard the European member states have to implement radiation exposure from work activities with NORM in their Radiation Protection Ordinances (RPO). The German government revised the RPO in July 2001. Part 3 describes exposure limits for workers and for the public. Exposures from residues management have to meet 1 mSv/year. Brenk Systemplanung has performed calculations for assessing the radiation exposure from residues of the Siempelkamp melting plant. These calculations have been based on the input of metal from different origins and include all relevant exposure pathways in a number of scenarios. The calculations have been based on the dose criterion of 1 mSv/y as required by the German RPO. The methods and results will be presented.

  3. Hanford recycling

    SciTech Connect

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall DOE recycling contract at the Hanford site and a central group to control the contract. 0 Using a BOA or MTS contract as a way to get proceeds from recycling back to site facilities to provide incentives for recycling. . Upgrading tracking mechanisms to track and recycle construction waste which is presently buried in onsite pits. . Establishing contract performance measures which hold each project accountable for specific waste reduction goals. * Recycling and reusing any material or equipment possible as buildings are dismantled.

  4. Advanced technologies for decontamination and conversion of scrap metal

    Microsoft Academic Search

    V. MacNair; T. Muth; K. Shasteen; A. Liby; G. Hradil; B. Mishra

    1996-01-01

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion

  5. A note on scrap in the 1992 U.S. input-output tables

    USGS Publications Warehouse

    Swisko, George M.

    2000-01-01

    Introduction A key concern of industrial ecology and life cycle analysis is the disposal and recycling of scrap. One might conclude that the U.S. input-output tables are appropriate tools for analyzing scrap flows. Duchin, for instance, has suggested using input-output analysis for industrial ecology, indicating that input-output economics can trace the stocks and flows of energy and other materials from extraction through production and consumption to recycling or disposal. Lave and others use input-output tables to design life cycle assessment models for studying product design, materials use, and recycling strategies, even with the knowledge that these tables suffer from a lack of comprehensive and detailed data that may never be resolved. Although input-output tables can offer general guidance about the interdependence of economic and environmental processes, data reporting by industry and the economic concepts underlying these tables pose problems for rigorous material flow examinations. This is especially true for analyzing the output of scrap and scrap flows in the United States and estimating the amount of scrap that can be recycled. To show how data reporting has affected the values of scrap in recent input-output tables, this paper focuses on metal scrap generated in manufacturing. The paper also briefly discusses scrap that is not included in the input-output tables and some economic concepts that limit the analysis of scrap flows.

  6. An economic analysis of a light and heavy water moderated reactor synergy: burning americium using recycled uranium

    SciTech Connect

    Wojtaszek, D.; Edwards, G. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario (Canada)

    2013-07-01

    An economic analysis is presented for a proposed synergistic system between 2 nuclear utilities, one operating light water reactors (LWR) and another running a fleet of heavy water moderated reactors (HWR). Americium is partitioned from LWR spent nuclear fuel (SNF) to be transmuted in HWRs, with a consequent averted disposal cost to the LWR operator. In return, reprocessed uranium (RU) is supplied to the HWRs in sufficient quantities to support their operation both as power generators and americium burners. Two simplifying assumptions have been made. First, the economic value of RU is a linear function of the cost of fresh natural uranium (NU), and secondly, plutonium recycling for a third utility running a mixed oxide (MOX) fuelled reactor fleet has been already taking place, so that the extra cost of americium recycling is manageable. We conclude that, in order for this scenario to be economically attractive to the LWR operator, the averted disposal cost due to partitioning americium from LWR spent fuel must exceed 214 dollars per kg, comparable to estimates of the permanent disposal cost of the high level waste (HLW) from reprocessing spent LWR fuel. (authors)

  7. Method for forming consumable electrodes from metallic chip scraps

    DOEpatents

    Girshov, Vladimir Leonidovich (St. Petersburg, RU); Podpalkin, Arcady Munjyvich (St. Petersburg, RU); Treschevskiy, Arnold Nikolayevich (St. Petersburg, RU); Abramov, Alexey Alexandrovich (St. Petersburg, RU)

    2005-10-11

    The method relates to metallurgical recycling of waste products, preferably titanium alloys chips scrap. Accordingly after crushing and cleaning, the chip scrap is subjected to vacuum-thermal degassing (VTD); the chip scrap is pressed into briquettes; the briquettes are placed into a mould allowing sufficient remaining space for the addition of molten metal alloy; the mould is pre-heated before filling with the molten metal alloy; the mould remaining space is filled with molten metal alloy. After cooling, the electrode is removed from the mould. The method provides a means for 100% use of chip scrap in producing consumable electrodes having increased mechanical strength and reduced interstitial impurities content leading to improved secondary cast alloys.

  8. Release of Residues from Melting NORM-Contaminated Steel Scrap - A German Approach

    Microsoft Academic Search

    U. Quade; S. Thierfeldt; S. Wvrlen

    2003-01-01

    As many raw materials like crude oil, natural gas, mineral sands, phosphor ores and others are contaminated by radionuclides from the Uranium and\\/or Thorium decay chain (NORM), also plants for processing these materials became contaminated during operation. When plants are shut down, large quantities of pipes, valves, pumps and other components have to be scrapped. As scrap yards and steel

  9. Process options and projected mass flows for the HTGR refabrication scrap recovery system

    Microsoft Academic Search

    S. M. Tiegs

    1979-01-01

    The two major uranium recovery processing options reviewed are (1) internal recovery of the scrap by the refabrication system and (2) transfer to and external recovery of the scrap by the head end of the reprocessing system. Each option was reviewed with respect to equipment requirements, preparatory processing, and material accountability. Because there may be a high cost factor on

  10. Beryllium Recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2003-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  11. Beryllium recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2004-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  12. Analysis of disposition alternatives for radioactively contaminated scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling

  13. Analysis of disposition alternatives for radioactively contaminated scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

    1998-01-01

    Millions of tons of slightly radioactive scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are either to develop a regulatory process for decontamination and recycling

  14. ADVANCED TECHNOLOGIES FOR DECONTAMINATION AND CONVERSION OF SCRAP METAL

    Microsoft Academic Search

    Jagdish Malhotra

    2000-01-01

    The Department of Energy (DOE) confronts the major responsibility of decommissioni ng most of the U.S. Nuclear Complex, which also includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of

  15. Advanced technologies for decomtamination and conversion of scrap metal

    Microsoft Academic Search

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-01-01

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for

  16. Lead decontamination and recycling under RCRA regulatory implications

    Microsoft Academic Search

    S. Moore-Mayne; M. Romero; H. Grover; S. L. Harnett

    1996-01-01

    Radioactively contamination lead is a significant scrap metal recycling opportunity for the Department of Energy (DOE) facilities. Unfortunately, the regulatory maze to determine exactly how to manage scrap metal before it goes to the market may deter facilities from pursuing this opportunity. This paper presents an analysis of the regulatory issues, provides some management guidelines and identifies recycling and reuse

  17. Contaminated nickel scrap processing

    Microsoft Academic Search

    A. L. Compere; W. L. Griffith; H. W. Hayden; J. S. Jr. Johnson; D. F. Wilson

    1994-01-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include ²³⁴Th, ²³⁴Pa, ¹³⁷Cs, ²³⁹Pu (trace), ⁶°Co, U, ⁹⁹Tc, and ²³⁷Np

  18. Off-gas recycle for long-term low temperature gas phase uranium decontamination

    Microsoft Academic Search

    R. D. Bundy; D. H. Bunch; E. B. Munday; D. W. Simmons

    1994-01-01

    In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits

  19. The Application of Life Cycle Assessment in China Recycling Resource Management

    Microsoft Academic Search

    Yue Zhang

    2011-01-01

    Waste and recycling resource management is one of the most important application areas of life cycle assessment. This article first points out the importance of using the life cycle assessment in waste and recycling resource decision making, and then analyses current life cycle studies in China of different types of recycling resources, such as scrap iron and steel, scrap nonferrous

  20. Using Established Regulations to Recycle Contaminated Metals

    Microsoft Academic Search

    Loewen; Eric Paul

    2000-01-01

    DOE restoration projects require acceptable standards for processing volumetrically contaminated metals: ⢠NRC has no regulations addressing recycling of scrap metal containing residual volumetric radioactivity. ⢠DOE is currently restricting outside radioactive scrap metal sales; however, previous Fernald and Ohio State clean-ups have released metals with measurable levels of radioactivity into the open market. ⢠Public sensitivity to the subject

  1. Nickel recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of nickel from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2004. This materials flow study includes a description of nickel supply and demand for the United States to illustrate the extent of nickel recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the old scrap recycling efficiency for nickel was estimated to be 56.2 percent. In 2004, nickel scrap consumption in the United States was as follows: new scrap containing 13,000 metric tons (t) of nickel (produced during the manufacture of products), 12 percent; and old scrap containing 95,000 t of nickel (articles discarded after serving a useful purpose), 88 percent. The recycling rate for nickel in 2004 was 40.9 percent, and the percentage of nickel in products attributed to nickel recovered from nickel-containing scrap was 51.6 percent. Furthermore, U.S. nickel scrap theoretically generated in 2004 had the following distribution: scrap to landfills, 24 percent; recovered and used scrap, 50 percent; and unaccounted for scrap, 26 percent. Of the 50 percent of old scrap generated in the United States that was recovered and then used in 2004, about one-third was exported and two-thirds was consumed in the domestic production of nickel-containing products.

  2. Recycling Report FY2012 FY2012

    E-print Network

    Mohanty, Saraju P.

    FY 2013 Recycling Report FY2012 FY2012 Month Tons Revenue Tons Revenue Lbs Revenue Tons Revenue Saved 2,987 Gallons of Water Conserved 1,230,411 Paper Cardboard Aluminum Plastic Misc (Tin, Copper, Scrap) RESOURCES SAVED BY RECYCLING Total Tons Recycled 175.77 Cubic Feet of Landfill Space Conserved 15

  3. Y-12 old salvage yard scrap metal characterization study

    SciTech Connect

    Anderson, L.M.; Melton, S.G.; Shaw, S.S.

    1993-11-01

    The purpose of the Y-12 Old Salvage Yard scrap metal Characterization Study is to make conservative estimates of the quantities of total uranium and the wt % {sup 235}U contained in scrap metal. The original project scope included estimates of thorium, but due to the insignificant quantities found in the yards, thorium was excluded from further analysis. Metal in three of the four Y-12 scrap metal yards were characterized. The scrap metal yard east of the PIDAS fence is managed by the Environmental Restoration Program and therefore was not included in this study. For all Y-12 Plant scrap metal shipments, Waste Transportation, Storage, and Disposal (WTSD) personnel must complete a Request for Authorization to Ship Nuclear Materials, UCN-16409, which requires the grams of total uranium, the wt % {sup 235}U, and the grams of {sup 235}U contained in the shipment. This information is necessary to ensure compliance with Department of Transportation regulations, as well as to ensure that the receiving facility is adhering to its operating license. This characterization study was designed to provide a technical basis for determining these necessary radioactive quantities.

  4. Chromium Recycling in the United States in 1998

    USGS Publications Warehouse

    Papp, John F.

    2001-01-01

    The purpose of this report is to illustrate the extent to which chromium was recycled in the United States in 1998 and to identify chromium-recycling trends. The major use of chromium was in the metallurgical industry to make stainless steel; substantially less chromium was used in the refractory and chemical industries. In this study, the only chromium recycling reported was that which was a part of stainless steel scrap reuse. In 1998, 20 percent of the U.S. apparent consumption of chromium was secondary (from recycling); the remaining 80 percent was based on net chromium commodity imports and stock adjustments. Chromite ore was not mined in the United States in 1998. In 1998, 75,300 metric tons (t) of chromium contained in old scrap was consumed in the United States; it was valued at $66.4 million. Old scrap generated contained 132,000 t of chromium. The old scrap recycling efficiency was 87 percent, and the recycling rate was 20 percent. About 18,000 t of chromium in old scrap was unrecovered. New scrap consumed contained 28,600 t of chromium, which yielded a new-to-old-scrap ratio of 28:72. U.S. chromium-bearing stainless steel scrap net exports were valued at $154 million and were estimated to have contained 41,000 t of chromium.

  5. Preliminary evaluation of electrowinning for nickel scrap processing

    SciTech Connect

    Brown, G.M.; Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    Purification of the 70,000 to 245,000 tons of diffusion plant nickel scrap permit its use in a variety of DOE and, with establishment of de minimus standards, foreign and domestic industrial applications. Nickel recycle would also substantially decrease DOE legacy wastes. This report presents data on electrolytes and separations which could be used in electrolytic purification of radiologically contaminated nickel scrap from first generation diffusion plants. Potentiometric scans and plating tests indicate that both industrial electrolytes, buffered nickel sulfate-sodium chloride and nickel chloride, provide good current densities. Electrolytes which contain ammonium thiocyanate or ammonium chloride also perform well. Nickel does not plate appreciably from nitrate solutions because the nitrate was preferentially reduced to nitrite. Solvent extractions of cobalt, a common contaminant in commercial nickel, and pertechnate, a radiological contaminant expected in DOE nickel scrap, are also successful.

  6. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2013-01-01 2013-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture...INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed...

  7. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2012-01-01 2012-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  8. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2014-01-01 2014-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  9. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2012-01-01 2012-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture...INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed...

  10. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2013-01-01 2013-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  11. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2014-01-01 2014-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture...INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed...

  12. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  13. Proceedings of the waste recycling workshop

    SciTech Connect

    Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)] [eds.; Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  14. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  15. Characterization of emissions from scrap metal processing facilities

    SciTech Connect

    Norco, J.E. [Versar, Inc., Lombard, IL (United States); Tyler, T. [Inst. of Scrap Recycling Industries, Inc., Washington, DC (United States)

    1997-12-31

    To prepare its members for the permitting requirements under Title 5 of the Clean Act, the Institute of Scrap Recycling Industries (ISRI) commissioned a project to develop a Title 5 applicability workbook. A critical element in the preparation of the workbook was the characterization of emissions from processes and equipment typically found in the scrap metal processing industry. This paper describes the approach to the preparation of the workbook with emphasis on characterization of specific emission units which are deemed important for Title 5. The paper describes the methodology employed for acquiring existing emissions information from equipment manufacturers, vendors, and scrap recycling facility operators. The data were aggregated and analyzed to develop a variety of emission tabulations for pollutants requiring analysis under Title 5. The project also involved a survey of numerous state and local air pollution agencies to determine regulatory requirements regarding critical issues in the scrap processing industry. The paper describes a methodology for determining Title 5 applicability with emphasis on the use of emission tabulations and example worksheets. Emissions data are presented for metal shredders to demonstrate the methodology and procedures developed during the project. Finally, the paper discusses the structure of the Title 5 applicability workbook and its dissemination to a major industry trade association.

  16. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    Muth, T.R.; Shasteen, K.E.; Liby, A.L. [and others

    1995-12-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D&D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE`s cleanup of contaminated sites and facilities.

  17. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag.

    PubMed

    Oh, Byung-Taek; Lee, Jai-Young; Yoon, Jeyong

    2007-08-01

    This study may be the first investigation to be performed into the potential benefits of recycling industrial waste in controlling contaminants in leachate. Batch reactors were used to evaluate the efficacy of waste steel scrap and converter slag to treat mixed contaminants using mimic leachate solution. The waste steel scrap was prepared through pre-treatment by an acid-washed step, which retained both zero-valent iron site and iron oxide site. Extensive trichloroethene (TCE) removal (95%) occurred by acid-washed steel scrap within 48 h. In addition, dehalogenation (Cl(-) production) was observed to be above 7.5% of the added TCE on a molar basis for 48 h. The waste steel scrap also removed tetrachloroethylene (PCE) through the dehalogenation process although to a lesser extent than TCE. Heavy metals (Cr, Mn, Cu, Zn, As, Cd, and Pb) were extensively removed by both acid-washed steel scrap and converter slag through the adsorption process. Among salt ions (NH (4)(+) , NO (3)(-) , and PO (4)(3-) ), PO (4)(3-) was removed by both waste steel scrap (100% within 8 h) and converter slag (100% within 20 min), whereas NO (3)(-) and NH (4)(+ ) were removed by waste steel scrap (100% within 7 days) and converter slag (up to 50% within 4 days) respectively. This work suggests that permeable reactive barriers (PRBs) with waste steel scrap and converter slag might be an effective approach to intercepting mixed contaminants in leachate from landfill. PMID:17492478

  18. Columbium (niobium) recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of columbium in the United States in 1998 with emphasis on the extent to which columbium (niobium) was recycled/reused. Columbium was mostly recycled from products of columbium-bearing steels and superalloys; little was recovered from products specifically for their columbium content. In 1998, about 1,800 metric tons of columbium was recycled/reused, with about 55% derived from old scrap. The columbium recycling rate was calculated to be 22%, and columbium scrap recycling efficiency, 50%.

  19. Platinum recycling in the United States in 1998

    USGS Publications Warehouse

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  20. Energy Conservation in the Recycling Economy

    Microsoft Academic Search

    Robert U. Ayres

    This paper reviews the potential for energy savings by recycling packaging materials (including paper, glass and plastics), scrap metals, and byproduct energy streams from electric power generation and industrial processes, etc. Technical difficulties, largely due to the presence of hard-to-remove contaminants limit the potential for recycling packaging materials and metals, although there is some potential that could be realized through

  1. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  2. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  3. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  4. Copper Recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  5. Information scraps : understanding and design

    E-print Network

    Bernstein, Michael (Michael Scott)

    2008-01-01

    In this thesis I investigate information scraps - personal information whose content has been scribbled on Post-it notes, scrawled on the corners of sheets of paper, stuck in our pockets, sent in e-mail messages to ourselves, ...

  6. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect

    Kooda, Kevin Evan; Mc Cray, Casey William; Aitken, Darren William; Galloway, Kelly

    2003-02-01

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  7. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect

    Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

    2003-02-26

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  8. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  9. The recycle of wrought aluminum alloys in Europe

    Microsoft Academic Search

    V. Kevorkijan

    2002-01-01

    Increasing demand for aluminum-based products and globalization of the aluminum industry have contributed significantly to\\u000a the higher consumption of aluminum scrap for re-production of wrought aluminum alloys. The recycling of wrought auminum alloys\\u000a not only fills market demand, but does so economically. It is a well-known fact that recycling wrought aluminum alloys from\\u000a collected scrap consumes 15 times less energy

  10. Lead decontamination and recycling under RCRA regulatory implications

    SciTech Connect

    Moore-Mayne, S.; Romero, M.; Grover, H.; Harnett, S.L.

    1996-06-01

    Radioactively contamination lead is a significant scrap metal recycling opportunity for the Department of Energy (DOE) facilities. Unfortunately, the regulatory maze to determine exactly how to manage scrap metal before it goes to the market may deter facilities from pursuing this opportunity. This paper presents an analysis of the regulatory issues, provides some management guidelines and identifies recycling and reuse opportunities within the DOE complex and the commercial markets.

  11. Protocols for implementing DOE authorized release of radioactive scrap metals.

    PubMed

    Chen, S Y; Arnish, J; Kamboj, S; Nieves, L A

    1999-11-01

    A process to implement the U.S. Department of Energy's (DOE) policy for authorized release of radioactive materials from DOE facilities is provided in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material, published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. A computerized management tool--P2Pro(RSM)--has been developed to aid in carrying out the release process for radioactive metals. It contains protocols for the authorized release process and relevant information to facilitate the evaluation of scrap metals for reuse and recycle. The P2Pro(RSM) protocols provide DOE and its contractors with an effective, user-friendly tool for managing authorized release activities P2Pro(RSM) is designed to be used in the Windows environment. The protocols incorporate a relational database coupled with a graphic-user interface to guide the user through the appropriate steps so authorized release limits can be developed. With the information provided in the database, an as-low-as-reasonably-achievable (ALARA) optimization process can be easily set up and run for up to 10 alternatives for disposition of radioactive scrap metals. The results of the ALARA optimization process can be printed in a series of reports and submitted as part of the application for the authorized release of the radioactive scrap metals. PMID:10527156

  12. Cadmium recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 metric tons, and an estimated 285 tons was recovered. Recycling efficiency was estimated to be about 15 percent.

  13. Cadmium Recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 t, and an estimated 285 t was recovered. Recycling efficiency was estimated to be about 15 percent.

  14. Optimal scrap combination for steel production

    Microsoft Academic Search

    Klaus-P. Bernatzki; Michael R. Bussieck; Thomas Lindner; Marco E. Lübbecke

    1998-01-01

    In steel production, scrap metal is used for cool- ing the enormous quantity of heat produced by blowing oxy- gen on hot metal. Scrap differs in regard to the content of iron and of some tramp elements. The price of the scrap depends on these attributes. Each melting bath unit of steel has its own material constraints for the amount

  15. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2013-01-01 2013-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture...Tobacco (u.s. Type 21) § 29.2277 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  16. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2013-01-01 2013-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture...36, 37 and Foreign Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed...

  17. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2014-01-01 2014-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture...Type 31 and Foreign Type 93) § 29.3034 Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  18. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2012-01-01 2012-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture...Tobacco (u.s. Type 21) § 29.2277 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  19. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2013-01-01 2013-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture...Type 31 and Foreign Type 93) § 29.3034 Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  20. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2014-01-01 2014-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture...Tobacco (u.s. Type 21) § 29.2277 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  1. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2012-01-01 2012-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture...36, 37 and Foreign Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed...

  2. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2012-01-01 2012-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture...Type 31 and Foreign Type 93) § 29.3034 Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed...

  3. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2014-01-01 2014-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture...36, 37 and Foreign Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed...

  4. Removal of 106 Ru traces from NH 4 NO 3 effluent generated during recycling of sintered depleted uranium fuel pellets

    Microsoft Academic Search

    D. BanerjeeM; M. A. Rao; S. Chinnaesakki; P. K. Wattal

    Feasibility of using fixed bed column of conventional ion exchangers\\/sorbent and chemical precipitation based processes have\\u000a been examined for the effective removal of the very low levels of 106Ru activity from NH4NO3 effluent generated during wet processing of rejected sintered depleted uranium fuel pellets. Based on the results, a simple\\u000a process involving precipitation of cobalt sulphide along with ferric hydroxide

  5. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2002-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, the water, and the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium in the United States from extraction through its uses with particular emphasis on recycling. In 1998, the recycling efficiency for magnesium was estimated to be 33 percent--almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from die-casting operations. The principal source of old scrap was recycled aluminum beverage cans.

  6. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2001-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, in the water, and in the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium from extraction through its uses with particular emphasis on recycling. In 1998, the recycling rate for magnesium was estimated to be 33 percent?almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from diecasting operations. The principal source of old scrap was recycled aluminum beverage cans.

  7. Effective Technology for Recycling Metal. Proceedings of Two Special Workshops.

    ERIC Educational Resources Information Center

    National Association of Secondary Material Industries, Inc., New York, NY.

    The National Association of Secondary Material Industries (NASMI) and the Bureau of Mines have cooperated to sponsor two technically-oriented workshops related to the role of metals recycling and air pollution control technology. The proceedings of these workshops, "Effective Technology and Research for Scrap Metal Recycling" and "Air Pollution…

  8. Recycling light metals: Optimal thermal de-coating

    NASA Astrophysics Data System (ADS)

    Kvithyld, Anne; Meskers, C. E. M.; Gaal, Sean; Reuter, Markus; Engh, Thorvald Abel

    2008-08-01

    Thermal de-coating of painted and lacquered scrap is one of the new innovations developed for aluminum recycling. If implemented in all recycling and optimized as suggested in this article, recovery would be improved with considerable economic impact. Generally, contaminated scrap is difficult to recycle. Direct re-melting of coated scrap results in the generation of gaseous emissions, with increased metal oxidation, contamination, and salt flux usage. By thermal de-coating of the scrap these problems are avoided. Thermal de-coating followed by remelting of aluminum scrap is now common practice, while painted magnesium scrap is not currently de-coated and recycled. This article presents observations during heating of the contaminated light metals together with the mass loss, evolved gases, and residue after de-coating in order to give a general description of the de-coating process. It is argued that the main behavior during de-coating may be described as two distinct regimes—scission and combustion—regardless of metal substrate and coating. Monitoring the combustion regime should assure optimum de-coating.

  9. Scrap metals industry perspective on radioactive materials.

    PubMed

    Turner, Ray

    2006-11-01

    With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences. PMID:17033460

  10. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1990-05-15

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  11. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1987-07-30

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  12. Removal of copper from ferrous scrap

    DOEpatents

    Blander, Milton (12833 S. 82nd Ct., Palos Park, IL 60464); Sinha, Shome N. (5748 Drexel, 2A, Chicago, IL 60637)

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  13. Recovering precious metals from electronic scrap

    NASA Astrophysics Data System (ADS)

    Hoffmann, James E.

    1992-07-01

    This article characterizes electronic scrap in terms of origin and composition and describes the steps in preliminary processing: sorting, calcination, combustion, shredding, and sampling. Hydrometallurgical and pyrometallurgical process technologies for the concentration and recovery of precious-metals values in scrap are reviewed, and some downstream processing options are outlined. The article concludes with some caveats concerning the risky but potentially profitable business of recovery of precious metals from electronic scrap.

  14. INTERIOR VIEW WITH SCRAP HAULER DUMPING SCRAP (C. 100,000 TONS) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH SCRAP HAULER DUMPING SCRAP (C. 100,000 TONS) INTO Q-BOP FURNACE. SCRAP HAULER IS GREGORY JACKS AND FURNACEMAN, VINCENT MOREL. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  15. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China.

    PubMed

    Liang, Sai; Zhang, Tianzhu

    2012-01-01

    Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. PMID:21959140

  16. 32 CFR 644.522 - Clearance of military scrap.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2013-07-01 true Clearance of military scrap. 644.522 Section 644.522 National...Land and Improvements § 644.522 Clearance of military scrap. Military scrap can contain or be contaminated...

  17. What do we know about metal recycling rates?

    USGS Publications Warehouse

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  18. Recycling Trends in the Plastics Manufacturing and Recycling Companies in Malaysia

    NASA Astrophysics Data System (ADS)

    Wahab, D. A.; Abidin, A.; Azhari, C. H.

    This study presents the findings from a study on the consumption of recycled materials and recycling practices in the plastics manufacturing industry and recycling companies in Malaysia. The findings were obtained from a survey conducted in twenty plastic manufacturing companies and detailed case studies in three recycling companies. The survey conducted in the plastic manufacturing companies` shows that the consumption rate for poly-olefins (PP and PE) is the highest among the resin types and the industrial sector that consumes the most plastic materials is the electrical and electronics sector. The consumption of recycled materials is high among the local manufacturing companies (80%) which are largely due to cost savings; about 20% of these companies conducted in-house recycling. The study has also shown that the medium scale industry consumes the most recycled materials as compared to the large and small scale industry. The rate of disposal for plastic materials in the local industry is approximately 5%. The detailed case studies conducted in the recycling companies have successfully identified the main processes involved in plastic recycling namely manual sorting, cleaning, drying, meshing/pelletising and packaging. These recycling companies obtained recycled materials from various sources including industrial scrap, dumping sites, local producers as well as imported sources. Pricing of recycled materials were based on classification according to grade and quality of the recycled materials. The study has reflected the extent of in-house recycling trends in the local plastic manufacturing companies and their dependency on the supply from the local recycling companies.

  19. Progress in caustic dezincing of galvanized scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A. [Metal Recovery Technologies, Inc., East Chicago, IN (United States)

    1997-08-01

    In response to the worldwide increase in consumption of galvanized steel for automobiles in the last fifteen years, and the cost of environmental compliance associated with remelting larger quantities of galvanized steel scrap, processes are being developed to separate and recover the steel and zinc from galvanized ferrous scrap. In the process discussed here, zinc is dissolved from the scrap in hot caustic and is recovered electrolytically as dendritic powder. The dezinced ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. Pilot testing has been conducted in Hamilton, Ontario for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant in East Chicago, Indiana, now in its second generation, has dezinced in a continuous process mode about 1,800 tonnes of loose clips and shredded stamping plant scrap; this scrap typically has residual zinc below 0.05% and sodium dragout below 0.001%. This paper reviews caustic dezincing pilot plant performance and economics.

  20. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations...Types 11, 12, 13, 14 and Foreign Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco....

  1. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations...Types 11, 12, 13, 14 and Foreign Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco....

  2. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations...Types 11, 12, 13, 14 and Foreign Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco....

  3. Metal recycling experience at Los Alamos National Laboratory. Reuse, release, and recycle of metals from radiological control areas``

    SciTech Connect

    Gogol, S.

    1997-11-01

    Approximately 15% of the Low-Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and the modification of existing facilities. To reduce this waste stream, Department of Energy Headquarters, EM-77 Office, sponsored the Reuse, Recycle, and Release of Metals from Radiological Control Areas High Return on Investment (ROI) Project to implement recycle, reuse, and release of scrap metal at the laboratory. The goal of this project was to develop cost effective alternatives to LLW disposal of scrap metal and to avoid the disposal of 2,400 m{sup 3} of scrap metal. The ROI for this project was estimated at 948%. The ROI project was funded in March 1996 and is scheduled for completion by October 1997. At completion, a total of 2,400 m{sup 3} of LLW avoidance will have been accomplished and a facility to continue recycling activities will be operational. This paper will present the approach used to develop effective alternatives for scrap metal at Los Alamos and then discuss the tasks identified in the approach in detail. Current scrap metal inventory, waste projections, alternatives to LLW disposal, regulatory guidance, and efforts to institutionalize the alternatives to LLW disposal will be discussed in detail.

  4. MATHEMATICAL MODEL OF MOVING COKE BED FOR REDUCTION AND MELTING OF OXIDIZED IRON-SCRAP

    Microsoft Academic Search

    Xinghe Zhang; Hiroshi Nogami; Reijiro Takahashi; Jun-ichiro Yagi

    The reduction and melting of oxidized iron-scrap briquettes containing coke breeze in a moving bed reactor has been proposed from the viewpoints of energy saving, recycling and environmental protection. The aim of this study is to investigate the effect of the briquette on operation of the reduction-melting furnace. For this purpose, a total mathematical model of the reduction-melting furnace has

  5. Using Established Regulations to Recycle Contaminated Metals

    SciTech Connect

    Loewen, Eric Paul

    2000-09-01

    DOE restoration projects require acceptable standards for processing volumetrically contaminated metals: • NRC has no regulations addressing recycling of scrap metal containing residual volumetric radioactivity. • DOE is currently restricting outside radioactive scrap metal sales; however, previous Fernald and Ohio State clean-ups have released metals with measurable levels of radioactivity into the open market. • Public sensitivity to the subject of non-governmental disposal of materials with residual radioactivity was heightened with the Below Regulatory Concern (BRC) issue. There are no clear guidelines for free release of volumetrically contaminated material.

  6. Carbon reduction in uranium alloys utilizing hafnium additions

    Microsoft Academic Search

    G. Mackiewicz-Ludtka; W. C. Pullen; C. A. Henderson; W. Chu; M. W. Wendel

    1990-01-01

    With increasing environmental concerns regarding the handling and storage of uranium waste, recycling previously used material is becoming exceedingly more important. Carbon is one of the primary trace impurities that builds up in uranium with repeated use. The goal of this study is to reduce carbon in recycled uranium during the casting process to carbon levels associated with virgin uranium

  7. Welding of a powder metallurgy uranium alloy

    Microsoft Academic Search

    R. K. Holbert; M. W. Doughty; G. M. Alexander-Morrison

    1989-01-01

    The interest at the Oak Ridge Y-12 Plant in powder metallurgy (P\\/M) uranium parts is due to the potential cost savings in the fabrication of the material, to achieving a more homogeneous product, and to the reduction of uranium scrap. The joining of P\\/M uranium-6 wt-% niobium (U-6Nb) alloys by the electron beam (EB) welding process results in weld porosity.

  8. 7th Annual waste reduction, prevention, recycling and composting symposium proceedings

    SciTech Connect

    NONE

    1996-08-01

    Technical papers from the Waste Reduction, Prevention, Recycling and Composting Symposium are presented. 21 of the 22 papers were selected for inclusion in the database. The majority of the papers focus on municipal wastes produced by the business sector; however, wastes generated in the residential and industrial sectors are also included. Topics addressed include workplace recycling, scrap tire and used oil recycling, employee education, construction and demolition waste reuse, composting, waste reduction, and market development for recycled products.

  9. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  10. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups...8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed...of loose and tangled portions of tobacco leaves, floor sweepings, and all other...

  11. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups...8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed...of loose and tangled portions of tobacco leaves, floor sweepings, and all other...

  12. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups...8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed...of loose and tangled portions of tobacco leaves, floor sweepings, and all other...

  13. Process for removing and detoxifying cadmium from scrap metal including mixed waste

    SciTech Connect

    Kronberg, J.W.

    1994-07-01

    Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries.

  14. Depleted uranium management alternatives

    SciTech Connect

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  15. High Purity Germanium Gamma-PHA Assay of U-Al Alloy in Scrap Cans

    SciTech Connect

    Salaymeh, S.R.

    2002-05-31

    The Measurement Technology Department of SRTC was requested by the Facilities Disposition Division to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium-aluminum alloy (U-Al) fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The project included the dismantling and removal of all highly enriched uranium (HEU) to the extent practical. A large number of scrap cans was used by the facility to store HEU chips and filings for reprocessing. The scrap cans were designed to be critically safe, which made them extremely useful during the deactivation of the facility. These cans provided a geometrically safe container for placement of the residue, filings, chips, and sweepings of HEU remaining in the building and a fixed geometry for assay of UEU content in them. Since the results of the assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control and Accountability (MC and A), and to meet Criticality Safety Controls, and Waste Management purposes, it was important to obtain the best HEU gram value possible. We set up an assay station that consisted of a turntable and a portable HPGe gamma pulse height analysis system (Gamma-PHA). It was especially suited to obtain a transmission-corrected assay of 108 scrap cans in a fixed geometry that had contents of HEU ranging from less than 0.1 g up to 88 g. This paper includes a description of two efficiency calibration configurations to obtain an assay of 235U content in each scrap can. A description of the quality control checks is included as well.

  16. Titanium recycling in the United States in 2004, chap. Y of Sibley, S.F., ed., Flow studies for recycling metal commodities in the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2010-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the titanium metal fraction of the titanium economy, which generates and uses titanium metal scrap in its operations. Data for 2004 were selected to demonstrate the titanium flows associated with these operations. This report includes a description of titanium metal supply and demand in the United States to illustrate the extent of titanium recycling and to identify recycling trends. In 2004, U.S. apparent consumption of titanium metal (contained in various titanium-bearing products) was 45,000 metric tons (t) of titanium, which was distributed as follows: 25,000 t of titanium recovered as new scrap, 9,000 t of titanium as titanium metal and titanium alloy products delivered to the U.S. titanium products reservoir, 7,000 t of titanium consumed by steelmaking and other industries, and 4,000 t of titanium contained in unwrought and wrought products exported. Titanium recycling is concentrated within the titanium metals sector of the total titanium market. The titanium market is otherwise dominated by pigment (titanium oxide) products, which generate dissipative losses instead of recyclable scrap. In 2004, scrap (predominantly new scrap) was the source of roughly 54 percent of the titanium metal content of U.S.-produced titanium metal products.

  17. THE ROLE OF HYDROMETALLURGY IN THE RECYCLING OF ZINC, COPPER AND LEAD

    Microsoft Academic Search

    Metals recycling remains an important industrial activity for both economic and environmental reasons, and the role of hydrometallurgical processing in the recycling of zinc, copper and lead is discussed. Hydrometallurgical processes are being developed to leach zinc from galvanized steel scrap prior to remelting, and both alkaline and acid leaching technologies are being evaluated to eliminate zinc from electric arc

  18. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    Microsoft Academic Search

    S. J. Bossart; J. Hyde

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D&D of DOE`s facilities. If successfully developed, these superior technologies

  19. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    Microsoft Academic Search

    S. J. Bossart; J. Hyde

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D D of DOE's facilities. If successfully developed, these superior

  20. Study of Recycled and Virgin Compounded Metal Injection Moulded Feedstock for Stainless Steel 630

    Microsoft Academic Search

    Anchalee Manonukul; Warakij Likityingwara; Phataraporn Rungkiatnawin; Nattapol Muenya; Suttha Amoranan; Witoo Kittinantapol; Suphachai Surapunt

    2007-01-01

    Fine rounded powders preferable for metal injection moulding (MIM) are expensive. This forces MIM makers to recycle green scraps, for example, the runner system and defected green parts. This is particularly necessary for injection moulded small parts where parts are only a small portion of the injection short size. There is very little published data, although recycling feedstock has been

  1. An Environmentally Benign Process Model Development for Printed Circuit Board Recycling

    Microsoft Academic Search

    Hong-Chao Zhang; Xi Ouyang; Alex Abadi

    2006-01-01

    Delaminating and separation of obsolete printed circuit board (PCB) is essential for its recycling. This paper presents an alternative environmentally benign process method for PCB recycling. Applying the solvent system, e.g. carbon dioxide and water under certain pressure and temperature, the PCB scraps could be delaminated easily. The separation of PCB into copper foil, glass fiber and polymer will be

  2. Experimental studies on cryogenic recycling of printed circuit board

    Microsoft Academic Search

    Chris Y. Yuan; Hong C. Zhang; Gregory McKenna; Carol Korzeniewski; Jianzhi Li

    2007-01-01

    Printed circuit board (PCB) recycling is an important challenge for today’s industry. This paper presents results from a study\\u000a of cryogenic decomposition as a potential alternative recycling method for obsolete printed circuit board scraps. In this\\u000a method liquid nitrogen is employed as a cryogen to form an environment as low as 77 K for PCB treatment. In order to test\\u000a the

  3. World War II and the birth of modern recycling

    SciTech Connect

    Woods, R.; Peterson, C.

    1995-04-01

    The concept of reusing waste materials had been around for many decades before the war, but few municipalities collected recyclables in an organized, controlled fashion. Though today`s thriving recycling industry seems brand new, its roots run far deeper to a time when both industry and citizens were called upon to help save the world. With so many goods rationed during World War II, hundreds of collectors would buy scrap metal and textiles and resell them back to mills.

  4. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.

    PubMed

    Liang, Sai; Zhang, Tianzhu; Xu, Yijian

    2012-03-01

    Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. PMID:22100716

  5. Chemical and mechanical recycling of shredder fluff

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

    1992-12-01

    Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

  6. Chemical and mechanical recycling of shredder fluff

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

    1992-01-01

    Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

  7. Recycling entire DOE facilities: The national conversion pilot project

    Microsoft Academic Search

    D. R. Floyd; D. E. Nix

    1997-01-01

    The National Conversion Pilot Project is being conducted at the U.S. DOE Rocky Flats Environmental Technology Site (RFETS) under a cooperative agreement between the DOE and Manufacturing Sciences Corporation (MSC) of Oak Ridge, Tennessee. MSC approached DOE to see if four buildings, metalworking facilities, could be used for recycling radioactively contaminate scrap metal. The resulting issues were then addressed for

  8. Silver Recycling in the United States in 2000

    USGS Publications Warehouse

    Hilliard, Henry E.

    2003-01-01

    In 2000, the global silver supply deficit (the difference between mine and scrap supply and silver demand) was more than 3,000 metric tons. U.S. silver demand for photographic applications alone was nearly equal to annual U.S. silver production. Until 1968, the U.S. silver deficit was filled by withdrawals from the U.S. Treasury reserves. In 2000, the deficit was filled by destocking, imports, and recycling. Photographic wastes, spent catalysts, and electronic scrap are the major sources of materials for silver recycling. Nearly 1,800 tons of silver contained in these materials were available for recycling in 2000. Other recyclable silver-bearing materials include dental alloys, jewelry, and silverware. In 2000, an estimated 1,700 tons of silver were recovered from secondary sources in the United States. The U.S. recycling efficiency for old scrap was calculated to have been 97 percent in 2000; the recycling rate was estimated to be 32 percent.

  9. Silver recycling in the United States in 2000

    USGS Publications Warehouse

    Hilliard, Henry E.

    2003-01-01

    In 2000, the global silver supply deficit (the difference between mine and scrap supply and silver demand) was more than 3,000 metric tons. U.S. silver demand for photographic applications alone was nearly equal to annual U.S. silver production. Until 1968, the U.S. silver deficit was filled by withdrawals from the U.S. Treasury reserves. In 2000, the deficit was filled by destocking, imports, and recycling. Photographic wastes, spent catalysts, and electronic scrap are the major sources of materials for silver recycling. Nearly 1,800 metric tons of silver contained in these materials were available for recycling in 2000. Other recyclable silver-bearing materials include dental alloys, jewelry, and silverware. In 2000, an estimated 1,700 tons of silver were recovered from secondary sources in the United States. The U.S. recycling efficiency for old scrap was calculated to have been 97 percent in 2000; the recycling rate was estimated to be 32 percent.

  10. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    SciTech Connect

    Liang Sai, E-mail: liangsai09@gmail.com [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

  11. Electroextraction of boron from boron carbide scrap

    SciTech Connect

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ? 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  12. Reprocessing yields and material throughput: HTGR recycle demonstration facility

    Microsoft Academic Search

    N. Holder; L. Abraham

    1977-01-01

    Recovery and reuse of residual U-235 and bred U-233 from the HTGR thorium-uranium fuel cycle will contribute significantly to HTGR fuel cycle economics and to uranium resource conservation. The Thorium Utilization National Program Plan for HTGR Fuel Recycle Development includes the demonstration, on a production scale, of reprocessing and refabrication processes in an HTGR Recycle Demonstration Facility (HRDF). This report

  13. Design and Optimization of Photovoltaics Recycling Infrastructure

    SciTech Connect

    Choi, J.K.; Fthenakis, V.

    2010-10-01

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  14. Design and optimization of photovoltaics recycling infrastructure.

    PubMed

    Choi, Jun-Ki; Fthenakis, Vasilis

    2010-11-15

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States. PMID:20886824

  15. Recycling pole type, oil-filled transformers--at a profit

    Microsoft Academic Search

    Fenwick

    1977-01-01

    For 3¹\\/â years the Arizona Public Utility Service Co. has been recycling scrap oil-filled distribution transformers by removing the original copper windings and rewinding with aluminum to produce a lower-rated transformer. These recycled aluminum-wound transformers cost less than recycled copper-wound units, have a greater cooling surface and, therefore, better overload capacity, and a lower impedance. (LCL)

  16. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy.

    PubMed

    Veit, Hugo Marcelo; Bernardes, Andréa Moura; Ferreira, Jane Zoppas; Tenório, Jorge Alberto Soares; de Fraga Malfatti, Célia

    2006-10-11

    The constant growth in generation of solid wastes stimulates studies of recycling processes. The electronic scrap is part of this universe of obsolete and/or defective materials that need to be disposed of more appropriately, or then recycled. In this work, printed circuit boards, that are part of electronic scrap and are found in almost all electro-electronic equipments, were studied. Printed circuit boards were collected in obsolete or defective personal computers that are the largest source of this kind of waste. Printed circuit boards are composed of different materials such as polymers, ceramics and metals, which makes the process more difficult. However, the presence of metals, such as copper and precious metals encourage recycling studies. Also the presence of heavy metals, as Pb and Cd turns this scrap into dangerous residues. This demonstrates the need to search for solutions of this kind of residue, in order to have it disposed in a proper way, without harming the environment. At the first stage of this work, mechanical processing was used, as comminution followed by size, magnetic and electrostatic separation. By this process it was possible to obtain a concentrated fraction in metals (mainly Cu, Pb and Sn) and another fraction containing polymers and ceramics. The copper content reached more than 50% in mass in most of the conductive fractions and significant content of Pb and Sn. At the second stage, the fraction concentrated in metals was dissolved with acids and treated in an electrochemical process in order to recover the metals separately, especially copper. The results demonstrate the technical viability of recovering copper using mechanical processing followed by an electrometallurgical technique. The copper content in solution decayed quickly in all the experiments and the copper obtained by electrowinning is above 98% in most of the tests. PMID:16757116

  17. Taiwan`s experience with municipal waste recycling

    SciTech Connect

    Lee, C.H. [Da-Yeh Univ., Chang-Hwa (Taiwan, Province of China)

    1998-12-31

    Currently, each person on the average produces 1.15 kg of the municipal waste per day and a total of 9 million metric tons were generated annually in Taiwan. The disposal of such a huge amount of waste presents tremendous challenge for the island due to the scarcity of landfills and incineration facilities available locally. EPA of Taiwan, R.O.C. thus takes an active role in promoting waste recycling to reduce the garbage produced in municipalities. In order to efficiently utilize the government`s human and financial resources used in recycling, started from January 31, 1989, EPA has mandated the producer responsibility recycling program for several designated post-consumer products such as PET, PVC bottles, scrap tires, scrap motor vehicles, etc. Producer responsibility recycling program specifies that the manufacturers, importers and sellers of these designated products have the responsibility to retrieve their products and recycle them properly. Several negative effects have been encountered while the implementation of this producer responsibility recycling program in Taiwan which resulted in a modification of this recycling program recently. This paper presents the encountered experiences on the implementation of municipal waste recycling program in Taiwan.

  18. RADIATION PROTECTION STANDARDS FOR SCRAP METAL

    E-print Network

    under: Contract Numbers 68-D4-0102 and 68-D2-0155 June 1997 #12;Preliminary Draft: June 13, 1997 1 to support the Agency's development of preliminary draft regulations on release standards for scrap metal from nuclear facilities. Upon their completion, EPA plans to release the preliminary draft regulations

  19. Radioactive scrap metal decontamination technology assessment report

    Microsoft Academic Search

    J. M. Buckentin; B. K. Damkroger; M. E. Schlienger

    1996-01-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true

  20. Selenium Recycling in the United States in 2004

    USGS Publications Warehouse

    George, Micheal W.; Wagner, Lorie A.

    2009-01-01

    The vast majority of selenium consumption in the United States is in dissipative uses, such as alloys, animal feeds, fertilizers, glass decolorizer, and pigments. The nondissipative use as a photoreceptor for xerographic copiers is declining. As a result of a lack of a substantial supply of selenium-containing scrap, there are no longer selenium recycling facilities in the United States. Selenium-containing materials collected for recycling, primarily selenium-containing photocopier drums, are exported for processing in other countries. Of the estimated 350 metric tons (t) of selenium products that went to the U.S. market in 2004, an estimated 300 t went to dissipative uses. An estimated 4 t was recovered from old scrap and exported for recycling.

  1. RECYCLING TODAY

    NSDL National Science Digital Library

    Miss Smith

    2010-12-03

    We have probably heard of recycling but what is it really and why is it so improtant to do? Please answer the questions below as well as visiting the different websites to explore what recycling really is. Form groups of 4 and explore the following websites as well as answer the questions which follow. The first website is of Recycle City where you will be exploring the City and how they recycle. Recyle City Why Recycling is Important Now please answer the following questions on paper. 1. What are the 3 R's? Explain in further ...

  2. New developments in the processing of the non ferrous metal fraction of car scrap

    SciTech Connect

    Dalmijn, W.L.; Houwelingen, J.A. van [Delft Univ. of Technology (Netherlands). Faculty of Mining and Petroleum Engineering

    1995-12-31

    The processing of scrap and scrap cars starts with size reduction by a hammermill, or shredder. After the liberation the magnetic fraction is removed. The remaining nonmagnetic fraction mixed with other materials is screened and each fraction is processed separately. The increased use of plastic has a negative effect on the recovery of metals and waste production. At Huron Valley, Belleville Michigan, USA, the non-ferrous fraction from 5 million obsolete cars per year, containing 200,000 tons of non-ferrous metal, is processed. Aluminium is recovered with a heavy medium separation process and concentrated with eddy current separators. The remaining heavy non-ferrous fraction is concentrated by a new combination of eddy current separation and image processing. After this separation process the zinc fraction is melted and refined and the copper, brass, stainless steel and other high-quality concentrates are sold to the secondary industries. The recycling of car scrap has become an important source of metals and materials for the secondary materials processing industry.

  3. Looking Northwest at Uranium Dryers Along North Side of Green ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Uranium Dryers Along North Side of Green Room in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  4. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    SciTech Connect

    Jody, B. J.; Daniels, E. J.; Energy Systems

    2007-03-21

    Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation with the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC), is working to develop technology for recycling materials from shredder residue. Several other organizations worldwide are also working on developing technology for recycling shredder residue. Without a commercially viable shredder industry, our nation may face greater environmental challenges and a decreased supply of quality scrap and be forced to turn to primary ores for the production of finished metals. This document presents a review of the state of the art in shredder residue recycling. Available technologies and emerging technologies for the recycling of materials from shredder residue are discussed.

  5. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, James W. (Aiken, SC)

    1995-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  6. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1994-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to exposure additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  7. Ferrous scrap preheating system: Phase 3, Final report

    SciTech Connect

    NONE

    1996-05-13

    Utilizing electric arc smelters for making steel has allowed many smaller manufacturers to compete with large integrated mills. The electric arc furnace melts scrap to produce steel. The subject of this report is a Scrap Preheater that heats and cleans the arc furnace scrap using its own low cost natural gas energy supply. Scrap preheating can increase the capacity of a given arc furnace and reduce the operating costs. In addition it reduces the air emissions and allows utilization of lower cost scrap. The program was divided into three phases and was to culminate with an operating prototype at a demonstration host site steel mill. A host site agreement was executed and critical components were tested. The prototype scrap preheater was completely designed. It was sized to preheat 30 tons of scrap in a scrap bucket in 30 minutes. Energy is supplied by a rich fume reactor that completely oxidizes organics from the scrap and auxiliary natural gas. There were several delays and changes in the project that resulted in the host site requesting to withdraw from the program. Extensive efforts were made to secure a replacement host site. However, when another host could not be found, the project was terminated.

  8. Major issues associated with DOE commercial recycling initiatives

    SciTech Connect

    Motl, G.P.; Burns, D.D. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Rast, D.M. [USDOE Fernald Field Office, OH (United States)

    1994-07-27

    Major initiatives are underway within DOE to recycle large volumes of scrap material generated during cleanup of the DOE Weapons Complex. These recycling initiatives are driven not only by the desire to conserve natural resources, but also by the recognition that shallow level burial is not a politically acceptable option. The Fernald facility is in the vanguard of a number of major DOE recycling efforts. These early efforts have brought issues to light that can have a major impact on the ability of Fernald and other major DOE sites to expand recycling efforts in the future. Some of these issues are; secondary waste deposition, title to material and radioactive contaminants, mixed waste generated during recycling, special nuclear material possession limits, cost benefit, transportation of waste to processing facilities, release criteria, and uses for beneficially reused products.

  9. Solid waste recycling activities at the Kansas City Plant

    SciTech Connect

    Brown, D.L.; Huyett, J.D.; Westlake, N.M.

    1992-02-01

    The DCP has as Proactive Solid Waste Recycling Program. Historical activities have consisted of extensive Precious and Scarp Metal Recovery through dedicated efforts of the Excess and Reclamation department. This is the only organization at the KCP that pays for itself'' through utilization of manpower to recover reclaimable material from the teardown of scrap parts, equipment, and machinery. The KCP also initiated an expansion of this program through increased efforts to recovery recyclable materials from normal plant trash. Efforts to date have resulted in the establishment of waste paper and cafeteria grease recycling programs. Another initiative nearing fruition is to recycle waste styrofoam. Activities are also underway to establish future programs to recycle spent carbon, other plastic resins, glass and cardboard.

  10. Solid waste recycling activities at the Kansas City Plant

    SciTech Connect

    Brown, D.L.; Huyett, J.D.; Westlake, N.M.

    1992-02-01

    The DCP has as Proactive Solid Waste Recycling Program. Historical activities have consisted of extensive Precious and Scarp Metal Recovery through dedicated efforts of the Excess and Reclamation department. This is the only organization at the KCP that ``pays for itself`` through utilization of manpower to recover reclaimable material from the teardown of scrap parts, equipment, and machinery. The KCP also initiated an expansion of this program through increased efforts to recovery recyclable materials from normal plant trash. Efforts to date have resulted in the establishment of waste paper and cafeteria grease recycling programs. Another initiative nearing fruition is to recycle waste styrofoam. Activities are also underway to establish future programs to recycle spent carbon, other plastic resins, glass and cardboard.

  11. 41 CFR 109-27.5107 - Recovery of silver from used hypo solution and scrap film.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...Recovery of silver from used hypo solution and scrap film. 109-27.5107...Recovery of silver from used hypo solution and scrap film. The requirements...recovery of silver from used hypo solution and scrap film are contained...

  12. 41 CFR 109-27.5107 - Recovery of silver from used hypo solution and scrap film.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Recovery of silver from used hypo solution and scrap film. 109-27.5107...Recovery of silver from used hypo solution and scrap film. The requirements...recovery of silver from used hypo solution and scrap film are contained...

  13. The role of automobiles for the future of aluminum recycling.

    PubMed

    Modaresi, Roja; Müller, Daniel B

    2012-08-21

    To reach required product qualities with lowest costs, aluminum postconsumer scrap is currently recycled using strategies of downgrading and dilution, due to difficulties in refining. These strategies depend on a continuous and fast growth of the bottom reservoir of the aluminum downgrading cascade, which is formed by secondary castings, mainly used in automotive applications. A dynamic material flow model for the global vehicle system was developed to assess the likelihood, timing, and extent of a potential scrap surplus. The results demonstrate that a continuation of the above-mentioned strategies will lead to a nonrecyclable scrap surplus by around 2018 ± 5 if no additional measures are taken. The surplus could grow to reach a level of 0.4-2 kg/cap/yr in 2050, corresponding to a loss of energy saving potential of 43-240 TWh/yr electricity. Various intervention options for avoiding scrap surplus are discussed. Effective strategies need to include an immediate and rapid penetration of dramatically improved scrap sorting technologies for end-of-life vehicles and other aluminum applications. PMID:22816552

  14. A Fundamental Metric for Metal Recycling Applied to Coated Magnesium

    NASA Astrophysics Data System (ADS)

    Meskers, C. E. M.; Reuter, M. A.; Boin, U.; Kvithyld, A.

    2008-06-01

    A fundamental metric for the assessment of the recyclability and, hence, the sustainability of coated magnesium scrap is presented; this metric combines kinetics and thermodynamics. The recycling process, consisting of thermal decoating and remelting, was studied by thermogravimetry and differential thermal analysis (TG/DTA) experiments and thermodynamic simulations. Decoating phenomena are interpreted using kinetic analysis, applying existing reaction models. The derived kinetic model parameters ln A and E a /( RT p ) are used to characterize the decoating process. The impact of inorganic coating components on remelting is quantified using exergy. Oxidation and entrapment losses, quality losses, and material resource depletion caused by the inorganic components are expressed in exergy units and combined into the single parameter {mathcal{R}} . Based on the results, the coating characteristics favorable for recycling are derived. The obtained metric is a three-dimensional (3 D) combination of ln A, E a /( RT p ), and {mathcal{R}} , which represent the decoating velocity, the ease of decoating, and the impact of coating materials on the remelting process, respectively. The metric, therefore, directly links coating characteristics, coating design, and product design with process technology and recyclability, enabling the ranking of coating alternatives in terms of their respective recyclability. Therefore, the key idea of this article is to use fundamental metallurgical theory to express the recyclability of postconsumer scrap in a unique combination of parameters. This should pave the way for ranking the sustainability of different materials.

  15. Ideas: Recycling.

    ERIC Educational Resources Information Center

    Chessin, Debby A.; And Others

    1994-01-01

    Presents classroom ideas focusing on connections among mathematics, concern for the environment, and conservation of natural resources, including decomposition, water conservation, packaging materials, use of manufactured cans, and recycling. Includes reproducible student worksheets. (MKR)

  16. Recycle City

    NSDL National Science Digital Library

    Recycling made fun. The Environmental Protection Agency's Recycle City Web site offers students an interactive way to learn how recycling can affect their environment. Users can click any part of the cartoon drawing of the city to learn about that particular building or site and what can be done to decrease waste. The site also contains a more involved exercise called the Dumptown game, where visitors click on City Hall to view various recycling programs and choose the program(s) the city will implement. Once implemented, that activity can be seen taking place in Dumptown. Although the Dumptown exercise may require the help of a teacher to navigate for younger students, both exercises are excellent for K-12 teachers and students.

  17. Extreme Recycling

    E-print Network

    Hacker, Randi

    2009-01-14

    Broadcast Transcript: Singing the recycling blues because you have to separate your chipboard from your newspaper, your steel from your aluminum, your #1 from your #2 plastic? Pantywaists! The residents of Kamikatsu, Japan have no fewer than 34...

  18. Recycled Towers

    NSDL National Science Digital Library

    Integrated Teaching and Learning Program,

    Students learn about material reuse by designing and building the strongest and tallest towers they can, using only recycled materials. They follow design constraints and build their towers to withstand earthquake and high wind simulations.

  19. Potential radioactive scrap metal quantities from nuclear power plants worldwide

    Microsoft Academic Search

    L. A. Nieves; R. W. Tilbrook

    1996-01-01

    Approximately 12 million tons of scrap metals are likely to be generated worldwide during the next 50 years from decommissioning and dismantling nuclear power plants. A large portion of this material will be only slightly contaminated it at all, and, it it is releasable, it would have a scrap value of billions of dollars. Disposition of the metal is complicated

  20. Batteries: Disposal, recycling and recovery. (Latest citations from Pollution abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the environmental problems caused by discarded batteries. Citations examine improved collection methods which could enable more batteries to be recycled; recovery of toxic substances such as lead, cadmium, and mercury from scrap batteries; and design of batteries which contain little or no heavy metals. The remediation of contaminated soils, and legislation requiring safe battery disposal or recycling are discussed. (Contains a minimum of 58 citations and includes a subject term index and title list.)

  1. Batteries: Disposal, recycling and recovery. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    NONE

    1995-09-01

    The bibliography contains citations concerning the environmental problems caused by discarded batteries. Citations examine improved collection methods which could enable more batteries to be recycled; recovery of toxic substances such as lead, cadmium, and mercury from scrap batteries; and design of batteries which contain little or no heavy metals. The remediation of contaminated soils, and legislation requiring safe battery disposal or recycling are discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Batteries: Disposal, recycling and recovery. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    NONE

    1996-10-01

    The bibliography contains citations concerning the environmental problems caused by discarded batteries. Citations examine improved collection methods which could enable more batteries to be recycled; recovery of toxic substances such as lead, cadmium, and mercury from scrap batteries; and design of batteries which contain little or no heavy metals. The remediation of contaminated soils, and legislation requiring safe battery disposal or recycling are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Batteries: Disposal, recycling and recovery. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the environmental problems caused by discarded batteries. Citations examine improved collection methods which could enable more batteries to be recycled; recovery of toxic substances such as lead, cadmium, and mercury from scrap batteries; and design of batteries which contain little or no heavy metals. The remediation of contaminated soils, and legislation requiring safe battery disposal or recycling are discussed. (Contains a minimum of 57 citations and includes a subject term index and title list.)

  4. Batteries: Disposal, recycling and recovery. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning the environmental problems caused by discarded batteries. Citations examine improved collection methods which could enable more batteries to be recycled; recovery of toxic substances such as lead, cadmium, and mercury from scrap batteries; and design of batteries which contain little or no heavy metals. The remediation of contaminated soils, and legislation requiring safe battery disposal or recycling are discussed. (Contains a minimum of 56 citations and includes a subject term index and title list.)

  5. Glass recycling

    SciTech Connect

    Dalmijn, W.L.; Houwelingen, J.A. van [Delft Univ. of Technology (Netherlands). Faculty of Mining and Petroleum Engineering

    1995-12-31

    Glass recycling in the Netherlands has grown from 10,000 to 300,000 tonnes per annum. The various advantages and problems of the glass cycle with reference to the state of the art in the Netherlands is given. Special attention is given to new technologies for the automated sorting of cullet with detection systems. In Western Europe the recycling of glass has become a success story. Because of this, the percentage of glass cullet used in glass furnaces has increased. To meet the quality demands of the glass industry, automated sorting for the removal of stones, non-ferrous metals and other impurities had to be developed and incorporated in glass recycling plants. In Holland, Germany and other countries, the amount of glass collected has reached a level that color-sorting becomes necessary to avoid market saturation with mixed cullet. Recently, two systems for color-sorting have been developed and tested for the separation of bottles and cullet in the size range of 20--50 mm. With the increased capacity of the new glass recycling plants, 120,000--200,000 tpy, the quality systems have also to be improved and automated. These quality control systems are based on the automated sorting technology developed earlier for the glass recycling plants. The data obtained are automatically processed and printed. The sampling system and its relation to the theory of Gy will be described. Results of both developments in glass recycling plants will be described.

  6. U.S. Department of Energy National Center of Excellence for Metals Recycle

    SciTech Connect

    Adams, V.; Bennett, M.; Bishop, L. [Dept. of Energy, Oak Ridge, TN (United States)] [and others

    1998-05-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums.

  7. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China

    Microsoft Academic Search

    Kui Huang; Jie Guo; Zhenming Xu

    2009-01-01

    From the use of renewable resources and environmental protection viewpoints, recycling of waste printed circuit boards (PCBs) receives wide concerns as the amounts of scrap PCBs increases dramatically. However, treatment for waste PCBs is a challenge due to the fact that PCBs are diverse and complex in terms of materials and components makeup as well as the original equipment's manufacturing

  8. Uranium Metal Dissolution in the Presence of Fluoride and Boron

    Microsoft Academic Search

    Pierce

    2004-01-01

    H-Area Operations is planning to process plutonium-contaminated (Pu-contaminated) uranium metal scrap in its efforts to de-inventory excess nuclear materials. Experimental work was performed with a piece of uranium sheet. The study had four primary objectives. First, gather reaction rate data at a range of processing conditions to compare against reaction rate data reported in earlier studies and recommend a flowsheet

  9. Vanadium recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  10. SCRAP BEING FED INTO HARRIS TGS200 BALER. BLOCKS OF COMPACTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SCRAP BEING FED INTO HARRIS TGS-200 BALER. BLOCKS OF COMPACTED SCRAP, CALLED "CABBAGES", ARE MELTED DOWN IN THE CAST SHOP,ALONG WITH RAW METAL AND ALLOYS. BALED SCRAP MELTS MORE RAPIDLY THAN LOOSE SCRAP. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  11. US mercury recyclers provide expanded process capabilities

    SciTech Connect

    Queneau, P.B.; Smith, L.A.; Royer, M.D.

    1994-02-01

    The article summarizes the treatment capabilities of U.S. plants recovering mercury from a variety of secondaries. There are six non-captive U.S. operations that accept various types of mercury-containing secondaries and wastes for mercury recovery, not including those firms specializing in processing spent lamps. Two of these operations, Adrow Chemical and D.F. Goldsmith Metal and Chemical, specialize in distillation of > or = 99% flowable mercury; non-radioactive mercury assaying > or = 99% Hg is not a listed waste. One operation, Quicksilver Recycling, operates a physical separation circuit followed by distillation; the company's feedstock is primarily electronic scrap. Two firms, Bethlehem Apparatus and Mercury Refining, accept a wide variety of mercury secondaries and wastes for retorting and/or distillation. The only domestic recycler of radioactive mercury materials is NSSI/Recovery Services.

  12. U.S. Department of Energy National Center of Excellence for Metals Recycle

    SciTech Connect

    Adams, V.; Bennett, M.; Bishop, L. [Dept. of Energy, Oak Ridge, TN (United States)] [and others

    1998-06-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. The Center has gotten off to a fast start. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-12 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer software, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, produce pollution prevention information and documentation, manage their materials inventory, produce independent government estimates, and implement sale/service contracts. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrap yard, and disposition of PCB-contaminated drums. Members of the Center look forward to working with all DOE sites, regulatory authorities, the private sector, and other stakeholders to achieve the metals recycle goals.

  13. Tire Recycling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  14. ScrapBook 1.0.3

    NSDL National Science Digital Library

    2006-01-01

    Scrapbooking has become quite popular as of late, though this particular application is geared towards the â??scrapbookingâ? of web pages, as opposed to the paper-glue-scissors method that has been enjoying a renaissance. With ScrapBook 1.0.3, users can save snippets of webpages, various elements of webpages (such as embedded files and such), and linked pages as well. After doing so, the entire collection can be organized the same way one would organize a collection of webpage bookmarks. Finally, users can also perform full text searches across the entire body of saved materials. This version is compatible with all computers running Windows 98 and newer and Firefox 1.0 to 1.5.0

  15. The Impact of Quality Control Scrap and Rework Reduction on Energy Use 

    E-print Network

    Otis, P. T.; Triantis, K. P.

    2015-01-01

    from scrap and rework reductions. Even modest reductions in scrap may be among the most effective approaches for reducing energy use. Cost data for materials and labor is also analyzed to illustrate that energy savings through quality control may.... APPROACHES FOR REDUCING INTERNAL SCRAP AND REWORK High scrap rates mean higher material costs and wasted labor producing parts that will not bring in revenue. The energy used to machine scrapped parts is completely wasted and further drives up costs...

  16. Endocytic recycling

    Microsoft Academic Search

    Frederick R. Maxfield; Timothy E. McGraw

    2004-01-01

    After endocytosis, most membrane proteins and lipids return to the cell surface, but some membrane components are delivered to late endosomes or the Golgi. We now understand that the pathways taken by internalized molecules that eventually recycle to the cell surface can be surprisingly complex and can involve a series of sorting events that occur in several organelles. The molecular

  17. Plutonium scrap recovery at Savannah River: Past, present, and vision of the future

    SciTech Connect

    Gray, L.W.; Gray, J.H.; Blancett, A.L.; Lower, M.W.; Rudisill, T.S.

    1988-01-01

    As a result of the changing requirement, plus environmental and regulatory commitments, SRP now has essentially completed its paradigm shift. SRP has been transformed from primarily a reprocessor of irradiated uranium targets to primarily a reprocessor of non-specification plutonium. This is the mission which will carry SRP into the 21st Century. Accomplishment of the defined goals for the three-pronged RandD program will achieve several objectives: exploit new processes for recovering low-grade scraps; enhance SRP's position to incorporate pyrochemical processes where they are attractive or beneficial to plant scrap recovery; provide SRL/SRP with a capability to develop compatible aqueous pyrochemical processes; identify material compatibility requirements for the incorporation of pyrochemical processes at SRP; promote development and demonstration of improved NDA instrumentation to accurately measure plutonium holdups in solid residues; identify and implement the technology required for reagent preparation and atmospheric quality control; provide a means to compare economic options for emerging new processes; and as a result, identify process steps which will also put SRP in a position to readily adapt to changing plutonium missions.

  18. Plutonium recycling experience in Japanese PWRs

    Microsoft Academic Search

    Hiromasa Nishioka; Shigemitsu Suzuki; Kazuya Seki; Toshikazu Ida

    1992-01-01

    Plutonium recycling is an important policy for saving natural uranium resources in Japan. In March 1988, four demonstration mixed-oxide (MOX) fuel assemblies were loaded at Mihama Unit 1 and irradiated for three cycles. Mihama Unit 1 is a two-loop type pressurized water reactor (PWR) plant of Kansai Electric Power Company and was loaded with 121 fuel assemblies of the 14

  19. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  20. Contaminated scrap metal management on the Oak Ridge Reservation

    SciTech Connect

    Hayden, H.W.; Stephenson, M.J.; Bailey, J.K.; Weir, J.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Gilbert, W.C. [USDOE Oak Ridge Operations Office, TN (United States)

    1993-09-01

    Large quantities of scrap metal are accumulating at the various Department of Energy (DOE) installations across the country as a result of ongoing DOE programs and missions in concert with present day waste management practices. DOE Oak Ridge alone is presently storing around 500,000 tons of scrap metal. The local generation rate, currently estimated at 1,400 tons/yr, is expected to increase sharply over the next couple of years as numerous environmental restoration and decommissioning programs gain momentum. Projections show that 775,000 tons of scrap metal could be generated at the K-25 Site over the next ten years. The Y-12 Plant and Oak Ridge National Laboratory (ORNL) have similar potentials. The history of scrap metal management at Oak Ridge and future challenges and opportunities are discussed.

  1. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA-LUMPSUMREP Contract provides that any ship equipment,...

  2. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA-LUMPSUMREP Contract provides that any ship equipment,...

  3. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA-LUMPSUMREP Contract provides that any ship equipment,...

  4. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA-LUMPSUMREP Contract provides that any ship equipment,...

  5. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA-LUMPSUMREP Contract provides that any ship equipment,...

  6. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA)

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  7. Decontamination and reuse of ORGDP aluminum scrap

    Microsoft Academic Search

    A. L. Compere; W. L. Griffith; H. W. Hayden; D. F. Wilson

    1996-01-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UFâ. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of

  8. Scrap? This Program Grows on It!

    ERIC Educational Resources Information Center

    Schureman, Robert

    1975-01-01

    A high school industrial arts program in plastics recycling provided students direct contact with production methods of the plastics industry as well as awareness of governmental functions. Experimentation included fuel cells, paving and construction composites, soil composites, and watercraft flotation. (EA)

  9. Steel Recycling Institute (SRI)

    NSDL National Science Digital Library

    1998-01-01

    The Steel Recycling Institute (SRI) provides information and statistics on steel recycling; it was founded by a group of steel companies and the American Iron and Steel Institute (AISI). Originally a grassroots effort focused only on the recycling of steel cans, the SRI now promotes the recycling of all steel products. The SRI homepage provides online access to its three publications, The Dockside Recycler, The Recycling Magnet, and The Appliance Recycler. Recycling information is divided into four categories: cans, cars, appliances, and construction material. Users can use the recycling database to find the nearest steel recycling location. Links provides a large list of both commercial and non-commercial steel sites.

  10. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    SciTech Connect

    Bossart, S.J. [USDOE Morgantown Energy Technology Center, WV (United States); Hyde, J. [USDOE, Washington, DC (United States)

    1993-06-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D&D of DOE`s facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D&D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment.

  11. Influence of void fraction on plutonium recycling in BWR

    NASA Astrophysics Data System (ADS)

    Surbakti, R.; Waris, A.; Basar, K.; Permana, S.; Kurniadi, R.

    2012-06-01

    The uncertainty of commercial operation of fast breeder reactors (FBR) claims for another solution to the plutonium produced in light water reactors (LWR). As one option, recently, the plutonium recycling in LWR becomes an important consideration. A study on the impact of changing void fraction on plutonium recycling in BWR has been performed. Two types of uranium sources in mixed oxide (MOX) fuel, namely the depleted uranium and the natural uranium have been evaluated. The trend is similar for both MOX fuels that BWR can gain its critical condition for the void fraction of less than 42% and it may be operated in critical condition for the void fraction of 42% and 95%.

  12. Ferrous scrap preheating system. Phase 2, Final report

    SciTech Connect

    Not Available

    1993-11-23

    Utilization of electric arc steel making has allowed many smaller producers to compete with the large mills. An electric arc furnace (EAF) melts scrap metal to produce a variety of steel products. Using scrap as the metal source is less costly than refining from ores, but the metal is of a lower quality due to impurities in the scrap. Over the years, methods have been developed to improve EAF metal quality and reduce the cost of production. As a result, an increasing share of total steel production is shifting to EAFs. By recent estimates, EAF production is growing at a rate of about 10% per year, and currently accounts for nearly one half of all US steel production (US Department of Energy and Electric Power Research Institute Project 2787-2, 1987). The subject of this report is Scrap Preheating, a new method of preheating scrap metal before it is charged into an EAF. In scrap preheating, a portion of the energy is supplied in a separate vessel, causing the EAF to use less energy, which shortens the heating time. The general effect is that the arc furnace can produce more steel in a given time at a reduced cost per ton of molten metal.

  13. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.

    PubMed

    Bandara, H M Dhammika; Darcy, Julia W; Apelian, Diran; Emmert, Marion H

    2014-06-17

    In order to facilitate the development of recycling technologies for rare earth magnets from postconsumer products, we present herein an analysis of the neodymium (Nd) content in shredder scrap. This waste stream has been chosen on the basis of current business practices for the recycling of steel, aluminum, and copper from cars and household appliances, which contain significant amounts of rare earth magnets. Using approximations based on literature data, we have calculated the average Nd content in the ferrous shredder product stream to be between 0.13 and 0.29 kg per ton of ferrous scrap. A value analysis considering rare earth metal prices between 2002 and 2013 provides values between $1.32 and $145 per ton of ferrous scrap for this material, if recoverable as pure Nd metal. Furthermore, we present an analysis of the content and value of other rare earths (Pr, Dy, Tb). PMID:24934194

  14. ParadigmParadigm Concrete RecyclingConcrete Recycling

    E-print Network

    ParadigmParadigm Concrete RecyclingConcrete Recycling #12;Recycled ConcreteRecycled Concrete the recycle mix #12;Uses of Recycled ConcreteUses of Recycled Concrete 1.1. Aggregate BaseAggregate Base 2Two Lift Construction #12;II--35, Oklahoma35, Oklahoma ­­ Payne CountyPayne County Recycled Concrete MixRecycled

  15. Argonne explains nuclear recycling in 4 minutes

    SciTech Connect

    None

    2012-01-01

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  16. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  17. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  18. On-line recycling aluminum alloy sorting by the PGAA approach: Feasibility studies at NCSU and NIST

    Microsoft Academic Search

    R. P. Gardner; C. L. Dobbs; R. L. Paul

    1994-01-01

    Alcoa is committed to a recycling program for aluminum scraps from automobile parts. A key to this program is the ability to identify and sort various aluminum alloys on-line, nondestructively, and in real time. To accomplish this, an alloy detection method that penetrates large fractions of the sample thicknesses of interest is required so that surface coatings of paint or

  19. Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007

    SciTech Connect

    Karen A Moore

    2007-04-01

    Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management

  20. Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel

    SciTech Connect

    Clark, E.A.

    1995-04-03

    The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

  1. Uranium Ore Uranium is extracted

    E-print Network

    Milling of Uranium Ore Uranium is extracted from ore with strong acids or bases. The uranium is concentrated in a solid substance called"yellowcake." Chemical Conversion Plants convert the uranium in yellowcake to uranium hexafluoride (UF6 ), a compound that can be made into nuclear fuel. Enrichment

  2. The fate of sulfur during rapid pyrolysis of scrap tires.

    PubMed

    Hu, Hongyun; Fang, Yuan; Liu, Huan; Yu, Ren; Luo, Guangqian; Liu, Wenqiang; Li, Aijun; Yao, Hong

    2014-02-01

    The fate of sulfur during rapid pyrolysis of scrap tires at temperatures from 673 to 1073K was investigated. Sulfur was predominant in the forms of thiophenic and inorganic sulfides in raw scrap tires. In the pyrolysis process, sulfur in organic forms was unstable and decomposed, leading to the sulfur release into tar and gases. At 673 and 773K, a considerable amount of sulfur was distributed in tar. Temperature increasing from 773 to 973K promoted tar decomposition and facilitated sulfur release into gases. At 1073K, the interactions between volatiles and char stimulated the formation of high-molecular-weight sulfur-containing compounds. After pyrolysis, almost half of the total content of sulfur in raw scrap tires still remained in the char and was mostly in the form of sulfides. Moreover, at temperatures higher than 873K, part of sulfur in the char was immobilized in the sulfates. In the pyrolysis gases, H2S was the main sulfur-containing gas. Increasing temperature stimulated the decomposition of organic polymers in scrap tires and more H2S was formed. Besides H2S, other sulfur-containing gases such as CH3SH, COS and SO2 were produced during the rapid pyrolysis of scrap tires. PMID:24238304

  3. Comparison of the U.S. lead recycling industry in 1998 and 2011

    USGS Publications Warehouse

    Wilburn, David R.

    2014-01-01

    Since 1998, the structure of the lead recycling industry has changed and trade patterns of the domestic lead recycling industry have shifted. Although the domestic demand for lead has remained relatively constant since 1998, production of lead has increasingly shifted to the domestic secondary lead industry. The last primary lead smelter in the United States closed at the end of 2013, at which time the secondary lead industry became the sole source of domestic lead production. The amount of lead recovered annually from scrap batteries generally increased from about 900,000 metric tons in 1995 to more than 1,100,000 metric tons in 2012. The percentage of total U.S. lead production attributed to battery scrap increased from 65 percent in 1995 to 87 percent in 2012. Since the North American Free Trade Agreement took effect in 1994, trade patterns among the United States, Canada, and Mexico have changed for recycled lead products. In the late 1990s, the principal sources of lead waste and scrap not derived from batteries were Canada, Mexico, and South America; by 2011, the principal sources were Central America and Asia, with decreasing amounts from Canada and South America. Since 1998, the amount of lead derived from imported batteries and scrap from Canada has ranged from 50 to 90 percent, and the amount imported from Mexico has ranged from 3 to 20 percent. Canada received about 50 percent of the lead contained in spent lead-acid batteries and scrap exported from the United States in 1998, and Mexico received about 4 percent. By 2012, however, the amount of lead scrap exported to Canada had decreased to about 10 percent, and the amount of lead-based scrap products, primarily batteries, exported to Mexico from the United States had increased to 47 percent. Vertical integration of the domestic secondary lead industry and higher costs required to implement more stringent ambient air standards in the United States have led some companies to shift lead recycling operations to Mexico. U.S. secondary lead producers are increasingly competing with Canadian and Mexican facilities for market share.

  4. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    SciTech Connect

    Jody, B. J.; Daniels, E. J.; Duranceau, C. M.; Pomykala, J. A.; Spangenberger, J. S. (Energy Systems)

    2011-02-22

    Each year, more than 25 million vehicles reach the end of their service life throughout the world, and this number is rising rapidly because the number of vehicles on the roads is rapidly increasing. In the United States, more than 95% of the 10-15 million scrapped vehicles annually enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, over 75% of automotive materials, primarily the metals, are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobile hulks, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials - commonly called shredder residue - constitutes about 25% of the weight of the vehicle, and it is disposed of in landfills. This practice is not environmentally friendly, wastes valuable resources, and may become uneconomical. Therefore, it is not sustainable. Over the past 15-20 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles, including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has been focused on developing technology to separate and recover non-metallic materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lightweighting materials - primarily polymers, polymer composites, high-strength steels, and aluminum - will be used in manufacturing these vehicles. Many of these materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals that are recovered. In addition, the number of hybrid vehicles and electric vehicles on the road is rapidly increasing. This trend will also introduce new materials for disposal at the end of their useful lives, including batteries. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems. Argonne National Laboratory (Argonne), the Vehicle Recycling Partnership, LLC. (VRP) of the United States Council for Automotive Research, LLC. (USCAR), and the American Chemistry Council-Plastics Division (ACC-PD) are working to develop technology for recovering materials from end-of-life vehicles, including separating and recovering polymers and residual metals from shredder residue. Several other organizations worldwide are also working on developing technology for recycling materials from shredder residue. Without a commercially viable shredder industry, our nation and the world will most likely face greater environmental challenges and a decreased supply of quality scrap, and thereby be forced to turn to primary ores for the production of finished metals. This will result in increased energy consumption and increased damage to the environment, including increased greenhouse gas emissions. The recycling of polymers, other organics, and residual metals in shredder residue saves the equivalent of over 23 million barrels of oil annually. This results in a 12-million-ton reduction in greenhouse gas emissions. This document presents a review of the state-of-the-art in the recycling of automotive materials.

  5. Management of recyclable fissile and fertile materials

    SciTech Connect

    Bertel, Evelyne; Dujardin, Thierry [OECD Nuclear Energy Agency 12 boulevard des Iles, F-92130 Issy-les-Moulineaux (France)

    2007-07-01

    The possibility to recycle fuel is a very attractive - nearly unique - feature of nuclear energy systems. Fissile and fertile materials that are contained in spent nuclear fuels and enrichment plant tails for example may be retrieved and re-used to provide additional energy and reduce the amount and toxicity of ultimate waste to be sent to repositories. While recycling becomes increasingly attractive in the context of renewed interest for nuclear energy and of sustainable development goals, extended interim storage and direct disposal of recyclable materials remain options favoured by many countries. Recyclable materials which are not intended to be re-used may be disposed of in a safe way guaranteeing their isolation from the biosphere over very long periods of time until they become harmless for humans and the environment. The study on recyclable fissile and fertile materials published in 2007 by the OECD was carried out by its Nuclear Energy Agency (NEA) in order to review technical, strategic and policy issues raised by the management of those materials and to provide some insights on the opportunities and challenges offered by alternative options in this regard. The materials considered include: spent fuel; depleted uranium from enrichment plant tails; separated uranium and plutonium from commercial reprocessing plants; ex-military materials (highly enriched uranium and plutonium) declared excess to national security by the Russian Federation and the United States; and thorium inventories. The present paper is based on the analyses, findings and conclusions from the NEA study. It provides overview on the quantities and potential energetic value of recyclable materials available worldwide. The main advantages and drawbacks of the two management options that may be adopted are described. Some findings and conclusions are drawn from the identification and analysis of economic, social and environmental indicators associated with each option that need to be taken into account in assessing and selecting the best solution in various specific contexts. (authors)

  6. Component- and Alloy-Specific Modeling for Evaluating Aluminum Recycling Strategies for Vehicles

    NASA Astrophysics Data System (ADS)

    Modaresi, Roja; Løvik, Amund N.; Müller, Daniel B.

    2014-11-01

    Previous studies indicated that the availability of mixed shredded aluminum scrap from end-of-life vehicles (ELV) is likely to surpass the capacity of secondary castings to absorb this type of scrap, which could lead to a scrap surplus unless suitable interventions can be identified and implemented. However, there is a lack of studies analyzing potential solutions to this problem, among others, because of a lack of component- and alloy-specific information in the models. In this study, we developed a dynamic model of aluminum in the global vehicle stock (distinguishing 5 car segments, 14 components, and 7 alloy groups). The forecasts made up to the year 2050 for the demand for vehicle components and alloy groups, for the scrap supply from discarded vehicles, and for the effects of different ELV management options. Furthermore, we used a source-sink diagram to identify alloys that could potentially serve as alternative sinks for the growing scrap supply. Dismantling the relevant components could remove up to two-thirds of the aluminum from the ELV stream. However, the use of these components for alloy-specific recycling is currently limited because of the complex composition of components (mixed material design and applied joining techniques), as well as provisions that practically prevent the production of safety-relevant cast parts from scrap. In addition, dismantling is more difficult for components that are currently penetrating rapidly. Therefore, advanced alloy sorting seems to be a crucial step that needs to be developed over the coming years to avoid a future scrap surplus and prevent negative energy use and emission consequences.

  7. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  8. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA); Lincoln, Lanny P. (Woodward, IA)

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  9. "Scrap Your Boilerplate" Reloaded Ralf Hinze1 Andres Loh1 Bruno C. d. S. Oliveira2

    E-print Network

    Löh, Andres

    Properties of the "spine view" 6 Conclusions Ralf Hinze, Andres L¨oh, Bruno Oliveira "Scrap Your Boilerplate"Scrap Your Boilerplate" Reloaded Ralf Hinze1 Andres L¨oh1 Bruno C. d. S. Oliveira2 1Universit. Ralf Hinze, Andres L¨oh, Bruno Oliveira "Scrap Your Boilerplate" Reloaded 2 #12;Overview 1 Introduction

  10. Recovery of critical metals from superalloy scrap by matte smelting and hydrometallurgical processing

    Microsoft Academic Search

    W. J. Wuest; R. M. Stateham

    1991-01-01

    This paper reports that as part of the U.S. Bureau of Mines program to reduce the Nation's reliance on foreign supplies for critical metals, a procedure was devised to separate and recover critical metals from mixed and contaminated superalloy scrap. The process uses both pyrometallurigical and hydrometallurgical, methods to treat the scrap. The mixed scrap is converted to a matte

  11. Definition of prominent thermal mechanisms associated with the buoyancy-induced transport of hafnium-carbide within a solidifying uranium-hafnium alloy

    Microsoft Academic Search

    M. J. Taylor; G. Mackiewicz-Ludtka

    1992-01-01

    Environmental concerns over uranium wastes generated interest in using existing uranium stockpiles as feed materials. One obstacle to recycling is accumulation of carbon that can degrade as-cast mechanical properties. A program was begun to develop a casting procedure capable of reducing the C content in components made from recycled uranium to levels comparable with virgin feed stock. Trace amounts of

  12. WASTE DESCRIPTION RECYCLED OR

    E-print Network

    WASTE DESCRIPTION REDUCED, REUSED, RECYCLED OR CONSERVED POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2000 WASTE TYPE POTENTIAL COSTS FOR TREATMENT & DISPOSAL COST OF RECYCLE, PREVENTION ESTIMATED and recycled approximately 1.6 liters of mercury rather than disposing of the mercury as hazardous waste

  13. Effects of Amendments to the Basel Convention on battery recycling

    NASA Astrophysics Data System (ADS)

    Stone, Hillary

    The Basel Convention was originally designed to prevent the uncontrolled dumping of toxic waste and focused particularly on shipments of materials from OECD countries to the developing world. Amendments to the Basel Convention now restrict trade in waste materials destined for recycling, reprocessing and reuse. There are serious consequences for the secondary lead industry and the world community if the regulations prohibit the environmentally sound reprocessing of scrap batteries. It is incumbent on the industry to understand the implications of the recent and proposed amendments, and to address the potential problems posed by the legislation.

  14. Recovery of cadmium and nickel from scrap batteries

    Microsoft Academic Search

    D. A. Wilson; B. J. Jr. Wiegard

    1971-01-01

    A cyclic leaching process was developed for selectively leaching and recovering cadmium from nickel--cadmium scrap battery waste. The six major steps in the process are the following: washing the plates to remove KOH electrolyte: roasting at 550 to 600C to oxidize metallic cadmium and decompose cadmium and nickel salts; leaching with an ammonium nitrate solution; precipitation of the leached cadmium

  15. Scrap biofuels targets and focus on improved public transport

    E-print Network

    Scrap biofuels targets and focus on improved public transport Friends of the Earth's biofuels campaigner Kenneth Richter argues that biofuel targets are a distraction from tried-and-tested ways to biofuel crops such as rapeseed have changed as more research has been done into their impact

  16. Feasibility of re-melting NORM-contaminated scrap metal

    Microsoft Academic Search

    S. J. Winters; K. P. Smith

    1999-01-01

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the

  17. Scrap stainless steel detection using a pulsed electromagnetic field

    Microsoft Academic Search

    M. B. Mesina; T. P. R. de Jong; W. L. Dalmijn

    2005-01-01

    A pulsed electromagnetic sensor (PEMS) utilising the difference in electrical and magnetic properties of metals was designed for automatic sorting of scrap stainless steel (SS). Experimental results for the identification and separation of stainless steel are presented. The design of a prototype being developed at Delft University of Technology and the results obtained in the laboratory are also discussed.

  18. Scrap tires: Black gold or fool`s gold?

    SciTech Connect

    Glaz, S.

    1995-10-01

    Three years ago, a US EPA report estimated there were between 2 and 3 billion tires stockpiled in the US. Currently, according to the Scrap Tire Management Council (STMC, Washington, DC), the number of stockpiled tires totals 850 million. However, this reduction is not due to federal or state legislation; simply, the number was overestimated. Whatever the actual number, scrap tire mounds have been large enough to prompt 34 states to developed scrap tire funding programs aimed at eliminating the stockpiling of the some 250 million tires generated per year, while gradually eliminating the tires already stockpiled. However, of the 34 states, only Illinois, Oregon, Florida, Wisconsin, and Minnesota, are aggressively tackling the problem. In each of these five cases, state officials claim, the only viable way to reduce large quantities of tires quickly is through energy reuse, and, like any other disposal method, it costs money. To compensate for the costs of elimination, states are developing funding for scrap tire reduction programs by placing fees on tire disposal, tire purchase, or vehicle title transfer and registration.

  19. Scrap loss reduction using the 5-whys analysis

    Microsoft Academic Search

    Uthiyakumar Murugaiah; Samuel Jebaraj Benjamin; M. Srikamaladevi Marathamuthu; Saravanan Muthaiyah

    2010-01-01

    Purpose – This paper seeks to document an approach to reduce scrap losses using the root cause analysis technique in a lean manufacturing environment. Design\\/methodology\\/approach – The study uses lean manufacturing root cause problem solving (RCPS) technique. The study starts with the collection phase, followed by the analysis phase and ends with the solution phase. Supporting data are presented using

  20. Reverse logistics system planning for recycling electrical appliances and computers in Taiwan

    Microsoft Academic Search

    Li-Hsing Shih

    2001-01-01

    Since the disposition of end-of-life home appliances has caused tremendous attention, Taiwan recently promulgated a Scrap Home Appliances and Computers Recycling Regulation that mandates manufacturers and importers to take back their products. Reverse logistics system planning shall become vital as the take-back rate increases and the service area expands in the future. This study utilizes a mixed integer programming model

  1. An econometric model of the U.S. secondary copper industry: Recycling versus disposal

    USGS Publications Warehouse

    Slade, M.E.

    1980-01-01

    In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.

  2. Public Policies Toward the Use of Scrap Materials

    Microsoft Academic Search

    Robert C Anderson

    1977-01-01

    Proposals that have been considered to stimulate the flow of recycled materials are discussed. The thrust of proposals is that recycling rates are too low and that the Federal government should offer incentives to aid the competitive position of secondary materials sector. This paper examines principal economic arguments that have been offered in support of a Federal program of recycling

  3. Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)

    SciTech Connect

    Meehan, R.W. [DOE-Oak Ridge Operations Office, TN (United States)

    1997-02-01

    The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where it can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.

  4. Existing and future avenues for eco-efficient e-scrap recycling

    Microsoft Academic Search

    Jaco Huisman; Ab Stevels

    2005-01-01

    In August this year, the EU WEEE Directive (waste electric and electronic equipment) should he implemented by EU member states by having take-back systems in place for electronic waste. However, many of the EU member states will not accomplish this on time and still many interpretation and transposition issues remain. Extensive discussions are related to the interpretation of Annex II,

  5. Study of Recycled and Virgin Compounded Metal Injection Moulded Feedstock for Stainless Steel 630

    NASA Astrophysics Data System (ADS)

    Manonukul, Anchalee; Likityingwara, Warakij; Rungkiatnawin, Phataraporn; Muenya, Nattapol; Amoranan, Suttha; Kittinantapol, Witoo; Surapunt, Suphachai

    Fine rounded powders preferable for metal injection moulding (MIM) are expensive. This forces MIM makers to recycle green scraps, for example, the runner system and defected green parts. This is particularly necessary for injection moulded small parts where parts are only a small portion of the injection short size. There is very little published data, although recycling feedstock has been practise throughout the industry. This work aims at investigating the effects of recycled stainless steel 630 feedstock content on the density, mechanical properties, dimensional changes and microstructure. Five batches of compounded virgin and recycled feedstock were studies from 0% to 100% recycled feedstock with the increment of 25%. Homogenously compounded feedstock was injected using the same injection condition. Subsequently, green parts were debinded and sintered at 1325°C for 2 hours in argon atmosphere. The results suggest that the green density increases linearly with increasing percentage of recycled feedstock because the polymeric binder was broken down during previous process. However, the sintered density remains nominally constant. As a result, the mechanical properties and microstructure of sintered parts are independent of recycled feedstock content. However, the volumetric and linear shrinkage decreases linearly with the increase in percentage of recycled feedstock. The difference in shrinkage is vital to dimensional control during commercial production. For example, only 4.5% of recycled feedstock can be added to virgin feedstock if a tolerance of ±0.3 mm is required for a 25 mm MIM part.

  6. Multi-Recycling of Transuranic Elements in a Modified PWR Fuel Assembly

    E-print Network

    Chambers, Alex

    2012-10-19

    . The radiotoxicity of both multi-recycled assemblies is significantly lower than the UOX and MOX with the TRU+Cm fuel being the lowest. When Curium is recycled only 28,000 years are required for the radiotoxicity of the waste to reach that of natural Uranium and when...

  7. Multi-Recycling of Transuranic Elements in a Modified PWR Fuel Assembly 

    E-print Network

    Chambers, Alex

    2012-10-19

    . The radiotoxicity of both multi-recycled assemblies is significantly lower than the UOX and MOX with the TRU+Cm fuel being the lowest. When Curium is recycled only 28,000 years are required for the radiotoxicity of the waste to reach that of natural Uranium and when...

  8. A STUDY OF PLUTONIUM RECYCLE IN A GAS-COOLED, GRAPHITE-MODERATED REACTOR. PART I

    Microsoft Academic Search

    Uematsu

    1963-01-01

    S>A fuel cycle analysis of plutonium recycle in a gascooled, graphite-; moderated reactor was performed using the fuel cycle code which can be used for ; IBM 704, 709, or 7090 computer. The fuel cycle variables investigated were three ; initial uranium enrichments (natural, 1.0, or 1.3 at.%), four plutonium recycle ; ratios (total, 90%, 75%, or none) and two

  9. Authorization Recycling in RBAC Systems

    E-print Network

    Authorization Recycling in RBAC Systems 1Laboratory for Education and Research in Secure Systems ·motivation ·recycling approach recycling algorithms experimental evaluations summary & future work #12 issued before (precise recycling) #12;6 Laboratory for Education and Research in Secure Systems

  10. Recycling overview in Sweden

    SciTech Connect

    Not Available

    1989-07-01

    This article discusses the recycling programs currently in use in Sweden. Recycling of newspapers, batteries, plastics are all mentioned in this report by the Swedish Association of Public Cleansing and Solid Waste Management.

  11. Federal Recycling Program Printed on recycled paper.

    E-print Network

    Hoddle, Mark S.

    #12;Federal Recycling Program Printed on recycled paper. The Forest Health Technology Enterprise hibiscus mealybug. Photo by Jeffrey W. Lotz, Florida Department of Agriculture, Conservation Service (www.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis

  12. [Optimum of polysaccharide distillation on scrap Cordyceps militaris medium].

    PubMed

    Ren, Shu-Yu; Zhao, Chun-Yan; Song, Hui-Yi; Zhao, Hao-Lu; Sun, Jun-De

    2008-03-01

    A mass of scrap Cordyceps militaris solid culture medium could not be utilized better. In this test, using orthogonal design the optimal technique parmeter of extracting polysaccharide was 80 degrees C, two times, in twenty times of water, and 120 minutes each time. Temperature was the most important factor. The referenced data could be provided to depurative production of Cordyceps militaris and resource utilization. PMID:18619235

  13. Scrap metal management issues associated with naturally occurring radioactive material

    Microsoft Academic Search

    K. P. Smith; D. L. Blunt

    1995-01-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year.

  14. Recycling of automotive aluminum

    Microsoft Academic Search

    Jirang CUI; Hans J. ROVEN

    2010-01-01

    With the global warming of concern, the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits. In this work, recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling, use of aluminum alloys in automotive applications, automotive recycling process, and new technologies in

  15. Recycling and the automobile

    SciTech Connect

    Holt, D.J.

    1993-10-01

    This article examines the current status of automobile recycling and contains a summary of a survey which points out the major drivers and their impacts on automotive recycling. The topics of the article include computerized dismantling, polyurethane, sheet molding compound, polyester, thermoplastic polyester, recycling salvaged parts, vinyl and automotive shredder residue.

  16. Buying recycled helps market

    SciTech Connect

    Watts, G. [City of Thousand Oaks, CA (United States)

    1996-08-01

    The waste reduction and recycling program of Thousand Oaks, California is summarized. Descriptions of the program, market development for recycled products, business development, and economic development are provided. The emphasis of the program is on market development for recycled products. Procurement guidelines used by the city are reprinted in the paper.

  17. The Economics of Recycling.

    ERIC Educational Resources Information Center

    Bogert, Susan; Morris, Jeffrey

    1993-01-01

    Reports the findings of a study that documented 1992 costs of residential curbside recycling versus disposal systems in four Washington State cities: Seattle, Spokane, Bellingham, and Vancouver. Results indicated that recycling can be less expensive than disposal when the revenues obtained from selling recycled materials are considered. (MDH)

  18. Much Ado about Recycling.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1993-01-01

    Discusses a solid waste recycling workshop for students and teachers sponsored by the Southwest Connecticut Regional Operating Committee (SWEROC), a consortium of 19 towns and cities organized to help implement a regional recycling program. The SWEROC workshop utilized games and team activities to teach students about recycling and the…

  19. Plutonium scrap processing at the Los Alamos Scientific Laboratory

    SciTech Connect

    Nixon, A.E.; McKerley, B.J.; Christensen, E.L.

    1980-01-01

    The Los Alamos Scientific Laboratory currently has the newest plutonium handling facility in the nation. Los Alamos has been active in the processing of plutonium almost since the discovery of this man-made element in 1941. One of the functions of the new facility is the processing of plutonium scrap generated at LASL and other sites. The feed for the scrap processing program is extremely varied, and a wide variety of contaminants are often encountered. Depending upon the scrap matrix and contaminants present, the majority of material receives a nitric acid/hydrofluoric acid or nitric acid/calcium fluoride leach. The plutonium nitrate solutions are then loaded onto an anion exchange column charged with DOWEX 1 x 4, 50 to 100 mesh, nitrate form resin. The column is eluted with 0.48 M hydroxyl amine nitrate. The Pu(NO/sub 3/)/sub 3/ is then precipitated as plutonium III oxalate which is calcined at 450 to 500/sup 0/C to yield a purified PuO/sub 2/ product.

  20. Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS

    SciTech Connect

    Maxwell, S.L. III [Westinghouse Savannah River Company, AIKEN, SC (United States); Jones, V.D.

    1998-07-01

    The Nuclear Materials Stabilization and Storage Division at SRS plans to stabilize selected plutonium scrap residue materials for long term storage by dissolution processing and plans to stabilize other plutonium vault materials via high-temperature furnace processing. To support these nuclear material stabilization activities, the SRS Analytical Laboratories Department (ALD) will provide characterization of materials required prior to the dissolution or the high-firing of these materials. Lab renovations to install new analytical instrumentation are underway to support these activities that include glove boxes with simulated-process dissolution and high- pressure microwave dissolution capability. Inductively-coupled plasma atomic emission spectrometry (ICP-AES), inductively- coupled mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) will be used to measure actinide isotopics and metallic impurities. New high-speed actinide separation methods have been developed that will be applied to isotopic characterization of nuclear materials by TIMS and ICP-MS to eliminate isobaric interferences between Pu-238 /U- 238 and Pu-241/Am-241. TEVA Resin, UTEVA Resin, and TRU Resin columns will be used with vacuum-assisted flow rates to minimize TIMS and ICP-MS sample turnaround times. For metallic impurity analysis, rapid column removal methods using UTEVA Resin, AGMP-1 anion resin and AG MP-50 cation resin have also been developed to remove plutonium and uranium matrix interferences prior to ICP-AES and ICP- MS measurements.

  1. Review of PennDOT Publication 408 for the use of recycled co-product materials: Summary recommendations. Final report

    SciTech Connect

    Van Tassel, E.L.; Tikalsky, P.J.; Christensen, D.W.

    1999-04-30

    The purpose of this project is to decrease the institutional or perceived institutional barriers for the use of recycled and co-product materials including glass, steel slag, foundry sand, fly ash, shingle tabs, reclaimed Portland cement concrete, and scrap tires in the Pennsylvania Department of Transportation`s (PennDOT) Publications 408, Commonwealth of Pennsylvania Department of Transportation Specifications. This report reviews potential uses of each material, identifies the project that used these materials, and provides direction for future specification development.

  2. Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding

    Microsoft Academic Search

    N. Torres; J. J. Robin; B. Boutevin

    2000-01-01

    In this study, we compared the thermal properties (glass transition, melting point and crystallinity) and mechanical properties (Young’s modulus, elongation at break and impact strength) of post-consumer poly(ethylene terephthalate) (PET) bottles with those of the virgin resin. We studied two types of scraps of recycled PET: one arising from homogeneous deposits of bottles and the other of heterogeneous deposits soiled

  3. Analysis of a municipal recyclable material recycling program

    Microsoft Academic Search

    Pei-Hai Yu; Horng-Guang Leu; Sheng H. Lin

    1996-01-01

    The recyclable material recycling program organized and operated by a small town in northern Taiwan is investigated. Emphasis of the present study is placed on the operation, analysis of the annual amounts of recyclable material collection and on the operational cost-benefit analysis of the recycling program. Examination of the operational data reveals that the recycling program is in good financial

  4. St Andrews Recycling Points Recycling Points are situated locally to

    E-print Network

    St Andrews, University of

    St Andrews Recycling Points Recycling Points are situated locally to allow you to recycle the following materials: To find your nearest Recycling Point please visit www.fifedirect.org.uk/wasteaware or call the Recycling Helpline on 08451 55 00 22. R&A GOLF CLUB OLD COURSE HOTEL UNIVERSITY NORTH HAUGH

  5. Recycling Service Learning Activity

    NSDL National Science Digital Library

    Renee Faatz

    The recycling project begins with students learning about waste and resources. They complete background assignments about the energy and materials required to manufacture paper, aluminum, etc. They study landfills and the issues related to space, pollution, etc. They look at what is different if these things are recycled. The students work in groups of two or three and adopt and academic building on campus. They educate the staff and faculty about recycling - what can be recycled and where. They arrange to pick-up paper from each office. My hope is that the college faculty, staff and students will eventually recycle paper at common bins and that our project will progress to adding other recyclables to our project.

  6. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F. (Trafford, PA)

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  7. Recycling of the continental crust

    Microsoft Academic Search

    Scott M. McLennan

    1988-01-01

    In order to understand the evolution of the crust-mantle system, it is important to recognize the role played by the recycling of continental crust. Crustal recycling can be considered as two fundamentally distinct processes: 1) intracrustal recycling and 2) crust-mantle recycling. Intracrustal recycling is the turnover of crustal material by processes taking place wholly within the crust and includes most

  8. Factors Influencing Household Recycling Behavior

    Microsoft Academic Search

    Stuart Oskamp; Maura J. Harrington; Todd C. Edwards; Deborah L. Sherwood; Shawn M. Okuda; Deborah C. Swanson

    1991-01-01

    To investigate factors encouraging or deterring recycling, telephone interviews were used to study recycling behavior, attitudes, and knowledge of 221 randomly selected adults in a suburban city that had begun a citywide curbside recycling program within the past year. Approximately 40% reported participation in the curbside recycling program, and nearly 20% more claimed that their household had been recycling in

  9. Announcing: All Recycling Reduce your

    E-print Network

    Papautsky, Ian

    Announcing: All Recycling Go Green! Reduce your contribution to the landfill, by choosing to voluntarily recycle acceptable items in the green All Recycling toters and containers around campus. ONLY THE ITEMS BELOW ARE ACCEPTED FOR ALL RECYCLING Please do not contaminate the recycling containers with trash

  10. Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production

    Microsoft Academic Search

    Aiying Rong; Risto Lahdelma

    2008-01-01

    Optimizing the charge in secondary steel production is challenging because the chemical composition of the scrap is highly uncertain. The uncertainty can cause a considerable risk of the scrap mix failing to satisfy the composition requirements for the final product. In this paper, we represent the uncertainty based on fuzzy set theory and constrain the failure risk based on a

  11. 29 CFR 570.128 - Loading of certain scrap paper balers and paper box compactors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...employment of 16- and 17-year-olds to load, but not operate or unload, certain power-driven scrap paper balers and paper box...compactor, and that no employee under the age of 18 may operate or unload the scrap paper baler or paper box compactor. [75 FR...

  12. 29 CFR 570.128 - Loading of certain scrap paper balers and paper box compactors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...employment of 16- and 17-year-olds to load, but not operate or unload, certain power-driven scrap paper balers and paper box...compactor, and that no employee under the age of 18 may operate or unload the scrap paper baler or paper box compactor. [75 FR...

  13. 29 CFR 570.128 - Loading of certain scrap paper balers and paper box compactors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...employment of 16- and 17-year-olds to load, but not operate or unload, certain power-driven scrap paper balers and paper box...compactor, and that no employee under the age of 18 may operate or unload the scrap paper baler or paper box compactor. [75 FR...

  14. Application of pyrolized carbon black from scrap tires in pavement design (hot mix asphalt)

    Microsoft Academic Search

    1995-01-01

    Various concepts and techniques have been developing for efficient and economical disposal and utilization of scrap tires. One of these is pyrolysis of scrap tires by a cooking process in order to break down the rubber into salable byproducts. Tire pyrolysis yields approximately 25% carbon black (CB) and is named pyrolized carbon black (PCB) in this study. Due to relatively

  15. Selective dissolution of the cobalt binder from scraps of cemented tungsten carbide in acids containing additives

    Microsoft Academic Search

    Jing-Chie Lin; Jain-Yuan Lin; Shie-Peir Jou

    1996-01-01

    Scraps of cemented tungsten carbide were electrolyzed to dissolve their cobalt binder and recover tungsten carbide. Anodic passivation retards the acid dissolution of the cobalt. Anodic linear sweep and cyclic voltammetry were conducted for selecting adequate electrolytes, in which the passivation was diminished and thus the cobalt dissolution was enhanced. Anodic passivity of the scrap in acids was minimized in

  16. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  17. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  18. CHANGING THE LANDSCAPE--LOW-TECH SOLUTIONS TO THE PADUCAH SCRAP METAL REMOVAL PROJECT ARE PROVIDING SAFE, COST-EFFECTIVE REMEDIATION OF CONTAMINATED SCRAP YARDS

    Microsoft Academic Search

    Dan Watson; Jeff Eyman

    2003-01-01

    Between 1974 and 1983, contaminated equipment was removed from the Paducah Gaseous Diffusion Plant (PGDP) process buildings as part of an enrichment process upgrade program. The upgrades consisted of the dismantlement, removal, and on-site storage of contaminated equipment, cell components, and scrap material (e.g., metal) from the cascade facilities. Scrap metal including other materials (e.g., drums, obsolete equipment) not related

  19. Recovery of critical metals from superalloy scrap by matte smelting and hydrometallurgical processing. Rept. of Investigations\\/1991

    Microsoft Academic Search

    G. L. Hundley; D. L. Davis

    1991-01-01

    As part of the U.S. Bureau of Mines program to reduce the Nation's reliance on foreign supplies for critical metals, a procedure was devised to separate and recover critical metals from mixed and contaminated superalloy scrap. The process uses both pyrometallurgical and hydrometallurgical methods to treat the scrap. The mixed scrap is converted to a matte containing 4 to 7

  20. The Militarization of the Prairie: Scrap Drives, Metaphors, and the "Omaha World-Herald's" 1942 "Nebraska Plan"

    ERIC Educational Resources Information Center

    Kimble, James J.

    2007-01-01

    In WW II, there was no nationwide shortage of scrap on the home front. In backyards, attics, barns, ditches, garages, and factory storage sheds across the country, all sorts of scrap material awaited transport and eventual conversion to arms. Yet the public's awareness of the scrap, and the national willpower necessary to collect it, seemed to be…

  1. Solvent recycle/contaminant reduction testing - Phase I, Task 3. Topical progress report, June 1994--December 1994

    SciTech Connect

    NONE

    1995-07-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. This report describes the solvent recyle test program for EDTA/ammonium carbonate solvent.

  2. Chemical decontamination of process equipment using recyclable chelating solvent Phase I. Final report, September 1993--June 1995

    SciTech Connect

    NONE

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment.

  3. CHANGING THE LANDSCAPE--LOW-TECH SOLUTIONS TO THE PADUCAH SCRAP METAL REMOVAL PROJECT ARE PROVIDING SAFE, COST-EFFECTIVE REMEDIATION OF CONTAMINATED SCRAP YARDS

    SciTech Connect

    Watson, Dan; Eyman, Jeff

    2003-02-27

    Between 1974 and 1983, contaminated equipment was removed from the Paducah Gaseous Diffusion Plant (PGDP) process buildings as part of an enrichment process upgrade program. The upgrades consisted of the dismantlement, removal, and on-site storage of contaminated equipment, cell components, and scrap material (e.g., metal) from the cascade facilities. Scrap metal including other materials (e.g., drums, obsolete equipment) not related to this upgrade program have thus far accumulated in nine contiguous radiologically-contaminated and non-contaminated scrap yards covering 1.05E5 m2 (26 acres) located in the northwestern portion of the PGDP. This paper presents the sequencing of field operations and methods used to achieve the safe removal and disposition of over 47,000 tonnes (53,000 tons) of metal and miscellaneous items contained in these yards. The methods of accomplishment consist of mobilization, performing nuclear criticality safety evaluations, moving scrap metal to ground level, inspection and segregation, sampling and characterization, scrap metal sizing, packaging and disposal, and finally demobilization. Preventing the intermingling of characteristically hazardous and non-hazardous wastes promotes waste minimization, allowing for the metal and materials to be segregated into 13 separate waste streams. Low-tech solutions such as using heavy equipment to retrieve, size, and package scrap materials in conjunction with thorough planning that integrates safe work practices, commitment to teamwork, and incorporating lessons learned ensures that field operations will be conducted efficiently and safely.

  4. Feedstock recycling of polymer wastes

    Microsoft Academic Search

    Arthur A. Garforth; Salmiaton Ali; Jesús Hernández-Martínez; Aaron Akah

    2004-01-01

    Current common polymer waste recycling methods, mechanical recycling and energy recovery, have drawbacks such as labour intensive sorting and atmospheric pollution. Feedstock recycling has emerged as an environmentally successful alternative for polymer waste management.

  5. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces.

    PubMed

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-01

    Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy. PMID:22749723

  6. Some functional properties of composite material based on scrap tires

    NASA Astrophysics Data System (ADS)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  7. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect

    Francis, A.J.

    1998-12-31

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  8. Waste hydrocarbons recycling

    Microsoft Academic Search

    Brinkman

    1986-01-01

    During the 1970s, the U.S. supply of petroleum was predicted to be quickly vanishing. The price we would have to pay for what remained would be unprecedented. All alternatives would not only have to be explored, but exploited to their fullest potential. In that decade of recycling aluminum cans, glass bottles, and newspapers by the truckloads, the recycling of petroleum

  9. Wee Recyclers Resources.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Hands-on activities in this guide are designed to help preschool children (ages 3-5) understand that reducing, reusing, and recycling preserves natural resources and prolongs the life of landfills. Children sort, match and compare recyclable items and learn to separate some items by number and color. The 29 activities are divided into units that…

  10. Recycling and Composting

    NSDL National Science Digital Library

    2005-01-01

    In this lesson, students learn about the value of renewable resources. Using multimedia intractives, video, and classroom activities, they learn to identify examples of renewable resources and how humans use them, understand what recycling and conservation are, learn about composting, and identify food waste and household items that can be recycled or composted.

  11. Recycling into Art

    NSDL National Science Digital Library

    Debra Fioranelli

    2000-10-01

    This interdisciplinary unit weaves art and science together to help students appreciate the importance of recycling. In this engaging activity, students collected items worthy of recycling from home, and with the help of the art teacher, used a loom to cr

  12. Partnership: Recycling $/$ Outdoor Education.

    ERIC Educational Resources Information Center

    Weir, Phil

    1996-01-01

    The Ottawa Board of Education (Ontario, Canada) has committed revenues generated by a districtwide recycling program to help fund the MacSkimming Outdoor Education Centre. A partnership between recycling and outdoor education is valuable in developing an environmental ethic among students and in finding new ways to fund outdoor education. (LP)

  13. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the ?Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  14. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  15. Fuel cell recycling system

    Microsoft Academic Search

    Sederquist

    1988-01-01

    This patent describes a fuel cell recycling system comprising: first fuel cells being adapted to electrochemically convert fuel into electricity and exhaust; second fuel cells being adapted to electrochemically convert fuel into electricity and exhaust; feed means for supplying fuel to the first fuel cells in parallel; exhaust means for receiving exhaust from the first fuel cells; recycling means for

  16. An economic and technical assessment of black-dross and salt-cake-recycling systems for application in the secondary aluminum industry

    SciTech Connect

    Karvelas, D.; Daniels, E.; Jody, B.; Bonsignore, P.

    1991-12-01

    The secondary aluminum industry annually disposes of large amounts of dross residues and salt cake, which are by-products from the processing of scrap aluminum for reuse. These wastes contain as much as 50% salts and are presently disposed of in conventional landfills. As the costs of landfill space increase and the availability of landfill space decreases, disposal of the residues will increasingly compromise the economics of recycling aluminum. Alternative processes exist by which the major constituents of the various drosses and salt cakes can be recovered for recycling. In this study, we review available recycling technologies and processes relevant to the recycling of black dross and salt cake and discuss new concepts that have the potential to improve the cost-effectiveness of recycling technologies.

  17. 75 FR 71003 - America Recycles Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ...our planet, participating in curbside recycling and community composting programs, and...of recyclable and recycled materials. Recycling not only preserves our environment by...workers nationwide, and evolving our recycling practices can help create green...

  18. Energy Return on Investment from Recycling Nuclear Fuel

    SciTech Connect

    None

    2011-08-17

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  19. Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms

    NASA Astrophysics Data System (ADS)

    Iv?nu?, D.; ?nu?, R. C., IV; C?lmuc, F.

    2010-06-01

    A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs) samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations of scrap. The copper extraction increases obviously in bioleaching of scrap with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L scrap after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%, respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%, respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from electronic scrap effectively.

  20. Industrial waste recycling at an automotive component manufacturing facility

    SciTech Connect

    Jaffurs, J.A.; Hubler, R.L.; Behaylo, D.P. [General Motors Corp., Flint, MI (United States). AC Rochester Div.

    1995-09-01

    The AC Rochester Division of General Motors Corporation (GM) develops and manufacturers automotive components for engine management systems at nine facilities in the US. Its largest facility is located in flint, Michigan, and is known as the Flint East site. The Flint East site covers nearly two square miles and consists of several plants housing manufacturing operations for spark plugs, glow plugs, oil filters, air filters, air cleaner assemblies, fuel pumps, fuel level sensors, cruise control systems, and other components. The volume and diversity of the scrap and wastes generated from these operations require skillful waste management to provide environmentally safe and cost-effective disposal options. Over time, a full-scale recycling and waste disposal operation evolved at Flint East. The operation has grown over the past thirty years to handle over 68,000 tons of material annually. Flint East`s program is regarded as a model industrial waste reduction and recycling operation. Elements of the program are presented here as a guide to establishing a successful industrial recycling program.

  1. Active Recycling eyes coast-to-coast operations

    SciTech Connect

    Paquette, P.

    1995-03-01

    Active Recycling is a waste processing facility covering more than four acres in a mixed neighborhood in south-central Los Angeles. The recycling center handles more than 16,000 tons per month of household waste, making it more than twice the average size of most existing US materials recovery facilities today. The yard has its own railroad spur, and prepared materials from the recycling center are shipped out daily. Glass, paper, aluminum, and scrap metal are shipped directly to mills for reuse. The materials shipped by rail are dropped off throughout the US, while the rest of the materials go overseas in export containers. The company's sizeable loading dock can load four rail cars and seven 40-foot export containers simultaneously. The center boasts of paying some of the highest prices in the area for glass bottles and jars, polyethylene terephthalate soft drink bottles, and high-density polyethylene containers, cardboard, newspapers, mixed-color and white paper, aluminum, copper, brass, automotive batteries, iron and cast iron, lead, tin, stainless steel, diecast aluminum, aluminum foil and TV dinner trays, radiators, and electric motors.

  2. Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes

    SciTech Connect

    Forsberg, C.W.

    1997-03-01

    A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs.

  3. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  4. Characterization of emissions during the heating of tyre contaminated scrap.

    PubMed

    Arion, A; Baronnet, F; Lartiges, S; Birat, J P

    2001-01-01

    In order to characterize the compounds (type and quantities) emitted during melting of organic contaminated scrap and to investigate the mechanism of their formation, an experimental set-up has been designed and built to study precisely the influence of temperature and gas atmosphere in the conditions of an electric arc furnace. These experiments lead to the determination of mass balances (C, H, O, S) and to the quantification of unburnt compounds (tars, carbon monoxide, volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and xylenes (BTEX), polyaromatic compounds (PAHs)). Degradation conditions (gas atmosphere and temperature) corresponding to different areas in the electric furnace have also been investigated. Such experiments lead to a better understanding of degradation mechanisms; this interpretation is not possible from investigations performed in an industrial furnace since there are many uncontrolled parameters (large dispersion of the results). PMID:11219712

  5. THE UTILIZATION OF THE HF-HâO AZEOTROPE IN THE MANUFACTURE OF URANIUM TETRAFLUORIDE

    Microsoft Academic Search

    1960-01-01

    A process for the recovery and recycle of waste hydrofluoric acid ; arising from the manufacture of uranium tetrafluoride is described. Particular ; problems in the choice of materials of construction and startup of a full scale ; plant unit based on this process are discussed. The results of recycling the ; recovered acid showed high levels of conversion at

  6. Kinetics of scrap tyre pyrolysis under vacuum conditions.

    PubMed

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier

    2009-10-01

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate. PMID:19589669

  7. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    SciTech Connect

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Gorla, Leopoldo; Nessi, Simone; Grosso, Mario [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  8. RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING

    E-print Network

    Howitt, Ivan

    RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

  9. Nottingham Trent University Plastic Recycling

    E-print Network

    Evans, Paul

    5015/03/08 Nottingham Trent University Plastic Recycling Water and fizzy drinks bottles the caps from any bottles you recycle. Please rinse all plastic bottles and containers before putting them in the recycling bins. #12;5015/03/08 Nottingham Trent University Paper Recycling Office paper Catalogues

  10. RECYCLING RATE STUDY Prepared by

    E-print Network

    Laughlin, Robert B.

    NATIONAL RECYCLING RATE STUDY Prepared by: Smith, Bucklin and Associates, Inc. Market Research and Statistics Division Chicago, Illinois July 2003 PRINTED ON RECYCLED PAPER #12;BCI RECYCLING RATE STUDY TABLE ....................................................................................................1 II. METHODOLOGY A. Total Pounds of Lead Recycled from Batteries

  11. CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING

    E-print Network

    Torrellas, Josep

    1 2 3 CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING Jos´e F. Mart´inez1 , Jose Renau2 Michael C. Huang3 , Milos Prvulovic2 , and Josep Torrellas2 #12;Cherry: Checkpointed Early Resource Recycling: Decouple recycling from retirement #12;Cherry: Checkpointed Early Resource Recycling in Out

  12. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    SciTech Connect

    Nieves, L.A.; Burke, C.J.

    1995-08-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of {open_quotes}voluntariness of risk assumption,{close_quotes} of {open_quotes}disaster potential,{close_quotes} and of {open_quotes}benefit{close_quotes} are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling.

  13. Preparation and properties of glass-ceramic materials obtained by recycling goethite industrial waste

    Microsoft Academic Search

    M. PELINO; C. CANTALINI; J. M A. RINCON

    1997-01-01

    The recycling of toxic goethite waste, originated in the hydrometallurgy of zinc ores, in glass-ceramic matrices has been\\u000a studied. Oxide compositions suitable to form glasses were prepared by mixing the goethite waste with granite scraps and glass\\u000a cullet, yielding the following oxide composition (wt%): SiO2, 44.6; Al2O3, 3.3; Fe2O3, 25.5; MgO, 1.6; CaO, 4.5; Na2O, 5.9; PbO, 3.1; ZnO, 6.5;

  14. White goods recycling in the United States: Economic and technical issues in recovering, reclaiming, and reusing nonmetallic materials

    SciTech Connect

    Karvelas, D.E.; Jody, B.J.; Daniels, E.J.

    1995-02-01

    Obsolete white goods (appliances such as refrigerators, freezers, washers, dryers, ranges, dishwashers, water heaters, dehumidifiers, and air conditioners) contain significant quantities of recyclable materials, but because of economic and environmental concerns, only limited quantities of these scrap materials are currently being recycled. Appliances are manufactured from a mix of materials, such as metals, polymers, foam, and fiberglass; metals represent more than 75% of the total weight. Appliance recycling is driven primarily by the value of the steel in the appliances. Over the last 15 years, however, the use of polymers in appliance manufacturing has increased substantially at the expense of metals. The shift in the materials composition of appliances may threaten the economics of the use of obsolete appliances as a source for scrap metals. To increase the recycling of white goods, cost-effective and environmentally acceptable technologies must be developed to separate, recover, reclaim, and reuse polymers from discarded appliances. Argonne National Laboratory is currently conducting research, with industry support, to develop cost-effective processes and methods for recovering and reclaiming acrylonitrile butadiene-styrene and High-density polystyrene from discarded appliances. This collaborative research focuses on developing a combination of mechanical/physical and chemical separation methods for recovering and reusing these high-value plastics. In addition, cost-effective methods for improving the performance characteristics of the recovered plastics are being investigated with the goal of recycling these plastics to their original application. In this paper, we examine the technical and economic issues that affect the recycling of white goods and present results of Argonne`s white goods recycling research and development activities.

  15. Making Recycled Paper

    NSDL National Science Digital Library

    American Chemical Society

    2011-01-01

    In this activity on page 11 of the PDF, learners follow simple steps to recycle old newspaper into new paper. Use this activity to introduce conservation as well as the chemistry of cellulose and how paper products are made.

  16. Reduce, Reuse, Recycle

    NSDL National Science Digital Library

    WGBH Educational Foundation

    2010-11-30

    In this media-rich lesson featuring LOOP SCOOPS videos, students consider how the concept of needs vs. wants can help them think about ways to protect Earth's natural resources by reducing, reusing, and recycling materials.

  17. Climate Kids: Recycle This!

    NSDL National Science Digital Library

    The site features an online game in which participants keep recyclable items out of the trash by guiding them into proper bins. Accompanying the game is a list of three categories of items that can be recycled, along with the benefits of doing so. This lesson is part of the Climate Kids website, a NASA education resource featuring articles, videos, images and games focused on the science of climate change.

  18. Recycling of composite materials

    Microsoft Academic Search

    M. Buggy; L. Farragher; W. Madden

    1995-01-01

    An economic survey of composite manufacturing was carried out to help to identify suitable fibre\\/resin systems for recycling trials. Three separate recycling strategies were also adopted. The first of these was the re-use of in-process polyester\\/glass prepreg offcuts, which were quantified and then reprocessed using a simple pressing technique. Three different panel types were pressed and subjected to comparative physical

  19. Recycling of PET

    Microsoft Academic Search

    Firas Awaja; Dumitru Pavel

    2005-01-01

    The recycling of post-consumer PET (POSTC-PET) as a technology is a cross-disciplinary practice with many fields of science involved. These include polymer chemistry and physics, process engineering and manufacturing engineering. This paper presents a concise background of the current state of knowledge with respect to POSTC-PET recycling covering the disciplines mentioned above. In the first section of this paper, a

  20. Recycling of nonmetallics

    USGS Publications Warehouse

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  1. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...your scrap specifications for removal of mercury switches from vehicle bodies...i) of this section for removal of mercury switches. You must submit...chain the need to promote the removal of mercury switches from...

  2. Crosslinking kinetics of SBR composites containing vulcanized ground scraps as filler

    Microsoft Academic Search

    Larissa N. Carli; Otávio Bianchi; Raquel S. Mauler; Janaina S. Crespo

    The aim of this study was to characterize the cure reaction of styrene–butadiene rubber (SBR) composites containing industrial\\u000a rubber scraps. Different proportions of SBR ground scraps (SBR-r), varying from 10 to 80 parts per hundred of rubber, were\\u000a incorporated into a base formulation of identical composition. Crosslink formation and the kinetics of the cure reaction were\\u000a evaluated through oscillatory disk

  3. High-alumina mortar from scrap of refractory articles after use in metallurgical units

    Microsoft Academic Search

    L. A. Babkina; M. I. Prokopenko; A. V. Kushchenko; N. A. Stepanyuk

    1995-01-01

    Scrap of refractory articles of grades MKS-72, MLKh-65, and ShKh-42 after use in steel-teeming and intermediate ladles of the OMK is studied. The possibility of using after-use scrap in the production of mortar is investigated. Experimental batches of high-alumina mortar have been produced and tested with positive results in linings of steel-teeming and intermediate ladles.

  4. A mathematical model for pertraction of uranium in hollow fiber contactor using TBP

    Microsoft Academic Search

    Smita Dixit; S. Mukhopadhyay; Smita Govalkar; K. T. Shenoy; H. Rao; S. K. Ghosh

    2012-01-01

    Recovery of uranium from the raffinate stream of uranium extraction plant (UNRS) has been investigated with TBP\\/dodecane–NaHCO3 system using hollow fiber dispersion liquid membrane with the objective of polishing of streams and recycle\\/safe disposal of effluent water. A mathematical model has been developed to predict the transport of uranium through Dispersed Liquid Membrane (DLM) configuration in hollow fiber contactor. The

  5. Process for removing copper in a recoverable form from solid scrap metal

    DOEpatents

    Hartman, Alan D. (Albany, OR); Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR)

    1995-01-01

    A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.

  6. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  7. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect

    Wilson, K. L.

    1997-08-01

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  8. Recycle Experience of Dismantled Cask Handling Crane by Surface Removal Sampling at Kori Unit No.1

    SciTech Connect

    Kim, K. D.; Baeg, C. Y.; Son, J. K.; Kim, H. S.; Ha, J. A.; Song, M. J.

    2002-02-25

    The Kori No.1, which began operation in 1978, replaced its cask handling crane in 2000. To prove the safety of recycling and reuse of crane scrap, a particular calculation method for surface contamination was used. Because surface radioactive contamination of steel is limited to a few-microns-thick layer, we can calculate the total(removable and fixed contamination) activity of the sample conservatively by this surface removal sampling means. If we multiply the ratio of total surface and the area of the selected surface by its activity, total activity of the scrap can be estimated. Conservatively, the sampled portion can be used as a representative sample of the scrap. Both the inner and outer part of the scrap was sampled separately, and gamma spectra were analyzed to check whether activation had occurred. Before sampling, the entire surface of the steel is scan surveyed by several kinds of GM and GP detectors. Contaminated parts were segregated, or decontaminated to the background. Almost one sample per one ton of steel was collected. Gamma spectra of 62 samples were analyzed by 100% efficiency HP Ge detector. Only 60Co was detected, and its highest activity was 0.01 Bq/g,. This level of activity is much lower than the ''clearance levels'' outlined in IAEA TecDoc-855.(4). The total alpha and total beta for 6 samples were measured in the laboratory by low background alpha, using a beta gas proportional counter. Activities were much lower than 0.005 Bq/g. A representative sample was taken from the complete mixture of 62 samples. Gamma activities of nuclides were measured to estimate the dose to the public. This study revealed that activities of nuclides were lower than 'clearance levels' if decontaminated until the lower limit of detection level of the portable field instrument. New surface removal sampling method was tested. This method allows us to easily calculate the specific activity for the solid material.

  9. Planning the e-Scrap Reverse Production System Under Uncertainty in the State of Georgia: A Case Study

    Microsoft Academic Search

    I-Hsuan Hong; Tiravat Assavapokee; Jane Ammons; Chuck Boelkins; Kennon Gilliam; Devon Oudit; Matthew J. Realff; Juan Martín Vannícola; W. Wongthatsanekorn

    2006-01-01

    Due to legislative requirements, environmental concerns, and market image, the disposition of end-of-life e-scrap is attracting tremendous attention in many parts of the world today. Effective management of returned used product flows can have a great impact on the profitability and resulting financial viability of associated e-scrap reverse production systems. However, designing efficient e-scrap reverse production systems is complicated by

  10. Modeling the energy content of combustible ship-scrapping waste at Alang–Sosiya, India, using multiple regression analysis

    Microsoft Academic Search

    M. Srinivasa Reddy; Shaik Basha; H. V. Joshi; V. G. Sravan Kumar; B. Jha; P. K. Ghosh

    2005-01-01

    Alang–Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10×106(±7.82×105) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol

  11. Resource recovery of scrap silicon solar battery cell.

    PubMed

    Lee, Ching-Hwa; Hung, Chi-En; Tsai, Shang-Lin; Popuri, Srinivasa R; Liao, Ching-Hua

    2013-05-01

    In order to minimize pollution problems and to conserve limited natural resources, a hydrometallurgical procedure was developed in this study to recover the valuable resources of silicon (Si), silver (Ag) and aluminum (Al) from scrap silicon solar battery cells. In this study, several methods of leaching, crystallization, precipitation, electrolysis and replacement were employed to investigate the recovery efficiency of Ag and Al from defective monocrystalline silicon solar battery cells. The defective solar battery cells were ground into powder followed by composition analysis with inductively coupled plasma-atomic emission spectrometry. The target metals Ag and Al weight percentage were found to be 1.67 and 7.68 respectively. A leaching process was adopted with nitric acid (HNO3), hydrochloric acid, sulfuric acid (H2SO4) and sodium hydroxide as leaching reagent to recover Ag and Al from a ground solar battery cell. Aluminum was leached 100% with 18N H2SO4 at 70°C and Ag was leached 100% with 6N HNO3. Pure Si of 100% was achieved from the leaching solution after the recovery of Ag and Al, and was analyzed by scanning electron microscope-energy dispersive spectroscopy. Aluminum was recovered by crystallization process and silver was recovered by precipitation, electrolysis and replacement processes. These processes were applied successfully in the recovery of valuable metal Ag of 98-100%. PMID:23460539

  12. Distillation of granulated scrap tires in a pilot plant.

    PubMed

    López, Félix A; Centeno, Teresa A; Alguacil, Francisco José; Lobato, Belén

    2011-06-15

    This paper reports the pyrolytic treatment of granulated scrap tires (GST) in a pilot distillation unit at moderate temperature (550°C) and atmospheric pressure, to produce oil, char and gas products. Tire-derived oil is a complex mixture of organic C(5)-C(24) compounds, including a very large proportion of aromatic compounds. This oil has a high gross calorific value (? 43 MJ kg(-1)) and N and S contents of 0.4% and 0.6%, respectively, falling within the specifications of certain heating fuels. The distillation gas is composed of hydrocarbons; methane and n-butane are the most abundant, investing the distillation gas with a very high gross calorific value (? 68 MJ Nm(-3)). This gas is transformed into electric power by a co-generation turbine. The distillation char is mostly made of carbon but with significant inorganic impurities (? 12 wt%). The quality of the solid residue of the process is comparable to that of some commercial chars. The quantity of residual solids, and the qualities of the gas, liquid and solid fractions, are similar to those obtained by conventional pyrolytic treatments of waste tires. However, the simplicity of the proposed technology and its low investment costs make it a very attractive alternative. PMID:21493004

  13. Method and apparatus for forming billets from metallic chip scraps

    DOEpatents

    Girshov, Vladimir Leonidovich (St. Petersburg, RU); Treschevskiy, Arnold Nikolayevich (St. Petersburg, RU); Kochkin, Victor Georgievich (St. Petersburg, RU); Abramov, Alexey Alexandrovich (St. Petersburg, RU); Sidenko, Natalja Semenovna (St. Petersburg, RU)

    2006-05-02

    After recycled titanium alloy chips are crushed and cleaned, they are pressed into cylindrically briquettes with a relative density of 0.6, and placed into capsules. The capsules are heated and placed into a preheated pressing rig. The pressing rig repetitively applies axial force to the capsule, resulting in a relative density of at least 0.95. The product billets are used for consumable electrodes, secondary casting alloys, forgings, extruded semi-finished products and the like.

  14. Chemical Recycling of Polyurethanes and Applications for the Recyclates

    Microsoft Academic Search

    K. K. You; D. T. Durocher; P. Ch. Kierkus; T. L. Fishback

    1998-01-01

    The recycling of thermoset materials, including polyurethane, has always posed unique challenges. Traditional approaches to recycling such materials include mechanical regrinding and the use of the regrind as filler. Chemical recycling of polyurethanes by such means as hydrolysis, aminolysis, and glycolysis, is for the most part considered economically uncompetitive compared to formulating with virgin raw materials. To protect our environment

  15. Recycled Aluminum Ornaments

    NSDL National Science Digital Library

    Wishart, Ray

    This lesson plan from ATEEC will explain the principles of recycling. The activity would be most appropriate for technology studies or high school science classes. In all, it would require 2-5 hours of class time to complete. The purpose of the lesson is to demonstrate how aluminum is recycled. This laboratory activity does require some special equipment including a heat source capable of melting aluminum and an outdoor work area. Extension activities are also provided. The lesson plan is available for download as a PDF; users must create a free, quick login with ATEEC to access the materials.

  16. Power recycling for an interferometric gravitational wave

    E-print Network

    Ejiri, Shinji

    THESIS Power recycling for an interferometric gravitational wave detector Masaki Ando Department . . . . . . . . . . . . . . 48 3.3 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Principle of power recycling . . . . . . . . . . . . . . . . . 50 3.3.2 Recycling cavity

  17. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect

    Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

    2003-04-01

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  18. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect

    Peterson, E.S.; Trudeau, J.; Cleary, B.; Hackett, M.; Greene, W.A.

    2003-04-30

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20?25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  19. Mercury recycling in the United States in 2000

    USGS Publications Warehouse

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    Reclamation and recycling of mercury from used mercury- containing products and treatment of byproduct mercury from gold mining is vital to the continued, though declining, use of this metal. Mercury is reclaimed from mercury-containing waste by treatment in multistep high-temperature retorts-the mercury is volatized and then condensed for purification and sale. Some mercury-containing waste, however, may be landfilled, and landfilled material represents loss of a recyclable resource and a threat to the environment. Related issues include mercury disposal and waste management, toxicity and human health, and regulation of mercury releases in the environment. End-users of mercury-containing products may face fines and prosecution if these products are improperly recycled or not recycled. Local and State environmental regulations require adherence to the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation, and Liability Act to regulate generation, treatment, and disposal of mercury-containing products. In the United States, several large companies and a number of smaller companies collect these products from a variety of sources and then reclaim and recycle the mercury. Because mercury has not been mined as a principal product in the United States since 1992, mercury reclamation from fabricated products has become the main source of mercury. Principal product mercury and byproduct mercury from mining operations are considered to be primary materials. Mercury may also be obtained as a byproduct from domestic or foreign gold-processing operations. In the early 1990s, U.S. manufacturers used an annual average that ranged from 500 to 600 metric tons of recycled and imported mercury for fabrication of automobile convenience switches, dental amalgam, fluorescent lamps, medical uses and thermometers, and thermostats. The amount now used for fabrication is estimated to be 200 metric tons per year or less. Much of the data on mercury is estimated because it is a low-volume commodity and its production, use, and disposal is difficult to track. The prices and volumes of each category of mercury-containing material may change dramatically from year to year. For example, the average price of mercury was approximately $150 per flask from 2000 until 2003 and then rose sharply to $650 per flask in fall 2004 and approximately $850 per flask in spring 2005. Since 1927, the common unit for measuring and pricing mercury has been the flask in order to conform to the system used at Almaden, Spain (Meyers, 1951). One flask weighs 34.5 kilograms, and 29 flasks of mercury are contained in a metric ton. In the United States, the chlorine-caustic soda industry, which is the leading end-user of elemental mercury, recycles most of its mercury in-plant as home scrap. Annual purchases of replacement mercury by the chlorine-caustic soda industry indicate that some mercury may be lost through evaporation to the environment, put into a landfill as industrial waste, or trapped within pipes in the plant. Impending closure of domestic and foreign mercury-cell chlorine-caustic soda plants and the shift to nonmercury technology for chlorine-caustic soda production could ultimately result in a significant volume of elemental mercury for recycling, sale, or storage. Globally, mercury is widely used in artisanal, or small-scale, gold mining. Most of that mercury is lost to the environment and is not recycled. The recycling rate for mercury was not available owing to insufficient data in 2000, and the efficiency of mercury recycling was estimated to be 62 percent.

  20. Urban waste recycling in Taiwan

    Microsoft Academic Search

    Gordon C. C. Yang

    1995-01-01

    The urban waste recycling program in Taiwan is discussed. During the past few years, the quantity of urban waste generated in Taiwan has greatly increased, about 8–10% per year. Approx., 50 wt.% or more of the waste items in urban waste are found to be valuable and worth recycling. Recycling is of much significance to Taiwan because of a lack

  1. PITT RECYCLES! *Please empty cans!

    E-print Network

    Sibille, Etienne

    PITT RECYCLES! Steel Aluminum Tin cans *Please empty cans! *Please empty containers! *Plastic bags can be recycled at Giant Eagle and Trader Joe's. Look on the bottom or the side of the container NOT Recyclable... Food waste Lunch bags Coffee cups Cellophane Tissues Paper towels Carbon paper Styrofoam Metals

  2. Recycling Behavior: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  3. Antiproton stacking in the Recycler

    SciTech Connect

    Alexey Burov

    2003-06-23

    Possibilities to accumulate antiprotons in the Recycler are considered for three different cases: with current stochastic cooling, with upgraded stochastic cooling and with electron cooling. With stochastic cooling only, even upgraded, Recycler looks hardly useful. However, with electron cooling at its goal parameters and reasonably good vacuum in the Recycler, this machine would be efficient.

  4. Recycled concrete aggregates

    Microsoft Academic Search

    Nik. D. Oikonomou

    2005-01-01

    The subject of concrete recycling is regarded as very important in the general attempt for sustainable development in our times. In a parallel manner, it is directly connected with (a) increase of demolition structures past out of performance time, (b) demand for new structures and (c) results––especially in Greece––of destruction by natural phenomena (earthquakes, etc.). The present paper refers to

  5. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  6. Recycling and Restoration

    NSDL National Science Digital Library

    KET

    2011-01-11

    This video explains how Bernheim Arboretum and Research Forest near Louisville, Kentucky used recycled cypress from pickle vats to build its visitor center and then “paid back” nature by creating a cypress-tupelo swamp at one end of a lake on the park grounds.

  7. RECYCLABILITY INDEX FOR AUTOMOBILES

    EPA Science Inventory

    The project's purpose is to create a rating system for the ecological impacts of vehicles at the end of their life based on recyclability, toxic material content, and ultimate disposal. Each year, 10-11 million vehicles are retired from service in the United States. The vehi...

  8. Computer Recycling Farm USA

    USGS Multimedia Gallery

    USGS conducted a study of plastic pollution at this rural US site in the Midwest.  The recycler was receiving computers from companies at a rate which greatly exceeded the capacity of the operation.  Approximately 50,000 computers remained outdoors on 15 acres for nearly a decade.  The site has sinc...

  9. Depleted uranium: A DOE management guide

    SciTech Connect

    NONE

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  10. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect

    FRANCIS,A.J.

    1998-09-17

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  11. Recycling and recovery routes of plastic solid waste (PSW): a review.

    PubMed

    Al-Salem, S M; Lettieri, P; Baeyens, J

    2009-10-01

    Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently investigated up to the point of operation, but not in terms of integration with either petrochemical or converting plants. Although primary and secondary recycling schemes are well established and widely applied, it is concluded that many of the PSW tertiary and quaternary treatment schemes appear to be robust and worthy of additional investigation. PMID:19577459

  12. Study of the radiotoxicity of actinides recycling in boiling water reactors fuel

    Microsoft Academic Search

    J. L. François; J. R. Guzmán; C. Martín-del-Campo

    2009-01-01

    In this paper the production and destruction, as well as the radiotoxicity of plutonium and minor actinides (MA) obtained from the multi-recycling of boiling water reactors (BWR) fuel are analyzed. A BWR MOX fuel assembly, with uranium (from enrichment tails), plutonium and minor actinides is designed and studied using the HELIOS code. The actinides mass and the radiotoxicity of the

  13. The Fernald Waste Recycling Program

    SciTech Connect

    Motl, G.P.

    1993-10-26

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald`s current recycling initiatives.

  14. Decontamination of uranium-contaminated steel surfaces by hydroxycarboxylic acid with uranium recovery.

    PubMed

    Francis, A J; Dodge, C J; McDonald, J A; Halada, G P

    2005-07-01

    We developed a simple, safe method to remove uranium from contaminated metallic surfaces so that the materials can be recycled or disposed of as low-level radioactive or nonradioactive waste. Surface analysis of rusted uranium-contaminated plain carbon-steel coupons by X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy showed that uranium was predominantly associated with ferrihydrite, lepidocrocite, and magnetite, or occluded in the matrix of the corrosion product as uranyl hydroxide and schoepite (UO3 x 2H2O). Citric acid formulations, consisting of oxalic acid-hydrogen peroxidecitric acid (OPC) or citric acid-hydrogen peroxidecitric acid (CPC), were used to remove uranium from the coupons. The efficiency of uranium removal varied from 68% to 94% depending on the extent of corrosion, the association of uranium with the iron oxide matrix, and the accessibility of the occluded contaminant. Decontaminated coupons clearly showed evidence of the extensive removal of rust and uranium. The waste solutions containing uranium and iron from decontamination by OPC and CPC were treated first by subjecting them to biodegradation followed by photodegradation. Biodegradation of a CPC solution by Pseudomonas fluorescens resulted in the degradation of the citric acid with concomitant precipitation of Fe (>96%), whereas U that remained in solution was recovered (>99%) by photodegradation as schoepite. In contrast, in an OPC solution citric acid was biodegraded but not oxalic acid, and both Fe and U remained in solution. Photodegradation of this OPC solution resulted in the precipitation of iron as ferrihydrite and uranium as uranyl hydroxide. PMID:16053105

  15. Occurrence of Metastudtite (Uranium Peroxide Dihydrate) at a FUSRAP Site

    SciTech Connect

    Young, C.M.; Nelson, K.A. [Cabrera Services, Inc., 103 East Mount Royal Avenue, Baltimore, MD 21202 (United States); Stevens, G.T.; Grassi, V.J. [US Army Corps of Engineers, Philadelphia District, 100 Penn Square East, Philadelphia, PA 19107-3390 (United States)

    2006-07-01

    Uranium concentrations in groundwater in a localized area of a site exceed the USEPA Maximum Contaminant Level (MCL) by a factor of one thousand. Although the groundwater seepage velocity ranges up to 0.7 meters per day (m/day), data indicate that the uranium is not migrating in groundwater. We believe that the uranium is not mobile because of local geochemical conditions and the unstable nature of the uranium compound present at the site; uranium peroxide dihydrate (metastudtite). Metastudtite [UO{sub 4}.2(H{sub 2}O) or (U(O{sub 2})|O|(OH){sub 2}).3H{sub 2}O] has been identified at other sites as an alteration product in casks of spent nuclear fuel, but neither enriched nor depleted uranium were present at this site. Metastudtite was first identified as a natural mineral in 1983, although documented occurrences in the environment are uncommon. The U.S. Army Corps of Engineers (USACE) is conducting a remedial investigation at the DuPont Chambers Works in Deep water New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP) to evaluate radioactive contamination resulting from historical activities conducted in support of Manhattan Engineering District operations. From 1942 to 1947, Chambers Works converted uranium oxides to uranium tetrafluoride and uranium metal. More than half of the production at this facility resulted from the recovery process, where uranium-bearing dross and scrap were reacted with hydrogen peroxide to produce uranium peroxide dihydrate. The 280-hectare Chambers Works has produced some 600 products, including petrochemicals, aromatics, fluoro-chemicals, polymers, and elastomers. Contaminants resulting from these processes, including separate-phase petrochemicals, have also been detected within the boundaries of the FUSRAP investigation. USACE initiated remedial investigation field activities in 2002. The radionuclides of concern are natural uranium (U{sub nat}) and its short-lived progeny. Areas of impacted soil generally correspond to the footprints of the former production buildings. U{sub nat} concentrations in soil exceed the investigative screening value, 518 Becquerels per kilogram (Bq/kg) [14 pico-curies per gram (pCi/g)], to an approximate depth of 2.5 m. This depth corresponds to the depth of buried demolition debris from the uranium processing site. Aqueous-phase uranium has also been confirmed at the site and appears to coincide with uranium-impacted soils. Soil textures in the impacted area consist mainly of fine-grained silty sand and rubble. The hydraulic conductivities range from 5 E-6 to 1 E-5 m/s. Groundwater seepage velocity ranges from 0.003 m/day to 0.7 m/day in the impacted area. Groundwater investigations conducted throughout the FUSRAP site indicate that redox conditions in the shallow groundwater are reducing, with low dissolved oxygen concentrations, as would be expected underlying a petrochemical facility. In contrast, groundwater in the uranium source area is an oxidizing microenvironment, with elevated pH conditions, despite the presence of free-phase liquid hydrocarbons in close proximity. Dissolved oxygen is elevated in the uranium source area, which may be due to the presence of metastudtite. Metastudtite has been shown to produce hydrogen peroxide through the process of alpha irradiation of water molecules. Uranium peroxide dihydrate is more soluble in water than other hexavalent mineral forms. The literature suggests that in the absence of hydrogen peroxide, metastudtite is unstable in groundwater. Although the presence of metastudtite in the source area may have caused locally high levels of aqueous-phase uranium to form, the uranium ions may not be mobile outside of this small area because of significant abrupt changes in geochemical conditions. The ongoing groundwater investigation includes tasks to confirm the presence of metastudtite and hydrogen peroxide, and monitor for seasonal geochemical or hydrogeologic changes. (authors)

  16. 29 CFR 570.63 - Occupations involved in the operation of paper-products machines, scrap paper balers, and paper...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...involved in the operation of paper-products machines, scrap paper balers, and paper box...involved in the operation of paper-products machines, scrap paper balers, and paper box...following power-driven paper products machines: (i) Arm-type wire stitcher...

  17. Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis.

    PubMed

    Uzun, B B; Yaman, E

    2014-10-01

    The degradation kinetics of Juglans regia shell, scrap tyre and their blends were investigated using a thermogravimetric analysis method. Experiments were performed under dynamic conditions and a nitrogen atmosphere in the range 293 to 973?K at different heating rates. During pyrolysis of J. regia shell three mass loss zones were specified as removal of water, decomposition of hemicelluloses and cellulose, and decomposition of lignin. The degradation curves of scrap tyre showed merely one stage which was due to decomposition of styrene butadiene rubber. The kinetic parameters were calculated using both Arrhenius and Coats-Redfern methods. By adopting the Arrhenius method, the average value of activation energies of J. regia shell, scrap tyre and their 1?:?1 blends were found to be 69.22, 71.48 and 47.03?kJ?mol(-1), respectively. Additionally, by using the Coats-Redfern method, the average value of activation energies of J. regia shell, scrap tyre and their 1?:?1 blend were determined as 99.85, 78.72 and 63.81?kJ?mol(-1), respectively. The addition of J. regia shell to scrap tyre caused a reduction in the activation energies. The difference of weight loss was measured to examine interactions between raw materials. The maximum difference between experimental and theoretical mass loss was 5% at about 648?K with a heating rate of 20?K?min(-1). These results indicated a significant synergistic effect was available during co-pyrolysis of J. regia shell and scrap tyre in the high temperature region. PMID:25030024

  18. Recycling prosodic boundaries.

    PubMed

    Hirose, Yuki

    2003-03-01

    The present study investigates the role of prosodic structure in selecting a syntactic analysis at different stages of parsing in silent reading of Japanese relative clauses. Experiments 1 and 2 (sentence-completion questionnaires) revealed an effect of the length of the sentence-initial constituent on the resolution of a clause boundary ambiguity in Japanese. Experiment 3 (fragment-reading) showed that this length manipulation is also reflected in prosodic phrasing in speech. Its influence on ambiguity resolution is attributed to "recycling" of prosodic boundaries established during the first-pass parse. This explanation is based on the implicit prosody proposals of Bader (1998) and Fodor (1998). Experiment 4 (self-paced reading) demonstrated the immediacy of the influence on ambiguity resolution on-line. Experiment 5 (self-paced reading) found support for the additional prediction that when no boundary is available to be recycled, processing the relative clause construction is more difficult. PMID:12690830

  19. Control levels for residual contamination in materials considered for recycle and reuse

    SciTech Connect

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1993-09-01

    Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support joint efforts by the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water and Radiation Division (DOE/EH-232); by the U.S. Environmental Protection Agency (EPA); and by the U.S. Nuclear Regulatory Commission (NRC) to develop radiological control criteria for the recycle and reuse of scrap materials and equipment that contain residual radioactive contamination. The initial radiological control levels are the concentrations in or on materials considered for recycle or reuse that meet the individual (human) or industrial (electronics/film) dose criteria. The analysis identifies relevant radionuclides, potential mechanisms of exposure, and methods to determine possible non-health-related impacts from residual radioactive contamination in materials considered for recycle or reuse. The generic methodology and scenarios described here provide a basic framework for numerically deriving radiological control criteria for recycle or reuse. These will be adequately conservative for most situations.

  20. Composting to Recycle Biowaste

    Microsoft Academic Search

    György Füleky; Szilveszter Benedek

    \\u000a If agriculture is to be made sustainable, few activities like composting are very important. Composting not only allows organic\\u000a waste of agricultural origin to be recycled and returned to the soil, but also provides a solution for managing much of the\\u000a waste, which is currently a major problem. If urban organic waste is selectively collected and composted, it no longer

  1. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating out radioactive contamination, the copper cable was coated with a surrogate contaminant. The demonstration took place at the Bonneville County Technology Center in Idaho Falls, Idaho.

  2. Recycling of pavement materials 

    E-print Network

    O'Neal, Randy Jim

    1976-01-01

    as test projects. Samples of loose mix were obtained for Hveem and Marshall stabilities, direct tension, splitting tensile, and. Schmidt tests. Four inch diameter cores were obtained after compaction and. service. Samples were cut from the cores... for testing of Hveem and Marshall stabilities, splitting tensile, and Schmidt tests. Data was compi. led and analyzed. Test results were inputed into the layered elastic design program in order to determine the structural adequacy of the recycled...

  3. Waste hydrocarbons recycling

    SciTech Connect

    Brinkman, D.W.

    1986-03-01

    During the 1970s, the U.S. supply of petroleum was predicted to be quickly vanishing. The price we would have to pay for what remained would be unprecedented. All alternatives would not only have to be explored, but exploited to their fullest potential. In that decade of recycling aluminum cans, glass bottles, and newspapers by the truckloads, the recycling of petroleum products that had become contaminated, oxidized, or otherwise made unsuitable for their intended use seemed so obvious as to be trivial. Indeed, the level of interest in recycling petroleum products in the 70s was reflected on the quantity of research performed, papers published and patents granted. More than 1,200 reports, patents, and other technical publications were recently documented for this rather narrow subject. And the potential would seem to justify this level of interest. A table shows some of the major waste of used petroleum streams available in the United States alone. Many of these streams represent highly refined products into which we have already invested considerable time and energy. Can these products be recovered for a relatively low additional investment in time and energy. Examples addressing the two largest categories - used lubricating oil and contaminated fuels - are discussed here.

  4. Why recycle? A comparison of recycling motivations in four communities

    Microsoft Academic Search

    Joanne Vining; Nancy Linn; Rabel J. Burdge

    1992-01-01

    Four Illinois communities with different sociode-mographic compositions and at various stages of planning for solid waste\\u000a management were surveyed to determine the influence of sociodemographic variables and planning stages on the factors that\\u000a motivate recycling behavior. A factor analysis of importance ratings of reasons for recycling and for not recycling yielded\\u000a five factors interpreted as altruism, personal inconvenience, social influences,

  5. Effect of recycled coarse aggregate on damage of recycled concrete

    Microsoft Academic Search

    Belén González-Fonteboa; Fernando Martínez-Abella; Javier Eiras-López; Sindy Seara-Paz

    This study evaluates the possibility of measuring the damage of the recycled concrete. In this way, two conventional concretes\\u000a with a w\\/c ratio of 0.55 and 0.65 were designed. Based on them, six recycled concretes with different percentages of replacement\\u000a of natural coarse aggregates with recycled coarse aggregate (20, 50 and 100%) were obtained. To take into account the high

  6. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    SciTech Connect

    Not Available

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

  7. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect

    Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

    2013-07-01

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  8. Why recycle? A comparison of recycling motivations in four communities

    NASA Astrophysics Data System (ADS)

    Vining, Joanne; Linn, Nancy; Burdge, Rabel J.

    1992-11-01

    Four Illinois communities with different sociode-mographic compositions and at various stages of planning for solid waste management were surveyed to determine the influence of sociodemographic variables and planning stages on the factors that motivate recycling behavior. A factor analysis of importance ratings of reasons for recycling and for not recycling yielded five factors interpreted as altruism, personal inconvenience, social influences, economic incentives, and household storage. The four communities were shown to be significantly different in multivariate analyses of the five motivational factors. However, attempts to explain these community differences with regression analyses, which predicted the motivational factors with dummy codes for planning stages, a measure of self-reported recycling behavior, and sociodemographic measures were unsatisfactory. Contrary to expectation, the solid waste management planning stages of the cities (curbside pickup, recycling dropoff center, and planning in progress) contributed only very slightly to the prediction of motivational factors for recycling. Community differences were better explained by different underlying motivational structures among the four communities. Altruistic reasons for recycling (e.g., conserving resources) composed the only factor which was similar across the four communities. This factor was also perceived to be the most important reason for recycling by respondents from all four communities. The results of the study supported the notion that convenient, voluntary recycling programs that rely on environmental concern and conscience for motivation are useful approaches to reducing waste.

  9. Leaching studies for tin recovery from waste e-scrap

    SciTech Connect

    Jha, Manis Kumar, E-mail: maniskrjha@gmail.com [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Choubey, Pankaj Kumar; Jha, Amrita Kumari; Kumari, Archana [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Lee, Jae-chun, E-mail: jclee@kigam.re.kr [Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Kumar, Vinay [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Jeong, Jinki [Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)

    2012-10-15

    Printed circuit boards (PCBs) are the most essential components of all electrical and electronic equipments, which contain noteworthy quantity of metals, some of which are toxic to life and all of which are valuable resources. Therefore, recycling of PCBs is necessary for the safe disposal/utilization of these metals. Present paper is a part of developing Indo-Korean recycling technique consists of organic swelling pre-treatment technique for the liberation of thin layer of metallic sheet and the treatment of epoxy resin to remove/recover toxic soldering material. To optimize the parameters required for recovery of tin from waste PCBs, initially the bench scale studies were carried out using fresh solder (containing 52.6% Sn and 47.3% Pb) varying the acid concentration, temperature, mixing time and pulp density. The experimental data indicate that 95.79% of tin was leached out from solder material using 5.5 M HCl at fixed pulp density 50 g/L and temperature 90 Degree-Sign C in mixing time 165 min. Kinetic studies followed the chemical reaction controlled dense constant size cylindrical particles with activation energy of 117.68 kJ/mol. However, 97.79% of tin was found to be leached out from solder materials of liberated swelled epoxy resin using 4.5 M HCl at 90 Degree-Sign C, mixing time 60 min and pulp density 50 g/L. From the leach liquor of solder materials of epoxy resin, the precipitate of sodium stannate as value added product was obtained at pH 1.9. The Pb from the leach residue was removed by using 0.1 M nitric acid at 90 Degree-Sign C in mixing time 45 min and pulp density 10 g/L. The metal free epoxy resin could be disposed-of safely/used as filling material without affecting the environment.

  10. MOTIVATIONS AND BEHAVIORS THAT SUPPORT RECYCLING

    Microsoft Academic Search

    Carol M. Werner; Eeva Makela

    1998-01-01

    This paper proposes that recycling researchers should pay attention to both attitudes towards recycling and the processes involved in recycling (recyclers' phenomenal experiences and organizing strategies). As predicted by Sansone and colleagues' model of how people induce themselves to engage in necessary but boring tasks, people who had reasons to persist at recycling (that is, who held strong prorecycling attitudes

  11. Recycling Bin Guide Locations and prices

    E-print Network

    Kirschner, Denise

    Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

  12. Recycling Best Practices Report August 2011

    E-print Network

    Kirschner, Denise

    Recycling Best Practices Report August 2011 Elizabeth Fox, Recycling Best Practices Intern Office of Waste Reduction and Recycling University of Michigan Plant Building and Grounds Services #12;Recycling Best Practices Report Office of Waste Reduction and Recycling 1 Executive Summary Due to the high

  13. Zero Waste Program 2011 Recycling Benefits

    E-print Network

    Delgado, Mauricio

    Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company saved energy and reduced Greenhouse Gases through recycling. Recycling uses less energy, preserves from recycled material than from virgin, raw material. RESOURCE SAVINGS 4203 Metric Tons (MTCO2E

  14. Environmental Management Waste and Recycling Policy

    E-print Network

    Haase, Markus

    Environmental Management Waste and Recycling Policy October 2006 The University is committed and promoting recycling and the use of recycled materials. We will actively encourage the recycling of office reduction techniques · Provide facilities for recycling on campus · Give guidance and information to staff

  15. MICROBIAL TRANSFORMATIONS OF URANIUM AND ENVIRONMENTAL RESTORATION THROUGH BIOREMEDIATION.

    SciTech Connect

    FRANCIS,A.J.

    2002-09-10

    Microorganisms present in the natural environment play a significant role in the mobilization and immobilization of uranium. Fundamental understanding of the mechanisms of microbiological transformations of various chemical forms of uranium present in wastes and contaminated soils and water has led to the development of novel bioremediation processes. One process uses anaerobic bacteria to stabilize the radionuclides and toxic metals from the waste, with a concurrent reduction in volume due to the dissolution and removal of nontoxic elements from the waste matrix. In an another process, uranium and other toxic metals are removed from contaminated soils and wastes by extracting with the chelating agent citric acid. Uranium is recovered from the citric acid extract after biodegradation/photodegradation in a concentrated form as UO{sub 3} {center_dot} 2H{sub 2}O for recycling or appropriate disposal.

  16. Designing a New Scrap-Based Continuous Steelmaking Process using CFD Simulation Lifeng Zhang

    E-print Network

    Thomas, Brian G.

    1 Designing a New Scrap-Based Continuous Steelmaking Process using CFD Simulation Lifeng Zhang Jun, Bubbles, Inclusions, Mixing INTRODUCTION Computational fluid dynamics (CFD) models of turbulent, discussions between the researchers in this project, numerical simulations [4, 5] , and water models [6

  17. Evaluation of copper for divider subassembly in MCO Mark IA and Mark IV scrap fuel baskets

    SciTech Connect

    Graves, C.E.

    1997-09-29

    The K Basin Spent Nuclear Fuel (SNF) Project Multi-Canister Overpack (MCO) subprojection eludes the design and fabrication of a canister that will be used to confine, contain, and maintain fuel in a critically safe array to enable its removal from the K Basins, vacuum drying, transport, staging, hot conditioning, and interim storage (Goldinann 1997). Each MCO consists of a shell, shield plug, fuel baskets (Mark IA or Mark IV), and other incidental equipment. The Mark IA intact and scrap fuel baskets are a safety class item for criticality control and components necessary for criticality control will be constructed from 304L stainless steel. It is proposed that a copper divider subassembly be used in both Mark IA and Mark IV scrap baskets to increase the safety basis margin during cold vacuum drying. The use of copper would increase the heat conducted away from hot areas in the baskets out to the wall of the MCO by both radiative and conductive heat transfer means. Thus copper subassembly will likely be a safety significant component of the scrap fuel baskets. This report examines the structural, cost and corrosion consequences associated with using a copper subassembly in the stainless steel MCO scrap fuel baskets.

  18. Specialized Production of Tubular Semifinished Products for Nuclear Power Plants from Deactivated Scrap Metal

    Microsoft Academic Search

    V. M. Parshin; I. I. Sheinfel'd; M. G. Chigrinov; A. V. Larin; A. M. Chigrinov

    2004-01-01

    After a certain period of service in the cooling systems of the cores of nuclear power plants (NPPs), tubes made of chromium-nickel steel are placed in repositories that have been specially designated for this purpose due to the tubes’ radioactive contamination. The Russian Ministry of Atomic Energy estimates that about 160,000 tons of such scrap has now been accumulated. In

  19. Flexural behaviour of one-way concrete slabs reinforced with steel bars milled from scrap metals

    Microsoft Academic Search

    Mark Adom-Asamoah; Charles K. Kankam

    2009-01-01

    Laboratory tests were performed on 12 simply-supported one-way concrete slabs reinforced with steel bars that were milled from scrap metals. The slabs were subjected to concentrated line loads at the third points. Two different failure modes of flexural yielding of the tension bar or flexural crushing of the concrete were predicted. The observed failure modes, however, were either one or

  20. Use of the Known-M Method for NDA of Plutonium Scrap

    Microsoft Academic Search

    Thompson

    1999-01-01

    'Plutonium scrap from another Department of Energy site is to be converted at Savannah River Site (SRS) to a form for permanent storage. For accountability and criticality safety, the material must be measured at SRS, and handling restrictions require assay in 9975 shipping drums. A Multiplicity Neutron Counter is available to perform the measurements, but requires about 12 hours per

  1. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    Microsoft Academic Search

    Kessinger

    1993-01-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially

  2. Ferrous and common nonferrous metals industries and associated scrap metals: a review

    Microsoft Academic Search

    Mautz

    1975-01-01

    Literature on the common metals industries, scrap metal relationships, ; and transportation aspects has been reviewed as background information in a study ; to determine the feasibility of a portable melting facility for radioactively ; contaminated metals. This report draws substantially on government-sponsored ; studies. Aluminum, copper, iron and steel, and nickel metal industries are ; discussed from the viewpoints

  3. Field Evaluation of a Leachate Collection System Constructed with Scrap Tires

    E-print Network

    Aydilek, Ahmet

    Field Evaluation of a Leachate Collection System Constructed with Scrap Tires Ahmet H. Aydilek1 is the use of tire chips as a leachate collection material in municipal solid waste landfills. Laboratory to evaluate the hydraulic performance as well as the potential for spontaneous combustion. Leachate collected

  4. Processing of plastic waste and scrap tires into chemical raw materials, especially by pyrolysis

    Microsoft Academic Search

    Walter Kaminsky

    1976-01-01

    An account of the occurrence of pyrolyzable material and the state of development of pyrolysis processes in the USA and Japan is followed by a description of laboratory and pilot-scale experiments designed to exploit the raw material content of pyrolyzable substances rather than the heating value. Plastic waste and scrap tires can be pyrolyzed to give up to 40 percent

  5. Copper wire bonding process in leaded packages with zero loss in quality, capacity, scrap & machine efficiency

    Microsoft Academic Search

    Tan Chee Eng

    2011-01-01

    For the past few years, acceptance and implementation of copper wire has grown from optional to mandatory, especially after gold price increased triple for past 5 years. However, there are many companies still not able to achieve desirable performance, especially without trading off other performance indices such as quality, capacity, scrap or machine efficiency. The copper wire has two fundamental

  6. Fabrication of aluminum flake powder from foil scrap by a wet ball milling process

    Microsoft Academic Search

    S. H Hong; B. K Kim

    2001-01-01

    Fabrication of aluminum flake powder by the wet ball milling of aluminum foil scraps and the effect of related factors were studied. As foil thickness decreases from 60 to 6.5 ?m, mean size of powder milled for 30 h decreases from 107 to 17 ?m. It is impossible to mill the foil without oleic acid to fabricate the flake powder.

  7. Continuous fermentation of food scraps with constant pH control to produce carboxylic acids

    E-print Network

    Coleman Jr., Stanley Albert

    2008-10-10

    feedstock to the MixAlco process. Batch fermentation with various temperatures, buffers, and pH control methods elucidated the behavior of food scraps during fermentation. The pH and reactor configuration were limiting factors when maximizing production. A...

  8. Continuous fermentation of food scraps with constant pH control to produce carboxylic acids

    E-print Network

    Coleman Jr., Stanley Albert

    2009-05-15

    feedstock to the MixAlco process. Batch fermentation with various temperatures, buffers, and pH control methods elucidated the behavior of food scraps during fermentation. The pH and reactor configuration were limiting factors when maximizing production. A...

  9. OFFGAS GENERATION FROM THE DISPOSITION OF SCRAP PLUTONIUM BY VITRIFICATION SIMULANT TESTS

    Microsoft Academic Search

    J Zamecnik; P Patricia Toole; D David Best; T Timothy Jones; W Whitney Thomas; V Vickie Williams

    2008-01-01

    The Department of Energy Office of Environmental Management is supporting R&D for the conceptual design of the Plutonium Disposition Project at the Savannah River Site in Aiken, SC to reduce the attractiveness of plutonium scrap by fabricating a durable plutonium oxide glass form and immobilizing this form within the high-level waste glass prepared in the Defense Waste Processing Facility. A

  10. Liquid metal extraction of Nd from NdFeB magnet scrap

    SciTech Connect

    Xu, Yanchen

    1999-12-10

    This research involves using molten magnesium (Mg) to remove neodymium (Nd) from NdFeB magnet scrap by diffusion. The results show that liquid metal extraction of Nd may be a viable and inexpensive method for recovering the expensive rare earth element Nd for use in Mg castings.

  11. Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood

    E-print Network

    Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated WoodDisposal problem Recycling potentialRecycling potential ValueValue--added productsadded products Closed loop recyclingClosed loop recycling #12;Major Current Disposal OptionsMajor Current Disposal Options Incineration

  12. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  13. Recycling parental sexual messages.

    PubMed

    Darling, C A; Hicks, M W

    1983-01-01

    The purpose of this study was to explore parent-child sexual communication by investigating the impact of direct and indirect parental messages on the sexual attitudes and sexual satisfaction of young adults. A survey research design was used to obtain data from undergraduate students attending a large Southern university. The findings indicate that both direct and indirect parental sexual messages are negative and restrictive and have a differential impact on sexual satisfaction and sexual attitudes. While sexual satisfaction was positive, sexual attitudes were found to be problematic, especially among females. Suggestions are given for approaches that family life educators and parents may use in order to recycle previous sexual messages. PMID:6631981

  14. Porosity of recycled concrete with substitution of recycled concrete aggregate

    Microsoft Academic Search

    José M. V Gómez-Soberón

    2002-01-01

    In this paper, we present the experimental analysis of samples of recycled concrete (RC) with replacement of natural aggregate (NA) by recycled aggregate originating from concrete (RCA). The results of the tests of mechanical properties of RC were used for comparison with tests of mercury intrusion porosimetry (MIP), in which the distribution of the theoretical pore radius, critical pore ratio,

  15. Uranium industry annual 1998

    SciTech Connect

    NONE

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  16. Microstructure and mechanical properties of wrought aluminium alloy prepared by recycling of aluminium matrix composites reinforced with Inconel 601 fibres

    Microsoft Academic Search

    J Lapin; T Pelachová

    1999-01-01

    The microstructure and mechanical properties of Al-2.2Cu-1.7Mg-1.1Ni-1.1Fe-0.9Si-0.3Zn-0.2Cr-0.2Mn-0.2Ti (wt.%) alloy prepared by recycling of composite scrap containing Inconel 601 fibres in aluminium matrix were investigated. The structure of recycled alloy consisted of ?-Al dendrites and a multiphase interdendritic region. Transmission electron microscopy and energy dispersive X-ray spectroscopy showed that the interdendritic region contained coarse Al9Fe(Ni, Si), Al7Cu4Ni, Al4CuMg5Si4, (Cu, Al)2Mg and

  17. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-print Network

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  18. The Economic Benefits of Recycling in Virginia

    E-print Network

    Lewis, Robert Michael

    The Economic Benefits of Recycling in Virginia Alexander P. Miller Hang T. Nguyen Samantha D, and the recycling contacts from the participating Solid Waste Planning Units discussed in this study. #12;3 Table Determinants of Recycling_______________________________ 12 State Reports

  19. Energy and Environmental Considerations in Recycling

    E-print Network

    Budker, Dmitry

    Energy and Environmental Considerations in Recycling Griffin Hosseinzadeh 11 April 2012 Physics H materials from recyclables · Carbon emissions & water pollution from production of virgin materials vs. recycling · Methane from decomposing materials in landfill · Depletion of natural resources (trees, minerals

  20. Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov

    E-print Network

    Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov Laboratory for Education delivery channels with speculatively pre- computed authorizations and actively recycling them on a just Security Keywords authorization recycling, authorization flooding, access con- trol, authorization, publish

  1. 16 CFR 260.12 - Recyclable claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...the waste stream through an established recycling program for reuse or use in manufacturing...deception about the availability of recycling programs and collection sites to consumers. (1) When recycling facilities are available to a...

  2. 76 FR 71861 - America Recycles Day, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ...advanced the common good of our Nation by recycling regularly and promoting conservation...growth. Since then, we have bolstered recycling programs through individual action...we must update and expand existing recycling programs and dedicate ourselves to...

  3. RECYCLING: SUPPLY, ECONOMICS, ENVIRONMENT, AND TECHNOLOGY

    E-print Network

    Abubakr, Said

    RECYCLING: SUPPLY, ECONOMICS, ENVIRONMENT, AND TECHNOLOGY Panel Discussion Roundtable Moderator: S, although higher market values for recyclable will certainly stimulate increased interest in collection in recycling and deinking technologies and process design among North American, European, and Pacific Rim

  4. 16 CFR 260.12 - Recyclable claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...the waste stream through an established recycling program for reuse or use in manufacturing...deception about the availability of recycling programs and collection sites to consumers. (1) When recycling facilities are available to a...

  5. Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry

    NASA Astrophysics Data System (ADS)

    Morin, Jeremy Edward

    In 1844 Charles Goodyear obtained U.S. Patent #3,633 for his "Gum Elastic Composition". In a published circular, which describes his patent for the sulfur vulcanization of gum elastic composition, he stated: "No degree of heat, without blaze, can melt it (rubber)... It resists the most powerful chemical reagents. Aquafortis (nitric acid), sulphuric acid, essential and common oils, turpentine and other solvents... ..." Goodyear's sulfur vulcanization of rubber fueled much of the industrial revolution and made transportation possible, as it exists today. In doing so, Goodyear created one of the most difficult materials to recycle. Rubber will not melt, dissolve, or lend itself to the usual methods of chemical decomposition. Ironically, Goodyear recognized this problem and in 1853 he patented the process of adding ground rubber to virgin material, now currently known as regrind blending. Today, scrap tires represent one of the most serious sources of pollution in the world. Studies estimate that there are roughly 2 billion scrap tires in U.S. landfills and more are being added at a rate of over 273 million tires per year. Current methods of recycling waste tires are crude, ineffective, and use rubber powder as a low cost filler instead of a new rubber. The groundwork for a very simple and effective method of producing high-quality rubber goods using 100% scrap rubber was discovered in 1944 by A. V. Tobolsky et al. This application, however, was not recognized until recently in our laboratory. The process as studied to date represents a method of creating quality, high-value added rubber goods with nothing other than heat and pressure. High pressure is required to obtain a void-free compaction of the rubber particles by forcing all of the free surfaces into intimate contact. High temperature then activates the chemical rearrangement, scission, and reformation of the chemical bonds thus providing new bridges between the once fractured interfaces. This occurs both within and between particles. The technique of high-pressure high-temperature sintering has worked on all types of thermoset materials. Typical mechanical properties for sintered SBR powder rubber are as follows: 1.3 MPa 100% Modulus, 12.0 MPa Tensile Strength and 300% Elongation at Break. The goal of this research is two-fold. First, to gain an understanding of the variables that control the process of high-pressure high-temperature sintering. Second, to study the factors governing the mechanism of fusion with the hope of controlling and exploiting this process so that tires can be recycled to produce high quality and high-value added products.

  6. Recycling the news

    SciTech Connect

    Sager, K.A.

    1997-09-01

    With its infamous bureaucracy, legions of news organizations, and the prominence of the federal government, Washington, D.C., and its environs generate literally tons of paper every day. Paper represents almost 40% of the waste stream, according to the US EPA. The agency`s figures show that more than 80 million tpy of paper are generated, and with such a significant portion of this waste capable of being recycled, it is essential that the nation`s capital have enough paper recycling facilities. Capital Fiber (Springfield, VA.), a large-scale intermediate paper processing facility, is an example of one such facility. Its primary material is old newspapers (ONP), and its operations consist of receiving, sorting, and consolidating waste paper for baling and resale. The company is a joint venture between daily newspaper giant the Washington Post (Washington, D.C.), which owns 80%, and the Canusa Corp. (Baltimore), a waste paper brokerage firm, which owns the other 20% of Capitol Fiber. Capital Fiber`s Springfield facility handles nine grades of paper, including pre-consumer and post-consumer ONP, blank news (newspaper trimmings that have not been printed on), old corrugated containers (OCC), sorted white ledger and sorted office waste, and various wrappers, supermixes, and other mixed grades. Within each of these categories are various sub-grades of paper, and the facility also takes old telephone books, computer paper, and flyleaf, the extra tim cut from periodicals. But, not surprisingly, the predominant material is ONP.

  7. The Fernald Waste Recycling Program

    Microsoft Academic Search

    Motl

    1993-01-01

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such

  8. TOMATO CLEANING AND WATER RECYCLE

    EPA Science Inventory

    A full-scale dump tank water recycle system was developed and demonstrated. A false bottom-ejector transport system removed soil from the water. Clarified water was either recycled back to the dump tank or discharged to the sewer. A vacuum belt was developed for dewatering the mu...

  9. The Dynamic Earth: Recycling Naturally!

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  10. Climate Kids: Recycling Program Educator

    NSDL National Science Digital Library

    Using her countywide program as an example, a recycling educator offers incentives for recycling by providing data on energy savings and explaining how her county in Michigan supports the program. The Climate Kids website is a NASA education resource featuring articles, videos, images and games focused on the science of climate change.

  11. Metallic mercury recycling. Final report

    Microsoft Academic Search

    Beck

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in

  12. DWPF Recycle Evaporator Simulant Tests

    Microsoft Academic Search

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from

  13. Recycling Solid Waste in Chattanooga

    ERIC Educational Resources Information Center

    Vredeveld, Ruth; Martin, Robin

    1973-01-01

    Students undertook a group project in collaboration with city officials to study garbage types in the community and possibilities of recycling solid wastes. Data collected from various sources revealed that public attitude was favorable for recycling efforts and that it was feasible economically. (PS)

  14. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC ?-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both ?-lactamase and ?-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of ?-lactams in vitro against inducible AmpC ?-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  15. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    SciTech Connect

    NONE

    1994-01-01

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Caster for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.

  16. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    SciTech Connect

    Andrea Alfonsi; Gilles Youinou

    2012-07-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can be used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.

  17. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    SciTech Connect

    Andrea Alfonsi; Gilles Youinou; Sonat Sen

    2013-02-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can be used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.

  18. Alternatives for disposal of depleted-uranium waste. Final technical report, October 1984August 1985

    Microsoft Academic Search

    C. W. Mallory; J. G. Funk; W. S. Sanner

    1985-01-01

    Large quantities of depleted uranium wastes are generated at Eglin AFB each year due to testing of armor-penetrating munitions. The majority of this waste consists of sand contaminated with small amounts of depleted uranium. In this study various alternative for disposal were examined in detail including: disposal at DOE facilities, disposal at commercial facilities, on-site disposal, recycling to industry, inerting\\/stabilization,

  19. Drying of uranium-loaded cation exchange resin with microwave heating

    Microsoft Academic Search

    J. P. Drago; P. A. Haas

    1976-01-01

    The reference fuel kernel for recycle of ²³³U to HTGRs (High-Temperature Gas-Cooled Reactors) is prepared by loading carboxylic acid cation exchange resin with uranium and carbonizing it at controlled conditions. The wet, uranium-loaded resin must be dried to a water content of 10 to 16 wt percent prior to carbonization to minimize handling problems. Microwave heating was demonstrated to give

  20. Rab11 regulates recycling through the pericentriolar recycling endosome

    PubMed Central

    1996-01-01

    Small GTPases of the rab family are crucial elements of the machinery that controls membrane traffic. In the present study, we examined the distribution and function of rab11. Rab11 was shown by confocal immunofluorescence microscopy and EM to colocalize with internalized transferrin in the pericentriolar recycling compartment of CHO and BHK cells. Expression of rab11 mutants that are preferentially in the GTP- or GDP-bound state caused opposite effects on the distribution of transferrin-containing elements; rab11-GTP expression caused accumulation of labeled elements in the perinuclear area of the cell, whereas rab11-GDP caused a dispersion of the transferrin labeling. Functional studies showed that the early steps of uptake and recycling for transferrin were not affected by overexpression of rab11 proteins. However, recycling from the later recycling endosome was inhibited in cells overexpressing the rab11-GDP mutant. Rab5, which regulates early endocytic trafficking, acted before rab11 in the transferrin-recycling pathway as expression of rab5-GTP prevented transport to the rab11- positive recycling endosome. These results suggest a novel role for rab11 in controlling traffic through the recycling endosome. PMID:8922376

  1. DEPLETED URANIUM TECHNICAL WORK

    EPA Science Inventory

    The Depleted Uranium Technical Work is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this mater...

  2. USF Physical Plant Recycling Program Updated November 2013

    E-print Network

    Meyers, Steven D.

    USF Physical Plant Recycling Program Updated November 2013 #12;Beginnings · Program initiated · Continuously expanding recycling efforts #12;Paper Recycling · Currently recycling mixed paper Office paper, newspaper, magazines, cardboard, paperbacks · PPD has distributed about 2,400 office-size recycling

  3. Recycle of waste paper

    SciTech Connect

    Hackett, G.D.; Harris, G.E.

    1988-01-01

    One of the Oak Ridge Y-12 Plant's long range goals is to reduce the amount of waste from the plant. The large amount of waste paper generated by the plant is currently buried in the state permitted landfill. Methods of recycling cardboard and paper which comply with all security requirements, health, safety, and environmental regulations of the Y-12 Plant are sought to conserve the landfill. A process to compact paper into a form which may be used as fuel and fed into the existing steam plant has been developed. A water-resistant briquette has been made from waste paper, a binder, and coal. Laboratory and pilot scale briquetting and pulverizing tests have been completed. These briquettes have physical properties similar to those of coal. 12 tabs.

  4. Exploring Waste and Recycling

    NSDL National Science Digital Library

    Camann, Eleanor

    This resource, created by Eleanor Camann of Red Rocks Community College, will introduce students to the concept of sustainability in terms of waste products and recycling practices. The overall premise of the project is to "get students to think critically about which earth materials are used to make things, and where all the waste from both mining and consumption ends up." The activity employs skills in basic mathematics, reasoning and writing. It also crosses disciplines by implementing skills in environmental geology and science. The learning activity only takes about two hours of in-class time and an additional three outside of the classroom. It uses simple materials such as a calculator, periodic table, household scale and digital camera. Lessons plans such as these are supported by a grant under the National Science Foundation's Advanced Technological Education (ATE) program.

  5. Uranium industry annual 1995

    SciTech Connect

    NONE

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  6. Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling

    Microsoft Academic Search

    Li Shen; Ernst Worrell; Martin K. Patel

    2010-01-01

    This study assesses the environmental impact of polyethylene terephthalate (PET) bottle-to-fibre recycling using the methodology of life-cycle assessment (LCA). Four recycling cases, including mechanical recycling, semi-mechanical recycling, back-to-oligomer recycling and back-to-monomer recycling were analysed. Three allocation methods are applied for open-loop recycling, i.e. the “cut-off” approach, the “waste valuation” approach and the “system expansion” approach. Nine environmental impact indicators were

  7. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  8. Advanced recycling and research complexes: A second strategic use for installations on the base closure list

    SciTech Connect

    Walter, D.W.; Kuusinen, T.L.; Beck, J.E.

    1993-05-01

    Obstacles currently facing the solid waste recycling industry are often related to a lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. At the same time, we are faced with opportunities which will not likely recur in our lifetimes: access to educated, well trained work forces; and large tracts of land that are contiguous with metropolitan areas and are developed for heavy industry and transportation. Military installations are being converted to civilian use just in time to serve as important a role in our national resource conservation policy. The future of recycling in North America converges with the future of selected bases on the closure list and takes the form of converting these bases into Advanced Recycling and Research Complexes. The premise is simple: use these strategically-located facilities as industrial parks where a broad range of secondary wastes are separated, refined, or converted and made into new products on site. The wastes would include municipal solid waste (MSW), demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous materials. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would minimize transportation costs.

  9. Recycling of multi-grain, melt processed bulk (RE)BCO superconductors

    NASA Astrophysics Data System (ADS)

    Pathak, S. K.; Babu, N. H.; Dennis, A. R.; Iida, K.; Strasik, M.; Cardwell, D. A.

    2010-06-01

    Recycling is fundamental to the sustainable and economic use of natural resources. Bulk RE-Ba-Cu-O ((RE)BCO, where RE is a rare earth element or Y) can be used for variety of sustainable engineering and power sector applications. However, current costs of production and relatively high process failure rates of up to 30% severely limit the manufacture of these materials for industrial use. It is necessary, therefore, to develop an effective way of recycling failed (RE)BCO bulk samples to reduce both production costs and the consumption of the constituent rare earth elements. Failed, melt processed samples have a different chemical composition to that used initially in the precursor powder and, as a result, are generally scrapped, rather than re-processed. We report a novel method for re-processing failed (RE)BCO samples to restore their chemical composition. Failed bulk samples recycled using this process exhibit superconducting properties that are comparable to those of single-grain samples fabricated by conventional top seeded melt growth.

  10. PROPERTIES OF URANIUM CARBIDES

    Microsoft Academic Search

    W. Chubb; R. F. Dickerson

    1962-01-01

    Properties of uranium carbides are reviewed and brought up to date. ; Photographs and photomicrographs of uranium carbides fabricated by melting and ; casting techniques and by powder metallurgy techniques are presented. Recent ; data confirm that uranium monocarbide has metallic conductivity (a thermal ; conductivity of approximately 0.055 cal\\/sec-cm- deg C and a resistivity of ; approximately 35 microhm-cm)

  11. Depleted Uranium Technical Brief

    E-print Network

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

  12. Simulation of cutting process in the cable recycling system

    NASA Astrophysics Data System (ADS)

    Li, Yang; Luo, Zhen; Song, Kailei; Ao, Sansan; Wang, Rui

    2011-05-01

    The utilization of Waste Electrical and Electronic Equipment is a hot spot in environmental protection field presently and the resource utilization of cable wastes is an important subject. An enormous amount of electrical cable is disposed of as scrap each year. In order to recycle the valuable copper wires, cable granulator technique is used widely. However, one of the shortcomings of this technique is it has serious tool wear. In order to better understand the reason for tool wear, this paper simulates the stress and strain distribution in the cutting tool and copper during the cutting process in cable granulator by finite element method. The result shows that a tensile stress region, which is the main reason for blade tipping, appeared in the upper blade. Besides, the tensile stress in the right side of upper blade is higher than that in the left side. Therefore, in order to extend the life of cutter, we suggest using different materials in different stress zone to manufacture cutting tool. After the cutter was worn out, the right side of the blade can be renovated using material with well tensile performance through overlaying welding, as well as the left side of the blade can be renovated by material with high red hardness, high wear resistance, and high compression strength through overlaying welding. This method can reduce the consumption of precious metals and raise the utilization rate of materials.

  13. Simulation of cutting process in the cable recycling system

    NASA Astrophysics Data System (ADS)

    Li, Yang; Luo, Zhen; Song, Kailei; Ao, Sansan; Wang, Rui

    2010-12-01

    The utilization of Waste Electrical and Electronic Equipment is a hot spot in environmental protection field presently and the resource utilization of cable wastes is an important subject. An enormous amount of electrical cable is disposed of as scrap each year. In order to recycle the valuable copper wires, cable granulator technique is used widely. However, one of the shortcomings of this technique is it has serious tool wear. In order to better understand the reason for tool wear, this paper simulates the stress and strain distribution in the cutting tool and copper during the cutting process in cable granulator by finite element method. The result shows that a tensile stress region, which is the main reason for blade tipping, appeared in the upper blade. Besides, the tensile stress in the right side of upper blade is higher than that in the left side. Therefore, in order to extend the life of cutter, we suggest using different materials in different stress zone to manufacture cutting tool. After the cutter was worn out, the right side of the blade can be renovated using material with well tensile performance through overlaying welding, as well as the left side of the blade can be renovated by material with high red hardness, high wear resistance, and high compression strength through overlaying welding. This method can reduce the consumption of precious metals and raise the utilization rate of materials.

  14. Recycling and Life Cycle Issues

    SciTech Connect

    Das, Sujit [ORNL

    2010-01-01

    This chapter addresses recycling and life cycle considerations related to the growing use of lightweight materials in vehicles. The chapter first addresses the benefit of a life cycle perspective in materials choice, and the role that recycling plays in reducing energy inputs and environmental impacts in a vehicle s life cycle. Some limitations of life cycle analysis and results of several vehicle- and fleet-level assessments are drawn from published studies. With emphasis on lightweight materials such as aluminum, magnesium, and polymer composites, the status of the existing recycling infrastructure and technological challenges being faced by the industry also are discussed.

  15. Hydrogen and inclusion content in recycled aluminum at Holmestrand Rolling Mill

    SciTech Connect

    Frisvold, F.; Oevrelid, E. [SINTEF Materials Technology, Trondheim (Norway); Hald, N.E.; Engh, T.A. [Norwegian Inst. of Tech., Trondheim (Norway). Div. of Metallurgy; Bakke, P. [Norsk Hydro, Porsgrunn (Norway)

    1996-10-01

    It is important to compare the cleanliness of remelted and recycled aluminum with primary metal. Such a metal might contain a higher level of inclusions than primary aluminum. The reason is the paint, oil, grease, etc. covering parts of the scrap metal. Thus the content of oxides and carbides could be a problem. Perhaps especially carbides could cause problems due to the presence of the hydrocarbons. Three campaigns were conducted, in 1993, 1994, and in 1995. The same number of charges were studied from the batch and semi-continuous units. In the first campaign inclusions were studied, in the second inclusions and hydrogen were investigated while in the last campaign only hydrogen was measured.

  16. Practical Engineering Education and Local Contribution Through the Rental Project Using the Recycled Bicycle

    NASA Astrophysics Data System (ADS)

    Taniai, Tetsuyuki; Morita, Shou; Yokoyama, Tatsuki; Nishizaki, Yasushi

    In this report, we proposed the renovation project of a shopping street by the association with a local government, shop and college. The purposes of this project are as follows : (1) soft skills improvement of the college students (2) improvement of the motivation for learning of the college students (3) practical engineering education by the local contribution (4) reduction of carbon-dioxide emissions in the local area (5) effective use of facilities and equipment in the college. Providing some recycled bicycles, which made by the college students from the scrapped bicycle in the college, for the rental bicycle project, it makes a practical engineering education and local contribution opportunity for the college student.

  17. Experimental nickel-cobalt recovery from melt-refined superalloy scrap anodes. Report of investigations/1986

    SciTech Connect

    Holman, J.L.; Neumeier, L.A.

    1986-01-01

    The Bureau of Mines is conducting research to recover strategic and critical metals such as Ni, Co, and Cr from mixed contaminated superalloy scrap. One approach being studied involves melt refining of superalloy scrap to produce anodes for electrolytic deposition of Ni-Co alloy. This melt refining of superalloy turnings is described, based on melt-oxidation and oxidation-carburization experiments that use roasted superalloy grinding sludge to supply the O needed to oxidize Cr and other readily oxidized elements to the slag. Controlled melt-carburization subsequent to oxidation improved the metal-phase recovery of Ni and Co to sell over 90% and decreased electrolytic solubility of Cr, Mo, and W by carbide formation. Research is continuing to improve deposit quality in sustained deposition and to recover Cr and other metals from refining slags and anode sludges.

  18. Technical activities 1980 office of recycled materials

    Microsoft Academic Search

    D. A. Becker; J. G. Berke; R. T. Matthews; H. Yakowitz

    1980-01-01

    A review of recycled materials programs at NBS, for FY 1980 is presented in this annual report. This report contains the following: The Office of Recycled Materials - A plan for the future; The NBS recycled oil program--(Introduction, the NBS role in recycled oil, the current NBS program, plan, implementation, and discussion); The resource conservation and recovery program--(Introduction, needs, goal

  19. Recycled Wash Water Crushed Returned Concrete

    E-print Network

    1 Recycled Wash Water Crushed Returned Concrete National Concrete Consortium March 2012 Colin Lobo% increase by 2030 "Waste" to "Recycled" Returned Concrete - estimated 2 - 10% of production 8 to 12 by 2030 Recycled content: 200% increase by 2020 400% increase by 2030 Recycled Content: Where are we

  20. Super recycled water: quenching January 30, 2014

    E-print Network

    purifying" wastewater, plus recycling waste to replace concrete We know water is a precious resource creating recycled material to replace concrete, the most widely used construction material on Earth which- 1 - Super recycled water: quenching computers January 30, 2014 Conserving, recycling and "super